

Welcome to Tolerance’s documentation!

Contents:

	Introduction
	Why ?

	Getting started

	Contributing

	Operation runners
	Operations

	Raw runners

	Behavioural runners

	Create your own

	Throttling
	Rate

	Waiters

	Strategies

	Integrations

	Tracer

	Metrics
	Collectors

	Publishers

	Operation Runners

	Symfony Bundle
	Getting started

	Operation runner

	Operation Wrappers

	Tracer

	Metrics

	Guzzle

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Tolerance is a PHP library that provides fault tolerance and microservices related tools in order to be able
to solve some of the problems introduced by microservices.

Why ?

Software fails. Software communicates with other softwares. Software can be distributed or a set of services, which
makes it even more subject to faults and monitoring/tracing problems.

Tolerance helps to run fault-tolerant operations, throttle
(ie rate limiting) your outgoing or incoming messages, track messages across services and protocols
and more.

Getting started

The recommended way is to use Composer to install the tolerance/tolerance package.

	1

	$ composer require tolerance/tolerance

If you are using Symfony, then checkout the Symfony Bundle. Else, you should have a look
to the different components.

	Operation runners

	Tracer

	Metrics

	Throttling

Contributing

Everything is open-source and therefore use the GitHub repository [https://github.com/Tolerance/Tolerance] to open an issue
or a pull-request.

Operation runners

This component aims to run atomic tasks (called operations) by using different operation runners. They can
retry in case of a temporary fault, buffer the operations,
fallback them with a default result, rate limit the throughput of operations and more.

	Operations
	From a callback

	Promise Operation

	Raw runners
	Callback runner

	Chain runner

	Behavioural runners
	Retry runner

	Buffered runner

	Retry Promise runner

	Create your own

Operations

An operation is an atomic piece of processing. This is for instance an API call to an third-party service, or a process
that requires to talk to the database. We can use them for any process that is dependent on a non-trusted resource,
starting with the network connection.

From a callback

The first kind of operation is an operation defined by a PHP callable.
This operation can be created with the Callback class, like this:

	1
2
3
4
5

	use Tolerance\Operation\Callback;

$operation = new Callback(function() use ($client) {
 return $client->get('/foo');
});

This class accepts any supported PHP callable [http://php.net/manual/en/language.types.callable.php], so you can also
use object methods. For instance:

	1
2
3

	use Tolerance\Operation\Callback;

$operation = new Callback([$this, 'run']);

Promise Operation

This class accepts any supported PHP callable [http://php.net/manual/en/language.types.callable.php], which must
returns a Promise.

For instance:

	1
2
3
4
5

	use Tolerance\Operation\PromiseOperation;

$operation = new PromiseOperation(function () use ($nextHandler, $request) {
 return $nextHandler($request);
});

The PromiseOperation is runned by the RetryPromiseOperationRunner.

Raw runners

There’s a set of raw operation runners that know how to run the default operations:

	The callback runner that is able to run callback operations.

	The chain runner that is able to chain operation runners that supports different operation types.

Callback runner

This is the runner that runs the Callback operations.

	1
2
3
4

	use Tolerance\Operation\Runner\CallbackOperationRunner;

$runner = new CallbackOperationRunner();
$result = $runner->run($operation);

Chain runner

Constructed by other runners, usually the raw ones, it uses the first one that supports to run the operation.

	1
2
3
4
5
6
7
8

	use Tolerance\Operation\Runner\ChainOperationRunner;
use Tolerance\Operation\Runner\CallbackOperationRunner;

$runner = new ChainOperationRunner([
 new CallbackOperationRunner(),
]);

$result = $runner->run($operation);

Also, the addOperationRunner method allows you to add another runner on the fly.

Behavioural runners

These operation runners decorates an existing one to add extra behaviour:

	The retry runner will retry the operation until it is successful or considered as failing too much.

	The buffered runner will buffer operations until you decide the run them.

	The retry promise runner will provide a new Promise to replace a rejected or incorrectly fulfilled one.

Note

The Throttling component also come with a Rate Limited Operation Runner

Retry runner

This runner will retry to run the operation until it is successful or the wait strategy decide to fail.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	use Tolerance\Operation\Runner\CallbackOperationRunner;
use Tolerance\Operation\Runner\RetryOperationRunner;
use Tolerance\Waiter\SleepWaiter;
use Tolerance\Waiter\ExponentialBackOff;
use Tolerance\Waiter\CountLimited;

// Creates the strategy used to wait between failing calls
$waitStrategy = new CountLimited(
 new ExponentialBackOff(
 new SleepWaiter(),
 1
),
 10
);

// Creates the runner
$runner = new RetryOperationRunner(
 new CallbackOperationRunner(),
 $waitStrategy
);

$result = $runner->run($operation);

By default, the retry runner will catch all the exception. If you want to be able to catch only unexpected exceptions
or only some, you can inject a ThrowableCatcherVoter implementation as the third argument
of the RetryOperationRunner. For instance, you can catch every exception but Guzzle’s ClientException ones.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	use Tolerance\Operation\ExceptionCatcher\ThrowableCatcherVoter;

$throwableCatcherVoter = new class() implements ThrowableCatcherVoter {
 public function shouldCatchThrowable(\Throwable $t)
 {
 return !$t instanceof ClientException;
 }
};

$runner = new RetryOperationRunner(
 new CallbackOperationRunner(),
 $waitStrategy,
 $throwableCatcherVoter
);

Buffered runner

This runner will buffer all the operations to post-pone their execution.

	1
2
3
4
5
6
7
8
9

	use Tolerance\Operation\Buffer\InMemoryOperationBuffer;
use Tolerance\Operation\Runner\BufferedOperationRunner;

$buffer = new InMemoryOperationBuffer();
$bufferedRunner = new BufferedOperationRunner($runner, $buffer);

// These 2 operations will be buffered
$bufferedRunner->run($firstOperation);
$bufferedRunner->run($secondOperation);

Once you’ve decided that you want to run all the operations, you need to call the runBufferedOperations method.

	1

	$results = $bufferedRunner->runBufferedOperations();

The $results variable will be an array containing the result of each ran operation.

Tip

The Symfony Bridge automatically run all the buffered operations when the kernel terminates. Checkout the
Symfony Bridge documentation

Retry Promise runner

This runner will provide a new Promise until it is successful or the wait strategy decide to fail.
It supports only the PromiseOperation.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	use Tolerance\Operation\Runner\RetryPromiseOperationRunner;
use Tolerance\Waiter\SleepWaiter;
use Tolerance\Waiter\ExponentialBackOff;
use Tolerance\Waiter\CountLimited;

// Creates the strategy used to wait between failing calls
$waitStrategy = new CountLimited(
 new ExponentialBackOff(
 new SleepWaiter(),
 1
),
 10
);

// Creates the runner
$runner = new RetryPromiseOperationRunner(
 $waitStrategy
);

$promise = $runner->run($operation);

By default, the promise retry runner will considered a Fulfilled Promise as successful, and will retry any Rejected
Promise.
If you want to be able to define you own catching strategy,
you can inject a ThrowableCatcherVoter implementation as the second argument for the Fulfilled stragegy,
and as the third argument for the Rejected strategy.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	use Tolerance\Operation\Exception\PromiseException;
use Tolerance\Operation\ExceptionCatcher\ThrowableCatcherVoter;

$throwableCatcherVoter = new class() implements ThrowableCatcherVoter {
 public function shouldCatchThrowable(\Throwable $t)
 {
 return !$throwable instanceof PromiseException
 || $throwable->isRejected()
 || !$throwable->getValue() instanceof Response
 || $throwable->getValue()->getStatusCode() >= 500
 ;
 }
};

$runner = new RetryPromiseOperationRunner(
 $waitStrategy,
 $throwableCatcherVoter
);

Create your own

Provided operation runners might be sufficient in many cases, but you can easily create your own runners by implementing the
OperationRunner interface [https://github.com/Tolerance/Tolerance/blob/master/src/Tolerance/Operation/Runner/OperationRunner.php].

Throttling

The principle of throttling a set of operation is to restrict the maximum number of these operations to run
in a given time frame.

For instance, we want to be able to run a maximum of 10 requests per seconds per client. That means that the operations
tagged as “coming from the client X” have to be throttled with a rate of 10 requests per seconds. It is important
to note that the time frame can also be unknown and you can use your own ticks to achieve a rate limitation for
concurrent processes for instance.

	Rate
	Rate

	Rate measure

	Storage

	Waiters
	SleepWaiter

	NullWaiter

	Linear

	Exponential back-off

	Count limited

	Rate Limit

	Time Out

	Strategies
	Leaky bucket

	Integrations
	Operation Runner

Rate

Even if you may not need to extend these main objects of the Throttling, here are the description of the Rate
and RateMeasure objects that are used by the rate limit implementations.

Rate

The Rate interface simply defines a getTicks() method that should returns a number. The first implementation is the
TimeRate that defines a number of operation in a given time range.

	1
2
3
4

	use Tolerance\Throttling\Rate\TimeRate;

$rate = new TimeRate(60, TimeRate::PER_SECOND)
$rate = new TimeRate(1, TimeRate::PER_MINUTE)

The second implementation is the CounterRate that simply defines a counter. This is mainly used to store a
counter such as in the internals of the Leaky Bucket implementation or when you’ll want to setup a rate limitation
for parallel running processes for instance.

Rate measure

The RateMeasure is mainly used in the internals to store a given Rate at a given time. The only
implementation at the moment is the ImmutableRateMeasure.

Storage

What you have to care about is the storage of these rate measures because they need to be stored in order to ensure
the coherency or this rate limits, especially when running with concurrent requests.

In memory storage

The easiest way to start is to store the rate measures in memory. The major drawback is that in order to ensure your
rate limitation you need to have your application running in a single long-running script.

	1
2
3

	use Tolerance\Throttling\RateMeasureStorage\InMemoryStorage;

$storage = new InMemoryStorage();

Waiters

In any loop, you’ll probably want to wait between calls somehow, to prevent DDoSing your other services
or 3rd party APIs. Tolerance come with 2 default raw waiters:

	SleepWaiter that simply wait using PHP’s usleep function

	NullWaiter that do not wait and it mainly used for tests

Once you are able to wait an amount of time, you may want to surcharge the waiters to apply different wait strategies
such as an exponential back-off.

	The linear waiter simply waits a predefined amount of time.

	The exponential back-off waiter uses the well-known Exponential backoff algorithm [https://en.wikipedia.org/wiki/Exponential_backoff]
to multiplicatively increase the amount of time of wait time.

	The count limited waiter simply adds a limit in the number of times it can be called.

	The rate limit waiter will wait the required amount of time to satisfy a rate limit.

Note

The Throttling component also come with a Rate Limited Operation Runner

SleepWaiter

This implementation will use PHP’s sleep function to actually pause your process for a given amount of time.

	1
2
3
4
5
6

	use Tolerance\Waiter\Waiter\SleepWaiter;

$waiter = new SleepWaiter();

// That will sleep for 500 milliseconds
$waiter->wait(0.5);

NullWaiter

The NullWaiter won’t actually wait anything. This is usually used for the testing, you should be careful
using it in production.

	1
2
3

	use Tolerance\Waiter\Waiter\NullWaiter;

$waiter = new NullWaiter();

Linear

How to simply always wait a predefined amount of time? There’s the linear waiter. The following example show how
it can be used to have a waiter that will always wait 0.1 seconds.

	1
2
3
4

	use Tolerance\Waiter\Waiter\SleepWaiter;
use Tolerance\Waiter\Waiter\Linear;

$waiter = new Linear(new SleepWaiter(), 0.1);

Exponential back-off

In a variety of computer networks, binary exponential backoff or truncated binary exponential backoff refers to an
algorithm used to space out repeated retransmissions of the same block of data, often as part of network congestion
avoidance.

 Strategies

Strategies

There are many existing algorithms for throttling, you need to choose the one that fits the best your needs.
At the moment, only the following algorithm can be found in Tolerance:

	Leaky bucket, a rolling time frame rate limit

Each implementation implements the RateLimit interface that contains the following methods:

	hasReachedLimit(string $identifier): bool
Returns true if the given identifier reached the limit

	getTicksBeforeUnderLimit(string $identifier): float
Returns the number of ticks that represents the moment when the rate will be under the limit.

	tick(string $identifier)
Register a tick on the bucket, meaning that an operation was executed

Leaky bucket

The leaky bucket algorithm [https://en.wikipedia.org/wiki/Leaky_bucket] ensure that the number of operations won’t
exceed a rate on a given rolling time frame.

	1
2
3
4
5
6
7
8

	use Tolerance\Throttling\Rate\TimeRate;
use Tolerance\Throttling\RateLimit\LeakyBucket;
use Tolerance\Throttling\RateMeasureStorage\InMemoryStorage;

$rateLimit = new LeakyBucket(
 new InMemoryStorage(),
 new TimeRate(10, TimeRate::PER_SECOND)
);

You can have a look to the LeakyBucket unit tests [https://github.com/Tolerance/Tolerance/blob/master/tests/Tolerance/Throttling/RateLimit/LeakyBucketTest.php]
to have a better idea of how you can use it directly.

 Integrations

Integrations

Once you’ve chosen your rate limit strategy you can either use it directly or integrates it with some of the
existing components of Tolerance.

	Operation Runner is an Operation Runner that will run your operations based on the rate limit.

Operation Runner

The Rate Limited Operation Runner is the integration of rate limiting with operation runners. That way you can ensure
that all the operations you want to run will actually run at the given time rate.

	1
2
3
4
5
6
7
8
9

	$rateLimit = /* The implementation you wants */;

$operationRunner = new RateLimitedOperationRunner(
 new SimpleOperationRunner(),
 $rateLimit,
 new SleepWaiter()
);

$operationRunner->run($operation);

By default, the identifier given to the rate limit is an empty string. The optional fourth parameter is an
object implementing the ThrottlingIdentifierStrategy interface that will returns the identifier of the operation.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	class ThrottlingIdentifierStrategy implements ThrottlingIdentifierStrategy
{
 /**
 * {@inheritdoc}
 */
 public function getOperationIdentifier(Operation $operation)
 {
 if ($operation instanceof MyClientOperation) {
 return sprintf(
 'client-%s',
 $operation->getClient()->getIdentifier()
);
 }

 return 'unknown-client';
 }
}

 Tracer

Tracer

The Tracer component’s goal is to be able to easily setup a tracing of your application messages across different
services.

At the moment, the supported backend is Zipkin [http://zipkin.io/]. Once configured, you’ll be able to preview
a given Trace and analyze the time spent by each service.

[image: ../_images/zipkin-ui-preview.png]

Note

The Symfony Bundle also integrates this component to ease the setup of
traces in a Symfony application.

 Metrics

Metrics

This component contain a set of tools to collect and publish different metrics about the application.

	Collectors

	Publishers

	Operation Runners
	Success/Failure

Note

The Symfony Bundle integration also uses this component to provide metrics.

 Collectors

Collectors

Tolerance have built-in collectors that you can use directly.

	class.CollectionMetricCollector [https://github.com/Tolerance/Tolerance/blob/master/src/Tolerance/Metrics/Collector/CollectionMetricCollector.php] contain a collector of other collectors and will collect the metrics from all of them.

	class.RabbitMqCollector [https://github.com/Tolerance/Tolerance/blob/master/src/Tolerance/Metrics/Collector/RabbitMq/RabbitMqCollector.php] will grab metrics from the RabbitMq management API.

In order to create your own collector, you will just have to implement the interface.MetricCollector [https://github.com/Tolerance/Tolerance/blob/master/src/Tolerance/Metrics/Collector/MetricCollector.php] interface.

 Publishers

Publishers

Tolerance have built-in publishers that you can use directly.

	class.CollectionMetricPublisher [https://github.com/Tolerance/Tolerance/blob/master/src/Tolerance/Metrics/Publisher/CollectionMetricPublisher.php] contain a collector of other publisher and will publish the metrics to all of them.

	class.HostedGraphitePublisher [https://github.com/Tolerance/Tolerance/blob/master/src/Tolerance/Metrics/Publisher/HostedGraphitePublisher.php] will publish the metrics to HostedGraphite.

	class.BeberleiMetricsAdapterPublisher [https://github.com/Tolerance/Tolerance/blob/master/src/Tolerance/Metrics/Publisher/BeberleiMetricsAdapterPublisher.php] will publish the metrics using a “collector” from the Beberlei’s metrics library [https://github.com/beberlei/metrics].

In order to create your own collector, you will just have to implement the interface.MetricPublisher [https://github.com/Tolerance/Tolerance/blob/master/src/Tolerance/Metrics/Publisher/MetricPublisher.php] interface.

 Operation Runners

Operation Runners

If you are using Tolerance’s operation runners you can decorate them with some additional
operation runner that will publish some metrics. It’s an easy way to collect metrics from your application with almost
no effort.

Success/Failure

This operation runner will increment a :.failure and a :.success metric at every run. You can therefore
count the number of ran operation as well as their status.

	1
2
3
4
5
6
7

	use Tolerance\Operation\Runner\Metrics\SuccessFailurePublisherOperationRunner;

$runner = new SuccessFailurePublisherOperationRunner(
 $decoratedRunner,
 $metricPublisher,
 'metric_namespace'
);

Note

You can also uses Symfony’s bridge to create and use this runner without any PHP code.

 Symfony Bundle

Symfony Bundle

The Tolerance library comes with a Symfony Bundle that automatically integrates most of the features
automatically with a Symfony application.

	Getting started

	Operation runner
	Factory

	Buffered termination

	Operation Wrappers
	Using a tag

	Using YAML

	Tracer

	Metrics
	Collectors

	Publishers

	Your own consumer and publishers

	Command

	Request

	Guzzle
	Configuration

 Getting started

Getting started

Simply add the ToleranceBundle in your Symfony’s AppKernel.

	1

	$bundles[] = new Tolerance\Bridge\Symfony\Bundle\ToleranceBundle\ToleranceBundle();

You can also checkout the example Symfony service [https://github.com/Tolerance/ExampleSymfonyService] and the test application [https://github.com/Tolerance/Tolerance/tree/master/features/symfony/app].

 Operation runner

Operation runner

Factory

When using simple operation runners, you can create them using the YML configuration of the bundle. Each operation runner
have a name (default in the following example). The created operation runner will be available via the service named
tolerance.operation_runner.default.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	tolerance:
 operation_runners:
 default:
 retry:
 runner:
 callback: ~

 waiter:
 count_limited:
 count: 10
 waiter:
 exponential_back_off:
 exponent: 1
 waiter:
 sleep: ~

In that example, that will create a operation runner that is the retry operation runner decorating a callable operation runner.
The following image represents the imbrication of the different runners.

[image: ../../_images/runner-factory.png]

Note

This YML factory do not support recursive operation runner. That means that you can’t use a chain runner inside
another chain runner. If you need to create more complex operation runners, you should create your own service
with a simple factory like the one that was in the tests before this YML factory [https://github.com/Tolerance/Tolerance/blob/f95bb3ae6a5f331a8d0579a991438f68e28f66f9/tests/Tolerance/Bridge/Symfony/Bundle/AppBundle/Operation/ThirdPartyRunnerFactory.php].

Tip

If you just need to add a decorator on a created operation runner, simply uses Symfony DIC decorates features. [http://symfony.com/doc/current/components/dependency_injection/advanced.html#decorating-services]

Buffered termination

If you are using a buffered operation runner, it will automatically run all the buffered operations after the response
it sent to the client (kernel.terminate event).

You can disable this feature with the following configuration:

	1
2

	tolerance:
 operation_runner_listener: false

This will automatically work with operation runners created using the factory. If you’ve created your own service,
you will need to tag it with tolerance.operation_runner in order to declare it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="app.my_buffered_operation_runner" class="Tolerance\Operation\Runner\BufferedOperationRunner">
 <!-- Arguments... -->

 <tag name="tolerance.operation_runner" />
 </service>
 </services>
</container>

 Operation Wrappers

Operation Wrappers

The purpose of this Symfony integration is to help you using operations and operation runners in an easy way. By using
the AOP features provided by the JMSAopBundle [https://github.com/schmittjoh/JMSAopBundle] you can wrap a Symfony service
in an operation runner by simply using a tag or a YAML configuration.

Important

You need to first install JMSAopBundle [https://github.com/schmittjoh/JMSAopBundle] in order to be able
to use this AOP integration.

By default this feature is not activated so you need to activate it manually:

	1
2
3

	tolerance:
 aop:
 enabled: true

Using a tag

Let’s say now that you’ve a service for this YourService object that contains methods that are a bit risky and
needs to be wrapped into an operation runner:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	namespace App;

class YourService
{
 public function getSomething()
 {
 // This method needs to be in an operation runner because it's
 // doing something risky such as an API call.
 }
}

Once you’ve that, you can use the tolerance.operation_wrapper tag to wrap the different calls to some of your
service’s methods inside an operation runner.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="app.your_service" class="App\YourService">
 <tag name="tolerance.operation_wrapper"
 methods="getSomething"
 runner="tolerance.operation_runner.default" />
 </service>
 </services>
</container>

The tag have 2 configuration options:

	methods: a comma separated names of the methods you want to proxy

	runner: the service name of the operation runner to use

And that’s all, your calls to the method getSomething of your service will be wrapper inside a callback operation
and run with the operation runner operation_runner.service_name.

Using YAML

You can wrap some methods of a given class into a given operation runner. The following example shows how simple it
can be to simply get metrics from some API calls for instance.

All the calls to the methods requestSomething and findSomethingElse to a service with the class
HttpThirdPartyClient will be proxied through the operation runner tolerance.operation_runners.3rdparty.
This metrics operation runner created in YAML will record the success and failure of the
operations to a metric publisher.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	tolerance:
aop:
 enabled: true

 wrappers:
 - class: "Acme\Your\HttpThirdPartyClient"
 methods:
 - requestSomething
 - findSomethingElse
 runner: tolerance.operation_runners.3rdparty

operation_runners:
 default:
 callback: ~

 3rdparty:
 success_failure_metrics:
 publisher: tolerance.metrics.publisher.statsd
 namespace: 3rdparty.outgoing.requests

 Tracer

Tracer

This integration is created to require you the less effort possible to use Tolerance’s Tracer component. Enable
it with the following configuration.

	1
2
3
4
5
6
7

	tolerance:
 tracer:
 service_name: MyApplicationService

 zipkin:
 http:
 base_url: http://address.of.your.zipkin.example.com:9411

By default, it’ll activate the following integrations:

	Request listener that reads the span informations from a request’s header

	Monolog processor that adds the span information to the context of each log

	Registered Guzzle middleware that create a span when sending a request if you are using CsaGuzzleBundle [https://github.com/csarrazi/CsaGuzzleBundle]

 Metrics

Metrics

The Symfony bundle comes with an integration for the Metrics component that allows you to easily
collect and publish metrics.

Collectors

You can create metric collectors using YAML. The available types, at the moment, are the following:

	:rabbitmq: will get some metrics about a RabbitMq queue, from the management API.

The following YAML is a reference of the possible configuration.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	tolerance:
 metrics:
 collectors:
 my_queue:
 type: rabbitmq
 namespace: metric.prefix
 options:
 host: %rabbitmq_host%
 port: %rabbitmq_management_port%
 username: %rabbitmq_user%
 password: %rabbitmq_password%
 vhost: %rabbitmq_vhost%
 queue: %rabbitmq_queue_name%

Publishers

You can create publishers using YAML. The available types, at the moment, are the following:

	:hosted_graphite: publish some metrics to the HostedGraphite service.

	:beberlei: publish some metrics using a “collector” from beberlei/metrics [https://github.com/beberlei/metrics].

The following YAML is a reference of the possible configuration.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	tolerance:
 metrics:
 publishers:
 hosted_graphite:
 type: hosted_graphite
 options:
 server: %hosted_graphite_server%
 port: %hosted_graphite_port%
 api_key: %hosted_graphite_api_key%

 statsd:
 type: beberlei
 options:
 service: beberlei_metrics.collector.statsd
 auto_flush: true

Your own consumer and publishers

If you want to register your own consumers and publishers to the default collection services, you have to tag your services
with the :tolerance.metrics.collector and :tolerance.metrics.publisher tags.

Command

A command to collect and publish the metrics is built-in in the Bundle. As an example, you can run this command periodically
to be able to graph metrics from your application.

	1

	app/console tolerance:metrics:collect-and-publish

If required, you can configure the collector and publisher used by this command:

	1
2
3
4
5

	tolerance:
 metrics:
 command:
 collector: tolerance.metrics.collector.collection
 publisher: tolerance.metrics.publisher.collection

Request

If configured, the bundle will register listeners to send two metrics (a timing and an increment) at the end of each
request.

In other words, you just have to put this YAML configuration in order to publish metrics about the duration and the
number of requests to your Symfony application:

	1
2
3
4
5

	tolerance:
 metrics:
 request:
 namespace: my_api.http.request
 publisher: tolerance.metrics.publisher.statsd

 Guzzle

Guzzle

The Symfony bundle comes with an integration for Guzzle [http://docs.guzzlephp.org/en/latest/] that allows automatic
retry of