

 Navigation

 	
 next

 	Spanish Acquisition 1.0.3 documentation

Spanish Acquisition

	Installation

	User’s Guide

	Developer’s Guide

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

Installation

Installation procedure

The latest version available on PyPI [http://pypi.python.org/pypi/SpanishAcquisition/] can be installed using either:

sudo pip install SpanishAcquisition

or:

sudo easy_install SpanishAcquisition

Alternatively, this package can be installed from source in the usual way:

sudo python setup.py install

Dependencies

These are all the dependencies in use by the package.

If only using a subset of the package, it suffices to use what the subset requires. For example, all the GUI-related dependencies are not necessary if only the device-related code is to be used, and vice versa. However, everything is written in (and so requires) Python 2:

	Python [http://www.python.org/] >=2.6 && <3

Device drivers

	NI-VISA [http://www.ni.com/visa/] for Ethernet (and GPIB on Windows) device support.

	Linux GPIB [http://linux-gpib.sourceforge.net/] (with Python bindings) for GPIB device support.

Python packages

	Chaco [http://code.enthought.com/chaco/]

	Enable [http://code.enthought.com/projects/enable/]

	matplotlib [http://matplotlib.sourceforge.net/]

	numpy [http://numpy.scipy.org/]

	ObjectListView [http://objectlistview.sourceforge.net/python/]

	pyparsing [http://pyparsing.wikispaces.com/]

	PyPubSub [http://pubsub.sourceforge.net/] >= 3.1

	PyVISA [http://pyvisa.sourceforge.net/]

	quantities [http://packages.python.org/quantities/]

	scipy [http://www.scipy.org/]

	wxPython [http://www.wxpython.org/]

Documentation

	Sphinx [http://sphinx.pocoo.org/] >= 1.0

Testing

	nose [http://somethingaboutorange.com/mrl/projects/nose/]

	nose-testconfig [http://pypi.python.org/pypi/nose-testconfig/]

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

User’s Guide

	General concepts
	Devices

	Resources

	Variables

	Pulse programs
	Variables

	Program syntax

	Parameterization

	Examples

	Graphical user interface
	Action

	Configuration

	Display

	Example applications
	Acquisition

	Data Explorer

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

General concepts

Everything tangible (devices, variables) in this package is tied together via resources.

	Devices
	Subdevices

	Mock

	Resources

	Variables
	Output variables

	Input variables

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	General concepts

Devices

A device typically refers to a physical piece of hardware, but can be, for example, a piece of software pretending to be hardware.

Devices can offer any number of arbitrary resources. They may be organized in an hierarchical fashion through subdevices.

Tip

A device resource will typically correspond to a setting on the device, but it is not required to do so. Other types of resources include measurement readings, and virtual (implementation-specific) settings.

Subdevices

A device which has several versions of the same resources will typically have these resources organized into a tree of subdevices.

For example, an oscilloscope may have multiple input channels, with each having the same set of settings (eg. vertical scaling and offset). These channels may then be viewed as subdevices, and each will have its own values for all its settings.

See also

Device resources

Mock

Mock devices are software simulations of hardware devices. They are typically created at the same time as the device interface and support the same functionality. Most of the time, they are used for testing or as a virtual device.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	General concepts

Resources

Resources provide a way of interacting with devices and pulse programs in a generic way. They can be read-only (RO), write-only (WO), or read-write (RW). RO and RW resources are considered readable; WO and RW resources are considered writable.

In the typical case, a device (eg. a multimeter) will provide several resources; there may be some RW resources (eg. integration time, auto-zero setting), and some RO ones (eg. measurement reading). WO resources are possible (and are commonly found as pulse program resources), but are atypical among devices.

These provided resources may be given arbitrary labels, and these labels are used elsewhere to identify the resources. For example, given two RW resources with labels “reading” and “gate”, one can set up a variable which writes to the resource labelled “gate” and a measurement which reads from the resource labelled “reading”.

Note

Resources linked to variables must be of the correct type: output variables shall only be used with writable resources; input variables shall only be used with readable resources.

Resources may also have associated units, in which case the value read from or written to that resource must be a quantity with a matching dimensionality. That is, a resource which requires acceleration in meters per second squared (specified as m.s-2) will accept millimeters per second squared (mm.s-2) and joules per newton per second squared (J.N-1.s-2), but not joules per newton (J.N-1) or joules per second squared (J.s-2).

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	General concepts

Variables

Variables are used to describe sweeping acquisition experiments.

Output variables

Output variables provide a way to sweep over a range of values on a resource. An output variable will have a customizable range of values over which it iterates.

Tip

The unqualified term “variable” typically refers to output variables.

Type

An output variable has an associated type. It must be one of:

	Float

	Each produced value is a floating point value, with an integral portion and a decimal portion.

For example, “-5.5”.

	Integer

	Each produced value is an integer value. If any of the generated values contain a decimal portion, it is truncated.

For example, “5”.

	Quantity

	Each produced value is a floating point value with a corresponding unit.

For example, “12.3 GHz”.

Constant value

Each variable is assigned a constant value. By default, this value is ignored; however, there are several options which make use of this value.

For example, if the variable is set to be a “constant variable”, then its value is never iterated; instead, its value is set to the constant value at the beginning of a sweep and then left there for the entire duration.

Note

The constant value of a variable always incorporates the type and units of the variable.

See also

Smooth setting

Order

Each output variable has an order to which it belongs, defined by an integer value (either negative, zero, or positive). This order is used to determine the looping sequence for variable iteration and has no bearing on the values of the variable.

Variables which share the same order value are stepped together. Variables which have a greater order value are stepped more slowly (ie. they are on an outer loop of the iteration) relative to those which have a lesser order value.

Warning

In a single order, whichever variable has fewest values dictates how many values the other variables will have. Any excess values for the longer variables are silently truncated.

For example, if variables A, B, C, and D have orders of -5, 1, 1, and 10, respectively, then:

	D will iterate most slowly

	B and C will iterate in lockstep, between D and A

	A will iterate most quickly

Note that since constant variables by definition do not iterate, they are all put into a separate virtual order, and so are ignored from the point of view of the ordering discussion.

Smooth setting

During a sweep, it is sometimes beneficial to avoid abruptly setting variables to values, since this can correspond to large jumps in current or potential difference in configured devices. To reduce the negative effect of changing values, the variables can optionally be “smoothly set” at various times:

	Smooth setting from constant value

	At the start of a sweep, the variable is set to the constant value, and then (over the desired number of steps) swept towards its inital value at the start of the sweep.

	Smooth setting to constant value

	At the end of a sweep (even if the sweep is prematurely aborted), the variable is smoothly swept from its final value to its constant value.

	Smooth transition between loop iterations

	At the end of a single iteration of an order, if that order was not the slowest-stepping outer loop order, the variable is smoothly swept back to its initial value so that it can be stepped over again.

Note

Each smooth setting step is always 100 ms in duration.

See also

Variable configuration

Input variables

Typically referred to as “measurements”, input variables provide a way of gathering data from resources.

There exist two types of measurements: scalar and list. Scalar measurements correspond to the acquisition of single values over time (eg. an amplitude or a frequency); list measurements correspond to the acquisition of a list of values over time (eg. a waveform captured by an oscilloscope). Naturally, if the measurements are done several times, scalar measurements produce one-dimensional data, while list measurements produce two-dimensional data.

See also

Measurement configuration

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

Pulse programs

Pulse programs are an unambiguous way to describe the parameterizable shape of one or more parallel waveforms. Pulse programs allow for:

	Adjustable time scales. Waveforms can be on the order of nanoseconds, of seconds, or anything in between.

	Arbitrary parameterization. Delays, pulse amplitudes and length, and repetition counts can all be iterated over.

	Arbitrary waveforms. Any discretized waveform can be inserted.

	External trigger. An oscilloscope acquisition can be triggered at any point during the waveforms.

	Nested looping. Complex, repetitive waveforms can be created easily.

Variables

In order to allow parameterization, any values which can be directly used (such as integers or delays) can alternatively be used with a variable. Some values (such as pulses and outputs) require the use of a variable.

Types

Pulse programs can contain the following variable types:

	Integer (int)

	A single integer value, such as 12 or -5.

	Delay (delay)

	A single time quantity, such as 5.5 ns.

	Pulse (pulse)

	A collection of three values set using a dictionary or attributes:

	amplitude: A voltage quantity, such as 250 mV.

	length: A time quantity.

	shape: A string containing a valid file name.

	Output (output)

	A special type which does not support assignment. Outputs are always configured when the pulse program is to be used.

Dictionaries

Any variables which are collections of values can have several of their values assigned via a dictionary. Dictionaries are of the form {<key>: <value>, ...} where the keys must correspond to the attribute names of the variable being assigned to. For example:

A valid dictionary assigned to a pulse:
p1 = {amplitude: -0.5 V, length: 0.5 us, shape: 'square'}

Not all attributes need be present:
p2 = {shape: 'non-square'}

Attributes

Any variables which are collections of values can have a single value assigned via an attribute. For example:

Assignment to a pulse attribute:
p3.amplitude = -500 mV

Program syntax

A pulse program consists of several statements separated by line breaks or semicolons (;). A statement is one of:

	Assignment

	An assignment sets the value of a variable or attribute. Any variable or attribute may only be assigned to once in a single program. For example:

p1 = {shape: 'square', length: 1 ns, amplitude: 1 V}
d1 = 100 ns
loops = 5

	Declaration

	A declaration is an announcement of intent to use a variable; all used variables must be declared at some point in the program. A declaration consists of a type, followed by one or more identifiers; any identifier may also be part of an assignment within the declaration. For example:

int bumps = 2
delay bump_spacing = 20 ns, settle, end_delay

	Command

	A command is an instruction that dictates the shape of the resulting waveforms. There exist several kinds of commands:

	Delay: A lone identifier or a single time value causes a delay in all output waveforms. For example:

Pause all waveforms for the length of delay d1:
d1

Pause all waveforms for 100 ns:
100 ns

	Pulse sequence: Statements of the form ([delay|pulse] [delay|pulse] ...):<output> are treated as waveform-generating command. If there is only a single delay or pulse, the parentheses may be omitted. If several pulse sequences are included in the same statement, they are executed in parallel; otherwise they are executed in series. For example:

Generate delay or pulse x on ouput f1:
x:f1
Alternatively:
(x):f1

Generate delay or pulse x, followed by a 10 ns delay, followed by
another instance of delay or pulse x, all in sequence on output f2:
(x 10 ns x):f2

Generate identical simultaneous waveforms on outputs f1 and f2:
(x d1 y):f1 (x d1 y):f2

Generate different simultaneous waveforms on outputs f1, f2, and f3:
x:f1 (x y):f2 y:f3

Same output shapes as above, but the waveforms on the different outputs
follow one another in time:
x:f1
(x y):f2
y:f3
Alternatively:
x:f1 ; (x y):f2 ; y:f3

Note

All waveforms are synchronized before and after a pulse sequence. If any pulse sequence would be longer than the others, padding delays are automatically added to the end of the shorter sequences to ensure that all the lengths match.

	Acquisition trigger: A statement of the form acquire signals that an oscilloscope acquisition trigger must occur on an output at that point. Such triggers are always created on output markers, rather than as part of the output waveform itself.

	Loop

	A loop is a section of the program which is to be executed several times. The contents of a loop block are constrained to delays, pulse sequences, and loops. Loops are of the form:

times <integer> {
 <statement>
 ...
}

Comments

Any text after (and including) a # character is ignored. For example:

This is a pulse sequence.
(p1 d1 p1):f1 # (p2 d2 p2):f2

is identical to:

(p1 d1 p1):f1

Parameterization

Any values which are not assigned in the body of the pulse program must be filled in at a later time. For example:

pulse p1 = {amplitude: 1 V, shape: 'square'}
output f1

p1:f1

is the entirety of valid pulse program, but p1.length is treated as an external parameter and must be known in order to generate the waveform for output f1.

It it possible to fill these values in dynamically as part of a sweep, given that the parameters are assigned resource labels.

See also

Pulse program configuration

Examples

The following examples all use a sampling rate of 1 GHz.

Single waveform

delay d1 = 5 ns
int bumps
pulse p1 = {amplitude: 1 V, shape: 'square'}
output f1

p1.length = 10 ns

3 ns
p1:f1

times bumps {
 d1
 (p1 1 ns p1):f1
}

If the parameter bumps is filled in with the value 3, the following waveform is generated:

[image: Single waveform.]

Multiple waveforms

pulse p1 = {amplitude: 0.5 V, length: 10 ns, shape: 'non-square'}
pulse p2 = {amplitude: -1.5 V, length: 5 ns, shape: 'non-square'}
output f1, f2

1 ns
p1:f1
1 ns
(p1 2 ns p1):f1 (p2 3 ns p2):f2
5 ns
p2:f2
8 ns

If the file “non-square” contains the data “-0.1, 0.0, 0.1, 0.2, 0.4, 0.8, 1.6”, the following pair of waveforms is generated:

[image: One of multiple waveforms.]

[image: Another of multiple waveforms.]

With acquisition

pulse p1 = {amplitude: 0.25 V, length: 15 ns, shape: 'square'}
output markered

20 ns
p1:markered
acquire
p1:markered
20 ns

If the acquisition marker is set up to be marker 2 on output markered, the following output waveform and marker waveform are generated:

[image: A waveform with an acquisition trigger.]

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

Graphical user interface

There are several GUI elements which work together, and can be assembled arbitrarily into graphical applications.

	Action
	Data capture

	Smooth reset

	Configuration
	Device configuration

	Measurement configuration

	Pulse program configuration

	Variable configuration

	Display
	Plots

	Tabular display

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

Action

	Data capture
	Data capture panel

	Data capture dialog

	Export format

	Smooth reset

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

 	Action

Data capture

Data capture panel

The data capture panel controls the verification of the setup, as well as the export of the acquired data.

[image: Data capture panel.]

	Begin the sweep as defined in the rest of the application. If there are any setup errors, pressing this button will generate messages about the errors rather than beginning the sweep.

	If the “Continuous” checkbox is enabled, the sweep will restart from the beginning as soon as it gets to the end.

	If the “Export” checkbox is enabled, the sweep values (of both input and output variables) will be exported; otherwise, they will be discarded.

	The location of the directory to which the values should be exported.

	The location of the file to which the last set of values was exported.

Data capture dialog

The data capture dialog controls the sweep itself.

[image: Data capture dialog in continuous mode.]

	The overall progress of the sweep.

	The currently executing stage of the sweep.

	The last values set to the output variables.

	The last values obtained from the measurements.

	The total elapsed time for the sweep. In non-continuous mode, this is accompanied by a rough estimate for the remaining time.

	Checkbox controlling the termination of a sweep in continuous mode. At the end of a sweep in continuous mode, if this checkbox is enabled, the sweep terminates; otherwise, it restarts.

	Prematurely terminate a sweep.

Tip

To avoid leaving the system in an inconsistent state, pressing the “Cancel” button first allows whichever stage is currently running to finish running gracefully. Then, if any variables were configured to be set smoothly from their final values to their constant values, they are set smoothly from wherever the sweep was ended. Thus, it is safe to cancel the sweep at any time.

The sweep consists of the following stages:

	Initializing

	Internal setup.

	Getting next values

	The next set of values to write to any resources is determined based on the variable configuration.

	Smooth setting

	A smooth transition occurs for all resources requiring one.

	Writing to devices

	All variables with changed values have those values written to their resources.

	Waiting for resources to settle

	A delay occurs for the variable with the longest wait time.

	Running pulse program

	If one is configured, a pulse program is run.

	Taking measurements

	All measurements are read from their resources.

	Smooth setting

	A smooth transition occurs from the last value to the variables’ constant values, as required.

	Finishing

	Internal cleanup.

Export format

The export is done to a regular comma-separated values (CSV) file. The first row contains the column headings (potentially with units) as gathered from the variable and measurement names. The first column is always titled “Time (s)” and contains the approximate time of acquisition for each row, relative to the first row of values.

For example, an exported file may begin thusly:

Time (s),field (mT),port out (V),Pulses (V),port in (V)
0,1.0,-5.0,"[(0.0, -0.078469520103761514), ...]",-0.0100000004
0.25141787529,1.0,-4.375,"[(0.0, -0.11684596017395288), ...]",-0.0100000008

Note that the “Pulses” column contains list data and most of it has been elided for clarity.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

 	Action

Smooth reset

The smooth reset panel provides a convenient way to reset all resources tied to enabled and constant variables. Each step is always 100 ms.

[image: Smooth reset panel.]

	Sweep from constant values to zero.

	Sweep from zero to constant values.

	The number of steps to use.

Warning

For both directions, the smooth reset panel makes the assumption that the from value is the current value of the resource. For example, if the voltage source port behind the resource is sitting at 5 V, and the constant value of the variable is 5 V, pressing the “To zero” button is safe. If this is not the case, a jump will occur at the beginning of the reset.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

Configuration

	Device configuration
	Device list

	Device configuration dialog

	Measurement configuration
	Scalar measurement

	List measurement

	Pulse program configuration
	Resources

	Setup

	Variable configuration
	Variable configuration panel

	Variable editor dialog

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

 	Configuration

Device configuration

Device list

The device list shows all the devices configured in an application.

[image: Device list.]

	A unique label to identify the device.

	The connection status. Double-clicking in this column brings up the device configuration dialog for the device.

	Graphical configuration. If a device has this option, “Setup...” appears in this column; double-clicking it opens up the device-specific graphical configuration.

	The status of any long-running tasks.

	Clicking “Add” creates a blank device. Clicking “Remove” permanently removes all selected devices.

Device configuration dialog

The device configuration dialog is used to configure an individual device for use with an application.

Device connection

Connection and model setup.

[image: Device connection configuration.]

	Address configuration.
	Ethernet: The IPv4 address (eg. 1.2.3.4).

	GPIB: The board number, PAD, and SAD.

	USB: The full USB resource (eg. USB::0x1234::0x5678::01234567::RAW).

	Implementation configuration.
	The manufacturer and model must be selected.

	When “Mock” is selected, a software mock implementation is used instead of connecting to a real device.

	Connection control.
	Connect to or disconnect from the device.

	Saving settings.
	All the settings controlled in this dialog (including resource labels, but with the exception of resource values) can be saved to and loaded from the disk.

Note

Disconnecting from a device does not actually take place until the dialog is confirmed (by pressing “OK”). Thus, pressing “Disconnect” and then “Cancel” will retain the connection to the device.

Device resources

Resource labels and values setup.

[image: Device resource configuration.]

	The internal name of the resource.

	R/W flags indicating the RO/WO/RW status of the resource.

	The units associated with the resource.

	The unique label used to identify the resource. The label can be changed by double-clicking the appropriate field.

In this case, the channel 1 waveform has been given the label osc1.

	The value of the resource.

	If the resource is readable, the latest received value is displayed. The exception to this is slow resources, which always have “[N/A]” displayed to avoid slowdowns caused by fetching the value.

	If the resource is writable, the value can be changed by double-clicking the appropriate field.

	A subdevice with its own resources.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

 	Configuration

Measurement configuration

The measurement configuration dialogs are used to set up input variables for an application.

Note

If the plots cannot be displayed (most likely due to a required plotting library not being installed), the plots and all plot-specific options will be omitted. However, the measurements can still be configured for acquisition.

Scalar measurement

A scalar measurement consists of a single data point for each point in time.

[image: Scalar measurement configuration.]

	Whether the measurement should be used during a sweep.

	The label of the resource from which this measurement should acquire data.

	A unique label to identify the measurement. This name appears, for example, as a column heading when capturing data.

	Resource scaling dialog.

	Historical view of the measurement.

	The last value read from the resource.

	“Run” and “Pause” control the live-view when there is no sweep in progress. “Reset” clears the historical view.

	Plot settings dialog.

Resource scaling

Resources can be scaled as desired after they come in from a device, but before they are used.

[image: Scalar measurement scaling.]

The resource used for the measurement is scaled according to the formula:

{new value} = {linear scale} * {old value} * 10 ^ {exponential scale} + {offset}

Note

This scaling affects the recorded and exported values as well as the displayed values.

Plot settings

The historical plot can be configured, or disabled outright.

[image: Scalar measurement plot settings.]

	Enabled: Whether the plot should be updated at all.

	Capture

	Points: The number of historical values to display. The maximum value is 10,000.

	Delay: In live-view mode, the delay between successive acquisitions. The minimum value is 200 ms.

	Axes

	x

	Autofit: Whether to automatically re-scale the x axis as values change.

	Value: The unit (time or data point number) along the x axis.

	Mode: Whether to use relative or absolute values.

	y

	Autofit: Whether to automatically re-scale the y axis as values change.

	Conversion

	Exp. scale: The incoming value is scaled according to the formula:

{new value} = {old value} * 10 ^ {exp scale}

	Units: The incoming units are assumed to be the “From” units and the displayed value is adjusted to match the “To” units.

Note

These conversion settings affect only the displayed values.

List measurement

A list measurement consists of a list of data point for each point in time.

[image: List measurement configuration.]

The list measurement configuration is identical to scalar measurement configuration, but with fewer options.

Plot settings

The historical plot can be configured, or disabled outright.

[image: List measurement plot settings.]

	Enabled: Whether the plot should be updated at all.

	Capture
	Lines: The number of lines of historical data to display.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

 	Configuration

Pulse program configuration

The pulse program configuration panel is used to set up the pulse program for an application.

If a pulse program is loaded (via File -> Open... or Ctrl+O), the sweep performed by the Data capture dialog will include a stage involving the pulse program. If it is later closed (via File -> Close or Ctrl+W) or if one was not opened, the corresponding sweep stage is skipped.

Note

To run a pulse program, it is necessary to have configured both an AWG (to emit the waveforms) and an oscilloscope (to take measurements).

Resources

Most parameterizable values of a pulse program may be given resource labels. These resource labels behave the same way as device resources, and so may be iterated over by a variable during a sweep.

Setup

Tip

Each setup tab is present only if the pulse program requires it. For example, the Acquisition tab appears only if the command acquire is in the program.

Acquisition

Configuration for the acquisition trigger.

[image: Pulse program configuration: acquisition.]

	marker_num: The number of the marker of the AWG channel output used for the trigger.

	output: The waveform output name.

	Times to average: If this item is set to a value greater than 1, the oscilloscope is placed into “average” mode for the given number of waveforms, and the AWG is triggered that many times.

	Post-trigger delay: How long to wait after triggering the AWG. This delay occurs between individual waveforms when averaging.

Delays, Integers, Pulses

Configuration for the pulse program variables.

[image: Pulse program configuration: delays.]

Delays, integers, and pulses are all configured in approximately the same manner, and most of their aspects can be parameterized.

All items (for delays and integers, the variables themselves; for pulses, the variable attributes) appear exactly as they are named in the pulse program. Each must have a default value, and may also have an optional resource label.

The default value is used when displaying the output waveform in the Outputs tab, and when sending the waveform to the AWG given that either no resource label is provided or no value is written to the resource during the sweep.

Outputs

Configuration for the waveform outputs.

[image: Pulse program configuration: outputs.]

	Outputs: All the output waveforms in the program are listed, and can be viewed by clicking the “View” button. If a channel number is specified, the waveform generated is output on that channel of the AWG.

	Sampling rate: The waveforms are generated with this sampling rate. The AWG automatically has its output frequency set to this value.

	Devices: The device label (as specified in the Device list) must be provided for each device.

Warning

Setting the sampling rate too low will produce waveforms which are not faithful to the pulse program, since there is not enough resolution to create the desired shapes. On the other hand, setting the sampling rate too high will produce waveforms that have very many points, causing severe slowdowns.

A good rule of thumb is to keep the waveforms to within one million points. This provides a maximum total duration of 1 ms per waveform at a resolution of 1 GHz.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

 	Configuration

Variable configuration

Variable configuration panel

The variable configuration panel is used to set up output variables for an application.

[image: Variable configuration.]

	The “enabled” checkbox. Variables which do not have this checked (such as gate 3) effectively do not exist; this is useful for temporarily disabling variables.

	A unique label to identify the variable. This name appears, for example, as a column heading when capturing data.

	The order number of variables is used to group them during the sweep. gate 1 and gate 4 have the same order, so would be stepped together in the inner loop; magnetic field has a higher order number, and so will be stepped alone in the outer loop.

	The resource label for the resource to which to write the values. All the resources provided must be writable. If a resource is not provided (such as with gate 4), the variable is still stepped in the usual fashion, but its values are discarded.

	The values over which the variable will be stepped. If there are too many values, some are omitted from the display. The symbols on either side of the values specify whether that side is set smoothly: “(” and ”)” if smoothly (as for gate 1); “[” and “]” if not (as for the other variables).

If there are any units associated with a variable, they are displayed after the values.

	For each step of a variable, after writing the value to the resource, there is a delay of at least the wait time. In each order, the delay for all variables is the longest of the wait times in that order. The effective wait time for gate 4 is 200 ms.

	The “const” checkbox. Variables which have this checked (such as gate 2) are considered constant and are subject to special consideration in some scenarios.

	The const value of a variable is that which it is assumed to take on at rest. The value does nothing on its own, but is used in conjunction with other settings and actions.

The units associated with a variable apply to the const value as well.

	Clicking “Add” creates a blank variable. Clicking “Remove” permanently removes all selected variables.

	The variable settings can be saved to and loaded from the disk. All the configured variables (both enabled and not) are saved at the same time, and existing variables are overwritten by any loaded variables.

To select a variable, click on its row. To select multiple variables, hold down the “ctrl” key while clicking. When several variables are selected, some actions (such as clicking “Remove” or pressing the space bar) act on all of them.

Tip

The user interface is organized so that gate 2 and gate 3 are still displayed alongside the other variables with order number 1. However, gate 2 is set to const, and so will be in a separate virtual order, and gate 3 is disabled, so will not participate at all.

Variable sweep example

The configuration shown above would result in the following actions during a sweep:

	Resource v1 is smoothly stepped from -2.5 V to -5 V.

	The values are set (with each being written to the appropriate resource, if any):

	Constant order
	Order 2
	Order 1
	
	

	gate 2
	magnetic field
	gate 1
	gate 3
	gate 4

	5.6 V
	0.001 T
	-5.0 V
	—
	-5.0 V

	
	
	-4.375 V
	
	-3.75 V

	
	
	-3.75 V
	
	-2.5 V

	...
	...
	...
	...
	...

	
	
	-0.625 V
	
	3.75 V

	
	
	0.0 V
	
	5.0 V

	
	0.002 T
	-5.0 V
	
	-5.0 V

	
	
	-4.375 V
	
	-3.75 V

	
	
	-3.75 V
	
	-2.5 V

	...
	...
	...
	...
	...

	
	
	-0.625 V
	
	3.75 V

	
	
	0.0 V
	
	5.0 V

	
	0.005 T
	-5.0 V
	
	-5.0 V

	
	
	-4.375 V
	
	-3.75 V

	
	
	-3.75 V
	
	-2.5 V

	
	
	-3.125 V
	
	-1.25 V

	
	
	-2.5 V
	
	0.0 V

	
	
	-1.875 V
	
	1.25 V

	
	
	-1.25 V
	
	2.5 V

	
	
	-0.625 V
	
	3.75 V

	
	
	0.0 V
	
	5.0 V

Between steps of variables in order 2, if gate 1 set to smoothly transition, resource v1 is smoothly stepped from 0.0 V to -5.0 V.

	Resource v1 is smoothly stepped from 0 V to -2.5 V.

Variable editor dialog

The variable editor dialog is used to configure the values over which a variable is stepped. It is opened by double-clicking in the “Values” column of the variable.

[image: Variable editor.]

	The value configuration is performed by using one of the available configuration panels.

	Smooth setting configuration.

	Type and units configuration.

Configuration panels

Linear

A linear space is described between the initial and final bounds (inclusive), consisting of the specified number of values. For example, if initial, final, and steps are were to 1, 5, and 9, respectively, the resulting values would be: 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5.

Arbitrary

Values are provided directly as a sequence of comma-separated numbers (with ignored whitespace). For example, the input “1, 32 , -5,6.543,0,0 , 1” would result in the values: 1, 32, -5, 6.543, 0, 0, 1.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

Display

	Plots
	Colormapped plot

	Surface plot

	Two-dimensional plot

	Tabular display
	Column types

	Data filters

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

 	Display

Plots

Via other libraries, this package provides several ways of visualizing data though plots.

	Colormapped plot
	Pan & zoom

	Surface plot
	Pan & zoom

	Waveform style

	Two-dimensional plot
	Pan & zoom

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

 	Display

 	Plots

Colormapped plot

The colormapped plot display allows for the display of one dimension in the color space versus two other dimensions in the plane.

[image: Colormapped plot.]

Pan & zoom

In addition to zooming within the plane, the colormapped plot allows for zooming in the color space. Changing the values in the “Min” and “Max” fields, followed by pressing the enter key (once for each changed value) will change the bounds of the color space (and consequently of the legend).

See also

Pan & zoom

In order to hilight a particular value region, one can also click the right mouse button on the legend and drag along the legend. This will select the region to be hilighted; everything outside this region will be dimmed:

[image: Highlighted colormapped plot.]

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

 	Display

 	Plots

Surface plot

The colormapped plot display allows for the display of one dimension in the vertical direction versus two other dimensions in the plane.

[image: Surface plot.]

Pan & zoom

Clicking anywhere on the plot with the left mouse button and dragging in any direction will cause the axes and the surface to rotate in the direction of the drag.

Clicking anywhere on the plot with the right mouse button and dragging up or down will cause the surface to zoom in and out.

Waveform style

The surface plot supports an alternate style suited for the display of discrete waveforms rather than of a two-dimensional sweep.

[image: Waveform-style surface plot.]

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

 	Display

 	Plots

Two-dimensional plot

The two-dimensional plot allows for the display of one dimension versus another dimension, both in a single plane.

[image: Two-dimensional curve.]

Pan & zoom

Clicking anywhere on the plot with the left mouse button and dragging in any direction will cause the axes and the plot to pan in the direction of the drag.

Scrolling the scroll wheel of the mouse will cause the plot to zoom in or out, depending on the direction of the scroll. To only zoom in a single direction at a time, one can hold the shift key while pressing the arrow keys; up/down control zoom in the vertical direction (in/out, respectively), while right/left control zoom in the horizontal direction (in/out, respectively).

To get a more precise zoom, one can hold the control key while dragging with the left mouse button to draw an exact selection rectangle. Releasing the left mouse button will cause the selected area to take up the entire visible area.

Pressing the escape key will reset the zoom (but not the pan) to the original settings.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Graphical user interface

 	Display

Tabular display

The tabular display panel is a read-only panel for arbitrary data.

[image: Populated tabular display.]

Column types

The panel is able to recognize certain data types: scalars, lists, and strings. Scalars are any real numbers, lists are number sequences with a particular syntax, and everything else is considered to be a string.

Lists are of the form:

[(number, number), (number, number), ...]

This is the format used by the Data capture panel for export of list data.

Data filters

Data filters allow the user to narrow a large dataset into a smaller one, potentially making visualization simpler and all operations faster.

Tip

If there are already filters which have transformed an originally large dataset into a small one, adding a new filter is a very fast operation. However, removing or editing any filter will be as slow as applying the first filter, since the original dataset must be re-filtered in its entirety.

Syntax

Filters are provided as Python-like expressions on a per-column basis. All occurrences of x are internally replaced with an identifier for the selected column, and the remainder of the expression is left intact. Thus, the user is free to use as much creativity as desired when constructing filters.

Valid comparison operators include: < (less than), <= (less than or equal to), == (equal to), != (not equal to), >= (greater than or equal to), > (greater than). Comparisons may be grouped with: and (both expressions must be true), or (at least one expression must be true); and negated with: not (expression must be false).

Tip

The Python equality comparison operator is two equal signs (==), not a single equal sign (=). Using the latter in place of the former may generate a generic “invalid syntax” error.

Examples

All examples assume the following initial dataset:

	Time (s)
	field (mT)
	port out (V)
	port in (V)

	0
	1.0
	-5.0
	-0.0100000004

	0.251417
	1.0
	-4.0
	-0.0100000008

	0.512650
	1.0
	-3.0
	-0.0100000016

	0.766408
	1.0
	-2.0
	-0.0100000032

	1.024776
	1.0
	-1.0
	-0.0100000064

	1.300688
	3.0
	-5.0
	-0.0100000128

	1.605982
	3.0
	-4.0
	-0.0100000256

	1.876083
	3.0
	-3.0
	-0.0100000512

	2.145252
	3.0
	-2.0
	-0.0100001024

	4.211317
	3.0
	-1.0
	-0.0100002048

	4.523829
	5.0
	-5.0
	-0.0100004096

	4.788892
	5.0
	-4.0
	-0.0100008192

	5.056252
	5.0
	-3.0
	-0.0100016384

	5.353702
	5.0
	-2.0
	-0.0100032768

	5.627074
	5.0
	-1.0
	-0.0100065536

Time selection

Select only the rows that fit within a slice of time.

The filter:

	Column:
	Time (s)

	Filter:
	x > 1.0 and x < 5.0

results in:

	Time (s)
	field (mT)
	port out (V)
	port in (V)

	1.024776
	1.0
	-1.0
	-0.0100000064

	1.300688
	3.0
	-5.0
	-0.0100000128

	1.605982
	3.0
	-4.0
	-0.0100000256

	1.876083
	3.0
	-3.0
	-0.0100000512

	2.145252
	3.0
	-2.0
	-0.0100001024

	4.211317
	3.0
	-1.0
	-0.0100002048

	4.523829
	5.0
	-5.0
	-0.0100004096

	4.788892
	5.0
	-4.0
	-0.0100008192

Dimensionality reduction

Reduce an entire dimension to a single point.

This allows for plots which would otherwise be impossible. For example, “port in (V)” vs “port out (V)” cannot be plotted since “port in (V)” is not a function of “port out (V)”.

The filter:

	Column:
	field (mT)

	Filter:
	x == 3.0

results in:

	Time (s)
	field (mT)
	port out (V)
	port in (V)

	1.300688
	3.0
	-5.0
	-0.0100000128

	1.605982
	3.0
	-4.0
	-0.0100000256

	1.876083
	3.0
	-3.0
	-0.0100000512

	2.145252
	3.0
	-2.0
	-0.0100001024

	4.211317
	3.0
	-1.0
	-0.0100002048

It becomes possible to plot “port in (V)” vs “port out (V)” at a constant “field (mT)”.

Configuration

Filter list

The filter list displays all existing filters.

[image: Data filter list.]

Filters can be added with the “Add” button, permanently removed with the “Remove” button, and edited by double-clicking on the respective row.

Filter editor

The filter editor allows the user to create new filters and to edit existing filters.

[image: Data filter editor.]

The given filter is added to the selected column.

If there is an error in the input, the user is informed. For example, the filter “y == 5” results in the message “name ‘y’ is not defined”.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

Example applications

Spanish Acquisition comes bundled with example applications, showing its use and capabilities.

The examples are found in examples/. To run an example if Spanish Acquisition is installed, simply run the example Python file; otherwise, use python -m examples.<name>.

	Acquisition

	Data Explorer
	Plotting options

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Example applications

Acquisition

The Acquisition application allows the user to: set up multi-dimensional sweeps of resources on physical devices, acquire the resulting values, and run pulse programs.

[image: Acquisition application during an acquisition.]

The Acquisition application is composed of several interacting components:

	In the main window:
	Top: Variable configuration

	Bottom-left: Data capture

	Bottom-right: Smooth reset

	Accessible through the menus:
	Configuration -> Devices...: Device configuration

	Configuration -> Measurements: Measurement configuration

	Configuration -> Pulse program...: Pulse program configuration

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	User’s Guide

 	Example applications

Data Explorer

The Data Explorer is an application that allows the user to view arbitrary CSV files, with the option to display some values in graphical form.

[image: Data explorer with plot menu.]

The data explorer is composed of a Tabular display panel, along with a menu to load and plot data. It supports data filters, which can be accessed via File -> Filters....

Plotting options

Combinations of scalar columns can be plotted in two or three dimensions, with the “Curve...”, “Colormapped...”, and “Surface...” menu options. These correspond to the Two-dimensional plot, Colormapped plot, and Surface plot.

List columns can be plotted in three dimensions with the “Waveforms...” menu option, which corresponds to the Surface plot in Waveform style.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

Developer’s Guide

	General information
	Testing

	Documentation

	Example applications

	Creating a release

	Packages
	Devices

	GUI

	Interface

	Iteration

	Pulse program execution
	Device initialization

	Device utilization

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	Developer’s Guide

General information

The developer is assumed to have read through the User’s Guide before proceeding.

Testing

All the non-GUI modules in this package have associated tests, found in the tests/ subdirectory. These are split into unit tests (found directly in the subdirectory) and server tests (found in tests/server/); server tests differ from unit tests by the addition of an external dependency, such as a hardware device.

Note

Test failures can signify a missing dependency. While users can get by with only a subset, it is recommended that developers install all dependencies.

Unit tests

The unit tests can all be run with:

./runtests

Server tests

Currently, only device tests exist in the form of server tests. Before running these, the devices should be connected to the computer and configured.

Server tests can be found with:

find ./spacq/ -path '*/tests/server/test_*.py'

and run with, for example:

./runtests --no-skip ./spacq/devices/tests/server/test_abstract_device.py

Documentation

Style

An attempt has been made to ensure that the reStructuredText source for this documentation is self-consistent. The following stylistic choices have been made:

	The headings for each document are as follows:

###
One
###

Two

Three
=====

Four

Headings nested deeper than this should not be used.

	A single blank line separates elements within a document. Multiple blank lines are not used.

Building

The documentation can be built using:

make -C docs html

This places the result at docs/_build/html/index.html.

Updating

It is crucial that all modifications which cause any changes to the user interface, whether they are changes in the GUI or changes in behaviour, are documented in the User’s Guide as they occur. All changes (especially internal ones not mentioned in the User’s Guide) should be documented in the Developer’s Guide.

Example applications

The example applications are provided to demonstrate the functionality that this package provides in the form of directly usable and useful applications. As this functionality changes, the example programs should follow suit.

Creating a release

When a new version is ready for release, the version number must be updated in the following places:

	docs/conf.py: version, release

	spacq/__init__.py: VERSION

	setup.py: version

The CHANGELOG.rst file must be updated with all the important changes from the previous version.

To create a source distribution, run:

python setup.py sdist

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	Developer’s Guide

Packages

	Devices
	Class hierarchy

	Device implementation notes

	Testing

	File structure

	Synchronization

	Graphical configuration

	GUI
	Class hierarchy

	File structure

	Conventions

	Thread safety

	Interface
	Pulse programs

	Resources

	Units

	Waveform generation

	Iteration
	File structure

	Sweeping

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	Developer’s Guide

 	Packages

Devices

Interfaces for various hardware devices. This package allows the remaining components to talk to devices through a layer of abstraction.

Class hierarchy

All device classes inherit from spacq.devices.abstract_device.AbstractDevice, which provides all the functionality necessary to make connections to physical devices. Subdevices inherit from spacq.devices.abstract_device.AbstractSubdevice. Each device class has its own test class, as well as a mock implementation.

spacq.devices.config.DeviceConfig and spacq.devices.config.device_tree() provide a way to find existing devices and connect to them.

Device implementation notes

	Tektronix AWG5014B

	Tektronix DPO7104

Testing

All the device interfaces can be tested against real hardware as long as the hardware is present and configured.

Configuration of external resources should be done by copying and editing the example file:

cp test-config.py ~/.spacq-test-config.py

File structure

Each manufacturer has its own directory in spacq/devices/ (eg. agilent for Agilent, tektronix for Tektronix, etc), and each of these directories may contain any number of devices. There should be at least four files [1] per device:

	The device interface (eg. dm34410a.py).

	Tests for the device interface (eg. test_dm34410a.py).

	A mock implementation of the device (eg. mock_dm34410a.py).

	A wrapper to run the device tests against the mock (eg. test_mock_dm34410a.py).

Footnotes

	[1]	Most devices will have four files, but, for example, the IQC voltage source (iqc/voltage_source.py) includes a non-server test file (iqc/tests/test_voltage_source.py) as a fifth file, and a graphical configuration panel (iqc/gui/voltage_source.py) as a sixth file.

Adding a manufacturer

To add a manufacturer:

	Copy the sample manufacturer directory (spacq/devices/sample/) to a new directory in spacq/devices/ corresponding to the manufacturer. The name of this directory will be the package name; it should include only lowercase letters, but starting with the second character may also include digits and underscores.

	In the spacq/devices/<manufacturer>/__init__.py file, replace the name with the name of the manufacturer as you would like it to appear in the user interface.

	Add the new package name to both lines of spacq/devices/__init__.py.

For example, to add Oxford Instruments as a manufacturer:

cp -r spacq/devices/sample spacq/devices/oxford
vim spacq/devices/oxford/__init__.py # Change the name to "Oxford Instruments".
vim spacq/devices/__init__.py # Add "oxford".

Adding a device

The sample manufacturer comes with a sample device in the form of files ending in abc1234.py. If the manufacturer is newly added, you should modify this sample device; otherwise, copy the four sample device files over from spacq/devices/sample/.

	Rename all the abc1234.py files to something suitable for the device. The chosen name (excluding the .py extension) will be the module name; it should include only lowercase letters, but can also include digits and underscores starting with the second character.

Note

Due to the constraint that the initial character of the module name may not be a digit, some model names cannot be used directly either in the module name or in the class name. For example, in the case of the Agilent 34410A, the module name is dm34410a and the class name is DM34410A where the letters “DM” are arbitrarily chosen and stand for “digital multimeter”.

	Add the configuration details for the physical device to your test configuration.

	Edit the mock tests (spacq/devices/<manufacturer>/mock/tests/test_mock_<model>.py) to refer to the correct tests.

	Edit the server [2] tests (spacq/devices/<manufacturer>/tests/server/test_<model>.py) to use all the functionality the interface will include.

	Edit the device interface (spacq/devices/<manufacturer>/<model>.py) until all the server tests pass.

	Edit the mock implementation (spacq/devices/<manufacturer>/<model>.py) until all the mock tests pass.

	Add the new model module and mock model module to the models and mock_models lists, respectively, in the manufacturer directory __init__.py, as well as to the import lines.

Warning

Ensure that both lists have the same length. None is an acceptable value in either list if that implementation is not available.

Footnotes

	[2]	They are referred to as “server” tests because they have an external dependency (the hardware device) which acts roughly as a server to which the tests connect.

Synchronization

To allow for consistent state while performing device commands, each device contains a re-entrant lock. Every read and write operation acquires this lock; thus, multiple reads and writes are mutually excluded. In order to provide a similar mechanism for user-defined methods, the spacq.tool.box.Synchronized decorator can be used. This decorator will acquire the device lock, ensuring that other concurrently-executing threads cannot do the same, and that the atomicity of the decorated method is guaranteed for a given device instance.

Graphical configuration

In the case that a device requires a graphical configuration panel, one can be added in the form of a non-modal wxPython dialog (inherited from Dialog). The dialog should reside in spacq/devices/<manufacturer>/gui/<model>.py, and its constructor must take the following arguments, in order:

	The parent window.

	The global store.

	The device name as used in the global store.

The latter two values allow the dialog to find a reference to the device object itself.

In order to announce that a GUI configuration panel is available, the device class (child of AbstractDevice) must have a _gui_setup property which follows the following template:

@property
def _gui_setup(self):
 try:
 from .gui.model import ModelSettingsDialog

 return ModelSettingsDialog
 except ImportError as e:
 log.debug('Could not load GUI setup for device "{0}": {1}'.format(self.name, str(e)))

 return None

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	Developer’s Guide

 	Packages

 	Devices

Tektronix AWG5014B

The implementation for the Tektronix AWG5014B arbitrary waveform generator is spacq.devices.tektronix.awg5014b.AWG5014B.

The following examples assume awg = AWG5014B(...).

Run modes

The currently-supported run modes are “continuous” (awg.run_mode = 'continuous') and “triggered” (awg.run_mode = 'triggered'). In “continuous” mode, the device will output all the waveforms on the enabled channels until stopped. In “triggered” mode, the device will output all the waveforms on the enabled channels once each time it is triggered (awg.trigger()).

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	Developer’s Guide

 	Packages

 	Devices

Tektronix DPO7104

The implementation for the Tektronix DPO7104 oscilloscope is spacq.devices.tektronix.dpo7104.DPO7104.

The following examples assume dpo = DPO7104(...).

“FastFrame” mode

In order to allow fast triggering for on-board averaging, the device can be placed into “FastFrame” mode (dpo.fastframe = True), which enables memory segmentation. The acquisition memory is split up into the requested number of frames (dpo.fastframe_count = 17); this has the negative side effect of decreasing the maximum allowed resolution, since all frames share the same acquisition memory.

The final frame must be enabled in either average (dpo.fastframe_sum = 'average') or envelope (dpo.fastframe_sum = 'envelope') mode.

Note

dpo.fastframe_count includes the final frame.

Waveform acquisition

The property spacq.devices.tektronix.dpo7104.Channel.waveform downloads a single frame from the device. If “FastFrame” mode is enabled (regardless of the final frame setting), only the last frame is downloaded.

Extremely large waveforms are downloaded in chunks (the size of which is specified by dpo.max_receive_samples) and are assembled into a single waveform locally.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	Developer’s Guide

 	Packages

GUI

Tools for providing applications with a graphical user interface.

Class hierarchy

The entire GUI framework is built on wxPython, so all widget classes ultimately inherit from a wxPython class, such as wx.Frame, wx.Panel, or wx.Dialog.

The global store provides spacq.gui.global_store.GlobalStore, a container for the spacq-related global state for an entire application. It includes separate namespaces for devices, resources, and variables, as well as a single slot for a pulse program.

The GUI toolbox provides several GUI primitives which appear frequently, such as a spacq.gui.tool.box.MessageDialog and functions for saving and loading Python-pickled and CSV files with a graphical dialog.

File structure

The files are laid out in the same fashion as shown in the Graphical user interface section of the User’s Guide: they are first sorted based on the fundamental type of widget described in the file. Within that, some widgets may be classified futher to restrict them to their own namespace. For example, the plots are found in spacq/gui/display/plot/ rather than just in spacq/gui/display/.

An attempt has been made to keep as much logic as possible out of the GUI code. For example, spacq.gui.action.data_capture.DataCaptureDialog only handles the progress widget, user interaction, and error messages; however, it inherits from spacq.iteration.sweep.SweepController, which handles all the sweep logic. The former is not easily testable, but the latter is tested in spacq.iteration.tests.test_sweep.SweepControllerTest.

Conventions

Dialogs

It is recommended to use spacq.gui.tool.box.Dialog rather than wx.Dialog directly, in order to simplify disposal. An explanation for the behaviour of wx.Dialog exists in the wxWidgets documentation [http://docs.wxwidgets.org/2.8/wx_windowdeletionoverview.html] under “Window deletion overview”.

All dialogs should be modeless in order to allow the user to interact with several parts of an application simultaneously. It is often necessary to leave a dialog open and switch contexts to another part of the program; that is impossible to achieve with modal dialogs.

Messaging

Due to GUI programming’s asynchronous, event-driven nature, it may be difficult to ensure that different parts of a GUI application can communicate with each other in a timely manner. Two methods are utilized for messaging: callbacks and a pub-sub framework.

Callbacks

For uni-directional, ad-hoc communication, callbacks are a simple and obvious choice. Thus, they are used extensively in the GUI code.

For example, let us examine the common case that a dialog is launched and an action is required when the user clicks the OK button. The dialog needs to provide the usual setup for the OK button event handling:

def __init__(self, parent, ..., *args, **kwargs):
 ...
 self.Bind(wx.EVT_BUTTON, self.OnOk, ok_button)
 ...

However, the OnOk method cannot contain any logic of its own, since the dialog does not know in which context it was called. All that needs to happen in the event handler is a call to the callback:

def OnOk(self, evt=None):
 if self.ok_callback(self):
 self.Destroy()

where the ok_callback attribute is either set by __init__ or afterwards by the caller. This structure allows the dialog to know whether to exit (depending on the result of the callback), but does not require it to know what happens when the button is pressed.

The event handler logic comes from whoever creates the dialog. For example:

def OnAction(self, evt=None):
 var = ...

 def ok_callback(dlg):
 try:
 values = dlg.GetValue()
 except ValueError as e:
 MessageDialog(self, str(e), 'Invalid value').Show()
 return False

 var.a, var.b = values

 return True

 dlg = SomeDialog(self, ok_callback)
 dlg.SetValue(var.a, var.b)
 dlg.Show()

Tip

As in the above example, most callbacks make use of the lexical closures that Python provides for nested functions, reducing the number of arguments that need to be passed between GUI objects.

Pub-sub

A publish-subscribe framework is used for events which must be broadcast to multiple listeners.

For example, the Data capture panel and dialog send out data_capture.start, data_capture.data, and data_capture.stop messages to the global publisher to indicate to anybody who may be listening (there may be zero or more listeners) that certain resources are being acquired. The Measurement configuration frames listen to whichever resource they are configured, and act accordingly when messages are received.

Subscriptions are made with a call to subscribe:

pub.subscribe(self.msg_data_capture_start, 'data_capture.start')

Messages are sent with a call to sendMessage:

pub.sendMessage('data_capture.start', name=name)

Warning

Since the methods associated with the subsciptions for the given topic are run in the same thread as the call to sendMessage, it is necessary to ensure thread safety when the subscriber may perform GUI actions.

The handler must therefore have parameters which match the message being sent:

def msg_data_capture_start(self, name):
 ...

Thread safety

When performing an action which affects the GUI in another thread, it is crucial to use wx.CallAfter. Peforming the action directly, as in:

self.display_label.SetValue('value')

will cause the GUI event loop to break non-deterministically; depending on the frequency of such calls, the app may freeze or crash within a short time, or may not do so at all. To avoid this, the above example would be rewritten as:

wx.CallAfter(self.display_label.SetValue, 'value')

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	Developer’s Guide

 	Packages

Interface

The interface package contains code for both user-interface and code-interface purposes.

Pulse programs

The code for dealing with pulse programs is composed of:

	a parser (spacq.interface.pulse.parser.Parser),

	an AST (spacq.interface.pulse.tree.ASTNode),

	an environment (spacq.interface.pulse.tree.Environment), and

	a presentation wrapper (spacq.interface.pulse.program.Program).

The details of pulse program handling are hidden behind the Program interface, which handles every step of a pulse program’s life cycle from parsing to execution.

When presented with the textual representation of a pulse program, the parser does its best to tranform it into an abstract syntax tree; if it cannot do so, it raises a spacq.interface.pulse.paser.PulseSyntaxError.

Once an AST is obtained, an empty Environment is created. The nodes of the AST are then visited with the Environment over several stages. These stages are:

	declarations:
	Populate the environment with the variable declarations.

	Verify that the declarations make sense.

	values:
	Populate the environment with the value assignments.

	Verify that the assigned values match the declared variables.

	commands:
	Verify that all the commands make sense given the collected declarations and values.

	waveforms:
	Based on all the collected information, generate the output waveforms.

Warning

The order of the stages must be preserved, since each stage makes the assumption that previous stages have been executed.

Resources

Resource

spacq.interface.resources.Resource is a generic resource with a getter and a setter, each of which can perform arbitrary code in order to get or set a value.

If a resource has units, all operations dealing with the value of the resource should use matching units. In particular, setting the value of a resource with a value whose units do not match those of the resource will raise a TypeError. The display units of a resource, however, have no impact on its values; the display units only affect the value displayed alongside the resource.

If a converter is supplied for a resource, the converter is used to transform user input (textual strings) into the valid type for the resource. Typical converters include float and spacq.devices.tools.str_to_bool. If a resource has units, the user input is automatically converted into a spacq.interface.units.Quantity; supplying a converter overrides this behaviour.

A resource may be wrapped with arbitrarily many wrappers. Wrapping and unwrapping are both non-destructive: the original resource is always unmodified, and a new Resource instance is created. For both getting and setting values, the getter and setter filters are applied in the same order they were added, excluding those which have been removed.

Acquisition Thread

spacq.interface.resources.AcquisitionThread is a threaded wrapper around a resource that allows the value of the resource to be fetched at regular intervals. This is particularly useful for live plots which show historical data.

In order to pause the acquisition, running_lock should be acquired from another thread (if no running lock is passed to __init__, pausing is disallowed); to resume, running_lock should be released. In order to stop the thread, done should be set to True.

Units

SIValues

spacq.interface.units.SIValues is a container for all SI prefixes (from 10-24 to 1024), all SI base units, and a selection of SI derived units.

Quantity

spacq.interface.units.Quantity is a wrapper around the Python package “quantities”. It is used internally (to communicate quantities between objects) and externally (allowing the user to enter arbitrary quantities).

Note

Rather than exposing the quantities.Quantity interface, spacq.interface.units.Quantity defines its own interface and uses a subset of the quantities.Quantity interface internally. Thus, spacq.interface.units.Quantity is not a drop-in substitude for quantities.Quantity.

Waveform generation

spacq.interface.waveform.Generator provides a mechanism for generating spacq.interface.waveform.Waveform objects. Each Generator will generate a single waveform as its methods are called; after the waveform is complete, it can be obtained via the waveform attribute.

Note

All values should be normalized to the interval [-1.0, 1.0].

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Spanish Acquisition 1.0.3 documentation

 	Developer’s Guide

 	Packages

Iteration

Tools for iterating; the core of the logic behind sweeping.

File structure

The package consists of only two modules: spacq.iteration.sweep which contains SweepController, and spacq.iteration.variables which defines input and output variables. Together, these modules can be used to provide iteration over a set of variables.

Sweeping

spacq.iteration.sweep.SweepController goes through a process of several stages, as crudely drawn in its docstring:

init -> next -> transition -> write -> dwell -> pulse -> read -> ramp_down -> end
^ ^ |_____________^ | |
| |___| |
|__|

The ordering is approximately linear, but with some loops and skips:

	If no pulse program is defined, the pulse stage is skipped.

	If more items remain to be iterated over, read heads to next.

	If the sweep is continuous, ramp_down restarts it instead of finishing it.

Those steps which deal with accessing resources (transition, write, read, ramp_down) do so in parallel, using as many concurrent threading.Thread objects as necessary.

The sweeping process can be interrupted at any time for many reasons; some of these include: user error, device error, and the user pressing the “Cancel” button. In the case that it is interrupted, the sweep simply proceeds to either the ramp_down or the end stage, depending on whether the interruption is fatal. In the case of a fatal interruption, the ramp_down stage cannot be expected to succeed (for example, if writing to a resource failed), so it is skipped.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 Navigation

 	
 previous

 	Spanish Acquisition 1.0.3 documentation

 	Developer’s Guide

Pulse program execution

This section describes the execution of pulse programs on the AWG and oscilloscope.

See also

Pulse programs

Device initialization

When a sweep begins, the method spacq.iteration.sweep.SweepController.init() is run, which performs several steps, one of which is device initialization. At this point, if a pulse program has been configured, the AWG is disabled and placed into “triggered” mode, and its sampling rate is set to that of the pulse program.

Device utilization

If a pulse program is configured, the method spacq.iteration.sweep.SweepController.pulse() is called by dwell(). If no output channels have been configured for the AWG (ie. no waveform outputs have been mapped to AWG channels), this stage does nothing. Otherwise, the following sequence of events occurs:

	The waveforms are generated using the latest values written to the pulse program resources.

	The AWG is configured:

	It is disabled, and its channels are cleared of waveforms.

	Each output channel has its waveform loaded.

	All used channels are enabled.

	The AWG itself is enabled.

	The oscilloscope is configured:

	It is disabled.

	If averaging has been requested, it is placed into “FastFrame” mode with an average summary frame. Otherwise, “FastFrame” mode is disabled.

	It is put into single sequence mode.

	Execution pauses until the AWG and oscilloscope have both completed carrying out the above steps.

	The oscilloscope is enabled and a delay of 1 s occurs to allow the oscilloscope trigger to ready.

Note

The oscilloscope cannot be enabled as part of the above configuration process because the setup procedure of the AWG may trigger the acquisition of an invalid waveform.

	The trigger loop is executed the specified number of times (“times to average”):

	The AWG is triggered.

	Execution pauses until the trigger event has executed.

	The “post-trigger delay” is waited.

	Execution pauses until the oscilloscope has finished capturing. This includes performing the averaging if in “FastFrame” mode.

	The number of acquired frames is verified.

 Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

 _images/measurement_config_scaling.png
Scaling settings

Linear scale: (1.00000 B
Offset: [0.00000 <

[ok | concel |

_images/measurement_config_list_settings.png
Plot settings X

Capture
Line:

_images/variable_config_editor.png
(Type

O Float™ O Integer

_images/data_capture_panel.png
Export
Boectory [fmpracauisitions @) [_srowse |

£ Continuous | | Last output: [fmp/acqUisiions/2011.08.15 13 21 02.65v_(5))

@

_images/data_explorer_menu.png
2011-08-12_16-16-27.csv - Data Explorer

Eile [] Help

__tim irtout (v) _Pulses (v) portin (v)
1024 Curve 5 [(0.0, 0.097695887693598937), (1.00100... -0.0100000064 (]
1.300 875 [(0.0, -0.097619592584115455), (1.00100... -0.0100000128
1605 25 [(0.0, 0.11768520637827118), (1.001001... -0.0100000256
Colormapped.
1876 625 [(0.0, -0.077782864118410178), (1.00100... -0.0100000512
2145 Surface.) [(0.0, 0.039330128938734887), (1.00100... -0.0100001024
4.211 0 [(0.0, -0.13660639353017467), (1.001001... -0.0100002048
4523 waveforms. 575 [(0.0, -0.059014267185473201), (1.00100... -0.0100004096
4788892 3.0 375 [(0.0, -0.078088044556344105), (1.00100... -0.0100008192
5.056252... 3.0 3125 [(0.0, 0.019569695582513091), (1.00100... -0.0100016384
5353702 3.0 25 [(0.0, 0.097467002365148492), (1.00100... -0.0100032768
5.627074.. 3.0 1875 [(0.0, 0.13630121309224075), (1.001001... -0.0100065536
5.914947.. 3.0 125 [(0.0, 0.097543297474631974), (1.00100... -0.0100131072
6195745 3.0 -0.625 [(0.0, 0.059166857404440165), (1.00100... -0.0100262144
6.505591.. 3.0 00 [(0.0, 0.038643472953383551), (1.00100... -0.0100524288
8.584794.. 5.0 5.0 [(0.0, 0.019569695582513091), (1.00100... -0.0101048576
8903115.. 5.0 -4.375 [(0.0, -0.05855649652857231), (1.001001... -0.0102097152
9.252435.. 5.0 375 [(0.0, -0.13637750820172423), (1.001001... -0.0104194304
9.560255... 5.0 3125 [(0.0, 0.019264515144579164), (1.00100... -0.0108388608
9.883959... 5.0 25 [(0.0, 0.039177538719767924), (1.00100... -0.0116777216
10.24573.. 5.0 1875 [(0.0, 0.11715114061188681), (1.001001... -0.0133554432

10.59684... 5.0 125 [(0.0, -0.018959334706645237), (1.00100... -0.0167108864

_images/device_config_list.png
Name +

Magnet power supply
Multimeter

Voltage source

@

Device Configuration

Connection
Connected
Disconnected
Connected

@

G aw |

Setup

Setup.

®

Remove

Status
Setting field to 50 mT

idle

@

_images/pulse_programs_single.png
08

06

04

02

Waveform

20 40
ns

Y

£

_static/comment-close.png

search.html

 Navigation

 		Spanish Acquisition 1.0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Dmitri Iouchtchenko.
 Created using Sphinx 1.2.2.

_static/up.png

_static/comment.png

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_images/two_dimensional.png
portin (V)

0015

00

0025

003

0035

portin (V) vs _time_ (s)

2 4

3
_time__ (s)

10

_images/pulse_programs_multiple_02.png
Waveform

05

15

10 20 30
ns

40

50

_static/down-pressed.png

_images/measurement_config_scalar.png
New measurement 1 (mm reading)

Resource name:

3 =

@ Measurement name:

Scalin ‘

@

2

13

®

B

a
a8
s
- LR
Time (s)
Control @
)| | R] [Reset |

_static/minus.png

_images/measurement_config_list.png

_images/table_filter_list.png
Time (s): x > 6.0
field (mT). 30

add | Remove

_images/pulse_programs_multiple_01.png
08

07

06

0s

04

03

02

01

Waveform

10

20

ns

30

40

50

_images/variable_config_list.png
Name # * Resource

@ gate 1 1w
@ gate 2 1w
O gate 3 1 v
@ gate 4 1
@ magnetic field 2 mfield [1,2,3,4,51mT 2s o oo

o @ [O0] ® ® @

_images/surface_normal.png
port in (V) vs (field (mT), port out (V))

_images/device_config_resources.png
Resources

Connection

@ 0O @

Name () R W Units Label Value
acquisition_mode R oW sample
~ channell
enabled () R oW True
waveform RV oscl N/l
~ channel2
enabled Row False
waveform ROV N/l
b channel
b channeld
sample_rate R oW Hz le+l0Hz
time_scale RWs 1e-075
ok | cancel | [save.. | Load..

_images/table.png
_time__(s) field (mT) port out (V)

1.024776.
1.300688.
1.605982.
1.876083.
2.145252.
4.211317.
4.523829
4.788892.
5.056252.

10
10
10
10
10
30
30
30
3.0

25
1875
125
-0.625
0.0
5.0
4375
375
3125

Pulses (V)

[(0.0, 0.097695887693598937), (1.00100.
[(0.0, -0.097619592584115455), (1.00100.
[(0.0, 0.11768520637827118), (1.001001
[(0.0, -0.077782864118410178), (1.00100.
[(0.0, 0.039330128938734887), (1.00100.
[(0.0, -0.13660639353017467), (1.001001.
[(0.0, -0.059014267185473201), (1.00100.
[(0.0, -0.078088044556344105), (1.00100.
[(0.0, 0.019569695582513091), (1.00100.

portin (V)
-0.0100000064
-0.0100000128
-0.0100000256
-0.0100000512
-0.0100001024
-0.0100002048
-0.0100004096
-0.0100008192
-0.0100016384

_images/pulse_programs_acquisition.png
markered

Waveform
025

02

015

01

005

ns

Marker 2

_images/table_filter_editor.png

_images/smooth_reset_panel.png

_static/down.png

_static/ajax-loader.gif

_images/acquisition_acquiring.png
(] Pulses (osc ch2)

Resource name:
Ccapture
Measurement name:

Ccapture

port in (mm rea

Measurement name:

e [58Y

num bumps (5
magnetic field (4 mT.
gate1 [BV
gatea [5V
[Fo010629 v

[£(0.0, -0.0191119249256122), (1.001001001001001e-1

[Continuous

o S R 0s O o0
[add | gemove | [save.. | Load..
Smooth reset—
Capture Export To zero
start Directory: [ftmp/acquisitions][Browse | e

st oot [T

ons/2011-08-17_13-18-50.csv

]

_images/device_config_connection.png
Connection | Resources

Addres:

O Ethernet

© uss

USB resource:

Implementation
2 | oro7108

“ Tektronix

conn

oK

| corcel] [[saver.][o

_images/pulse_program_config_acquisition.png
Acquisition | Delays‘ Inlegers‘ outpuxs‘ Pulses‘

marker_num 1

output (L

Times to average (16

Post-trigger delay (100 us

_images/surface_waveform.png
Pulses (V) vs (Waveform (s), History)

B
&
s
2

_images/data_capture_sweep.png
Sweeping...

o (I ©

(Waiting for resources to settle

S

gate 2
magnetic field

gate 1
gate 4

i
@

Pulses

Fev

B

Gnv

Gav

[ootsasv

)

[£(0.0, 0.097924773022049383), (1.001001001001001e- |

Elapsed time: 0:00:11 (5)

() O Last loop of continuous sweep
[cancel |@

_images/colormapped_hilighted.png
B portin (V) vs (field (mT), port out (V))

s oo

1152253 35 4455
field (mT)

Min: [1.0010e-02 | Max: [-1.0000e-02

_images/pulse_program_config_delays.png
Acquisition | Delays | integers | Outputs | Pulses |

Default value Resource label

bump_spacing (100 ns) (

end_delay (10 ns] [end delay

settle | i

_images/pulse_program_config_outputs.png
Acquisilion‘ Delays‘ Inlegels‘ Outputs ‘ p..|ses‘

CaE

all

sampling rate (1 GHz

A (GG

Oscilloscope [osc

_images/colormapped_normal.png
i portin (V) vs (field (mT), port out (V))

.

s

1152253 35 4455

field (mT)

Min: [3.6844-02 | Max: [-1.0000e-02

_images/measurement_config_scalar_settings.png
Plot settings

Enabled

Capture

Delay (s): [0.20 Bl

Autofit
Conversion —

Points Exp. scale: (0.00 B
Units

Relative O Absolute|| | Fros

