

Suricata User Guide

	1. What is Suricata
	1.1. About the Open Information Security Foundation

	2. Installation
	2.1. Source

	2.2. Binary packages

	2.3. Advanced Installation

	3. Command Line Options
	3.1. Unit Tests

	4. Suricata Rules
	4.1. Rules Format

	4.2. Meta Keywords

	4.3. IP Keywords

	4.4. TCP keywords

	4.5. ICMP keywords

	4.6. Payload Keywords

	4.7. Transformations

	4.8. Prefiltering Keywords

	4.9. Flow Keywords

	4.10. HTTP Keywords

	4.11. File Keywords

	4.12. DNS Keywords

	4.13. SSL/TLS Keywords

	4.14. SSH Keywords

	4.15. JA3 Keywords

	4.16. Modbus Keyword

	4.17. DNP3 Keywords

	4.18. ENIP/CIP Keywords

	4.19. FTP/FTP-DATA Keywords

	4.20. Kerberos Keywords

	4.21. Generic App Layer Keywords

	4.22. Xbits Keyword

	4.23. Thresholding Keywords

	4.24. IP Reputation Keyword

	4.25. Lua Scripting

	4.26. Differences From Snort

	5. Rule Management
	5.1. Rule Management with Suricata-Update

	5.2. Rule Management with Oinkmaster

	5.3. Adding Your Own Rules

	5.4. Rule Reloads

	6. Making sense out of Alerts

	7. Performance
	7.1. Runmodes

	7.2. Packet Capture

	7.3. Tuning Considerations

	7.4. Hyperscan

	7.5. High Performance Configuration

	7.6. Statistics

	7.7. Ignoring Traffic

	7.8. Packet Profiling

	7.9. Rule Profiling

	7.10. Tcmalloc

	8. Configuration
	8.1. Suricata.yaml

	8.2. Global-Thresholds

	8.3. Snort.conf to Suricata.yaml

	8.4. Multi Tenancy

	8.5. Dropping Privileges After Startup

	9. Reputation
	9.1. IP Reputation

	10. Init Scripts

	11. Setting up IPS/inline for Linux
	11.1. Iptables configuration

	12. Setting up IPS/inline for Windows

	13. Output
	13.1. EVE

	13.2. Lua Output

	13.3. Syslog Alerting Compatibility

	13.4. Custom http logging

	13.5. Custom tls logging

	13.6. Log Rotation

	14. Lua support
	14.1. Lua usage in Suricata

	14.2. Lua functions

	15. File Extraction
	15.1. Architecture

	15.2. Settings

	15.3. Output

	15.4. Rules

	15.5. MD5

	16. Public Data Sets

	17. Using Capture Hardware
	17.1. Endace DAG

	17.2. Napatech Suricata Installation Guide

	17.3. Myricom

	17.4. eBPF and XDP

	18. Interacting via Unix Socket
	18.1. Introduction

	18.2. Commands in standard running mode

	18.3. Commands on the cmd prompt

	18.4. Pcap processing mode

	18.5. Build your own client

	19. Man Pages
	19.1. Suricata

	20. Acknowledgements

	21. Licenses
	21.1. GNU General Public License

	21.2. Creative Commons Attribution-NonCommercial 4.0 International Public License

	21.3. Suricata Source Code

	21.4. Suricata Documentation

1. What is Suricata

Suricata is a high performance Network IDS, IPS and Network Security Monitoring engine. It is open source and owned by a community-run non-profit foundation, the Open Information Security Foundation (OISF). Suricata is developed by the OISF.

1.1. About the Open Information Security Foundation

The Open Information Security Foundation is a non-profit foundation organized to build community and to support open-source security technologies like Suricata, the world-class IDS/IPS engine.

1.1.1. License

The Suricata source code is licensed under version 2 of the
GNU General Public License. This documentation is licensed under the
Creative Commons Attribution-NonCommercial 4.0 International Public License.

2. Installation

Before Suricata can be used it has to be installed. Suricata can be installed
on various distributions using binary packages: Binary packages.

For people familiar with compiling their own software, the Source method is
recommended.

Advanced users can check the advanced guides, see Advanced Installation.

2.1. Source

Installing from the source distribution files gives the most control over the Suricata installation.

Basic steps:

tar xzvf suricata-4.1.0.tar.gz
cd suricata-4.1.0
./configure
make
make install

This will install Suricata into /usr/local/bin/, use the default
configuration in /usr/local/etc/suricata/ and will output to
/usr/local/var/log/suricata

2.1.1. Common configure options

	
--disable-gccmarch-native

	Do not optimize the binary for the hardware it is built on. Add this
flag if the binary is meant to be portable or if Suricata is to be used in a VM.

	
--prefix=/usr/

	Installs the Suricata binary into /usr/bin/. Default /usr/local/

	
--sysconfdir=/etc

	Installs the Suricata configuration files into /etc/suricata/. Default /usr/local/etc/

	
--localstatedir=/var

	Setups Suricata for logging into /var/log/suricata/. Default /usr/local/var/log/suricata

	
--enable-lua

	Enables Lua support for detection and output.

	
--enable-geopip

	Enables GeoIP support for detection.

	
--disable-rust

	Disables Rust support. Rust support is enabled by default if rustc/cargo
are available.

2.1.2. Dependencies

For Suricata’s compilation you’ll need the following libraries and their development headers installed:

libpcap, libpcre, libmagic, zlib, libyaml

The following tools are required:

make gcc (or clang) pkg-config

For full features, also add:

libjansson, libnss, libgeoip, liblua5.1, libhiredis, libevent

Rust support:

rustc, cargo

Not every distro provides Rust packages yet. Rust can also be installed
directly from the Rust project itself:
https://www.rust-lang.org/en-US/install.html

2.1.2.1. Ubuntu/Debian

Minimal:

apt-get install libpcre3 libpcre3-dbg libpcre3-dev build-essential libpcap-dev \
 libyaml-0-2 libyaml-dev pkg-config zlib1g zlib1g-dev \
 make libmagic-dev

Recommended:

apt-get install libpcre3 libpcre3-dbg libpcre3-dev build-essential libpcap-dev \
 libnet1-dev libyaml-0-2 libyaml-dev pkg-config zlib1g zlib1g-dev \
 libcap-ng-dev libcap-ng0 make libmagic-dev libjansson-dev \
 libnss3-dev libgeoip-dev liblua5.1-dev libhiredis-dev libevent-dev

Extra for iptables/nftables IPS integration:

apt-get install libnetfilter-queue-dev libnetfilter-queue1 \
 libnetfilter-log-dev libnetfilter-log1 \
 libnfnetlink-dev libnfnetlink0

For Rust support (Ubuntu only):

apt-get install rustc cargo

2.2. Binary packages

2.2.1. Ubuntu

For Ubuntu, the OISF maintains a PPA suricata-stable that always contains the latest stable release.

To use it:

sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt-get update
sudo apt-get install suricata

2.2.2. Debian

In Debian 9 (Stretch) do:

apt-get install suricata

In Debian Jessie Suricata is out of date, but an updated version is in Debian Backports.

As root do:

echo "deb http://http.debian.net/debian jessie-backports main" > \
 /etc/apt/sources.list.d/backports.list
apt-get update
apt-get install suricata -t jessie-backports

2.2.3. Fedora

dnf install suricata

2.2.4. RHEL/CentOS

For RedHat Enterprise Linux 7 and CentOS 7 the EPEL repository can be used.

yum install epel-release
yum install suricata

2.3. Advanced Installation

Various installation guides for installing from GIT and for other operating systems are maintained at:
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation

3. Command Line Options

Suricata’s command line options:

	
-h

	Display a brief usage overview.

	
-V

	Displays the version of Suricata.

	
-c <path>

	Path to configuration file.

	
-T

	Test configuration.

	
-v

	The -v option enables more verbosity of Suricata’s output. Supply
multiple times for more verbosity.

	
-r <path>

	Run in pcap offline mode (replay mode) reading files from pcap file. If
<path> specifies a directory, all files in that directory will be processed
in order of modified time maintaining flow state between files.

	
--pcap-file-continuous

	Used with the -r option to indicate that the mode should stay alive until
interrupted. This is useful with directories to add new files and not reset
flow state between files.

	
--pcap-file-delete

	Used with the -r option to indicate that the mode should delete pcap files
after they have been processed. This is useful with pcap-file-continuous to
continuously feed files to a directory and have them cleaned up when done. If
this option is not set, pcap files will not be deleted after processing.

	
-i <interface>

	After the -i option you can enter the interface card you would like
to use to sniff packets from. This option will try to use the best
capture method available.

	
--pcap[=<device>]

	Run in PCAP mode. If no device is provided the interfaces
provided in the pcap section of the configuration file will be
used.

	
--af-packet[=<device>]

	Enable capture of packet using AF_PACKET on Linux. If no device is
supplied, the list of devices from the af-packet section in the
yaml is used.

	
-q <queue id>

	Run inline of the NFQUEUE queue ID provided. May be provided
multiple times.

	
-s <filename.rules>

	With the -s option you can set a file with signatures, which will
be loaded together with the rules set in the yaml.

	
-S <filename.rules>

	With the -S option you can set a file with signatures, which will
be loaded exclusively, regardless of the rules set in the yaml.

	
-l <directory>

	With the -l option you can set the default log directory. If you
already have the default-log-dir set in yaml, it will not be used
by Suricata if you use the -l option. It will use the log dir that
is set with the -l option. If you do not set a directory with
the -l option, Suricata will use the directory that is set in yaml.

	
-D

	Normally if you run Suricata on your console, it keeps your console
occupied. You can not use it for other purposes, and when you close
the window, Suricata stops running. If you run Suricata as daemon
(using the -D option), it runs at the background and you will be
able to use the console for other tasks without disturbing the
engine running.

	
--runmode <runmode>

	With the –runmode option you can set the runmode that you would
like to use. This command line option can override the yaml runmode
option.

Runmodes are: workers, autofp and single.

For more information about runmodes see Runmodes in the user guide.

	
-F <bpf filter file>

	Use BPF filter from file.

	
-k [all|none]

	Force (all) the checksum check or disable (none) all checksum
checks.

	
--user=<user>

	Set the process user after initialization. Overrides the user
provided in the run-as section of the configuration file.

	
--group=<group>

	Set the process group to group after initialization. Overrides the
group provided in the run-as section of the configuration file.

	
--pidfile <file>

	Write the process ID to file. Overrides the pid-file option in
the configuration file and forces the file to be written when not
running as a daemon.

	
--init-errors-fatal

	Exit with a failure when errors are encountered loading signatures.

	
--disable-detection

	Disable the detection engine.

	
--dump-config

	Dump the configuration loaded from the configuration file to the
terminal and exit.

	
--build-info

	Display the build information the Suricata was built with.

	
--list-app-layer-protos

	List all supported application layer protocols.

	
--list-keywords=[all|csv|<kword>]

	List all supported rule keywords.

	
--list-runmodes

	List all supported run modes.

	
--set <key>=<value>

	Set a configuration value. Useful for overriding basic
configuration parameters in the configuration. For example, to
change the default log directory:

--set default-log-dir=/var/tmp

	
--engine-analysis

	Print reports on analysis of different sections in the engine and
exit. Please have a look at the conf parameter engine-analysis on
what reports can be printed

	
--unix-socket=<file>

	Use file as the Suricata unix control socket. Overrides the
filename provided in the unix-command section of the
configuration file.

	
--pcap-buffer-size=<size>

	Set the size of the PCAP buffer (0 - 2147483647).

	
--netmap[=<device>]

	Enable capture of packet using NETMAP on FreeBSD or Linux. If no
device is supplied, the list of devices from the netmap section
in the yaml is used.

	
--pfring[=<device>]

	Enable PF_RING packet capture. If no device provided, the devices in
the Suricata configuration will be used.

	
--pfring-cluster-id <id>

	Set the PF_RING cluster ID.

	
--pfring-cluster-type <type>

	Set the PF_RING cluster type (cluster_round_robin, cluster_flow).

	
-d <divert-port>

	Run inline using IPFW divert mode.

	
--dag <device>

	Enable packet capture off a DAG card. If capturing off a specific
stream the stream can be select using a device name like
“dag0:4”. This option may be provided multiple times read off
multiple devices and/or streams.

	
--napatech

	Enable packet capture using the Napatech Streams API.

	
--mpipe

	Enable packet capture using the TileGX mpipe interface.

	
--erf-in=<file>

	Run in offline mode reading the specific ERF file (Endace
extensible record format).

	
--simulate-ips

	Simulate IPS mode when running in a non-IPS mode.

3.1. Unit Tests

Builtin unittests are only available if Suricata has been built with
–enable-unittests.

Running unittests does not take a configuration file. Use -l to supply
an output directory.

	
-u

	Run the unit tests and exit. Requires that Suricata be compiled
with –enable-unittests.

	
-U, --unittest-filter=REGEX

	With the -U option you can select which of the unit tests you want
to run. This option uses REGEX. Example of use: suricata -u -U
http

	
--list-unittests

	List all unit tests.

	
--fatal-unittests

	Enables fatal failure on a unit test error. Suricata will exit
instead of continuing more tests.

	
--unittests-coverage

	Display unit test coverage report.

6. Making sense out of Alerts

When alert happens it’s important to figure out what it means. Is it
serious? Relevant? A false positive?

To find out more about the rule that fired, it’s always a good idea to
look at the actual rule.

The first thing to look at in a rule is the description that follows
the “msg” keyword. Lets consider an example:

msg:"ET SCAN sipscan probe";

The “ET” indicates the rule came from the Emerging Threats
project. “SCAN” indicates the purpose of the rule is to match on some
form of scanning. Following that a more or less detailed description
is given.

Most rules contain some pointers to more information in the form of
the “reference” keyword.

Consider the following example rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS \
 (msg:"ET CURRENT_EVENTS Adobe 0day Shovelware"; \
 flow:established,to_server; content:"GET "; nocase; depth:4; \
 content:!"|0d 0a|Referer\:"; nocase; \
 uricontent:"/ppp/listdir.php?dir="; \
 pcre:"/\/[a-z]{2}\/[a-z]{4}01\/ppp\/listdir\.php\?dir=/U"; \
 classtype:trojan-activity; \
 reference:url,isc.sans.org/diary.html?storyid=7747; \
 reference:url,doc.emergingthreats.net/2010496; \
 reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_Adobe; \
 sid:2010496; rev:2;)

In this rule the reference keyword indicates 3 url’s to visit for more
information:

isc.sans.org/diary.html?storyid=7747
doc.emergingthreats.net/2010496
www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_Adobe

Some rules contain a reference like: “reference:cve,2009-3958;” should
allow you to find info about the specific CVE using your favorite
search engine.

It’s not always straight forward and sometimes not all of that
information is available publicly. Usually asking about it on the
signature support channel helps a lot then.

In Rule Management with Suricata-Update more information on the rule
sources and their documentation and support methods can be found.

In many cases, looking at just the alert and the packet that triggered
it won’t be enough to be conclusive. When using the default Eve settings
a lot of metadata will be added to the alert.

For example, if a rule fired that indicates your web application is
attacked, looking at the metadata might reveal that the web
application replied with 404 not found. This will usually mean the
attack failed. Usually, not always.

Not every protocol leads to metadata generation, so when running an
IDS engine like Suricata, it’s often recommended to combine it with
full packet capture. Using tools like Evebox, Sguil or Snorby, the
full TCP session or UDP flow can be inspected.

Obviously there is a lot more to Incidence Response, but this should
get you started.

10. Init Scripts

For Ubuntu with Upstart, the following can be used in /etc/init/suricata.conf:

suricata
description "Intruder Detection System Daemon"
start on runlevel [2345]
stop on runlevel [!2345]
expect fork
exec suricata -D --pidfile /var/run/suricata.pid -c /etc/suricata/suricata.yaml -i eth1

11. Setting up IPS/inline for Linux

In this guide will be explained how to work with Suricata in layer3 inline mode and how to set iptables for that purpose.

First start with compiling Suricata with NFQ support. For instructions
see Ubuntu Installation [https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Ubuntu_Installation].
For more information about NFQ and iptables, see
NFQ.

To check if you have NFQ enabled in your Suricata, enter the following command:

suricata --build-info

and examine if you have NFQ between the features.

To run suricata with the NFQ mode, you have to make use of the -q option. This option tells Suricata which of the queue numbers it should use.

sudo suricata -c /etc/suricata/suricata.yaml -q 0

11.1. Iptables configuration

First of all it is important to know which traffic you would like to send to Suricata. Traffic that passes your computer or traffic that is generated by your computer.

[image: _images/IPtables.png]
[image: _images/iptables1.png]
If Suricata is running on a gateway and is meant to protect the computers behind that gateway you are dealing with the first scenario: forward_ing .
If Suricata has to protect the computer it is running on, you are dealing with the second scenario: host (see drawing 2).
These two ways of using Suricata can also be combined.

The easiest rule in case of the gateway-scenario to send traffic to Suricata is:

sudo iptables -I FORWARD -j NFQUEUE

In this case, all forwarded traffic goes to Suricata.

In case of the host situation, these are the two most simple iptable rules;

sudo iptables -I INPUT -j NFQUEUE
sudo iptables -I OUTPUT -j NFQUEUE

It is possible to set a queue number. If you do not, the queue number will be 0 by default.

Imagine you want Suricata to check for example just TCP-traffic, or all incoming traffic on port 80, or all traffic on destination-port 80, you can do so like this:

sudo iptables -I INPUT -p tcp -j NFQUEUE
sudo iptables -I OUTPUT -p tcp -j NFQUEUE

In this case, Suricata checks just TCP traffic.

sudo iptables -I INPUT -p tcp --sport 80 -j NFQUEUE
sudo iptables -I OUTPUT -p tcp --dport 80 -j NFQUEUE

In this example, Suricata checks all input and output on port 80.

[image: _images/iptables2.png]
[image: _images/IPtables3.png]
To see if you have set your iptables rules correct make sure Suricata is running and enter:

sudo iptables -vnL

In the example you can see if packets are being logged.

[image: _images/iptables_vnL.png]
This description of the use of iptables is the way to use it with IPv4. To use it with IPv6 all previous mentioned commands have to start with ‘ip6tables’. It is also possible to let Suricata check both kinds of traffic.

There is also a way to use iptables with multiple networks (and interface cards). Example:

[image: _images/iptables4.png]
sudo iptables -I FORWARD -i eth0 -o eth1 -j NFQUEUE
sudo iptables -I FORWARD -i eth1 -o eth0 -j NFQUEUE

The options -i (input) -o (output) can be combined with all previous mentioned options

If you would stop Suricata and use internet, the traffic will not come through. To make internet work correctly, you have to erase all iptable rules.

To erase all iptable rules, enter:

sudo iptables -F

12. Setting up IPS/inline for Windows

This guide explains how to work with Suricata in layer 4 inline mode using
WinDivert on Windows.

First start by compiling Suricata with WinDivert support. For instructions, see
Windows Installation [https://redmine.openinfosecfoundation.org/attachments/download/1175/SuricataWinInstallationGuide_v1.4.3.pdf].
This documentation has not yet been updated with WinDivert information, so make
sure to add the following flags to configure:

--enable-windivert=yes --with-windivert-include=<include-dir> --with-windivert-libraries=<libraries-dir>

WinDivert.dll and WinDivert.sys must be in the same directory as the Suricata
executable. WinDivert automatically installs the driver when it is run. For more
information about WinDivert, see https://www.reqrypt.org/windivert-doc.html.

To check if you have WinDivert enabled in your Suricata, enter the following
command in an elevated command prompt or terminal:

suricata -c suricata.yaml --windivert [filter string]

For information on the WinDivert filter language, see
https://www.reqrypt.org/windivert-doc.html#filter_language

If Suricata is running on a gateway and is meant to protect the network behind
that gateway, you need to run WinDivert at the NETWORK_FORWARD layer. This can
be achieved using the following command:

suricata -c suricata.yaml --windivert-forward [filter string]

The filter is automatically stopped and normal traffic resumes when Suricata is
stopped.

A quick start is to examine all traffic, in which case you can use the following
command:

suricata -c suricata.yaml --windivert[-forward] true

A few additional examples:

Only TCP traffic:

suricata -c suricata.yaml --windivert tcp

Only TCP traffic on port 80:

suricata -c suricata.yaml --windivert "tcp.DstPort == 80"

TCP and ICMP traffic:

suricata -c suricata.yaml --windivert "tcp or icmp"

16. Public Data Sets

Collections of pcaps for testing, profiling.

DARPA sets: http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/

MAWI sets (pkt headers only, no payloads): http://mawi.wide.ad.jp/mawi/samplepoint-F/2012/

MACCDC: http://www.netresec.com/?page=MACCDC

Netresec: http://www.netresec.com/?page=PcapFiles

Wireshark: https://wiki.wireshark.org/SampleCaptures

Security Onion collection: https://github.com/security-onion-solutions/security-onion/wiki/Pcaps

Stratosphere IPS. Malware Capture Facility Project: https://stratosphereips.org/category/dataset.html

18. Interacting via Unix Socket

18.1. Introduction

Suricata can listen to a unix socket and accept commands from the user. The
exchange protocol is JSON-based and the format of the message has been done
to be generic.

An example script called suricatasc is provided in the source and installed
automatically when installing/updating Suricata.

The unix socket is enabled by default if libjansson is available.

You need to have libjansson installed:

	libjansson4 - C library for encoding, decoding and manipulating JSON data

	libjansson-dev - C library for encoding, decoding and manipulating JSON data (dev)

	python-simplejson - simple, fast, extensible JSON encoder/decoder for Python

Debian/Ubuntu:

apt-get install libjansson4 libjansson-dev python-simplejson

If libjansson is present on the system , unix socket will be compiled
in automatically.

The creation of the socket is managed by setting enabled to ‘yes’ or ‘auto’
under unix-command in Suricata YAML configuration file:

unix-command:
 enabled: yes
 #filename: custom.socket # use this to specify an alternate file

The filename variable can be used to set an alternate socket
filename. The filename is always relative to the local state base
directory.

Clients are implemented for some language and can be used as code
example to write custom scripts:

	Python: https://github.com/inliniac/suricata/blob/master/scripts/suricatasc/suricatasc.in (provided with suricata and used in this document)

	Perl: https://github.com/aflab/suricatac (a simple Perl client with interactive mode)

	C: https://github.com/regit/SuricataC (a Unix socket mode client in C without interactive mode)

18.2. Commands in standard running mode

You may need to install suricatasc if you have not done so, running the following command from scripts/suricatasc

sudo python setup.py install

The set of existing commands is the following:

	command-list: list available commands

	shutdown: this shutdown Suricata

	iface-list: list interfaces where Suricata is sniffing packets

	iface-stat: list statistic for an interface

	help: alias of command-list

	version: display Suricata’s version

	uptime: display Suricata’s uptime

	running-mode: display running mode (workers, autofp, simple)

	capture-mode: display capture system used

	conf-get: get configuration item (see example below)

	dump-counters: dump Suricata’s performance counters

	reopen-log-files: reopen log files (to be run after external log rotation)

	ruleset-reload-rules: reload ruleset and wait for completion

	ruleset-reload-nonblocking: reload ruleset and proceed without waiting

	ruleset-reload-time: return time of last reload

	ruleset-stats: display the number of rules loaded and failed

	ruleset-failed-rules: display the list of failed rules

	memcap-set: update memcap value of an item specified

	memcap-show: show memcap value of an item specified

	memcap-list: list all memcap values available

You can access to these commands with the provided example script which
is named suricatasc. A typical session with suricatasc will looks like:

suricatasc
Command list: shutdown, command-list, help, version, uptime, running-mode, capture-mode, conf-get, dump-counters, iface-stat, iface-list, quit
>>> iface-list
Success: {'count': 2, 'ifaces': ['eth0', 'eth1']}
>>> iface-stat eth0
Success: {'pkts': 378, 'drop': 0, 'invalid-checksums': 0}
>>> conf-get unix-command.enabled
Success:
"yes"

18.3. Commands on the cmd prompt

You can use suricatasc directly on the command prompt:

root@debian64:~# suricatasc -c version
{'message': '2.1beta2 RELEASE', 'return': 'OK'}
root@debian64:~#
root@debian64:~# suricatasc -c uptime
{'message': 35264, 'return': 'OK'}
root@debian64:~#

NOTE:
You need to quote commands involving more than one argument:

root@debian64:~# suricatasc -c "iface-stat eth0"
{'message': {'pkts': 5110429, 'drop': 0, 'invalid-checksums': 0}, 'return': 'OK'}
root@debian64:~#

18.4. Pcap processing mode

This mode is one of main motivation behind this code. The idea is to
be able to ask to Suricata to treat different pcap files without
having to restart Suricata between the files. This provides you a huge
gain in time as you don’t need to wait for the signature engine to
initialize.

To use this mode, start suricata with your preferred YAML file and
provide the option --unix-socket as argument:

suricata -c /etc/suricata-full-sigs.yaml --unix-socket

It is also possible to specify the socket filename as argument:

suricata --unix-socket=custom.socket

In this last case, you will need to provide the complete path to the
socket to suricatasc. To do so, you need to pass the filename as
first argument of suricatasc:

suricatasc custom.socket

Once Suricata is started, you can use the provided script
suricatasc to connect to the command socket and ask for pcap
treatment:

root@tiger:~# suricatasc
>>> pcap-file /home/benches/file1.pcap /tmp/file1
Success: Successfully added file to list
>>> pcap-file /home/benches/file2.pcap /tmp/file2
Success: Successfully added file to list
>>> pcap-file-continuous /home/pcaps /tmp/dirout
Success: Successfully added file to list

You can add multiple files without waiting the result: they will be
sequentially processed and the generated log/alert files will be put
into the directory specified as second arguments of the pcap-file
command. You need to provide absolute path to the files and directory
as Suricata doesn’t know from where the script has been run. If you pass
a directory instead of a file, all files in the directory will be processed. If
using pcap-file-continuous and passing in a directory, the directory will
be monitored for new files being added until you use pcap-interrupt or
delete/move the directory.

To know how many files are waiting to get processed, you can do:

>>> pcap-file-number
Success: 3

To get the list of queued files, do:

>>> pcap-file-list
Success: {'count': 2, 'files': ['/home/benches/file1.pcap', '/home/benches/file2.pcap']}

To get current processed file:

>>> pcap-current
Success:
"/tmp/test.pcap"

When passing in a directory, you can see last processed time (modified time of last file) in milliseconds since epoch:

>>> pcap-last-processed
Success:
1509138964000

To interrupt directory processing which terminates the current state:

>>> pcap-interrupt
Success:
"Interrupted"

18.5. Build your own client

The protocol is documented in the following page
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Unix_Socket#Protocol

The following session show what is send (SND) and received (RCV) by
the server. Initial negotiation is the following:

suricatasc
SND: {"version": "0.1"}
RCV: {"return": "OK"}

Once this is done, command can be issued:

>>> iface-list
SND: {"command": "iface-list"}
RCV: {"message": {"count": 1, "ifaces": ["wlan0"]}, "return": "OK"}
Success: {'count': 1, 'ifaces': ['wlan0']}
>>> iface-stat wlan0
SND: {"command": "iface-stat", "arguments": {"iface": "wlan0"}}
RCV: {"message": {"pkts": 41508, "drop": 0, "invalid-checksums": 0}, "return": "OK"}
Success: {'pkts': 41508, 'drop': 0, 'invalid-checksums': 0}

In pcap-file mode, this gives:

>>> pcap-file /home/eric/git/oisf/benches/sandnet.pcap /tmp/bench
SND: {"command": "pcap-file", "arguments": {"output-dir": "/tmp/bench", "filename": "/home/eric/git/oisf/benches/sandnet.pcap"}}
RCV: {"message": "Successfully added file to list", "return": "OK"}
Success: Successfully added file to list
>>> pcap-file-number
SND: {"command": "pcap-file-number"}
RCV: {"message": 1, "return": "OK"}
>>> pcap-file-list
SND: {"command": "pcap-file-list"}
RCV: {"message": {"count": 1, "files": ["/home/eric/git/oisf/benches/sandnet.pcap"]}, "return": "OK"}
Success: {'count': 1, 'files': ['/home/eric/git/oisf/benches/sandnet.pcap']}
>>> pcap-file-continuous /home/eric/git/oisf/benches /tmp/bench 0 true
SND: {"command": "pcap-file", "arguments": {"output-dir": "/tmp/bench", "filename": "/home/eric/git/oisf/benches/sandnet.pcap", "tenant": 0, "delete-when-done": true}}
RCV: {"message": "Successfully added file to list", "return": "OK"}
Success: Successfully added file to list

There is one thing to be careful about: a Suricata message is sent in
multiple send operations. This result in possible incomplete read on
client side. The worse workaround is to sleep a bit before trying a
recv call. An other solution is to use non blocking socket and retry a
recv if the previous one has failed.

Pcap-file json format is:

{
 "command": "pcap-file",
 "arguments": {
 "output-dir": "path to output dir",
 "filename": "path to file or directory to run",
 "tenant": 0,
 "continuous": false,
 "delete-when-done": false
 }
}

output-dir and filename are required. tenant is optional and should be a
number, indicating which tenant the file or directory should run under. continuous
is optional and should be true/false, indicating that file or directory should be
run until pcap-interrupt is sent or ctrl-c is invoked. delete-when-done is
optional and should be true/false, indicating that the file or files under the
directory specified by filename should be deleted when processing is complete.
delete-when-done defaults to false, indicating files will be kept after
processing.

20. Acknowledgements

Thank you to the following for their Wiki and documentation
contributions that have made this user guide possible:

	Andreas Herz

	Andreas Moe

	Anne-Fleur Koolstra

	Christophe Vandeplas

	Darren Spruell

	David Cannings

	David Diallo

	David Wharton

	Eric Leblond

	god lol

	Haris Haq

	Ignacio Sanchez

	Jason Ish

	Jason Taylor

	Josh Smith

	Ken Steele

	Les Syv

	Mark Solaris

	Martin Holste

	Mats Klepsland

	Matt Jonkman

	Michael Bentley

	Michael Hrishenko

	Nathan Jimerson

	Nicolas Merle

	Peter Manev

	Philipp Buehler

	Ralph Broenink

	Rob MacGregor

	Russel Fulton

	Victor Julien

	Vincent Fang

	Zach Rasmor

Index

 Symbols
 | C

Symbols

 	
 	
 --af-packet[=<device>]

 	command line option, [1]

 	
 --build-info

 	command line option, [1]

 	
 --dag <device>

 	command line option, [1]

 	
 --disable-detection

 	command line option, [1]

 	
 --disable-gccmarch-native

 	command line option

 	
 --disable-rust

 	command line option

 	
 --dump-config

 	command line option, [1]

 	
 --enable-geopip

 	command line option

 	
 --enable-lua

 	command line option

 	
 --engine-analysis

 	command line option, [1]

 	
 --erf-in=<file>

 	command line option, [1]

 	
 --fatal-unittests

 	command line option, [1]

 	
 --group=<group>

 	command line option, [1]

 	
 --init-errors-fatal

 	command line option, [1]

 	
 --list-app-layer-protos

 	command line option, [1]

 	
 --list-keywords=[all|csv|<kword>]

 	command line option, [1]

 	
 --list-runmodes

 	command line option, [1]

 	
 --list-unittests

 	command line option, [1]

 	
 --localstatedir=/var

 	command line option

 	
 --mpipe

 	command line option, [1]

 	
 --napatech

 	command line option, [1]

 	
 --netmap[=<device>]

 	command line option, [1]

 	
 --pcap-buffer-size=<size>

 	command line option, [1]

 	
 --pcap-file-continuous

 	command line option, [1]

 	
 --pcap-file-delete

 	command line option, [1]

 	
 --pcap[=<device>]

 	command line option, [1]

 	
 --pfring-cluster-id <id>

 	command line option, [1]

 	
 --pfring-cluster-type <type>

 	command line option, [1]

 	
 	
 --pfring[=<device>]

 	command line option, [1]

 	
 --pidfile <file>

 	command line option, [1]

 	
 --prefix=/usr/

 	command line option

 	
 --runmode <runmode>

 	command line option, [1]

 	
 --set <key>=<value>

 	command line option, [1]

 	
 --simulate-ips

 	command line option, [1]

 	
 --sysconfdir=/etc

 	command line option

 	
 --unittests-coverage

 	command line option, [1]

 	
 --unix-socket=<file>

 	command line option, [1]

 	
 --user=<user>

 	command line option, [1]

 	
 -c <path>

 	command line option, [1]

 	
 -D

 	command line option, [1]

 	
 -d <divert-port>

 	command line option, [1]

 	
 -F <bpf filter file>

 	command line option, [1]

 	
 -h

 	command line option, [1]

 	
 -i <interface>

 	command line option, [1]

 	
 -k [all|none]

 	command line option, [1]

 	
 -l <directory>

 	command line option, [1]

 	
 -q <queue id>

 	command line option, [1]

 	
 -r <path>

 	command line option, [1]

 	
 -S <filename.rules>

 	command line option, [1]

 	
 -s <filename.rules>

 	command line option, [1]

 	
 -T

 	command line option, [1]

 	
 -u

 	command line option, [1]

 	
 -U, --unittest-filter=REGEX

 	command line option, [1]

 	
 -V

 	command line option, [1]

 	
 -v

 	command line option, [1]

C

 	
 	
 command line option

 	--af-packet[=<device>], [1]

 	--build-info, [1]

 	--dag <device>, [1]

 	--disable-detection, [1]

 	--disable-gccmarch-native

 	--disable-rust

 	--dump-config, [1]

 	--enable-geopip

 	--enable-lua

 	--engine-analysis, [1]

 	--erf-in=<file>, [1]

 	--fatal-unittests, [1]

 	--group=<group>, [1]

 	--init-errors-fatal, [1]

 	--list-app-layer-protos, [1]

 	--list-keywords=[all|csv|<kword>], [1]

 	--list-runmodes, [1]

 	--list-unittests, [1]

 	--localstatedir=/var

 	--mpipe, [1]

 	--napatech, [1]

 	--netmap[=<device>], [1]

 	--pcap-buffer-size=<size>, [1]

 	--pcap-file-continuous, [1]

 	--pcap-file-delete, [1]

 	--pcap[=<device>], [1]

 	--pfring-cluster-id <id>, [1]

 	--pfring-cluster-type <type>, [1]

 	--pfring[=<device>], [1]

 	--pidfile <file>, [1]

 	--prefix=/usr/

 	--runmode <runmode>, [1]

 	--set <key>=<value>, [1]

 	--simulate-ips, [1]

 	--sysconfdir=/etc

 	--unittests-coverage, [1]

 	--unix-socket=<file>, [1]

 	--user=<user>, [1]

 	-D, [1]

 	-F <bpf filter file>, [1]

 	-S <filename.rules>, [1]

 	-T, [1]

 	-U, --unittest-filter=REGEX, [1]

 	-V, [1]

 	-c <path>, [1]

 	-d <divert-port>, [1]

 	-h, [1]

 	-i <interface>, [1]

 	-k [all|none], [1]

 	-l <directory>, [1]

 	-q <queue id>, [1]

 	-r <path>, [1]

 	-s <filename.rules>, [1]

 	-u, [1]

 	-v, [1]

 _images/Flow1.png
TCP session

Packetx Packet x+1

alert hitp SHOME_NET any -> SEXTERNAL_NET any,
(msg: "Logged In User Saying Blah'; content™blah’;
flowrestablished:)

_images/Flow2.png
Packet x

alert hitp SHOME_NET any -> SEXTERNAL_NET any|
(msg: “Logged In User Saying Blah’; contentblai
flowestabished:)

_images/IPtables.png

_images/IPtables3.png
e

Suricata. Interet
-—

_images/Flowbit_3.png
alert tp SHOME | NET any -> SEXTERNAL_NET any
(msg: "Logged In User Saying Blan’; contentu
flowbit:set, useriogin; flowbitnoalert)

alert http $HOME_NET any -> SEXTERNAL_NET any
(msg: “Logged In User Saying Blah" flowbit:isset,
userlogin: content bt)

_images/IDS_chunk_size.png
Packet 1 Packet 2 Packet 4 Packet 6
T T T
Packet 3 Packet 5 Packet 7

toserver_chunk_size: 10

_images/Inline_reassembly_unackd_data.png
Packetl Packet2 Packet 3 Packet 4.

ey E--

HTTP parser HTTP parser HTTP parser

_images/Legenda_rules.png
V' match

X nomatch

match in the payload

no match in the payload

_images/Legenda_rules1.png
V' match

X nomatch

match in the payload

no match in the payload

_images/NFQ1.png
iptables and NFQ
Mode: repeat

REPEAT/DROP

. =

NFQUEUE =5

20N B BN

_images/NFQ2.png
iptables and NFQ
Mode: route

NFQUEUE

2omNoO AW =

_images/MPM2.png
Signatures

_images/NFQ.png
iptables and NFQ
Mode: accept

NFQUEUE

IoRNON AN

ACCEPT/DROP

_images/Tuple1.png
- - -]
-

Same Tuple

_images/Wireshark_ack.png
e @EBxce a TT 4
i - lespresson. | clexe gty
pestirstion proocot ot

Baaam §EEX @

1 0P teigibor solicitation
H 10846 Roter sivertjsrent

s pication vsta

> e segnen of 3 reasserated

ey 153.268.0.32 TS mplication bata

713597540 209.85.577.20 TGP Riipe = 3745, X0K) SeqereIS229983 ACKSAYIOTOBA38 WineI72 Lt TSl
et frrong TiSen opiicetion bats, Aplicstion oata

Hewt fitront fony T SETEs s, (A Seq-TOTE ACK2AISIINIED MIn-IOS Lens TSHED

* Frane & (68 bytes on e, 66 bytes capturea)
" Elharret T0, Src: Trtel $7:11:05 (09-19:02:97:11:5), DSt JetuayIn aa:be:as (40:30:16:a8:be:26)
" Interret pritacol, Src: 192.160.0.32 (152.160.0.22, Dst: 209.85.227 19 (208.85.227.19)
" Transaisston Cantiol Protocsl, Src Porcs 33567 (S5}, DSt Port hiips (603], Seqs 667707, Ack: 120221821, Len: ©
Saurce port: 53567 (53567
Destination por M. (443)
Istrean tds:
Rkt egserent ater= 0T)
Tesser Lengtn: 32 byrer
» Flage: o thck)
» Checksun: Bxia12 [validation aisables]
- options: (12 byces)
1500k smatyis

s 4 B 6 EE N
o & 1o CORERANE s0 30 Loo7oooo n B
B30 53 ca 4 12 00 08 61 61 a6 an o6 B w1 ob ¢8 1. o

_images/Normal_ids_ack_d.png
<o--osTiwo ~wox

/_Packet1

Packet 2

Packet 3

Packet 4

_images/TCP-session.png
client server
-
1P address: 12.3.4 IP address: 5.6.7.8
Port: 1024 Port: 80
-_> -<_
sclP 1234 siclP 5678
srcport 1024 srcport 80
dstlP 5678 dstlP 1234

ast port 80 dst port 1024

_images/Wireshark_seq.png
e @mZxcm Q 374 EE QaqaF @EBEX @

i - [esprssion. cleae gl
Moo Tme. souce pestirstion proocot ot
o000 e T30S e 1102 RABE IOPG Nesanbor solicstatian

10846 Roer sivertjserent

> 1 seguene of 3

ey 153.268.0.32 Fn TS mplication bata

713597540 209.85.577.20 152.166.0.32 TGP Riipe = 3745, X0K) SeqereIS229983 ACKSAYIOTOBA38 WineI72 Lt TSl
et frrong 152260.0.32 TiSen opiicetion bats, Aplicstion oata

Hewt fitront fony T SETEs s, (A Seq-TOTE ACK2AISIINIED MIn-IOS Lens TSHED

* Frane & (68 bytes on e, 66 bytes capturea)
" Elharret T0, Src: Trtel $7:11:05 (09-19:02:97:11:5), DSt JetuayIn aa:be:as (40:30:16:a8:be:26)
" Interret pritacol, Src: 192.160.0.32 (152.160.0.22, Dst: 209.85.227 19 (208.85.227.19)
" Transaisston Cantiol Protocsl, Src Porcs 33567 (S5}, DSt Port hiips (603], Seqs 667707, Ack: 120221821, Len: ©
Saurce port: 53567 (53567
Destination por M. (443)
Strean inder: o)
T ey —
Teksouteggerent Timber TS
esser Lengtn: 32 byres
» Flage: o fhck)
» Checksun: Bxia12 [validation aisables]
- options: (12 byces)
1500k smatyis

b0 <3 13 31 3¢ ot bb IERCENEERD 47 3t 37 20 30 10
23 53 <a 4 12 00 08 o1 61 Ge on 06 36 %0 71 o0 ¢5

_images/autofp1.png
Runmode: autofp (single capture thread)

Flow balancing happens inside Suricata

_images/autofp2.png
Runmode: autofp (muliple capture threads)

Flow balancing happens in both Suricata and hardware/driver

_images/client_body1.png
contentplayerStart&position”; hitp_client_body;

content'no-cache’; itp_client_body;

content:"playerStart’; depth: 16; hitp_client_body:

content"playerStart’; hitp_client_bod
content"&position” distance:0; within:9.

N N> N

_images/content2.png
content:"abc”;
content:"aBc”;

N < <

content:"abC”;

_images/balancing_workload.png
CPUICPU corethreads set_cpu_affnity: yes

Core 0 PAQ _DECODE _STREAM _DETEGT- _OUTPUT
1 DETECT
2 DETECT
3 DETECT
sel_cpu_affinty: no
Example
Core 0 PAQ DETECT
1 DECODE
2 STREAM _DETECT X2
3 DETECT __ OUTPUT

_images/client_body.png
Host: nowhereasdfasdf.com
Connection: Keep-Alive
Cache-Control: no-cache

type=playerStart&position=tidal

_images/content5.png
offset

content’abe’; offset3; X
content"def’; offset:3; v

_images/content6.png
depth
offset

content?def": offset3; depth:3; v

_images/content3.png
content:"abc”; nocase;

content:"aBc"; nocase;

NN

content:"abC’; nocase;

_images/content4.png
depth

content:“def’; depth:3; X

content:“abc”; depth:3; v

_images/cookie1.png
PAYLOAD

GETIHTTPILL,

=1252314621:LM=1292956821:GM
S=dYtecyNBioerA47b

content"4d7e"; hitp_uri; v

content:"ISO-8859"; htp_uri; X

content"4d7e"; http_cookie; depth: 13; X

_images/distance.png
content"abc’; content"def' distance:0; 1/

contentabc’; content:'bed; distance:0; K

_images/cookie.png
User-Agent: Mozilla/5.0 (X11; U; Linux i636; en-US)
AppleWebKi/534.16.

(KHTWL, like Gecko) Ubuntu/10.10 Chromium/10.0.618.0
Chrome/10.0.618.0

Safari/534.16

‘Accept-Encoding: gzip deflate.sdch

‘Accept-Language: en-US en:g=0.8

Accepl.Charset: ISO-8850-1U11-8,q=0.7,%q=0.3

Cookie:
PREF=ID=efe36c63a3bfabad:U=aa0c30996084d7e:TM
12523146211 M=1202056821:GM=1:S=dYtecyNBioer
A47b

_images/distance1.png
distance
distance

content"abc”; content:"def’; distance:|

content:"abc”; content:"def’; distance

_images/distance3.png

