

    
      
          
            
  
sorl-thumbnail’s documentation

Contents:



	Examples
	Template examples

	Model examples

	Admin examples

	Low level API examples





	Installation & Setup
	Installation

	Setup





	Requirements
	Base requirements

	Key Value Store

	Image Library





	Template tags and filters
	thumbnail

	is_portrait

	margin

	resolution





	Management commands
	thumbnail cleanup

	thumbnail clear

	thumbnail clear_delete_referenced

	thumbnail clear_delete_all





	Errors & Logging
	Background

	How to setup logging





	How sorl-thumbnail operates

	Reference
	ImageFile

	Settings





	Contributing
	Running testsuit

	Sending pull requests










Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Examples


Template examples

All of the examples assume that you first load the thumbnail template tag in
your template:

{% load thumbnail %}





Simple:

{% thumbnail item.image "100x100" crop="center" as im %}
    <img src="{{ im.url }}" width="{{ im.width }}" height="{{ im.height }}">
{% endthumbnail %}





Crop using margin filter, x, y aliases:

{% thumbnail item.image "100x700" as im %}
    <img style="margin:{{ im|margin:"100x700" }}" src="{{ im.url }}" width="{{ im.x }}" height="{{ im.y }}">
{% endthumbnail %}





Using external images and advanced cropping:

{% thumbnail "http://www.aino.se/media/i/logo.png" "40x40" crop="80% top" as im %}
    <img src="{{ im.url }}">
{% endthumbnail %}





Using the empty feature, the empty section is rendered when the source is
resolved to an empty value or an invalid image source, you can think of it as
rendering when the thumbnail becomes undefined:

{% thumbnail item.image my_size_string crop="left" as im %}
    <img src="{{ im.url }}">
{% empty %}
    <p>No image</p>
{% endthumbnail %}





Nesting tags and setting size (geometry) for width only:

{% thumbnail item.image "1000" as big %}
    {% thumbnail item.image "50x50" crop="center" as small %}
        <a href="{{ big.url}}" title="look ma!"><img src="{{ small.url }}"></a>
    {% endthumbnail %}
{% endthumbnail %}





Setting geometry for height only:

{% thumbnail item.image "x300" as im %}
    <img src="{{ im.url }}">
{% endthumbnail %}





Setting format and using the is_portrait filter:

{% if item.image|is_portrait %}
    <div class="portrait">
    {% thumbnail item.image "100" crop="10px 10px" format="PNG" as im %}
        <img src="{{ im.url }}">
    {% endthumbnail %}
    </div>
{% else %}
    <div class="landscape">
    {% thumbnail item.image "50" crop="bottom" format="PNG" as im %}
        <img src="{{ im.url }}">
    {% endthumbnail %}
    </div>
    <div>
        <p>Undefined behaviour</p>
    </div>
{% endif %}





Using HTML filter:

{{ text|html_thumbnails }}





Using markdown filter:

{{ text|markdown_thumbnails }}







Model examples

Using the ImageField that automatically deletes references to itself in the key
value store and its thumbnail references when deleted:

from django.db import models
from sorl.thumbnail import ImageField

class Item(models.Model):
    image = ImageField(upload_to='whatever')






Note

You do not need to use the sorl.thumbnail.ImageField to use
sorl.thumbnail. The standard django.db.models.ImageField is fine
except that using the sorl.thumbnail.ImageField lets you plugin the
nice admin addition explained in the next section.



Another example on how to use sorl.thumbnail.ImageField in your existing
project with only small code changes:

# util/models.py
from django.db.models import *
from sorl.thumbnail import ImageField

# myapp/models.py
from util import models

class MyModel(models.Model):
    logo = ImageField(upload_to='/dev/null')







Admin examples

Recommended usage using sorl.thumbnail.admin.AdminImageMixin (note that this requires use of sorl.thumbnail.ImageField in your models as explained above):

# myapp/admin.py
from django.contrib import admin
from myapp.models import MyModel
from sorl.thumbnail.admin import AdminImageMixin

class MyModelAdmin(AdminImageMixin, admin.ModelAdmin):
    pass





And the same thing For inlines:

# myapp/admin.py
from django.contrib import admin
from myapp.models import MyModel, MyInlineModel
from sorl.thumbnail.admin import AdminImageMixin

class MyInlineModelAdmin(AdminImageMixin, admin.TabularInline):
    model = MyInlineModel

class MyModelAdmin(admin.ModelAdmin):
    inlines = [MyInlineModelAdmin]





Easy to plugin solution example with little code to change:

# util/admin.py
from django.contrib.admin import *
from sorl.thumbnail.admin import AdminImageMixin

class ModelAdmin(AdminImageMixin, ModelAdmin):
    pass

class TabularInline(AdminImageMixin, TabularInline):
    pass

class StackedInline(AdminImageMixin, StackedInline):
    pass

# myapp/admin.py
from util import admin
from myapp.models import MyModel

class MyModelAdmin(admin.ModelAdmin):
    pass







Low level API examples

How to get make a thumbnail in your python code:

from sorl.thumbnail import get_thumbnail

im = get_thumbnail(my_file, '100x100', crop='center', quality=99)





How to delete a file, its thumbnails as well as references in the Key Value
Store:

from sorl.thumbnail import delete

delete(my_file)









          

      

      

    

  

    
      
          
            
  
Installation & Setup


Installation

First you need to make sure to read the Requirements. To install
sorl-thumbnail is easy:

pip install sorl-thumbnail





Or you can go to the github page [https://github.com/sorl/sorl-thumbnail]



Setup


	Add sorl.thumbnail to your settings.INSTALLED_APPS.


	Configure your settings


	If you are using the cached database key value store you need to sync the
database:

python manage.py migrate













          

      

      

    

  

    
      
          
            
  
Requirements


Base requirements


	Python [http://www.python.org/] 3.6+


	Django [http://www.djangoproject.com/]


	Key Value Store


	Image Library






Key Value Store

sorl-thumbnail needs a Key Value Store for its operation. You can choose between
a cached database which requires no special installation to your normal
Django setup besides installing a proper cache like memcached or you can
setup redis which requires a little bit more work.


Cached DB

All you need to use the cached database key value store is a database and cache [http://docs.djangoproject.com/en/dev/topics/cache/] setup properly using
memcached. This cache needs to be really fast so using anything else than
memcached is not recomended.



Redis

Redis is a fast key value store also suited for the job. To use the redis [http://code.google.com/p/redis/] key
value store you first need to install the redis server [http://code.google.com/p/redis/].  After that install the redis client [https://github.com/andymccurdy/redis-py/]:

pip install redis








Image Library

You need to have an image library installed. sorl-thumbnail ships with support
for Python Imaging Library [http://www.pythonware.com/products/pil/], pgmagick [http://bitbucket.org/hhatto/pgmagick/src], ImageMagick [http://imagemagick.com/] (or GraphicsMagick)
command line tools. pgmagick [http://bitbucket.org/hhatto/pgmagick/src] are python bindings for GraphicsMagick [http://www.graphicsmagick.org/]
(Magick++)`,

The ImageMagick [http://imagemagick.com/] based engine sorl.thumbnail.engines.convert_engine.Engine
by default calls convert and identify shell commands. You can change the
paths to these tools by setting THUMBNAIL_CONVERT and THUMBNAIL_IDENTIFY
respectively.  Note that you need to change these to use GraphicsMagick [http://www.graphicsmagick.org/] to
/path/to/gm convert and /path/to/gm identify.


Python Imaging Library installation

Prerequisites:


	libjpeg


	zlib




Ubuntu 10.04 package installation:

sudo apt-get install libjpeg62 libjpeg62-dev zlib1g-dev





Installing Python Imaging Library [http://www.pythonware.com/products/pil/] using pip:

pip install Pillow





Watch the output for messages on what support got compiled in, you at least
want to see the following:

--- JPEG support available
--- ZLIB (PNG/ZIP) support available







pgmagick installation

Prerequisites:


	GraphicsMagick


	Boost.Python




Ubuntu 10.04 package installation:

sudo apt-get install libgraphicsmagick++-dev
sudo apt-get install libboost-python1.40-dev





Fedora installation:

yum install GraphicsMagick-c++-devel
yum install boost-devel





Installing pgmagick [http://bitbucket.org/hhatto/pgmagick/src] using pip:

pip install pgmagick







ImageMagick installation

Ubuntu 10.04 package installation:

sudo apt-get install imagemagick





Or if you prefer GraphicsMagick [http://www.graphicsmagick.org/]:

sudo apt-get install graphicsmagick







Wand installation

Ubuntu installation:

apt-get install libmagickwand-dev
pip install Wand










          

      

      

    

  

    
      
          
            
  
Template tags and filters

Sorl-thumbnail comes with one template tag thumbnail and three filters:
is_portrait, margin and resolution. To use any of them in you
templates you first need to load them:

{% load thumbnail %}






thumbnail

Syntax:

{% thumbnail source geometry [key1=value1, key2=value2...] as var %}
{% endthumbnail %}





Alternative syntax using empty:

{% thumbnail source geometry [key1=value1, key2=value2...] as var %}
{% empty %}
{% endthumbnail %}





The {% empty %} section is rendered if the thumbnail source is resolved to
an empty value or an invalid image source, you can think of it as rendering
when the thumbnail becomes undefined.


Source

Source can be an ImageField, FileField, a file name (assuming default_storage),
a url. What we need to know is name and storage, see how ImageFile figures
these things out:

from django.utils.encoding import force_str

class ImageFile(BaseImageFile):
    _size = None

    def __init__(self, file_, storage=None):
        if not file_:
            raise ThumbnailError('File is empty.')
        # figure out name
        if hasattr(file_, 'name'):
            self.name = file_.name
        else:
            self.name = force_str(file_)
        # figure out storage
        if storage is not None:
            self.storage = storage
        elif hasattr(file_, 'storage'):
            self.storage = file_.storage
        elif url_pat.match(self.name):
            self.storage = UrlStorage()
        else:
            self.storage = default_storage







Geometry

Geometry is specified as widthxheight, width or xheight.
Width and height are in pixels. Geometry can either be a string or resolve
into a valid geometry string. Examples:

{% thumbnail item.image "200x100" as im %}
    <img src="{{ im.url }}">
{% endthumbnail %}

{% thumbnail item.image "200" as im %}
    <img src="{{ im.url }}">
{% endthumbnail %}

{% thumbnail item.image "x100" as im %}
    <img src="{{ im.url }}">
{% endthumbnail %}

{% thumbnail item.image geometry as im %}
    <img src="{{ im.url }}">
{% endthumbnail %}





If width and height are given the image is rescaled to maximum values of height
and width given. Aspect ratio preserved.



Options

Options are passed on to the backend and engine, the backend generates the
thumbnail filename from it and the engine can use it for processing. Option
keys are not resolved in context but values are. Passing all options to the
engine means that you can easily subclass an engine and create new features
like rounded corners or what ever processing you like. The options described
below are how they are used and interpreted in the shipped engines.


cropbox

This option is used to crop to a specific set of coordinates. cropbox takes
x, y, x2, y2 as arguments to crop the image down via those set of coordinates.
Note that cropbox is applied before crop.

img = get_thumbnail(sorl_img, cropbox="{0},{1},{2},{3}".format(
                    x, y, x2, y2))







crop

This option is only used if both width and height is given. Crop behaves much
like css background-position [http://www.w3.org/TR/CSS2/colors.html#propdef-background-position].  The image is first rescaled to minimum values
of height and width given, this will be equivalent to the padding box in the
above text. After it is rescaled it will apply the cropping options. There are
some differences to the css background-position [http://www.w3.org/TR/CSS2/colors.html#propdef-background-position]:


	Only % and px are valid lengths (units)


	noop (No Operation) is a valid option which means there is no
cropping after the initial rescaling to minimum of width and height.




There are many overlapping options here for example center is equivalent to
50%. There is not a problem with that in it self but it is a bit of a
problem if you will for sorl-thumbnail. Sorl-thumbnail will generate a new
thumbnail for every unique source, geometry and options.  This is a design
choice because we want to stay flexible with the options and not interpret them
anywhere else but in the engine methods. In clear words, be consistent in your
cropping options if you don’t want to generate unnecessary thumbnails. In case
you are wondering, sorl-thumbnail sorts the options so the order does not
matter, same options but in different order will generate only one thumbnail.



upscale

Upscale is a boolean and controls if the image can be upscaled or not. For
example if your source is 100x100 and you request a thumbnail of size 200x200
and upscale is False this will return a thumbnail of size 100x100. If upscale
was True this would result in a thumbnail size 200x200 (upscaled). The default
value is True.



quality

Quality is a value between 0-100 and controls the thumbnail write quality.
Default value is 95.



progressive

This controls whether to save jpeg thumbnails as progressive jpegs. Default
value is True.



orientation

This controls whether to orientate the resulting thumbnail with respect to the
source EXIF tags for orientation. Default value is True.



format

This controls the write format and thumbnail extension. Formats supported by
the shipped engines are 'JPEG' and 'PNG'. Default value is 'JPEG'.



colorspace

This controls the resulting thumbnails color space, valid values are: 'RGB'
and 'GRAY'. Default value is 'RGB'.



padding

Padding is a boolean and controls if the image should be padded to fit the
specified geometry.

If your image is 200x100:

{% thumbnail image "100x100" padding=True as im %}





im will be 100x100 with white padding at the top and bottom. The color
of the padding can be controlled with padding_color or the setting
THUMBNAIL_PADDING_COLOR which defaults to #ffffff.

Images are not padded by default, but this can be changed by setting
THUMBNAIL_PADDING to True.



padding_color

This is the color to use for padding the image. It defaults to #ffffff and
can be globally set with the setting THUMBNAIL_PADDING_COLOR.



options

Yes this option is called options. This needs to be a context variable that
resolves to a dictionary. This dictionary can contain multiple options, for
example:

options = {'colorspace': 'GRAY', 'quality': 75, 'crop': 'center'}





You can use this option together with the other options but beware that the
order will matter. As soon as the keyword options is encountered all the
options that have a key in options are overwritten. Similarly, options in
the options dict will be overwritten by options set after the options
keyword argument to the thumbnail tag.





is_portrait

This filter returns True if the image height is larger than the image width.
Examples:

{% thumbnail item.image "100x100" %}
{% if item.image|is_portrait %}
    <div class="portrait">
        <img src="{{ im.url }}">
    </div>
{% else %}
    <div class="landscape">
        <img src="{{ im.url }}">
    </div>
{% endif %}
{% endthumbnail %}

{% if item.image|is_portrait %}
    {% thumbnail item.image "100x200" crop="center" %}
        <img src="{{ im.url }}">
    {% endthumbnail %}
{% else %}
    {% thumbnail item.image "200x100" crop="center" %}
        <img src="{{ im.url }}">
    {% endthumbnail %}
{% endif %}







margin

Margin is a filter for calculating margins against a padding box. For example
lets say you have an image item.image and you want to pad it vertically in
a 1000x1000 box, you would simply write:

<div class="millxmill">
    <img src="{{ item.image.url }}" style="margin:{{ item.image|margin:"1000x1000" }}">
</div>





The above is a rather synthetic example the more common use case is when you want
boxes of images of a certain size but you do not want to crop them:

{% for profile in profiles %}
<div>
    {% thumbnail profile.photo "100x100" as im %}
        <img src="{{ im.url }}" style="margin:{{ im|margin:"100x100" }}">
    {% empty %}
        <img src="ghost100x100.jpg">
    {% endthumbnail %}
</div>
{% enfor %}





The more problematic is to get the top margin, however the margin filter
outputs all values.



resolution

Resolution is a filter for obtaining alternative resolution versions of the
thumbnail.  Your provided resolution must be one of the
THUMBNAIL_ALTERNATIVE_RESOLUTIONS settings values (default: no alternative resolutions)

For example, let’s say you have an image item.image and you want to
get the 2x DPI version of it.  You would simply write:

<div class="millxmill">
    <img src="{{ item.image.url|resolution:"2x" }}">
</div>









          

      

      

    

  

    
      
          
            
  
Management commands


thumbnail cleanup

python manage.py thumbnail cleanup

This cleans up the Key Value Store from stale cache. It removes references to
images that do not exist and thumbnail references and their actual files for
images that do not exist. It removes thumbnails for unknown images.



thumbnail clear

python manage.py thumbnail clear

This totally empties the Key Value Store of all keys that start with the
settings.THUMBNAIL_KEY_PREFIX. It does not delete any files. The Key Value
store will update when you hit the template tags, and if the thumbnails files
still exist they will be used and not overwritten/regenerated. This can be
useful if your Key Value Store has garbage data not dealt with by cleanup or
you’re switching Key Value Store backend.



thumbnail clear_delete_referenced

python manage.py thumbnail clear_delete_referenced

Equivalent to to clear but first it will delete all thumbnail files
referenced by the Key Value Store. It is generally safe to run this if you do
not reference the generated thumbnails by name somewhere else in your code. As
long as all the original images still exist this will trigger a regeneration of
all the thumbnails the Key Value Store knows about.



thumbnail clear_delete_all

python manage.py thumbnail clear_delete_all

Equivalent to to clear but afterwards it will delete all thumbnail files
including any orphans not in the Key Value Store. This can be thought of as a
more aggressive version of clear_delete_referenced. Caution should be
exercised with this command if multiple Django sites (as in SITE_ID) or
projects are using the same MEDIA_ROOT since this will clear out absolutely
everything in the thumbnail cache directory causing thumbnail regeneration for
all sites and projects. When file system storage is used, it is equivalent to
rm -rf MEDIA_ROOT + THUMBNAIL_PREFIX





          

      

      

    

  

    
      
          
            
  
Errors & Logging


Background

When THUMBNAIL_DEBUG = False errors will be suppressed if they are raised
during rendering the thumbnail tag or raised within the included filters.
This is the recommended production setting. However it can still be useful to be
notified of those errors. Thus sorl-thumbnail logs errors to a logger and
provides a log handler that sends emails to settings.ADMINS.



How to setup logging

To enable logging you need to add a handler to the ‘sorl.thumbnail’ logger.
The following example adds the provided handler that sends emails to site admins
in case an error is raised with debugging off:

import logging
from sorl.thumbnail.log import ThumbnailLogHandler


handler = ThumbnailLogHandler()
handler.setLevel(logging.ERROR)
logging.getLogger('sorl.thumbnail').addHandler(handler)





You will need to load this code somewhere in your django project, it could be
in urls.py, settings.py or project/app __init__.py file for example. You could
of course also provide your own logging handler.





          

      

      

    

  

    
      
          
            
  
How sorl-thumbnail operates

When you use the thumbnail template tag sorl-thumbnail looks up the
thumbnail in a Key Value Store. The key for a thumbnail is
generated from its filename and storage. The thumbnail filename in turn is
generated from the source and requested thumbnail size and options.  If the key
for the thumbnail is found in the Key Value Store, the serialized thumbnail
information is fetched from it and returned. If the thumbnail key is not found
there sorl-thumbnail continues to generate the thumbnail and stores necessary
information in the Key Value Store.  It is worth noting that sorl-thumbnail does not
check if source or thumbnail exists if the thumbnail key is found in the
Key Value Store.


Note

This means that if you change or delete a source file or delete the
thumbnail, sorl-thumbnail will still fetch from the Key Value Store.
Therefore it is important that if you delete or change a source or
thumbnail file notify the Key Value Store.



If you change or delete a source or a thumbnail for some reason, you can use
the delete method of the ThumbnailBackend class or subclass:

from sorl.thumbnail import delete

# Delete the Key Value Store reference but **not** the file.
# Use this if you have changed the source
delete(my_file, delete_file=False)

# Delete the Key Value Store reference and the file
# Use this if you want to delete the source file
delete(my_file) # delete_file=True is default





The sorl.thumbnail.delete method always deletes the input files thumbnail
Key Value Store references as well as thumbnail files. You can use this method
on thumbnails as well as source files. Alternatively if you have deleted a
file you can use the management command thumbnail cleanup.  Deleting an
image using the sorl.thumbnail.ImageField will notify the Key Value Store to
delete references to it and delete all of its thumbnail references and files,
exactly like the above code example.

Why you ask? Why go through all the trouble with a Key Value Store and risk
stale cache? Why not use a database to cache if you are going to do that?

The reason is speed and especially with storages other than local file storage.
Checking if a file exists before serving it will cost too much. Speed is also
the reason for not choosing to use a standard database for this kind of
persistent caching. However sorl-thumbnail does ship with a cached database
Key Value Store.


Note

We have to assume the thumbnail exists if the thumbnail key exists in
the Key Value Store



There are bonuses. We can store meta data in the Key Value Store that would be
too costly to retrieve even for local file storage. Today this meta data
consists only of the image size but this could be expanded to for example EXIF
data. The other bonus is that we can keep track of what thumbnails has been
generated from a particular source and deleting them too when the source is
deleted.

Schematic view of how things are done [https://docs.google.com/drawings/edit?id=1wlE4LkQpzXd2a2Nxfjt6_j5NG7889dzMyf0V-xPAJSE&hl=en]




          

      

      

    

  

    
      
          
            
  
Reference



	ImageFile
	ImageFile attributes

	ImageFile methods





	Settings
	THUMBNAIL_DEBUG

	THUMBNAIL_BACKEND

	THUMBNAIL_KVSTORE

	THUMBNAIL_KEY_DBCOLUMN

	THUMBNAIL_ENGINE

	THUMBNAIL_CONVERT

	THUMBNAIL_IDENTIFY

	THUMBNAIL_STORAGE

	THUMBNAIL_REDIS_URL

	THUMBNAIL_REDIS_DB

	THUMBNAIL_REDIS_PASSWORD

	THUMBNAIL_REDIS_HOST

	THUMBNAIL_REDIS_PORT

	THUMBNAIL_REDIS_TIMEOUT

	THUMBNAIL_DBM_FILE

	THUMBNAIL_DBM_MODE

	THUMBNAIL_CACHE_TIMEOUT

	THUMBNAIL_CACHE

	THUMBNAIL_KEY_PREFIX

	THUMBNAIL_PREFIX

	THUMBNAIL_FORMAT

	THUMBNAIL_PRESERVE_FORMAT

	THUMBNAIL_COLORSPACE

	THUMBNAIL_UPSCALE

	THUMBNAIL_QUALITY

	THUMBNAIL_PROGRESSIVE

	THUMBNAIL_ORIENTATION

	THUMBNAIL_DUMMY

	THUMBNAIL_DUMMY_SOURCE

	THUMBNAIL_DUMMY_RATIO

	THUMBNAIL_ALTERNATIVE_RESOLUTIONS

	THUMBNAIL_FILTER_WIDTH

	THUMBNAIL_URL_TIMEOUT

	THUMBNAIL_REMOVE_URL_ARGS












          

      

      

    

  

    
      
          
            
  
ImageFile

ImageFile is an image abstraction that contains useful attributes when
working with images. The thumbnail template tag puts the generated thumbnail
in context as an ImageFile instance. In the following example:

{% thumbnail item.image "100x100" as im %}
    <img src="{{ im.url }}">
{% endthumbnail %}





im will be an ImageFile instance.


ImageFile attributes


name

Name of the image as returned from the underlying storage.



storage

Returns the storage instance.



width

Returns the width of the image in pixels.



x

Alias of width



height

Returns the height of the image in pixels.



y

Alias of height



ratio

Returns the image ratio (y/x) as a float



url

URL of the image url as returned by the underlying storage.



src

Alias of url



size

Returns the image size in pixels as a (x, y) tuple



key

Returns a unique key based on name and storage.




ImageFile methods


exists

Returns whether the file exists as returned by the underlying storage.



is_portrait

Returns True if y > x, else False



set_size

Sets the size of the image, takes an optional size tuple (x, y) as argument.



read

Reads the file as done from the underlying storage.



write

Writes content to the file. Takes content as argument. Content is either raw
data or an instance of django.core.files.base.ContentFile.



delete

Deletes the file from underlying storage.



serialize

Returns a serialized version of self.



serialize_storage

Returns the self.storage as a serialized dot name path string.






          

      

      

    

  

    
      
          
            
  
Settings


THUMBNAIL_DEBUG


	Default: False




When set to True the ThumbnailNode.render method can raise errors.
Django recommends that tags never raise errors in the Node.render method
but since sorl-thumbnail is such a complex tag we will need to have more
debugging available.



THUMBNAIL_BACKEND


	Default: 'sorl.thumbnail.base.ThumbnailBackend'




This is the entry point for generating thumbnails, you probably want to keep the
default one but just in case you would like to generate thumbnails filenames
differently or need some special functionality you can override this and use
your own implementation.



THUMBNAIL_KVSTORE


	Default: 'sorl.thumbnail.kvstores.cached_db_kvstore.KVStore'




sorl-thumbnail needs a Key Value Store to How sorl-thumbnail operates.
sorl-thumbnail ships with support for three Key Value Stores:


Cached DB

sorl.thumbnail.kvstores.cached_db_kvstore.KVStore. This is the default and
preferred Key Value Store.


Features


	Fast persistent storage


	First query uses database which is slow. Successive queries are cached and if
you use memcached this is very fast.


	Easy to transfer data between environments since the data is in the default
database.


	If you get the database and fast cache out of sync there could be problems.







Redis

sorl.thumbnail.kvstores.redis_kvstore.KVStore. It requires you to install a
Redis server as well as a redis python client [https://github.com/andymccurdy/redis-py/].


Features


	Fast persistent storage


	More dependencies


	Requires a little extra work to transfer data between environments







Dbm

sorl.thumbnail.kvstores.dbm_kvstore.KVStore. A simple Key Value Store has no
dependencies outside the standard Python library and uses the DBM modules to
store the data.


Features


	No external dependencies, besides the standard library


	No extra components required, e.g., database or cache


	Specially indicated for local development environments








THUMBNAIL_KEY_DBCOLUMN


	Default 'key'




Since MSSQL reserved the key name for db columns you can change this to
something else using this setting.



THUMBNAIL_ENGINE


	Default: 'sorl.thumbnail.engines.pil_engine.Engine'




This is the processing class for sorl-thumbnail. It does all the resizing,
cropping or whatever processing you want to perform. sorl-thumbnail ships with
four engines:


PIL

'sorl.thumbnail.engines.pil_engine.Engine'. This is the default engine
because it is what most people have installed already. Features:


	Easy to install


	Produces good quality images but not the best


	It is fast


	Can not handle CMYK sources






Pgmagick

'sorl.thumbnail.engines.pgmagick_engine.Engine'. Pgmagick uses Graphics [http://www.graphicsmagick.org/]. Fatures:


	Not easy to install unless on linux, very slow to compile


	Produces high quality images


	It is a tad slow?


	Can handle CMYK sources






ImageMagick / GraphicsMagick

'sorl.thumbnail.engines.convert_engine.Engine'. This engine uses the
ImageMagick convert or  GraphicsMagic gm convert command. Features:


	Easy to install


	Produces high quality images


	It is pretty fast


	Can handle CMYK sources


	It is a command line command, that is less than ideal,






Wand

'sorl.thumbnail.engines.wand_engine.Engine'. This engine uses Wand [http://wand-py.org], a ctypes-based simple ImageMagick binding for Python.
Features:


	Easy to install


	Produces high quality images


	Can handle CMYK sources


	Works on Python 2.6, 2.7, 3.2, 3.3, and PyPy







THUMBNAIL_CONVERT


	Default 'convert'




Path to convert command, use 'gm convert' for GraphicsMagick.
Only applicable for the convert Engine.



THUMBNAIL_IDENTIFY


	Default 'identify'




Path to identify command, use 'gm identify' for GraphicsMagick.
Only applicable for the convert Engine.



THUMBNAIL_STORAGE


	Default: settings.DEFAULT_FILE_STORAGE




The storage class to use for the generated thumbnails.



THUMBNAIL_REDIS_URL

The Redis database URL to connect as used by redis-py [https://redis-py.readthedocs.io/en/latest/#redis.Redis.from_url]

When specified, other THUMBNAIL_REDIS_* connection settings will be ignored.



THUMBNAIL_REDIS_DB


	Default: 0




The Redis database. Only applicable for the Redis Key Value Store



THUMBNAIL_REDIS_PASSWORD


	Default: ''




The password for Redis server. Only applicable for the Redis Key Value Store



THUMBNAIL_REDIS_HOST


	Default: 'localhost'




The host for Redis server. Only applicable for the Redis Key Value Store



THUMBNAIL_REDIS_PORT


	Default: 6379




The port for Redis server. Only applicable for the Redis Key Value Store



THUMBNAIL_REDIS_TIMEOUT


	Default: 3600 * 24 * 365 * 10




Cache timeout for Redis Key Value Store in seconds. You should probably keep this
at maximum or None.



THUMBNAIL_DBM_FILE


	Default: thumbnail_kvstore




Filename of the DBM database. Depending on the DBM engine selected by your
Python installation, this will be used as a prefix because multiple files may be
created. This can be an absolute path.



THUMBNAIL_DBM_MODE


	Default: 0x644




Permission bits to use when creating new DBM files



THUMBNAIL_CACHE_TIMEOUT


	Default: 3600 * 24 * 365 * 10




Cache timeout for Cached DB Key Value Store in seconds. You should probably keep this
at maximum or None if your caching backend can handle that as infinite.
Only applicable for the Cached DB Key Value Store.



THUMBNAIL_CACHE


	Default: 'default'




Cache configuration for Cached DB Key Value Store. Defaults to the 'default' cache
but some applications might have multiple cache clusters.



THUMBNAIL_KEY_PREFIX


	Default: 'sorl-thumbnail'




Key prefix used by the key value store.



THUMBNAIL_PREFIX


	Default: 'cache/'




The generated thumbnails filename prefix.



THUMBNAIL_FORMAT


	Default: 'JPEG'




Default image format, supported formats are: 'JPEG', 'PNG'. This also implicitly
sets the filename extension. This can be overridden by individual options.



THUMBNAIL_PRESERVE_FORMAT


	Default: False




If True, the format of the input file will be preserved. If False,
THUMBNAIL_FORMAT will be used.



THUMBNAIL_COLORSPACE


	Default: 'RGB'




Default thumbnail color space, engines are required to implement: 'RGB',
'GRAY' Setting this to None will keep the original color space. This can be
overridden by individual options.



THUMBNAIL_UPSCALE


	Default: True




Should we upscale by default? True means we upscale images by default.
False means we don’t. This can be overridden by individual options.



THUMBNAIL_QUALITY


	Default: 95




Default thumbnail quality. A value between 0 and 100 is allowed. This can be
overridden by individual options.



THUMBNAIL_PROGRESSIVE


	Default: True




Saves jpeg thumbnails as progressive jpegs. This can be overridden by individual
options.



THUMBNAIL_ORIENTATION


	Default: True




Orientate the thumbnail with respect to source EXIF orientation tag



THUMBNAIL_DUMMY


	Default: False




This is a very powerful option which came from real world frustration. The use
case is when you want to do development on a deployed project that has image
references in its database. Instead of downloading all the image files from the
server hosting the deployed project and all its thumbnails we just set this
option to True. This will generate placeholder images for all thumbnails
missing input source.



THUMBNAIL_DUMMY_SOURCE


	Default http://dummyimage.com/%(width)sx%(height)s




This is the generated thumbnail whensource of the presented thumbnail. Width and
Height is passed to the string for formatting.  Other options are for example:


	http://placehold.it/%(width)sx%(height)s


	http://placekitten.com/%(width)s/%(height)s






THUMBNAIL_DUMMY_RATIO


	Default: 1.5




This value sets an image ratio to all thumbnails that are not defined by width
and height since we cannot determine from the file input (since we don’t
have that).



THUMBNAIL_ALTERNATIVE_RESOLUTIONS


	Default: []


	Example: [1.5, 2]




This value enables creation of additional high-resolution (“Retina”) thumbnails
for every thumbnail. Resolution multiplicators, e.g. value 2 means for every thumbnail
of regular size x*y, additional thumbnail of 2x*2y size is created.



THUMBNAIL_FILTER_WIDTH


	Default: 500




This value sets the width of thumbnails inserted when running filters one texts
that regex replaces references to images with thumbnails.



THUMBNAIL_URL_TIMEOUT


	Default: None




This value sets the timeout value in seconds when retrieving a source image from a URL.
If no timeout value is specified, it will wait indefinitely for a response.



THUMBNAIL_REMOVE_URL_ARGS


	Default: True




This value sets if URL arguments will be removed from the source URL of the image we want to generate a thumbnail of. E.g. if our source image is at <domain>/picture?height=600&width=600 a True value would instead attempt to generate a thumbnail from <domain>/picture.





          

      

      

    

  

    
      
          
            
  
Contributing

Feel free to create a new Pull request if you want to propose a new feature
or fix a bug.  If you need development support or want to discuss
with other developers, join us in the channel #sorl-thumnbnail at freenode.net


irc://irc.freenode.net/#sorl-thumbnail





Running testsuit

For occasional developers we recommend using GitHub Actions [https://github.com/jazzband/sorl-thumbnail/actions] to run testsuite,
for those who want to run tests locally, read on.

Since sorl-thumbnail supports a variety of image backends, python and
Django versions, we provide an easy way to test locally across all of them.
We use Vagrant [http://www.vagrantup.com/] for simple interaction with virtual machines and
tox [https://testrun.org/tox/latest/] for managing python virtual environments.

Some dependencies like pgmagick takes a lot of time to compiling. To speed up your
vagrant box you can edit Vagrant file [https://docs.vagrantup.com/v2/virtualbox/configuration.html] with mem and cpu or simply install vagrant-faster [https://github.com/rdsubhas/vagrant-faster].
The resulting .tox folder containing all virtualenvs requires ~


	Install Vagrant [http://docs.vagrantup.com/v2/installation/index.html]


	cd in your source directory


	Run vagrant up to prepare VM. It will download Ubuntu image and install all necessary dependencies.


	Run vagrant ssh to log in the VM


	Launch all tests via tox (will take some time to build envs first time)




To run only tests against only one configuration use -e option:

tox -e py34-django16-pil





Py34 stands for python version, 1.6 is Django version and the latter is image library.
For full list of tox environments, see tox.ini

You can get away without using Vagrant if you install all packages locally yourself,
however, this is not recommended.



Sending pull requests


	Fork the repo:

git@github.com:jazzband/sorl-thumbnail.git







	Create a branch for your specific changes:

$ git checkout master
$ git pull
$ git checkout -b feature/foobar





To simplify things, please, make one branch per issue (pull request).
It’s also important to make sure your branch is up-to-date with upstream master,
so that maintainers can merge changes easily.



	Commit changes. Please update docs, if relevant.


	Don’t forget to run tests to check than nothing breaks.


	Ideally, write your own tests for new feature/bug fix.


	Submit a pull request [https://help.github.com/articles/using-pull-requests].








          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/file.png





_static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          sorl-thumbnail’s documentation
        


        		
          Examples
          
            		
              Template examples
            


            		
              Model examples
            


            		
              Admin examples
            


            		
              Low level API examples
            


          


        


        		
          Installation & Setup
          
            		
              Installation
            


            		
              Setup
            


          


        


        		
          Requirements
          
            		
              Base requirements
            


            		
              Key Value Store
              
                		
                  Cached DB
                


                		
                  Redis
                


              


            


            		
              Image Library
              
                		
                  Python Imaging Library installation
                


                		
                  pgmagick installation
                


                		
                  ImageMagick installation
                


                		
                  Wand installation
                


              


            


          


        


        		
          Template tags and filters
          
            		
              thumbnail
              
                		
                  Source
                


                		
                  Geometry
                


                		
                  Options
                


              


            


            		
              is_portrait
            


            		
              margin
            


            		
              resolution
            


          


        


        		
          Management commands
          
            		
              thumbnail cleanup
            


            		
              thumbnail clear
            


            		
              thumbnail clear_delete_referenced
            


            		
              thumbnail clear_delete_all
            


          


        


        		
          Errors & Logging
          
            		
              Background
            


            		
              How to setup logging
            


          


        


        		
          How sorl-thumbnail operates
        


        		
          Reference
          
            		
              ImageFile
              
                		
                  ImageFile attributes
                


                		
                  ImageFile methods
                


              


            


            		
              Settings
              
                		
                  THUMBNAIL_DEBUG
                


                		
                  THUMBNAIL_BACKEND
                


                		
                  THUMBNAIL_KVSTORE
                


                		
                  THUMBNAIL_KEY_DBCOLUMN
                


                		
                  THUMBNAIL_ENGINE
                


                		
                  THUMBNAIL_CONVERT
                


                		
                  THUMBNAIL_IDENTIFY
                


                		
                  THUMBNAIL_STORAGE
                


                		
                  THUMBNAIL_REDIS_URL
                


                		
                  THUMBNAIL_REDIS_DB
                


                		
                  THUMBNAIL_REDIS_PASSWORD
                


                		
                  THUMBNAIL_REDIS_HOST
                


                		
                  THUMBNAIL_REDIS_PORT
                


                		
                  THUMBNAIL_REDIS_TIMEOUT
                


                		
                  THUMBNAIL_DBM_FILE
                


                		
                  THUMBNAIL_DBM_MODE
                


                		
                  THUMBNAIL_CACHE_TIMEOUT
                


                		
                  THUMBNAIL_CACHE
                


                		
                  THUMBNAIL_KEY_PREFIX
                


                		
                  THUMBNAIL_PREFIX
                


                		
                  THUMBNAIL_FORMAT
                


                		
                  THUMBNAIL_PRESERVE_FORMAT
                


                		
                  THUMBNAIL_COLORSPACE
                


                		
                  THUMBNAIL_UPSCALE
                


                		
                  THUMBNAIL_QUALITY
                


                		
                  THUMBNAIL_PROGRESSIVE
                


                		
                  THUMBNAIL_ORIENTATION
                


                		
                  THUMBNAIL_DUMMY
                


                		
                  THUMBNAIL_DUMMY_SOURCE
                


                		
                  THUMBNAIL_DUMMY_RATIO
                


                		
                  THUMBNAIL_ALTERNATIVE_RESOLUTIONS
                


                		
                  THUMBNAIL_FILTER_WIDTH
                


                		
                  THUMBNAIL_URL_TIMEOUT
                


                		
                  THUMBNAIL_REMOVE_URL_ARGS
                


              


            


          


        


        		
          Contributing
          
            		
              Running testsuit
            


            		
              Sending pull requests
            


          


        


      


    
  

_static/up.png





_static/up-pressed.png





