

 Navigation

 	
 index

 	
 next |

 	Templer System Manual 1.0 documentation

Templer System Manual

Using ZopeSkel

Templer is derived from an earlier system – ZopeSkel [http://pypi.python.org/pypi/ZopeSkel] – which was designed
specifically for the needs of the Zope [http://www.zope.org/] and Plone [http://www.plone.org/] communities.

If you have worked with ZopeSkel [http://pypi.python.org/pypi/ZopeSkel] in the past, you may continue to do so
in the same way you always have. You will find that the selection of
templates is a bit different, but the system works exactly as before.

For more information on using ZopeSkel, see ZopeSkel in this
manual.

This manual covers the templer code generation system. Templer is a
general-purpose system for generating code skeletons for any Python [http://www.python.org] project
from pre-defined templates. Through an interactive interface, the user
provides information which is used to generate a skeleton of files and folders
that fits their individual needs.

To get started quickly, see Using Templer.

Templer consists of a number of packages, each of which provides a set of
templates. Install the package that you need for the templates you want.

	Install templer.core to build basic Python [http://www.python.org]
namespace and nested namespace packages

	Install templer.buildout to build basic
buildouts and recipes to extend the zc.buildout [http://www.buildout.org/] system

	Install templer.zope to build basic
namespace and nested namespace packages for Zope [http://www.zope.org/]

	Install templer.plone to build software
projects for the Plone [http://www.plone.org/] Content Management System

	Install templer.plone[localcommands]
to get access to local commands for adding features to your Plone [http://www.plone.org/] software projects

If you are interested in extending the templer system with your own templates,
read the developers manual.

Contents

	Using Templer

	Templer Packages
	Package Listing

	Package Dependencies

	Templer Developer’s Manual

	Templer Information
	Definition of Terms

	The History of Templer

	Splitting ZopeSkel into Egg Packages

	Templer-Based Applications
	ZopeSkel

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Templer System Manual 1.0 documentation

Using Templer

The fastest way to get started with templer is to install it using
virtualenv [http://virtualenv.org/].

$ easy_install virtualenv # if you have not already installed this
$ virtualenv --distribute templerenv
$ source templerenv/bin/activate
(templerenv)$ easy_install templer.core

This installs the core of the templer system. See the list of available
packages to determine which templer package best suits your needs.

You will now find templer and paster commands in your virtualenv. Use
the templer command to create a basic Python namespace package.

(templerenv)$ templer basic_namespace my.package

After answering a few questions, you will have your new package.

 Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Templer System Manual 1.0 documentation

Templer Packages

The Templer system is made up of a number of small, distinct packages. Read
the list of packages below to discover which templates are provided in each.
Install the package which provides the functionality you need.

Package Listing

	templer.core

	This package installs the core of the Templer system. It provides the base
template and command classes, an extended system of vars which provide
inline help and validation of template questions, and the core of the
structures functionality.

This package provides:

	the basic_namespace and nested_namespace package templates

	the egg_docs structure and structures for each of the supported
license options

	the templer script, the command-line tool through which users may
generate skeleton packages

	templer.localcommands

	This packages installs the Templer local command and local template. Any
package which provides local commands must depend on this package.

This package provides the add paster local command.

	templer.buildout

	The package installs functionality related to the zc.buildout [http://www.buildout.org/] system.

The package provides:

	the basic_buildout and recipe templates

	the bootstrap structure, used by any template which provides a
buildout as part of its output

	templer.zope

	This package installs functionality related to Zope [http://www.zope.org/].

This package provides:

	the zope2_basic and zope2_nested templates

Skeletons generated by these templates will include a buildout. The
buildout will create a Zope 2 instance and include the generated package
in that instance.

	templer.plone

	This package installs functionality related to Plone [http://plone.org/].

This package provides:

	the plone_basic, plone_nested and archetype templates

	the namespace_profile and nested_namespace_profile structures,
which supply default GenericSetup profiles within a generated skeleton

Skeletons generated by these templates will include a buildout. The
buildout will create a Zope 2 instance with Plone installed. The generated
package will be included in the instance, and may be available for
activation in a Plone site. Skeletons will also include an operational
test harness with one or more pre-written tests.

The package may be installed with the [localcommands] extra, in which
case it will depend on templer.plone.localcommands and will have
local commands available for generated skeletons.

	templer.plone.localcommands

	This package provides local commands for templates
from the templer.plone package. Provided commands include browserview,
browserlayer, at_contenttype and at_schema_field.

Package Dependencies

This diagram shows the dependency tree for existing Templer packages.
Installing any Templer package will also install all of its dependencies.
The base system provided by templer.core depends on PasteScript [http://pythonpaste.org/script/],
PasteDeploy [http://pythonpaste.org/deploy/] and Cheetah [http://www.cheetahtemplate.org/].

 PasteScript
 PasteDeploy
 Cheetah
 ^
 |
 templer.core templer.localcommands
 ^ ^
 | |
templer.buildout |
 ^ |
 | |
 templer.zope templer.plone.localcommands
 ^ ^
 | |
 templer.plone [localcommands]

 Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Templer System Manual 1.0 documentation

Templer Developer’s Manual

The templer developer’s manual will provide the information a developer needs
to be able to create new templates to address their own particular needs.

The following are topics this manual will address:

	Structure of a templer plugin

	Making a new template

	Am I subclassing something to do so?

	What classes are available?

	Why would I choose one over another?

	How do I make a template?

	How do I ask questions of the end-user?

	What types of questions are available?

	How do I insert responses into the template?

	What is a template?

	What is a structure?

	Why/when would I use a template vs. a structure?

	pre and post functions, how are they used? for what?

	if else in template vs pre command

	entry points

	category in your new templer template class

	how add egg to buildout/virtual env

 Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Templer System Manual 1.0 documentation

Templer Information

	Definition of Terms

	The History of Templer
	Templer and ZopeSkel

	Splitting ZopeSkel into Egg Packages
	Background

	Proposal

	Rationale

	Tasks Needed

 Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Templer System Manual 1.0 documentation

 	Templer Information

Definition of Terms

	local command

	A Paste [http://pythonpaste.org/] class which provides additional functionality within a generated
skeleton.

	package

	A Python package [http://docs.python.org/tutorial/modules.html#packages].

	skeleton

	The generated files and folders resulting from a user running a template.

	structure

	1) A Python class which controls the generation of a tree of files and
folders.

2) A unit of folders and files provided by the templer system for use in a
template or templates. Structures provide shared, static resources that
may be used by any package in the templer system.

Structures differ from templates in that they do not provide vars.

	template

	1) A Python class which controls the generation of a skeleton. Templates
contain a list of vars to gather input from a user. Templates are run by
executing the templer command and providing the template name as an
argument: templer basic_namespace my.package

2) The files and folders provided by a templer package as content to be
generated. The answers provided by a user in response to vars are used to
fill placeholders in this content.

	var

	A question to be answered by the user when generating a skeleton from a
template. A var provides a description of the information required, help
text and validation rules to ensure accurate user input.

 Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Templer System Manual 1.0 documentation

 	Templer Information

The History of Templer

Templer is a system that grew out of the refactoring and improvement of the
ZopeSkel [http://pypi.python.org/pypi/ZopeSkel] code generation tool, used by the Plone [http://www.plone.org/] and Zope [http://www.zope.org/] communities for
years. However, unlike its predecessor templer is not limited specifically to
generating packages for Plone [http://www.plone.org/] or Zope [http://www.zope.org/]. With templer you can get a quick
start building python-based projects for a number of systems and frameworks.

Templer and ZopeSkel

In the beginning, there was ZopeSkel. First created in 2006, it was used to
install and run commands to create new Zope [http://www.zope.org/] and Plone [http://www.plone.org/] packages. And it
was good. But it was also monolithic and inflexible.

And so, at the No Fun BBQ Sprint [http://trizpug.org/Members/cbc/zopeskel-bbq-sprint] in 2009, the decision was made to
split the package up in order to make it easier to work
with only the parts you wanted. At the same time, the sprinters decided that
keeping consistency in usage was a very important goal, and so the ZopeSkel [http://pypi.python.org/pypi/ZopeSkel]
package has been preserved. Information about the rationale behind this decision
may be read in Splitting ZopeSkel into Egg Packages.

Starting with version 3.0, ZopeSkel [http://pypi.python.org/pypi/ZopeSkel] is simply a thin wrapper around the
functionality and templates provided by the templer system. Installing
ZopeSkel [http://pypi.python.org/pypi/ZopeSkel] installs the templer packages needed to reproduce the ZopeSkel [http://pypi.python.org/pypi/ZopeSkel]
experience. All the templates and supporting code are in templer packages and
none remains in the ZopeSkel [http://pypi.python.org/pypi/ZopeSkel] package.

 Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Templer System Manual 1.0 documentation

 	Templer Information

Splitting ZopeSkel into Egg Packages

	Author:	joel@joelburton.com

	Date:	5 Oct 2009

Background

ZopeSkel is currently a single egg, “ZopeSkel”. It contains templates
for:

	scripts/utilities that are not template specific

	basic nested Python packages, without any Zope/Plone bits

	Basic Zope product/buildout templates

	Plone product/buildout templates

	Silva buildout template

	Code for the “local commands” system

	Local commands for Plone products

Proposal

We propose to divide ZopeSkel into separate packages & eggs:

	zopeskel.base

	Local commands system, scripts/utilities

	zopeskel.zope (will depend on zopeskel.base)

	basic_zope template and Zope-only buildouts

	zopeskel.plone (will depend on zopeskel.zope)

	all plone templates/buildouts and local commands for Plone

	zopeskel.silva (will depend on zopeskel.zope)

	Silva buildout

Backwards Compatibility

Since there is a great deal of documentation that tells users to
“easy_install ZopeSkel”, we need to make sure there is still a package
called this that provides the assumed components.

Therefore, we will keep a ZopeSkel egg, but have this provide no
code/packages– it will only exist so that it has setuptools requires to
pull in zopeskel.base, zopeskel.zope, zopeskel.plone, zopeskel.silva.
Therefore, people following this documentation will get the “full”
ZopeSkel.

Rationale

Curently, ZopeSkel can be a bit of magnet for recipes that may not be
widely needed by all members–there are non-Plone users of it that don’t
want to get all of the Plone recipes, for example. In the future, they
would be able to

easy_install zopeskel.zope

to just get the Base/Zope parts.

With additional adoption of ZopeSkel, we anticipate other communities
(Repoze, etc) wishing to add templates, and would prefer to avoid an
overly- long list of packages. This is especially important as, at least in
the Plone world, ZopeSkel is increasingly used by
integrators/non-developers, and a long list of packages unrelated to their
needs is confusing.

In addition, this will subtly reinforce to people that there can be 3rd
party packages that add templates. Larger institutional users of
Python/Zope/Plone/Silva may find it beneficial to write their own,
customized templates (the author of this document already does, for
example); however, that this is possible is slightly obscured by the fact
that we ship only one monolithic system with all the recipes in it.

Tasks Needed

	Change the imports and entry points inside of ZopeSkel to match
these new package names; for example, changing “plone.py” to
import the BasicZope class as
“from zopeskel.zope.basic_zope import BasicZope”.

	Adding imports to zopeskel/__init__.py to import everything into this
namespace that was previously there. This will ensure that 3rd party
templates that made assumptions like “from zopeskel import basic_zope”
will still work.

	Break packages into separate eggs and check into new repository.

	Empty ZopeSkel package and add setuptools requires so that this egg
now installs all the new eggs.

New Repository

Given that ZopeSkel has a wider audience than just Plone, we don’t feel it
make sense to move it into the plone repository. However, it also doesn’t
seem right to leave it in the collective–here, it has become a magnet for
individual, not-well-organized changes that run counter to the requirement
that it be a stable, best-practice product.

We recommend creating a new repository, “zopeskel”, which would contain the
zopeskel packages. This would allow us to grant svn access to people
without sharing core plone access, and would discourage collective-style
drive-by improvements.

 Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Templer System Manual 1.0 documentation

Templer-Based Applications

It is possible, using the templer system and its provided packages, to create
an application which addresses a specific set of needs. The following are
applications which have been built using the templer system. If you build
such a system, please add it here.

	ZopeSkel
	Installing ZopeSkel
	Buildout installation

	Virtualenv installation

	Basic Usage

	Local Commands
	Local Commands and Python Paste

	Disabling Local Commands

 Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	Templer System Manual 1.0 documentation

 	Templer-Based Applications

ZopeSkel

Installing ZopeSkel

ZopeSkel can be installed in one of two ways: with buildout [http://www.buildout.org/] or with virtualenv [http://virtualenv.org/].

Note

Despite existing documentation to the contrary, it is not recommended to
install ZopeSkel in your system python.

Buildout installation

Add to your buildout.cfg:

parts =
 ...
 zopeskel

[zopeskel]
installs paster and Zopeskel
recipe = zc.recipe.egg
eggs =
 PasteScript
 ZopeSkel

After re-running buildout, you will have zopeskel and paster commands in
the bin directory of your buildout.

Virtualenv installation

A Warning About Pip

Pip [http://www.pip-installer.org/] is a popular packaging tool for Python. It has not always properly
supported the installation of setuptools extras. If you use pip to
install ZopeSkel, you will need at least version 1.1.

If you have questions, see the discussion in this ZopeSkel
issue report [https://github.com/collective/ZopeSkel/issues/4]

First, install virtualenv into your system:

$ easy_install virtualenv

Next, create a virtual environment with the new virtualenv command:

$ virtualenv --distribute zopeskelenv

Once virtualenv has finished creating your new virtual environment, you can
install zopeskel to your new virtual environment by:

$ zopeskelenv/bin/easy_install zopeskel

Once this is complete, you will have zopeskel and paster commands in the
bin directory of your virtualenv.

Basic Usage

ZopeSkel is used to create empty projects for Zope [http://www.zope.org/] and Plone [http://www.plone.org/]. A number of templates are
included with ZopeSkel:

	basic_namespace

	nested_namespace

	basic_buildout

	recipe

	zope2_basic

	zope2_nested

	plone_basic

	plone_nested

	archetype

The most basic template for Plone [http://www.plone.org/] is plone_basic, which creates an
empty Plone add-on. Optionally you may add a GenericSetup profile to make your
add-on appear in the list of available add-ons in Plone’s Site Setup. In
this case a profiles/default directory will be created in your new add-on.

For example:

$./bin/zopeskel plone_basic my.example

This template asks you a series of questions and creates a new add-on
package from your answers. When prompted to choose a mode, unless you
know what you are doing, select easy mode (it is the default). You will see
output like the following:

plone_basic: A package for Plone add-ons

This template creates a package for a basic Plone add-on project with
a single namespace (like Products.PloneFormGen).

To create a Plone project with a name like 'collective.geo.bundle'
(2 dots, a 'nested namespace'), use the 'plone_nested' template.

This template supports local commands. These commands allow you to
add Plone features to your new package.

If you are trying to create a Plone *site* then the best place to
start is with one of the Plone installers. If you want to build
your own Plone buildout, use one of the plone'N'_buildout templates

If at any point, you need additional help for a question, you can enter
'?' and press RETURN.

Expert Mode? (What question mode would you like? (easy/expert/all)?) ['easy']: easy

Version (Version number for project) ['1.0']: 1.0
Description (One-line description of the project) ['']: This is an example product built with ZopeSkel
Register Profile (Should this package register a GS Profile) [False]: True
Creating directory ./my.example
Replace 1079 bytes with 1273 bytes (1/43 lines changed; 5 lines added)
Replace 42 bytes with 119 bytes (1/1 lines changed; 4 lines added)
--
The project you just created has local commands. These can be used from within
the product.

usage: paster COMMAND

Commands:
 add Allows the addition of further templates to an existing package

For more information: paster help COMMAND
--

**
** Your new package supports local commands. To access them, change
** directories into the 'src' directory inside your new package.
** From there, you will be able to run the command `paster add
** --list` to see the local commands available for this package.
**

Once complete you will have a brand new Plone package waiting for customization!

Local Commands

A local command uses templates to allow you to add features to your
newly created add-on. To run a local command, you must first change directory
to inside your add-on:

$ cd my.example/src

From here, you can use the paster command to show you which templates are
available to use:

$../../bin/paster add --list
Available templates:
 browserlayer: A Plone browserlayer
 browserview: A browser view skeleton

To run a specific local command, you provide the name of the template:

$../../bin/paster add browserview
Enter view_name (Browser view name) ['Example']: Example

When this command completes, you will find a new browser module, with the
files required to add a browser view to your add-on:

$ ls -1 my/example/browser/
__init__.py
configure.zcml
exampleview.pt
exampleview.py

Local Commands and Python Paste

Implementation details of local commands mean that any package which supports
them will have a direct dependency on Paste [http://pythonpaste.org/], PasteScript [http://pythonpaste.org/script/] and PasteDeploy [http://pythonpaste.org/deploy/].
As a result, when you first create a package with available local commands,
you will find that these three packages have automatically been installed
inside your package structure:

$ cd ../
$ ls -1
CHANGES.txt
CONTRIBUTORS.txt
Paste-1.7.5.1-py2.6.egg
PasteDeploy-1.5.0-py2.6.egg
PasteScript-1.7.5-py2.6.egg
README.txt
...

This is an unfortunate but unavoidable situation so long as local commands are
desired. There are a few things you should keep in mind when working with
packages that provide local commands:

	Paste, PasteScript and PasteDeploy should never be placed under version
control.

	Any time you check out the package and include it in a buildout, they will
reappear.

	When you are finished with using local commands, you can get rid of these
extra packages for good by disabling local commands.

Disabling Local Commands

Local commands are useful for extending a package skeleton when you are first
setting up a new project. Once you’ve completed setup, however, it is a good
idea to disable local commands so that you will no longer be bothered by the
presence of extra package eggs in your source code tree.

To disable local commands, and stop Paste, PasteScript and PasteDeploy from
appearing when you work with your egg, you can edit the source code generated
by ZopeSkel. First, you will want to find and remove the following lines
from your package setup.py file:

setup_requires=["PasteScript"],
paster_plugins=["templer.localcommands"],

Additionally, you may remove the following from setup.cfg in your package
root directory:

[templer.local]
template = plone_basic # note that the name found here may differ

After removing these lines, your package will no longer have local commands
available. Furthermore, when you check it out of source control and include
it in a buildout, you will no longer find Paste, PasteScript or PasteDeploy in
your package source tree.

 Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	Templer System Manual 1.0 documentation

Index

 L
 | P
 | S
 | T
 | V

L

 	

 	local command

P

 	

 	package

S

 	

 	skeleton

 	

 	structure

T

 	

 	template

V

 	

 	var

 Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

 _static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/comment.png

information/future.html

 Navigation

 		
 index

 		Templer System Manual 1.0 documentation »

The Future of Templer

 © Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

information/philosophy.html

 Navigation

 		
 index

 		Templer System Manual 1.0 documentation »

The Templer Philosophy

 © Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

search.html

 Navigation

 		
 index

 		Templer System Manual 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Cris Ewing and contributors.
 Created using Sphinx 1.2.

_static/down.png

_static/file.png

_static/up-pressed.png

_static/comment-close.png

_static/minus.png

_static/down-pressed.png

_static/comment-bright.png

