

 Navigation

 	
 index

 	
 next |

 	Tarrasque 0.1 documentation

Welcome to Tarrasque’s documentation!

Contents:

	An Introduction to Tarrasque
	Tarrasque concepts for people who know what an ehandle is

	Tarrasque concepts for people who don’t know what an ehandle is

	Guides
	Analysing game end states

	API
	Stream Binding

	Creep Manager

	Dota Entity

	Player

	Game Info

	Ability

	Base NPC

	Hero

	Game Events

	Combat Log

	Item

Indices and tables

	Index

	Search Page

 Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tarrasque 0.1 documentation

An Introduction to Tarrasque

Tarrasque is a library, build around Skadi [https://github.com/onethirtyfive/skadi], to allow the easy and
straightforward analysis of Dota 2 replays. While Skadi provides only
the raw data, Tarrasque allows you to deal in objects and relationships.
A comparison will show this best.

This code uses Skadi to print out the names of the players in the replay, along
with the name of the hero they are playing

import io
from skadi.engine import world as w
from skadi.replay import demo as rd

demo = rd.construct("./demo.dem")
for tick, string_tables, world in demo.stream(tick=5000):
 ehandle, player_resource = world.find_by_dt(player_resource_dt)

 for i in range(31):
 player_name_key = ("DT_DOTA_PlayerResource", "m_iszPlayerNames.%40s" % i)
 player_name = player_resource[player_name_key]
 if not player_name:
 break
 hero_ehandle_key = ("DT_DOTA_PlayerResource", "m_hSelectedHero")
 hero_ehandle = player_resource[hero_ehandle_key]
 hero_dt = world.recv_tables[world.classes[hero_ehandle]].dt
 hero_name = hero_dt.replace("DT_DOTA_Unit_Hero_", "").replace("_", " ")
 print hero_name
 break

Using Tarrasque, this could be written as

import tarrasque

replay = tarrasque.StreamBinding.from_file("demo.dem")
for player in replay.players:
 print player.name
 print player.hero.name

The code speaks for itself. Tarrasque makes it simple, easy and even fun to
analyse Dota 2 replays.

Tarrasque concepts for people who know what an ehandle is

Tarrasque is a mapper between Dota2 entities (DT classes) and Python classes.
Every Tarrasque class that represents an entity has a
dt_key property that specifies the DT class that it
represents, and once instantiated, every Tarrasque class has a
ehandle property that is used to get information from
the world. The current world can be accessed via world,
and the results of world.find(self.ehandle) via
properties. All this and more is documented on
DotaEntity.

Tarrasque concepts for people who don’t know what an ehandle is

Think of Tarrasque as an ORM for Dota2, except the models are already
maintained, and you don’t have to worry about the database. You don’t have
to mess about writing code to deal with the (disgusting) stuff that Dota2 does
in its replays, as Tarrasque exposes the data to you in a manner that follows
Python conventions; you’ll get a None object instead of -1, and the string
"radiant" instead of the integer 2 (where appropriate. Tarrasque understands
that values have special meanings only in specific contexts). This allows you to
just use the data, and not need to worry about the stuff underneath.

The one major difference between a database ORM and Tarrasque is that while
most ORM models are statefull (that is, when the database changes, the model
stays the same until reloaded), Tarrasque models contain no state, other than
that which is needed to uniquely identify the instance (and now you know what an
ehandle is). This means that you never have to do hero.update(tick_number)
or similar; all that is handled automatically via the StreamBinding/
DotaEntity abstraction.

 Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tarrasque 0.1 documentation

Guides

	Analysing game end states

 Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tarrasque 0.1 documentation

 	Guides

Analysing game end states

One of the most common ways to get information about a game is to look
at the state of the game when the ancient has died. Finding that time
can be a fairly annoying process, but Tarrasque makes it quite
easy. This example moves to the final tick of the game and then prints
out statistics for the players:

import tarrasque

replay = tarrasque.StreamBinding.from_file("demo.dem", start_tick="postgame")

for player in replay.players:
 print "{} - Gold: {} - KDA: {}/{}/{}".format(player.name,
 player.earned_gold, player.kills, player.deaths. player.assists)

The instruction to move to the end of the replay is in the
start_tick argument to StreamBinding.from_file. By saying we
want to start at the "postgame" tick, we instruct Tarrasque to 1)
locate the tick where the ancient was destroyed, and 2) move to it.

One thing to note is that while you may want to use the
GameInfo.game_time attribute to calculate the GPM of a hero,
you should first subtract 90 (1 * 60 + 30) from that value, as while
the Dota2 ingame clock counts from the time the creeps spawn, the
replay attribute starts 1 minute 30 seconds earlier. To calculate GPM,
you might use something like this:

import tarrasque

replay = tarrasque.StreamBinding.from_file("demo.dem",
 start_tick="postgame")

for player in replay.players:
 gpm = player.earned_gold * 60 / (replay.info.game_time - 90)
 print "{} - GPM: {}".format(player.name, gpm)

Note also that we multiply by 60, as GameInfo.game_time is in
seconds, not minutes.

 Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	Tarrasque 0.1 documentation

API

Stream Binding

	
class StreamBinding(demo, start_tick=None, start_time=None)[source]

	The StreamBinding class is Tarrasque’s metaphor for the replay. Every
Tarrasque entity class has a reference to an instance of this
class, and when the tick of the instance changes, the data returned by
those classes changes. This makes it easy to handle complex object graphs
without explicitly needing to pass the Skadi demo object around.

Note

Where methods on this class take absolute tick values (i.e. the
start and end arguments to iter_ticks()), special string
arguments may be passed. These are:

	"start" - The start of the replay

	"draft" - The start of the draft

	"pregame" - The end of the draft phase

	"game" - The time when the game clock hits 0

	"postgame" - The time the ancient is destroyed

	"end" - The last tick in the replay

These values will not be 100% accurate, but should be good +-50 ticks

	
buildings

	The BuildingManager object for the replay.

	
creeps

	The CreepManager object for the replay.

	
demo[source]

	The Skadi demo object that the binding is reading from.

	
static from_file(filename, *args, **kwargs)[source]

	Loads the demo from the filename, and then initialises the
StreamBinding with it, along with any other passed arguments.

	
game_events[source]

	The game events in the current tick.

	
go_to_state_change(state)

	Moves to the time when the GameInfo.game_state changed to the given
state. Valid values are equal to the possible values of
:att:`~GameInfo.game_state`, along with "start" and "end" which
signify the first and last tick in the replay, respectively.

Returns the tick moved to.

	
go_to_tick(tick)[source]

	Moves to the given tick, or the nearest tick after it. Returns the tick
moved to.

	
go_to_time(time)[source]

	Moves to the tick with the given game time. Could potentially overshoot,
but not by too much. Will not undershoot.

Returns the tick it has moved to.

	
info[source]

	The GameInfo object for the replay.

	
iter_full_ticks(start=None, end=None)

	A generator that iterates through the demo’s ‘full ticks’; sync points
that occur once a minute. Should be _much_ faster than
:method:`iter_ticks`.

The start argument may take the same range of values as the start
argument of :method:`iter_ticks`. The first full tick yielded will be the
next full tick after the position obtained via self.go_to_tick(start).

The end tick may either be a tick value or a game state. The last full

tick yielded will be the first full tick after the tick value/game state
change.

	
iter_ticks(start=None, end=None, step=1)[source]

	A generator that iterates through the demo’s ticks and updates the
StreamBinding to that tick. Yields the current tick.

The start parameter defines the tick to iterate from, and if not set, the
current tick will be used instead.

The end parameter defines the point to stop iterating; if not set,
the iteration will continue until the end of the replay.

The step parameter is the number of ticks to consume before yielding
the tick; the default of one means that every tick will be yielded. Do
not assume that the step is precise; the gap between two ticks will
always be larger than the step, but usually not equal to it.

	
modifiers[source]

	The Skadi modifiers object for the tick.

	
players[source]

	A list of Player objects, one for each player in the game.
This excludes spectators and other non-hero-controlling players.

	
prologue[source]

	The prologue of the replay.

	
string_tables[source]

	The string_table provided by Skadi.

	
tick[source]

	The current tick.

	
user_messages[source]

	The user messages for the current tick.

	
world[source]

	The Skadi wold object for the current tick.

Creep Manager

	
class CreepManager(stream_binding)[source]

	A general object that allows the user to access the creeps in the game.

	
couriers

	Returns all couriers on the map

	
lane[source]

	Returns all the living lane creeps on the map.

	
neutrals[source]

	Returns all the living neutral creeps on the map.

Dota Entity

	
class DotaEntity(stream_binding, ehandle)[source]

	A base class for all Tarrasque entity classes.

If you plan to manually initialise this class or any class inheriting from
it (and I strongly recommend against it), pass initialisation arguments by
name.

	
ehandle[source]

	The ehandle of the entity. Used to identify the entity across ticks.

	
exists[source]

	True if the ehandle exists in the current tick’s world. Examples of
this not being true are when a Hero entity that represents an
illusion is killed, or at the start of a game when not all heroes have
been chosen.

	
classmethod get_all(binding)[source]

	This method uses the class’s dt_key attribute to find all
instances of the class in the stream binding’s current tick, and then
initialise them and return them as a list.

While this method seems easy enough to use, prefer other methods where
possible. For example, using this function to find all
Player instances will return 11 or more players, instead of
the usual 10, where as StreamBinding.players returns the
standard (and correct) 10.

	
modifiers[source]

	A list of the entitiy’s modifiers. While this does not make sense on some
entities, as modifiers can be associated with any entity, this is
implemented here.

	
name

	The name of an entity. This will either be equal to the
DotaEntity.raw_name or be overridden to be a name an end user might
be more familiar with. For example, if raw_name is
"dt_dota_nevermore", this value might be set to "Nevermore" or
"Shadow Field".

	
owner

	The “owner” of the entity. For example, a :class:BaseAbility the hero
that has that ability as its owner.

	
properties[source]

	Return the data associated with the handle for the current tick.

	
raw_name

	The raw name of the entity. Not very useful on its own.

	
stream_binding[source]

	The StreamBinding object that the entity is bound to. The
source of all information in a Tarrasque entity class.

	
team

	The team that the entity is on. Options are

	"radiant"

	"dire"

	
tick[source]

	The current tick number.

	
world[source]

	The world object for the current tick. Accessed via
:attr:stream_binding.

	
create_entity(ehandle, stream_binding)

	Finds the correct class for the ehandle and initialises it.

	
find_entity_class(dt_name)

	Returns the class that should be used to represent the ehandle with the given
dt name.

	
register_entity(dt_name)[source]

	Register a class that Tarrasque will use to represent dota entities with
the given DT key. This class decorator automatically sets the
:attr:~DotaEntity.dt_key attribute.

	
register_entity_wildcard(regexp)[source]

	Similar to register_entity, will register a class, but instead of
specifying a specific DT, use a regular expression to specify a range of
DTs. For example, Hero uses this to supply a model for all
heroes, i.e.:

from tarrasque.entity import *

@register_entity_wildcard("DT_DOTA_Unit_Hero_(.*)")
class Hero(DotaEntity):
 def __new__(cls, *args, **kwargs):
 # Use __new__ to dynamically generate individual hero classes
 # See tarrasque/hero.py for actual implementation
 return cls(*args, **kwargs)

A wildcard registration will not override a specific DT registration via
register_entity.

Player

	
class Player(stream_binding, ehandle)[source]

	Inherits from DotaEntity.

Represents a player in the game. This can be a player who is controlling a
hero, or a “player” that is spectating.

	
assists

	The number of assists the player has.

	
buyback_cooldown_time

	The game time that the buyback will come off cooldown. If this is 0, the
player has not bought back.

	
deaths

	The number of times the player has died.

	
denies

	The number of denies on creeps that the player has.

	
earned_gold

	The total earned gold by the user. This is not net worth; it should be used to
calculate gpm and stuff.

	
has_buyback[source]

	Can the player buyback (regardless of their being alive or dead).

	
hero

	The Hero that the player is playing in the tick. May be None
if the player has yet to choose a hero. May change when the
game_state is "pre_game", due to players swapping
their heroes.

	
index

	The index of the player in the game. i.e. 0 is the first player on the
radiant team, 9 is the last on the dire

This is None for the undefined player, which should be ignored.

	
kills

	The number of times the player has killed an enemy hero.

	
last_buyback_time

	The game_time that the player bought back.

	
last_hits

	The number of last hits on creeps that the player has.

	
name

	The Steam name of the player, at the time of the game being played.

	
reliable_gold

	The player’s reliable gold.

	
steam_id

	The Steam ID of the player.

	
streak

	The current kill-streak the player is on

	
team

	The player’s team. Possible values are

	"radiant"

	"dire"

	"spectator"

	
total_gold[source]

	The sum of the player’s reliable and unreliable gold.

	
unreliable_gold

	The player’s unreliable gold.

Game Info

	
class GameInfo(stream_binding, ehandle)[source]

	Inherits from DotaEntity

The GameInfo contains the macro state of the game; the stage of the game
that the tick is in, whether the tick is in day or night, the length of
the game, etc etc.

	
active_team

	The team that is currently banning/picking.

	
banned_heroes

	List of currently banned heroes. 0-4 are radiant picks, 5-9 dire. Bans that have not yet been done have value None.

	
captain_ids

	IDs of the picking players (captains)

	
draft_start_time

	The time that the game_state changed to draft.

	
extra_time

	Extra time left for both teams. Index 0 is radiant, index 1 is dire

	
game_end_time

	The time that the game_state changed to postgame.

	
game_mode

	The mode of the dota game. Possible values are:

	"none"

	"all pick"

	"captain's mode"

	"random draft"

	"single draft"

	"all random"

	"intro"

	"diretide"

	"reverse captain's mode"

	"greeviling"

	"tutorial"

	"mid only"

	"least played"

	"new player pool"

	"compendium matchmaking"

	
game_start_time

	The time that the game_state changed to game.

	
game_state

	The state of the game. Potential values are:

	"loading" - Players are loading into the game

	"draft" - The draft state has begun

	"strategy" - Unknown

	"pregame" - The game has started but creeps have not been
spawned

	"game" - The main game, between the first creep spawn and the
ancient being destroyed

	"postgame" - After the ancient has been destroyed

	"disconnect" - Unknown

	
game_time

	The time in seconds of the current tick.

	
game_winner

	The winner of the game.

	
load_time

	The time that the game_state changed to loading.

	
match_id

	The unique match id, used by the Steam API and stuff (i.e. DotaBUff and
friends).

	
pausing_team

	The team that is currently pausing. Will be None if the game is not
paused, otherwise either "radiant" or "dire".

	
pick_state

	The current pick/ban that is happening. None if no pick or ban is
happening. If the game_mode is not "captain's mode", the
possible values are:

	"all pick"

	"single draft"

	"random draft"

	"all random"

Otherwise, the current pick and ban is returned in a tuple of the type of
draft action and the index. For example, if the current tick was during
the 5th ban of a captains mode game, the value of pick_state would
be ("ban", 5). active_team could then be used to work out who
is banning. Alternatively, if it was the 2nd pick of the game, it would be
("pick", 2).

	
pregame_start_time

	The time that the game_state changed to pregame.

	
replay_length[source]

	The length in seconds of the replay.

	
selected_heroes

	List of currently picked heroes. 0-4 are radiant picks, 5-9 dire. Picks that have not yet been done have value None.

	
starting_team

	The team that begins the draft.

Ability

	
class BaseAbility(stream_binding, ehandle)[source]

	Base class for all abilities. Currently does not delegate to other classes,
but can do so.

	
cast_range

	The distance from the hero’s position that this spell can be cast/targeted
at.

	
cooldown_length

	How long the goes on cooldown for every time it is cast.

	
is_on_cooldown[source]

	Uses off_cooldown_time and GameInfo.game_time to
calculate if the ability is on cooldown or not.

	
is_ultimate[source]

	Use’s the abilities position in Hero.abilities to figure out if
this is the ultimate ability.

TODO: Check this is reliable

	
level

	The number of times the ability has been leveled up.

	
mana_cost

	The mana cost of the spell

	
off_cooldown_time

	The time the ability comes off cooldown. Note that this does not reset
once that time has been passed.

Base NPC

	
class BaseNPC(stream_binding, ehandle)[source]

	A base class for all NPCs, even ones controllable by players.

	
abilities

	A list of the NPC’s abilities.

	
health

	The NPC’s current HP.

	
health_regen

	The NPC’s health regen per second.

	
inventory

	A list of the NPC’s items.

	
is_alive[source]

	A boolean to test if the NPC is alive or not.

	
level

	The NPC’s level. See Hero.ability_points for unspent level up
ability points.

	
life_state

	The state of the NPC’s life (unsurprisingly). Possible values are:

	"alive" - The hero is alive

	"dying" - The hero is in their death animation

	"dead" - The hero is dead

	"respawnable" - The hero can be respawned

	"discardbody" - The hero’s body can be discarded

"respawnable" and "discardbody" shouldn’t occur in a Dota2 replay

	
mana

	The NPC’s current mana.

	
mana_regen

	The NPC’s mana regen per second.

	
max_health

	The NPC’s maximum HP.

	
max_mana

	The NPC’s maximum mana.

	
position

	The (x, y) position of the NPC in Dota2 map coordinates

Hero

While each hero has a distinct class, not all have classes that are defined in
source code. This is because the Hero class registers itself as a
wildcard on the DT regexp "DT_DOTA_Unit_Hero_*", and then dynamically
generates hero classes from the ehandle. The generated classes simply inherit
from the Hero and have different values for dt_key and
name.

	
class Hero(stream_binding, ehandle)[source]

	While all hero classes inherit from this class, it is unlikely that this class
will ever need to be instantiated.

	
ability_points

	Seems to be the number of ability points the player can assign.

	
agility

	The hero’s agility (from levels, items, and the attribute bonus).

	
static get_all_heroes(stream_binding)

	
	Overrides DotaEntity.get_all in order to return all heroes with the prefix

	`"DT_DOTA_Unit_Hero"`, as there is never any results for

`"DT_DOTA_BaseNPC_Hero"`, and it also wouldn’t be of any use to devs.

	
intelligence

	The hero’s intelligence (from levels, items, and the attribute bonus).

	
name = None

	The name of the hero. For the base Hero class, this is None,
but it is set when a subclass is created in the __new__ method.

	
natural_agility

	The hero’s agility from levels.

	
natural_intelligence

	The hero’s intelligence from levels.

	
natural_strength

	The hero’s strength from levels.

	
player[source]

	The player that is playing the hero.

	
recent_damage

	The damage taken by the hero recently. The exact time period that classifies
as “recently” is around 2/3 seconds.

TODO: Find exact value

	
replicating_hero

	The Hero the current hero is “replicating” [#f1]_. If the instance
is not an illusion (which use the Hero class also), this will be
None. There is no guarantee that that this hero will exist (see
DotaEntity.exists) if the hero is someone like Phantom Lancer, who
may have an illusion which creates other illusions, and then dies.
However, this is still a useful property for tracking illusion creation
chains

	
respawn_time

	Appears to be the absolute time that the hero respawns. See
game_time for the current time of the tick to compare.

TODO: Check this on IRC

	
spawned_at

	The time (in game_time units) the hero spawned at.

TODO: Check this in game.

	
strength

	The hero’s strength (from levels, items, and the attribute bonus).

	
xp

	The hero’s experience.

Game Events

	
class GameEvent(stream_binding, name, properties)[source]

	Base class for all game events. Handles humanise and related things.

	
name = None

	The name of the GameEvent. i.e. "dota_combatlog", "dota_chase_hero".

	
create_game_event(stream_binding, data)[source]

	Creates a new GameEvent object from a stream binding and the un-humanized game
event data.

	
find_game_event_class(event_name)[source]

	Given the name of an event, finds the class that should be used to represent
it.

	
register_event(event_name)[source]

	Register a class as the handler for a given event.

	
register_event_wildcard(event_pattern)[source]

	Same as register_event() but uses a regex pattern to match, instead of
a static game event name.

Combat Log

	
class CombatLogMessage(stream_binding, name, properties)[source]

	A message in the combat log.

	
attacker_name

	The name of the attacker in the event.

	
health

	The health of the unit being attacked, for ‘heal’ and ‘damage’ events.

	
inflictorname

	The name of the “inflictor” (wtf is that?). Used to id modifiers.

	
source_name

	The name of the source of the event.

	
target_name

	The name of the entity that was targeted in the event. Note that this is not
the dt name or “pretty” name, this is the DotaEntity.raw_name. So for
a message where Shadow Field is being attacked, this would be
"dt_dota_nevermore".

	
timestamp

	The timestamp this combat log message corresponds to.

	
type

	The type of event this message signifies. Options are:

	"damage" - One entity is damaging another

	"heal" - One entity is healing another

	"modifier added" - A modifier is being added to an entity

	"modifier removed" - A modifier is being removed from an entity

	"death" - An entity has died.

	
value

	The value of the event. Can have various different meanings depending on the
type.

Item

	
class Item(stream_binding, ehandle)[source]

	Item class

	
alertable

	Presumably whether you can right-click ‘Alert allies’ with it
(ex: Smoke, Arcane Boots, ‘Gather for Arcane Boots here!’)

	
cooldown_length

	These are all the same as the functions in the ability class,
I’m lazy, go read them, they are fairly self-explanatory :D

	
current_charges

	Presumably the item’s current charges (ex: 7 for Diffusal if used once)

	
disassemblable

	Presumably whether you can disassemble the item (ex: Arcane Boots)

	
droppable

	Presumably if the item is droppable (ex: not Aegis)

	
initial_charges

	Presumably charges when item is bought (ex: 8 for diffusal)

	
killable

	Presumably whether the item can be denied (ex: not Gem)

	
off_cooldown_time

	The time when the item will come off cooldown

	
permanent

	Seems to be if the item will disappear when it runs out of stacks
(i.e consumable. Ex: Tango, not Diffusal)

	
purchasable

	Presumably whether you can buy the item or not (ex: not Aegis)

	
purchase_time

	The time when the item was purchased

	
purchaser

	The hero object of the purchaser of the item

	
recipe

	Presumably whether the item is a recipe or not (ex: any Recipe)

	
requires_charges

	Presumably whether the item needs charges to work (ex: Diffusal)

	
sellable

	Presumably whether the item can be sold or not (ex: Not BKB)

	
sharability

	Presumably whether the item can be shared (ex: Tango, RoH)

	
stackable

	Presumably whether the item can be stacked (ex: Wards)

 Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	Tarrasque 0.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	

 	abilities (BaseNPC attribute)

 	ability_points (Hero attribute)

 	active_team (GameInfo attribute)

 	agility (Hero attribute)

 	

 	alertable (Item attribute)

 	assists (Player attribute)

 	attacker_name (CombatLogMessage attribute)

B

 	

 	banned_heroes (GameInfo attribute)

 	BaseAbility (class in tarrasque.ability)

 	BaseNPC (class in tarrasque.basenpc)

 	

 	buildings (StreamBinding attribute)

 	buyback_cooldown_time (Player attribute)

C

 	

 	captain_ids (GameInfo attribute)

 	cast_range (BaseAbility attribute)

 	CombatLogMessage (class in tarrasque.combatlog)

 	cooldown_length (BaseAbility attribute)

 	

 	(Item attribute)

 	couriers (CreepManager attribute)

 	

 	create_entity() (in module tarrasque.entity)

 	create_game_event() (in module tarrasque.gameevents)

 	CreepManager (class in tarrasque.creeps.manager)

 	creeps (StreamBinding attribute)

 	current_charges (Item attribute)

D

 	

 	deaths (Player attribute)

 	demo (StreamBinding attribute)

 	denies (Player attribute)

 	disassemblable (Item attribute)

 	

 	DotaEntity (class in tarrasque.entity)

 	draft_start_time (GameInfo attribute)

 	droppable (Item attribute)

E

 	

 	earned_gold (Player attribute)

 	ehandle (DotaEntity attribute)

 	

 	exists (DotaEntity attribute)

 	extra_time (GameInfo attribute)

F

 	

 	find_entity_class() (in module tarrasque.entity)

 	find_game_event_class() (in module tarrasque.gameevents)

 	

 	from_file() (StreamBinding static method)

G

 	

 	game_end_time (GameInfo attribute)

 	game_events (StreamBinding attribute)

 	game_mode (GameInfo attribute)

 	game_start_time (GameInfo attribute)

 	game_state (GameInfo attribute)

 	game_time (GameInfo attribute)

 	game_winner (GameInfo attribute)

 	

 	GameEvent (class in tarrasque.gameevents)

 	GameInfo (class in tarrasque.gameinfo)

 	get_all() (tarrasque.entity.DotaEntity class method)

 	get_all_heroes() (Hero static method)

 	go_to_state_change() (StreamBinding method)

 	go_to_tick() (StreamBinding method)

 	go_to_time() (StreamBinding method)

H

 	

 	has_buyback (Player attribute)

 	health (BaseNPC attribute)

 	

 	(CombatLogMessage attribute)

 	health_regen (BaseNPC attribute)

 	

 	Hero (class in tarrasque.hero)

 	hero (Player attribute)

I

 	

 	index (Player attribute)

 	inflictorname (CombatLogMessage attribute)

 	info (StreamBinding attribute)

 	initial_charges (Item attribute)

 	intelligence (Hero attribute)

 	inventory (BaseNPC attribute)

 	

 	is_alive (BaseNPC attribute)

 	is_on_cooldown (BaseAbility attribute)

 	is_ultimate (BaseAbility attribute)

 	Item (class in tarrasque.item)

 	iter_full_ticks() (StreamBinding method)

 	iter_ticks() (StreamBinding method)

K

 	

 	killable (Item attribute)

 	

 	kills (Player attribute)

L

 	

 	lane (CreepManager attribute)

 	last_buyback_time (Player attribute)

 	last_hits (Player attribute)

 	

 	level (BaseAbility attribute)

 	

 	(BaseNPC attribute)

 	life_state (BaseNPC attribute)

 	load_time (GameInfo attribute)

M

 	

 	mana (BaseNPC attribute)

 	mana_cost (BaseAbility attribute)

 	mana_regen (BaseNPC attribute)

 	match_id (GameInfo attribute)

 	

 	max_health (BaseNPC attribute)

 	max_mana (BaseNPC attribute)

 	modifiers (DotaEntity attribute)

 	

 	(StreamBinding attribute)

N

 	

 	name (DotaEntity attribute)

 	

 	(GameEvent attribute)

 	(Hero attribute)

 	(Player attribute)

 	natural_agility (Hero attribute)

 	natural_intelligence (Hero attribute)

 	

 	natural_strength (Hero attribute)

 	neutrals (CreepManager attribute)

O

 	

 	off_cooldown_time (BaseAbility attribute)

 	

 	(Item attribute)

 	

 	owner (DotaEntity attribute)

P

 	

 	pausing_team (GameInfo attribute)

 	permanent (Item attribute)

 	pick_state (GameInfo attribute)

 	Player (class in tarrasque.player)

 	player (Hero attribute)

 	players (StreamBinding attribute)

 	position (BaseNPC attribute)

 	

 	pregame_start_time (GameInfo attribute)

 	prologue (StreamBinding attribute)

 	properties (DotaEntity attribute)

 	purchasable (Item attribute)

 	purchase_time (Item attribute)

 	purchaser (Item attribute)

R

 	

 	raw_name (DotaEntity attribute)

 	recent_damage (Hero attribute)

 	recipe (Item attribute)

 	register_entity() (in module tarrasque.entity)

 	register_entity_wildcard() (in module tarrasque.entity)

 	register_event() (in module tarrasque.gameevents)

 	

 	register_event_wildcard() (in module tarrasque.gameevents)

 	reliable_gold (Player attribute)

 	replay_length (GameInfo attribute)

 	replicating_hero (Hero attribute)

 	requires_charges (Item attribute)

 	respawn_time (Hero attribute)

S

 	

 	selected_heroes (GameInfo attribute)

 	sellable (Item attribute)

 	sharability (Item attribute)

 	source_name (CombatLogMessage attribute)

 	spawned_at (Hero attribute)

 	stackable (Item attribute)

 	starting_team (GameInfo attribute)

 	

 	steam_id (Player attribute)

 	streak (Player attribute)

 	stream_binding (DotaEntity attribute)

 	StreamBinding (class in tarrasque.binding)

 	strength (Hero attribute)

 	string_tables (StreamBinding attribute)

T

 	

 	target_name (CombatLogMessage attribute)

 	tarrasque.ability (module)

 	tarrasque.basenpc (module)

 	tarrasque.binding (module)

 	tarrasque.combatlog (module)

 	tarrasque.creeps.manager (module)

 	tarrasque.entity (module)

 	tarrasque.gameevents (module)

 	tarrasque.gameinfo (module)

 	

 	tarrasque.hero (module)

 	tarrasque.item (module)

 	tarrasque.player (module)

 	team (DotaEntity attribute)

 	

 	(Player attribute)

 	tick (DotaEntity attribute)

 	

 	(StreamBinding attribute)

 	timestamp (CombatLogMessage attribute)

 	total_gold (Player attribute)

 	type (CombatLogMessage attribute)

U

 	

 	unreliable_gold (Player attribute)

 	

 	user_messages (StreamBinding attribute)

V

 	

 	value (CombatLogMessage attribute)

W

 	

 	world (DotaEntity attribute)

 	

 	(StreamBinding attribute)

X

 	

 	xp (Hero attribute)

 Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

_modules/tarrasque/ability.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 		Module code »

 Source code for tarrasque.ability

from .entity import *
from .properties import *
from .consts import *

@register_entity("DT_DOTABaseAbility")
@register_entity_wildcard("DT_DOTA_Ability_*")
@register_entity_wildcard("DT_DOTA_Unit_Ability_*")
@register_entity_wildcard("DT_Ability_*")
[docs]class BaseAbility(DotaEntity):
 """
 Base class for all abilities. Currently does not delegate to other classes,
 but can do so.
 """

 level = Property("DT_DOTABaseAbility", "m_iLevel")
 """
 The number of times the ability has been leveled up.
 """

 off_cooldown_time = Property("DT_DOTABaseAbility", "m_fCooldown")
 """
 The time the ability comes off cooldown. Note that this does not reset
 once that time has been passed.
 """

 @property
[docs] def is_on_cooldown(self):
 """
 Uses :attr:`off_cooldown_time` and :attr:`GameInfo.game_time` to
 calculate if the ability is on cooldown or not.
 """
 current_time = self.stream_binding.info.game_time
 return current_time <= self.off_cooldown_time

 cooldown_length = Property("DT_DOTABaseAbility", "m_flCooldownLength")
 """
 How long the goes on cooldown for every time it is cast.
 """

 mana_cost = Property("DT_DOTABaseAbility", "m_iManaCost")
 """
 The mana cost of the spell
 """

 cast_range = Property("DT_DOTABaseAbility", "m_iCastRange")
 """
 The distance from the hero's position that this spell can be cast/targeted
 at.
 """

 @property
[docs] def is_ultimate(self):
 """
 Use's the abilities position in :attr:`Hero.abilities` to figure out if
 this is the ultimate ability.

 TODO: Check this is reliable
 """
 hero = self.owner
 index = -1
 for i, ability in enumerate(hero.abilities):
 if ability == self:
 index = i
 return index == len(hero.abilities) - 2 # -1 for 0, -1 for stats

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

search.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_modules/tarrasque/creeps/manager.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 		Module code »

 Source code for tarrasque.creeps.manager

[docs]class CreepManager(object):
 """
 A general object that allows the user to access the creeps in the game.
 """

 def __init__(self, stream_binding):
 self.stream_binding = stream_binding

 @property
[docs] def lane(self):
 """
 Returns all the living lane creeps on the map.
 """
 from .lanecreep import LaneCreep

 return [lc for lc in LaneCreep.get_all(self.stream_binding)
 if lc.is_alive]

 @property
[docs] def neutrals(self):
 """
 Returns all the living neutral creeps on the map.
 """
 from .neutralcreep import NeutralCreep

 return [nc for nc in NeutralCreep.get_all(self.stream_binding)
 if nc.is_alive]

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_modules/tarrasque/entity.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 		Module code »

 Source code for tarrasque.entity

import inspect
from importlib import import_module
import sys
import re

from .consts import *
from .properties import *

global ENTITY_CLASSES
ENTITY_CLASSES = {}
global ENTITY_WILDCARDS
ENTITY_WILDCARDS = []

[docs]def register_entity(dt_name):
 """
 Register a class that Tarrasque will use to represent dota entities with
 the given DT key. This class decorator automatically sets the
 :attr:``~DotaEntity.dt_key`` attribute.
 """
 def inner(cls):
 ENTITY_CLASSES[dt_name] = cls
 cls.dt_key = dt_name
 return cls
 return inner

[docs]def register_entity_wildcard(regexp):
 """
 Similar to :obj:`register_entity`, will register a class, but instead of
 specifying a specific DT, use a regular expression to specify a range of
 DTs. For example, :class:`Hero` uses this to supply a model for all
 heroes, i.e.::

 from tarrasque.entity import *

 @register_entity_wildcard("DT_DOTA_Unit_Hero_(.*)")
 class Hero(DotaEntity):
 def __new__(cls, *args, **kwargs):
 # Use __new__ to dynamically generate individual hero classes
 # See tarrasque/hero.py for actual implementation
 return cls(*args, **kwargs)

 A wildcard registration will not override a specific DT registration via
 :obj:`register_entity`.
 """
 def inner(cls):
 ENTITY_WILDCARDS.append((re.compile(regexp), cls))
 return cls
 return inner

def create_default_class(dt_name, world):
 return DotaEntity

@register_entity("DT_BaseEntity")
[docs]class DotaEntity(object):
 """
 A base class for all Tarrasque entity classes.

 If you plan to manually initialise this class or any class inheriting from
 it (and I strongly recommend against it), pass initialisation arguments by
 name.
 """

 def __init__(self, stream_binding, ehandle):
 self._stream_binding = stream_binding
 self._ehandle = ehandle

 team = Property("DT_BaseEntity", "m_iTeamNum")\
 .apply(MapTrans(TEAM_VALUES))
 """
 The team that the entity is on. Options are

 * ``"radiant"``
 * ``"dire"``
 """

 name = Property("DT_BaseEntity", "m_iName")\
 .apply(FuncTrans(lambda n: n if n else None))
 """
 The name of the entity. Not guaranteed to be set for all entities, in
 which case it should be overridden.
 """

 owner = Property("DT_BaseEntity", "m_hOwnerEntity")\
 .apply(EntityTrans())
 """
 The "owner" of the entity. For example, a :class:``BaseAbility`` the hero
 that has that ability as its owner.
 """

 @property
[docs] def ehandle(self):
 """
 The ehandle of the entity. Used to identify the entity across ticks.
 """
 return self._ehandle

 @property
[docs] def stream_binding(self):
 """
 The :class:`StreamBinding` object that the entity is bound to. The
 source of all information in a Tarrasque entity class.
 """
 return self._stream_binding

 @property
[docs] def world(self):
 """
 The world object for the current tick. Accessed via
 :attr:``stream_binding``.
 """
 return self.stream_binding.world

 @property
[docs] def tick(self):
 """
 The current tick number.
 """
 return self.stream_binding.tick

 @property
[docs] def properties(self):
 """
 Return the data associated with the handle for the current tick.
 """
 return self.world.find(self.ehandle)

 @property
[docs] def exists(self):
 """
 True if the ehandle exists in the current tick's world. Examples of
 this not being true are when a :class:`Hero` entity that represents an
 illusion is killed, or at the start of a game when not all heroes have
 been chosen.
 """
 try:
 self.world.find(self.ehandle)
 except KeyError:
 return False
 else:
 return True

 @property
[docs] def modifiers(self):
 """
 A list of the entitiy's modifiers. While this does not make sense on some
 entities, as modifiers can be associated with any entity, this is
 implemented here.
 """
 from .modifier import Modifier
 mhandles = self.stream_binding.modifiers.by_parent.get(self.ehandle, [])

 modifiers = []
 for mhandle in mhandles:
 modifier = Modifier(parent=self, mhandle=mhandle,
 stream_binding=self.stream_binding)
 modifiers.append(modifier)
 return modifiers

 @classmethod
[docs] def get_all(cls, binding):
 """
 This method uses the class's :attr:`dt_key` attribute to find all
 instances of the class in the stream binding's current tick, and then
 initialise them and return them as a list.

 While this method seems easy enough to use, prefer other methods where
 possible. For example, using this function to find all
 :class:`Player` instances will return 11 or more players, instead of
 the usual 10, where as :attr:`StreamBinding.players` returns the
 standard (and correct) 10.
 """
 output = []
 for ehandle, _ in binding.world.find_all_by_dt(cls.dt_key).items():
 output.append(cls(ehandle=ehandle, stream_binding=binding))
 return output

 def __eq__(self, other):
 if hasattr(other, "ehandle"):
 return other.ehandle == self.ehandle

 return False

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_modules/tarrasque/combatlog.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 		Module code »

 Source code for tarrasque.combatlog

from . import gameevents
from .properties import *
from .consts import *

@gameevents.register_event("dota_combatlog")
[docs]class CombatLogMessage(gameevents.GameEvent):
 """
 A message in the combat log.
 """

 type = Property("type").apply(MapTrans(COMBAT_LOG_TYPES))

 target_name = Property("targetname")\
 .apply(StringTableTrans("CombatLogNames"))\
 .apply(FuncTrans(lambda n: n[0]))
 """
 The name of the entity that was targeted in the event. Note that this is not
 the dt name or "pretty" name, this is the :attr:`DotaEntity.raw_name`. So for
 a message where Shadow Field is being attacked, this would be
 ``"dt_dota_nevermore"``.
 """

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_static/up-pressed.png

_modules/tarrasque/basenpc.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 		Module code »

 Source code for tarrasque.basenpc

from .entity import *
from .properties import *
from .consts import *

@register_entity("DT_DOTA_BaseNPC")
[docs]class BaseNPC(DotaEntity):
 """
 A base class for all NPCs, even ones controllable by players.
 """

 position = PositionProperty("DT_DOTA_BaseNPC")
 """
 The (x, y) position of the NPC in Dota2 map coordinates
 """

 life_state = Property("DT_DOTA_BaseNPC", "m_lifeState")\
 .apply(MapTrans(LIFE_STATE_VALUES))
 """
 The state of the NPC's life (unsurprisingly). Possible values are:

 * ``"alive"`` - The hero is alive
 * ``"dying"`` - The hero is in their death animation
 * ``"dead"`` - The hero is dead
 * ``"respawnable"`` - The hero can be respawned
 * ``"discardbody"`` - The hero's body can be discarded

 ``"respawnable"`` and ``"discardbody"`` shouldn't occur in a Dota2 replay
 """

 level = Property("DT_DOTA_BaseNPC", "m_iCurrentLevel")
 """
 The NPC's level. See :attr:`Hero.ability_points` for unspent level up
 ability points.
 """

 health = Property("DT_DOTA_BaseNPC", "m_iHealth")
 """
 The NPC's current HP.
 """

 max_health = Property("DT_DOTA_BaseNPC", "m_iMaxHealth")
 """
 The NPC's maximum HP.
 """

 health_regen = Property("DT_DOTA_BaseNPC", "m_flHealthThinkRegen")
 """
 The NPC's health regen per second.
 """

 mana = Property("DT_DOTA_BaseNPC", "m_flMana")
 """
 The NPC's current mana.
 """

 max_mana = Property("DT_DOTA_BaseNPC", "m_flMaxMana")
 """
 The NPC's maximum mana.
 """

 mana_regen = Property("DT_DOTA_BaseNPC", "m_flManaThinkRegen")
 """
 The NPC's mana regen per second.
 """

 abilities = ArrayProperty("DT_DOTA_BaseNPC", "m_hAbilities", array_length=16)\
 .filter(lambda h: h != NEGATIVE)\
 .map(EntityTrans())
 """
 A list of the NPC's abilities.
 """

 @property
[docs] def is_alive(self):
 """
 A boolean to test if the NPC is alive or not.
 """
 return self.life_state == "alive"

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 All modules for which code is available

		tarrasque.ability

		tarrasque.basenpc

		tarrasque.binding

		tarrasque.combatlog

		tarrasque.creeps.manager

		tarrasque.entity

		tarrasque.gameevents

		tarrasque.gameinfo

		tarrasque.hero

		tarrasque.item

		tarrasque.player

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_modules/tarrasque/gameinfo.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 		Module code »

 Source code for tarrasque.gameinfo

from .entity import *
from .consts import *
from .properties import *
from .utils import *

@register_entity("DT_DOTAGamerulesProxy")
[docs]class GameInfo(DotaEntity):
 """
 Inherits from :class:`DotaEntity`

 The GameInfo contains the macro state of the game; the stage of the game
 that the tick is in, whether the tick is in day or night, the length of
 the game, etc etc.
 """

 game_time = Property("DT_DOTAGamerulesProxy", "DT_DOTAGamerules.m_fGameTime")
 """
 The time in seconds of the current tick.
 """

 load_time = Property("DT_DOTAGamerulesProxy", "DT_DOTAGamerules.m_flGameLoadTime")\
 .apply(FuncTrans(none_or_nonzero))
 """
 The time that the game_state changed to ``loading``.
 """

 draft_start_time = Property("DT_DOTAGamerulesProxy",
 "DT_DOTAGamerules.m_flHeroPickStateTransitionTime")\
 .apply(FuncTrans(none_or_nonzero))
 """
 The time that the game_state changed to ``draft``.
 """

 pregame_start_time = Property("DT_DOTAGamerulesProxy",
 "DT_DOTAGamerules.m_flPreGameStartTime")\
 .apply(FuncTrans(none_or_nonzero))
 """
 The time that the game_state changed to ``pregame``.
 """

 game_start_time = Property("DT_DOTAGamerulesProxy",
 "DT_DOTAGamerules.m_flGameStartTime")\
 .apply(FuncTrans(none_or_nonzero))
 """
 The time that the game_state changed to ``game``.
 """

 game_end_time = Property("DT_DOTAGamerulesProxy",
 "DT_DOTAGamerules.m_flGameEndTime")\
 .apply(FuncTrans(none_or_nonzero))
 """
 The time that the game_state changed to ``postgame``.
 """

 match_id = Property("DT_DOTAGamerulesProxy", "DT_DOTAGamerules.m_unMatchID")
 """
 The unique match id, used by the Steam API and stuff (i.e. DotaBUff and
 friends).
 """

 game_state = Property("DT_DOTAGamerulesProxy", "DT_DOTAGamerules.m_nGameState")\
 .apply(MapTrans(GAME_STATE_VALUES))
 """
 The state of the game. Potential values are:

 * ``"loading"`` - Players are loading into the game
 * ``"draft"`` - The draft state has begun
 * ``"pregame"`` - The game has started but creeps have not been
 spawned
 * ``"game"`` - The main game, between the first creep spawn and the
 ancient being destroyed
 """

 game_mode = Property("DT_DOTAGamerulesProxy", "DT_DOTAGamerules.m_iGameMode")\
 .apply(MapTrans(GAME_MODE_VALUES))
 """
 The mode of the dota game. Possible values are:

 * ``"none"``
 * ``"all pick"``
 * ``"captain's mode"``
 * ``"random draft"``
 * ``"single draft"``
 * ``"all random"``
 * ``"intro"``
 * ``"diretide"``
 * ``"reverse captain's mode"``
 * ``"greeviling"``
 * ``"tutorial"``
 * ``"mid only"``
 * ``"least played"``
 * ``"new player pool"``
 * ``"compendium matchmaking"``
 """

 starting_team = Property("DT_DOTAGamerulesProxy",
 "DT_DOTAGamerules.m_iStartingTeam")\
 .apply(MapTrans(TEAM_VALUES))
 """
 The team that begins the draft.
 """

 pausing_team = Property("DT_DOTAGamerulesProxy", "DT_DOTAGamerules.m_iPauseTeam")
.apply(MapTrans(TEAM_VALUES))
 """
 The team that is currently pausing.
 """

 active_team = Property("DT_DOTAGamerulesProxy", "DT_DOTAGamerules.m_iActiveTeam")\
 .apply(MapTrans(TEAM_VALUES))
 """
 The team that is currently banning/picking.
 """

 pick_state = Property("DT_DOTAGamerulesProxy", "DT_DOTAGamerules.m_iHeroPickState")\
 .apply(MapTrans(PICK_VALUES))
 """
 The current pick/ban that is happening. ``None`` if no pick or ban is
 happening. If the :attr:`game_mode` is not ``"captain's mode"``, the
 possible values are:

 * ``"all pick"``
 * ``"single draft"``
 * ``"random draft"``
 * ``"all random"``

 Otherwise, the current pick and ban is returned in a tuple of the type of
 draft action and the index. For example, if the current tick was during
 the 5th ban of a captains mode game, the value of :attr:`pick_state` would
 be ``("ban", 5)``. :attr:`active_team` could then be used to work out who
 is banning. Alternatively, if it was the 2nd pick of the game, it would be
 ``("pick", 2)``.
 """

 game_winner = Property("DT_DOTAGamerulesProxy", "DT_DOTAGamerules.m_iHeroPickState")\
 .apply(MapTrans(WINNER_VALUES))
 """
 The winner of the game.
 """

 @property
[docs] def replay_length(self):
 """
 The length in seconds of the replay.
 """
 return self.stream_binding.demo.file_info.playback_time

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_static/plus.png

_static/down.png

_static/comment.png

_modules/tarrasque/hero.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 		Module code »

 Source code for tarrasque.hero

import re

from .binding import *
from .entity import *
from .properties import *
from .basenpc import *

@register_entity("DT_DOTA_BaseNPC_Hero")
@register_entity_wildcard("DT_DOTA_Unit_Hero_*")
[docs]class Hero(BaseNPC):
 """
 While all hero classes inherit from this class, it is unlikely that this class
 will ever need to be instantiated.
 """

 def __new__(cls, *args, **kwargs):
 ehandle = kwargs.get("ehandle")
 stream_binding = kwargs.get("stream_binding")

 world = stream_binding.world
 dt = world.recv_tables[world.classes[ehandle]].dt

 cls_name = dt.replace("DT_DOTA_Unit_Hero_", "").replace(" ", "")
 cls = type(str(cls_name), (Hero,), {})
 register_entity(dt)(cls)

 instance = object.__new__(cls, *args, **kwargs)
 cls.__init__(instance, *args, **kwargs)
 if not instance.name:
 split_name = [s for s in re.split("([A-Z][^A-Z]*)", cls_name) if s]
 instance.name = " ".join(split_name)
 return instance

 name = None
 """
 The name of the hero. For the base :class:`Hero` class, this is ``None``,
 but it is set when a subclass is created in the __new__ method.
 """

 xp = Property("DT_DOTA_BaseNPC_Hero", "m_iCurrentXP")
 """
 The hero's experience.
 """

 respawn_time = Property("DT_DOTA_BaseNPC_Hero", "m_flRespawnTime")
 """
 Appears to be the absolute time that the hero respawns. See
 :attr:`~GameInfo.game_time` for the current time of the tick to compare.

 TODO: Check this on IRC
 """

 ability_points = Property("DT_DOTA_BaseNPC_Hero", "m_iAbilityPoints")
 """
 Seems to be the number of ability points the player can assign.

 TODO: Check this on IRC
 """

 natural_strength = Property("DT_DOTA_BaseNPC_Hero", "m_flStrength")
 """
 The hero's strength from levels.
 """

 natural_agility = Property("DT_DOTA_BaseNPC_Hero", "m_flAgility")
 """
 The hero's agility from levels.
 """

 natural_intelligence = Property("DT_DOTA_BaseNPC_Hero", "m_flIntellect")
 """
 The hero's intelligence from levels.
 """

 strength = Property("DT_DOTA_BaseNPC_Hero", "m_flStrengthTotal")
 """
 The hero's strength (from levels, items, and the attribute bonus).
 """

 agility = Property("DT_DOTA_BaseNPC_Hero", "m_flAgilityTotal")
 """
 The hero's agility (from levels, items, and the attribute bonus).
 """

 intelligence = Property("DT_DOTA_BaseNPC_Hero", "m_flIntellectTotal")
 """
 The hero's intelligence (from levels, items, and the attribute bonus).
 """

 recent_damage = Property("DT_DOTA_BaseNPC_Hero", "m_iRecentDamage")
 """
 Recent damage taken? Would make sense for figuring out when to cancel
 tranquils and stuff.

 TODO: figure out exactly what this is
 """

 spawned_at = Property("DT_DOTA_BaseNPC_Hero", "m_flSpawnedAt")
 """
 The time (in :attr:`~GameInfo.game_time` units) the hero spawned at.

 TODO: Check this in game.
 """

 replicating_hero = Property(
 "DT_DOTA_BaseNPC_Hero", "m_hReplicatingOtherHeroModel"
).apply(EntityTrans())
 """
 The :class:`Hero` the current hero is "replicating" [#f1]_. If the instance
 is not an illusion (which use the :class:`Hero` class also), this will be
 ``None``. There is no guarantee that that this hero will exist (see
 :attr:`DotaEntity.exists`) if the hero is someone like Phantom Lancer, who
 may have an illusion which creates other illusions, and then dies.
 However, this is still a useful property for tracking illusion creation
 chains
 """

 _player_id = Property("DT_DOTA_BaseNPC_Hero", "m_iPlayerID")

 @property
[docs] def player(self):
 """
 The player that is playing the hero.
 """
 for player in self.stream_binding.players:
 if player.index == self._player_id:
 return player
 return None

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_static/ajax-loader.gif

_modules/tarrasque/player.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 		Module code »

 Source code for tarrasque.player

from .entity import *
from .consts import *
from .properties import *

@register_entity("DT_DOTAPlayer")
[docs]class Player(DotaEntity):
 """
 Inherits from :class:`DotaEntity`.

 Represents a player in the game. This can be a player who is controlling a
 hero, or a "player" that is spectating.
 """

 index = Property("DT_DOTAPlayer", "m_iPlayerID")\
 .apply(FuncTrans(lambda i: None if i == -1 else i))
 """
 The index of the player in the game. i.e. 0 is the first player on the
 radiant team, 9 is the last on the dire

 This is -1 for the undefined player, which should be ignored.
 """

 hero = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_hSelectedHero"))\
 .apply(EntityTrans())
 """
 The :class:`Hero` that the player is playing in the tick. May be ``None``
 if the player has yet to choose a hero. May change when the
 :attr:`~GameInfo.game_state` is ``"pre_game"``, due to players swapping
 their heroes.
 """

 reliable_gold = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iReliableGold"))
 """
 The player's reliable gold.
 """

 unreliable_gold = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iUnreliableGold"))
 """
 The player's unreliable gold.
 """

 earned_gold = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_EndScoreAndSpectatorStats", "m_iTotalEarnedGold"))
 """
 The total earned gold by the user. This is not net worth; it should be used to
 calculate gpm and stuff.
 """

 name = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iszPlayerNames"))
 """
 The Steam name of the player, at the time of the game being played.
 """

 steam_id = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iPlayerSteamIDs"))
 """
 The Steam ID of the player.
 """

 team = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iPlayerTeams"))\
 .apply(MapTrans(TEAM_VALUES))
 """
 The player's team. Possible values are

 * ``"radiant"``
 * ``"dire"``
 * ``"spectator"``
 """

 last_hits = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iLastHitCount"))
 """
 The number of last hits on creeps that the player has.
 """

 denies = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iDenyCount"))
 """
 The number of denies on creeps that the player has.
 """

 kills = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iKills"))
 """
 The number of times the player has killed an enemy hero.
 """

 deaths = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iDeaths"))
 """
 The number of times the player has died.
 """

 assists = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iAssists"))
 """
 The number of assists the player has.
 """

 streak = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iStreak"))
 """
 The current kill-streak the player is on
 """

 buyback_cooldown_time = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource",
 "m_flBuybackCooldownTime"))
 """
 The game time that the buyback will come off cooldown. If this is 0, the
 player has not bought back.
 """

 last_buyback_time = RemoteProperty("DT_DOTA_PlayerResource")\
 .used_by(IndexedProperty("DT_DOTA_PlayerResource", "m_iLastBuybackTime"))
 """
 The :attr:`~GameInfo.game_time` that the player bought back.
 """

 @property
[docs] def has_buyback(self):
 """
 Can the player buyback (regardless of their being alive or dead).
 """
 current_time = self.stream_binding.info.game_time
 return current_time >= self.buyback_cooldown_time

 @property
[docs] def total_gold(self):
 """
 The sum of the player's reliable and unreliable gold.
 """
 return self.reliable_gold + self.unreliable_gold

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_modules/tarrasque/item.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 		Module code »

 Source code for tarrasque.item

from .entity import *
from .properties import *
from .consts import *

@register_entity("DT_DOTA_Item")
@register_entity_wildcard("DT_DOTA_Item_*")
[docs]class Item(DotaEntity):
 """
 Item class
 """

 off_cooldown_time = Property('DT_DOTABaseAbility', 'm_fCooldown')
 """
 The time when the item will come off cooldown
 """

 @property
 def is_on_cooldown(self):
 current_time = self.stream_binding.info.game_time
 return current_time <= self.off_cooldown_time

 cooldown_length = Property('DT_DOTABaseAbility', 'm_flCooldownLength')
 """
 These are all the same as the functions in the ability class,
 I'm lazy, go read them, they are fairly self-explanatory :D
 """

 mana_cost = Property('DT_DOTABaseAbility', 'm_iManaCost')

 cast_range = Property('DT_DOTABaseAbility', 'm_iCastRange')

 purchase_time = Property('DT_DOTA_Item', 'm_flPurchaseTime')
 """
 The time when the item was purchased
 """

 droppable = Property('DT_DOTA_Item', 'm_bDroppable')
 """
 Presumably if the item is droppable (ex: not Aegis)
 """

 initial_charges = Property('DT_DOTA_Item', 'm_iInitialCharges')
 """
 Presumably charges when item is bought (ex: 8 for diffusal
 """

 sharability = Property('DT_DOTA_Item', 'm_iSharability')
 """
 Presumably whether the item can be shared (ex: Tango, RoH)
 """

 current_charges = Property('DT_DOTA_Item', 'm_iCurrentCharges')
 """
 Presumably the item's current charges (ex: 7 for Diffusal if used once)
 """

 requires_charges = Property('DT_DOTA_Item', 'm_bRequiresCharges')
 """
 Presumably whether the item needs charges to work (ex: Diffusal)
 """

 sellable = Property('DT_DOTA_Item', 'm_bSellable')
 """
 Presumably whether the item can be sold or not (ex: Not BKB)
 """

 stackable = Property('DT_DOTA_Item', 'm_bStackable')
 """
 Presumably whether the item can be stacked (ex: Wards)
 """

 disassemblable = Property('DT_DOTA_Item', 'm_bDisassemblable')
 """
 Presumably whether you can disassemble the item (ex: Arcane Boots)
 """

 killable = Property('DT_DOTA_Item', 'm_bKillable')
 """
 Presumably whether the item can be denied (ex: not Gem)
 """

 permanent = Property('DT_DOTA_Item', 'm_bPermanent')
 """
 No clue, someone investigate
 """

 alertable = Property('DT_DOTA_Item', 'm_bAlertable')
 """
 Presumably whether you can right-click 'Alert allies' with it
 (ex: Smoke, Arcane Boots, 'Gather for Arcane Boots here!')
 """

 purchasable = Property('DT_DOTA_Item', 'm_bPurchasable')
 """
 Presumably whether you can buy the item or not (ex: not Aegis)
 """

 recipe = Property('DT_DOTA_Item', 'm_bRecipe')
 """
 Presumably whether the item is a recipe or not (ex: any Recipe)
 """

 purchaser = Property('DT_DOTA_Item', 'm_hPurchaser')\
 .apply(EntityTrans())
 """
 The hero object of the purchaser of the item
 """

 def __repr__(self):
 if self.name:
 return "Item('{}')".format(self.name)
 else:
 return super(Item, self).__repr__()

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_static/file.png

_modules/tarrasque/gameevents.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 		Module code »

 Source code for tarrasque.gameevents

import functools
import re

from skadi.engine import game_event

from .properties import *

global EVENT_CLASSES
EVENT_CLASSES = {}
global EVENT_WILDCARDS
EVENT_WILDCARDS = []

[docs]def register_event(event_name):
 """
 Register a class as the handler for a given event.
 """
 def inner(event_class):
 EVENT_CLASSES[event_name] = event_class
 return event_class
 return inner

[docs]def register_event_wildcard(event_pattern):
 """
 Same as :func:`register_event` but uses a regex pattern to match, instead of
 a static game event name.
 """
 def inner(event_class):
 EVENT_WILDCARD.append((re.compile(event_wildcard), event_class))
 return event_class
 return inner

[docs]def find_game_event_class(event_name):
 """
 Given the name of an event, finds the class that should be used to represent
 it.
 """
 if event_name in EVENT_CLASSES:
 return EVENT_CLASSES[event_name]

 for regexp, cls in EVENT_WILDCARDS:
 if regexp.match(event_name):
 return cls

 return GameEvent

[docs]def create_game_event(stream_binding, data):
 """
 Creates a new GameEvent object from a stream binding and the un-humanized game
 event data.
 """
 event_list = stream_binding.prologue.game_event_list
 name, properties = game_event.humanize(data, event_list)

 cls = find_game_event_class(name)

 return cls(stream_binding=stream_binding, name=name, properties=properties)

[docs]class GameEvent(object):
 """
 Base class for all game events. Handles humanise and related things.
 """

 def __init__(self, stream_binding, name, properties):
 # Note that game events can't really be tracked across ticks, so
 # we just pass the data

 self.name = name
 """
 The name of the GameEvent. i.e. ``"dota_combatlog"``, ``"dota_chase_hero"``.
 """
 self.properties = properties

 self.stream_binding = stream_binding

 def __repr__(self):
 return "{}({})".format(self.name, self.properties)

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_modules/tarrasque/binding.html

 Navigation

 		
 index

 		Tarrasque 0.1 documentation »

 		Module code »

 Source code for tarrasque.binding

import collections

Snapshot = collections.namedtuple("Snapshot",
 "tick, user_messages, game_events, world,"
 " modifiers")

TICKS_PER_SECOND = 30

[docs]class StreamBinding(object):
 """
 The StreamBinding class is Tarrasque's metaphor for the replay. Every
 Tarrasque entity class has a reference to an instance of this
 class, and when the tick of the instance changes, the data returned by
 those classes changes. This makes it easy to handle complex object graphs
 without explicitly needing to pass the Skadi demo object around.

 .. note:: Where methods on this class take absolute tick values (i.e. the
 ``start`` and ``end`` arguments to :meth:`iter_ticks`), special string
 arguments may be passed. These are:

 * ``"start"`` - The start of the replay
 * ``"draft"`` - The start of the draft
 * ``"pregame"`` - The end of the draft phase
 * ``"game"`` - The time when the game clock hits 0
 * ``"postgame"`` - The time the ancient is destroyed
 * ``"end"`` - The last tick in the replay

 These values will not be 100% accurate, but should be good +-50 ticks
 """

 @property
[docs] def user_messages(self):
 """
 The user messages for the current tick.
 """
 return self._user_messages

 @property
[docs] def game_events(self):
 """
 The game events in the current tick.
 """
 from .gameevents import GameEvent

 events = []
 for data in self._game_events:
 events.append(GameEvent(stream_binding=self, data=data))
 return events

 # Just another layer of indirection
 # These are properties for autodoc reasons mostly

 @property
[docs] def world(self):
 """
 The Skadi wold object for the current tick.
 """
 return self._snapshot.world

 @property
[docs] def tick(self):
 """
 The current tick.
 """
 return self._snapshot.tick

 @property
[docs] def demo(self):
 """
 The Skadi demo object that the binding is reading from.
 """
 return self._demo

 @property
[docs] def modifiers(self):
 """
 The Skadi modifiers object for the tick.
 """
 return self._snapshot.modifiers

 @property
[docs] def string_tables(self):
 """
 The string_table provided by Skadi.
 """
 return self._stream.string_tables

 @property
[docs] def prologue(self):
 """
 The prologue of the replay.
 """
 return self._stream.prologue

 def __init__(self, demo, start_tick=None, start_time=None):
 self._demo = demo
 self._user_messages = []
 self._game_events = []

 # Do this to bootstrap go_to_tick("end")
 self._state_change_ticks = {
 "end": self.demo.file_info.playback_ticks - 2,
 }
 self.go_to_tick("end")

 self._state_change_ticks = {
 "start": 0,
 "draft": self._time_to_tick(self.info.draft_start_time),
 "pregame": self._time_to_tick(self.info.pregame_start_time),
 "game": self._time_to_tick(self.info.game_start_time),
 "postgame": self._time_to_tick(self.info.game_end_time),
 "end": self.demo.file_info.playback_ticks - 2
 }
 if start_tick is not None:
 self.go_to_tick(start_tick)
 elif start_time is not None:
 self.go_to_time(start_time)
 else:
 self.go_to_tick("game")

[docs] def iter_ticks(self, start=None, end=None, step=1):
 """
 A generator that iterates through the demo's ticks and updates the
 :class:`StreamBinding` to that tick. Yields the current tick.

 The start parameter defines the tick to iterate from, and if not set, the
 current tick will be used instead.

 The end parameter defines the point to stop iterating; if not set,
 the iteration will continue until the end of the replay.

 The step parameter is the number of ticks to consume before yielding
 the tick; the default of one means that every tick will be yielded. Do
 not assume that the step is precise; the gap between two ticks will
 always be larger than the step, but usually not equal to it.
 """

 if start is None:
 start = self.tick
 elif start in self._state_change_ticks:
 start = self._state_change_ticks[start]

 if end in self._state_change_ticks:
 end = self._state_change_ticks[end]

 if end is not None:
 assert start < end

 if start > self.demo.file_info.playback_ticks or start < 0:
 raise IndexError("Tick {} out of range".format(tick))

 self._user_messages = []
 self._game_events = []

 last_tick = start - step - 1
 self._stream = self.demo.stream(tick=start)
 for snapshot in self._stream:
 self._snapshot = Snapshot(*snapshot)

 if end is not None and self.tick >= end:
 break

 self._user_messages.extend(self._snapshot.user_messages)
 self._game_events.extend(self._snapshot.game_events)

 if self.tick - last_tick < step:
 continue
 else:
 last_tick = self.tick

 yield self.tick

 self._user_messages = []
 self._game_events = []

[docs] def go_to_tick(self, tick):
 """
 Moves to the given tick, or the nearest tick after it. Returns the tick
 moved to.
 """
 if tick in self._state_change_ticks:
 tick = self._state_change_ticks[tick]

 if tick > self.demo.file_info.playback_ticks or tick < 0:
 raise IndexError("Tick {} out of range".format(tick))

 self._stream = self.demo.stream(tick=tick)
 self._snapshot = Snapshot(*next(iter(self._stream)))
 self._user_messages = self._snapshot.user_messages[:]
 self._game_events = self._snapshot.game_events[:]

 return self.tick

 def _time_to_tick(self, time):
 """
 Converts a time to a tick.
 """
 current_time = self.info.game_time
 return int(self.tick + (time - current_time) * TICKS_PER_SECOND) - 2

[docs] def go_to_time(self, time):
 """
 Moves to the tick with the given game time. Could potentially overshoot,
 but not by too much. Will not undershoot.

 Returns the tick it has moved to.
 """
 target_tick = self._time_to_tick(time)
 for tick in self.iter_ticks(start=target_tick):
 if self.info.game_time > time:
 return tick

 def __iter__(self):
 return self.iter_ticks()

 @property
[docs] def players(self):
 """
 A list of :class:`Player` objects, one for each player in the game.
 This excludes spectators and other non-hero-controlling players.
 """
 from . import Player

 return [p for p in Player.get_all(self) if
 p.index != None and p.team != "spectator"]

 @property
[docs] def info(self):
 """
 The :class:`GameInfo` object for the replay.
 """
 from .gameinfo import GameInfo
 info = GameInfo.get_all(self)
 assert len(info) == 1
 return info[0]

 @staticmethod
[docs] def from_file(filename, *args, **kwargs):
 """
 Loads the demo from the filename, and then initialises the
 :class:`StreamBinding` with it, along with any other passed arguments.
 """
 import skadi.demo

 demo = skadi.demo.construct(filename)

 return StreamBinding(demo, *args, **kwargs)

 © Copyright 2013, Laurie Clark-Michalek.
 Created using Sphinx 1.1.3.

_static/down-pressed.png

