

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Seshat 2.0.0 documentation

Seshat Web Framework v2.0.0

Seshat is a toy web framework built by JoshAshby over the past few years. It’s
aimed at being somewhat opinionated, and most definetly full of bad practices
but it gets the job done with running a few smaller sites.

Build status - Master:

[image: https://secure.travis-ci.org/JoshAshby/seshat.png?branch=master]
 [http://travis-ci.org/JoshAshby/seshat]Build status - Dev:

[image: https://secure.travis-ci.org/JoshAshby/seshat.png?branch=dev]
 [http://travis-ci.org/JoshAshby/seshat?branch=dev]Gittip if you like the work I do and would consider a small donation to help
fund me and this project:

A Few Minor Warnings

	I have litterally NO clue what I am doing. Use at your own risk.

	I’m only a second year university student, and software
isn’t even my major; I’m working towards an Electrical and Computer
Engineering degree, so not only do I have limited time to keep this
maintained, but I also probably won’t write the best code ever.

	This project follows the semantic versioning specs. All Minor and
patch versions will not break the major versions API, however an bump of the
major version signifies that backwards compatibility will most likely be
broken.

Quick Start

Getting started is fairly easy, take a look at the included example.py:

from waitress import serve
import seshat.dispatch as dispatch

from seshat.route import route
from seshat.controller import Controller
from seshat.actions import NotFound

@route()
class index(Controller):
 def GET(self):
 name = self.request.get_param("name", "World!")
 return "Hello, " + name

@route()
class wat(Controller):
 def GET(self):
 return Redirect("/?name=Wat")

serve(dispatch.dispatch)

This starts a full web app on port 8080 that you can navigate your browser to
localhost that will serve a basic page displaying the text
“Hello, World”. Navigating to localhost:8080/wat will redirect you back to the
index, with the name now as “Wat”.

Contributing

All code for this can be found online at
github [https://github.com/JoshAshby/seshat].
If something is broken, or a feature is missing, please submit a pull request
or open an issue. Most things I probably won’t have time to get around to
looking at too deeply, so if you want it fixed, a pull request is the way
to go. Besides that, I’m releasing this under the GPLv3 License as found in the
LICENSE.txt file. Enjoy!

Doc Contents

	controller

	route

	actions

	request

	session

	response

	dispatch

	error_catcher

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Seshat 2.0.0 documentation

controller

No app built with Seshat does much without controllers. This module provides a
base controller class which can be used right away in its current state, or can
be inherited from to create more advanced or custom controllers.

Basic use is like so:

from seshat.controller import Controller

class index(Controller):
 def GET(self):
 return "<h1>WAT</h1>"

By default all controllers have HEAD and GET methods. HEAD simply calls GET but
strips the reponse body. (HEAD is probably broken for now but I’ll fix it
eventually).

	
class seshat.controller.Controller(request=None, session=None)[source]

	The parent of all controllers which Seshat will serve.

To use this to make a controller, override or add the request method (in
all caps) which will be called for this controller. Eg:

from seshat.controller import Controller

class index(Controller):
 def GET(self):
 return "<h1>WAT</h1>"

then all GET based requests to this controller will return with the text
<h1>WAT</h1> however all POST, PUT, DELETE calls will a 405 Method Not
Supported error.

	
post_init_hook()[source]

	Called at the end of __init__ this allows you to customize the
creation process of your controller, without having to override
__init__ itself.

This should accept nothing and return nothing.

	
pre_content_hook()[source]

	Called before the request method is called and should return either
None or Action object.

If there is a returned value other than None, this will skip calling
the request method and simply return directly to dispatch, so make sure
it returns an Action.

A good example of the use for this hook would be for authentication.
You could for example, check a parameter set through a cookie and
return something like a 401 Unauthorized if the param doesn’t represent
a logged in user:

return actions.Unauthorized()

	Return type:	Action or None

	
post_content_hook(content)[source]

	Gets called after the content generating request method has been
called. This can be to further modify the content which is returned, or
perform some other action after each request.

	Parameters:	content (str) – the content from the content generating request method
that was called.

	Returns:	The original or modified content

	Return type:	str

	
HEAD()[source]

	Will be called if the request method is HEAD

By default this will call GET() but return nothing, so that only the
Headers are returned to the client.

	
GET()[source]

	Will be called if the request method is GET

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Seshat 2.0.0 documentation

route

Along with needing to have controllers, an app also has to have routes to those
controllers. This is accomplished through the route()
decorator. This decorator will, if no arguments are supplied, use
controller_folder and the file hierarchy of the controller to auto
generate a route. Or you can optionally supply a custom url pattern. This
pattern then gets converted to a dict when the url is matched. The structure
of the url pattern is simple, variabled within the url are denoted by a colon.
For example, in the pattern:

/user/:name/:email

the returned dict will be:

{"name": something,
 "email": something_else}

	
seshat.route.controller_folder = ''

	The folder where the controllers are located in. Since the auto route
generation uses folder hierarchy, this setting allows to you to have
controllers in a single folder but not have that folder end up as the route
prefix.

	
seshat.route.route(r=None, s=None)[source]

	Class decorator that will take and generate a route table entry for the
decorated Controller class, based off of its name and its file
hierarchy if no route pattern is specified.

Use like so:

from seshat.controller import Controller
from seshat.route import route

@route()
class index(Controller):
 pass

which will result in a route for “/” being made for this controller.

controllers whose name is index automatically get routed to the root of
their folders, so an index controller in “profiles/” will have a route that
looks like “/profiles”

Controllers whose name is view will automatically get routed to any index
route that has an attached ID. Eg:

In folder: profiles/
class view(Controller):
 pass

will be routed to if the request URL is “/profiles/5” and the resulting
id will be stored in Controller.request.url_params

	
class seshat.route.Route(controller=None, route=None, subdomain=None)[source]

	Provides a base route table entry which is generated by the route()
decorator described below.

	
controller = None

	The controller object, of type Controller which this
route represents

	Type:	Controller

	
class seshat.route_table.RouteTable[source]

	
	
add(container)[source]

	Adds the given route container to the route table.

	Parameters:	r_container (Route) – The route container which contains the url and controller for a route.

	
get(request)[source]

	Attempts to find the closest match to the given url, through comparing
lots of regexs for a match against the url.

	Parameters:	request (urlparse.ParseResult) – The requested url

	Returns:	Controller or None

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Seshat 2.0.0 documentation

actions

Actions allow you to write code that looks like:

class RandomController(Controller):
 def GET(self):
 return Redirect("/")

This module provides a few common Action classes to use, along with a base
Action class which can be inherited to create your own Actions by overriding
the __init__ function.

	
class seshat.actions.Action[source]

	Provides a base for creating a new object which represents an HTTP Status code.

All returned data is checked if it is of type Action and if so, the
data/actions head is returned rather than the controllers head. This allows
for a syntax like:

return NotFound()

which will cause the controller to return a 404 status code.

To create a new action, inherit this class then make a new __init__(self, *kargs)
which sets self.response to a Reponse object (or just call
super), and adds any headers or status changes to that Response object.

	
class seshat.actions.Redirect(loc)[source]

	Returns a 303 See Other status code along with a location header back
to the client.

	Parameters:	loc (str) – The location to which the client should be redirect to

	
class seshat.actions.BadRequest[source]

	Returns a 400 BAD REQUEST

	
class seshat.actions.Unauthorized[source]

	Returns a 401 UNAUTHORIZED back to the client

This should probably also include a WWW-Authenticate header, but I’ll leave
that for later right now.

	
class seshat.actions.Forbidden[source]

	Returns a 403 FORBIDDEN

	
class seshat.actions.NotFound[source]

	Returns a 404 Not Found

	
class seshat.actions.MethodNotAllowed(allow)[source]

	Returns a 405 METHOD NOT ALLOWED

	Parameters:	allow (list) – A list of allowable methods

	
class seshat.actions.InternalServerError(e=None, tb=None)[source]

	Returns a 500 INTERNAL SERVER ERROR

	Parameters:	
	e (Exception) – The Exception

	tb (str) – The traceback of the exception

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Seshat 2.0.0 documentation

request

	
class seshat.request.FileObject(file_obj)[source]

	Provides a File like object which supports the common file operations,
along with providing some additional metadata which is sent from the
client.

	
read()[source]

	

	
readline()[source]

	

	
seek(where)[source]

	

	
readlines()[source]

	

	
auto_read()[source]

	

	
class seshat.request.Request(env)[source]

	Represents the request from the server, and contains various information
and utilities.

	
env = None

	The raw environ dict which is provided by the wsgi server.

	
method = None

	The HTTP method by which the request was made, in all caps.

	
remote = None

	The clients IP, otherwise Unknown IP This is set from
HTTP_X_REAL_IP which is a header that I personally have nginx append to
the request before handing it to Seshat.

	
headers = None

	Headers which were sent with the request, in the form of a
.RequestHeaders object

	
url_params = None

	When a match is made in the route table, this is set to a dict containing the matched pattern groups in the url.

	
get_param(parameter, default='', cast=<type 'str'>)[source]

	Allows you to get a parameter from the request. If the parameter does
not exist, or is empty, then a default will be returned. You can also
choose to optionally cast the parameter.

If a parameter has multiple values then this will return a list of all
those values.

	Parameters:	
	parameter – The name of the parameter to get

	default – The default to return if the parameter is nonexistent
or empty

	cast – An optional cast for the parameter.

	
get_file(name)[source]

	Along with getting parameters, one may wish to retrieve other data such
as files sent.

This provides an interface for getting a file like
FileObject which can be used like a normal file but also
holds some meta data sent with the request. If no file by the given
name is found then this will return None

	
id[source]

	This is more or less a backwards compatability thing. Provides access
to the id element of url_params dict if it is present otherwise
returns None

	
class seshat.headers.RequestHeaders(env=None)[source]

	A basic container for all the headers in an HTTP request. Acts like a
dictionary.

	
referer = None

	The referrer address which this request originated from.
If no referrer is present this will return None

	
referrer = None

	The referrer address which this request originated from.
If no referrer is present this will return None

	
user_agent = None

	The user agent, unparsed, or the string Unknown User Agent

Note

This will probably change to a parsed result class later on.

	
authorization = None

	Returns an Authorization instance if there is an Authorization
header in the request. Otherwise this returns None

	
class seshat.headers.Authorization(auth_type, **kwargs)[source]

	Basic little class to help represent an Authorization header. Currently
only supports HTTP Basic Auth but support for digest auth is slated for
later.

This class is mostly unfinished at this time.

	
class seshat.headers.Accept(s)[source]

	Basic class which can represent any number of the accept headers which
commonly take on the form of: type/subtype; q=int

	
best(l)[source]

	Determines which item in the provided list is the best match.

If no match is found then it’ll return None

	Parameters:	l (list) – A list of strings which are various accept types.

	
quality(item)[source]

	Returns the quality of the given accept item, if it exists in the
accept header, otherwise it will return None.

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Seshat 2.0.0 documentation

session

	
class seshat.session.Session(request=None)[source]

	
	
load()[source]

	

	
save(response)[source]

	

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Seshat 2.0.0 documentation

response

	
class seshat.response.Response(status_code=200, headers=None, body=None)[source]

	
	
status[source]

	

	
class seshat.headers.ResponseHeaders(headers=None)[source]

	Represents the headers which will be sent back to the client with the
response. This acts a bit like an list of tuples.

This class is mostly unfinished as of now.

	
append(key, val)[source]

	

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Seshat 2.0.0 documentation

dispatch

Dispatch is the actual WSGI app which is served. This module also contains
several configuration properties, along with easy access to the apps route
table (RouteTable) though route_table.

Note

If you would like to see the logs that seshat produces, using the standard
library logging module, create a handler for seshat

	
seshat.dispatch.request_obj

	The class which should be used to create a new Request object from.
Should inherit from Request

alias of Request

	
seshat.dispatch.session_obj

	The class which should be used to instantiate a new session object which
will be handed to the controller. Should at least inherit from Session

alias of Session

	
seshat.dispatch.dispatch(env, start_response)[source]

	WSGI dispatcher

This represents the main WSGI app for Seshat.
To use with waitress, for example:

from waitress import serve
serve(dispatch)

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Seshat 2.0.0 documentation

error_catcher

TODO: doc this

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Seshat 2.0.0 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 seshat	

 	
 	
 seshat.actions	

 	
 	
 seshat.controller	

 	
 	
 seshat.dispatch	

 	
 	
 seshat.error_catcher	

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Seshat 2.0.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | U

A

 	

 	Accept (class in seshat.headers)

 	Action (class in seshat.actions)

 	add() (seshat.route_table.RouteTable method)

 	append() (seshat.headers.ResponseHeaders method)

 	

 	Authorization (class in seshat.headers)

 	authorization (seshat.headers.RequestHeaders attribute)

 	auto_read() (seshat.request.FileObject method)

B

 	

 	BadRequest (class in seshat.actions)

 	

 	best() (seshat.headers.Accept method)

C

 	

 	Controller (class in seshat.controller)

 	controller (seshat.route.Route attribute)

 	

 	controller_folder (in module seshat.route)

D

 	

 	dispatch() (in module seshat.dispatch)

E

 	

 	env (seshat.request.Request attribute)

F

 	

 	FileObject (class in seshat.request)

 	

 	Forbidden (class in seshat.actions)

G

 	

 	GET() (seshat.controller.Controller method)

 	get() (seshat.route_table.RouteTable method)

 	

 	get_file() (seshat.request.Request method)

 	get_param() (seshat.request.Request method)

H

 	

 	HEAD() (seshat.controller.Controller method)

 	

 	headers (seshat.request.Request attribute)

I

 	

 	id (seshat.request.Request attribute)

 	

 	InternalServerError (class in seshat.actions)

L

 	

 	load() (seshat.session.Session method)

M

 	

 	method (seshat.request.Request attribute)

 	

 	MethodNotAllowed (class in seshat.actions)

N

 	

 	NotFound (class in seshat.actions)

P

 	

 	post_content_hook() (seshat.controller.Controller method)

 	post_init_hook() (seshat.controller.Controller method)

 	

 	pre_content_hook() (seshat.controller.Controller method)

Q

 	

 	quality() (seshat.headers.Accept method)

R

 	

 	read() (seshat.request.FileObject method)

 	readline() (seshat.request.FileObject method)

 	readlines() (seshat.request.FileObject method)

 	Redirect (class in seshat.actions)

 	referer (seshat.headers.RequestHeaders attribute)

 	referrer (seshat.headers.RequestHeaders attribute)

 	remote (seshat.request.Request attribute)

 	Request (class in seshat.request)

 	

 	request_obj (in module seshat.dispatch)

 	RequestHeaders (class in seshat.headers)

 	Response (class in seshat.response)

 	ResponseHeaders (class in seshat.headers)

 	Route (class in seshat.route)

 	route() (in module seshat.route)

 	RouteTable (class in seshat.route_table)

S

 	

 	save() (seshat.session.Session method)

 	seek() (seshat.request.FileObject method)

 	seshat.actions (module)

 	seshat.controller (module)

 	seshat.dispatch (module)

 	

 	seshat.error_catcher (module)

 	Session (class in seshat.session)

 	session_obj (in module seshat.dispatch)

 	status (seshat.response.Response attribute)

U

 	

 	Unauthorized (class in seshat.actions)

 	url_params (seshat.request.Request attribute)

 	

 	user_agent (seshat.headers.RequestHeaders attribute)

 Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

 _static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Seshat 2.0.0 documentation »

 All modules for which code is available

		seshat.actions

		seshat.controller

		seshat.dispatch

		seshat.headers

		seshat.request

		seshat.response

		seshat.route

		seshat.route_table

		seshat.session

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_modules/seshat/request.html

 Navigation

 		
 index

 		
 modules |

 		Seshat 2.0.0 documentation »

 		Module code »

 Source code for seshat.request

#!/usr/bin/env python
"""
TODO: Doc This
"""
"""
Seshat
Web App/API framework built on top of gevent
Main framework app

For more information, see: https://github.com/JoshAshby/

http://xkcd.com/353/

Josh Ashby
2014
http://joshashby.com
joshuaashby@joshashby.com
"""
import logging
logger = logging.getLogger("seshat.request")

import cgi
import tempfile
import urlparse
from headers import RequestHeaders

def parse_bool(p):
 if p == "True" or p == "true":
 return True
 elif p == "False" or p == "false":
 return False
 else:
 # Well fuck
 return False

[docs]class FileObject(object):
 """
 Provides a File like object which supports the common file operations,
 along with providing some additional metadata which is sent from the
 client.
 """
 _template = "< FileObject @ {id} Filename: {filename} Data: {data} >"
 def __init__(self, file_obj):
 self.filename = file_obj.filename
 self.name = file_obj.name
 self.type = file_obj.type
 self.expanded_type = self.type.split("/")
 self.file = file_obj.file

 self.extension = ""
 parts = self.filename.split(".", 1)
 if len(parts) > 1:
 self.extension = parts[1]

[docs] def read(self):
 return self.file.read()

[docs] def readline(self):
 return self.file.readline()

[docs] def seek(self, where):
 return self.file.seek(where)

[docs] def readlines(self):
 return self.file.readlines()

[docs] def auto_read(self):
 self.seek(0)
 data = self.read()
 self.seek(0)
 return data

 def __repr__(self):
 string = self._template.format(**{
 "id": id(self),
 "filename": self.filename,
 "data": len(self.auto_read())
 })
 return string

[docs]class Request(object):
 """
 Represents the request from the server, and contains various information
 and utilities.
 """
 def __init__(self, env):
 self.params = {}
 self.files = {}

 self.env = env
 """The raw environ `dict` which is provided by the wsgi server."""

 url = env["PATH_INFO"] if "PATH_INFO" in env else ""
 self.url = urlparse.urlparse(url)
 self.url.host = env["HTTP_HOST"] if "HTTP_HOST" in env else ""
 """A `urlparse` result of the requests path"""

 self.method = env["REQUEST_METHOD"].upper() if "REQUEST_METHOD" in env else "GET"
 """The HTTP method by which the request was made, in all caps."""

 self.remote = env["HTTP_X_REAL_IP"] if "HTTP_X_REAL_IP" in env else "Unknown IP"
 """The clients IP, otherwise `Unknown IP` This is set from
 HTTP_X_REAL_IP which is a header that I personally have nginx append to
 the request before handing it to Seshat."""

 self._parse_params()

 self.headers = RequestHeaders(env)
 """Headers which were sent with the request, in the form of a
 `.RequestHeaders` object"""

 self.url_params = None
 """When a match is made in the route table, this is set to a `dict` containing the matched pattern groups in the url."""

 def _parse_params(self):
 all_mem = {}
 all_files = {}

 if "wsgi.input" in self.env:
 temp_file = tempfile.TemporaryFile()
 temp_file.write(self.env['wsgi.input'].read()) # or use buffered read()
 temp_file.seek(0)
 form = cgi.FieldStorage(fp=temp_file, environ=self.env, keep_blank_values=True)

 if isinstance(form.value, list):
 for bit in form:
 if hasattr(form[bit], "filename") and form[bit].filename is not None:
 fi = FileObject(form[bit])
 all_files[fi.name] = fi
 else:
 all_mem[bit] = form.getvalue(bit)

 temp_file.close()

 self.params = all_mem
 self.files = all_files

[docs] def get_param(self, parameter, default="", cast=str):
 """
 Allows you to get a parameter from the request. If the parameter does
 not exist, or is empty, then a default will be returned. You can also
 choose to optionally cast the parameter.

 If a parameter has multiple values then this will return a list of all
 those values.

 :param parameter: The name of the parameter to get
 :param default: The default to return if the parameter is nonexistent
 or empty
 :param cast: An optional cast for the parameter.
 """
 try:
 p = self.params[parameter]
 if type(default) == bool:
 p = parse_bool(p)

 elif cast and cast is not str:
 if cast is bool:
 p = parse_bool(p)

 else:
 p = cast(p)

 return p
 except:
 return default

[docs] def get_file(self, name):
 """
 Along with getting parameters, one may wish to retrieve other data such
 as files sent.

 This provides an interface for getting a file like
 :py:class:`.FileObject` which can be used like a normal file but also
 holds some meta data sent with the request. If no file by the given
 name is found then this will return `None`
 """
 if name in self.files and self.files[name].filename:
 return self.files[name]

 else:
 return None

 @property
[docs] def id(self):
 """
 This is more or less a backwards compatability thing. Provides access
 to the `id` element of `url_params` `dict` if it is present otherwise
 returns `None`
 """
 return self.url_params["id"] if "id" in self.url_params else None

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/down-pressed.png

_modules/seshat/controller.html

 Navigation

 		
 index

 		
 modules |

 		Seshat 2.0.0 documentation »

 		Module code »

 Source code for seshat.controller

#!/usr/bin/env python
"""
No app built with Seshat does much without controllers. This module provides a
base controller class which can be used right away in its current state, or can
be inherited from to create more advanced or custom controllers.

Basic use is like so::

 from seshat.controller import Controller

 class index(Controller):
 def GET(self):
 return "<h1>WAT</h1>"

By default all controllers have HEAD and GET methods. HEAD simply calls GET but
strips the reponse body. (HEAD is probably broken for now but I'll fix it
eventually).

"""
"""
For more information and licensing, see: https://github.com/JoshAshby/seshat

http://xkcd.com/353/

Josh Ashby
2014
http://joshashby.com
joshuaashby@joshashby.com
"""
import traceback
import actions
import logging
from response import Response
from headers import ResponseHeaders

logger = logging.getLogger("seshat.controller")

[docs]class Controller(object):
 """
 The parent of all controllers which Seshat will serve.

 To use this to make a controller, override or add the request method (in
 all caps) which will be called for this controller. Eg::

 from seshat.controller import Controller

 class index(Controller):
 def GET(self):
 return "<h1>WAT</h1>"

 then all GET based requests to this controller will return with the text
 `<h1>WAT</h1>` however all POST, PUT, DELETE calls will a 405 Method Not
 Supported error.
 """
 def __init__(self, request):
 self.request = request
 self.post_init_hook()
 self.headers = ResponseHeaders()

[docs] def post_init_hook(self):
 """
 Called at the end of `__init__` this allows you to customize the
 creation process of your controller, without having to override
 `__init__` itself.

 This should accept nothing and return nothing.
 """
 pass

 def __call__(self):
 try:
 c = self.pre_content_hook()
 if c is not None:
 if isinstance(c, actions.Action):
 return c()

 if hasattr(self, self.request.method):
 c = getattr(self, self.request.method)()

 if isinstance(c, actions.Action):
 return c()

 self.post_content_hook(c)

 return Response(200, self.headers, c)

 else:
 return actions.MethodNotSupported()()
 # TODO: Add code to make this not crash

 except Exception as e:
 tb = str(traceback.format_exc())
 logger.exception(e)
 logger.error(tb)
 return actions.InternalServerError(e, tb)()

[docs] def pre_content_hook(self):
 """
 Called before the request method is called and should return either
 `None` or :py:class:`.Action` object.

 If there is a returned value other than None, this will skip calling
 the request method and simply return directly to dispatch, so make sure
 it returns an :py:class:`.Action`.

 A good example of the use for this hook would be for authentication.
 You could for example, check a parameter set through a cookie and
 return something like a 401 Unauthorized if the param doesn't represent
 a logged in user::

 return actions.Unauthorized()

 :rtype: :py:class:`.Action` or `None`
 """
 return None

[docs] def post_content_hook(self, content):
 """
 Gets called after the content generating request method has been
 called. This can be to further modify the content which is returned, or
 perform some other action after each request.

 :param content: the content from the content generating request method
 that was called.
 :type content: `str`

 :return: The original or modified content
 :rtype: `str`
 """
 return content

[docs] def HEAD(self):
 """
 Will be called if the request method is HEAD

 By default this will call `GET()` but return nothing, so that only the
 Headers are returned to the client.
 """
 self.GET()

[docs] def GET(self):
 """
 Will be called if the request method is GET
 """
 pass

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_modules/seshat/headers.html

 Navigation

 		
 index

 		
 modules |

 		Seshat 2.0.0 documentation »

 		Module code »

 Source code for seshat.headers

#!/usr/bin/env python
"""
Seshat

For more information, see: https://github.com/JoshAshby/

http://xkcd.com/353/

Josh Ashby
2014
http://joshashby.com
joshuaashby@joshashby.com
"""
from cookies import Cookie, Cookies
import base64
import re

Thanks WebOB for this regex
accept_re = re.compile(r',\s*([^\s;,\n]+)(?:[^,]*?;\s*q=([0-9.]*))?')

def get_header_name(val):
 val = val.upper().replace("-", "_")
 return "_".join(["HTTP", val])

def get_normal_name(val):
 if val.startswith("HTTP_"):
 val = val[5:]

 return val.replace("_", "-").title()

[docs]class Authorization(object):
 """
 Basic little class to help represent an Authorization header. Currently
 only supports HTTP Basic Auth but support for digest auth is slated for
 later.

 This class is mostly unfinished at this time.
 """
 def __init__(self, auth_type, **kwargs):
 if auth_type.lower() == "basic":
 self._data = {"username": kwargs["username"],
 "password": kwargs["password"]}
 if auth_type.lower() == "digest":
 pass #TODO

 @classmethod
 def parse(cls, s):
 auth_parts = s.split(" ")
 if len(auth_parts) > 1:
 if auth_parts[0].lower() == "basic":
 name, passwd = base64.b64decode(auth_parts[1]).split(":")
 auth = cls("basic", username=name, password=passwd)

 elif auth_parts[0].lower() == "digest":
 pass #TODO: This. Maybe you should learn about HTTP digest auth...

 return auth

 @property
 def username(self):
 return self._data["username"]

 @property
 def password(self):
 return self._data["password"]

[docs]class Accept(object):
 """
 Basic class which can represent any number of the accept headers which
 commonly take on the form of: type/subtype; q=int
 """
 def __init__(self, s):
 self._data = {}
 # Again, thanks WebOB
 for match in accept_re.finditer(','+s):
 name = match.group(1)
 if name == 'q':
 continue
 quality = match.group(2)
 try:
 quality = max(min(float(quality), 1), 0) if quality else 1
 self._data[name] = quality

 except ValueError:
 pass

 def __contains__(self, val):
 if not "*/*" in self._data:
 return val in self._data

 return True

[docs] def best(self, l):
 """
 Determines which item in the provided list is the best match.

 If no match is found then it'll return `None`

 :param l: A list of strings which are various accept types.
 :type l: `list`
 """
 b = (None, 0)
 for i in l:
 if i in self:
 q = self._data[i]
 if q > b[1]:
 b = (i, q)

 return b[0]

[docs] def quality(self, item):
 """
 Returns the quality of the given accept item, if it exists in the
 accept header, otherwise it will return `None`.
 """
 if item in self:
 return self._data.get(item, None)
 else:
 return None

[docs]class RequestHeaders(object):
 """
 A basic container for all the headers in an HTTP request. Acts like a
 dictionary.
 """
 def __init__(self, env=None):
 self.env = env or {}

 self.referer = self.referrer = self.get("referer") or self.get("referrer")
 """
 The referrer address which this request originated from.
 If no referrer is present this will return `None`
 """
 self.user_agent = self.get("user-agent") or "Unknown User Agent"
 """
 The user agent, unparsed, or the string `Unknown User Agent`

 .. note:: This will probably change to a parsed result class later on.
 """

 val = get_header_name("Authorization")
 self.authorization = Authorization.parse(self[val]) if val in self else None
 """
 Returns an :py:class:`.Authorization` instance if there is an Authorization
 header in the request. Otherwise this returns `None`
 """

 val = get_header_name("Cookie")
 if val in self:
 self.cookies = Cookies.from_request(self[val])
 else:
 self.cookies = Cookies()

 val = get_header_name("Accept")
 self.accept = Accept(self[val]) if val in self else None

 val = get_header_name("Accept-Charset")
 self.accept_charset = Accept(self[val]) if val in self else None

 val = get_header_name("Accept-Encoding")
 self.accept_encoding = Accept(self[val]) if val in self else None

 val = get_header_name("Accept-Language")
 self.accept_language = Accept(self[val]) if val in self else None

 def get(self, val, default=None):
 if not val.startswith("HTTP_"):
 val = get_header_name(val)

 return self.env.get(val, default)

 def __getitem__(self, val):
 if not val.startswith("HTTP_"):
 val = get_header_name(val)

 return self.env[val]

 def __contains__(self, val):
 if not val.startswith("HTTP_"):
 val = get_header_name(val)

 return val in self.env

[docs]class ResponseHeaders(object):
 """
 Represents the headers which will be sent back to the client with the
 response. This acts a bit like an `list` of `tuples`.

 This class is mostly unfinished as of now.
 """
 def __init__(self, headers=None):
 self._headers = headers or []

[docs] def append(self, key, val):
 key = key.title()
 self._headers.append(tuple([str(key), str(val)]))

 def __add__(self, val):
 assert isinstance(val, tuple)
 self._headers.append(val)

 def __contains__(self, val):
 for header in self._headers:
 if val in header:
 return True

 return False

 def __iter__(self):
 for header in self._headers:
 yield header

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_modules/seshat/session.html

 Navigation

 		
 index

 		
 modules |

 		Seshat 2.0.0 documentation »

 		Module code »

 Source code for seshat.session

#!/usr/bin/env python
"""
Base Session class which should be used to inistantiate a new session object
which is handed off to the controllers during dispatch.
"""
"""
For more information and licensing, see: https://github.com/JoshAshby/seshat

http://xkcd.com/353/

Josh Ashby
2014
http://joshashby.com
joshuaashby@joshashby.com
"""

[docs]class Session(object):
 def __init__(self, request=None):
 self.request = request

 self.load()

[docs] def load(self):
 pass

[docs] def save(self, response):
 pass

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_static/minus.png

_modules/seshat/dispatch.html

 Navigation

 		
 index

 		
 modules |

 		Seshat 2.0.0 documentation »

 		Module code »

 Source code for seshat.dispatch

#!/usr/bin/env python
"""
Dispatch is the actual WSGI app which is served. This module also contains
several configuration properties, along with easy access to the apps route
table (:py:class:`.RouteTable`) though `route_table`.

.. note::

 If you would like to see the logs that seshat produces, using the standard
 library `logging` module, create a handler for `seshat`
"""
"""
For more information and licensing, see: https://github.com/JoshAshby/seshat

http://xkcd.com/353/

Josh Ashby
2014
http://joshashby.com
joshuaashby@joshashby.com
"""
from greenlet import greenlet
import logging

from error_catcher import catcher as error_catcher
from route_table import urls as route_table
from request import Request
from session import Session

logger = logging.getLogger("seshat.dispatch")

request_obj = Request
"""The class which should be used to create a new :py:class:`.Request` object from.
Should inherit from :py:class:`.Request`"""

session_obj = Session
"""The class which should be used to instantiate a new session object which
will be handed to the controller. Should at least inherit from :py:class:`.Session`"""

[docs]def dispatch(env, start_response):
 """
 WSGI dispatcher

 This represents the main WSGI app for Seshat.
 To use with `waitress`, for example::

 from waitress import serve
 serve(dispatch)

 """
 newHTTPObject = None

 req = request_obj(env)
 ses = session_obj(req)

 log_request(req)

 found = route_table.get(req)
 if found is not None:
 log_controller(req, found)

 newHTTPObject = found(request=req, session=ses)
 newHTTPObject = greenlet(newHTTPObject)

 res = newHTTPObject.switch()
 res = error_catcher(res, req, ses) or res

 ses.save(res)

 res.headers.append("content-length", str(len(res)))

 log_response(req, res)

 start_response(res.status, res.headers)
 yield res.body.encode("utf-8")

 else:
 res = error_catcher.error(404, req, ses)

 start_response(res.status, res.headers)
 yield res.body.encode("utf-8")

def log_request(req):
 logger.debug("""\n\r------- Request ---------------------
 Method: %s
 HOST: %s
 URL: %s
 PARAMS: %s
 FILES: %s
 IP: %s
 UA: %s
 R: %s
 """ % (req.method,
 req.url.host,
 req.url.path,
 req.params,
 req.files,
 req.remote,
 req.headers.user_agent,
 req.headers.referer))

def log_controller(req, obj):
 logger.debug("""\n\r------- Processing ------------------
 Method: %s
 URL: %s
 Object: %s
 """ % (req.method,
 req.url.path,
 obj.__module__+"/"+obj.__name__))

def log_response(req, res):
 logger.debug("""\n\r--------- Response ---------------------
 URL: %s
 Status: %s
 Error: %s
 """ % (req.url.path,
 res.status,
 res.errors))

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_modules/seshat/route.html

 Navigation

 		
 index

 		
 modules |

 		Seshat 2.0.0 documentation »

 		Module code »

 Source code for seshat.route

#!/usr/bin/env python
"""
TODO: Doc this module
"""
"""
Seshat
Web App/API framework built on top of gevent
routing decorator

For more information, see: https://github.com/JoshAshby/

http://xkcd.com/353/

Josh Ashby
2014
http://joshashby.com
joshuaashby@joshashby.com
"""
import re
import route_table as u

import logging
logger = logging.getLogger("seshat.route")

controller_folder = ""
"""The folder where the controllers are located in. Since the auto route
generation uses folder hierarchy, this setting allows to you to have
controllers in a single folder but not have that folder end up as the route
prefix."""

opt_group_name_regex = re.compile(r"(?:/\:([^/\s]+))")
Capture items that look like /:id
This is used for a search and replace using the below opt_replacement
which replaces them with functioning regex expressions to capture the
correct named groups.
opt_replacement = r"/(?P<\1>[^/\s]+)"

[docs]class Route(object):
 """
 Provides a base route table entry which is generated by the :py:func:`.route()`
 decorator described below.
 """
 controller = None
 """
 The controller object, of type :py:class:`.Controller` which this
 route represents

 :type: :py:class:`.Controller`
 """

 def __init__(self, controller=None, route=None, subdomain=None):
 """
 TODO: Finish this doc

 :param route: The url pattern to use where url paramters are denoted by colons like: :name
 :type route: str
 :param controller:
 :type controller: :py:class:`.Controller`
 """
 self.controller = controller
 self.route = route
 self.subdomain = subdomain

 @property
 def subdomain(self):
 return self._subdomain

 @subdomain.setter
 def subdomain(self, val):
 if val:
 repl = "({}.*)".format(val)
 self._subdomain = re.compile(repl, flags=re.I)
 else:
 self._subdomain = None

 @property
 def route(self):
 return self._route

 @route.setter
 def route(self, val):
 repl = opt_group_name_regex.sub(opt_replacement, val)
 repl = "^{}(?:/)?$".format(repl)
 self._route = re.compile(repl, flags=re.I)

 def match(self, url):
 if self.subdomain is not None:
 sub = self.subdomain.search(url.host)
 if sub is None:
 return None

 res = self.route.search(url.path)
 if res:
 return res.groupdict()

 def __repr__(self):
 sub = self.subdomain.pattern if self.subdomain else ""
 return "< Route Host: "+sub + " Url: " + self.route.pattern + " Controller: " + self.controller.__module__ + "/" + self.controller.__name__ + " >"

[docs]def route(r=None, s=None):
 """
 Class decorator that will take and generate a route table entry for the
 decorated :py:class:`.Controller` class, based off of its name and its file
 hierarchy if no route pattern is specified.

 Use like so::

 from seshat.controller import Controller
 from seshat.route import route

 @route()
 class index(Controller):
 pass

 which will result in a route for "/" being made for this controller.

 controllers whose name is `index` automatically get routed to the root of
 their folders, so an index controller in "profiles/" will have a route that
 looks like "/profiles"

 Controllers whose name is `view` will automatically get routed to any index
 route that has an attached ID. Eg::

 # In folder: profiles/
 class view(Controller):
 pass

 will be routed to if the request URL is "/profiles/5" and the resulting
 id will be stored in :py:attr:`.Controller.request.url_params`
 """
 def wrapper(HTTPObject):
 if r is None:
 # Build the route url
 fullModule = HTTPObject.__module__

 if controller_folder:
 folder = controller_folder.replace("/", ".")
 if folder[-1] != ".":
 folder = folder + "."

 pre_bits = fullModule.split(folder, 1)[1]

 bits = pre_bits.split(".")

 else:
 bits = fullModule.split(".")

 bases = []

 # Ignore the first and last parts of the module and make everything
 # lowercased so controllers can maybe be pep8 sometimes.
 for bit in bits[:len(bits)-1]:
 bases.append(bit.lower())

 route = "/"
 for base in bases:
 route += base + "/"

 # Everything lowercased. Because fuck uppercase... wait.
 name = HTTPObject.__name__.lower()

 if name == "index":
 route = route.rstrip("/")
 if not route:
 route = "/"

 elif name == "view":
 if route != "/":
 route += "/:id"

 else:
 route += name + "/:id"

 else:
 route += name

 route = re.sub("/{2,}", "/", route) # Make sure we don't have extra //'s

 logger.debug("""Auto generated route table entry for:
 Object: %(objectName)s
 Pattern: %(url)s
 Host: %(host)s""" % {"url": route,
 "objectName": HTTPObject.__module__ + "/" + HTTPObject.__name__,
 "host": s})

 route = Route(controller=HTTPObject, route=route, subdomain=s)
 u.urls.add(route)
 else:
 logger.debug("""Manual route table entry for:
 Object: %(objectName)s
 Pattern: %(url)s
 Host: %(host)s""" % {"url": r,
 "objectName": HTTPObject.__module__ + "/" + HTTPObject.__name__,
 "host": s})

 route = Route(controller=HTTPObject, route=r, subdomain=s)
 u.urls.add(route)

 return HTTPObject
 return wrapper

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_modules/seshat/route_table.html

 Navigation

 		
 index

 		
 modules |

 		Seshat 2.0.0 documentation »

 		Module code »

 Source code for seshat.route_table

#!/usr/bin/env python
"""
Seshat
Web App/API framework built on top of gevent
route table

For more information, see: https://github.com/JoshAshby/

http://xkcd.com/353/

Josh Ashby
2014
http://joshashby.com
joshuaashby@joshashby.com
"""

[docs]class RouteTable(object):
 def __init__(self):
 self.routes = []

[docs] def add(self, container):
 """
 Adds the given route container to the route table.

 :param r_container: The route container which contains the url and controller for a route.
 :type r_container: :py:class:`.Route`
 """
 self.routes.append(container)

[docs] def get(self, request):
 """
 Attempts to find the closest match to the given url, through comparing
 lots of regexs for a match against the url.

 :param request: The requested url
 :type request: `urlparse.ParseResult`
 :return: :py:class:`.Controller` or `None`
 """
 parsed_url = request.url
 obj = None

 for container in self.routes:
 res = container.match(parsed_url)
 if res is not None:
 obj = container.controller
 request.url_params = res

 if not container.controller.__name__ == "view":
 break

 return obj

 def __repr__(self):
 routes = ""
 routes_template = "\t{key}:\n\t\t{value}\n"
 for route in self.routes:
 route = routes_template.format(key=route.route.pattern, value=route.controller)
 routes = ''.join([routes, route])

 string = "< RouteTable @ {id} Table:\n{table}\n >"
 string = string.format(id=id(self), table=routes)

 return string

urls = RouteTable()

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_modules/seshat/actions.html

 Navigation

 		
 index

 		
 modules |

 		Seshat 2.0.0 documentation »

 		Module code »

 Source code for seshat.actions

#!/usr/bin/env python
"""
Actions allow you to write code that looks like::

 class RandomController(Controller):
 def GET(self):
 return Redirect("/")

This module provides a few common Action classes to use, along with a base
Action class which can be inherited to create your own Actions by overriding
the `__init__` function.
"""
"""
For more information and licensing, see: https://github.com/JoshAshby/seshat

http://xkcd.com/353/

Josh Ashby
2014
http://joshashby.com
joshuaashby@joshashby.com
"""
from response import Response

[docs]class Action(object):
 """
 Provides a base for creating a new object which represents an HTTP Status code.

 All returned data is checked if it is of type :py:class:`.Action` and if so, the
 data/actions head is returned rather than the controllers head. This allows
 for a syntax like::

 return NotFound()

 which will cause the controller to return a 404 status code.

 To create a new action, inherit this class then make a new `__init__(self, *kargs)`
 which sets `self.response` to a :py:class:`.Reponse` object (or just call
 super), and adds any headers or status changes to that :py:class:`.Response` object.
 """
 def __init__(self):
 self.response = Response()

 def __call__(self): return self.response

##
 ###### ### ###
 # ## ## ## ##
 # ## ## ## ##
 # ## ## ## ##
 ###### ## ## ## ##
 # ## ## ## ##
 # ## ## ## ##
 # ## ## ## ##
 ###### ### ###
##

[docs]class Redirect(Action):
 """
 Returns a 303 See Other status code along with a `location` header back
 to the client.

 :param loc: The location to which the client should be redirect to
 :type loc: str
 """
 def __init__(self, loc):
 self.response = Response()
 self.response.status = 303
 self.response.headers.append("Location", loc)

##
 ### ### ###
 # # ## ## ## ##
 # # ## ## ## ##
 # # ## ## ## ##
 ####### ## ## ## ##
 # ## ## ## ##
 # ## ## ## ##
 # ## ## ## ##
 # ### ###
##

[docs]class BadRequest(Action):
 """Returns a 400 BAD REQUEST"""
 def __init__(self):
 self.response = Response()
 self.response.status = 400

[docs]class Unauthorized(Action):
 """
 Returns a 401 UNAUTHORIZED back to the client

 This should probably also include a WWW-Authenticate header, but I'll leave
 that for later right now.
 """
 def __init__(self):
 self.response = Response()
 self.response.status = 401

[docs]class Forbidden(Action):
 """Returns a 403 FORBIDDEN"""
 def __init__(self):
 self.response = Response()
 self.response.status = 403

[docs]class NotFound(Action):
 """Returns a 404 Not Found"""
 def __init__(self):
 self.response = Response()
 self.response.status = 404

[docs]class MethodNotAllowed(Action):
 """
 Returns a 405 METHOD NOT ALLOWED

 :param allow: A `list` of allowable methods
 :type allow: list
 """
 def __init__(self, allow):
 self.response = Response()
 self.response.status = 405
 assert type(allow) is list
 a = ", ".join(allow).upper()
 self.response.headers.append("Allow", a)

##
 ##### ### ###
 # ## ## ## ##
 # ## ## ## ##
 # ## ## ## ##
 #### ## ## ## ##
 # ## ## ## ##
 # ## ## ## ##
 # ## ## ## ##
 #### ### ###
##

[docs]class InternalServerError(Action):
 """
 Returns a 500 INTERNAL SERVER ERROR

 :param e: The Exception
 :type e: Exception

 :param tb: The traceback of the exception
 :type tb: str
 """
 def __init__(self, e=None, tb=None):
 self.response = Response()
 self.response.status = 500
 self.response.errors = (e, tb)

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		Seshat 2.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_static/up.png

_modules/seshat/response.html

 Navigation

 		
 index

 		
 modules |

 		Seshat 2.0.0 documentation »

 		Module code »

 Source code for seshat.response

#!/usr/bin/env python
"""
TODO: doc this
"""
"""
For more information, see: https://github.com/JoshAshby/

http://xkcd.com/353/

Josh Ashby
2014
http://joshashby.com
joshuaashby@joshashby.com
"""
from headers import ResponseHeaders

Thanks werkzeug
Shamefully taken from https://github.com/mitsuhiko/werkzeug/blob/master/werkzeug/http.py#L63
lookup_codes = {
 100: 'Continue',
 101: 'Switching Protocols',
 102: 'Processing',
 200: 'OK',
 201: 'Created',
 202: 'Accepted',
 203: 'Non Authoritative Information',
 204: 'No Content',
 205: 'Reset Content',
 206: 'Partial Content',
 207: 'Multi Status',
 226: 'IM Used', # see RFC 3229
 300: 'Multiple Choices',
 301: 'Moved Permanently',
 302: 'Found',
 303: 'See Other',
 304: 'Not Modified',
 305: 'Use Proxy',
 307: 'Temporary Redirect',
 400: 'Bad Request',
 401: 'Unauthorized',
 402: 'Payment Required', # unused
 403: 'Forbidden',
 404: 'Not Found',
 405: 'Method Not Allowed',
 406: 'Not Acceptable',
 407: 'Proxy Authentication Required',
 408: 'Request Timeout',
 409: 'Conflict',
 410: 'Gone',
 411: 'Length Required',
 412: 'Precondition Failed',
 413: 'Request Entity Too Large',
 414: 'Request URI Too Long',
 415: 'Unsupported Media Type',
 416: 'Requested Range Not Satisfiable',
 417: 'Expectation Failed',
 418: 'I\'m a teapot', # see RFC 2324
 422: 'Unprocessable Entity',
 423: 'Locked',
 424: 'Failed Dependency',
 426: 'Upgrade Required',
 428: 'Precondition Required', # see RFC 6585
 429: 'Too Many Requests',
 431: 'Request Header Fields Too Large',
 449: 'Retry With', # proprietary MS extension
 500: 'Internal Server Error',
 501: 'Not Implemented',
 502: 'Bad Gateway',
 503: 'Service Unavailable',
 504: 'Gateway Timeout',
 505: 'HTTP Version Not Supported',
 507: 'Insufficient Storage',
 510: 'Not Extended'
}

def get_status_code_str(num):
 s = lookup_codes.get(num, None)
 if s:
 s = s.upper()
 s = "{} {}".format(num, s)

 return s

[docs]class Response(object):
 def __init__(self, status_code=200, headers=None, body=None):
 self.status = status_code
 self.body = body or ""
 self.errors = None

 if isinstance(headers, ResponseHeaders):
 self.headers = headers
 else:
 self.headers = ResponseHeaders(headers)

 def __len__(self):
 return len(self.body)

 def __repr__(self):
 return "<Response at {id} with status={status}, headers={headers}, body={body}".format(id=id(self), status=self.status, headers=self.headers, body=self.body)

 @property
 def status(self):
 return self._status

 @status.setter
[docs] def status(self, val):
 if isinstance(val, int):
 s = get_status_code_str(val)
 else:
 s = val

 self._status = s

 © Copyright 2014, Joshua P Ashby.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/comment.png

_static/down.png

_static/ajax-loader.gif

_static/file.png

