

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/securitymonkey/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/securitymonkey/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Development Guidelines

Adding a Watcher

Watchers are located in the watchers directory. Some related watcher types are grouped together in common sub directories. An example would be IAM types.

If a watcher is specific to an organization and is not intended to be contributed back to the OSS community, it should be placed under the watchers/custom directory.

Any class that extends Watcher, overrides index and is located under the watchers directory will be dynamically loaded by the Security Monkey application at runtime.

All watchers extend the Watcher class located in the watcher.py file. This base class implements common functionality such as storing items to the database and determining which items are new, changed or deleted. Some related watchers also have a common base class to implement common functionality. Examples would be IAM watchers.

Each watcher implementation must override the following:

	The slurp() method pulls the current set of items in scheduled intervals.

	The watcher should implement a subclass of the ChangeItem found in the watcher module that is specific to the type the watcher will be pulling in the slurp method

	The member variables index must be overridden with a unique String that will identify the item type in the database.

	the member variables i_am_singular and i_am_plural must be overridden with unique values for use in logging.

Watchers may benefit from using the joblib library to parallelize the processing of jobs. This will substantially increase performance of the watcher, especially for those requiring multiple API calls to fetch relevant data. Refer to IAMRole Watcher for an example.

Sample Watcher structure:

from security_monkey.watcher import Watcher
from security_monkey.watcher import ChangeItem

class Sample(Watcher):
 index = 'sample'
 i_am_singular = 'Sample'
 i_am_plural = 'Samples'

def __init__(self, accounts=None, debug=False):
 super(Sample, self).__init__(accounts=accounts, debug=debug)

def slurp(self):
 # Look up relevant items, convert to list of SampleItem's, return list

class SampleItem(ChangeItem):
 def __init__(self, account=None, name=None, region=None, config={}):
 super(SampleItem, self).__init__(
 index=Sample.index,
 region=region,
 account=account,
 name=name,
 new_config=config)

New Watchers may also require additional code:

	If the api to access the system to be watched requires an explicit connection, connection functionality should be placed in the sts_connect module.

Adding an Auditor

A watcher may have one or more associated Auditors that will be run against all new or modified items to determine if there are any security issues. In order to be associated with a Watcher, the auditor class must override the index to match that of it’s associated watcher.

If an auditor is specific to an organization and is not intended to be contributed back to the OSS community, it should be placed under the auditors/custom directory.

Any class extending Auditor, overriding index and residing under the auditors directory. will be dynamically loaded and considered for execution agains a watcher. As with the related watchers, closely related auditors may be grouped within sub directories or have base classes with common functionality.

All auditors override the Auditor base class. Minimal functionality would override the index, i_am_singular and i_am_plural to match those in the associated watcher class. In addition, at least one method starting with ‘check_‘ would be present, as each method starting with ‘check_‘ will be run against new or changed items returned by the watcher:

from security_monkey.watchers.sample import Sample

class SampleAuditor(Auditor):
 index = Sample.index
 i_am_singular = Sample.i_am_singular
 i_am_plural = Sample.i_am_plural

 def __init__(self, accounts=None, debug=False):
 super(SampleAuditor, self).__init__(accounts=accounts, debug=debug)

 check_xxx(self, sample_item):
 # check the item for security risks
 if risk:
 self.add_issue(0, 'issue message', sample_item, notes='optional notes')

If an issue is found, the ‘check_‘ method should call add_issue to save the issue to the database.

Advanced Auditor Dependencies

In some cases, an auditor needs information from technology types other than that of the associated watcher to determine if there is a security risk. One example is the determination of whether or not a route table is open to the internet. This requires the ability to match a route gateway with the results of the VPC internet gateway returned by the VPC watcher. The Auditor base class provides the method get_watcher_support_items() to make the current results from one watcher available to another. In order to easily track which watchers and auditors are dependent on each other, an additional configuration is required in the in the Auditor class:

class SampleAuditor(Auditor):
 index = Sample.index
 i_am_singular = Sample.i_am_singular
 i_am_plural = Sample.i_am_plural
 support_watcher_indexes=[DependencyWatcher.index]

Without this declaration the call to get_watcher_support_items() will fail.

There are instances where auditor logic is dependent not just on the items from other watchers, but also on the actual audit results. One example would be an IAM Group which was configured to use an AWS managed policy. If the managed policy contained a security risk, that risk would also be present in IAM Groups using this policy. The concept of auditor hierarchies was introduces to manage this.

The base Auditor object contains a method called get_auditor_support_items() that is similar to get_watcher_support_items() except that in addition to the items returned by the watcher, it also returns the latest audit results for each item. This introduces the risk of circular dependencies because if AuditorA is dependent on AuditorB, in order to make AuditorB results available when AuditorA is run:

	AuditorB must be run before AuditorA and

	AuditorB cannot be dependent an AuditorA, nor may any dependencies of AuditorB be dependent on AuditorA

In order to manage this, the the auditor class required a list of dependent auditors to be declared:

class SampleAuditor(Auditor):
 index = Sample.index
 i_am_singular = Sample.i_am_singular
 i_am_plural = Sample.i_am_plural
 support_auditor_indexes=[DependencyAuditor.index]

Without this declaration the call to get_auditor_support_items() will fail.

However, if any circular dependencies are detected the system will throw an exception with the the message at startup:

Detected circular dependency in support auditor {path of circular dependency}

Linking to Auditor Dependencies

Typically, if an audit issue is dependent on another one, a the two should be linked:

[image: image]

This can be achieved by the Auditor link_to_support_item_issues() method.

Custom Account Types

By default, Security Monkey runs against a basic AWS account but the custom account framework allows the developer to either extend an AWS account with additional metadata or to create a totally different account type to be monitored, such as an Active Directory account.

All account types extend the AccountManager class and are located in the account_managers directory. Account types specific to an organization which are not intended to be contributed back to the OSS community should be placed in the account_managers/custom directory.

Data Structure

The account contains five common fields:

	name is the Security Monkey application defined name

	identifer is unique identifier of the account used to connect. For AWS accounts this would be the number

	active is a flag that determines whether to report on the account

	notes additional account information

	third_party AWS specific field that is used in Auditor._check_cross_account

When creating a custom account type, additional fields may be added using the account_manager.CustomFieldConfig objects which is used to display the fields on the Account Settings page:

class CustomFieldConfig(object):
 """
 Defines additional field types for custom account types
 """
 def __init__(self, name, label, db_item, tool_tip, password=False):
 super(CustomFieldConfig, self).__init__()
 self.name = name
 self.label = label
 self.db_item = db_item
 self.tool_tip = tool_tip
 self.password = password

Values created from this page are saved in the DB using the datastore.AccountTypeCustomValues class is the db_item flag is True.

Creating a Custom Account Type

Custom account types must override three values:

	account_type is a unique identifier for the type which is also used in the Watcher class to determine which watcher(s) to run against which account(s).

	identifier_label is used in the Account Settings page to display the label for the unique identifier for the account.

	identifier_tooltip is also used in the Account Settings page.

The following overrides are optional:

	compatable_account_types is a list that will cause watchers of these account types to also be run against the account. This is used when an account type overrides another account type to add additional data elements.

	custom_field_configs adds additional fields as described above

	def _load(self, account): this method is called to load custom fields from some third party datasource when the CustomFieldConfig.db_item field is defined as False

Examples of these overrides are available at:

	Sample Active Directory Account Type

	Sample Active DB Extended AWS Account Type

	Sample Active External Extended AWS Type

Nginx setup

Nginx is a very popular choice to serve a Python project:

	It’s fast.

	It’s lightweight.

	Configuration files are simple.

If you have your own server, it’s the best choice.

Nginx doesn’t run any Python process, it only serve requests from outside to the Python server.

Therefor there are two steps:

	Run the Python process.

	Run Nginx.

You will benefit from having:

	the possibility to have several projects listening to the port 80;

	your web site processes won’t run with admin rights, even if –user doesn’t work on your OS;

	the ability to manage a Python process without touching Nginx or the other processes. It’s very handy for updates.

The Python process

Run Security Monkey as usual, but this time make it listen to a local port and host. E.G:

monkey run_api_server

If using the flask server in debug mode (monkey runserver), the python code will be reloaded when any file is changed.
However, in production we use gunicorn (monkey run_api_server) which does not reload. This means you have to restart the Python process to see the changes effect. Having a separate process let you do this without having to restart the server.

Nginx

Nginx can be installed with you usual package manager, so we won’t cover installing it.

You must create a Nginx configuration file for Security Monkey. On GNU/Linux, they usually go into /etc/nginx/conf.d/. Name it securitymonkey.conf.

The minimal configuration file to run the site is:

add_header X-Content-Type-Options "nosniff";
add_header X-XSS-Protection "1; mode=block";
add_header X-Frame-Options "SAMEORIGIN";
add_header Strict-Transport-Security "max-age=631138519";
add_header Content-Security-Policy "default-src 'self'; font-src 'self' https://fonts.gstatic.com; script-src 'self' https://ajax.googleapis.com; style-src 'self' https://fonts.googleapis.com;";

server {
 listen 0.0.0.0:443 ssl;
 ssl_certificate /etc/ssl/certs/server.crt;
 ssl_certificate_key /etc/ssl/private/server.key;
 access_log /var/log/security_monkey/security_monkey.access.log;
 error_log /var/log/security_monkey/security_monkey.error.log;

 location ~* ^/(reset|confirm|healthcheck|register|login|logout|api) {
 proxy_read_timeout 120;
 proxy_pass http://127.0.0.1:5000;
 proxy_next_upstream error timeout invalid_header http_500 http_502 http_503 http_504;
 proxy_redirect off;
 proxy_buffering off;
 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 location /static {
 rewrite ^/static/(.*)$ /$1 break;
 root /usr/local/src/security_monkey/security_monkey/static;
 index ui.html;
 }

 location / {
 root /usr/local/src/security_monkey/security_monkey/static;
 index ui.html;
 }

}

proxy_pass just passes the external request to the Python process. The port much match the one used by the 0bin process of course.

This makes Nginx serve the favicon and static files which is is much better at than python.

IAM Role Setup on GCP

Below describes how to install Security Monkey on GCP.

Install gcloud

If you haven’t already, install gcloud from the downloads [https://cloud.google.com/sdk/downloads] page. gcloud enables you to administer VMs, IAM policies, services and more from the command line.

Setup Service Account

To restrict which permissions Security Monkey has to your projects, we’ll create a Service Account [https://cloud.google.com/compute/docs/access/service-accounts] with a special role.

	Access the Google console [https://console.cloud.google.com/home/dashboard].

	Under “IAM & Admin”, select “Service accounts.”

	Select “Create Service Account”.
	Name: “securitymonkey”

	Add Role “IAM->SecurityReviewer”

	Add Role “Project->Viewer”

	If you’re going to monitor your GCP services from an AWS instance, check the box “Furnish a new private key” and ensure JSON is selected as the Key type.

	Hit “Create”

[image: Create Service Account]

	Select the newly created “securitymonkey” services account and click on “Permissions”.
	Type in your Google email adddress and select the Owner role.

	Press “Add”.

[image: Add User to Service Account]

Enable IAM API

For each GCP project you would like Security Monkey to access, you’ll need to enable the IAM API. Visit the IAM API page [https://console.cloud.google.com/apis/api/iam.googleapis.com/overview] page in the web console
and click ‘Enable API’ at the top of the screen. When dealing with many projects, you might prefer to do this with the gcloud command. For details on how to enable services with gcloud, visit the
service-management [https://cloud.google.com/service-management/enable-disable#enabling_services] page. The IAM service name is ‘iam.googleapis.com’.

Next:

	Back to the Quickstart

Quick Start Guide

Setup on AWS or GCP

Security Monkey can run on an Amazon EC2 (AWS) instance or a Google Cloud Platform (GCP) instance (Google Cloud Platform). The only real difference in the installation is the IAM configuration and the bringup of the Virtual Machine that runs Security Monkey.

IAM Permissions

	AWS IAM instructions.

	GCP IAM instructions.

Database

Security Monkey needs a postgres database. Select one of the following:

	Local Postgres (You’ll set this up later once you have an instance up.)

	Postgres on AWS RDS.

	Postgres on GCP’s Cloud SQL.

Launch an Instance:

	docker instructions.

	Launch an AWS instance.

	Launch a GCP instance.

Install Security Monkey on your Instance

Installation Steps:

	Prerequisites

	Setup a local postgres server

	Clone security_monkey

	Compile (or Download) the web UI

	Review the config

Prerequisites

Create the logging folders:

sudo mkdir /var/log/security_monkey
sudo mkdir /var/www
sudo chown -R `whoami`:www-data /var/log/security_monkey/
sudo chown www-data /var/www

Let’s install the tools we need for Security Monkey:

sudo apt-get update
sudo apt-get -y install python-pip python-dev python-psycopg2 postgresql postgresql-contrib libpq-dev nginx supervisor git libffi-dev gcc python-virtualenv

Local Postgres

If you’re not ready to setup AWS RDS or Cloud SQL, follow these instructions to setup a local postgres DB.

Install Postgres:

sudo apt-get install postgresql postgresql-contrib

Configure the DB:

sudo -u postgres psql
CREATE DATABASE "secmonkey";
CREATE ROLE "securitymonkeyuser" LOGIN PASSWORD 'securitymonkeypassword';
CREATE SCHEMA secmonkey;
GRANT Usage, Create ON SCHEMA "secmonkey" TO "securitymonkeyuser";
set timezone TO 'GMT';
select now();
\q

Clone security_monkey

Releases are on the master branch and are updated about every three months. Bleeding edge features are on the develop branch.

cd /usr/local/src
sudo git clone --depth 1 --branch develop https://github.com/Netflix/security_monkey.git
sudo chown -R `whoami`:www-data /usr/local/src/security_monkey
cd security_monkey
virtualenv venv
source venv/bin/activate
pip install --upgrade setuptools
pip install --upgrade pip
pip install --upgrade urllib3[secure] # to prevent InsecurePlatformWarning
pip install google-compute-engine # Only required on GCP
python setup.py develop

Compile (or Download) the web UI

If you’re using the stable (master) branch, you have the option of downloading the web UI instead of compiling it. Visit the latest release https://github.com/Netflix/security_monkey/releases/latest and download static.tar.gz.

If you’re using the bleeding edge (develop) branch, you will need to compile the web UI by following these instructions:

Get the Google Linux package signing key.
$ curl https://dl-ssl.google.com/linux/linux_signing_key.pub | sudo apt-key add -

Set up the location of the stable repository.
cd ~
curl https://storage.googleapis.com/download.dartlang.org/linux/debian/dart_stable.list > dart_stable.list
sudo mv dart_stable.list /etc/apt/sources.list.d/dart_stable.list
sudo apt-get update
sudo apt-get install -y dart

Build the Web UI
cd /usr/local/src/security_monkey/dart
/usr/lib/dart/bin/pub get
/usr/lib/dart/bin/pub build

Copy the compiled Web UI to the appropriate destination
sudo mkdir -p /usr/local/src/security_monkey/security_monkey/static/
sudo /bin/cp -R /usr/local/src/security_monkey/dart/build/web/* /usr/local/src/security_monkey/security_monkey/static/
sudo chgrp -R www-data /usr/local/src/security_monkey

Configure the Application

Security Monkey ships with a config for this quickstart guide called config.py. You can override this behavior by setting the SECURITY_MONKEY_SETTINGS environment variable.

Modify env-config/config.py:

	FQDN: Add the IP or DNS entry of your instance.

	SQLACHEMY_DATABASE_URI: This config assumes that you are using the local db option. If you setup AWS RDS or GCP Cloud SQL as your database, you will need to modify the SQLACHEMY_DATABASE_URI to point to your DB.

	SECRET_KEY: Something random.

	SECURITY_PASSWORD_SALT: Something random.

For an explanation of the configuration options, see options.

Create the database tables:

Security Monkey uses Flask-Migrate (Alembic) to keep database tables up to date. To create the tables, run this command:

cd /usr/local/src/security_monkey/
monkey db upgrade

Populate Security Monkey with Accounts

Add Amazon Accounts

This will add Amazon owned AWS accounts to security monkey. :

monkey amazon_accounts

Add Your AWS/GCP Accounts

You’ll need to add at least one account before starting the scheduler. It’s easiest to add them from the command line, but it can also be done through the web UI. :

monkey add_account_aws
usage: manage.py add_account_aws [-h] -n NAME [--thirdparty] [--active]
 [--notes NOTES] --id IDENTIFIER
 [--update-existing]
 [--canonical_id CANONICAL_ID]
 [--s3_name S3_NAME] [--role_name ROLE_NAME]

monkey add_account_gcp
usage: manage.py add_account_gcp [-h] -n NAME [--thirdparty] [--active]
 [--notes NOTES] --id IDENTIFIER
 [--update-existing] [--creds_file CREDS_FILE]

Create the first user:

Users can be created on the command line or by registering in the web UI:

$ monkey create_user "you@youremail.com" "Admin"
> Password:
> Confirm Password:

create_user takes two parameters:

	email address

	role (One of [View, Comment, Justify, Admin])

Setting up Supervisor

Supervisor will auto-start security monkey and will auto-restart security monkey if it crashes.

Copy supervisor config:

chgrp -R www-data /var/log/security_monkey
sudo cp /usr/local/src/security_monkey/supervisor/security_monkey.conf /etc/supervisor/conf.d/security_monkey.conf
sudo service supervisor restart
sudo supervisorctl status

Supervisor will attempt to start two python jobs and make sure they are running. The first job, securitymonkey, is gunicorn, which it launches by calling manage.py run_api_server.

The second job supervisor runs is the scheduler, which polls for changes.

You can track progress by tailing /var/log/security_monkey/securitymonkey.log.

Create an SSL Certificate

For this quickstart guide, we will use a self-signed SSL certificate. In production, you will want to use a certificate that has been signed by a trusted certificate authority.:

$ cd ~

There are some great instructions for generating a certificate on the Ubuntu website:

Ubuntu - Create a Self Signed SSL Certificate [https://help.ubuntu.com/14.04/serverguide/certificates-and-security.html]

The last commands you need to run from that tutorial are in the “Installing the Certificate” section:

sudo cp server.crt /etc/ssl/certs
sudo cp server.key /etc/ssl/private

Once you have finished the instructions at the link above, and these two files are in your /etc/ssl/certs and /etc/ssl/private, you are ready to move on in this guide.

Setup Nginx:

Security Monkey uses gunicorn to serve up content on its internal 127.0.0.1 address. For better performance, and to offload the work of serving static files, we wrap gunicorn with nginx. Nginx listens on 0.0.0.0 and proxies some connections to gunicorn for processing and serves up static files quickly.

securitymonkey.conf

Copy the config file into place:

sudo cp /usr/local/src/security_monkey/nginx/security_monkey.conf /etc/nginx/sites-available/security_monkey.conf
sudo ln -s /etc/nginx/sites-available/security_monkey.conf /etc/nginx/sites-enabled/security_monkey.conf
sudo rm /etc/nginx/sites-enabled/default
sudo service nginx restart

Logging into the UI

You should now be able to reach your server

[image: image]

User Guide

See the User Guide for a walkthrough of the security_monkey features.

Contribute

It’s easy to extend security_monkey with new rules or new technologies. Please read our Contributing Documentation.

Plugins

Security Monkey can be extended by writing own Account Managers, Watchers and Auditors. To do this you need to create a subclass of either security_monkey.account_manager.AccountManager, security_monkey.watcher.Watcher or security_monkey.auditor.Auditor.

To make extension available to Security Monkey it should have entry point under group security_monkey.plugins.

Sample AccountManager plugin

Assume we have a file account.py in directory my_sm_plugins/my_sm_plugins/account.py:

from security_monkey.account_manager import AccountManager

class MyAccountManager(AccountManager):
 pass

NOTE: there also shoule be file my_sm_plugins/my_sm_plugins/__init__.py

And we have a file setup.py in directory my_sm_plugins:

from setuptools import setup, find_packages

setup(
 name="my_sm_plugins",
 version="0.1-dev0",
 packages=find_packages(),
 include_package_data=True,
 install_requires=["security_monkey"],
 entry_points={
 "security_monkey.plugins": [
 "my_sm_plugins.account = my_sm_plugins.account",
]
 }
)

Then we can install my_sm_plugins package and have security_monkey with our plugin available.

Postgres on GCP

If you are deploying Security Monkey on GCP and decide to use Cloud SQL, it’s recommended to run Cloud SQL Proxy [https://cloud.google.com/sql/docs/postgres/sql-proxy] to connect to Postgres. To use Postgres on Cloud SQL, create a new instance from your GCP console and create a password for the postgres user when Cloud SQL prompts you. (If you ever need to reset the postgres user’s password, refer to the Cloud SQL documentation [https://cloud.google.com/sql/docs/postgres/create-manage-users].)

After the instance is up, run Cloud SQL Proxy:

$./cloud_sql_proxy -instances=[INSTANCE CONNECTION NAME]=tcp:5432 &

You can find the instance connection name by clicking on your Cloud SQL instance name on the Cloud SQL dashboard [https://console.cloud.google.com/sql/instances] and looking under “Properties”. The instance connection name is something like [PROJECT_ID]:[REGION]:[INSTANCENAME].

You’ll need to run Cloud SQL Proxy on whichever machine is accessing Postgres, e.g. on your local workstation as well as on the GCE instance where you’re running Security Monkey.

Connect to the Postgres instance:

$ sudo -u postgres psql -h 127.0.0.1 -p 5432

After you’ve connected successfully in psql, follow the instructions in Setup Postgres_ to set up the Security Monkey database.

Next:

	Back to the Quickstart

Miscellaneous

Force Audit

Sometimes you will want to force an audit even though there is no configuration change in AWS resources.

For instance when you change a whitelist or add a 3rd party account, configuration will not be audited again until the daily check at 10am.

In this case, you can force an audit by running:

monkey audit_changes -m s3

For an email by adding -r True:

monkey audit_changes -m s3 -r True

Scheduler Hacking

Edit security_monkey/scheduler.py to change daily check schedule:

scheduler.add_cron_job(_audit_changes, hour=10, day_of_week="mon-fri", args=[account, auditors, True])

Edit security_monkey/watcher.py to change check interval from every 15 minutes:

self.interval = 15

Overriding and Disabling Audit Checks

Auditor checks may be disabled or the default scores overridden by navigating to the “Audit Issue Scores” tab on the Settings page.

Audit check functions may be disabled by selecting the auditor’s technology and method:

[image: image]

This will result in the check method not being run on the next audit full, which will remove any existing issue previously generated.

The default score of the check method may also be overridden:

[image: image]

This will replace the score of issues generated by this check method with the configured one on the next full audit.

Once an audit score is added it becomes possible to create additional override scores based on account patterns:

[image: image]

The Account Pattern Audit Scores box allows the user to add or update additional conditions for overriding the audit scores:

[image: image]

The Account Field box is prepopulated with both the standard and non-password type custom fields for the given Account Type.

After saving the pattern score, it will be associated the the Audit Override Score record:

[image: image]

On the next full audit, the score for the configured check method will be replaced with an audit override score from the account pattern list if the account field matches the value.

If no account pattern scores match the account, the override score it will default to the generic override score configured.

Audit override scores may also be set up though the Command line interface functions add_override_score (for a single score) and add_override_scores (from a csv file)

Note::

Currently there is no implementation of an account pattern field hierarchy, so the first account
pattern score encountered that matches the account being audited will be used as the override for
the check method in question. As such, if account pattern scores of different account fields are
entered for a single check method there is a possibility of unpredictable results and it is recommended
that only a single field is selected for defining patterns.

Custom Alerters

Adding a custom alerter class allows users to add their own alerting anytime changes are found in watchers or auditors. The functionality in the alerter.py module send emails only when the reporter is finished running. The custom alerter reports are triggered when manually running find_changes and audit_changes as well as when the reporter runs.

A sample customer alerter would be a SplunkAlerter module that logs watcher and auditor changes to be ingested into Splunk:

from security_monkey.alerters import custom_alerter

class SplunkAlerter(object):
 __metaclass__ = custom_alerter.AlerterType

 def report_watcher_changes(self, watcher):
 """
 Collect change summaries from watchers defined logs them
 """
 """
 Logs created, changed and deleted items for Splunk consumption.
 """

 for item in watcher.created_items:
 app.splunk_logger.info(
 "action=\"Item created\" "
 "id={} "
 "resource={} "
 "account={} "
 "region={} "
 "name=\"{}\"".format(
 item.db_item.id,
 item.index,
 item.account,
 item.region,
 item.name))

 for item in watcher.changed_items:
 app.splunk_logger.info(
 "action=\"Item changed\" "
 "id={} "
 "resource={} "
 "account={} "
 "region={} "
 "name=\"{}\"".format(
 item.db_item.id,
 item.index,
 item.account,
 item.region,
 item.name))

 for item in watcher.deleted_items:
 app.splunk_logger.info(
 "action=\"Item deleted\" "
 "id={} "
 "resource={} "
 "account={} "
 "region={} "
 "name=\"{}\"".format(
 item.db_item.id,
 item.index,
 item.account,
 item.region,
 item.name))

 def report_auditor_changes(self, auditor):
 for item in auditor.items:
 for issue in item.confirmed_new_issues:
 app.splunk_logger.info(
 "action=\"Issue created\" "
 "id={} "
 "resource={} "
 "account={} "
 "region={} "
 "name=\"{}\" "
 "issue=\"{}\"".format(
 issue.id,
 item.index,
 item.account,
 item.region,
 item.name,
 issue.issue))

 for issue in item.confirmed_fixed_issues:
 app.splunk_logger.info(
 "action=\"Issue fixed\" "
 "id={} "
 "resource={} "
 "account={} "
 "region={} "
 "name=\"{}\" "
 "issue=\"{}\"".format(
 issue.id,
 item.index,
 item.account,
 item.region,
 item.name,
 issue.issue))

Postgres on AWS

Amazon can host your postgres database in their RDS service [https://aws.amazon.com/rds/]. We recommend using AWS RDS or GCP Cloud SQL to productionalize your security_monkey deployment.

Create a Postgres RDS instance in the same region you intend to launch your security_monkey instance.

[image: Create RDS Instance]

The AWS supplied defaults should get you going. You will need to use the hostname, dbname, username, password to create a SQLALCHEMY_DATABASE_URI for your config.

SQLALCHEMY_DATABASE_URI = 'postgresql://securitymonkeyuser:securitymonkeypassword@hostname:5432/secmonkey'

Advanced users may wish to supply a KMS key for encryption at rest.

Next:

	Quickstart

Development Setup on Windows

Please follow the instructions below for setting up the Security Monkey development environment on Windows 10.

These instructions were created after consulting my install notes after recently getting a Windows 10 machine. If you’re a Powershell guru, please feel free to send a PR to fix any errors.

Windows Development

I’m pretty happy with development on Windows. Docker seems much easier to work with (No need for virtualbox). Gunicorn does not yet support Windows (Issue #524). Luckily, we don’t need Gunicorn for local dev. Powershell is a worthy command line environment. If all else fails, use WSL (Windows Subsystem for Linux).

AWS Credentials

You will need to have the proper IAM Role configuration in place. See IAM Role Setup on AWS for more details. Additionally, you will need to have IAM keys available within your environment variables. There are many ways to accomplish this. Please see Amazon’s documentation for additional details: http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html.

Additionally, see the boto documentation for more information: http://boto.readthedocs.org/en/latest/boto_config_tut.html

Install Chocolatey

Follow the instructions to install Chocolatey:

https://chocolatey.org/install

Install Python

Install python 2.7 with Chocolatey.:

choco install python2

Setup Powershell

The following steps are a summary of the steps at http://www.tylerbutler.com/2012/05/how-to-install-python-pip-and-virtualenv-on-windows-with-powershell/

Execution Policy

You’ll need to set the execution policy. There are a few options described at https://technet.microsoft.com/en-us/library/ee176961.aspx

You’ll need to run something like this:

Set-ExecutionPolicy RemoteSigned

VirtualEnv

Install virtualenv and virtualenvwrapper from pypi:

pip install virtualenv
pip install virtualenvwrapper-powershell

Try to import the powershell module:

Import-Module virtualenvwrapper

At this point you may receive the following error:

Get-Content : Cannot find path 'Function:\TabExpansion' because it does not exist.

You’ll need to find and edit the file virtualenvwrapperTabExpansion.psm1. On line 12, replace Get-Content Function:TabExpansion with Get-Content Function:TabExpansion2. This should fix the import error.

If the ~/.virtualenvs folder wasn’t created, do that now:

mkdir ~/.virtualenvs

Automatically import the virtualenvwrapper module on powershell startup.

In bash, you would typically edit your ~/.bashrc to load modules and setup your environment. On Powershell, you’ll use $profile. Powershell has a few different $profiles you can use. You can see them all with this command:

$profile | Format-List * -Force
AllUsersAllHosts : C:\Windows\System32\WindowsPowerShell\v1.0\profile.ps1
AllUsersCurrentHost : C:\Windows\System32\WindowsPowerShell\v1.0\Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts : C:\Users\<youruser>\Documents\WindowsPowerShell\profile.ps1
CurrentUserCurrentHost : C:\Users\<youruser>\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1
Length : 77

If you’re not sure, we’re going to use CurrentUserAllHosts. If the file doesn’t already exist, we can easily create it:

New-Item -Path $Profile.CurrentUserAllHosts -Type file -Force

Now open it with a text editor and add this line:

Import-Module virtualenvwrapper

All new powershell windows should have this module.:

Get-Command *virtualenv*

Clone the Codebase

Navigate to wherever you like to mash on code and clone the repository. We’ll use ~\Github here.:

cd ~
mkdir Github
cd Github

If you don’t already have git installed:

choco install git

Clone security_monkey:

git clone git@github.com:Netflix/security_monkey.git

Create a security_monkey virtualenv

You can use the powershell syntax:

New-VirtualEnvironment security_monkey

Or use the aliased commands you’re probably more familiar with:

mkvirtualenv security_monkey

Before we attempt to install setup.py, let’s grab a couple modules from pypi so we don’t need to compile them.:

pip install cryptography
pip install bcrypt

Install psycopg2

This part seems a bit yucky. Let me know if you find a cleaner way.

	Go to http://www.stickpeople.com/projects/python/win-psycopg/

	Download the exe for your python version and processor architecture. I’ll continue with psycopg2-2.6.2.win-amd64-py2.7-pg9.5.3-release.exe

	In powershell, ensure your virtualenv is activated and install the exe:

workon security_monkey
easy_install psycopg2-2.6.2.win-amd64-py2.7-pg9.5.3-release.exe

Setting SECURITY_MONKEY_SETTINGS

You can set the SECURITY_MONKEY_SETTINGS environment variable if you would like security_monkey to use a config file other than env-config/config.py. It may be a good idea to create a config-local.py and use that instead.

You set powershell environment variables with $env:

$env:SECURITY_MONKEY_SETTINGS = "C:\Users\<youruser>\...\GitHub\security_monkey\env-config\config-local.py"

It might be a good idea to drop this into your $profile as well...

Install Setup.py

With your virtualenv activated, this will install the security_monkey python module for dev::

cd \~/Github/security_monkey/
workon security_monkey
python setup.py develop

We should be able to run manage.py to see usage information:

monkey

Setup a development DB

Instead of installing postgres, let’s use docker for the DB. Windows has good docker support. You should be able to use Chocolatey, but I downloaded it directly from their website.:

choco install docker

I actually downloaded the stable branch from here: https://docs.docker.com/docker-for-windows/

Once you have docker, pull a postgres container down. I’m using this one: https://hub.docker.com/r/library/postgres/ You should be able to start it with this command:

docker run --name some-postgres

Kitematic is a nice UI tool for managing running containers. You can use it to set the postgres container to be reachable from localhost on 5432 and to set environment variables which the container uses to set the database name, username, password, etc.

If you leave the DB paramaters at their default, you’ll need to modify config-local.py:

SQLALCHEMY_DATABASE_URI = 'postgresql://postgres:mysecretpassword@localhost:5432/postgres'

Install the security_monkey DB tables:

monkey db upgrade

FYI - Navicat is a great tool for exploring the DB.

Add Amazon Accounts

This will add Amazon owned AWS accounts to security monkey. :

monkey amazon_accounts

Add a user account

This will add a user account that can be used later to login to the web ui:

monkey create_user <email@youremail.com> Admin

The first argument is the email address of the new user. The second parameter is the role and must be one of [anonymous, View, Comment, Justify, Admin].

Start the Security Monkey API

This starts the REST API that the Angular application will communicate with. :

monkey runserver

Dart Development

Install the dart SDK:

choco install dart-sdk

This will install a few tools in C:tools. Let’s install webstorm and configure it to use the dart-sdk:

choco install webstorm

Open Webstorm and select the ~/Github/security_monkey/dart folder to open. We need webstorm to install the dart package. I believe it will popup and ask to install the dart package if you open the pubspec.yaml, or one of the dart files. Once the dart package is installed, go to File->Settings and select dart from the left column.

	Check the box Enable Dart Support ... and provide the path C:\tools\dart-sdk

	Provide the path to dartium: C:\tools\dartium\chrome.exe

Before we instruct webstorm to open ui.html with Dartium, we’ll need to update `dart/lib/util/constants.dart`:

library security_monkey.constants;
...
// LOCAL DEV
final String API_HOST = 'http://127.0.0.1:5000/api/1';
//final bool REMOTE_AUTH = true;

// Same Box
//final String API_HOST = '/api/1';
final bool REMOTE_AUTH = false;

You should now be able to use webstorm and dartium to work on the web ui.

TODO: Determine if it makes sense to modify security_monkey/__init__.py to change the static_url path to the dart folder for webstorm development:

app = Flask(__name__, static_url_path='../dart/')
does this work?

Log into Security Monkey

Logging into Security Monkey is done by accessing the login page: http://127.0.0.1:8080/login. Please note, that in the development environment, when you log in, you will be redirected to http://127.0.0.1/None. This only occurs in the development environment. You will need to navigate to the WebStorm address and port (you can simply use WebStorm to re-open the page in Daritum). Once you are back in Dartium, you will be greeted with the main Security Monkey interface.

Watch an AWS Account

After you have registered a user, logged in, and re-opened Dartium from WebStorm, you should be at the main Security Monkey interface. Once here, click on Settings and on the + to add a new AWS account to sync.

Manually Run the Account Watchers

Run the watchers to put some data in the database. :

cd ~/Github/security_monkey/
monkey run_change_reporter all

You can also run an individual watcher:

monkey find_changes -a all -m all
monkey find_changes -a all -m iamrole
monkey find_changes -a "My Test Account" -m iamgroup

You can run the auditors against the items currently in the database:

monkey audit_changes -a all -m redshift --send_report=False

Next Steps

Continue reading the Contributing guide for additional instructions.

Contributing

Contributions to Security Monkey are welcome! Here are some tips to get you started hacking on Security Monkey and contributing back your patches.

Development Setup OS X

Please review the Mac OS X Development Setup Instructions to set up your Mac for Security Monkey development.

Development Setup Ubuntu

Please review the Ubuntu Development Setup Instructions to set up your Ubuntu installation for Security Monkey Development.

Development Setup Windows

Please review the Windows Development Setup Instructions to set up Windows for Security Monkey development.

Submitting changes

	Code should be accompanied by tests and documentation. Maintain our excellent test coverage.

	Follow the existing code style, especially make sure flake8 does not complain about anything.

	Write good commit messages. Here’s three blog posts on how to do it right:
	Writing Git commit messages [http://365git.tumblr.com/post/3308646748/writing-git-commit-messages]

	A Note About Git Commit Messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html]

	On commit messages [http://who-t.blogspot.ch/2009/12/on-commit-messages.html]

	One branch per feature or fix. Keep branches small and on topic.

	Send a pull request to the v1/develop branch. See the GitHub pull request docs [https://help.github.com/articles/using-pull-requests] for help.

Additional resources

	Issue tracker [https://github.com/netflix/security_monkey/issues]

	GitHub documentation [https://help.github.com/]

	Development Guidelines

Development Setup on Mac OS X

Please follow the instructions below for setting up the Security Monkey development environment on Mac OS X.

AWS Credentials

You will need to have the proper IAM Role configuration in place. See IAM Role Setup on AWS for more details. Additionally, you will need to have IAM keys available within your environment variables. There are many ways to accomplish this. Please see Amazon’s documentation for additional details: http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html.

Additionally, see the boto documentation for more information: http://boto.readthedocs.org/en/latest/boto_config_tut.html

Install Xcode

Xcode contains a number of tools that are required to install Security Monkey dependencies. This needs to be installed from the App Store (free download): https://itunes.apple.com/us/app/xcode/id497799835?mt=12

After Xcode is installed, you need to accept the Xcode license agreement. To do that, run:

sudo xcodebuild -license # You will need to type in 'agree'

Install Homebrew (http://brew.sh)

Requirement - Xcode Command Line Tools (Popup - Just click Install):

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Install Python

Install the latest version of Python 2.7 with Homebrew:

brew install python

Upgrade Pip

A tool for installing and managing Python packages. You may need to update Pip, so run:

sudo pip install --upgrade pip

Setup Virtualenv

Virtualenv is a tool to create isolated Python environments. You will need to install it:

sudo pip install virtualenv

VirtualenvWrappervirtualenvwrapper is a set of extensions to Ian Bicking’s virtualenv tool. The extensions include wrappers for creating and deleting virtual environments and otherwise managing your development workflow, making it easier to work on more than one project at a time without introducing conflicts in their dependencies. :

sudo pip install virtualenvwrapper

Configure VirtualEnvWrapperConfigure VirtualEnvWrapper so it knows where to store the virtualenvs and where the virtualenvwerapper script is located. :

cd ~
mkdir virtual_envs
vi ~/.bash_profile

Add these two lines to your ~/.bash_profile:

export WORKON_HOME="$HOME/virtual_envs/"
source "/usr/local/bin/virtualenvwrapper.sh"

You’ll need to open a new terminal (or run source ~/.bash_profile) before you can create the virtualenv:

mkvirtualenv security_monkey
workon security_monkey

Clone Security Monkey

Clone the security monkey code repository. :

git clone https://github.com/Netflix/security_monkey.git
cd security_monkey

SECURITY_MONKEY_SETTINGS

You can set the SECURITY_MONKEY_SETTINGS environment variable if you would like security_monkey to use a config file other than env-config/config.py. It may be a good idea to create a config-local.py and use that instead.

export SECURITY_MONKEY_SETTINGS=`pwd`/env-config/config-local.py

Note - I like to append this to the virtualenv activate script:

vi $HOME/virtual_envs/security_monkey/bin/activate
export SECURITY_MONKEY_SETTINGS=$HOME/security_monkey/env-config/config-local.py

Install PostgreSQL

Install Postgres. Create a database for security monkey and add a role. Set the timezone to GMT. :

brew install postgresql

Open a new shell, then start the DB:

postgres -D /usr/local/var/postgres

Go back to your previous shell, then create the database and users and set the timezone. :

psql -d postgres -h localhost
CREATE DATABASE "securitymonkeydb";
CREATE ROLE "securitymonkeyuser" LOGIN PASSWORD 'securitymonkeypass';
CREATE SCHEMA securitymonkeydb
GRANT Usage, Create ON SCHEMA "securitymonkeydb" TO "securitymonkeyuser";
set timezone to 'GMT';
select now();

Exit the Postgres CLI tool:

CTRL-D

Install Pip Requirements

Pip will install all the dependencies into the current virtualenv. :

Note for El Capitan users and above: Apple has removed OpenSSL from OS X, which is a dependency
of the cryptography library. OpenSSL gets installed with Postgres above. However, there are compiler
path errors that result when trying to install the cryptography Python dependency.
To resolve this, you need to run:
env LDFLAGS="-L$(brew --prefix openssl)/lib" CFLAGS="-I$(brew --prefix openssl)/include" python setup.py develop
The above fully installs all the Python dependencies.

For OS X versions prior to El Capitan, run:
python setup.py develop

Init the Security Monkey DB

Run Alembic/FlaskMigrate to create all the database tables. :

monkey db upgrade

Install and configure NGINX

NGINX will be used to serve static content for Security Monkey. Use brew to install. :

brew install nginx

There will be some output about how to start NGINX, and where it’s configuration resides. Choose the approach that works best for you. (We personally advise against starting things automatically on boot for your development box)

The NGINX configuration will be located at: /usr/local/etc/nginx/. You will need to make a modification to the nginx.conf file. The configuration changes include the following:

	Disabling port 8080 for the main nginx.conf file

	Importing the Security Monkey specific configuration

Open the main NGINX configuration file: /usr/local/etc/nginx/nginx.conf, and in the http section, add the line :

include securitymonkey.conf;

Next, comment out the listen line (under the server section) :

server {
 listen 8080; # Comment out this line by placing a '#' in front of 'listen'

Next, you will create the securitymonkey.conf NGINX configuration file. Create this file under /usr/local/etc/nginx/, and paste in the following (MAKE NOTE OF SPECIFIC SECTIONS) :

add_header X-Content-Type-Options "nosniff";
add_header X-XSS-Protection "1; mode=block";
add_header X-Frame-Options "SAMEORIGIN";
add_header Strict-Transport-Security "max-age=631138519";
add_header Content-Security-Policy "default-src 'self'; font-src 'self' https://fonts.gstatic.com; script-src 'self' https://ajax.googleapis.com; style-src 'self' https://fonts.googleapis.com;";

server {
 listen 0.0.0.0:8080;

 # EDIT THIS TO YOUR DEVELOPMENT PATH HERE:
 access_log /PATH/TO/YOUR/CLONED/SECURITY_MONKEY_BASE_DIR/devlog/security_monkey.access.log;
 error_log /PATH/TO/YOUR/CLONED/SECURITY_MONKEY_BASE_DIR/devlog/security_monkey.error.log;

 location ~* ^/(reset|confirm|healthcheck|register|login|logout|api) {
 proxy_read_timeout 120;
 proxy_pass http://127.0.0.1:5000;
 proxy_next_upstream error timeout invalid_header http_500 http_502 http_503 http_504;
 proxy_redirect off;
 proxy_buffering off;
 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 location /static {
 rewrite ^/static/(.*)$ /$1 break;
 # EDIT THIS TO YOUR DEVELOPMENT PATH HERE:
 root /PATH/TO/YOUR/CLONED/SECURITY_MONKEY_BASE_DIR/dart/web;
 index ui.html;
 }

 location / {
 # EDIT THIS TO YOUR DEVELOPMENT PATH HERE:
 root /PATH/TO/YOUR/CLONED/SECURITY_MONKEY_BASE_DIR/dart/web;
 index ui.html;
 }
}

Create the devlog/security_monkey.access.log file. :

mkdir devlog
touch devlog/security_monkey.access.log

NGINX can be started by running the nginx command in the Terminal. You will need to run nginx before moving on. This will also output any errors that are encountered when reading the configuration files.

Launch and Configure the WebStorm Editor

We prefer the WebStorm IDE for developing with Dart: https://www.jetbrains.com/webstorm/. Webstorm requires the JDK to be installed. If you don’t already have Java and the JDK installed, please download it here: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html.

In addition to WebStorm, you will also need to have the Dart SDK installed. Please download and install the Dart suite (SDK and Dartium) via Homebrew:

$ brew tap dart-lang/dart
$ brew install dart --with-content-shell --with-dartium

Pro-Tip: During the Dart installation, make note of the Dart SDK Path, and the Dartium path, as this will be used later during the WebStorm Dart plugin configuration.

For WebStorm to be useful, it will need to have the Dart plugin installed. You can verify that it is installed by going to WebStorm preferences > Plugins, and searching for “Dart”. If it is checked off, then you have it installed. If not, then check the box to install it, and click OK.

At this point, you can import the Security Monkey project into WebStorm. Please reference the WebStorm documentation for details on importing projects.

The Dart plugin needs to be configured to utilize the Dart SDK. To configure the Dart plugin, open WebStorm preferences > Languages & Frameworks > Dart. If it is not already checked, check “Enable Dart Support for the project ...”, and paste in the paths for the Dart SDK path Dartium.

	As an example, for a typical Dart OS X installation (via brew), the Dart path will be at: /usr/local/opt/dart/libexec, and the Dartium path will be: /usr/local/opt/dart/Chromium.app

Toggle-On Security Monkey Development Mode

Once the Dart plugin is configured, you will need to alter a line of Dart code so that Security Monkey can be loaded in your development environment. You will need to edit the dart/lib/util/constants.dart file:

	Comment out the API_HOST variable under the // Same Box section, and uncomment the API_HOST variable under the // LOCAL DEV section.

Additionally, CSRF protection will cause issues for local development and needs to be disabled.

	To disable CSRF protection, modify the env-config/config-local.py file, and set the WTF_CSRF_ENABLED flag to False.

	NOTE: DO __NOT__ DO THIS IN PRODUCTION!

Add Amazon Accounts

This will add Amazon owned AWS accounts to security monkey. :

monkey amazon_accounts

Add a user account

This will add a user account that can be used later to login to the web ui:

monkey create_user email@youremail.com Admin

The first argument is the email address of the new user. The second parameter is the role and must be one of [anonymous, View, Comment, Justify, Admin].

Start the Security Monkey API

This starts the REST API that the Angular application will communicate with. :

monkey runserver

Launch Dartium from within WebStorm

From within the Security Monkey project in WebStorm, we will launch the UI (inside the Dartium app).

To do this, within the Project Viewer/Explorer, right-click on the dart/web/ui.html file, and select “Open in Browser” > Dartium.

This will open the Dartium browser with the Security Monkey web UI.

	Note: If you get a 502: Bad Gateway, try refreshing the page a few times.

	Another Note: If the page appears, and then quickly becomes a 404 – this is normal. The site is attempting to redirect you to the login page. However, the path for the login page is going to be: http://127.0.0.1:8080/login instead of the WebStorm port. This is only present inside of the development environment – not in production.

Register a user in Security Monkey

If you didn’t create a user on the command line (as instructed earlier), you can create one with the web ui:

Chromium/Dartium will launch and will try to redirect to the login page. Per the note above, it should result in a 404. This is due to the browser redirecting you to the WebStorm port, and not the NGINX hosted port. This is normal in the development environment. Thus, clear your browser address bar, and navigate to: http://127.0.0.1:8080/login (Note: do not use localhost, use the localhost IP.)

Select the Register link (http://127.0.0.1:8080/register) to create an account.

Log into Security Monkey

Logging into Security Monkey is done by accessing the login page: http://127.0.0.1:8080/login. Please note, that in the development environment, when you log in, you will be redirected to http://127.0.0.1/None. This only occurs in the development environment. You will need to navigate to the WebStorm address and port (you can simply use WebStorm to re-open the page in Daritum). Once you are back in Dartium, you will be greeted with the main Security Monkey interface.

Watch an AWS Account

After you have registered a user, logged in, and re-opened Dartium from WebStorm, you should be at the main Security Monkey interface. Once here, click on Settings and on the + to add a new AWS account to sync.

Manually Run the Account Watchers

Run the watchers to put some data in the database. :

cd ~/security_monkey/
monkey run_change_reporter all

You can also run an individual watcher:

monkey find_changes -a all -m all
monkey find_changes -a all -m iamrole
monkey find_changes -a "My Test Account" -m iamgroup

You can run the auditors against the items currently in the database:

monkey audit_changes -a all -m redshift --send_report=False

Next Steps

Continue reading the Contributing guide for additional instructions.

Options

Security Monkey’s behavior can be adjusted with options passed using a configuration file or directly using the command line. Some parameters are only available in the configuration file.

If an option is not passed, Security Monkey will use the default value from the file security_monkey/default-config.py.

You also have the option of providing environment aware configurations through the use of the SECURITY_MONKEY_SETTINGS environmental variable.

Any variables set via this variable will override the default values specified in default-config.py

Config File

LOG_LEVEL

Standard python logging levels (ERROR, WARNING, DEBUG) depending on how much output you would like to see in your logs.

LOG_FILE

If set, specifies a file to which Security Monkey will write logs. If unset, Security Monkey will log to stderr.

LOG_CFG

Can be used instead of LOG_LEVEL and LOG_FILE. Should be set to a PEP-0391 compatible logging configuration. Example:

LOG_CFG = {
 'version': 1,
 'disable_existing_loggers': False,
 'formatters': {
 'standard': {
 'format': '%(asctime)s %(levelname)s: %(message)s '
 '[in %(pathname)s:%(lineno)d]'
 }
 },
 'handlers': {
 'file': {
 'class': 'logging.handlers.RotatingFileHandler',
 'level': 'DEBUG',
 'formatter': 'standard',
 'filename': '/var/log/security_monkey/securitymonkey.log',
 'maxBytes': 10485760,
 'backupCount': 100,
 'encoding': 'utf8'
 },
 'console': {
 'class': 'logging.StreamHandler',
 'level': 'DEBUG',
 'formatter': 'standard',
 'stream': 'ext://sys.stdout'
 }
 },
 'loggers': {
 'security_monkey': {
 'handlers': ['file', 'console'],
 'level': 'DEBUG'
 },
 'apscheduler': {
 'handlers': ['file', 'console'],
 'level': 'INFO'
 }
 }
}

R53

Specify if you want Security Monkey to create a DNS entry for itself and what DNS name you would like

FQDN

This is used for various redirection magic that to get the Security Monkey UI working nice with the API

SQLALCHEMY_POOL_SIZE & SQLALCHEMY_MAX_OVERFLOW

Because of the parallel nature of Security Monkey we have to have the ability to tweak the number of concurrent connections we can make. The default values should be sufficient for <= 20 accounts. This may need to be increased if you are dealing with a greater number of accounts.

API_PORT

Needed for CORS whitelisting – this should match the port you have told Security Monkey to listen on. If you are using nginx it should match the port that nginx is listening on for the /api endpoint.

WEB_PORT

Needed for CORS whitelisting – this should match the port you have configured nginx to listen on for static content.

WEB_PATH

FQDN

To perform redirection security monkey needs to know the FQDN you intend to use. IF R53 is enabled this FQDN will be automatically added to Route53 when Security Monkey starts, assuming the SecurityMonkeyInstanceProfile has permission to do so.

SQLACHEMY_DATABASE_URI

If you have ever used sqlalchemy before this is the standard connection string used. Security Monkey uses a postgres database and the connection string would look something like:

SQLALCHEMY_DATABASE_URI = 'postgressql://<user>:<password>@<hostname>:5432/SecurityMonkey'

SECRET_KEY

This SECRET_KEY is essential to ensure the sessions generated by Flask cannot be guessed. You must generate a RANDOM SECRET_KEY for this value.

An example of how you might generate a random string:

>>> import random
>>> secret_key = ''.join(random.choice(string.ascii_uppercase) for x in range(6))
>>> secret_key = secret_key + ''.join(random.choice("~!@#$%^&*()_+") for x in range(6))
>>> secret_key = secret_key + ''.join(random.choice(string.ascii_lowercase) for x in range(6))
>>> secret_key = secret_key + ''.join(random.choice(string.digits) for x in range(6))

SECURITY_PASSWORD_SALT

For many of the same reasons we want want a random SECRET_KEY we want to ensure our password salt is random. see: Salt [http://en.wikipedia.org/wiki/Salt_(cryptography)]

You can use the same method used to generate the SECRET_KEY to generate the SECURITY_PASSWORD_SALT

Additional Options

As Security Monkey uses Flask-Security for authentication see .. _Flask-Security: https://pythonhosted.org/Flask-Security/configuration.html for additional configuration options.

Command line

–host and –port

The host and port on which to listen for incoming request. Usually 127.0.0.1 and 8000 to listen locally or 0.0.0.0 and 80 to listen from the outside.

Default: 127.0.0.1 and 8000

Setting file : HOST and PORT

–version and –help

Display the help or the version of 0bin.

Default: None

Configuration file equivalent: None

Launch an AWS Instance

Netflix monitors dozens AWS accounts easily on a single m3.large instance. For this guide, we will launch a m1.small.

In the console, start the process to launch a new Ubuntu instance. The screenshot below shows EC2 classic, but you can also launch this in external VPC.:

[image: image]

Select an m1.small and select “Next: Configure Instance Details”.

Note: Do not select “Review and Launch”. We need to launch this instance in a specific role.

[image: image]

Under “IAM Role”, select SecurityMonkeyInstanceProfile:

[image: image]

You may now launch the new instance. Please take note of the “Public DNS” entry. We will need that later when configuring security monkey.

[image: image]

Now may also be a good time to edit the “launch-wizard-1” security group to restrict access to your IP. Make sure you leave TCP 22 open for ssh and TCP 443 for HTTPS.

Keypair

You may be prompted to download a keypair. You should protect this keypair; it is used to provide ssh access to the new instance. Put it in a safe place. You will need to change the permissions on the keypair to 400:

$ chmod 400 SecurityMonkeyKeypair.pem

Connecting to your new instance:

We will connect to the new instance over ssh:

$ ssh -i SecurityMonkeyKeyPair.pem -l ubuntu <PUBLIC_IP_ADDRESS>

Replace the last parameter (<PUBLIC_IP_ADDRESS>) with the Public IP of your instance.

Next:

	Back to the Quickstart

Launch a GCP instance

Create an instance running Ubuntu 14.04 LTS using our ‘securitymonkey’ service account.

Navigate to the Create Instance page [https://console.developers.google.com/compute/instancesAdd]. Fill in the following fields:

	Name: securitymonkey

	Zone: If using GCP Cloud SQL, select the same zone here. (Zone List) [https://cloud.google.com/compute/docs/regions-zones/regions-zones#available]

	Machine Type: 1vCPU, 3.75GB (minimum; also known as n1-standard-1)

	Boot Disk: Ubuntu 14.04 LTS

	Service Account: securitymonkey

	Firewall: Allow HTTPS Traffic

Click the Create button to create the instance.

Install gcloud

If you haven’t already, install gcloud from the downloads [https://cloud.google.com/sdk/downloads] page. gcloud enables you to administer VMs, IAM policies, services and more from the command line.

Connecting to your new instance:

We will connect to the new instance over ssh with the gcloud command:

$ gcloud compute ssh securitymonkey --zone <ZONE>

Next:

	Back to the Quickstart

Using supervisor

Supervisor is a very nice way to manage you Python processes. We won’t cover the setup (which is just apt-get install supervisor or pip install supervisor most of the time), but here is a quick overview on how to use it.

Create a configuration file named security_monkey.conf under /etc/supervisor/conf.d/:

Control Startup/Shutdown:
sudo supervisorctl

[program:securitymonkey]
user=www-data
autostart=true
autorestart=true
environment=PYTHONPATH='/usr/local/src/security_monkey/',PATH="/usr/local/src/security_monkey/venv/bin:%(ENV_PATH)s"
command=monkey run_api_server

[program:securitymonkeyscheduler]
user=www-data
autostart=true
autorestart=true
directory=/usr/local/src/security_monkey/
environment=PYTHONPATH='/usr/local/src/security_monkey/',PATH="/usr/local/src/security_monkey/venv/bin:%(ENV_PATH)s"
command=monkey start_scheduler

The 3 first entries are just boiler plate to get you started, you can copy them verbatim.

The fourth line enables the virtualenv created in /usr/local/src/security_monkey/venv/.

The fifth line defines one process supervisor should manage.

It means it will run the command:

monkey run_api_server

which translates to:

python security_monkey/manage.py run_api_server

In the directory, with the environment and the user you defined.

This command will be ran as a daemon, in the background.

autostart and autorestart just make it fire and forget: the site will always be running, even it crashes temporarily or if you restart the machine.

Normally run supervisor:

sudo service supervisor restart

Then you can manage the process by running:

sudo supervisorctl

It will start a shell from were you can start/stop/restart the service

It’s common for supervisor to log to /var/log/supervisor/ and security_monkey is often configured to log to /var/log/security_monkey.

Development Setup on Ubuntu

Please follow the instructions below for setting up the Security Monkey development environment on Ubuntu Trusty (14.04).

AWS Credentials

You will need to have the proper IAM Role configuration in place. See IAM Role Setup on AWS for more details. Additionally, you will need to have IAM keys available within your environment variables. There are many ways to accomplish this. Please see Amazon’s documentation for additional details: http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html.

Additionally, see the boto documentation for more information: http://boto.readthedocs.org/en/latest/boto_config_tut.html

Install Primary Packages:

These must be installed first. :

sudo apt-get install git git-flow python-pip postgresql postgresql-contrib libpq-dev python-dev nginx libffi-dev

Setup Virtualenv

A tool to create isolated Python environments:

sudo pip install virtualenv

Create a folder to hold your virtualenvs:

cd ~
mkdir virtual_envs
cd virtual_envs

Create a virtualenv for security_monkey:

virtualenv security_monkey

Activate the security_monkey virtualenv:

source ~/virtual_envs/security_monkey/bin/activate

Clone Security Monkey

Clone the security monkey code repository. :

cd ~
git clone https://github.com/Netflix/security_monkey.git
cd security_monkey

Install Pip Requirements

Pip will install all the dependencies into the current virtualenv. :

python setup.py develop

SECURITY_MONKEY_SETTINGSYou can set the SECURITY_MONKEY_SETTINGS environment variable if you would like security_monkey to use a config file other than env-config/config.py. It may be a good idea to create a config-local.py and use that instead.

export SECURITY_MONKEY_SETTINGS=`pwd`/env-config/config-local.py
Note - I like to append this to the virtualenv activate script
vi $HOME/virtual_envs/security_monkey/bin/activate
export SECURITY_MONKEY_SETTINGS=$HOME/security_monkey/env-config/config-local.py

Configure PostgreSQL

Create a PostgreSQL database for security monkey and add a role. Set the timezone to GMT. :

sudo -u postgres psql
CREATE DATABASE "securitymonkeydb";
CREATE ROLE "securitymonkeyuser" LOGIN PASSWORD 'securitymonkeypass';
CREATE SCHEMA securitymonkeydb
GRANT Usage, Create ON SCHEMA "securitymonkeydb" TO "securitymonkeyuser";
set timezone TO 'GMT';
select now();
\q

Init the Security Monkey DB

Run Alembic/FlaskMigrate to create all the database tables. :

monkey db upgrade

Configure NGINX

On Ubuntu, the NGINX configuration files will be located at: /etc/nginx. You will need to make a modification to the nginx.conf file. The configuration changes include the following:

	Disabling port 8080 for the main nginx.conf file

	Importing the Security Monkey specific configuration

Open the main NGINX configuration file: /etc/nginx/nginx.conf, and in the http section, add the line :

include securitymonkey.conf;

Next, in the file: /etc/nginx/sites-enabled/default, comment out the listen line (under the server section) :

server {
 listen 80 default_server; # Comment out this line by placing a '#' in front of 'listen'

Next, you will create the securitymonkey.conf NGINX configuration file. Create this file under /etc/nginx/, and paste in the following (MAKE NOTE OF SPECIFIC SECTIONS) :

add_header X-Content-Type-Options "nosniff";
add_header X-XSS-Protection "1; mode=block";
add_header X-Frame-Options "SAMEORIGIN";
add_header Strict-Transport-Security "max-age=631138519";
add_header Content-Security-Policy "default-src 'self'; font-src 'self' https://fonts.gstatic.com; script-src 'self' https://ajax.googleapis.com; style-src 'self' https://fonts.googleapis.com;";

server {
 listen 0.0.0.0:8080;

 # EDIT THIS TO YOUR DEVELOPMENT PATH HERE:
 access_log /PATH/TO/YOUR/CLONED/SECURITY_MONKEY_BASE_DIR/devlog/security_monkey.access.log;
 error_log /PATH/TO/YOUR/CLONED/SECURITY_MONKEY_BASE_DIR/devlog/security_monkey.error.log;

 location ~* ^/(reset|confirm|healthcheck|register|login|logout|api) {
 proxy_read_timeout 120;
 proxy_pass http://127.0.0.1:5000;
 proxy_next_upstream error timeout invalid_header http_500 http_502 http_503 http_504;
 proxy_redirect off;
 proxy_buffering off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 location /static {
 rewrite ^/static/(.*)$ /$1 break;
 # EDIT THIS TO YOUR DEVELOPMENT PATH HERE:
 root /PATH/TO/YOUR/CLONED/SECURITY_MONKEY_BASE_DIR/dart/web;
 index ui.html;
 }

 location / {
 # EDIT THIS TO YOUR DEVELOPMENT PATH HERE:
 root /PATH/TO/YOUR/CLONED/SECURITY_MONKEY_BASE_DIR/dart/web;
 index ui.html;
 }
}

NGINX can be started by running the sudo nginx command in the console. You will need to run sudo nginx before moving on. This will also output any errors that are encountered when reading the configuration files.

Launch and Configure the WebStorm Editor:

We prefer the WebStorm IDE for developing with Dart: https://www.jetbrains.com/webstorm/. Webstorm requires the JDK to be installed. If you don’t already have Java installed, then install it by running the commands: :

sudo apt-get install default-jre default-jdk

In addition to WebStorm, you will also need to have the Dart SDK installed. Please download and install the Dart SDK :

sudo curl https://dl-ssl.google.com/linux/linux_signing_key.pub | apt-key add -
sudo curl https://storage.googleapis.com/download.dartlang.org/linux/debian/dart_stable.list > /etc/apt/sources.list.d/dart_stable.list
sudo apt-get update
sudo apt-get install dart

Note: You will need to install Dartium as well. This requires extra steps and is unfortunately not available as a Debian package. Dartium is packaged as a .zip file in the section “Installing from a zip file” on the Dart download page. Download the Dartium zip file, and follow the following instructions:

1.) Extract the .zip file

2.) Run the following commands. :

sudo cp -R /path/to/your/extracted/Dartium/zip/file /opt/Dartium
sudo chmod 755 /opt/Dartium
cd /opt/Dartium
sudo find ./ -type d -exec chmod 755 {} \;
sudo find ./ -type f -exec chmod 644 {} \;
sudo chmod +x chrome
sudo ln -s /lib/x86_64-linux-gnu/libudev.so.1 /lib/x86_64-linux-gnu/libudev.so.0

For WebStorm to be useful, it will need to have the Dart plugin installed. You can verify that it is installed by going to WebStorm preferences > Plugins, and searching for “Dart”. If it is checked off, then you have it installed. If not, then check the box to install it, and click OK.

At this point, you can import the Security Monkey project into WebStorm. Please reference the WebStorm documentation for details on importing projects.

The Dart plugin needs to be configured to utilize the Dart SDK. To configure the Dart plugin, open WebStorm preferences > Languages & Frameworks > Dart. If it is not already checked, check “Enable Dart Support for the project ...”, and paste in the paths for the Dart SDK path Dartium.

	As an example, for a typical Dart Ubuntu installation (via apt-get), the Dart path will be at: /usr/lib/dart, and the Dartium path (following the instructions above) will be: /opt/Dartium/chrome

Toggle-On Security Monkey Development Mode

Once the Dart plugin is configured, you will need to alter a line of Dart code so that Security Monkey can be loaded in your development environment. You will need to edit the dart/lib/util/constants.dart file:

	Comment out the API_HOST variable under the // Same Box section, and uncomment the API_HOST variable under the // LOCAL DEV section.

Additionally, CSRF protection will cause issues for local development and needs to be disabled.

	To disable CSRF protection, modify the env-config/config-local.py file, and set the WTF_CSRF_ENABLED flag to False.

	NOTE: DO NOT DO THIS IN PRODUCTION!

Add Amazon Accounts

This will add Amazon owned AWS accounts to security monkey. :

monkey amazon_accounts

Add a user account

This will add a user account that can be used later to login to the web ui:

monkey create_user <email@youremail.com> Admin

The first argument is the email address of the new user. The second parameter is the role and must be one of [anonymous, View, Comment, Justify, Admin].

Start the Security Monkey API

This starts the REST API that the Angular application will communicate with. :

monkey runserver

Launch Dartium from within WebStorm

From within the Security Monkey project in WebStorm, we will launch the UI (inside the Dartium app).

To do this, within the Project Viewer/Explorer, right-click on the dart/web/ui.html file, and select “Open in Browser” > Dartium.

This will open the Dartium browser with the Security Monkey web UI.

	Note: If you get a 502: Bad Gateway, try refreshing the page a few times.

	Another Note: If the page appears, and then quickly becomes a 404 – this is normal. The site is attempting to redirect you to the login page. However, the path for the login page is going to be: http://127.0.0.1:8080/login instead of the WebStorm port. This is only present inside of the development environment – not in production.

Register a user in Security Monkey

Chromium/Dartium will launch and will try to redirect to the login page. Per the note above, it should result in a 404. This is due to the browser redirecting you to the WebStorm port, and not the NGINX hosted port. This is normal in the development environment. Thus, clear your browser address bar, and navigate to: http://127.0.0.1:8080/login (Note: do not use localhost, use the localhost IP.)

Select the Register link (http://127.0.0.1:8080/register) to create an account.

Log into Security Monkey

Logging into Security Monkey is done by accessing the login page: http://127.0.0.1:8080/login. Please note, that in the development environment, when you log in, you will be redirected to http://127.0.0.1/None. This only occurs in the development environment. You will need to navigate to the WebStorm address and port (you can simply use WebStorm to re-open the page in Daritum). Once you are back in Dartium, you will be greeted with the main Security Monkey interface.

Watch an AWS Account

After you have registered a user, logged in, and re-opened Dartium from WebStorm, you should be at the main Security Monkey interface. Once here, click on Settings and on the + to add a new AWS account to sync.

Manually Run the Account Watchers

Run the watchers to put some data in the database. :

cd ~/security_monkey/
monkey run_change_reporter all

You can also run an individual watcher:

monkey find_changes -a all -m all
monkey find_changes -a all -m iamrole
monkey find_changes -a "My Test Account" -m iamgroup

You can run the auditors against the items currently in the database:

monkey audit_changes -a all -m redshift --send_report=False

Next Steps

Continue reading the Contributing guide for additional instructions.

Docker Instructions

The docker-compose.yml file describes the SecurityMonkey environment. This is intended for local development with the intention of deploying SecurityMonkey containers with a Docker Orchestration tool like Kubernetes.

The Dockerfile builds SecurityMonkey into a container with several different entrypoints. These are for the different responsibilities SecurityMonkey has. Also, the docker/nginx/Dockerfile file is used to build an NGINX container that will front the API, serve the static assets, and provide TLS.

Quick Start:

Define your specific settings in secmonkey.env file. For example, this file will look like:

AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=
SECURITY_MONKEY_POSTGRES_HOST=postgres
SECURITY_MONKEY_FQDN=127.0.0.1
Must be false if HTTP
SESSION_COOKIE_SECURE=False

Next, you can build all the containers by running:

$ docker-compose build

On a fresh database instance, various initial configuration must be run such as database setup, initial user creation (admin@example.org / admin), etc. You can run the init container via:

$ docker-compose -f docker-compose.init.yml up -d

Before you bring the containers up, you need to add an AWS account for the scheduler to monitor:

$ monkey add_account_aws --number $account --name $name -r SecurityMonkey

Now that the database is setup, you can start up the remaining containers (Security Monkey, nginx, and the scheduler) via:

$ docker-compose up -d

You can stop the containers with:

$ docker-compose stop

Otherwise you can shutdown and clean the images and volumes with:

$ docker-compose down

Commands:

$ docker-compose build [api | scheduler | nginx | data]

$ docker-compose up -d [postgres | api | scheduler | nginx | data]

$ docker-compose restart [postgres | api | scheduler | nginx | data]

$ docker-compose stop

$ docker-compose down

More Info:

You can get a shell thanks to the docker-compose.shell.yml override:

$ docker-compose -f docker-compose.yml -f docker-compose.shell.yml up -d data
$ docker attach $(docker ps -aqf "name=secmonkey-data")

This allows you to access SecurityMonkey code, and run manual configurations such as:

$ monkey create_user admin@example.com Admin

and/or:

$ monkey add_account_aws --number $account --name $name -r SecurityMonkey

This container is useful for local development. It is not required otherwise.

Tips and tricks:

If you have to restart the scheduler, you don’t have to restart all the stack. Just run:

$ docker-compose restart scheduler

If you want to persist the DB data, create a postgres-data directory in the repository root:

$ mkdir postgres-data

and uncomment these two lines in docker-compose.yml (in the postgres section):

#volumes:
- ./postgres-data/:/var/lib/postgresql/data

IAM Role Setup on AWS

We need to create two roles for security monkey. The first role will be an instance profile that we will launch security monkey into. The permissions on this role allow the monkey to use STS to assume to other roles as well as use SES to send email.

Creating SecurityMonkeyInstanceProfile Role

Create a new role and name it “SecurityMonkeyInstanceProfile”:

[image: image]

Select “Amazon EC2” under “AWS Service Roles”.

[image: image]

Select “Custom Policy”:

[image: image]

Paste in this JSON with the name “SecurityMonkeyLaunchPerms”:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ses:SendEmail"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::*:role/SecurityMonkey"
 }
]
}

Review and create your new role:

[image: image]

Creating SecurityMonkey Role

Create a new role and name it “SecurityMonkey”:

[image: image]

Select “Amazon EC2” under “AWS Service Roles”.

[image: image]

Select “Custom Policy”:

[image: image]

Paste in this JSON with the name “SecurityMonkeyReadOnly”:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "acm:describecertificate",
 "acm:listcertificates",
 "cloudtrail:describetrails",
 "cloudtrail:gettrailstatus",
 "config:describeconfigrules",
 "config:describeconfigurationrecorders",
 "directconnect:describeconnections",
 "ec2:describeaddresses",
 "ec2:describedhcpoptions",
 "ec2:describeflowlogs",
 "ec2:describeimages",
 "ec2:describeinstances",
 "ec2:describeinternetgateways",
 "ec2:describekeypairs",
 "ec2:describenatgateways",
 "ec2:describenetworkacls",
 "ec2:describenetworkinterfaces",
 "ec2:describeregions",
 "ec2:describeroutetables",
 "ec2:describesecuritygroups",
 "ec2:describesnapshots",
 "ec2:describesubnets",
 "ec2:describetags",
 "ec2:describevolumes",
 "ec2:describevpcendpoints",
 "ec2:describevpcpeeringconnections",
 "ec2:describevpcs",
 "ec2:describevpngateways",
 "elasticloadbalancing:describeloadbalancerattributes",
 "elasticloadbalancing:describeloadbalancerpolicies",
 "elasticloadbalancing:describeloadbalancers",
 "elasticloadbalancing:describelisteners",
 "elasticloadbalancing:describerules",
 "elasticloadbalancing:describesslpolicies",
 "elasticloadbalancing:describetags",
 "elasticloadbalancing:describetargetgroups",
 "elasticloadbalancing:describetargetgroupattributes",
 "elasticloadbalancing:describetargethealth",
 "es:describeelasticsearchdomainconfig",
 "es:listdomainnames",
 "iam:getaccesskeylastused",
 "iam:getgroup",
 "iam:getgrouppolicy",
 "iam:getloginprofile",
 "iam:getpolicyversion",
 "iam:getrole",
 "iam:getrolepolicy",
 "iam:getservercertificate",
 "iam:getuser",
 "iam:getuserpolicy",
 "iam:listaccesskeys",
 "iam:listattachedgrouppolicies",
 "iam:listattachedrolepolicies",
 "iam:listattacheduserpolicies",
 "iam:listentitiesforpolicy",
 "iam:listgrouppolicies",
 "iam:listgroups",
 "iam:listinstanceprofilesforrole",
 "iam:listmfadevices",
 "iam:listpolicies",
 "iam:listrolepolicies",
 "iam:listroles",
 "iam:listsamlproviders",
 "iam:listservercertificates",
 "iam:listsigningcertificates",
 "iam:listuserpolicies",
 "iam:listusers",
 "kms:describekey",
 "kms:getkeypolicy",
 "kms:listaliases",
 "kms:listgrants",
 "kms:listkeypolicies",
 "kms:listkeys",
 "lambda:listfunctions",
 "rds:describedbclusters",
 "rds:describedbclustersnapshots",
 "rds:describedbinstances",
 "rds:describedbsecuritygroups",
 "rds:describedbsnapshots",
 "rds:describedbsubnetgroups",
 "redshift:describeclusters",
 "route53:listhostedzones",
 "route53:listresourcerecordsets",
 "route53domains:listdomains",
 "route53domains:getdomaindetail",
 "s3:getaccelerateconfiguration",
 "s3:getbucketacl",
 "s3:getbucketcors",
 "s3:getbucketlocation",
 "s3:getbucketlogging",
 "s3:getbucketnotification",
 "s3:getbucketpolicy",
 "s3:getbuckettagging",
 "s3:getbucketversioning",
 "s3:getbucketwebsite",
 "s3:getlifecycleconfiguration",
 "s3:listbucket",
 "s3:listallmybuckets",
 "s3:getreplicationconfiguration",
 "s3:getanalyticsconfiguration",
 "s3:getmetricsconfiguration",
 "s3:getinventoryconfiguration",
 "ses:getidentityverificationattributes",
 "ses:listidentities",
 "ses:listverifiedemailaddresses",
 "ses:sendemail",
 "sns:gettopicattributes",
 "sns:listsubscriptionsbytopic",
 "sns:listtopics",
 "sqs:getqueueattributes",
 "sqs:listqueues"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Review and create the new role.

Allow SecurityMonkeyInstanceProfile to AssumeRole to SecurityMonkey

You should now have two roles available in your AWS Console:

[image: image]

Select the “SecurityMonkey” role and open the “Trust Relationships” tab.

[image: image]

Edit the Trust Relationship and paste this in:

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::<YOUR ACCOUNTID GOES HERE>:role/SecurityMonkeyInstanceProfile"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Adding more accounts

To have your instance of security monkey monitor additional accounts, you must add a SecurityMonkey role in the new account. Follow the instructions above to create the new SecurityMonkey role. The Trust Relationship policy should have the account ID of the account where the security monkey instance is running.

Note

Additional SecurityMonkeyInstanceProfile roles are not required. You only need to create a new SecurityMonkey role.

Note

You will also need to add the new account in the Web UI, and restart the scheduler. More information on how do to this will be presented later in this guide.

Next:

	Back to the Quickstart

User Guide

Logging into the UI

You should now be able to reach your server

[image: image]

After you have registered a new account and logged in, you need to add an account for Security Monkey to monitor. Click on “Settings” in the very top menu bar.

[image: image]

Adding an Account in the Web UI

Here you will see a list of the accounts Security Monkey is monitoring. (It should be empty.)

Click on the plus sign to create a new account:

[image: image]

Now we will provide Security Monkey with information about the account you would like to monitor.

[image: image]

When creating a new account in Security Monkey, you may use any “Name” that you would like. Example names are ‘prod’, ‘test’, ‘dev’, or ‘it’. Names should be unique.

The S3 Name has special meaning. This is the name used on S3 ACL policies. If you are unsure, it is probably the beginning of the email address that was used to create the AWS account. (If you signed up as super_geek@example.com, your s3 name is probably super_geek.) You can edit this value at any time.

The Number is the AWS account number. This must be provided.

Notes is an optional field.

Active specifies whether Security Monkey should track policies and changes in this account. There are cases where you want Security Monkey to know about a friendly account, but don’t want Security Monkey to track it’s changes.

Third Party This is a way to tell security monkey that the account is friendly and not owned by you.

Note: You will need to restart the scheduler whenever you add a new account or disable an existing account. We plan to remove this requirement in the future.:

$ sudo supervisorctl
securitymonkey RUNNING pid 11401, uptime 0:05:56
securitymonkeyscheduler FATAL Exited too quickly (process log may have details)
supervisor> start securitymonkeyscheduler
securitymonkeyscheduler: started
supervisor> status
securitymonkey RUNNING pid 11401, uptime 0:06:49
securitymonkeyscheduler RUNNING pid 11519, uptime 0:00:42
supervisor>

The first run will occur in 15 minutes. You can monitor all the log files in /var/log/security_monkey/. In the browser, you can hit the `AutoRefresh` button so the browser will attempt to load results every 30 seconds.

Note: You can also add accounts via the command line with manage.py:

$ monkey add_account_aws --number 12345678910 --name account_foo
Successfully added account account_foo

If an account with the same number already exists, this will do nothing, unless you pass --force, in which case, it will override the existing account:

$ monkey add_account_aws --number 12345678910 --name account_foo
An account with id 12345678910 already exists
$ monkey add_account_aws --number 12345678910 --name account_foo --active false --force
Successfully added account account_foo

Now What?

Wow. We have accomplished a lot. Now we can use the Web UI to review our security posture.

Searching in the Web UI

On the Web UI, click the Search button at the top left. If the scheduler is setup correctly, we should now see items filling the table. These items are colored if they have issues. Yellow is for minor issues like friendly cross account access while red indicates more important security issues, like an S3 bucket granting access to “AllUsers” or a security group allowing 0.0.0.0/0. The newest results are always at the top.

[image: image]

We can filter these results using the searchbox on the left. The Region, Tech, Account, and Name fields use auto-complete to help you find what you need.

[image: image]

Security Monkey also provides you the ability to search only for issues:

[image: image]

Viewing an Item in the Web UI

Clicking on an item in the web UI brings up the view-item page.

[image: image]

This item has an attached issue. Someone has left SSH open to the Internet! Security Monkey helps you find these types of insecure configurations and correct them.

If Security Monkey finds an issue that you aren’t worried about, you should justify the issue and leave a message explaining to others why the configuration is okay.

[image: image]

Security Monkey looks for changes in configurations. When there is a change, it uses colors to show you the part of the configuration that was affected. Green tells you that a section was added while red says something has been removed.

[image: image]

Each revision to an item can have comments attached. These can explain why a change was made.

[image: image]

JIRA Synchronization

Overview

JIRA synchronization is a feature that allows Security Monkey to automatically create and update JIRA tickets based on issues it finds. Each ticket corresponds to a single type of issue for a single account. The tickets contain the number of open issues and a link back to the Security Monkey details page for that issue type.

Configuring JIRA Synchronization

To use JIRA sync, you will need to create a YAML configuration file, specifying several settings.

 server: https://jira.example.com
 account: securitymonkey-service
 password: hunter2
 project: SECURITYMONKEY
 issue_type: Task
 url: https://securitymonkey.example.com
 ip_proxy: example.proxy.com
 port_proxy: 443
 assignee: SecMonkeyJIRA}

server - The location of the JIRA server. account - The account with which Security Monkey will create tickets password - The password to the account. project - The project key where tickets will be created. issue_type - The type of issue each ticket will be created as. url - The URL for Security Monkey. This will be used to create links back to Security Monkey. disable_transitions - If true, Security Monkey will not close or reopen tickets. This is false by default. ip_proxy - Optional proxy endpoint for JIRA client. NOTE: Proxy authentication not currently supported. port_proxy - Optional proxy port for JIRA client. NOTE: Proxy authentication not currently supported. assignee - Optional default assignee for generated JIRA tickets. Assignee should be username.

Using JIRA Synchronization

To use JIRA sync, set the environment variable SECURITY_MONKEY_JIRA_SYNC to the location of the YAML configuration file. This file will be loaded once when the application starts. If set, JIRA sync will run for each account after the auditors run. You can also manually run a sync through manage.py.

monkey sync_jira

Details

Tickets are created with the summary:

<Issue text> - <Technology> - <Account name>

And the description:

` This ticket was automatically created by Security Monkey. DO NOT EDIT ANYTHING BELOW THIS LINE Number of issues: X Account: Y View on Security Monkey Last Updated: TIMESTAMP`

Security Monkey will update tickets based on the summary. If it is changed in any way, Security Monkey will open a new ticket instead of updating the existing one. When updating, the number of issues and last updated fields will change. Security Monkey will preserve all text in the description before “This ticket was automatically created by Security Monkey”, and remove anything after.

Security Monkey will automatically close tickets when they have zero open issues, by setting the state of the ticket to “Closed”. Likewise, it will reopen a closed ticket if there are new open issues. This feature can be disabled by setting disable_transitions: true in the config.

Justifying an issue will cause it to no longer be counted as an open issue.

If an auditor is disabled, its issues will no longer be updated, opened or closed.

Logs

JIRA sync will generate the following log lines.

Created issue <summary> (debug) - A new JIRA ticket was opened.

Updated issue <summary> (debug) - An existing ticket was updated.

Error creating ticket: <error> (error) - An error was encounted when creating a ticket. This could be due to a misconfigured project name, issue type or connectivity problems.

JIRA sync configuration missing required field: <error> (error) - One of the 6 required fields in the YAML configuration is missing.

Error opening JIRA sync configuration file: <error> (error) - Security Monkey could not open the file located at SECURITY_MONKEY_JIRA_SYNC.

JIRA sync configuration file contains malformed YAML: <error> (error) - The YAML could not be parsed.

Syncing issues with Jira (info) - Auditors have finished running and JIRA sync is starting.

Error opening/closing ticket: <error>: (error) - Security Monkey tried to set an issue to “Closed” or “Open”. This error may mean that these transitions are named differently in your JIRA project. To disable ticket transitions, set disable_transitions: true in the config file.

Changelog

v0.9.2 (2017-05-24)

	PR #695 - @mikegrima - Fixing jinja import bug affecting change emails.

	PR #692 - @LukeKennedy - Reduce number of API calls in Managed Policy watcher.

	PR #694 - @supertom - GCP Documentation Updates

	PR #701 - @supertom - Update GCP ServiceAccount Name to use email instead of DisplayName.

	PR #702 - @rodriguezsergio - Update KMS Auditor. Don’t create issue when Effect is Deny for a wildcard principal.

	PR #697 - @mcpeak - Pylint fixes and TravisCI pylint enforcement.

	PR #706 - @monkeysecurity Fix bug where batched watchers did not send change alert emails.

	PR #708 - @redixin - Fix bug in docker config where SECURITY_MONKEY_POSTGRES_PORT would not work if passed as a string.

	PR #714 - @monkeysecurity - Fix bug where change emails from batched watchers had incorrect color in the JSON diff.

	PR #713 - @monkeysecurity - Fix path to favicon from flask-security jinja templates.

	PR #709 - @crruthe - Exempt SSO API from CSRF protection.

	PR #719 - @monkeysecurity - New simplified watcher format for CloudAux Technologies.

	PR #726 - @monkeysecurity, @willbengtson - Add new SAMLProvider watcher.

	PR #730 - @monkeysecurity - Fix bug where ephemerals were not respected for CloudAuxWatcher subclasses.

	PR #727 - @supertom - Fix bug where duplicate GCP names would violate DB’s unique constraint. Names now contain project ID.

	PR #728 - @supertom - Basic Auditor Tests for GCP.

	@monkeysecurity - Updated link to Ubuntu’s SSL documentation.

	@monkeysecurity - Bumped version of Cryptography dependency.

	PEP8 updates.

Important Notes:

	Additional Permissions Required:
	“elasticloadbalancing:describelisteners”,

	“elasticloadbalancing:describerules”,

	“elasticloadbalancing:describesslpolicies”,

	“elasticloadbalancing:describetags”,

	“elasticloadbalancing:describetargetgroups”,

	“elasticloadbalancing:describetargetgroupattributes”,

	“elasticloadbalancing:describetargethealth”,

	“iam:listsamlproviders”,

	New Watcher: ALB (elbv2)

	ELB (v1) Watcher re-written with boto3 in CloudAux. Now respects the config value SECURITYGROUP_INSTANCE_DETAIL when determining whether to add the instance id’s to the ELB definition.

Contributors:

	@LukeKennedy

	@rodriguezsergio

	@redixin

	@crruthe

	@supertom

	@mcpeak

	@mikegrima

	@monkeysecurity

v0.9.1 (2017-04-20)

	PR #666 - @redixin - Use find_packages in setup.py to include nested packages.

	PR #667 - @monkeysecurity - Explicitly adding urllib3[secure] to setup.py (REVERTED in #683)

	PR #668 - @monkeysecurity - IPv6 support in security groups.

	PR #669 - @monkeysecurity - Updating the security group auditor to treat ::/0 the same as 0.0.0.0/0

	PR #671 - @monkeysecurity - Enhancing PolicyDiff to be able to handle non-ascii strings.

	PR #673 - @monkeysecurity - Fixing path to aws_accounts.json. (Broken my moving manage.py)

	PR #675 - @monkeysecurity - Adding package_data and data_files sections to setup.py.

	PR #677 - @willbengtson - Fixing the security trackable information.

	PR #682 - @monkeysecurity - Updating packaged supervisor config to provide full path to monkey

	PR #681 - @AlexCline - Add reference_policies for TLS transitional ELB security policies

	PR #684 - @monkeysecurity - Disabling DB migration b8ccf5b8089b. Was freezing some db upgrades

	PR #683 - @monkeysecurity - Reverted #667. Added pip install --upgrade urllib3[secure] to quickstart and Dockerfile.

	PR #685 - @monkeysecurity - Running docker-compose build in Travis-CI.

	PR #688 - @mcpeak - Add Bandit gate to Security Monkey.

	PR #687 - @mikegrima - Fix for issue #680. (Unable to edit account names)

	PR #689 - @mikegrima - Enhancements to Travis-CI: parallelized the workloads. (docker/python/dart in parallel)

Important Notes:

	This is a hotfix release to correct a number of installation difficulties reported since 0.9.0.

Contributors:

	@redixin

	@AlexCline

	@willbengtson

	@mcpeak

	@mikegrima

	@monkeysecurity

v0.9.0 (2017-04-13)

	PR #500 - @monkeysecurity - Updating ARN.py to look for StringEqualsIgnoreCase in policy condition blocks

	PR #511 - @kalpatel01 - Fix KMSAuditor exceptions

	PR #510 - @kalpatel01 - Add additional JIRA configurations

	PR #504 - @redixin - Plugins support

	PR #515 - @badraufran - Add ability to press enter to search in search bar component

	PR #514 - @badraufran - Update dev_setup_osx.rst to get it up-to-date

	PR #513 / #545- @mikegrima - Fix for S3 watcher errors.

	PR #516 - @badraufran - Remove broken packages link

	PR #518 - @badraufran - Update dev_setup_osx (Remove sudo)

	PR #519 - @selmanj - Minor reformatting/style changes to Docker docs

	PR #512 / #521 - @kalpatel01 - Organize tests into directories

	PR #524 - @kalpatel01 - Remove DB mock class

	PR #522 - @kalpatel01 - Optimize SQL for account delete

	PR #525 - @kalpatel01 - Handle known kms boto exceptions

	PR #529 - @mariusgrigaitis - Usage of GOOGLE_HOSTED_DOMAIN in sample configs

	PR #532 - @kalpatel01 - Add sorting to account tables (UI)

	PR #538 - @cu12 - Add more Docker envvars

	PR #536 / #540 - @supertom - Add account type field to item, item details and search bar.

	PR #534 / #541 - @kalpatel01 - Add bulk enable and disable account service

	PR #546 - @supertom - GCP: fixed accounttypes typo.

	PR #547 - @monkeysecurity - Delete deprecated Account fields

	PR #528 - @kalpatel01 - Fix reaudit issue for watchers in different intervals

	PR #553 - @mikegrima - Fixed bugs in the ES watcher

	PR #535 / #552 - @kalpatel01 - Add support for overriding audit scores

	PR #560 / #587 - @mikegrima - Bump CloudAux version

	PR #533 / #559 - @kalpatel01 - Add Watcher configuration

	PR #562 - @monkeysecurity - Re-adding reporter timing information to the logs.

	PR #557 - @kalpatel01 - Add justified issues report

	PR #573 - @monkeysecurity - fixing issue duplicate ARN issue…

	PR #564 - @kalpatel01 - Fix justification preservation bug

	PR #565 - @kalpatel01 - Handle unicode name tags

	PR #571 - @kalpatel01 - Explicitly set export filename

	PR #572 - @kalpatel01 - Fix minor watcher bugs

	PR #576 - @kalpatel01 - Set user role via SSO profile

	PR #569 - @kalpatel01 - Split check_access_keys method in the IAM User Auditor

	PR #566 - @kalpatel01 - Convert watchers to boto3

	PR #568 - @kalpatel01 - Replace ELBAuditor DB query with support watcher

	PR #567 - @kalpatel01 - Reduce AWS managed policy audit noise

	PR #570 - @kalpatel01 - Add support for custom watcher and auditor alerters

	PR #575 - @kalpatel01 - Add functionality to clean up stale issues

	PR #582 - @supertom - [GCP] Watchers/Auditors for GCP

	PR #588 - @supertom - GCP docs: Draft of GCP changes

	PR #592 - @monkeysecurity - SSO Role Modifications

	PR #597 - @supertom - GCP: fixed issue where client wasn’t receiving user-specified creds

	PR #598 - @redixin - Implement add_account_%s for custom accounts

	PR #600 - @supertom - GCP: fixed issue where bucket watcher wasn’t sending credentials to Cloudaux

	PR #602 - @crruthe - Added permission for DescribeVpnGateways missing

	PR #605 - @monkeysecurity - ELB Auditor - Fixing reference to check_rfc_1918

	PR #610 - @monkeysecurity - Adding Unique Index to TechName and AccountName

	PR #612 - @carise - Add a section on using GCP Cloud SQL Postgres with Cloud SQL Proxy

	PR #613 - @monkeysecurity - Setting Item.issue_count to deferred. Only joining tables in distinct if necessary.

	PR #614 - @monkeysecurity - Increasing default timeout

	PR #607 - @supertom - GCP: Set User Agent

	PR #609 - @mikegrima - Added ephemeral section to S3 for “GrantReferences”

	PR #611 - @roman-vynar - Quick start improvements

	PR #619 - @mikegrima - Fix for plaintext passwords in DB if using CLI for user creation

	PR #622 - @jonhadfield - Fix ACM certificate ImportedAt timestamp

	PR #616 - @redixin - Fix docs and variable names related to custom alerters

	PR #502 - @mikegrima - Batching support for watchers

	PR #631 - @supertom - Added __version__ property

	PR #632 - @sysboy - Set the default value of SECURITY_REGISTERABLE to False

	PR #629 - @BobPeterson1881 - Fix security group rule parsing

	PR #630 - @BobPeterson1881 - Update dashboard view filter links

	PR #633 - @sysboy - Log Warning when S3 ACL can’t be retrieved.

	PR #639 - @monkeysecurity - Removing reference to zerotodocker.

	PR #624 - @mikegrima - Adding utilities to get S3 canonical IDs.

	PR #640 - @supertom - GCP: fixed UI Account Type filtering

	PR #642 - @monkeysecurity - Adding active and third_party flags to account view API

	PR #646 - @monkeysecurity - Removing s3_name from exporter and renaming Account.number to identifier

	PR #648 - @mikegrima - Fix for UI Account creation bug

	PR #657 #658 - @jeyglk - Fix Docker

	PR #655 - @monkeysecurity - Updating quickstart/install documentation to simplify.

	PR #659 - @monkeysecurity - Quickstart GCP Fixes

	PR #625 - @bungoume - Fix principal KeyError

	PR #662 - @monkeysecurity - Replacing python manage.py with monkey

	PR #660 - @mcpeak - Adding an option to allow group write for logfiles

	PR #661 - @shrikant0013 - Added doc on update/upgrade steps

Important Notes:

	SECURITY_MONKEY_SETTINGS is no longer a required environment variable.
	If supplied, security_monkey will respect the variable. Otherwise it will default to env-config/config.py

	manage.py has been moved inside the package and a monkey alias has been setup.
	Where you might once call python manage.py <arguments> you will now call monkey <arguments>

	Documentation has been converted from RST to Markdown.
	I will no longer be using readthedocs or RST.

	Quickstart guide has been largely re-written.

	Quickstart now instructs you to create and use a virtualenv (and how to get supervisor to work with it)

	This release contains GCP Watcher Support [https://medium.com/@Netflix_Techblog/netflix-security-monkey-on-google-cloud-platform-gcp-f221604c0cc7].

	Additional Permissions Required:
	ec2:DescribeVpnGateways

Contributors:

	@kalpatel01

	@redixin

	@badraufran

	@selmanj

	@mariusgrigaitis

	@cu12

	@supertom

	@crruthe

	@carise

	@roman-vynar

	@jonhadfield

	@sysboy

	@jeyglk

	@bungoume

	@mcpeak

	@shrikant0013

	@mikegrima

	@monkeysecurity

v0.8.0 (2016-12-02-delayed->2017-01-13)

	PR #425 - @crruthe - Fixed a few report hyperlinks.

	PR #428 - @nagwww - Documentation fix. Renamed module: security_monkey.auditors.elb to module: security_monkey.auditors.elasticsearch_service

	PR #424 - @mikegrima - OS X Install doc updates for El Capitan and higher.

	PR #426 - @mikegrima - Added “route53domains:getdomaindetail” to permissions doc.

	PR #427 - @mikegrima - Fix for ARN parsing of cloudfront ARNs.

	PR #431 - @mikegrima - Removed s3 ARN check for ElasticSearch Service.

	PR #448 - @zollman - Fix exception logging in store_exception.

	PR #444 - @zollman - Adds exception logging listener for appscheduler.

	PR #454 - @mikegrima - Updated S3 Permissions to reflect latest changes to cloudaux.

	PR #455 - @zollman - Add Dashboard.

	PR #456 - @zollman - Increase issue note size.

	PR #420 - @crruthe - Added support for SSO OneLogin.

	PR #432 - @robertoriv - Add pagination for whitelist and ignore list.

	PR #438 - @AngeloCiffa - Pin moto==0.4.25. (TODO: Bump Jinja2 version.)

	PR #433 - @jnbnyc - Added Docker/Docker Compose support for local dev.

	PR #408 - @zollman - Add support for custom account metadata. (An important step that will allow us to support multiple cloud providers in the future.)

	PR #439 - @monkeysecurity - Replace botor lib with Netflix CloudAux.

	PR #441 - @monkeysecurity - Auditor ChangeItems now receive ARN.

	PR #446 - @zollman - Fix item ‘first_seen’ query .

	PR #447 - @zollman - Refactor rdsdbcluster array params.

	PR #445 - @zollman - Make misfire grace time and reporter start time configurable.

	PR #451 - @monkeysecurity - Add coverage with Coveralls.io.

	PR #452 - @monkeysecurity - Refactor & add tests for the PolicyDiff module.

	PR #449 - @monkeysecurity - Refactoring s3 watcher to use Netflix CloudAux.

	PR #453 - @monkeysecurity - Fixing two policy diff cases.

	PR #442 - @monkeysecurity - Adding index to region. Dropping unused item.cloud.

	PR #450 - @monkeysecurity - Moved test & onelogin requirements to the setup.py extras_require section.

	PR #407 - @zollman - Link together issues by enabling auditor dependencies.

	PR #419 - @monkeysecurity - Auditor will now fix any issues that are not attached to an AuditorSetting.

	PR NONE - @monkeysecurity - Item View no longer returns revision configuration bodies. Should improve UI for items with many revisions.

	PR NONE - @monkeysecurity - Fixing bug where SSO arguments weren’t passed along for branded sso. (Where the name is not google or ping or onelogin)

	PR #476 - @markofu - Update aws_accounts.json to add Canada and Ohio regions.

	PR NONE - @monkeysecurity - Fixing manage.py::amazon_accounts() to use new AccountType and adding delete_unjustified_issues().

	PR #480 - @monkeysecurity - Making Gunicorn an optional import to help support dev on Windows.

	PR #481 - @monkeysecurity - Fixing a couple dart warnings.

	PR #482 - @monkeysecurity - Replacing Flask-Security with Flask-Security-Fork.

	PR #483 - @monkeysecurity - issue #477 - Fixes IAM User Auditor login_profile check.

	PR #484 - @monkeysecurity - Bumping Jinja2 to >=2.8.1

	PR #485 - @robertoriv - New IAM Role Auditor feature - Check for unknown cross account assumerole.

	PR #487 - @hyperbolist - issue #486 - Upgrade setuptools in Dockerfile.

	PR #489 - @monkeysecurity - issue #251 - Fix IAM SSL Auditor regression. Issue should be raised if we cannot obtain cert issuer.

	PR #490 - @monkeysecurity - issue #421 - Adding ephemeral field to RDS DB issue.

	PR #491 - @monkeysecurity - Adding new RDS DB Cluster ephemeral field.

	PR #492 - @monkeysecurity - issue #466 - Updating S3 Auditor to use the ARN class.

	PR NONE - @monkeysecurity - Fixing typo in dart files.

	PR #495 - @monkeysecurity - issue #494 - Refactoring to work with the new Flask-WTF.

	PR #493 - @monkeysecurity - Windows 10 Development instructions.

	PR NONE - @monkeysecurity - issue #496 - Bumping CloudAux to >=1.0.7 to fix IAM User UploadDate field JSON serialization error.

Important Notes:

	New permissions required:
	s3:getaccelerateconfiguration

	s3:getbucketcors

	s3:getbucketnotification

	s3:getbucketwebsite

	s3:getreplicationconfiguration

	s3:getanalyticsconfiguration

	s3:getmetricsconfiguration

	s3:getinventoryconfiguration

	route53domains:getdomaindetail

	cloudtrail:gettrailstatus

Contributors:

	@zollman

	@robertoriv

	@hyperbolist

	@markofu

	@AngeloCiffa

	@jnbnyc

	@crruthe

	@nagwww

	@mikegrima

	@monkeysecurity

v0.7.0 (2016-09-21)

	PR #410/#405 - @zollman - Custom Watcher/Auditor Support. (Dynamic Loading)

	PR #412 - @llange - Google SSO Fixes

	PR #409 - @kyelberry - Fixed Report URLs in UI.

	PR #413 - @markofu - Better handle IAM SSL certificates that we cannot parse.

	PR #411 - @zollman - Many, many new watchers and auditors.

New Watchers:

	CloudTrail

	AWSConfig

	AWSConfigRecorder

	DirectConnect::Connection

	EC2::EbsSnapshot

	EC2::EbsVolume

	EC2::Image

	EC2::Instance

	ENI

	KMS::Grant

	KMS::Key

	Lambda

	RDS::ClusterSnapshot

	RDS::DBCluster

	RDS::DBInstace

	RDS::Snapshot

	RDS::SubnetGroup

	Route53

	Route53Domains

	TrustedAdvisor

	VPC::DHCP

	VPC::Endpoint

	VPC::FlowLog

	VPC::NatGateway

	VPC::NetworkACL

	VPC::Peering

Important Notes:

	New permissions required:
	cloudtrail:describetrails

	config:describeconfigrules

	config:describeconfigurationrecorders

	directconnect:describeconnections

	ec2:describeflowlogs

	ec2:describeimages

	ec2:describenatgateways

	ec2:describenetworkacls

	ec2:describenetworkinterfaces

	ec2:describesnapshots

	ec2:describevolumes

	ec2:describevpcendpoints

	ec2:describevpcpeeringconnections,

	iam:getaccesskeylastused

	iam:listattachedgrouppolicies

	iam:listattacheduserpolicies

	lambda:listfunctions

	rds:describedbclusters

	rds:describedbclustersnapshots

	rds:describedbinstances

	rds:describedbsnapshots

	rds:describedbsubnetgroups

	redshift:describeclusters

	route53domains:listdomains

Contributors:

	@zollman

	@kyleberry

	@llange

	@markofu

	@monkeysecurity

v0.6.0 (2016-08-29)

	issue #292 - PR #332 - Add ephemeral sections to the redshift watcher

	PR #338 - Added access key last used to IAM Users.

	Added an IAM User auditor check to look for access keys without use in past 90 days.

	PR #334 - @alexcline - Route53 watcher and auditor. (Updated to use botor in PR #343)

	Logo updated. Weapon replaced with banana. Expect more logo changes soon.

	PR #345 - Ephemeral changes now update the latest revision. Revisions now have a date_last_ephemeral_change column as well as a date_created column.

	PR #349 - @mikegrima - Install documentation updates

	PR #354 - Feature/SSO (YAY)

	PR #365 - @alexcline - Added ACM (Amazon Certificate Manager) watcher/auditor

	PR #358/#370 - @alexcline - Alex cline feature/kms

	Updated Dart/Angular dart versions.

	PR #362 - @crruthe - Changed to dictConfig logging format

	PR #372 - @ollytheninja - SQS principal bugfix

	PR #379 - @bunjiboys - Adding Mumbai region

	PR #380 - @bunjiboys - Adding Mumbai ELB Log AWS Account info

	PR #381 - @ollytheninja - Adding tags to the S3 watcher

	Boto updates

	PR #376 - Adding item.arn field. Adding item.latest_revision_complete_hash and item.latest_revision_durable_hash. These are for the bananapeel rearchitecture.

	PR #386 - Shortening sessions from default value to 60 minutes. Setting Cookie HTTPONLY and SECURE flags.

	PR #389 - Adding CloudTrail table, linked to itemrevision. (To be used by bananapeel rearchitecture.)

	PR #390 - @ollytheninja - Adding export CSV button.

	PR #394 - @mikegrima - Saving exceptions to database table

	PR #402 - issue #401 - Adding new ELB Reference Policy ELBSecurityPolicy-2016-08

Hotfixes:

	Upgraded Cryptography to 1.3.1

	Updated docs to use sudo -E when calling manage.py amazon_accounts.

	Updated the @record_exception decorator to allow the region to be overwritten. (Useful for region-less technology that likes to be recorded in the “universal” region.)

	issue #331 - IAMSSL watcher failed on elliptic curve certs

Important Notes:

	Route53 IgnoreList entries may match zone name or recordset name.

	Checkout the new log configuration format from PR #362. You may want to update your config.py.

	New permissions required:
	“acm:ListCertificates”,

	“acm:DescribeCertificate”,

	“kms:DescribeKey”,

	“kms:GetKeyPolicy”,

	“kms:ListKeys”,

	“kms:ListAliases”,

	“kms:ListGrants”,

	“kms:ListKeyPolicies”,

	“s3:GetBucketTagging”

	Some dependencies have been updated (cryptography, boto, boto3, botocore, botor, pyjwt). Please re-run python setup.py install.

	Please add the following lines to your config.py for more time-limited sessions:

PERMANENT_SESSION_LIFETIME=timedelta(minutes=60) # Will logout users after period of inactivity.
SESSION_REFRESH_EACH_REQUEST=True
SESSION_COOKIE_SECURE=True
SESSION_COOKIE_HTTPONLY=True
PREFERRED_URL_SCHEME='https'

REMEMBER_COOKIE_DURATION=timedelta(minutes=60) # Can make longer if you want remember_me to be useful
REMEMBER_COOKIE_SECURE=True
REMEMBER_COOKIE_HTTPONLY=True

Contributors:

	@alexcline

	@crruthe

	@ollytheninja

	@bunjiboys

	@mikegrima

	@monkeysecurity

v0.5.0 (2016-04-26)

	PR #286 - bunjiboys - Added Seoul region AWS Account IDs to import scripts

	PR #291 - sbasgall - Corrected ignore_list.py variable names and help strings

	PR #284 - mikegrima - Fixed cross-account root reporting for ES service (Issue #283)

	PR #293 - mikegrima - Updated quickstart documentation to remove permission wildcards (Issue #287)

	PR #301 - monkeysecurity - iamrole watcher can now handle many more roles (1000+) and no longer times out.

	PR #316 - DenverJ - Handle database exceptions by cleaning up session.

	PR #289 - delikat - Persist custom role names on account creation

	PR #321 - monkeysecurity - Item List and Item View will no longer display disabled issues.

	PR #322 (PR #308) - llange - Ability to add AWS owned managed policies to ignore list by ARN (Issue #148)

	PR #323 - snixon - Breaks check_securitygroup_any into ingress and egress (Issue #239)

	PR #309 - DenverJ - Significant database query optimizations by tuning itemrevision retrievals

	PR #324 - mikegrima - Handling invalid ARNs more consistently between watchers (Issue #248)

	PR #317 - ollytheninja - Add Role Based Access Control

	PR #327 - monkeysecurity - Added Flask-Security’s SECURITY_TRACKABLE to backend and UI

	PR #328 - monkeysecurity - Added ability to parse AWS service “ARNs” like events.amazonaws.com as well as ARNS that use * for the account number like arn:aws:s3:​*:*​:some-s3-bucket

	PR #314 - pdbogen - Update Logging to have the ability to log to stdout, useful for dockerizing.

Hotfixes:

	s3_acl_compare_lowercase: AWS now returns S3 ACLs with a lowercased owner. security_monkey now does a case insensitive compare

	longer_resource_ids. Updating DB to handle longer AWS resource IDs: https://aws.amazon.com/blogs/aws/theyre-here-longer-ec2-resource-ids-now-available/

	Removed requests from requirements.txt/setup.py as it was pinned to a very old version and not directly required (Issue #312)

	arn_condition_awssourcearn_can_be_list. Updated security_monkey to be able to handle a list of ARNS in a policy condition.

	ignore_list_fails_on_empty_string: security_monkey now properly handles an ignorelist entry containing a prefix string of length 0.

	protocol_sslv2_deprecation: AWS stopped returning whether an ELB listener supported SSLv2. Fixed security_monkey to handle the new format correctly.

Important Notes:

	security_monkey IAM roles now require a new permission: iam:listattachedrolepolicies

	Your security_monkey config file should contain a new flag: SECURITY_TRACKABLE = True

	You’ll need to rerun python setup.py install to obtain the new dependencies.

Contributors:

	@bunjiboys

	@sbasgall

	@mikegrima

	@DenverJ

	@delikat

	@snixon

	@ollytheninja

	@pdbogen

	@monkeysecurity

v0.4.1 (2015-12-22)

	PR #269 - mikegrima - TravisCI now ensures that dart builds.

	PR #270 - monkeysecurity - Refactored sts_connect to dynamically import boto resources.

	PR #271 - OllyTheNinja-Xero - Fixed indentation mistake in auditor.py

	PR #275 - AlexCline - Added elb logging to ELB watcher and auditor.

	PR #279 - mikegrima - Added ElasticSearch Watcher and Auditor (with tests).

	PR #280 - monkeysecurity - PolicyDiff better handling of changes to primitives (like ints) in dictionay values and added explicit escaping instead of relying on Angular.

	PR #282 - mikegrima - Documentation Fixes to configuration.rst and quickstart.rst adding es: permissions and other fixes.

Hotfixes:

	Added OSSMETADATA file to master/develop for internal Netflix tracking.

Contributors:

	@mikegrima

	@monkeysecurity

	@OllyTheNinja-Xero

	@AlexCline

v0.4.0 (2015-11-20)

	PR #228 - jeremy-h - IAM check misses ‘*‘ when found within a list. (Issue #223)

	PR #230 - markofu - New error and echo functions to simplify code for scripts/secmonkey_auto_install.sh

	PR #233 - mikegrima - Write tests for security_monkey.common.ARN (Issue #222)

	PR #238 - monkeysecurity - Refactoring _check_rfc_1918 and improving VPC ELB Internet Accessible Check

	PR #241 - bunjiboys - Seed Amazon owned AWS accounts (Issue #169)

	PR #243 - mikegrima - Fix for underscores not being detected in SNS watcher. (Issue #240)

	PR #244 - mikegrima - Setup TravisCI (Issue #227)

	PR #250 - OllyTheNinja-Xero - upgrade deprecated botocore calls in ELB watcher (Issue #249)

	PR #256 - mikegrima - Latest Boto3/botocore versions (Issue #254)

	PR #261 - bunjiboys - Add ec2:DescribeInstances to quickstart role documentation (Issue #260)

	PR #263 - monkeysecurity - Updating docs/scripts to pin to dart 1.12.2-1 (Issue #259)

	PR #265 - monkeysecurity - Remove ratelimiting max attempts, wrap ELB watcher with try/except/continue

Hotfixes:

	Issue #235 - OllyTheNinja-Xero - SNS Auditor - local variable ‘entry’ referenced before assignment

Contributors:

	@jeremy-h

	@mark-fu

	@mikegrima

	@bunjiboys

	@OllyTheNinja-Xero

	@monkeysecurity

v0.3.9 (2015-10-08)

	PR #212 - bunjiboys - Make email failures warnings instead of debug messages

	PR #203 - markofu - Added license to secmonkey_auto_install.sh.

	PR #207 - cbarrac - Updated dependencies and dart installation for secmonkey_auto_install.sh

	PR #209 - mikegrima - Make SNS Ignorelist use name instead of ARN.

	PR #213 - Qmando - Added more exception handling to the S3 watcher.

	PR #215 - Dklotz-Circle - Added egress rules to the security group watcher.

	monkeysecurity - Updated quickstart.rst IAM policy to remove wildcards and include redshift permissions.

	PR #218 - monkeysecurity - Added exception handling to the S3 bucket.get_location API call.

	PR #221 - Qmando - Retry on AWS API error when slurping ELBs.

	monkeysecurity - Updated cryptography package from 1.0 to 1.0.2 for easier installation under OS X El Capitan.

Hotfixes:

	Updated quickstart.rst and secmonkey_auto_install.sh to remove swig/python-m2crypto and add libffi-dev

	Issue #220 - SQS Auditor not correctly parsing ARNs, halting security_monkey. Fixed by abstracting ARN parsing into a new class (security_monkey.common.arn). Updated the SNS Auditor to also use this new class.

Contributors:

	bunjiboys

	markofu

	cbarrac

	mikegrima

	Qmando

	Dklotz-Circle

	monkeysecurity

v0.3.8 (2015-08-28)

	PR #165 - echiu64 - S3 watcher now tracking S3 Logging Configuration.

	None - monkeysecurity - Certs with an invalid issuer now flagged.

	PR #177 - DenverJ -Added new SQS Auditor.

	PR #188 - kevgliss - Removed dependency on M2Crypto/Swig and replaced with Cryptography.

	PR #164 - Qmando - URL encoding issue with certain searches containing spaces corrected.

	None - monkeysecurity - Fixed issue where corrected issues were not removed.

	PR #198 - monkeysecurity - Adding ability to select up to four items or revisions to be compared.

	PR #194 #195 - bunjiboys - SECURITY_TEAM_EMAIL should accept not only a list, but also a string or tuple.

	PR #180 #181 #190 #191 #192 #193 - cbarrac - A number of udpates and fixes for the bash installer. (scripts/secmonkey_auto_installer.sh)

	PR #176 #178 - mikegrima - Updated documentation for contributors on OS X and Ubuntu to use Webstorm instead of the Dart Editor.

Contributors:

	Qmando

	echiu64

	DenverJ

	cbarrac

	kevgliss

	mikegrima

	monkeysecurity

v0.3.7 (2015-07-20)

	PR #122 - Qmando - Jira Sync. Quentin from Yelp added Jira Integration.

	PR #147 - echiu64 - Added colors to audit emails and added missing justifications back into emails.

	PR #150 - echiu64 - Fixed a missing comma from setup.py

	PR #155 - echiu64 - Fixed a previous merge issue where _audit_changes() was looking for a Monitor instance instead of an list of Auditors.

	Issue #154 - monkeysecurity - Added support for ELB Reference Policy 2015-05.

	None - monkeysecurity - Added db.session.refresh(...) where appropriate in a few API views to replace some very ugly code.

	Issue #133 - lucab - Upgraded Flask-RESTful from v0.2.5 to v0.3.3 to fix an issue where request arguments were being persisted as the string “None” when they should have remained the javascript literal null.

	PR #120 - lucab - Add custom role_name field for each account to replace the previously hardcoded ‘SecurityMonkey’ role name.

	PR #120 - gene1wood - Add support for the custom role_name into manage.py.

	PR #161 - Asbjorn Kjaer - Increase s3_name from 32 characters to 64 characters to avoid errors or truncation where s3_name is longer.

	None - monkeysecurity - Set the ‘defer’ (lazy-load) attribute for the JSON config column on the ItemRevision table. This speeds up the web API in a number of places.

Hotfixes:

	Issue #149 - Python scoping issue where managed policies attached to more than one entity would cause an error.

	Issue #152 - SNS topics were being saved by ARN instead of by name, causing exceptions for very long names.

	Issue #141 - Setup cascading deletes on the Account table to prevent the error which occured when trying to delete an account with items and users attached.

Contributors:

	Qmando

	echiu64

	lucab

	gene1wood

	Asbjorn Kjaer (akjaer)

	monkeysecurity

v0.3.6 (2015-04-09)

	Changes to issue score in code will now cause all existing issues to be re-scored in the database.

	A new configuration parameter called SECURITYGROUP_INSTANCE_DETAIL can now be set to:
	“FULL”: Security Groups will display each instances, and all instance tags, that are associated with the security group.

	“SUMMARY”: Security Groups will display the number of instances attached to the security group.

	“NONE”: Security Groups will not retrieve any data about instances attached to a security group.

	If SECURITY_GROUP_INSTANCE_DETAIL is set to “FULL” or “SUMMARY”, empty security groups audit issues will have their score set to zero.

	For accounts with many thousands of instances, it is advised to set this to “NONE” as the AWS API’s do not respond in a timely manner with that many instances.

	Each watcher can be set to run at a different interval in code. We will want to move this to be a UI setting.

	Watchers may specify a list of ephemeral paths. Security_monkey will not send out change alerts for items in the ephemeral section. This is a good place for metadata that is often changing like the number of instances attached to a security_group or the number of remaining IP addresses in a VPC subnet.

Contributors:

	lucab

	monkeysecurity

v0.3.5 (2015-03-28)

	Adding policy minimizer & expander to the revision component

	Adding tracking of instance profiles attached to a role

	Adding marker/pagination code to redshift.describe_clusters()

	Adding pagination to IAM User get_all_user_policies, get_all_access_keys, get_all_mfa_devices, get_all_signing_certs

	Typo & minor corrections on postgres commands

	CLI command to save your current configurations to a JSON file for backup

	added a VPC watcher

	Adding DHCP Options and Internet Gateways to the VPC Watcher

	Adding a subnet watcher. Fixing the VPC watcher with deep_dict

	Adding the vpc route_table watcher

	Removing subnet remaining IP field until ephemeral section is merged in

	Adding IAM Managed Policies

	Typo & minor corrections on postgres commands in documentation

	Adds ELBSecurityPolicy-2015-03. Moves export grade ciphers to their own section and alerts on FREAK vuln.

	Provides context on refpol 2015-03 vs 2015-02.

	Adding a Managed Policies Auditor

	Added Manged Policy tracking to the IAM users, groups, and roles

Summary of new watchers:

	vpc
	DHCP Options

	Internet Gateways

	subnet

	routetable

	managed policies

Summary of new Auditors or audit checks:

	managed policies

	New reference policy 2015-03 for ELB listeners.

	New alerts for FREAK vulnerable ciphers.

Contributors:

	markofu

	monkeysecurity

v0.3.4 (2015-2-19)

	Merged in a new AuditorSettings tab created by Qmando at Yelp enabling you to disable audit checks with per-account granularity.

	security_monkey is now CSP compliant.

	security_monkey has removed all shadow-DOM components. Also removed webcomponents.js and dart_support.js, as they were not CSP compliant.

	security_monkey now advises users to enable standard security headers following headers:

X-Content-Type-Options "nosniff";
X-XSS-Protection "1; mode=block";
X-Frame-Options "SAMEORIGIN";
Strict-Transport-Security "max-age=631138519";
Content-Security-Policy "default-src 'self'; font-src 'self' https://fonts.gstatic.com; script-src 'self' https://ajax.googleapis.com; style-src 'self' https://fonts.googleapis.com;"

	security_monkey now has XSRF protection against all DELETE, POST, PUT, and PATCH calls.

	Updated the ELB Auditor to be aware of the ELBSecurityPolicy-2015-02 reference policy.

Contributers:

	Qmando

	monkeysecurity

v0.3.3 (2015-2-3)

	Added MirorsUsed() to my dart code to reduce compiled javascript size.

	Added support for non-chrome browsers by importing webcomponents.js and dart_support.js

	Upgraded to Angulardart 1.1.0 and Angular-dart.ui 0.6.3

v0.3.2 (2015-1-20)

	A bug has been corrected where IAM Groups with > 100 members or policies would be truncated.

	The web UI has been updated to use AngularDart 1.0.0. Significantly smaller javascript size.

v0.3.1 (2015-1-11)

	Change emails again show issues and justifications.

	Change emails now use jinja templating.

	Fixed an issue where issue justifications would disappear when the item was changed.

	Merged a pull request from github user jijojv to start the scheduler at launch instead of waiting 15 minutes.

v0.3.0 (2014-12-19)

	Add localhost to CORS for development.

	Big refactor adding monitors. Adding new watchers/auditors is now much simpler.

	Return to the current URL after authenticating.

	Added SES_REGION config. Now you can send email out of regions other than us-east-1.

	Changing default log location to /var/log/security_monkey.

	Docs now have cleaner nginx.conf.

	Add M2Crypto to get a number of new iamssl fields.

	Added favicon.

new watchers:

	eip

	redshift

	ses

enhanced watchers:

	iamssl - new fields from m2crypto

	elb - new listener policies from botocore

	sns - added sns subscriptions

	s3 - now tracks lifecycle rules

new auditors:

	redshift - checks for non-vpc deployment.

	ses - checks for verified identities

enhanced auditors:

	iamssl - cert size, signature hashing algorithm, upcoming expiration, heartbleed

	elb - check reference policy and certain custom policy fields

hotfixes:

	Fixed issue #12 - Deleting account results in foreign key constraint.

	Added missing alembic script for the ignorelist.

	Various minor documentation updates.

	API server now respects –bind parameter. (Required for the docker image).

	SES connection in utils.py is now surrounded in a try/except.

	FlaskSecurity upgraded to latest.

Contributers:

	ivanlei

	lucab

	yograterol

	monkeysecurity

v0.2.0 (2014-10-31)

Changes in the Web UI:

	Dart: Dates are now displayed in your local timezone.

	Dart: Added Item-level comments.

	Dart: Added the ability to bulk-justify issues from the Issues Table view. This uses the AngularDartUI Modal Component.

	Dart: Added better messaging around the settings for adding an account. This closes issue #38. This uses the AngularDartUI tooltip component.

	Bug Fix: Colors in the Item table now correctly represent the justification status.

	Dart: Added AngularUI Tabs to select between diff and current configuration display.

	Dart: Added a timer-based auto-refresh so SM can be used as a dashboard.

	Dart: Replaced a number of custom http services with Victor Savkin’s Hammock library.
	More than 965 lines of code removed after using Hammock.

	Dart: Replaced custom pagination code with AngularDartUI’s Pagination Component.
	IssueTable

	RevisionTable

	ItemTable

	AccountSettingsTable

	Dart: Network CIDR whitelist is now configured in the web UI under settings.

	Dart: Object Ignorelist is now configured in the web UI under settings.

	Created a new PaginatedTable parent class for all components that wish to display paginated data. This table works with AngularDart’s Pagination Component and also provides the ability to change the number of items displayed on each page.

	Dart: Added ng_infinite_scroll to the item_detail_view for loading revisions

	Dart: Moved a number of components from being their own libraries to being `part of` the security_monkey library.

	Dart: Replaced the last controller (UsernameController) with a Component to prepare for AngularDart 1.0.0

	Dart: Style - Renamed library from SecurityMonkey to security_monkey to follow the dart style guide. Refactored much of main.dart into lib/security_monkey.dart to try and mimic the cleaner design of the new angular sample app: https://github.com/vsavkin/angulardart-sample-app

Changes in the core product:

	Updated API endpoints to better follow REST architecture.

	Added table for NetworkWhitelist.

	Added rest API endpoints for NetworkWhitelist.

	Added Alembic migration script to add the new NetworkWhitelist table to the DB.

	Added table for IgnoreList.

	Added rest API endpoints for Ignorelist.

	Added Alembic migration script to add the new IgnoreList table to the DB.

	Added check for rfc-1918 CIDRs in non-VPC security groups.

	Saving IAMSSL Certs by cert name instead of cert ID

	Marking VPC RDS Security Groups with their VPC ID

	Supports Paginated Boto access for RDS Security Groups.

	Added alert for non-VPC RDS SG’s containing RFC-1918 CIDRs

	Added check for IAM USER AKEY rotation

	Added check for IAM USER with login profile (console access) And Access Keys (API Access)

	Added an ELB Auditor with a check for internet-facing ELB.

	Added check for security groups with large port ranges.

v0.1.2 (2014-08-11)

Changes in the Web UI:

	Dart: Removed Shadow DOM dependency and set version bounds in pubspec.yaml.

	Dart: Replaced package:js with dart:js.

	Dart: Added the Angular Pub Transformer.

Changes in the core product:

	Added AWS Rate Limiting Protection with exponential backoff code.

	Added instructions to get a local development environment setup for contributing to security_monkey.

	Added support for boto’s new ELB pagination. The pull request to boto and to security_monkey came from Kevin Glisson.

	Bug fix: Security Group Audit Issues now include the port the issue was reported on.

These were already in master, but weren’t tied to a new release:

	Bug fix: Supervisor script now sets SECURITY_MONKEY_SETTINGS envvar for the API server whereas it only previously set the envvar for the scheduler. This came from a pull request from parabolic.

	Bug fix: Audit reports will only be sent if there are issues to report on.

	Bug fix: Daily Audit Email setting (ALL/NONE/ISSUES) is now respected.

	Bug fix: Command Line Auditor Command Arguments are now coerced into being booleans.

	Quickstart Guide now instructs user to setup the web UI on SSL.

	Various Smaller Bug Fixes.

v0.1.1 (2014-06-30)

Initial release of Security Monkey!

Update Security Monkey

Update Security Monkey on your Instance

Update Steps:

	Prerequisites

	Backup and stop services

	Clone security_monkey and update environment

	Compile (or download) the web UI

	Update database and configurations

	Start services

Prerequisites

This doc assumes you already have installed and running security monkey environment. Especially it assumes you have following on your system

	https://github.com/Netflix/security_monkey project files are available under /usr/local/src/security_monkey

	Supervisor [http://supervisord.org/] configured and running

	Python virtualenv

Backup config and installation files

Backup your /usr/local/src/security_monkey/env-config/config.py and move your exsiting installation to backup directory

cp /usr/local/src/security_monkey/env-config/config.py ~/
mkdir ~/security_monkey_backup && mv /usr/local/src/security_monkey/ ~/security_monkey_backup/

Stop services

Stop securitymonkey and the scheduler services using supervisorctl.

sudo supervisorctl stop securitymonkey
sudo supervisorctl stop securitymonkeyscheduler

Clone security_monkey

Releases are on the master branch and are updated about every three months. Bleeding edge features are on the develop branch.
git clone https://github.com/Netflix/security_monkey.git into the your security monkey location

$ cd /usr/local/src
$ sudo git clone --depth 1 --branch develop https://github.com/Netflix/security_monkey.git

Update Python environment

Activate your python virtualenv and run python setup.py install

cd security_monkey
virtualenv venv
source venv/bin/activate
pip install --upgrade setuptools
pip install google-compute-engine # Only required on GCP
python setup.py install

Compile (or Download) the web UI

If you’re using the stable (master) branch, you have the option of downloading the web UI instead of compiling it. Visit the latest release https://github.com/Netflix/security_monkey/releases/latest and download static.tar.gz.

If you’re using the bleeding edge (develop) branch, you will need to compile the web UI by following these instructions.
If you have not done this during installation follow this section in quickstart guide

Compile the web-app from the Dart code

Build the Web UI

cd /usr/local/src/security_monkey/dart
sudo /usr/lib/dart/bin/pub get
sudo /usr/lib/dart/bin/pub build

Copy the compiled Web UI to the appropriate destination

mkdir -p /usr/local/src/security_monkey/security_monkey/static/
/bin/cp -R /usr/local/src/security_monkey/dart/build/web/* /usr/local/src/security_monkey/security_monkey/static/
chgrp -R www-data /usr/local/src/security_monkey

Update configurations

Replace the config file that we previously backed up.

sudo mv ~/config.py /usr/local/src/security_monkey/env-config/

If your file is named something other than config.py, you will want to set the SECURITY_MONKEY_SETTINGS environment variable to point to your config:

export SECURITY_MONKEY_SETTINGS=/usr/local/src/security_monkey/env-config/config-deploy.py

Update the database tables

Security Monkey uses Flask-Migrate (Alembic) to keep database tables up to date. To update the tables, run this command.
Note: python manage.py db upgrade is idempotent. You can re-run it without causing any harm.

cd /usr/local/src/security_monkey/
monkey db upgrade

Start services

sudo supervisorctl start securitymonkey
sudo supervisorctl start securitymonkeyscheduler

Note:
Netflix doesn’t upgrade/patch Security Monkey systems. Instead simply rebake a new instance with the new version.

 _images/issues_page.png
SesrenConf.

sus
None (Return Bott) s

e
Auditssues

temName

snan
soytanouioreme

=

soyparyuoreme

Auditssues Report

p—

omuser

premerprises

premerprises

premerprises

prenerprises

sl

i

1 0P O g g

1
]

Nt
Mo
FuLL conTRoL
pos
FuLL conTRoL
pa
L contRo.
ok

w0

_images/empty_create_account_page.png
Create Account

) Ace
) ThirdPary

save

_images/resized_login_page-1.png
-ompute-1.amazonaws.com

Security Monkey

Login
Email address
Password

() Remember me.

Menu

« Login
« Register
« Forgot password

_images/resized_select_ec2_instance.png
Step 2: Choose an Instance Type

_images/resized_edit_trust_relationship.png

_images/justified_issue.png
Issue Justification Score Notes

Security Group contains 0.0.0.0/0 This has been approved by the securityteam.

_images/item_with_issue.png
SSH_HTTP.

Technology securygroup
Region uswest2
Account P enterprises

covery Timeline:

Jumplstof revisons Secury Moriey
hasdiscoverd.

S —

nasparicie

Atention! The following issues have been raise and need to b fixed o justied.

asue

Secuy roupconins 00000

{

“rules® [
Current |
from_port': 22,
ip_protocol; tcp",
*to_port: 22",
“owner.id: nul,
“name nul,
“group.id": nul,
*adr_ip:"0.00.0/0"
»
€

“from_port': 80",

_static/up.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_images/colored_JSON.png
"owner_id": null,
"name": null,

_images/resized_role_policy.png
Create Role

CONFIGUREROLE ESTABLSHTRUST SCTPERMISSIONS.

Set Permissions

Select a policy template, generate a policy, or create a custom policy. A policy is a document that
fommally states one or more pemmissions. You can edit the policy on the following screen, or at a ater time

using the user, group, or ol detall pages.
© Select Policy Template

© Policy Generator

© Custom Policy

Use the policy editor to customize your own set of pemissions.

No Permissions.

_static/comment-bright.png

_images/resized_settings_link.png
4@ Security Monkey ~ Search Reports ~ Settings

Region Active Technology Account

_images/filtered_search_1.png
Region

Tech

iamrole
keypair

rds.

s3
securitygroup

Search Config

_images/create_pattern_check_score.png
Create Account Pattern Overide Audit Score

secauncTpe | AWS
AocountFed | notes.

FeaVele | Spacil proosssing fo s sccount

o [0

_images/check_score_with_pattern.png
Edit Override Audit Score

o [|

Moot |chc Sehui) |

© Dstiea

_images/create_service_account.png
Create service account

Service account name.

securitymonkey

Service account ID

securtymonkey @

 Furnish a new private key
Downloads 2 fil that contains the private key. Store the fil
cant be recovered flost.

Key type
® JSON

Recommended

P12

For backward compatibilty with code using the P12 {

You don't have permission to modify the domain-wide d
don't have permission to modify the three-legged OAuth

permission to modify the product name for the consent
Enable G Suite Domain-wide Delegation
Grants a cient access to all users'data on a G Sute domg

authorization on their part. Leam more

Role.

Selected
 Viewer
+ Security Reviewer

Project
AppEngine
BigQuery

Biling

Cloud SaL
Compute Engine
Container
Dataflow
Datahub
Dataproc

™

Loggng

Other

Pub/Sub

Viewer and 1 other ~

_images/aws_rds.png
Step2:

Step 4:

Select Engine
Production?
Specify DB Details

Configure Advanced Setiings

Specify DB Details

Instance Specifications
DB Engine
License Model

DB Engine Version

postgres
postgresqblicense

[PosigresQLS54RT v

DB Instance Class |db.m3.xiarge

VCPU. 15 GIB RAN ¥
@ The following selections
disqualfy the instance from being
eligible for the free tier:

WAz Deployment (s 7]

Storage Type | Provisioned I0PS (SSD)
Multi-AZ Deployment
Allocated Storage > 20GB
Provisioned IOPS

DB Instance Class

Allocated Storage* 100

GB

Provi

ned I0PS | 1000

You will be charged normal RDS
Prices. Leam More .

Settings
@ Estimate your monthly costs for the DB Instance Identifier secmonkey
DB Instance using the RDS Instance
Cost Calculator. Master Usemame® | securitymonkey_master Retype the value you specified
for Master Password.
Master Password*
Confirm Password*
* Required

Ccancel

s

_images/created_check_score.png
Edit Override Audit Score

-

Moo | cheok_ac! (s3Auditon)

e

s o

Aocount Patter Auit Scoree

Account ype AccountFeld Value Score

ﬂ

_images/disable_check.png
Create Overide Audit Score

Tecrooiony |3
Mathod | cheok_ac! (saAuditor)

 Dasoas

_images/resized_name_securitymonkeyinstanceprofile_role.png
Create Role
—0
‘CONFIGURE ROLE
‘Specify a role name. You cannot edit the role name after the role is created.

SecurityMonkeyinstanceProfile|

Maximum 64 characters. Use alphanumeric and '+

Role Nam

Continue

_images/revision_comments.png
Jun 29, 2014 5:52:26 AM VActive

{
e ot E——

Y

Current

patrick@1 ‘We're using this keypair for the "destiny” project. n
1un29, 2014 6:28:16 AM

