

 Navigation

 	
 index

 	sostore 0.4 documentation

Documentation for sostore

sostore, or the SQLite Object Store, is a straightforward storage engine
for storing and retrieving dictionaries from an SQLite database. Much of
the terminology is taken from MongoDB as this engine was originally
designed to replace a PyMongo implementation.

This library may seem trivial because it very much is. However, some
others may need a super-lightweight dictionary store. Linking of
objects within the database is not supported unless explicitly handled
by the developer.

sostore is almost certainly not performant. It can be thread-safe as
long as Collection objects aren’t passed around between threads as they
contain sqlite3.Connection objects.

Requirements

sostore should work with Python 2.6 and higher, including Python 3.x.
Because it uses only SQLite, there are no further requirements.

Using sostore

sostore works with Collection objects for storing and retrieving
dictionaries. A Collection is instantiated in the following
manner:

>>> import sostore
>>> collection = sostore.Collection("peoples")
>>>

The above will instantiate an in-memory connection. For a more
permanent solution, the database (a file on disk) can alternatively
be specified:

>>> import sostore
>>> collection = sostore.Collection("peoples", db="balance.db")
>>>

Because sostore uses SQLite as a backend, you can also specify an
existing connection to an SQLite database rather than a database
name:

>>> import sostore
>>> import sqlite3
>>> con = sqlite3.connect(":memory:")
>>> collection = sostore.Collection("peoples", connection=con)
>>>

The above can be useful for reusing database connections. Note,
however, that connections (for SQLite at least) cannot be shared
across threads.

Finally, the database’s dictionary identifiers are normally chosen
by SQLite’s automatic, sequential assignment mechanism. Alternatively,
you can specify random identifiers (non-sequential) if necessary:

>>> import sostore
>>> collection = sostore.Collection("peoples", randomized=True)
>>>

Inserting

Inserting a dictionary into a collection is relatively simple. All
ids of dictionaries are automatically generated.

>>> import sostore
>>> collection = sostore.Collection("peoples")
>>> d = {"name": "Margaux LaFleur", "hair color":"black"}
>>> d = collection.insert(d)
>>>

The returned dictionary will have a new key/value pair with the key
_id. Depending on options passed into the Collection constructor,
the _id is either sequentially chosen by SQLite or randomly selected.

Dictionaries can be inserted once and only once. If a dictionary has
already been inserted, a ValueError will be thrown.

Retrieval

If an id of a dictionary is known, retrieval is rather simple:

>>> d = collection.get(1)
>>> print(d)
{'_id': 1, 'name': 'Margaux LaFleur', 'hair color': 'black'}
>>>

If an id doesn’t exist in the database, this method will simply
return None without any errors.

Multiple dictionaries can be retrieved in one call via a list of
ids:

>>> a = collection.get_many((1, 2))
>>> print(a)
[{'_id': 1, 'name': 'Margaux LaFleur', 'hair color': 'black'}, {'_id': 2, 'name': 'Henry McCallum'}]
>>>

The fields returned can be restricted when retrieving multiple
dictionaries if desired:

>>> a = collection.get_many((1, 2), fields=('name',))
>>> print(a)
[{'_id': 1, 'name': 'Margaux LaFleur'}, {'_id': 2, 'name': 'Henry McCallum'}]
>>>

All dictionaries can also be retrieved if desired:

>>> d = collection.all()
>>> print(d)
[{'_id': 1, 'name': 'Margaux LaFleur', 'hair color': 'black'}, {'_id': 2, 'name': 'Henry McCallum'}]
>>>

Similarly, the fields can be restricted in this call as well:

>>> d = collection.all(fields=('name',))
>>> print(d)
[{'_id': 1, 'name': 'Margaux LaFleur'}, {'_id': 2, 'name': 'Henry McCallum'}]
>>>

Retrieval by Field

A dictionary can also be retrieved by a known field. The find_one
method accepts a key and a value for which to search, returning the
first matching dictionary or None if no matches exist:

>>> d = collection.find_one("name", "Margaux LaFleur")
>>> print(d)
{'_id': 1, 'name': 'Margaux LaFleur', 'hair color': 'black'}
>>> d = collection.find_one("occupation", "magician")
>>> print(d)
None
>>>

Because the dictionaries are schemaless, keys that don’t exist in any
dictionary can be searched for without errors being thrown.

Similarly, the find method performs a similar, but it returns an array
of matching dictionaries:

>>> d = collection.find("name", "Margaux LaFleur")
>>> print(d)
[{'_id': 1, 'name': 'Margaux LaFleur', 'hair color': 'black'}]
>>>

Finally, in either find method, you may restrict the fields returned. For
example. if only the name is of interest, the following command can be used:

>>> d = collection.find_one("name", "Margaux LaFleur", fields=('hair color',))
>>> print(d)
{'_id': 1, 'hair color': 'black'}
>>>

Random Retrieval

In some specific cases, it may be advantageous to retreive a random entry
or entries from a collection. To retrieve one random entry, simply call:

>>> d = collection.random_entry()
>>> print(d)
{'_id': 7, 'name': 'Erin', 'magic': False}
>>>

Multiple random entries can be retrieved in a list as well:

>>> d = collection.random_entries(count=2)
>>> print(d)
[{'_id': 7, 'name': 'Erin', 'magic': False}, {'_id':13, 'name': 'Stephen', 'occupation': 'inn keeper'}]
>>>

Updating

Existing stored dictionaries can be easily updated. In the example below, a
dictionary is retrieved, a field is added, and the stored dictionary is
updated:

>>> d = collection.get(1)
>>> d['occupation'] = "witch"
>>> collection.update(d)
>>>

If a dictionary has not yet been stored, the method will raise a ValueError.

Cleanup

Once work with a Collection is complete, the done method should be called
to close any SQLite connections if necessary.

>>> collection.done()
>>>

If a connection was specified in the constructor rather than a database name, this
method will close the connection regardless. It performs no other tasks at this
time.

Behind the Scenes

sostore uses a ridiculously simple and naive backend. Each Collection
the user creates generates a new table in the database with the name of
that Collection as the name of the table. The table will have two
columns, “_id” and “_data.” The names of these columns, however, are
not particularly important to the user.

The “_id” column is an auto-incrementing primary key (unless a random id
setting is enabled). The “_data” column is a text blob that contains
the JSON-ified Python dictionary to be stored without the _id key.
The “_id” key is always removed on store and added back into the
dictionary upon retrieval to ensure consistency.

The SQLite commands within this library use safe prepare statements and,
therefore, can be assumed safe from SQLite injection attacks. However,
the Collection names are not safe. You should not allow dirty
Collection names to be specified under any circumstance.

That’s about all there is to it.

Licensing

sostore is Copyright (C) 2013 Jeffrey Armstrong, and the software is
licensed under the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Jeffrey Armstrong.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	sostore 0.4 documentation

Index

 Copyright 2013, Jeffrey Armstrong.
 Created using Sphinx 1.2.2.

 _static/up.png

_static/comment-bright.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		sostore 0.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Jeffrey Armstrong.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

