

Welcome to Salmon’s documentation!

Contents:

	Requirements
	Binary Releases

	Requirements for Building from Source

	Installation

	Salmon
	Using Salmon

	Preparing transcriptome indices (Quasi-index and FMD-index-based modes)

	Quantifying in non-alignment-based mode

	Quantifying in alignment-based mode

	Description of important options

	What’s this LIBTYPE?

	Output

	Misc

	References

	Alevin
	Using Alevin

	Providing multiple read files to Alevin

	Description of important options

	Output

	Misc

	References

	Salmon Output File Formats
	Quantification File

	Command Information File

	Auxiliary Files

	Fragment Library Types

Indices and tables

	Index

	Module Index

	Search Page

Requirements

Binary Releases

Pre-compiled binaries of the latest release of Salmon for a number different
platforms are available available under the Releases tab [https://github.com/COMBINE-lab/salmon/releases] of Salmon’s GitHub
repository [https://github.com/COMBINE-lab/salmon]. You should be able to
get started quickly by finding a binary from the list that is compatible with
your platform. Additionally, you can obtain a Docker image of the latest version
from DockerHub using:

> docker pull combinelab/salmon

Requirements for Building from Source

	A C++11 conformant compiler (currently tested with GCC>=4.7 and Clang>=3.4)

	CMake [http://www.cmake.org]. Salmon uses the CMake build system to check, fetch and install
dependencies, and to compile and install Salmon. CMake is available for all
major platforms (though Salmon is currently unsupported on Windows.)

Installation

After downloading the Salmon source distribution and unpacking it, change into the top-level directory:

> cd salmon

Then, create and out-of-source build directory and change into it:

> mkdir build
> cd build

Salmon makes extensive use of Boost [http://www.boost.org]. We recommend installing the most
recent version (1.55) systemwide if possible. If Boost is not installed on your
system, the build process will fetch, compile and install it locally. However,
if you already have a recent version of Boost available on your system, it make
sense to tell the build system to use that.

If you have Boost installed you can tell CMake where to look for it. Likewise,
if you already have Intel’s Threading Building Blocks [http://threadingbuildingblocks.org/] library installed, you can tell CMake
where it is as well. The flags for CMake are as follows:

	-DFETCH_BOOST=TRUE – If you don’t have Boost installed (or have an older
version of it), you can provide the FETCH_BOOST flag instead of the
BOOST_ROOT variable, which will cause CMake to fetch and build Boost locally.

	-DBOOST_ROOT=<boostdir> – Tells CMake where an existing installtion of Boost
resides, and looks for the appropritate version in <boostdir>. This is the
top-level directory where Boost is installed (e.g. /opt/local).

	-DTBB_INSTALL_DIR=<tbbroot> – Tells CMake where an existing installation of
Intel’s TBB is installed (<tbbroot>), and looks for the apropriate headers
and libraries there. This is the top-level directory where TBB is installed
(e.g. /opt/local).

	-DCMAKE_INSTALL_PREFIX=<install_dir> – <install_dir> is the directory to
which you wish Salmon to be installed. If you don’t specify this option,
it will be installed locally in the top-level directory (i.e. the directory
directly above “build”).

There are a number of other libraries upon which Salmon depends, but CMake
should fetch these for you automatically.

Setting the appropriate flags, you can then run the CMake configure step as
follows:

> cmake [FLAGS] ..

The above command is the cmake configuration step, which should complain if
anything goes wrong. Next, you have to run the build step. Depending on what
libraries need to be fetched and installed, this could take a while
(specifically if the installation needs to install Boost). To start the build,
just run make.

> make

If the build is successful, the appropriate executables and libraries should be
created. There are two points to note about the build process. First, if the
build system is downloading and compiling boost, you may see a large number of
warnings during compilation; these are normal. Second, note that CMake has
colored output by default, and the steps which create or link libraries are
printed in red. This is the color chosen by CMake for linking messages, and
does not denote an error in the build process.

Finally, after everything is built, the libraries and executable can be
installed with:

> make install

You can test the installation by running

> make test

This should run a simple test and tell you if it succeeded or not.

Salmon

Salmon is a tool for wicked-fast transcript quantification from RNA-seq
data. It requires a set of target transcripts (either from a reference or
de-novo assembly) to quantify. All you need to run Salmon is a FASTA file
containing your reference transcripts and a (set of) FASTA/FASTQ file(s)
containing your reads. Optionally, Salmon can make use of pre-computed
alignments (in the form of a SAM/BAM file) to the transcripts rather than the
raw reads.

The quasi-mapping-based mode of Salmon runs in two phases; indexing and
quantification. The indexing step is independent of the reads, and only need to
be run one for a particular set of reference transcripts. The quantification
step, obviously, is specific to the set of RNA-seq reads and is thus run more
frequently. For a more complete description of all available options in Salmon,
see below.

The alignment-based mode of Salmon does not require indexing. Rather, you can
simply provide Salmon with a FASTA file of the transcripts and a SAM/BAM file
containing the alignments you wish to use for quantification.

Using Salmon

As mentioned above, there are two “modes” of operation for Salmon. The first,
requires you to build an index for the transcriptome, but then subsequently
processes reads directly. The second mode simply requires you to provide a
FASTA file of the transcriptome and a .sam or .bam file containing a
set of alignments.

Note

Read / alignment order

Salmon, like eXpress 1, uses a streaming inference method to perform
transcript-level quantification. One of the fundamental assumptions
of such inference methods is that observations (i.e. reads or alignments)
are made “at random”. This means, for example, that alignments should
not be sorted by target or position. If your reads or alignments
do not appear in a random order with respect to the target transcripts,
please randomize / shuffle them before performing quantification with
Salmon.

Note

Number of Threads

The number of threads that Salmon can effectively make use of depends
upon the mode in which it is being run. In alignment-based mode, the
main bottleneck is in parsing and decompressing the input BAM file.
We make use of the Staden IO [http://sourceforge.net/projects/staden/files/io_lib/]
library for SAM/BAM/CRAM I/O (CRAM is, in theory, supported, but has not been
thorougly tested). This means that multiple threads can be effectively used
to aid in BAM decompression. However, we find that throwing more than a
few threads at file decompression does not result in increased processing
speed. Thus, alignment-based Salmon will only ever allocate up to 4 threads
to file decompression, with the rest being allocated to quantification.
If these threads are starved, they will sleep (the quantification threads
do not busy wait), but there is a point beyond which allocating more threads
will not speed up alignment-based quantification. We find that allocating
8 — 12 threads results in the maximum speed, threads allocated above this
limit will likely spend most of their time idle / sleeping.

For quasi-mapping-based Salmon, the story is somewhat different.
Generally, performance continues to improve as more threads are made
available. This is because the determiniation of the potential mapping
locations of each read is, generally, the slowest step in
quasi-mapping-based quantification. Since this process is
trivially parallelizable (and well-parallelized within Salmon), more
threads generally equates to faster quantification. However, there may
still be a limit to the return on invested threads, when Salmon can begin
to process fragments more quickly than they can be provided via the parser.

Preparing transcriptome indices (Quasi-index and FMD-index-based modes)

One of the novel and innovative features of Salmon is its ability to accurately
quantify transcripts using quasi-mappings. Quasi-mappings
are mappings of reads to transcript positions that are computed without
performing a base-to-base alignment of the read to the transcript. Quasi-mapping
is typically much faster to compute than traditional (or full)
alignments, and can sometimes provide superior accuracy by being more robust
to errors in the read or genomic variation from the reference sequence. More details
about quasi-mappings, and how they are computed, can be found here [http://bioinformatics.oxfordjournals.org/content/32/12/i192.full].

Salmon currently supports two different methods for mapping reads to transcriptomes;
(SMEM-based) lightweight-alignment and quasi-mapping. SMEM-based mapping is the original
lightweight-alignment method used by Salmon, and quasi-mapping is a newer and
considerably faster alternative. Both methods are currently exposed via the
same quant command, but the methods require different indices so that
SMEM-based mapping cannot be used with a quasi-mapping index and vice-versa.

If you want to use Salmon in quasi-mapping-based mode, then you first
have to build an Salmon index for your transcriptome. Assume that
transcripts.fa contains the set of transcripts you wish to quantify. First,
you run the Salmon indexer:

> ./bin/salmon index -t transcripts.fa -i transcripts_index --type quasi -k 31

This will build the quasi-mapping-based index, using an auxiliary k-mer hash
over k-mers of length 31. While quasi-mapping will make used of arbitrarily
long matches between the query and reference, the k size selected here will
act as the minimum acceptable length for a valid match. Thus, a smaller
value of k may slightly improve sensitivty. We find that a k of 31 seems
to work well for reads of 75bp or longer, but you might consider a smaller
k if you plan to deal with shorter reads. Note that there is also a
k parameter that can be passed to the quant command. However, this has
no effect if one is using a quasi-mapping index, as the k value provided
during the index building phase overrides any k provided during
quantification in this case. Since quasi-mapping is the default index type in
Salmon, you can actually leave off the --type quasi parameter when building
the index. To build a lightweight-alignment (FMD-based) index instead, one
would use the following command:

> ./bin/salmon index -t transcripts.fa -i transcripts_index --type fmd

Note that no value of k is given here. However, the SMEM-based mapping index
makes use of a parameter k that is passed in during the quant phase (the
default value is 19).

Quantifying in non-alignment-based mode

Then, you can quantify any set of reads (say, paired-end reads in files
reads1.fq and reads2.fq) directly against this index using the Salmon
quant command as follows:

> ./bin/salmon quant -i transcripts_index -l <LIBTYPE> -1 reads1.fq -2 reads2.fq -o transcripts_quant

If you are using single-end reads, then you pass them to Salmon with
the -r flag like:

> ./bin/salmon quant -i transcripts_index -l <LIBTYPE> -r reads.fq -o transcripts_quant

This same quant command will work with either index (quasi-mapping or
SMEM-based), and Salmon will automatically determine the type of index being
read and perform the appropriate lightweight mapping accordingly.

Note

Order of command-line parameters

The library type -l should be specified on the command line before the
read files (i.e. the parameters to -1 and -2, or -r). This is because
the contents of the library type flag is used to determine how the reads should
be interpreted.

You can, of course, pass a number of options to control things such as the
number of threads used or the different cutoffs used for counting reads.
Just as with the alignment-based mode, after Salmon has finished running, there
will be a directory called salmon_quant, that contains a file called
quant.sf containing the quantification results.

Providing multiple read files to Salmon

Often, a single library may be split into multiple FASTA/Q files. Also, sometimes one may wish
to quantify multiple replicates or samples together, treating them as if they are one library.
Salmon allows the user to provide a space-separated list of read files to all of it’s options
that expect input files (i.e. -r, -1, -2). When the input is paired-end reads, the
order of the files in the left and right lists must be the same. There are a number of ways to
provide salmon with multiple read files, and treat these as a single library. For the examples
below, assume we have two replicates lib_1 and lib_2. The left and right reads for
lib_1 are lib_1_1.fq and lib_1_2.fq, respectively. The left and right reads for
lib_2 are lib_2_1.fq and lib_2_2.fq, respectively. The following are both valid
ways to input these reads to Salmon:

> salmon quant -i index -l IU -1 lib_1_1.fq lib_2_1.fq -2 lib_1_2.fq lib_2_2.fq -o out

> salmon quant -i index -l IU -1 <(cat lib_1_1.fq lib_2_1.fq) -2 <(cat lib_1_2.fq lib_2_2.fq) -o out

Similarly, both of these approaches can be adopted if the files are gzipped as well:

> salmon quant -i index -l IU -1 lib_1_1.fq.gz lib_2_1.fq.gz -2 lib_1_2.fq.gz lib_2_2.fq.gz -o out

> salmon quant -i index -l IU -1 <(gunzip -c lib_1_1.fq.gz lib_2_1.fq.gz) -2 <(gunzip -c lib_1_2.fq.gz lib_2_2.fq.gz) -o out

In each pair of commands, the first command lets Salmon natively parse the files, while the latter command
creates, on-the-fly, an input stream that consists of the concatenation of both files. Both methods work, and
are acceptable ways to merge the files. The latter method (i.e. process substitution) allows more complex
processing to be done to the reads in the substituted process before they are passed to Salmon as input, and thus,
in some situations, is more versatile.

Note

Interleaved FASTQ files

Salmon does not currently have built-in support for interleaved FASTQ files (i.e., paired-end
files where both pairs are stored in the same file). We provide a script [https://github.com/COMBINE-lab/salmon/blob/master/scripts/runner.sh]
that can be used to run salmon with interleaved input. However, this script assumes that the
input reads are perfectly synchronized. That is, the input cannot contain any un-paired reads.

Quantifying in alignment-based mode

Say that you’ve prepared your alignments using your favorite aligner and the
results are in the file aln.bam, and assume that the sequence of the
transcriptome you want to quantify is in the file transcripts.fa. You
would run Salmon as follows:

> ./bin/salmon quant -t transcripts.fa -l <LIBTYPE> -a aln.bam -o salmon_quant

The <LIBTYPE> parameter is described below and is shared between both modes
of Salmon. After Salmon has finished running, there will be a directory called
salmon_quant, that contains a file called quant.sf. This contains the
quantification results for the run, and the columns it contains are similar to
those of Sailfish (and self-explanatory where they differ).

For the full set of options that can be passed to Salmon in its alignment-based
mode, and a description of each, run salmon quant --help-alignment.

Note

Genomic vs. Transcriptomic alignments

Salmon expects that the alignment files provided are with respect to the
transcripts given in the corresponding fasta file. That is, Salmon expects
that the reads have been aligned directly to the transcriptome (like RSEM,
eXpress, etc.) rather than to the genome (as does, e.g. Cufflinks). If you
have reads that have already been aligned to the genome, there are
currently 3 options for converting them for use with Salmon. First, you
could convert the SAM/BAM file to a FAST{A/Q} file and then use the
lightweight-alignment-based mode of Salmon described below. Second, given the converted
FASTA{A/Q} file, you could re-align these converted reads directly to the
transcripts with your favorite aligner and run Salmon in alignment-based
mode as described above. Third, you could use a tool like sam-xlate [https://github.com/mozack/ubu/wiki]
to try and convert the genome-coordinate BAM files directly into transcript
coordinates. This avoids the necessity of having to re-map the reads. However,
we have very limited experience with this tool so far.

Multiple alignment files

If your alignments for the sample you want to quantify appear in multiple
.bam/.sam files, then you can simply provide the Salmon -a parameter
with a (space-separated) list of these files. Salmon will automatically
read through these one after the other quantifying transcripts using the
alignments contained therein. However, it is currently the case that these
separate files must (1) all be of the same library type and (2) all be
aligned with respect to the same reference (i.e. the @SQ records in the
header sections must be identical).

Description of important options

Salmon exposes a number of useful optional command-line parameters to the user.
The particularly important ones are explained here, but you can always run
salmon quant -h to see them all.

-p / --threads

The number of threads that will be used for quasi-mapping, quantification, and
bootstrapping / posterior sampling (if enabled). Salmon is designed to work
well with many threads, so, if you have a sufficient number of processors, larger
values here can speed up the run substantially.

Note

Default number of threads

The default behavior is for Salmon to probe the number of available hardware threads and

to use this number. Thus, if you want to use fewer threads (e.g., if you are running multiple
instances of Salmon simultaneously), you will likely want to set this option explicitly in
accordance with the desired per-process resource usage.

--dumpEq

If Salmon is passed the --dumpEq option, it will write a file in the auxiliary
directory, called eq_classes.txt that contains the equivalence classes and corresponding
counts that were computed during quasi-mapping. The file has a format described in
Equivalence class file.

--incompatPrior

This parameter governs the a priori probability that a fragment mapping or
aligning to the reference in a manner incompatible with the prescribed library
type is nonetheless the correct mapping. Note that Salmon sets this value, by
default, to a small but non-zero probability. This means that if an
incompatible mapping is the only mapping for a fragment, Salmon will still
assign this fragment to the transcript. This default behavior is different than
programs like RSEM [https://deweylab.github.io/RSEM/], which assign
incompatible fragments a 0 probability (i.e., incompatible mappings will be
discarded). If you wish to obtain this behavior, so that only compatible
mappings will be considered, you can set --incompatPrior 0.0. This
will cause Salmon to only consider mappings (or alignments) that are compatible
with the prescribed or inferred library type.

--fldMean

Note : This option is only important when running Salmon with single-end reads.

Since the empirical fragment length distribution cannot be estimated
from the mappings of single-end reads, the --fldMean allows the
user to set the expected mean fragment lenth of the sequencing
library. This value will affect the effective length correction, and
hence the estimated effective lengths of the transcripts and the TPMs.
The value passed to --fldMean will be used as the mean of the assumed
fragment length distribution (which is modeled as a truncated Gaussian with
a standard deviation given by --fldSD).

--fldSD

Note : This option is only important when running Salmon with single-end reads.

Since the empirical fragment length distribution cannot be estimated
from the mappings of single-end reads, the --fldSD allows the user
to set the expected standard deviation of the fragment lenth
distribution of the sequencing library. This value will affect the
effective length correction, and hence the estimated effective lengths
of the transcripts and the TPMs. The value passed to --fldSD will
be used as the standard deviation of the assumed fragment length
distribution (which is modeled as a truncated Gaussan with a mean
given by --fldMean).

--validateMappings

One potential artifact that may arise from alignment-free mapping techniques is
spurious mappings. These may either be reads that do not arise from some target being
quantified, but nonetheless exhibit some match against them (e.g. contaminants) or, more
commonly, mapping a read to a larget set of quantification targets than would be
supported by an optimal or near-optimal alignment.

If you pass the --validateMappings flag to Salmon, it will run an extension
alignment dynamic program on the quasi-mappings it produces. The alignment
procedure used to validate these mappings makes use of the highly-efficient and
SIMD-parallelized ksw2 [https://github.com/lh3/ksw2] library. Moreover, Salmon
makes use of an intelligent alignment cache to avoid re-computing alignment scores
against redundant transcript sequences (e.g. when a read maps to the same exon in
multiple different transcripts). The exact parameters used for scoring alignments,
and the cutoff used for which mappings should be reported at all, are controllable
by parameters described below.

This parameter should be used in conjunction with the range factorization option
--rangeFactorizationBins, and can lead to improved quantification estimates.
It is worth noting that this also makes quantification more sensitive to
low-quality reads, so that e.g. quality trimming may become more important
before processing reads using this option.

--minScoreFraction

This value controls the minimum allowed score for a mapping to be considered valid.
It matters only when --validateMappings has been passed to Salmon. The maximum
possible score for a fragment is ms = read_len * ma (or ms = (left_read_len + right_read_len) * ma
for paired-end reads). The argument to --minScoreFraction determines what fraction of the maximum
score s a mapping must achieve to be potentially retained. For a minimum score fraction of f, only
mappings with a score > f * s will be kept. Mappings with lower scores will be considered as low-quality,
and will be discarded.

It is worth noting that mapping validation uses extension alignment. This means that the read need not
map end-to-end. Instead, the score of the mapping will be the position along the alignment with the
highest score. This is the score which must reach the fraction threshold for the read to be considered
as valid.

--ma

This value should be a positive (typically small) integer. It controls the score given
to a match in the alignment between the query (read) and the reference.

--mp

This value should be a negative (typically small) integer. It controls the score given
to a mismatch in the alignment between the query (read) and the reference.

--go

This value should be a positive (typically small) integer. It controls the score
penalty attributed to an alignment for each new gap that is opened. The
alignment score computed uses an affine gap penalty, so the penalty of a gap is
go + l * ge where l is the gap length. The value of go should typically
be larger than that of ge.

--ge

This value should be a positive (typically small) integer. It controls the score
penalty attributed to the extension of a gap in an alignment. The
alignment score computed uses an affine gap penalty, so the penalty of a gap is
go + l * ge where l is the gap length. The value of ge should typically
be smaller than that of go.

--rangeFactorizationBins

The range-factorization [https://academic.oup.com/bioinformatics/article/33/14/i142/3953977] feature
allows using a data-driven likelihood factorization, which can improve
quantification accuracy on certain classes of “difficult” transcripts.
Currently, this feature interacts best (i.e., yields the most considerable
improvements) when either (1) using alignment-based mode and simultaneously
enabling error modeling with --useErrorModel or (2) when enabling
--validateMappings in quasi-mapping-based mode. The argument to this option
is a positive integer x, that determines fidelity of the factorization. The larger
x, the closer the factorization to the un-factorized likelihood, but the larger
the resulting number of equivalence classes. A value of 1 corresponds to salmon’s
traditional rich equivalence classes. We recommend 4 as a reasonable parameter
for this option (it is what was used in the range-factorization paper).

--useEM

Use the “standard” EM algorithm to optimize abundance estimates
instead of the variational Bayesian EM algorithm. The details of the VBEM
algorithm can be found in 3. While both the standard EM and
the VBEM produce accurate abundance estimates, there are some
trade-offs between the approaches. Specifically, the sparsity of
the VBEM algorithm depends on the prior that is chosen. When
the prior is small, the VBEM tends to produce a sparser solution
than the EM algorithm, while when the prior is relatively larger, it
tends to estimate more non-zero abundances than the EM algorithm.
It is an active research effort to analyze and understand all the tradeoffs
between these different optimization approaches. Also, the VBEM tends to
converge after fewer iterations, so it may result in a shorter runtime;
especially if you are computing many bootstrap samples.

The default prior used in the VB optimization is a per-nucleotide prior
of 1e-5 reads per-nucleotide. This means that a transcript of length 100000 will
have a prior count of 1 fragment, while a transcript of length 50000 will have
a prior count of 0.5 fragments, etc. This behavior can be modified in two
ways. First, the prior itself can be modified via Salmon’s --vbPrior
option. The argument to this option is the value you wish to place as the
per-nucleotide prior. Additonally, you can modify the behavior to use
a per-transcript rather than a per-nucleotide prior by passing the flag
--perTranscriptPrior to Salmon. In this case, whatever value is set
by --vbPrior will be used as the transcript-level prior, so that the
prior count is no longer dependent on the transcript length. However,
the default behavior of a per-nucleotide prior is recommended when
using VB optimization.

Note

Choosing between EM and VBEM algorithms

As mentioned above, a thorough comparison of all of the benefits and detriments
of the different algorithms is an ongoing area of research. However, preliminary
testing suggests that the sparsity-inducing effect of running the VBEM with a small
prior may lead, in general, to more accurate estimates (the current testing was
performed mostly through simulation). Hence, the VBEM is the default, and the
standard EM algorithm is accessed via the –useEM flag.

--numBootstraps

Salmon has the ability to optionally compute bootstrapped abundance estimates.
This is done by resampling (with replacement) from the counts assigned to
the fragment equivalence classes, and then re-running the optimization procedure,
either the EM or VBEM, for each such sample. The values of these different
bootstraps allows us to assess technical variance in the main abundance estimates
we produce. Such estimates can be useful for downstream (e.g. differential
expression) tools that can make use of such uncertainty estimates. This option
takes a positive integer that dictates the number of bootstrap samples to compute.
The more samples computed, the better the estimates of varaiance, but the
more computation (and time) required.

--numGibbsSamples

Just as with the bootstrap procedure above, this option produces samples that allow
us to estimate the variance in abundance estimates. However, in this case the
samples are generated using posterior Gibbs sampling over the fragment equivalence
classes rather than bootstrapping. We are currently analyzing these different approaches
to assess the potential trade-offs in time / accuracy. The --numBootstraps and
--numGibbsSamples options are mutually exclusive (i.e. in a given run, you must
set at most one of these options to a positive integer.)

--seqBias

Passing the --seqBias flag to Salmon will enable it to learn and
correct for sequence-specific biases in the input data. Specifically,
this model will attempt to correct for random hexamer priming bias,
which results in the preferential sequencing of fragments starting
with certain nucleotide motifs. By default, Salmon learns the
sequence-specific bias parameters using 1,000,000 reads from the
beginning of the input. If you wish to change the number of samples
from which the model is learned, you can use the --numBiasSamples
parameter. Salmon uses a variable-length Markov Model
(VLMM) to model the sequence specific biases at both the 5’ and 3’ end
of sequenced fragments. This methodology generally follows that of
Roberts et al. 2, though some details of the VLMM differ.

Note: This sequence-specific bias model is substantially different
from the bias-correction methodology that was used in Salmon versions
prior to 0.6.0. This model specifically accounts for
sequence-specific bias, and should not be prone to the over-fitting
problem that was sometimes observed using the previous bias-correction
methodology.

--gcBias

Passing the --gcBias flag to Salmon will enable it to learn and
correct for fragment-level GC biases in the input data. Specifically,
this model will attempt to correct for biases in how likely a sequence
is to be observed based on its internal GC content.

You can use the FASTQC software followed by
MultiQC with transcriptome GC distributions [http://multiqc.info/docs/#theoretical-gc-content]
to check if your samples exhibit strong GC bias, i.e.
under-representation of some sub-sequences of the transcriptome. If they do,
we obviously recommend using the --gcBias flag. Or you can simply run Salmon with
--gcBias in any case, as it does not impair quantification for samples
without GC bias, it just takes a few more minutes per sample. For samples
with moderate to high GC bias, correction for this bias at the fragment level
has been shown to reduce isoform quantification errors 4 3.

This bias is distinct from the primer biases learned with the --seqBias option.
Though these biases are distinct, they are not completely independent.
When both --seqBias and --gcBias are enabled, Salmon will
learn a conditional fragment-GC bias model. By default, Salmon will
learn 3 different fragment-GC bias models based on the GC content of
the fragment start and end contexts, though this number of conditional
models can be changed with the (hidden) option
--conditionalGCBins. Likewise, the number of distinct fragment GC
bins used to model the GC bias can be changed with the (hidden)
option --numGCBins.

Note : In order to speed up the evaluation of the GC content of
arbitrary fragments, Salmon pre-computes and stores the cumulative GC
count for each transcript. This requires an extra 4-bytes per
nucleotide. While this extra memory usage should normally be minor,
it can nonetheless be controlled with the --reduceGCMemory option.
This option replaces the per-nucleotide GC count with a rank-select
capable bit vector, reducing the memory overhead from 4-bytes per
nucleotide to ~1.25 bits, while being only marginally slower).

--posBias

Passing the --posBias flag to Salmon will enable modeling of a
position-specific fragment start distribution. This is meant to model
non-uniform coverage biases that are sometimes present in RNA-seq data
(e.g. 5’ or 3’ positional bias). Currently, a small and fixed number
of models are learned for different length classes of transcripts, as
is done in Roberts et al. 2. Note: The positional bias
model is relatively new, and is still undergoing testing. It replaces
the previous –useFSPD option, which is now deprecated. This
feature should be considered as experimental in the current release.

--biasSpeedSamp

When evaluating the bias models (the GC-fragment model specifically),
Salmon must consider the probability of generating a fragment of every
possible length (with a non-trivial probability) from every position
on every transcript. This results in a process that is quadratic in
the length of the transcriptome — though each evaluation itself is
efficient and the process is highly parallelized.

It is possible to speed this process up by a multiplicative factor by
considering only every ith fragment length, and interploating
the intermediate results. The --biasSpeedSamp option allows the
user to set this sampling factor. Larger values speed up effective
length correction, but may decrease the fidelity of bias modeling.
However, reasonably small values (e.g. 10 or less) should have only a
minor effect on the computed effective lengths, and can considerably
speed up effective length correction on large transcriptomes. The
default value for --biasSpeedSamp is 5.

--writeUnmappedNames

Passing the --writeUnmappedNames flag to Salmon will tell Salmon to
write out the names of reads (or mates in paired-end reads) that do not
map to the transcriptome. When mapping paired-end reads, the entire
fragment (both ends of the pair) are identified by the name of the first
read (i.e. the read appearing in the _1 file). Each line of the umapped
reads file contains the name of the unmapped read followed by a simple flag
that designates how the read failed to map completely. For single-end
reads, the only valid flag is u (unmapped). However, for paired-end
reads, there are a number of different possibilities, outlined below:

u = The entire pair was unmapped. No mappings were found for either the left or right read.
m1 = Left orphan (mappings were found for the left (i.e. first) read, but not the right).
m2 = Right orphan (mappinds were found for the right read, but not the left).
m12 = Left and right orphans. Both the left and right read mapped, but never to the same transcript.

By reading through the file of unmapped reads and selecting the appropriate
sequences from the input FASTA/Q files, you can build an “unmapped” file that
can then be used to investigate why these reads may not have mapped
(e.g. poor quality, contamination, etc.). Currently, this process must be
done independently, but future versions of Salmon may provide a script to
generate this unmapped FASTA/Q file from the unmapped file and the original
inputs.

--writeMappings

Passing the --writeMappings argument to Salmon will have an effect
only in mapping-based mode and only when using a quasi-index. When
executed with the --writeMappings argument, Salmon will write out
the mapping information that it then processes to quantify transcript
abundances. The mapping information will be written in a SAM
compatible format. If no options are provided to this argument, then
the output will be written to stdout (so that e.g. it can be piped to
samtools and directly converted into BAM format). Otherwise, this
argument can optionally be provided with a filename, and the mapping
information will be written to that file. Note: Because of the way
that the boost options parser that we use works, and the fact that
--writeMappings has an implicit argument of stdout, if you
provide an explicit argument to --writeMappings, you must do so
with the syntax --writeMappings=<outfile> rather than the synatx
--writeMappings <outfile>. This is a due to a limitation of the
parser in how the latter could be interpreted.

Note

Compatible mappings

The mapping information is computed and written before library
type compatibility checks take place, thus the mapping file will
contain information about all mappings of the reads considered by
Salmon, even those that may later be filtered out due to
incompatibility with the library type.

What’s this LIBTYPE?

Salmon, has the user provide a description of the type of sequencing
library from which the reads come, and this contains information about
e.g. the relative orientation of paired end reads. As of version
0.7.0, Salmon also has the ability to automatically infer (i.e. guess)
the library type based on how the first few thousand reads map to the
transcriptome. To allow Salmon to automatically infer the library
type, simply provide -l A or --libType A to Salmon. Even if you
allow Salmon to infer the library type for you, you should still read
the section below, so that you can interpret how Salmon reports the
library type it discovers.

Note

Automatic library type detection in alignment-based mode

The implementation of this feature involves opening the BAM
file, peaking at the first record, and then closing it to
determine if the library should be treated as single-end or
paired-end. Thus, in alignment-based mode automatic
library type detection will not work with an input
stream. If your input is a regular file, everything should
work as expected; otherwise, you should provide the library
type explicitly in alignment-based mode.

Also the automatic library type detection is performed on the
basis of the alignments in the file. Thus, for example, if the
upstream aligner has been told to perform strand-aware mapping
(i.e. to ignore potential alignments that don’t map in the
expected manner), but the actual library is unstranded,
automatic library type detection cannot detect this. It will
attempt to detect the library type that is most consistent with
the alignment that are provided.

The library type string consists of three parts: the relative orientation of
the reads, the strandedness of the library, and the directionality of the
reads.

The first part of the library string (relative orientation) is only provided if
the library is paired-end. The possible options are:

I = inward
O = outward
M = matching

The second part of the read library string specifies whether the protocol is
stranded or unstranded; the options are:

S = stranded
U = unstranded

If the protocol is unstranded, then we’re done. The final part of the library
string specifies the strand from which the read originates in a strand-specific
protocol — it is only provided if the library is stranded (i.e. if the
library format string is of the form S). The possible values are:

F = read 1 (or single-end read) comes from the forward strand
R = read 1 (or single-end read) comes from the reverse strand

An example of some library format strings and their interpretations are:

IU (an unstranded paired-end library where the reads face each other)

SF (a stranded single-end protocol where the reads come from the forward strand)

OSR (a stranded paired-end protocol where the reads face away from each other,
 read1 comes from reverse strand and read2 comes from the forward strand)

Note

Strand Matching

Above, when it is said that the read “comes from” a strand, we mean that
the read should align with / map to that strand. For example, for
libraries having the OSR protocol as described above, we expect that
read1 maps to the reverse strand, and read2 maps to the forward strand.

For more details on the library type, see Fragment Library Types.

Output

For details of Salmon’s different output files and their formats see Salmon Output File Formats.

Misc

Salmon, in quasi-mapping-based mode, can accept reads from FASTA/Q
format files, or directly from gzipped FASTA/Q files (the ability to
accept compressed files directly is a feature of Salmon 0.7.0 and
higher). If your reads are compressed in a different format, you can
still stream them directly to Salmon by using process substitution.
Say in the quasi-mapping-based Salmon example above, the reads were
actually in the files reads1.fa.bz2 and reads2.fa.bz2, then
you’d run the following command to decompress the reads “on-the-fly”:

> ./bin/salmon quant -i transcripts_index -l <LIBTYPE> -1 <(bunzip2 -c reads1.fa.gz) -2 <(bunzip2 -c reads2.fa.bz2) -o transcripts_quant

and the bzipped files will be decompressed via separate processes and
the raw reads will be fed into Salmon. Actually, you can use this
same process even with gzip compressed reads (replacing bunzip2
with gunzip or pigz -d). Depending on the number of threads
and the exact configuration, this may actually improve Salmon’s
running time, since the reads are decompressed concurrently in a
separate process when you use process substitution.

Finally, the purpose of making this software available is for
people to use it and provide feedback. The
paper describing this method is published in Nature Methods [http://rdcu.be/pQsw].
If you have something useful to report or just some interesting ideas
or suggestions, please contact us (rob.patro@cs.stonybrook.edu
and/or carlk@cs.cmu.edu). If you encounter any bugs, please file a
detailed bug report at the Salmon GitHub repository [https://github.com/COMBINE-lab/salmon].

References

	1

	Roberts, Adam, and Lior Pachter. “Streaming fragment assignment for real-time analysis of sequencing experiments.” Nature Methods 10.1 (2013): 71-73.

	2(1,2)

	Roberts, Adam, et al. “Improving RNA-Seq expression estimates by correcting for fragment bias.” Genome Biology 12.3 (2011): 1.

	3(1,2)

	Patro, Rob, et al. “Salmon provides fast and bias-aware quantification of transcript expression.” Nature Methods (2017). Advanced Online Publication. doi: 10.1038/nmeth.4197

	4

	Love, Michael I., Hogenesch, John B., Irizarry, Rafael A. “Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation.” Nature Biotechnology 34.12 (2016). doi: 10.1038/nbt.3682

Alevin

Alevin is a tool — integrated with the salmon software — that introduces a family of algorithms for quantification and analysis of 3’ tagged-end single-cell sequencing data. Currently alevin supports the following two major droplet based single-cell protocols:

	Drop-seq

	10x-Chromium v1/2/3

Alevin works under the same indexing scheme (as salmon) for the reference, and consumes the set of FASTA/Q files(s) containing the Cellular Barcode(CB) + Unique Molecule identifier (UMI) in one read file and the read sequence in the other. Given just the transcriptome and the raw read files, alevin generates a cell-by-gene count matrix (in a fraction of the time compared to other tools).

Alevin works in two phases. In the first phase it quickly parses the read file containing the CB and UMI information to generate the frequency distribution of all the observed CBs, and creates a lightweight data-structure for fast-look up and correction of the CB. In the second round, alevin utilizes the read-sequences contained in the files to map the reads to the transcriptome, identify potential PCR/sequencing errors in the UMIs, and performs hybrid de-duplication while accounting for UMI collisions. Finally, a post-abundance estimation CB whitelisting procedure is done and a cell-by-gene count matrix is generated.

Using Alevin

Alevin requires the following minimal set of necessary input parameters (generally providing the flags in that order is recommended):

	-l: library type (same as salmon), we recommend using ISR for both Drop-seq and 10x-v2 chemistry.

	-1: CB+UMI file(s), alevin requires the path to the FASTQ file containing CB+UMI raw sequences to be given under this command line flag. Alevin also supports parsing of data from multiple files as long as the order is the same as in -2 flag.

	-2: Read-sequence file(s), alevin requires the path to the FASTQ file containing raw read-sequences to be given under this command line flag. Alevin also supports parsing of data from multiple files as long as the order is the same as in -1 flag.

	--dropseq / --chromium: the protocol, this flag tells the type of single-cell protocol of the input sequencing-library.

	-i: index, file containing the salmon index of the reference transcriptome, as generated by salmon index command.

	-p: number of threads, the number of threads which can be used by alevin to perform the quantification, by default alevin utilizes all the available threads in the system, although we recommend using ~10 threads which in our testing gave the best memory-time trade-off.

	-o: output, path to folder where the output gene-count matrix (along with other meta-data) would be dumped.

	--tgMap: transcript to gene map file, a tsv (tab-separated) file — with no header, containing two columns mapping of each transcript present in the reference to the corresponding gene (the first column is a transcript and the second is the corresponding gene).

Once all the above requirement are satisfied, alevin can be run using the following command:

> salmon alevin -l ISR -1 cb.fastq.gz -2 reads.fastq.gz --chromium -i salmon_index_directory -p 10 -o alevin_output --tgMap txp2gene.tsv

Providing multiple read files to Alevin

Often, a single library may be split into multiple FASTA/Q files. Also, sometimes one may wish
to quantify multiple replicates or samples together, treating them as if they are one library.
Alevin allows the user to provide a space-separated list of files to all of it’s options
that expect input files (i.e. -1, -2). The
order of the files in the left and right lists must be the same. There are a number of ways to
provide alevin with multiple CB and read files, and treat these as a single library. For the examples
below, assume we have two replicates lib_A and lib_B. The left and right reads for
lib_A are lib_A_cb.fq and lib_A_reads.fq, respectively. The left and right reads for
lib_B are lib_B_cb.fq and lib_B_read.fq, respectively. The following are both valid
ways to input these reads to alevin:

> salmon alevin -lISR -1 lib_A_cb.fq lib_B_cb.fq -2 lib_A_read.fq lib_B_read.fq

Similarly, both of these approaches can be adopted if the files are gzipped as well:

> salmon alevin -l ISR -1 lib_A_cb.fq.gz lib_B_cb.fq.gz -2 lib_A_read.fq.gz lib_B_read.fq.gz

Note

Don’t provide data through input stream

To keep the time-memory trade-off within acceptable bounds, alevin performs multiple passes over the Cellular
Barcode file. Alevin goes through the barcode file once by itself, and then goes through both the barcode and
read files in unison to assign reads to cells using the initial barcode mapping. Since the pipe or the input
stream can’t be reset to read from the beginning again, alevin can’t read in the barcodes, and might crash.

Description of important options

Alevin exposes a number of useful optional command-line parameters to the user.
The particularly important ones are explained here, but you can always run
salmon alevin -h to see them all.

-p / --numThreads

The number of threads that will be used for quantification. Alevin is designed to work
well with many threads, so, if you have a sufficient number of processors, larger
values here can speed up the run substantially. In our testing we found that usually 10 threads gives the best time-memory trade-off.

Note

Default number of threads

The default behavior is for Alevin to probe the number of available hardware threads and to use this number.

Thus, if you want to use fewer threads (e.g., if you are running multiple
instances of Salmon simultaneously), you will likely want to set this option explicitly in
accordance with the desired per-process resource usage.

--whitelist

This is an optional argument, where user can explicitly specify the whitelist CB to use for cell detection and CB sequence correction. If not given, alevin generates its own set of putative CBs.

Note

Not 10x 724k whitelist

This flag does not use the biologically known whitelist provided by 10x, instead it’s per experiment level whitelist file e.g. the file generated by cellranger with the name barcodes.tsv.

--noQuant

Generally used in parallel with --dumpfq. If Alevin is passed the --noQuant option, the pipeline will stop before starting the mapping. The general use-case is when we only need to concatenate the CB on the read-id of the second file and break the execution afterwards.

--noDedup

If Alevin is passed the --noDedup option, the pipeline only performs CB correction, maps the read-sequences to the transcriptome generating the interim data-structure of CB-EqClass-UMI-count. Used in parallel with --dumpBarcodeEq or --dumpBfh for the purposes of obtaining raw information or debugging.

--mrna

The list of mitochondrial genes which are to be used as a feature for CB whitelising naive Bayes classification.

--rrna

The list of ribosomal genes which are to be used as a feature for CB whitelising naive Bayes classification.

--useCorrelation

If activated, in CB whitelist classification alevin computes the cell-by-cell pearson correlation of each candidate CB with putative true set of CB. This flag can slow down alevin’s processing.

--dumpfq

Generally used along with --noQuant. If activated, alevin will sequence correct the CB and attach the corrected CB sequence to the read-id in the second file and dumps the result to standard-out (stdout).

--dumpBfh

Alevin internally uses a potentially big data-structure to concisely maintain all the required information for quantification. This flags dumps the full CB-EqClass-UMI-count data-structure for the purposed of allowing raw data analysis and debugging.

--dumpFeatures

If activated, alevin dumps all the features used by the CB classification and their counts at each cell level. Generally, this is used for the purposes of debugging.

--dumpCsvCounts

This flags is used to internally convert the default binary format of alevin for gene-count matrix into a human readable csv (comma separated) format. The expression of all the gene in one cell is written in one row, while columns represents the genes.

--forceCells

Alevin performs a heuristic based initial CB white-listing by finding the knee in the distribution of the CB frequency. Although knee finding algorithm works pretty well in most of the case, it sometimes over shoot and results in very less number of CB. With this flag, by looking at the CB frequency distribution, a user can explicitly specify the number of CB to consider for initial white-listing.

--expectCells

Just like forceCells flag, it’s yet another way of skipping the knee calculation heuristics, if it’s failing. This command line flag uses the cellranger type white-listing procedure. As specified in their algorithm overview page, “All barcodes whose total UMI counts exceed m/10 are called as cells”, where m is the frequency of the top 1% cells as specified by the parameter of this command line flag.

--numCellBootstraps

Alevin provides an estimate of the inferential uncertainty in the estimation of per cell level gene count matrix by performing bootstrapping of the reads in per-cell level equivalence classes. This command line flag informs Alevin to perform certain number of bootstrap and generate the mean and variance of the count matrix. This option generates three additional file, namely, quants_mean_mat.gz, quants_var_mat.gz and quants_boot_rows.txt. The format of the files stay the same as quants_mat.gz while the row order is saved in quants_boot_rows.txt and the column order is stays the same as in file quants_mat_cols.txt.

--debug

Alevin peforms intelligent white-listing downstream of the quantification pipeline and has to make some assumptions like chosing a fraction of reads to learn low confidence CB and in turn might erroneously exit – if the data results in no mapped or deduplicated reads to a CB in low confidence region. The problem doesn’t happen when provided with external whitelist but if there is an error and the user is aware of this being just a warning, the error can be skipped by running Alevin with this flag.

--minScoreFraction

This value controls the minimum allowed score for a mapping to be considered valid.
It matters only when --validateMappings has been passed to Salmon. The maximum
possible score for a fragment is ms = read_len * ma (or ms = (left_read_len + right_read_len) * ma
for paired-end reads). The argument to --minScoreFraction determines what fraction of the maximum
score s a mapping must achieve to be potentially retained. For a minimum score fraction of f, only
mappings with a score > f * s will be kept. Mappings with lower scores will be considered as low-quality,
and will be discarded.

It is worth noting that mapping validation uses extension alignment. This means that the read need not
map end-to-end. Instead, the score of the mapping will be the position along the alignment with the
highest score. This is the score which must reach the fraction threshold for the read to be considered
as valid.

Output

Typical 10x experiment can range form hundreds to tens of thousand of cells – resulting in huge size of the count-matrices. Traditionally single-cell tools dumps the Cell-v-Gene count matrix in various formats. Although, this itself is an open area of research but by default alevin dumps a per-cell level gene-count matrix in a binary-compressed format with the row and column indexes in a separate file.

A typical run of alevin will generate 4 files:

	quants_mat.gz – Compressed count matrix.

	quants_mat_cols.txt – Column Header (Gene-ids) of the matrix.

	quants_mat_rows.txt – Row Index (CB-ids) of the matrix.

	quants_tier_mat.gz – Tier categorization of the matrix.

Along with the Cell-v-Gene count matrix, alevin dumps a 3-fold categorization of each estimated count value of a gene(each cell disjointly) in the form of tiers. Tier 1 is the set of genes where all the reads are uniquely mapping. Tier 2 is genes that have ambiguously mapping reads, but connected to unique read evidence as well, that can be used by the EM to resolve the multimapping reads. Tier 3 is the genes that have no unique evidence and the read counts are, therefore, distributed between these genes according to an uninformative prior.

Alevin can also dump the count-matrix in a human readable – comma-separated-value (_CSV_) format, if given flag –dumpCsvCounts which generates a new output file called quants_mat.csv.

Misc

Finally, the purpose of making this software available is because we believe
it may be useful for people dealing with single-cell RNA-seq data. We want the
software to be as useful, robust, and accurate as possible. So, if you have any
feedback — something useful to report, or just some interesting ideas or
suggestions — please contact us (asrivastava@cs.stonybrook.edu and/or
rob.patro@cs.stonybrook.edu). If you encounter any bugs, please file a
detailed bug report at the Salmon GitHub repository [https://github.com/COMBINE-lab/salmon].

References

	1

	Macosko, Evan Z., et al. “Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets.” Cell 161.5 (2015): 1202-1214.

	2

	Zheng, Grace XY, et al. “Massively parallel digital transcriptional profiling of single cells.” Nature communications 8 (2017): 14049.

	3

	Patro, Rob, et al. “Salmon provides fast and bias-aware quantification of transcript expression.” Nature Methods (2017). Advanced Online Publication. doi: 10.1038/nmeth.4197.

	4

	Petukhov, Viktor, et al. “Accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments.” bioRxiv (2017): 171496.

	5

	https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/algorithms/overview

Salmon Output File Formats

Quantification File

Salmon’s main output is its quantification file. This file is a plain-text, tab-separated file
with a single header line (which names all of the columns). This file is named quant.sf and
appears at the top-level of Salmon’s output directory. The columns appear in the following order:

	Name

	Length

	EffectiveLength

	TPM

	NumReads

Each subsequent row describes a single quantification record. The columns have
the following interpretation.

	Name —
This is the name of the target transcript provided in the input transcript database (FASTA file).

	Length —
This is the length of the target transcript in nucleotides.

	EffectiveLength —
This is the computed effective length of the target transcript. It takes into account
all factors being modeled that will effect the probability of sampling fragments from
this transcript, including the fragment length distribution and sequence-specific and
gc-fragment bias (if they are being modeled).

	TPM —
This is salmon’s estimate of the relative abundance of this transcript in units of Transcripts Per Million (TPM).
TPM is the recommended relative abundance measure to use for downstream analysis.

	NumReads —
This is salmon’s estimate of the number of reads mapping to each transcript that was quantified. It is an “estimate”
insofar as it is the expected number of reads that have originated from each transcript given the structure of the uniquely
mapping and multi-mapping reads and the relative abundance estimates for each transcript.

Command Information File

In the top-level quantification directory, there will be a file called cmd_info.json. This is a
JSON format file that records the main command line parameters with which Salmon was invoked for the
run that produced the output in this directory.

Auxiliary Files

The top-level quantification directory will contain an auxiliary directory called aux_info (unless
the auxiliary directory name was overridden via the command line). This directory will have a number
of files (and subfolders) depending on how salmon was invoked.

Meta information

The auxiliary directory will contain a JSON format file called
meta_info.json which contains meta information about the run,
including stats such as the number of observed and mapped fragments,
details of the bias modeling etc. If Salmon was run with automatic
inference of the library type (i.e. --libType A), then one
particularly important piece of information contained in this file is
the inferred library type. Most of the information recorded in this
file should be self-descriptive.

Unique and ambiguous count file

The auxiliary directory also contains 2-column tab-separated file called
ambig_info.tsv. This file contains information about the number of
uniquely-mapping reads as well as the total number of ambiguously-mapping reads
for each transcript. This file is provided mostly for exploratory analysis of
the results; it gives some idea of the fraction of each transcript’s estimated
abundance that derives from ambiguously-mappable reads.

Observed library format counts

When run in mapping-based mode, the quantification directory will
contain a file called lib_format_counts.json. This JSON file
reports the number of fragments that had at least one mapping compatible
with the designated library format, as well as the number that didn’t.
It also records the strand-bias that provides some information about
how strand-specific the computed mappings were.

Finally, this file contains a count of the number of mappings that
were computed that matched each possible library type. These are
counts of mappings, and so a single fragment that maps to the
transcriptome in more than one way may contribute to multiple library
type counts. Note: This file is currently not generated when Salmon
is run in alignment-based mode.

Fragment length distribution

The auxiliary directory will contain a file called fld.gz. This
file contains an approximation of the observed fragment length
distribution. It is a gzipped, binary file containing integer counts.
The number of (signed, 32-bit) integers (with machine-native
endianness) is equal to the number of bins in the fragment length
distribution (1,001 by default — for fragments ranging in length
from 0 to 1,000 nucleotides).

Sequence-specific bias files

If sequence-specific bias modeling was enabled, there will be 4 files
in the auxiliary directory named obs5_seq.gz, obs3_seq.gz,
exp5_seq.gz, exp5_seq.gz. These encode the parameters of the
VLMM that were learned for the 5’ and 3’ fragment ends. Each file
is a gzipped, binary file with the same format.

It begins with 3 32-bit signed integers which record the length of the
context (window around the read start / end) that is modeled, follwed
by the length of the context that is to the left of the read and the
length of the context that is to the right of the read.

Next, the file contains 3 arrays of 32-bit signed integers (each of which
have a length of equal to the context length recorded above). The first
records the order of the VLMM used at each position, the second records
the shifts and the widths required to extract each sub-context — these
are implementation details.

Next, the file contains a matrix that encodes all VLMM probabilities.
This starts with two signed integers of type std::ptrdiff_t. This
is a platform-specific type, but on most 64-bit systems should
correspond to a 64-bit signed integer. These numbers denote the number of
rows (nrow) and columns (ncol) in the array to follow.

Next, the file contains an array of (nrow * ncol) doubles which
represent a dense matrix encoding the probabilities of the VLMM. Each
row corresponds to a possible preceeding sub-context, and each column
corresponds to a position in the sequence context. Unused values
(values where the length of the sub-context exceed the order of the
model at that position) contain a 0. This array can be re-shaped
into a matrix of the appropriate size.

Finally, the file contains the marginalized 0:sup:th-order
probabilities (i.e. the probability of each nucleotide at each
position in the context). This is stored as a 4-by-context length
matrix. As before, this entry begins with two signed integers that
give the number of rows and columns, followed by an array of doubles
giving the marginal probabilities. The rows are in lexicographic
order.

Fragment-GC bias files

If Salmon was run with fragment-GC bias correction enabled, the
auxiliary directory will contain two files named expected_gc.gz
and observed_gc.gz. These are gzipped binary files containing,
respectively, the expected and observed fragment-GC content curves.
These files both have the same form. They consist of a 32-bit signed
int, dtype which specifies if the values to follow are in
logarithmic space or not. Then, the file contains two signed integers
of type std::ptrdiff which give the number of rows and columns of
the matrix to follow. Finally, there is an array of nrow by ncol
doubles. Each row corresponds to a conditional fragment GC
distribution, and the number of columns is the number of bins in the
learned (or expected) fragment-GC distribution.

Equivalence class file

If Salmon was run with the --dumpEq option, then a file called eq_classes.txt
will exist in the auxiliary directory. The format of that file is as follows:

N (num transcripts)
M (num equiv classes)
tn_1
tn_2
...
tn_N
eq_1_size t_11 t_12 ... count
eq_2_size t_21 t_22 ... count

That is, the file begins with a line that contains the number of
transcripts (say N) then a line that contains the number of
equivalence classes (say M). It is then followed by N lines that list
the transcript names — the order here is important, because the
labels of the equivalence classes are given in terms of the ID’s of
the transcripts. The rank of a transcript in this list is the ID with
which it will be labeled when it appears in the label of an
equivalence class. Finally, the file contains M lines, each of which
describes an equivalence class of fragments. The first entry in this
line is the number of transcripts in the label of this equivalence
class (the number of different transcripts to which fragments in this
class map — call this k). The line then contains the k transcript
IDs. Finally, the line contains the count of fragments in this
equivalence class (how many fragments mapped to these
transcripts). The values in each such line are tab separated.

Fragment Library Types

There are numerous library preparation protocols for RNA-seq that result in
sequencing reads with different characteristics. For example, reads can be
single end (only one side of a fragment is recorded as a read) or paired-end
(reads are generated from both ends of a fragment). Further, the sequencing
reads themselves may be unstranded or strand-specific. Finally, paired-end
protocols will have a specified relative orientation. To characterize the
various different typs of sequencing libraries, we’ve created a miniature
“language” that allows for the succinct description of the many different types
of possible fragment libraries. For paired-end reads, the possible
orientations, along with a graphical description of what they mean, are
illustrated below:

[image: _images/ReadLibraryIllustration.png]
The library type string consists of three parts: the relative orientation of
the reads, the strandedness of the library, and the directionality of the
reads.

The first part of the library string (relative orientation) is only provided if
the library is paired-end. The possible options are:

I = inward
O = outward
M = matching

The second part of the read library string specifies whether the protocol is
stranded or unstranded; the options are:

S = stranded
U = unstranded

If the protocol is unstranded, then we’re done. The final part of the library
string specifies the strand from which the read originates in a strand-specific
protocol — it is only provided if the library is stranded (i.e. if the
library format string is of the form S). The possible values are:

F = read 1 (or single-end read) comes from the forward strand
R = read 1 (or single-end read) comes from the reverse strand

So, for example, if you wanted to specify a fragment library of strand-specific
paired-end reads, oriented toward each other, where read 1 comes from the
forward strand and read 2 comes from the reverse strand, you would specify -l
ISF on the command line. This designates that the library being processed has
the type “ISF” meaning, Inward (the relative orientation), Stranted
(the protocol is strand-specific), Forward (read 1 comes from the forward
strand).

The single end library strings are a bit simpler than their pair-end counter
parts, since there is no relative orientation of which to speak. Thus, the
only possible library format types for single-end reads are U (for
unstranded), SF (for strand-specific reads coming from the forward strand)
and SR (for strand-specific reads coming from the reverse strand).

A few more examples of some library format strings and their interpretations are:

IU (an unstranded paired-end library where the reads face each other)

SF (a stranded single-end protocol where the reads come from the forward strand)

OSR (a stranded paired-end protocol where the reads face away from each other,
 read1 comes from reverse strand and read2 comes from the forward strand)

Note

Correspondence to TopHat library types

The popular TopHat [http://ccb.jhu.edu/software/tophat/index.shtml] RNA-seq
read aligner has a different convention for specifying the format of the library.
Below is a table that provides the corresponding sailfish/salmon library format
string for each of the potential TopHat library types:

	TopHat

	Salmon (and Sailfish)

	
	Paired-end

	Single-end

	-fr-unstranded

	-l IU

	-l U

	-fr-firststrand

	-l ISR

	-l SR

	-fr-secondstrand

	-l ISF

	-l SF

The remaining salmon library format strings are not directly expressible in terms
of the TopHat library types, and so there is no direct mapping for them.

Index

License

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/ReadLibraryIllustration.png
MU

ou

Sequencing read

Start of
FASTA/Q read

End of
FASTA/Q read

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Salmon’s documentation!

 		
 Requirements

 		
 Binary Releases

 		
 Requirements for Building from Source

 		
 Installation

 		
 Salmon

 		
 Using Salmon

 		
 Preparing transcriptome indices (Quasi-index and FMD-index-based modes)

 		
 Quantifying in non-alignment-based mode

 		
 Providing multiple read files to Salmon

 		
 Quantifying in alignment-based mode

 		
 Description of important options

 		
 -p / –threads

 		
 –dumpEq

 		
 –incompatPrior

 		
 –fldMean

 		
 –fldSD

 		
 –validateMappings

 		
 –minScoreFraction

 		
 –ma

 		
 –mp

 		
 –go

 		
 –ge

 		
 –rangeFactorizationBins

 		
 –useEM

 		
 –numBootstraps

 		
 –numGibbsSamples

 		
 –seqBias

 		
 –gcBias

 		
 –posBias

 		
 –biasSpeedSamp

 		
 –writeUnmappedNames

 		
 –writeMappings

 		
 What’s this LIBTYPE?

 		
 Output

 		
 Misc

 		
 References

 		
 Alevin

 		
 Using Alevin

 		
 Providing multiple read files to Alevin

 		
 Description of important options

 		
 -p / –numThreads

 		
 –whitelist

 		
 –noQuant

 		
 –noDedup

 		
 –mrna

 		
 –rrna

 		
 –useCorrelation

 		
 –dumpfq

 		
 –dumpBfh

 		
 –dumpFeatures

 		
 –dumpCsvCounts

 		
 –forceCells

 		
 –expectCells

 		
 –numCellBootstraps

 		
 –debug

 		
 –minScoreFraction

 		
 Output

 		
 Misc

 		
 References

 		
 Salmon Output File Formats

 		
 Quantification File

 		
 Command Information File

 		
 Auxiliary Files

 		
 Meta information

 		
 Unique and ambiguous count file

 		
 Observed library format counts

 		
 Fragment length distribution

 		
 Sequence-specific bias files

 		
 Fragment-GC bias files

 		
 Equivalence class file

 		
 Fragment Library Types

_static/up-pressed.png

_static/up.png

