

Welcome to Sacred’s documentation!

Every experiment is sacred

Every experiment is great

If an experiment is wasted

God gets quite irate

Sacred is a tool to configure, organize, log and reproduce computational
experiments. It is designed to introduce only minimal overhead, while
encouraging modularity and configurability of experiments.

The ability to conveniently make experiments configurable is at the heart of
Sacred. If the parameters of an experiment are exposed in this way, it
will help you to:

	keep track of all the parameters of your experiment

	easily run your experiment for different settings

	save configurations for individual runs in files or a database

	reproduce your results

In Sacred we achieve this through the following main mechanisms:

	Config Scopes are functions with a @ex.config decorator, that turn
all local variables into configuration entries. This helps to set up your
configuration really easily.

	Those entries can then be used in captured functions via dependency
injection. That way the system takes care of passing parameters around
for you, which makes using your config values really easy.

	The command-line interface can be used to change the parameters, which
makes it really easy to run your experiment with modified parameters.

	Observers log every information about your experiment and the
configuration you used, and saves them for example to a Database.
This helps to keep track of all your experiments.

	Automatic seeding helps controlling the randomness in your experiments,
such that they stay reproducible.

Contents

	Quickstart

	Experiment Overview

	Configuration

	Command-Line Interface

	Collected Information

	Observing an Experiment

	Controlling Randomness

	Logging

	Ingredients

	Optional Features

	Settings

	Examples

	Integration with Tensorflow

	API Documentation

	Internals of Sacred

Index

Index

Quickstart

Installation

You can get Sacred directly from pypi like this:

pip install sacred

But you can of course also clone the git repo and install it from there:

git clone https://github.com/IDSIA/sacred.git
cd sacred
[sudo] python setup.py install

Hello World

Let’s jump right into it. This is a minimal experiment using Sacred:

from sacred import Experiment

ex = Experiment()

@ex.automain
def my_main():
 print('Hello world!')

	We did three things here:

	
	import Experiment from sacred

	create an experiment instance ex

	decorate the function that we want to run with @ex.automain

This experiment can be run from the command-line, and this is what we get:

> python h01_hello_world.py
INFO - 01_hello_world - Running command 'my_main'
INFO - 01_hello_world - Started
Hello world!
INFO - 01_hello_world - Completed after 0:00:00

This experiment already has a full command-line interface, that we could use
to control the logging level or to automatically save information about the run
in a database. But all of that is of limited use for an experiment without
configurations.

Our First Configuration

So let us add some configuration to our program:

from sacred import Experiment

ex = Experiment('hello_config')

@ex.config
def my_config():
 recipient = "world"
 message = "Hello %s!" % recipient

@ex.automain
def my_main(message):
 print(message)

If we run this the output will look precisely as before, but there is a lot
going on already, so lets look at what we did:

	add the my_config function and decorate it with @ex.config.

	within that function define the variable message

	add the message parameter to the function main and use it instead of “Hello world!”

When we run this experiment, Sacred will run the my_config function and
put all variables from its local scope into the configuration of our experiment.
All the variables defined there can then be used in the main function. We can see
this happening by asking the command-line interface to print the configuration
for us:

> python hello_config.py print_config
INFO - hello_config - Running command 'print_config'
INFO - hello_config - started
Configuration:
 message = 'Hello world!'
 recipient = 'world'
 seed = 746486301
INFO - hello_config - finished after 0:00:00.

Notice how Sacred picked up the message and the recipient variables.
It also added a seed to our configuration, but we are going to ignore that
for now.

Now that our experiment has a configuration we can change it from the
Command-Line Interface:

> python hello_config.py with recipient="that is cool"
INFO - hello_config - Running command 'my_main'
INFO - hello_config - started
Hello that is cool!
INFO - hello_config - finished after 0:00:00.

Notice how changing the recipient also changed the message. This should give
you a glimpse of the power of Sacred. But there is a lot more to it, so keep reading :).

Experiment Overview

Experiment is the central class of the Sacred framework. This section
provides an overview of what it does and how to use it.

Create an Experiment

To create an Experiment just instantiate it and add main method:

from sacred import Experiment
ex = Experiment()

@ex.main
def my_main():
 pass

The function decorated with @ex.main is the main function of the experiment.
It is executed if you run the experiment and it is also used to determine
the source-file of the experiment.

Instead of @ex.main it is recommended to use @ex.automain. This will
automatically run the experiment if you execute the file. It is equivalent to
the following:

from sacred import Experiment
ex = Experiment()

@ex.main
def my_main():
 pass

if __name__ == '__main__':
 ex.run_commandline()

Note

For this to work the automain function needs to be at the end of the
file. Otherwise everything below it is not defined yet when the
experiment is run.

Run the Experiment

The easiest way to run your experiment is to just use the command-line. This
requires that you used automain (or an equivalent). You can then just
execute the experiments python file and use the powerful Command-Line Interface.

You can also run your experiment directly from python. This is especially useful
if you want to run it multiple times with different configurations. So lets say
your experiment is in a file called my_experiment.py. Then you can import
it from there and run it like this:

from my_experiment import ex

r = ex.run()

Warning

By default, Sacred experiments will fail if run in an interactive
environment like a REPL or a Jupyter Notebook.
This is an intended security measure since in these environments
reproducibility cannot be ensured.
If needed, this safeguard can be deactivated by passing
interactive=True to the experiment like this:

ex = Experiment('jupyter_ex', interactive=True)

The run function accepts config_updates to specify how the configuration
should be changed for this run. It should be (possibly nested) dictionary
containing all the values that you wish to update. For more information see
Configuration:

from my_experiment import ex

r = ex.run(config_updates={'foo': 23})

Note

Under the hood a Run object is created every time you run an
Experiment (this is also the object that ex.run() returns).
It holds some information about that run (e.g. final configuration and
later the result) and is responsible for emitting all the events for the
Observing an Experiment.

While the experiment is running you can access it by
accepting the special _run argument in any of your
Captured Functions. That is also used for Saving Custom Information.

Configuration

There are multiple ways of adding configuration to your experiment.
The easiest way is through Config Scopes:

@ex.config
def my_config():
 foo = 42
 bar = 'baz'

The local variables from that function are collected and form the configuration
of your experiment. You have full access to the power of python when defining
the configuration that way. The parameters can even depend on each other.

Note

Only variables that are JSON serializable (i.e. a numbers, strings,
lists, tuples, dictionaries) become part of the configuration. Other
variables are ignored.

If you think that is too much magic going on, you can always use a plain
dictionary to add configuration or, if you prefer, you can also directly
load configuration entries from a file.

And of course you can combine all of them and even have several of each kind.
They will be executed in the order that you added them,
and possibly overwrite each others values.

Capture Functions

To use a configuration value all you have to do is capture a function and
accept the configuration value as a parameter. Whenever you now call that function Sacred will
try to fill in missing parameters from the configuration.
To see how that works we need to capture some function:

from sacred import Experiment
ex = Experiment('my_experiment')

@ex.config
def my_config():
 foo = 42
 bar = 'baz'

@ex.capture
def some_function(a, foo, bar=10):
 print(a, foo, bar)

@ex.main
def my_main():
 some_function(1, 2, 3) # 1 2 3
 some_function(1) # 1 42 'baz'
 some_function(1, bar=12) # 1 42 12
 some_function() # TypeError: missing value for 'a'

More on this in the Captured Functions Section.

Note

Configuration values are preferred over default values. So in the example
above, bar=10 is never used because there is a value of bar = 'baz'
in the configuration.

Observe an Experiment

Experiments in Sacred collect lots of information about their runs like:

	time it was started and time it stopped

	the used configuration

	the result or any errors that occurred

	basic information about the machine it runs on

	packages the experiment depends on and their versions

	all imported local source-files

	files opened with ex.open_resource

	files added with ex.add_artifact

To access this information you can use the observer interface. First you need to
add an observer like this:

from sacred.observers import MongoObserver

ex.observers.append(MongoObserver.create())

MongoObserver is one of the default observers shipped with Sacred.
It connects to a MongoDB and puts all these information into a document in a
collection called experiments. You can also add this observer from the
Command-Line Interface like this:

>> python my_experiment.py -m my_database

For more information see Observing an Experiment

Capturing stdout / stderr

Sacred tries to capture all outputs and transmits that information to the
observers. This behaviour is configurable and can happen in three different
modes: no, sys and fd. This mode can be
set from the commandline or in the Settings.

In the no mode none of the outputs are captured. This is the default
behaviour if no observers are added to the experiment.

If the capture mode is set to sys then sacred captures all outputs written
to sys.stdout and sys.stderr such as print statements, stacktraces
and logging. In this mode outputs by system-calls, C-extensions or subprocesses
are likely not captured. This behaviour is default for Windows.

Finally, the fd mode captures outputs on the file descriptor level, and
should include all outputs made by the program or any child-processes.
This is the default behaviour for Linux and OSX.

The captured output contains all printed characters and behaves like a file
and not like a terminal. Sometimes this is unwanted, for example when the
output contains lots of live-updates like progressbars.
To prevent the captured out from retaining each and every update that is
written to the console one can add a captured out filter to the experiment
like this:

from sacred.utils import apply_backspaces_and_linefeeds

ex.captured_out_filter = apply_backspaces_and_linefeeds

Here apply_backspaces_and_linefeeds is a simple function that interprets
all backspace and linefeed characters like in a terminal and returns the
modified text.
Any function that takes a string as input and outputs a (modified) string can
be used as a captured_out_filter.
For a simple example see examples/captured_out_filter.py [https://github.com/IDSIA/sacred/tree/master/examples/captured_out_filter.py].

Interrupted and Failed Experiments

If a run is interrupted (e.g. Ctrl+C) or if an exception occurs, Sacred will
gather the stacktrace and the fail time and report them to the observers.
The resulting entries will have their status set to INTERRUPTED or to
FAILED. This allows to quickly see the reason for a non-successful run, and
enables later investigation of the errors.

Detecting Hard Failures

Sometimes an experiment can fail without an exception being thrown
(e.g. power loss, kernel panic, …). In that case the failure cannot be logged
to the database and their status will still be RUNNING.
Runs that fail in that way are most easily detected by investigating their
heartbeat time: each running experiment reports to its observers in regular
intervals (default every 10 sec) and updates the heartbeat time along with the
captured stdout and the info dict (see Saving Custom Information). So if the heartbeat
time lies much further back in time than that interval, the run can be
considered dead.

Debugging

If an Exception occurs, sacred by default filters the stacktrace by removing
all sacred-internal calls. The stacktrace is of course also saved in the
database (if appropriate observer is added).
This helps to quickly spot errors in your own code.
However, if you want to use a debugger, stacktrace filtering needs to be
disabled, because it doesn’t play well with debuggers like pdb.

If you want to use a debugger with your experiment, you have two options:

Disable Stacktrace Filtering

Stacktrace filtering can be deactivated via the -d flag.
Sacred then does not interfere with the exception and it can be properly
handled by any debugger.

Post-Mortem Debugging

For convenience Sacred also supports directly attaching a post-mortem pdb
debugger via the -D flag.
If this option is set and an exception occurs, sacred will automatically start
pdb debugger to investigate the error, and interact with the stack.

Custom Interrupts

Sometimes it can be useful to have custom reasons for interrupting an
experiment. One example is if there is a limited time budget for an experiment.
If the experiment is stopped because of exceeding that limit, that should be
reflected in the database entries.

For these cases, Sacred offers a special base exception
sacred.utils.SacredInterrupt that can be used to provide a custom
status code. If an exception derived from this one is raised, then the
status of the interrupted run will be set to that code.

For the aforementioned timeout usecase there is the
sacred.utils.TimeoutInterrupt exception with the status code
TIMEOUT.
But any status code can be used by simply creating a custom exception that
inherits from sacred.utils.SacredInterrupt and defines a STATUS
member like this:

from sacred.utils import SacredInterrupt

class CustomInterrupt(SacredInterrupt)
 STATUS = 'MY_CUSTOM_STATUS'

When this exception is raised during any run, its status is set to
MY_CUSTOM_STATUS.

Queuing a Run

Sacred also supports queuing runs by passing the Queue flag
(-q/--queue). This will not run the experiment, but instead only
create a database entry that holds all information needed to start the run.
This feature could be useful for having a distributed pool of workers that get
configurations from the database and run them. As of yet, however, there is
no further support for this workflow.

Configuration

The configuration of an experiment is the standard way of parametrizing runs.
It is saved in the database for every run, and can very easily be adjusted.
Furthermore all configuration entries can be accessed by all
Captured Functions.

There are three different ways of adding configuration to an experiment.
Through Config Scopes, Dictionaries, and
Config Files

Note

Because configuration entries are saved to the database directly, some
restrictions apply. The keys of all dictionaries cannot contain
., =, or $.
Furthermore they cannot be jsonpickle keywords like py/object.
If absolutely necessary, these restrictions can be configured in
sacred.settings.SETTINGS.CONFIG.

Defining a Configuration

Sacred provides several ways to define a configuration for an experiment.
The most powerful one are Config Scopes, but it is also possible to use plain
dictionaries or config files.

Config Scopes

A Config Scope is just a regular function decorated with @ex.config. It
is executed by Sacred just before running the experiment. All variables from
its local scope are then collected, and become configuration entries of the
experiment. Inside that function you have full access to all features of python
for setting up the parameters:

from sacred import Experiment
ex = Experiment('config_demo')

@ex.config
def my_config():
 """This is my demo configuration"""

 a = 10 # some integer

 # a dictionary
 foo = {
 'a_squared': a**2,
 'bar': 'my_string%d' % a
 }
 if a > 8:
 # cool: a dynamic entry
 e = a/2

@ex.main
def run():
 pass

This config scope would return the following configuration, and in fact, if you
want to play around with this you can just execute my_config:

>>> my_config()
{'foo': {'bar': 'my_string10', 'a_squared': 100}, 'a': 10, 'e': 5}

Or use the print_config command from the Command-Line Interface:

$ python config_demo.py print_config
INFO - config_demo - Running command 'print_config'
INFO - config_demo - Started
Configuration (modified, added, typechanged, doc):
 """This is my demo configuration"""
 a = 10 # some integer
 e = 5.0 # cool: a dynamic entry
 seed = 954471586 # the random seed for this experiment
 foo: # a dictionary
 a_squared = 100
 bar = 'my_string10'
INFO - config_demo - Completed after 0:00:00

Notice how Sacred picked up on the doc-string and the line comments used in the
configuration. This can be used to improve user-friendliness of your script.

Warning

Functions used as a config scopes cannot contain any return or
yield statements!

Dictionaries

Configuration entries can also directly be added as a dictionary using the
ex.add_config method:

ex.add_config({
 'foo': 42,
 'bar': 'baz
})

Or equivalently:

ex.add_config(
 foo=42,
 bar='baz'
)

Unlike config scopes, this method raises an error if you try to add any object,
that is not JSON-Serializable.

Config Files

If you prefer, you can also directly load configuration entries from a file:

ex.add_config('conf.json')
ex.add_config('conf.pickle') # if configuration was stored as dict
ex.add_config('conf.yaml') # requires PyYAML

This will essentially just read the file and add the resulting dictionary to
the configuration with ex.add_config.

Combining Configurations

You can have multiple Config Scopes and/or Dictionaries and/or Files attached
to the same experiment or ingredient.
They will be executed in order of declaration.
This is especially useful for overriding ingredient default values (more about that
later).
In config scopes you can even access the earlier configuration entries, by just
declaring them as parameters in your function:

ex = Experiment('multiple_configs_demo')

@ex.config
def my_config1():
 a = 10
 b = 'test'

@ex.config
def my_config2(a): # notice the parameter a here
 c = a * 2 # we can use a because we declared it
 a = -1 # we can also change the value of a
 #d = b + '2' # error: no access to b

ex.add_config({'e': 'from_dict'})
could also add a config file here

As you’d expect this will result in the configuration
{'a': -1, 'b': 'test', 'c': 20, 'e': 'from_dict'}.

Updating Config Entries

When an experiment is run, the configuration entries can be updated by passing
an update dictionary. So let’s recall this experiment to see how that works:

from sacred import Experiment
ex = Experiment('config_demo')

@ex.config
def my_config():
 a = 10
 foo = {
 'a_squared': a**2,
 'bar': 'my_string%d' % a
 }
 if a > 8:
 e = a/2

@ex.main
def run():
 pass

If we run that experiment from python we can simply pass a config_updates
dictionary:

>>> r = ex.run(config_updates={'a': 23})
>>> r.config
{'foo': {'bar': 'my_string23', 'a_squared': 529}, 'a': 23, 'e': 11.5}

Using the Command-Line Interface we can achieve the same thing:

$ python config_demo.py print_config with a=6
INFO - config_demo - Running command 'print_config'
INFO - config_demo - Started
Configuration (modified, added, typechanged, doc):
 a = 6 # some integer
 seed = 681756089 # the random seed for this experiment
 foo: # a dictionary
 a_squared = 36
 bar = 'my_string6'
INFO - config_demo - Completed after 0:00:00

Note that because we used a config scope all the values that depend on a
change accordingly.

Note

This might make you wonder about what is going on. So let me briefly explain:
Sacred extracts the body of the function decorated with @ex.config and
runs it using the exec statement. That allows it to provide a locals
dictionary which can block certain changes and log all the others.

We can also fix any of the other values, even nested ones:

>>> r = ex.run(config_updates={'foo': {'bar': 'baobab'}})
>>> r.config
{'foo': {'bar': 'baobab', 'a_squared': 100}, 'a': 10, 'e': 5}

or from the commandline using dotted notation:

$ config_demo.py print_config with foo.bar=baobab
INFO - config_demo - Running command 'print_config'
INFO - config_demo - Started
Configuration (modified, added, typechanged, doc):
 a = 10 # some integer
 e = 5.0 # cool: a dynamic entry
 seed = 294686062 # the random seed for this experiment
 foo: # a dictionary
 a_squared = 100
 bar = 'baobab'
INFO - config_demo - Completed after 0:00:00

To prevent accidentally wrong config updates sacred implements a few basic
checks:

	If you change the type of a config entry it will issue a warning

	If you add a new config entry but it is used in some captured function, it will issue a warning

	If you add a new config entry that is not used anywhere it will raise a KeyError.

Named Configurations

With so called Named Configurations you can provide a ConfigScope that
is not used by default, but can be optionally added as config updates:

ex = Experiment('named_configs_demo')

@ex.config
def cfg():
 a = 10
 b = 3 * a
 c = "foo"

@ex.named_config
def variant1():
 a = 100
 c = "bar"

The default configuration of this Experiment is {'a':10, 'b':30, 'c':"foo"}.
But if you run it with the named config like this:

$ python named_configs_demo.py with variant1

Or like this:

>> ex.run(named_configs=['variant1'])

Then the configuration becomes {'a':100, 'b':300, 'c':"bar"}. Note that the
named ConfigScope is run first and its values are treated as fixed, so you can
have other values that are computed from them.

Note

You can have multiple named configurations, and you can use as many of them
as you like for any given run. But notice that the order in which you
include them matters: The ones you put first will be evaluated first and
the values they set might be overwritten by further named configurations.

Configuration files can also serve as named configs. Just specify the name of
the file and Sacred will read it and treat it as a named configuration.
Like this:

$ python named_configs_demo.py with my_variant.json

or this:

>> ex.run(named_configs=['my_variant.json'])

Where the format of the config file can be anything that is also supported for
config files.

Accessing Config Entries

Once you’ve set up your configuration, the next step is to use those values in
the code of the experiment. To make this as easy as possible Sacred
automatically fills in the missing parameters of a captured function with
configuration values. So for example this would work:

ex = Experiment('captured_func_demo')

@ex.config
def my_config1():
 a = 10
 b = 'test'

@ex.automain
def my_main(a, b):
 print("a =", a) # 10
 print("b =", b) # test

Captured Functions

Sacred automatically injects configuration values for captured functions.
Apart from the main function (marked by @ex.main or @ex.automain) this
includes all functions marked with @ex.capture. So the following example
works as before:

ex = Experiment('captured_func_demo2')

@ex.config
def my_config1():
 a = 10
 b = 'test'

@ex.capture
def print_a_and_b(a, b):
 print("a =", a)
 print("b =", b)

@ex.automain
def my_main():
 print_a_and_b()

Notice that we did not pass any arguments to print_a_and_b in my_main.
These are filled in from the configuration. We can however override these values
in any way we like:

@ex.automain
def my_main():
 print_a_and_b() # prints '10' and 'test'
 print_a_and_b(3) # prints '3' and 'test'
 print_a_and_b(3, 'foo') # prints '3' and 'foo'
 print_a_and_b(b='foo') # prints '10' and 'foo'

Note

All functions decorated with @ex.main, @ex.automain, and
@ex.command are also captured functions.

	In case of multiple values for the same parameter the priority is:

	
	explicitly passed arguments (both positional and keyword)

	configuration values

	default values

	You will still get an appropriate error in the following cases:

	
	missing value that is not found in configuration

	unexpected keyword arguments

	too many positional arguments

Note

Be careful with naming your parameters, because configuration injection can
hide some missing value errors from you, by (unintentionally) filling them
in from the configuration.

Special Values

There are a couple of special parameters that captured functions can accept.
These might change, and are not well documented yet, so be careful:

	_config : the whole configuration dict that is accessible for this function

	_seed : a seed that is different for every invocation (-> Controlling Randomness)

	_rnd : a random state seeded with seed

	_log : a logger for that function

	_run : the run object for the current run

Prefix

If you have some function that only needs to access some sub-dictionary of
your configuration you can use the prefix parameter of @ex.capture:

ex = Experiment('prefix_demo')

@ex.config
def my_config1():
 dataset = {
 'filename': 'foo.txt',
 'path': '/tmp/'
 }

@ex.capture(prefix='dataset')
def print_me(filename, path): # direct access to entries of the dataset dict
 print("filename =", filename)
 print("path =", path)

That way you have direct access to the items of that dictionary, but no access
to the rest of the configuration anymore. It is a bit like setting a namespace
for the function. Dotted notation for the prefix works as you would expect.

Command-Line Interface

Sacred provides a powerful command-line interface for every experiment out of
box. All you have to do to use it is to either have a method decorated with
@ex.automain or to put this block at the end of your file:

if __name__ == '__main__':
 ex.run_commandline()

Configuration Updates

You can easily change any configuration entry using the powerful
with argument on the command-line. Just put with config=update after
your experiment call like this:

>>> ./example.py with 'a=10'

Or even multiple values just separated by a space:

>>> ./example.py with 'a=2.3' 'b="FooBar"' 'c=True'

Note

The single quotes (') around each statement are to make sure the bash
does not interfere. In simple cases you can omit them:

>>> ./example.py with a=-1 b=2.0 c=True

But be careful especially with strings, because the outermost quotes get
removed by bash.
So for example all of the following values will be int:

>>> ./example.py with a=1 b="2" c='3'

You can use the standard python literal syntax to set numbers, bools, lists,
dicts, strings and combinations thereof:

>>> ./example.py with 'my_list=[1, 2, 3]'
>>> ./example.py with 'nested_list=[["a", "b"], [2, 3], False]'
>>> ./example.py with 'my_dict={"a":1, "b":[-.2, "two"]}'
>>> ./example.py with 'alpha=-.3e-7'
>>> ./example.py with 'mask=0b111000'
>>> ./example.py with 'message="Hello Bob!"'

Note

Note however, that changing individual elements of a list is not supported now.

Dotted Notation

If you want to set individual entries of a dictionary you can use the dotted
notation to do so. So if this is the ConfigScope of our experiment:

@ex.config
def cfg():
 d = {
 "foo": 1,
 "bar": 2,
 }

Then we could just change the "foo" entry of our dictionary to 100 like
this:

>>> ./example.py with 'd.foo=100'

Named Updates

If there are any Named Configurations set up for an experiment, then you
can apply them using the with argument. So for this experiment:

ex = Experiment('named_configs_demo')

@ex.config
def cfg():
 a = 10
 b = 3 * a
 c = "foo"

@ex.named_config
def variant1():
 a = 100
 c = "bar"

The named configuration variant1 can be applied like this:

>>> ./named_configs_demo.py with variant1

Multiple Named Updates

You can have multiple named configurations, and you can use as many of them
as you like for any given run. But notice that the order in which you
include them matters: The ones you put first will be evaluated first and
the values they set might be overwritten by further named configurations.

Combination With Regular Updates

If you combine named updates with regular updates, and the latter have
precedence. Sacred will first set an fix all regular updates and then run
through all named updates in order, while keeping the regular updates fixed.
The resulting configuration is then kept fixed and sacred runs through all
normal configurations.

The following will set a=23 first and then execute variant1 treating
a as fixed:

>>> ./named_configs_demo.py with variant1 'a=23'

So this configuration becomes {'a':23, 'b':69, 'c':"bar"}.

Config Files As Named Updates

Config files can be used as named updates, by just passing their name to the
with argument. So assuming there is a variant2.json this works:

>>> ./named_configs_demo.py with variant2.json

Supported formats are the same as with Config Files.

If there should ever be a name-collision between a named config and a config
file the latter takes precedence.

Commands

Apart from running the main function (the default command), the command-line
interface also supports other (built-in or custom) commands.
The name of the command has to be first on the commandline:

>>> ./my_demo.py COMMAND_NAME with seed=123

If the COMMAND_NAME is omitted it defaults to the main function, but the name
of that function can also explicitly used as the name of the command.
So for this experiment

@ex.automain
def my_main():
 return 42

the following two lines are equivalent:

>>> ./my_demo.py with seed=123
>>> ./my_demo.py my_main with seed=123

Print Config

To inspect the configuration of your experiment and see how changes from the
command-line affect it you can use the print_config command. The full
configuration of the experiment and all nested dictionaries will be printed with
indentation. So lets say we added the dictionary from above to the
hello_config.py example:

>>> ./hello_config print_config
INFO - hello_config - Running command 'print_config'
INFO - hello_config - Started
Configuration (modified, added, typechanged):
 message = 'Hello world!'
 recipient = 'world'
 seed = 946502320
 d:
 bar = 2
 foo = 1
INFO - hello_config - Completed after 0:00:00

This command is especially helpful to see how with config=update statements
affect the configuration. It will highlight modified entries in green, added
entries in blue and entries whose type has changed in red:

	Change

	Color

	modified

	blue

	added

	green

	typechanged

	red

But Sacred will also print warnings for all added and typechanged entries, to
help you find typos and update mistakes:

>> ./hello_config.py print_config with 'recipient="Bob"' d.foo=True d.baz=3
WARNING - root - Added new config entry: "d.baz"
WARNING - root - Changed type of config entry "d.foo" from int to bool
INFO - hello_config - Running command 'print_config'
INFO - hello_config - Started
Configuration (modified, added, typechanged):
 message = 'Hello Bob!'
 recipient = 'Bob' # blue
 seed = 676870791
 d: # blue
 bar = 2
 baz = 3 # green
 foo = True # red
INFO - hello_config - Completed after 0:00:00

Print Dependencies

The print_dependencies command shows the package dependencies, source files,
and (optionally) the state of version control for the experiment. For example:

>> ./03_hello_config_scope.py print_dependencies
INFO - hello_cs - Running command 'print_dependencies'
INFO - hello_cs - Started
Dependencies:
 numpy == 1.11.0
 sacred == 0.7.0

Sources:
 03_hello_config_scope.py 53cee32c9dc77870f7b39622434aff85

Version Control:
M git@github.com:IDSIA/sacred.git bcdde712957570606ec5087b1748c60a89bb89e0

INFO - hello_cs - Completed after 0:00:00

Where the Sources section lists all discovered (or added) source files and their
md5 hash.
The Version Control section lists all discovered VCS repositories
(ATM only git is supported), the current commit hash.
The M at the beginning of the git line signals that the repository is currently
dirty, i.e. has uncommitted changes.

Save Configuration

Use the save_config command for saving the current/updated configuration
into a file:

./03_hello_config_scope.py save_config with recipient=Bob

This will store a file called config.json with the following content:

{
 "message": "Hello Bob!",
 "recipient": "Bob",
 "seed": 151625947
}

The filename can be configured by setting config_filename like this:

./03_hello_config_scope.py save_config with recipient=Bob config_filename=mine.yaml

The format for exporting the config is inferred from the filename and can be
any format supported for config files.

Print Named Configs

The print_named_configs command prints all available named configurations.
Function docstrings for named config functions are copied and displayed colored
in grey.
For example:

>> ./named_config print_named_configs
INFO - hello_config - Running command 'print_named_configs'
INFO - hello_config - Started
Named Configurations (doc):
 rude # A rude named config
INFO - hello_config - Completed after 0:00:00

If no named configs are available for the experiment, an empty list is printed:

>> ./01_hello_world print_named_configs
INFO - 01_hello_world - Running command 'print_named_configs'
INFO - 01_hello_world - Started
Named Configurations (doc):
 No named configs
INFO - 01_hello_world - Completed after 0:00:00

Custom Commands

If you just run an experiment file it will execute the default command, that
is the method you decorated with @ex.main or @ex.automain. But you
can also add other commands to the experiment by using @ex.command:

from sacred import Experiment

ex = Experiment('custom_command')

@ex.command
def scream():
 """
 scream, and shout, and let it all out ...
 """
 print('AAAaaaaaaaahhhhhh...')

...

This command can then be run like this:

>> ./custom_command.py scream
INFO - custom_command - Running command 'scream'
INFO - custom_command - Started
AAAaaaaaaaahhhhhh...
INFO - custom_command - Completed after 0:00:00

It will also show up in the usage message and you can get the signature and
the docstring by passing it to help:

>> ./custom_command.py help scream

scream()
 scream, and shout, and let it all out ...

Commands are of course also captured functions, so you can take arguments that
will get filled in from the config, and you can use with config=update to
change parameters from the command-line:

@ex.command
def greet(name):
 """
 Print a simple greet message.
 """
 print('Hello %s!' % name)

And call it like this:

>> ./custom_command.py greet with 'name="Bob"'
INFO - custom_command - Running command 'scream'
INFO - custom_command - Started
Hello Bob!
INFO - custom_command - Completed after 0:00:00

Like other Captured Functions, commands also accept the prefix
keyword-argument.

Many commands like print_config are helper functions, and should not
trigger observers. This can be accomplished by passing unobserved=True to
the decorator:

@ex.command(unobserved=True)
def helper(name):
 print('Running this command will not result in a DB entry!')

Flags

Help

	-h

	print usage

	--help

This prints a help/usage message for your experiment.
It is equivalent to typing just help.

Comment

	-c COMMENT

	add a comment to this run

	--comment COMMENT

The COMMENT can be any text and will be stored with the run.

Logging Level

	-l LEVEL

	control the logging level

	--loglevel=LEVEL

With this flag you can adjust the logging level.

	Level

	Numeric value

	CRITICAL

	50

	ERROR

	40

	WARNING

	30

	INFO

	20

	DEBUG

	10

	NOTSET

	0

See Adjusting Log-Levels for more details.

MongoDB Observer

	-m DB

	add a MongoDB observer

	--mongo_db=DB

This flag can be used to add a MongoDB observer to your experiment. DB must
be of the form [host:port:]db_name[.collection][!priority].

See Mongo Observer for more details.

FileStorage Observer

	-F BASEDIR

	add a file storage observer

	--file_storage=BASEDIR

This flag can be used to add a file-storage observer to your experiment.
BASEDIR specifies the directory the observer will use to store its files.

See File Storage Observer for more details.

TinyDB Observer

	-t BASEDIR

	add a TinyDB observer

	--tiny_db=BASEDIR

This flag can be used to add a TinyDB observer to your experiment.
BASEDIR specifies the directory the observer will use to store its files.

See TinyDB Observer for more details.

Note

For this flag to work you need to have the
tinydb [http://tinydb.readthedocs.io],
tinydb-serialization [https://github.com/msiemens/tinydb-serialization],
and hashfs [https://github.com/dgilland/hashfs] packages installed.

SQL Observer

	-s DB_URL

	add a SQL observer

	--sql=DB_URL

This flag can be used to add a SQL observer to your experiment.
DB_URL must be parseable by the sqlalchemy [http://www.sqlalchemy.org/]
package, which is typically means being of the form
dialect://username:password@host:port/database (see their
documentation [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls]
for more detail).

Note

For this flag to work you need to have the
sqlalchemy [http://www.sqlalchemy.org/] package installed.

See Mongo Observer for more details.

Debug Mode

	-d

	don’t filter the stacktrace

	--debug

This flag deactivates the stacktrace filtering. You should usually not need
this. It is mainly used for debugging experiments using a debugger
(see Debugging).

PDB Debugging

	-D

	Enter post-mortem debugging with pdb on failure.

	--pdb

If this flag is set and an exception occurs, sacred automatically starts a
pdb post-mortem debugger to investigate the error and interact with the
stack (see Debugging).

Beat Interval

	-b BEAT_INTERVAL

	set the interval between heartbeat events

	--beat_interval=BEAT_INTERVAL

A running experiment regularly fires a Heartbeat event to synchronize
the info dict (see Saving Custom Information).
This flag can be used to change the interval from 10 sec (default) to
BEAT_INTERVAL sec.

Unobserved

	-u

	Ignore all observers for this run.

	--unobserved

If this flag is set, sacred will remove all observers from the current run and
also silence the warning for having no observers. This is useful for some quick
tests or debugging runs.

Queue

	-q

	Only queue this run, do not start it.

	--queue

Instead of running the experiment, this will only create an entry in the
database (or where the observers put it) with the status QUEUED.
This entry will contain all the information about the experiment and the
configuration. But the experiment will not be run. This can be useful to have
some distributed workers fetch and start the queued up runs.

Priority

	-p

	Only queue this run, do not start it.

	--queue

Enforce Clean

	-e

	Fail if any version control repository is dirty.

	--enforce_clean

This flag can be used to enforce that experiments are only being run on a clean
repository, i.e. with no uncommitted changes.

Note

For this flag to work you need to have the
GitPython [https://github.com/gitpython-developers/GitPython]
package installed.

Print Config

	-P PRIORITY

	Always print the config first.

	--priority=PRIORITY

If this flag is set, sacred will always print the current configuration
including modifications (like the Print Config command) before running
the main method.

Name

	-n NAME

	Set the name for this run.

	--name=NAME

This option changes the name of the experiment before starting the run.

Capture Mode

	-C CAPTURE_MODE

	Control the way stdout and stderr are captured.

	--capture=CAPTURE_MODE

This option controls how sacred captures outputs to stdout and stderr.
Possible values for CAPTURE_MODE are no, sys (default under Windows),
or fd (default for Linux/OSX). For more information see here.

Custom Flags

It is possible to add custom flags to an experiment by inheriting from
sacred.commandline_option.CommandLineOption like this:

from sacred.commandline_option import CommandLineOption

class OwnFlag(CommandLineOption):
""" This is my personal flag """

 @classmethod
 def apply(cls, args, run):
 # useless feature: add some string to the info dict
 run.info['some'] = 'prepopulation of the info dict'

The name of the flag is taken from the class name and here would be
-o/-own_flag. The short flag can be customized by setting a
short_flag class variable. The documentation for the flag is taken from
the docstring. The apply method of that class is called after the Run
object has been created, but before it has been started.

In this case the args parameter will be always be True. But it is also
possible to add a flag which takes an argument, by specifying the arg
and arg_description class variables:

from sacred.commandline_option import CommandLineOption

class ImprovedFlag(CommandLineOption):
""" This is my even better personal flag """

 short_flag = 'q'
 arg = 'MESSAGE'
 arg_description = 'The cool message that gets saved to info'

 @classmethod
 def apply(cls, args, run):
 run.info['some'] = args

Here the flag would be -q MESSAGE / -improved_flag=MESSAGE and
the args parameter of the apply function would contain the
MESSAGE as a string.

Collected Information

Sacred collects a lot of information about the runs of an experiment and
reports them to the observers.
This section provides an overview over the collected information and ways to
customize it.

Configuration

Arguably the most important information about a run is its Configuration.
Sacred collects the final configuration that results after incorporating
named configs and configuration updates.
It also keeps track of information about what changes have occurred and whether
they are suspicious. Suspicious changes include adding configuration entries
that are not used anywhere, or typechanges of existing entries.

The easiest way to inspect this information is from the commandline using the
Print Config command or alternatively the -p / --print_config
flag.
The config is also passed to the observers as part of the
started_event or the queued_event.
It is also available through the The Run Object through run.config and run.config_modifications.
Finally the individual values can be directly accessed during a run through
Accessing Config Entries or also the whole config using the _config
special value.

Experiment Info

The experiment_info includes the name and the base directory of the experiment,
a list of source files, a list of dependencies, and, optionally, information
about its git repository.

This information is available as a dictionary from the Run object through
run.experiment_info. And it is also passed to (and stored by) the observers
as part of the started_event or the
queued_event.

Source Code

To help ensure reproducibility, Sacred automatically discovers the python
sources of an experiment and stores them alongside the run.
That way the version of the code used for running the experiment is always
available with the run.

The auto-discovery is using inspection of the imported modules and comparing them
to the local file structure.
This process should work in >95% of the usecases. But in case it fails one can
also manually add sourcefiles using add_source_file().

The list of sources is accessible through run.experiment_info['sources'].
It is a list of tuples of the form (filename, md5sum).
It can also be inspected using the Print Dependencies command.

Version Control

If the experiment is part of a version control repository, Sacred will also
try to collect the url of the repository, the current commit hash and if the
repository is dirty (has uncommitted changes).
At the moment Sacred only supports git and only if GitPython is installed.

This information can be inspected using the Print Dependencies command.
But it is also available from run.experiment_info['repositories'], as a
list of dictionaries of the form
{'url': URL, 'commit': COMMIT_HASH, 'dirty': True}.

Dependencies

Sacred also tries to auto-discover the package dependencies of the experiment.
This again is done using inspection of the imported modules and trying to figure
out their versions.
Like the source-code autodiscovery, this should work most of the time. But
it is also possible to manually add dependencies using
add_package_dependency().

The easiest way to inspect the discovered package dependencies is via the
Print Dependencies command.
But they are also accessible from run.experiment_info['dependencies'] as
a list of strings of the form package==version.

Host Info

Some basic information about the machine that runs the experiment (the host) is
also collected. The default host info includes:

	Key

	Description

	cpu

	The CPU model

	hostname

	The name of the machine

	os

	Info about the operating system

	python_version

	Version of python

	gpu

	Information about NVidia GPUs (if any)

	ENV

	captured ENVIRONMENT variables (if set)

Host information is available from the :ref:api_run through run.host_info.
It is sent to the observers by the started_event.

The list of captured ENVIRONMENT variables (empty by default) can be extended
by appending the relevant keys to sacred.SETTINGS.HOST_INFO.CAPTURED_ENV.

It is possible to extend the host information with custom functions decorated
by host_info_getter() like this:

from sacred import host_info_getter

@host_info_getter
def ip():
 import socket
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 s.connect(("8.8.8.8", 80))
 ip = s.getsockname()[0]
 s.close()
 return ip

This example will create an ip entry in the host_info containing the
IP address of the machine.

Live Information

While an experiment is running, sacred collects some live information and
reports them in regular intervals (default 10sec) to the observers via the
heartbeat_event. This includes the captured stdout and
stderr and the contents of the Info Dict which can be used to store
custom information like training curves. It also includes the current
intermediate result if set. It can be set using the _run object:

@ex.capture
def some_function(_run):
 ...
 _run.result = 42
 ...

Output capturing in sacred can be done in different modes. On linux the default
is to capture on the file descriptor level, which means that it should even
capture outputs made from called c-functions or subprocesses. On Windows the
default mode is sys which only captures outputs made from within python.

Note that, the captured output behaves differently from a console in that
it doesn’t by default interpret control characters like backspace
('\b') or carriage return ('\r').
As an effect, some updating progressbars or the like might me more verbose
than intended. This behaviour can be changed by adding a custom filter to the
captured output. To interpret control characters like a console this would do:

from sacred.utils import apply_backspaces_and_linefeeds

ex.captured_out_filter = apply_backspaces_and_linefeeds

Metrics API

You might want to measure various values during your experiments, such as
the progress of prediction accuracy over training steps.

Sacred supports tracking of numerical series (e.g. int, float) using the Metrics API.
To access the API in experiments, the experiment must be running and the variable referencing the current experiment
or run must be available in the scope. The _run.log_scalar(metric_name, value, step) method takes
a metric name (e.g. “training.loss”), the measured value and the iteration step in which the value was taken.
If no step is specified, a counter that increments by one automatically is set up for each metric.

Step should be an integer describing the position of the value in the series. Steps can be numbered either sequentially
0, 1, 2, 3, … or they may be given a different meaning, for instance the current iteration round.
The earlier behaviour can be achieved automatically when omitting the step parameter.
The latter approach is useful when logging occurs only every e.g. 10th iteration:
The step can be first 10, then 20, etc.
In any case, the numbers should form an increasing sequence.

@ex.automain
def example_metrics(_run):
 counter = 0
 while counter < 20:
 counter+=1
 value = counter
 ms_to_wait = random.randint(5, 5000)
 time.sleep(ms_to_wait/1000)
 # This will add an entry for training.loss metric in every second iteration.
 # The resulting sequence of steps for training.loss will be 0, 2, 4, ...
 if counter % 2 == 0:
 _run.log_scalar("training.loss", value * 1.5, counter)
 # Implicit step counter (0, 1, 2, 3, ...)
 # incremented with each call for training.accuracy:
 _run.log_scalar("training.accuracy", value * 2)
 # Another option is to use the Experiment object (must be running)
 # The training.diff has its own step counter (0, 1, 2, ...) too
 ex.log_scalar("training.diff", value * 2)

Currently, the information is collected only by the Mongo Observer. Metrics are stored in the metrics collection
of MongoDB and are identified by their name (e.g. “training.loss”) and the experiment run id they belong to.

Metrics Records

A metric record is composed of the metric name, the id of the corresponding experiment run,
and of the measured values, arranged in an array in the order they were captured using the log_scalar(...)
function.
For the value located in the i-th index (metric["values"][i]),
the step number can be found in metric["steps"][i] and the time of the measurement in metric["timestamps"][i].

	Key

	Description

	_id

	Unique identifier

	name

	The name of the metric (e.g. training.loss)

	run_id

	The identifier of the run (_id in the runs collection)

	steps

	Array of steps (e.g. [0, 1, 2, 3, 4])

	values

	Array of measured values

	timestamps

	Array of times of capturing the individual measurements

Resources and Artifacts

It is possible to add files to an experiment, that will then be added to the database
(or stored by whatever observer you are using).
Apart from the source files (that are automatically added) there are two more
types of files: Resources and Artifacts.

Resources

Resources are files that are needed by the experiment to run, such as datasets
or further configuration files.
If a file is opened through open_resource()
then sacred will collect information about that file and send it to the observers.
The observers will then store the file, but not duplicate it, if it is already stored.

Artifacts

Artifacts, on the other hand, are files that are produced by a run.
They might, for example, contain a detailed dump of the results or the weights
of a trained model.
They can be added to the run by add_artifact()
Artifacts are stored with a name, which (if it isn’t explicitly specified)
defaults to the filename.

Bookkeeping

Finally, Sacred stores some additional bookkeeping information, and some custom
meta information about the runs.
This information is reported to the observers as soon as it is available, and
can also be accessed through the Run object using the
following keys:

	Key

	Description

	start_time

	The datetime when this run was started

	stop_time

	The datetime when this run stopped

	heartbeat_time

	The last time this run communicated with the observers

	status

	The status of the run (see below)

	fail_trace

	The stacktrace of an exception that occurred (if so)

	result

	The return value of the main function (if successful)

Note

All stored times are UTC times!

Status

The status describes in what state a run currently is and takes one of the
following values:

	Status

	Description

	QUEUED

	The run was just queued and not run yet

	RUNNING

	Currently running (but see below)

	COMPLETED

	Completed successfully

	FAILED

	The run failed due to an exception

	INTERRUPTED

	The run was cancelled with a KeyboardInterrupt

	TIMED_OUT

	The run was aborted using a TimeoutInterrupt

	[custom]

	A custom py:class:~sacred.utils.SacredInterrupt occurred

If a run crashes in a way that doesn’t allow Sacred to tell the observers
(e.g. power outage, kernel panic, …), then the status of the crashed run
will still be RUNNING.
To find these dead runs, one can look at the heartbeat_time of the runs
with a RUNNING status:
If the heartbeat_time lies significantly longer in the past than the
heartbeat interval (default 10sec), then the run can be considered DEAD.

Meta Information

The meta-information is meant as a place to store custom information about a
run once in the beginning.
It can be added to the run by passing it to
run(), but some commandline flags or
tools also add meta information.
It is reported to the observers as part of the
started_event or the queued_event.
It can also be accessed as a dictionary through the meta_info property of
the Run object.
The builtin usecases include:

	Key

	Description

	command

	The name of the command that is being run

	options

	A dictionary with all the commandline options

	comment

	A comment for that run (added by the comment flag)

	priority

	A priority for scheduling queued runs (added by the priority flag)

	queue_time

	The datetime when this run was queued (stored automatically)

Observing an Experiment

When you run an experiment you want to keep track of enough information,
such that you can analyse the results, and reproduce them if needed.
Sacred helps you doing that by providing an Observer Interface for your
experiments. By attaching an Observer you can gather all the information about
the run even while it is still running.
Observers have a priority attribute, and are run in order of descending
priority. The first observer determines the _id of the run.

At the moment there are four observers that are shipped with Sacred:

	The main one is the Mongo Observer which stores all information in a
MongoDB [http://www.mongodb.org/].

	The File Storage Observer stores the run information as files in a given
directory and will therefore only work locally.

	The TinyDB Observer provides another local way of observing experiments
by using tinydb [http://tinydb.readthedocs.io]
to store run information in a JSON file.

	The SQL Observer connects to any SQL database and will store the
relevant information there.

But if you want the run information stored some other way, it is easy to write
your own Custom Observer.

Mongo Observer

Note

Requires the pymongo [https://api.mongodb.com/python/current/] package.
Install with pip install pymongo.

The MongoObserver is the recommended way of storing the run information from
Sacred.
MongoDB allows very powerful querying of the entries that can deal with
almost any structure of the configuration and the custom info.
Furthermore it is easy to set-up and allows to connect to a central remote DB.
Most tools for further analysing the data collected by Sacred build upon this
observer.

Adding a MongoObserver

You can add a MongoObserver from the command-line via the -m MY_DB flag:

>> ./my_experiment.py -m MY_DB

Here MY_DB is just the name of the database inside MongoDB that you want
the information to be stored in.
To make MongoObserver work with remote MongoDBs you have to pass a URL with a
port:

>> ./my_experiment.py -m HOST:PORT:MY_DB
>> ./my_experiment.py -m 192.168.1.1:27017:MY_DB
>> ./my_experiment.py -m my.server.org:12345:MY_DB

You can also add it from code like this:

from sacred.observers import MongoObserver

ex.observers.append(MongoObserver.create())

Or with server and port:

from sacred.observers import MongoObserver

ex.observers.append(MongoObserver.create(url='my.server.org:27017',
 db_name='MY_DB'))

This assumes you either have a local MongoDB running or have access to it over
network without authentication.
(See here [http://docs.mongodb.org/manual/installation/] on how to install)

Authentication

If you need authentication a little more work might be necessary.
First you have to decide which
authentication protocol [http://api.mongodb.org/python/current/examples/authentication.html]
you want to use. If it can be done by just using the MongoDB URI then just pass that, e.g.:

from sacred.observers import MongoObserver

ex.observers.append(MongoObserver.create(
 url='mongodb://user:password@example.com/the_database?authMechanism=SCRAM-SHA-1',
 db_name='MY_DB'))

If additional arguments need to be passed to the MongoClient they can just be included:

ex.observers.append(MongoObserver.create(
 url="mongodb://<X.509 derived username>@example.com/?authMechanism=MONGODB-X509",
 db_name='MY_DB',
 ssl=True,
 ssl_certfile='/path/to/client.pem',
 ssl_cert_reqs=ssl.CERT_REQUIRED,
 ssl_ca_certs='/path/to/ca.pem'))

Database Entry

The MongoObserver creates three collections to store information. The first,
runs (that name can be changed), is the main collection that contains one
entry for each run.
The other two (fs.files, fs.chunks) are used to store associated files
in the database (compare GridFS [http://docs.mongodb.org/manual/core/gridfs/]).

Note

This is the new database layout introduced in version 0.7.0.
Before that there was a common prefix default for all collections.

So here is an example entry in the runs collection:

> db.runs.find()[0]
{
 "_id" : ObjectId("5507248a1239672ae04591e2"),
 "format" : "MongoObserver-0.7.0",
 "status" : "COMPLETED",
 "result" : null,
 "start_time" : ISODate("2016-07-11T14:50:14.473Z"),
 "heartbeat" : ISODate("2015-03-16T19:44:26.530Z"),
 "stop_time" : ISODate("2015-03-16T19:44:26.532Z"),
 "config" : {
 "message" : "Hello world!",
 "seed" : 909032414,
 "recipient" : "world"
 },
 "info" : { },
 "resources" : [],
 "artifacts" : [],
 "captured_out" : "Hello world!\n",
 "experiment" : {
 "name" : "hello_cs",
 "base_dir" : "$(HOME)/sacred/examples/"
 "dependencies" : ["numpy==1.9.1", "sacred==0.7.0"],
 "sources" : [
 [
 "03_hello_config_scope.py",
 ObjectId("5507248a1239672ae04591e3")
]
],
 "repositories" : [{
 "url" : "git@github.com:IDSIA/sacred.git"
 "dirty" : false,
 "commit" : "d88deb2555bb311eb779f81f22fe16dd3b703527"}]
 },
 "host" : {
 "os" : ["Linux",
 "Linux-3.13.0-46-generic-x86_64-with-Ubuntu-14.04-trusty"],
 "cpu" : "Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz",
 "hostname" : "MyAwesomeMachine",
 "python_version" : "3.4.0"
 },
}

As you can see a lot of relevant information is being stored, among it the
used configuration, automatically detected package dependencies and information
about the host.

If we take a look at the fs.files collection we can also see, that
it stored the sourcecode of the experiment in the database:

> db.fs.files.find()[0]
{
 "_id" : ObjectId("5507248a1239672ae04591e3"),
 "filename" : "$(HOME)/sacred/examples/03_hello_config_scope.py",
 "md5" : "897b2144880e2ee8e34775929943f496",
 "chunkSize" : 261120,
 "length" : 1526,
 "uploadDate" : ISODate("2016-07-11T12:50:14.522Z")
}

File Storage Observer

The FileStorageObserver is the most basic observer and requires the least
amount of setup.
It is mostly meant for preliminary experiments and cases when setting up a
database is difficult or impossible.
But in combination with the template rendering integration it can be very
helpful.

Adding a FileStorageObserver

The FileStorageObserver can be added from the command-line via the
-F BASEDIR and --file_storage=BASEDIR flags:

>> ./my_experiment.py -F BASEDIR
>> ./my_experiment.py --file_storage=BASEDIR

Here BASEDIR is the name of the directory in which all the subdirectories
for individual runs will be created.

You can, of course, also add it from code like this:

from sacred.observers import FileStorageObserver

ex.observers.append(FileStorageObserver.create('my_runs'))

Directory Structure

The FileStorageObserver creates a separate sub-directory for each run and stores
several files in there:

my_runs/
 run_3mdq4amp/
 config.json
 cout.txt
 info.json
 run.json
 run_zw82a7xg/
 ...
 ...

config.json contains the JSON-serialized version of the configuration
and cout.txt the captured output.
The main information is stored in run.json and is very similar to the
database entries from the Mongo Observer:

{
 "command": "main",
 "status": "COMPLETED",
 "start_time": "2016-07-11T15:35:14.765152",
 "heartbeat": "2016-07-11T15:35:14.766793",
 "stop_time": "2016-07-11T15:35:14.768465",
 "result": null,
 "experiment": {
 "base_dir": "/home/greff/Programming/sacred/examples",
 "dependencies": [
 "numpy==1.11.0",
 "sacred==0.6.9"],
 "name": "hello_cs",
 "repositories": [{
 "commit": "d88deb2555bb311eb779f81f22fe16dd3b703527",
 "dirty": false,
 "url": "git@github.com:IDSIA/sacred.git"}],
 "sources": [
 ["03_hello_config_scope.py",
 "_sources/03_hello_config_scope_897b2144880e2ee8e34775929943f496.py"]]
 },
 "host": {
 "cpu": "Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz",
 "hostname": "Liz",
 "os": ["Linux",
 "Linux-3.19.0-58-generic-x86_64-with-Ubuntu-15.04-vivid"],
 "python_version": "3.4.3"
 },
 "artifacts": [],
 "resources": [],
 "meta": {},
}

In addition to that there is an info.json file holding Saving Custom Information
(if existing) and all the Artifacts.

The FileStorageObserver also stores a snapshot of the source-code in a separate
my_runs/_sources directory, and Resources in my_runs/_resources
(if present).
Their filenames are stored in the run.json file such that the corresponding
files can be easily linked to their respective run.

Template Rendering

In addition to these basic files, the FileStorageObserver can also generate a
report for each run from a given template file.
The prerequisite for this is that the mako [http://www.makotemplates.org/] package is installed and a
my_runs/template.html file needs to exist.
The file can be located somewhere else, but then the filename must be passed to
the FileStorageObserver like this:

from sacred.observers import FileStorageObserver

ex.observers.append(FileStorageObserver.create('my_runs', template='/custom/template.txt'))

The FileStorageObserver will then render that template into a
report.html/report.txt file in the respective run directory.
mako is a very powerful templating engine that can execute
arbitrary python-code, so be careful about the templates you use.
For an example see sacred/examples/my_runs/template.html.

TinyDB Observer

Note

requires the
tinydb [http://tinydb.readthedocs.io],
tinydb-serialization [https://github.com/msiemens/tinydb-serialization],
and hashfs [https://github.com/dgilland/hashfs] packages installed.

The TinyDbObserver uses the tinydb [http://tinydb.readthedocs.io]
library to provides an alternative to storing results in MongoDB whilst still
allowing results to be stored in a document like database. This observer
uses TinyDB to store the metadata about an observed run in a JSON file.

The TinyDbObserver also makes use of the hashfs hashfs [https://github.com/dgilland/hashfs]
library to store artifacts, resources and source code files associated with a run.
Storing results like this provides an easy way to lookup associated files for a run
bases on their hash, and ensures no duplicate files are stored.

The main drawback of storing files in this way is that they are not easy to manually
inspect, as their path names are now the hash of their content. Therefore, to aid in
retrieving data and files stored by the TinyDbObserver, a TinyDbReader class is
provided to allow for easier querying and retrieval of the results. This ability to
store metadata and files in a way that can be queried locally is the main advantage
of the TinyDbObserver observer compared to the FileStorageObserver.

The TinyDbObserver is designed to be a simple, scalable way to store and query
results as a single user on a local file system, either for personal experimentation
or when setting up a larger database configuration is not desirable.

Adding a TinyDbObserver

The TinyDbObserver can be added from the command-line via the
-t BASEDIR and --tiny_db=BASEDIR flags:

>> ./my_experiment.py -t BASEDIR
>> ./my_experiment.py --tiny_db=BASEDIR

Here BASEDIR specifies the directory in which the TinyDB JSON file and
hashfs filesytem will be created. All intermediate directories are created with
the default being to create a directory called runs_db in the current
directory.

Alternatively, you can also add the observer from code like this:

from sacred.observers import TinyDbObserver

ex.observers.append(TinyDbObserver.create('my_runs'))

Directory Structure

The TinyDbObserver creates a directory structure as follows:

my_runs/
 metadata.json
 hashfs/

metadata.json contains the JSON-serialized metadata in the TinyDB format.
Each entry is very similar to the database entries from the Mongo Observer:

{
 "_id": "2118c70ef274497f90b7eb72dcf34598",
 "artifacts": [],
 "captured_out": "",
 "command": "run",
 "config": {
 "C": 1,
 "gamma": 0.7,
 "seed": 191164913
 },
 "experiment": {
 "base_dir": "/Users/chris/Dropbox/projects/dev/sacred-tinydb",
 "dependencies": [
 "IPython==5.1.0",
 "numpy==1.11.2",
 "sacred==0.7b0",
 "sklearn==0.18"
],
 "name": "iris_rbf_svm",
 "repositories": [],
 "sources": [
 [
 "test_exp.py",
 "6f4294124f7697655f9fd1f7d4e7798b",
 "{TinyFile}:\"6f4294124f7697655f9fd1f7d4e7798b\""
]
]
 },
 "format": "TinyDbObserver-0.7b0",
 "heartbeat": "{TinyDate}:2016-11-12T01:18:00.228352",
 "host": {
 "cpu": "Intel(R) Core(TM)2 Duo CPU P8600 @ 2.40GHz",
 "hostname": "phoebe",
 "os": [
 "Darwin",
 "Darwin-15.5.0-x86_64-i386-64bit"
],
 "python_version": "3.5.2"
 },
 "info": {},
 "meta": {},
 "resources": [],
 "result": 0.9833333333333333,
 "start_time": "{TinyDate}:2016-11-12T01:18:00.197311",
 "status": "COMPLETED",
 "stop_time": "{TinyDate}:2016-11-12T01:18:00.337519"
}

The elements in the above example are taken from a generated JSON file, where
those prefixed with {TinyData} will be converted into python datetime
objects upon reading them back in. Likewise those prefixed with {TinyFile}
will be converted into a file object opened in read mode for the associated
source, artifact or resource file.

The files referenced in either the sources, artifacts or resources sections
are stored in a location according to the hash of their contents under the
hashfs/ directory. The hashed file system is setup to create three
directories from the first 6 characters of the hash, with the rest of
the hash making up the file name. The stored source file is therefore
located at

my_runs/
 metadata.json
 hashfs/
 59/
 ab/
 16/
 5b3579a1869399b4838be2a125

A file handle, serialised with the tag {TinyFile} in the JSON file, is
included in the metadata alongside individual source files, artifacts or
resources as a convenient way to access the file content.

The TinyDB Reader

To make querying and stored results easier, a TinyDbReader class is provided.
Create a class instance by passing the path to the root directory of the
TinyDbObserver.

from sacred.observers import TinyDbReader

reader = TinyDbReader('my_runs')

The TinyDbReader class provides three main methods for retrieving data:

	.fetch_metadata() will return all metadata associated with an experiment.

	.fetch_files() will return a dictionary of file handles for the sources,
artifacts and resources.

	.fetch_report() will will return all metadata rendered in a summary report.

All three provide a similar API, allowing the search for records by index,
by experiment name, or by using a TinyDB search query.
To do so specify one of the following arguments to the above methods:

	indices accepts either a single integer or a list of integers and works like
list indexing, retrieving experiments in the order they were run. e.g.
indices=0 will get the first or oldest experiment, and indices=-1 will
get the latest experiment to run.

	exp_name accepts a string and retrieves any experiment that contains that
string in its name. Also works with regular expressions.

	query accepts a TinyDB query object and returns all experiments that match it.
Refer to the TinyDB documentation [http://tinydb.readthedocs.io/en/latest/usage.html]
for details on the API.

Retrieving Files

To get the files from the last experimental run:

results = reader.fetch_files(indices=-1)

The results object is a list of dictionaries, each containing the date the experiment
started, the experiment id, the experiment name, as well as nested dictionaries for
the sources, artifacts and resources if they are present for the experiment. For each
of these nested dictionaries, the key is the file name, and the value is a file handle
opened for reading that file.

[{'date': datetime.datetime(2016, 11, 12, 1, 36, 54, 970229),
 'exp_id': '68b71b5c009e4f6a887479cdda7a93a0',
 'exp_name': 'iris_rbf_svm',
 'sources': {'test_exp.py': <BufferedReaderWrapper name='...'>}}]

Individual files can therefore be accessed with,

results = reader.fetch_files(indices=-1)
f = results[0]['sources']['test_exp.py']
f.read()

Depending on whether the file contents is text or binary data, it can then either be
printed to console or visualised in an appropriate library e.g.
Pillow [https://python-pillow.org/] for images. The content can also be written
back out to disk and inspected in an external program.

Summary Report

Often you may want to see a high level summary of an experimental run,
such as the config used the results, and any inputs, dependencies and other artifacts
generated. The .fetch_report() method is designed to provide these rendered as a
simple text based report.

To get the report for the last experiment simple run,

results = reader.fetch_report(indices=-1)
print(results[0])

Experiment: iris_rbf_svm

ID: 68b71b5c009e4f6a887479cdda7a93a0
Date: Sat 12 Nov 2016 Duration: 0:0:0.1

Parameters:
 C: 1.0
 gamma: 0.7
 seed: 816200523

Result:
 0.9666666666666667

Dependencies:
 IPython==5.1.0
 numpy==1.11.2
 sacred==0.7b0
 sacred.observers.tinydb_hashfs==0.7b0
 sklearn==0.18

Resources:
 None

Source Files:
 test_exp.py

Outputs:
 None

SQL Observer

The SqlObserver saves all the relevant information in a set of SQL tables.
It requires the sqlalchemy [http://www.sqlalchemy.org/] package to be
installed.

Adding a SqlObserver

The SqlObserver can be added from the command-line via the
-s DB_URL and --sql=DB_URL flags:

>> ./my_experiment.py -s DB_URL
>> ./my_experiment.py --sql=DB_URL

Here DB_URL is a url specifying the dialect and server of the SQL database
to connect to. For example:

	PostgreSQL: postgresql://scott:tiger@localhost/mydatabase

	MySQL: mysql://scott:tiger@localhost/foo

	SqlLite: sqlite:///foo.db

For more information on the database-urls see the sqlalchemy documentation [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls].

To add a SqlObserver from python code do:

from sacred.observers import SqlObserver

ex.observers.append(SqlObserver.create('sqlite:///foo.db'))

Schema

[image: _images/sql_schema.png]

Slack Observer

The SlackObserver sends a message to
Slack [https://slack.com/] using an
incoming webhook [https://api.slack.com/incoming-webhooks] everytime an
experiment stops:

[image: _images/slack_observer.png]
It requires the requests [http://docs.python-requests.org] package to be
installed and the webhook_url of the incoming webhook configured in Slack.
This url is something you shouldn’t share with others, so the recommended way
of adding a SlackObserver is from a configuration file:

from sacred.observers import SlackObserver

slack_obs = SlackObserver.from_config('slack.json')
ex.observers.append(slack_obs)

Where slack.json at least specifies the webhook_url:

Content of file 'slack.json':
{
 "webhook_url": "https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX"
}

But it can optionally also customize the other attributes:

Content of file 'slack.json':
{
 "webhook_url": "https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX",
 "icon": ":imp:",
 "bot_name": "my-sacred-bot",
 "completed_text": "YAY! {ex_info[name] completed with result=`{result}`",
 "interrupted_text": null,
 "failed_text": "Oh noes! {ex_info[name] failed saying `{error}`"
}

Telegram Observer

The TelegramObserver sends status updates to
Telegram [https://telegram.org/] using their
Python Telegram Bot API [https://github.com/python-telegram-bot/python-telegram-bot] which
obviously has to be installed to use this observer.

pip install --upgrade python-telegram-bot

Before using this observer, three steps need to be taken:

	Create the bot with @BotFather <https://core.telegram.org/bots#6-botfather>

	Write to the newly-created bot, since only users can initiate conversations with telegram bots.

	Retrieve the chat_id for the chat the bot will send updates to.

The last step can be accomplished using the following script:

import telegram

TOKEN = 'token obtained from @BotFather'

bot = telegram.Bot(TOKEN)
for u in bot.get_updates():
 print('{}: [{}] {}'.format(u.message.date, u.message.chat_id, u.message.text))

As with the SlackObserver, the
TelegramObserver needs to be provided with a json, yaml
or pickle file containing…

	token: the HTTP API token acquired while

	chat_id: the ID (not username) of the chat to write the updates to.
This can be a user or a group chat ID

	optionally: a boolean for silent_completion. If set to true, regular experiment completions
will use no or less intrusive notifications, depending on the receiving device’s platform.
Experiment starts will always be sent silently, interruptions and failures always with full notifications.

The observer is then added to the experment like this:

from sacred.observers import TelegramObserver

telegram_obs = TelegramObserver.from_config('telegram.json')
ex.observers.append(telegram_obs)

To set the bot’s profile photo and description, use @BotFather’s commands /setuserpic and /setdescription.
Note that /setuserpic requires a minimum picture size.

Events

A started_event is fired when a run starts.
Then every 10 seconds while the experiment is running a heatbeat_event is
fired.
Whenever a resource or artifact is added to the running experiment a
resource_event resp. artifact_event is fired.
Finally, once it stops one of the three completed_event,
interrupted_event, or failed_event is fired.
If the run is only being queued, then instead of all the above only a single
queued_event is fired.

Start

The moment an experiment is started, the first event is fired for all the
observers. It contains the following information:

	ex_info

	Some information about the experiment:

	the docstring of the experiment-file

	filename and md5 hash for all source-dependencies of the experiment

	names and versions of packages the experiment depends on

	command

	The name of the command that was run.

	host_info

	Some information about the machine it’s being run on:

	CPU name

	number of CPUs

	hostname

	Operating System

	Python version

	Python compiler

	start_time

	The date/time it was started

	config

	The configuration for this run, including the root-seed.

	meta_info

	Meta-information about this run such as a custom comment
and the priority of this run.

	_id

	The ID of this run, as determined by the first observer

The started event is also the time when the ID of the run is determined.
Essentially the first observer which sees _id=None sets an id and returns it.
That id is then stored in the run and also passed to all further observers.

Queued

If a run is only queued instead of being run (see Queue), then this event is fired instead
of a started_event. It contains the same information as the
started_event except for the host_info.

Heartbeat

While the experiment is running, every 10 seconds a Heartbeat event is fired.
It updates the captured stdout and stderr of the experiment, the custom
info (see below), and the current result. The heartbeat event is also a
way of monitoring if an experiment is still running.

Stop

Sacred distinguishes three ways in which an experiment can end:

	Successful Completion:

	If an experiment finishes without an error, a completed_event is fired,
which contains the time it completed and the result the command returned.

	Interrupted:

	If a KeyboardInterrupt exception occurs (most of time this means you
cancelled the experiment manually) instead an interrupted_event is fired,
which only contains the interrupt time.

	Failed:

	In case any other exception occurs, Sacred fires a failed_event with the
fail time and the corresponding stacktrace.

Resources

Every time sacred.Experiment.open_resource() is called with a
filename, an event will be fired with that filename (see Resources).

Artifacts

Every time sacred.Experiment.add_artifact() is called with a filename
and optionally a name, an event will be fired with that name and filename
(see Artifacts). If the name is left empty it defaults to the filename.

Saving Custom Information

Sometimes you want to add custom information about the run of an experiment,
like the dataset, error curves during training, or the final trained model.
To allow this sacred offers three different mechanisms.

Info Dict

The info dictionary is meant to store small amounts of information about
the experiment, like training loss for each epoch or the total number of
parameters. It is updated on each heartbeat, such that its content is
accessible in the database already during runtime.

To store information in the info dict it can be accessed via ex.info,
but only while the experiment is running.
Another way is to access it directly through the run with _run.info.
This can be done conveniently using the special _run parameter in any
captured function, which gives you access to the current Run object.

You can add whatever information you like to _run.info. This info dict
will be sent to all the observers every 10 sec as part of the
heartbeat_event.

Warning

Many observers will convert the information of info into JSON using the
jsonpickle library. This works for most python datatypes, but the resulting
entries in the database may look different from what you might expect.
So only store non-JSON information if you absolutely need to.

If the info dict contains numpy arrays or pandas Series/DataFrame/Panel
then these will be converted to json automatically. The result is human
readable (nested lists for numpy and a dict for pandas), but might be
imprecise in some cases.

Resources

Generally speaking a resource is a file that your experiment needs to read
during a run. When you open a file using ex.open_resource(filename) then
a resource_event will be fired and the MongoObserver will check whether
that file is in the database already. If not it will store it there.
In any case the filename along with its MD5 hash is logged.

Artifacts

An artifact is a file created during the run. This mechanism is meant to store
big custom chunks of data like a trained model. With
sacred.Experiment.add_artifact() such a file can be added, which will fire an
artifact_event. The MongoObserver will then in turn again, store that file
in the database and log it in the run entry.
Artifacts always have a name, but if the optional name parameter is left empty
it defaults to the filename.

Custom Observer

The easiest way to implement a custom observer is to inherit from
sacred.observers.RunObserver and override some or all of the events:

from sacred.observer import RunObserver

class MyObserver(RunObserver):
 def queued_event(self, ex_info, command, queue_time, config, meta_info,
 _id):
 pass

 def started_event(self, ex_info, command, host_info, start_time,
 config, meta_info, _id):
 pass

 def heartbeat_event(self, info, captured_out, beat_time, result):
 pass

 def completed_event(self, stop_time, result):
 pass

 def interrupted_event(self, interrupt_time, status):
 pass

 def failed_event(self, fail_time, fail_trace):
 pass

 def resource_event(self, filename):
 pass

 def artifact_event(self, name, filename):
 pass

Controlling Randomness

Many experiments rely on some form of randomness. Controlling this randomness is
key to ensure reproducibility of the results. This typically happens by manually
seeding the Pseudo Random Number Generator (PRNG). Sacred can help you manage
this error-prone procedure.

Automatic Seed

Sacred auto-generates a seed for each run as part of the configuration (You
might have noticed it, when printing the configuration of an experiment).
This seed has a different value everytime the experiment is run and is stored
as part part of the configuration. You can easily set it by:

>>./experiment.py with seed=123

This root-seed is the central place to control randomness, because internally
all other seeds and PRNGs depend on it in a deterministic way.

Global Seeds

Upon starting the experiment, sacred automatically sets the global seed of
random and (if installed) numpy.random to the auto-generated root-seed
of the experiment. This means that even if you don’t take any further steps,
at least the randomness stemming from those two libraries is properly seeded.

If you rely on any other library that you want to seed globally you should do
so manually first thing inside your main function. For this you can either take
the argument seed (the root-seed), or _seed (a seed generated for this
call of the main function). In this case it doesn’t really matter.

Special Arguments

To generate random numbers that are controlled by the root-seed Sacred provides
two special arguments: _rnd and _seed.
You can just accept them as a parameters in any captured function:

@ex.capture
def do_random_stuff(_rnd, _seed):
 print(_seed)
 print(_rnd.randint(1, 100))

_seed is an integer that is different every time the function is called.
Likewise _rnd is a PRNG that you can directly use to generate random numbers.

Note

If numpy is installed _rnd will be a numpy.random.RandomState [http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html] object.
Otherwise it will be random.Random [https://docs.python.org/2/library/random.html] object.

All _seed and _rnd instances depend deterministically on the root-seed
so they can be controlled centrally.

Resilience to Change

The way Sacred generates these seeds and PRNGs actually offers some amount of
resilience to changes in your experiment or your program flow. So suppose for
example you have an experiment that has two methods that use randomness:
A and B. You want to run and compare two variants of that experiment:

	Only call B.

	First call A and then B.

If you use just a single global PRNG that would mean that for a fixed seed the
call to B gives different results for the two variants, because the call to
A changed the state of the global PRNG.

Sacred generates these seeds and PRNGS in a hierarchical way. That makes the
calls to A and B independent from one another. So B would give the
same results in both cases.

Logging

Sacred used the python logging [https://docs.python.org/2/library/logging.html]
module to log some basic information about the execution. It also makes it easy
for you to integrate that logging with your code.

Adjusting Log-Levels

If you run the hello_world example you will see the following output:

>> python hello_world.py
INFO - hello_world - Running command 'main'
INFO - hello_world - Started
Hello world!
INFO - hello_world - Completed after 0:00:00

The lines starting with INFO are logging outputs. They can be suppressed by
adjusting the loglevel. This can be done via the command-line like with the
-l option:

>> python hello_world -l ERROR
Hello world!

The specified level can be either a string or an integer:

	Level

	Numeric value

	CRITICAL

	50

	ERROR

	40

	WARNING

	30

	INFO

	20

	DEBUG

	10

	NOTSET

	0

Integrate Logging Into Your Experiment

If you want to make use of the logging mechanism for your own experiments the
easiest way is to use the special _log argument in your captured functions:

@ex.capture
def some_function(_log):
 _log.warning('My warning message!')

This will by default print a line like this:

WARNING - some_function - My warning message!

The _log is a standard
Logger object [https://docs.python.org/2/library/logging.html#logger-objects]
for your function, as a child logger of the experiments main logger.
So it allows calls to debug, info, warning, error, critical
and some more. Check out the documentation to see what you can do with them.

Customize the Logger

It is easy to customize the logging behaviour of your experiment by just
providing a custom
Logger object [https://docs.python.org/2/library/logging.html#logger-objects]
to your experiment:

import logging
logger = logging.getLogger('my_custom_logger')
configure your logger here
ex.logger = logger

The custom logger will be used to generate all the loggers for all
captured functions. This way you can use all the features of the
logging [https://docs.python.org/2/library/logging.html] package. See the
examples/log_example.py file for an example of this.

Ingredients

Some tasks have to be performed in many different experiments. One way to avoid
code-duplication is of course to extract them to functions and import them. But
if those tasks have to be configured, the configuration values would still have
to be copied to every single experiment.

Ingredients are a way of defining a configuration with associated functions and
possibly commands that can be reused by many different experiments.
Furthermore they can influence the configuration and execution of experiments
by using certain hooks.

Simple Example

So suppose in many experiments we always load a dataset from a given file and
then we might want to normalize it or not. As an Ingredient this could look like
that:

import numpy as np
from sacred import Ingredient

data_ingredient = Ingredient('dataset')

@data_ingredient.config
def cfg():
 filename = 'my_dataset.npy'
 normalize = True

@data_ingredient.capture
def load_data(filename, normalize):
 data = np.load(filename)
 if normalize:
 data -= np.mean(data)
 return data

Now all we have to do to use that in an Experiment is to import that ingredient
and add it:

from sacred import Experiment

import the Ingredient and the function we want to use:
from dataset_ingredient import data_ingredient, load_data

add the Ingredient while creating the experiment
ex = Experiment('my_experiment', ingredients=[data_ingredient])

@ex.automain
def run():
 data = load_data() # just use the function

When you print the config for this experiment you will see an entry for the
dataset ingredient:

./my_experiment.py print_config
INFO - my_experiment - Running command 'print_config'
INFO - my_experiment - Started
Configuration (modified, added, typechanged):
 seed = 586408722
 dataset:
 filename = 'my_dataset.npy'
 normalize = True
INFO - my_experiment - Completed after 0:00:00

And we could of course set these parameters from the command-line using
with 'dataset.filename="other.npy" 'dataset.normalize=False'.

Overwriting the Default Configuration

You can change the default configuration of an Ingredient in each Experiment by
adding another ConfigScope:

from sacred import Experiment

from dataset_ingredient import data_ingredient, load_data

@data_ingredient.config
def update_cfg():
 filename = 'special_dataset.npy' # < updated

ex = Experiment('my_experiment', ingredients=[data_ingredient])

...

Adding Commands

Adding commands to Ingredients works as you would expect:

@data_ingredient.command
def stats(filename):
 print('Statistics for dataset "%s":' % filename)
 data = np.load(filename)
 print('mean = %0.2f' % np.mean(data))

You can call that command using dotted notation:

>> ./my_experiment dataset.stats
INFO - my_experiment - Running command 'dataset.stats'
INFO - my_experiment - Started
Statistics for dataset "my_dataset.npy":
mean = 13.37
INFO - my_experiment - Completed after 0:00:00

Nesting Ingredients

It is possible to use Ingredients in other Ingredients

data_ingredient = Ingredient('dataset', ingredients=[my_subingredient])

In fact Experiments are also Ingredients, so you can even reuse Experiments as
Ingredients.

In the configuration of the Experiment there will be all the used Ingredients
and sub-Ingredients. So lets say you use an Ingredient called paths in the
dataset Ingredient. Then in the configuration of your experiment you will
see two entries: dataset and paths (paths is not nested in the
dataset entry)

Explicit Nesting

If you want nested structure you can do it explicitly by changing the name of
the path Ingredient to dataset.path. Then the path entry will be nested
in the dataset entry in the configuration.

Accessing the Ingredient Config

You can access the configuration of any used ingredient from ConfigScopes and
from captured functions via the name of the ingredient:

@ex.config
def cfg(dataset): # name of the ingredient here
 abs_filename = os.path.abspath(dataset['filename']) # access 'filename'

@ex.capture
def some_function(dataset): # name of the ingredient here
 if dataset['normalize']: # access 'normalize'
 print("Dataset was normalized")

Ingredients with explicit nesting can be accessed by following their path. So
for the example of the Ingredient dataset.path we could access it like this:

@ex.capture
def some_function(dataset):
 path = dataset['path'] # access the configuration of dataset.path

The only exception is, that if you want to access the configuration from another
Ingredient you can leave away their common prefix. So accessing dataset.path
from dataset you could just directly access path in captured functions
and ConfigScopes.

Hooks

Hooks are advanced mechanisms that allow the ingredient to affect the normal
execution of the experiment.

Pre- and Post-Run Hooks

Configuration Hooks

Configuration hooks are executed during initialization and can be used to update the experiment’s configuration before executing any command.

ex = Experiment()

@ex.config_hook
def hook(config, command_name, logger):
 config.update({'hook': True})
 return config

@ex.automain
def main(hook, other_config):
 do_stuff()

The config_hook function always has to take the 3 arguments config of the current configuration, command_name, which is the command that will be executed, and logger.
Config hooks are run after the configuration of the linked Ingredient (in the example above Experiment ex), but before any further ingredient-configurations are run. The dictionary returned by a config hook is used to update the config updates. Note that config hooks are not restricted to the local namespace of the ingredient.

Optional Features

Sacred offers a set of specialized features which are kept optional in order to
keep the list of requirements small.
This page provides a short description of these optional features.

Git Integration

If the experiment sources as maintained in a git repository, then Sacred can
extract information about the current state of the repository. More
specifically it will collect the following information, which is stored by the
observers as part of the experiment info:

	url: The url of the origin repository

	commit: The SHA256 hash of the current commit

	dirty: A boolean indicating if the repository is dirty, i.e. has
uncommitted changes.

This can be especially useful together with the Enforce Clean
(-e / --enforce_clean) commandline option. If this flag is used, the
experiment immediately fails with an error if started on a dirty repository.

Note

Depends on the GitPython [https://github.com/gitpython-developers/GitPython] package.
Install with pip install GitPython.

Optional Observers

MongoDB

An observer which stores run information in a MongoDB. For more information see
Mongo Observer.

Note

Requires the pymongo [https://api.mongodb.com/python/current] package.
Install with pip install pymongo.

TinyDB

An observer which stores run information in a tinyDB. It can be seen as a local
alternative for the MongoDB Observer. For more information see
TinyDB Observer.

Note

Requires the
tinydb [http://tinydb.readthedocs.io],
tinydb-serialization [https://github.com/msiemens/tinydb-serialization],
and hashfs [https://github.com/dgilland/hashfs] packages.
Install with pip install tinydb tinydb-serialization hashfs.

SQL

An observer that stores run information in a SQL database. For more information
see SQL Observer

Note

Requires the sqlalchemy [http://www.sqlalchemy.org] package.
Install with pip install sqlalchemy.

Template Rendering

The File Storage Observer supports automatic report generation using the
mako [http://www.makotemplates.org] package.

Note

Requires the mako [http://www.makotemplates.org] package.
Install with pip install mako.

Numpy and Pandas Integration

If numpy or pandas are installed Sacred will automatically take care of
a set of type conversions and other details to make working with these packages
as smooth as possible. Normally you won’t need to know about any details. But
for some cases it might be useful to know what is happening. So here is a list
of what Sacred will do:

	automatically set the global numpy random seed (numpy.random.seed()).

	if numpy is installed the special value _rnd will be a
numpy.random.RandomState instead of random.Random.

	because of these two points having numpy installed actually changes the way
randomness is handled. Therefore numpy is then automatically added to
the dependencies of the experiment, irrespective of its usage in the code.

	ignore typechanges in the configuration from numpy types to normal
types, such as numpy.float32 to float.

	convert basic numpy types in the configuration to normal types if possible.
This includes converting numpy.array to list.

	convert numpy.array, pandas.Series, pandas.DataFrame and
pandas.Panel to json before storing them in the MongoDB. This includes
instances in the Info Dict.

YAML Format for Configurations

If the PyYAML [http://pyyaml.org] package is installed Sacred automatically
supports using config files in the yaml format (see Config Files).

Note

Requires the PyYAML [http://pyyaml.org] package.
Install with pip install PyYAML.

Settings

Some of Sacred’s general behaviour is configurable via sacred.SETTINGS.
Its entries can be set simply by importing and modifying it using dict or attribute notation:

from sacred import SETTINGS
SETTINGS['HOST_INFO']['INCLUDE_GPU_INFO'] = False
SETTINGS.HOST_INFO.INCLUDE_GPU_INFO = False # equivalent

Settings

Here is a brief list of all currently available options.

	CAPTURE_MODE (default: ‘fd’ (linux/osx) or ‘sys’ (windows))
configure how stdout/stderr are captured. [‘no’, ‘sys’, ‘fd’]

	CONFIG

	ENFORCE_KEYS_MONGO_COMPATIBLE (default: True)
make sure all config keys are compatible with MongoDB

	ENFORCE_KEYS_JSONPICKLE_COMPATIBLE (default: True)
make sure all config keys are serializable with jsonpickle

	ENFORCE_KEYS_JSONPICKLE_COMPATIBLE (default: True)
THIS IS IMPORTANT. Only deactivate if you know what you’re doing.

	ENFORCE_VALID_PYTHON_IDENTIFIER_KEYS (default: False)
make sure all config keys are valid python identifiers

	ENFORCE_STRING_KEYS (default: False)
make sure all config keys are strings

	ENFORCE_KEYS_NO_EQUALS (default: True)
make sure no config key contains an equals sign

	IGNORED_COMMENTS (default: [‘^pylint:’, ‘^noinspection’])
list of regex patterns to filter out certain IDE or linter directives
from in-line comments in the documentation.

	HOST_INFO

	INCLUDE_GPU_INFO (default: True)
Try to collect information about GPUs using the nvidia-smi tool.
Deactivating this can cut the start-up time of a Sacred run by about 1 sec.

	CAPTURED_ENV (default: [])
List of ENVIRONMENT variable names to store in the host-info.

	COMMAND_LINE

	STRICT_PARSING (default: False)
disallow string fallback, if parsing a value from command-line failed.
This enforces the usage of quotes in the command-line. Note that this can
be very tedious since bash removes one set of quotes, such that double
quotes will be needed.

Examples

You can find these examples in the examples directory (surprise!) of the
Sacred sources or in the
Github Repository [https://github.com/IDSIA/sacred/tree/master/examples].
Look at them for the sourcecode, it is an important part of the examples.
It can also be very helpful to run them yourself and play with the command-line
interface.

The following is just their documentation from their docstring which you can
also get by running them with the -h, --help or help flags.

Hello World

examples/01_hello_world.py [https://github.com/IDSIA/sacred/tree/master/examples/01_hello_world.py]

This is a minimal example of a Sacred experiment.

Not much to see here. But it comes with a command-line interface and can be
called like this:

$./01_hello_world.py
WARNING - 01_hello_world - No observers have been added to this run
INFO - 01_hello_world - Running command 'main'
INFO - 01_hello_world - Started
Hello world!
INFO - 01_hello_world - Completed after 0:00:00

As you can see it prints ‘Hello world!’ as expected, but there is also some
additional logging. The log-level can be controlled using the -l argument:

$./01_hello_world.py -l WARNING
WARNING - 01_hello_world - No observers have been added to this run
Hello world!

If you want to learn more about the command-line interface try
help or -h.

Hello Config Dict

examples/02_hello_config_dict.py [https://github.com/IDSIA/sacred/tree/master/examples/02_hello_config_dict.py]

A configurable Hello World “experiment”.
In this example we configure the message using a dictionary with
ex.add_config

You can run it like this:

$./02_hello_config_dict.py
WARNING - 02_hello_config_dict - No observers have been added to this run
INFO - 02_hello_config_dict - Running command 'main'
INFO - 02_hello_config_dict - Started
Hello world!
INFO - 02_hello_config_dict - Completed after 0:00:00

The message can also easily be changed using the with command-line
argument:

$./02_hello_config_dict.py with message='Ciao world!'
WARNING - 02_hello_config_dict - No observers have been added to this run
INFO - 02_hello_config_dict - Running command 'main'
INFO - 02_hello_config_dict - Started
Ciao world!
INFO - 02_hello_config_dict - Completed after 0:00:00

Hello Config Scope

examples/03_hello_config_scope.py [https://github.com/IDSIA/sacred/tree/master/examples/03_hello_config_scope.py]

A configurable Hello World “experiment”.
In this example we configure the message using Sacreds special ConfigScope.

As with hello_config_dict you can run it like this:

$./03_hello_config_scope.py
WARNING - hello_cs - No observers have been added to this run
INFO - hello_cs - Running command 'main'
INFO - hello_cs - Started
Hello world!
INFO - hello_cs - Completed after 0:00:00

The message can also easily be changed using the with command-line
argument:

$./03_hello_config_scope.py with message='Ciao world!'
WARNING - hello_cs - No observers have been added to this run
INFO - hello_cs - Running command 'main'
INFO - hello_cs - Started
Ciao world!
INFO - hello_cs - Completed after 0:00:00

But because we are using a ConfigScope that constructs the message from a
recipient we can also just modify that:

$./03_hello_config_scope.py with recipient='Bob'
WARNING - hello_cs - No observers have been added to this run
INFO - hello_cs - Running command 'main'
INFO - hello_cs - Started
Hello Bob!
INFO - hello_cs - Completed after 0:00:00

Captured Functions

examples/04_captured_functions.py [https://github.com/IDSIA/sacred/tree/master/examples/04_captured_functions.py]

In this example the use of captured functions is demonstrated. Like the
main function, they have access to the configuration parameters by just
accepting them as arguments.

When calling a captured function we do not need to specify the parameters that
we want to be taken from the configuration. They will automatically be filled
by Sacred. But we can always override that by passing them in explicitly.

When run, this example will output the following:

$./04_captured_functions.py -l WARNING
WARNING - captured_functions - No observers have been added to this run
This is printed by function foo.
This is printed by function bar.
Overriding the default message for foo.

My Commands

examples/05_my_commands.py [https://github.com/IDSIA/sacred/tree/master/examples/05_my_commands.py]

This experiment showcases the concept of commands in Sacred.
By just using the @ex.command decorator we can add additional commands to
the command-line interface of the experiment:

$./05_my_commands.py greet
WARNING - my_commands - No observers have been added to this run
INFO - my_commands - Running command 'greet'
INFO - my_commands - Started
Hello John! Nice to greet you!
INFO - my_commands - Completed after 0:00:00

$./05_my_commands.py shout
WARNING - my_commands - No observers have been added to this run
INFO - my_commands - Running command 'shout'
INFO - my_commands - Started
WHAZZZUUUUUUUUUUP!!!????
INFO - my_commands - Completed after 0:00:00

Of course we can also use with and other flags with those commands:

$./05_my_commands.py greet with name='Jane' -l WARNING
WARNING - my_commands - No observers have been added to this run
Hello Jane! Nice to greet you!

In fact, the main function is also just a command:

$./05_my_commands.py main
WARNING - my_commands - No observers have been added to this run
INFO - my_commands - Running command 'main'
INFO - my_commands - Started
This is just the main command. Try greet or shout.
INFO - my_commands - Completed after 0:00:00

Commands also appear in the help text, and you can get additional information
about all commands using ./05_my_commands.py help [command].

Randomness

examples/06_randomness.py [https://github.com/IDSIA/sacred/tree/master/examples/06_randomness.py]

This example showcases the randomness features of Sacred.

Sacred generates a random global seed for every experiment, that you can
find in the configuration. It will be different every time you run the
experiment.

Based on this global seed it will generate the special parameters _seed and
_rnd for each captured function. Every time you call such a function the
_seed will be different and _rnd will be differently seeded random
state. But their values depend deterministically on the global seed and on how
often the function has been called.

Here are a couple of things you should try:

	run the experiment a couple of times and notice how the results are
different every time

	run the experiment a couple of times with a fixed seed.
Notice that the results are the same:

:$./06_randomness.py with seed=12345 -l WARNING
[57]
[28]
695891797
[82]

	run the experiment with a fixed seed and vary the numbers parameter.
Notice that all the results stay the same except for the added numbers.
This demonstrates that all the calls to one function are in fact
independent from each other:

:$./06_randomness.py with seed=12345 numbers=3 -l WARNING
[57, 79, 86]
[28, 90, 92]
695891797
[82, 9, 3]

	run the experiment with a fixed seed and set the reverse parameter to true.
Notice how the results are the same, but in slightly different order.
This shows that calls to different functions do not interfere with one
another:

:$./06_randomness.py with seed=12345 reverse=True numbers=3 -l WARNING
695891797
[57, 79, 86]
[28, 90, 92]
[82, 9, 3]

Integration with Tensorflow

Sacred provides ways to interact with the Tensorflow [http://www.tensorflow.org/] library.
The goal is to provide an API that would allow tracking certain
information about how Tensorflow is being used with Sacred.
The collected data are stored in experiment.info["tensorflow"]
where they can be accessed by various observers.

Storing Tensorflow Logs (FileWriter)

To store the location of summaries produced by Tensorflow
(created by tensorflow.summary.FileWriter) into the experiment record
specified by the ex argument, use the sacred.stflow.LogFileWriter(ex)
decorator or context manager.
Whenever a new FileWriter instantiation is detected in a scope of the
decorator or the context manager, the path of the log is
copied to the experiment record exactly as passed to the FileWriter.

The location(s) can be then found under info["tensorflow"]["logdirs"]
of the experiment.

Important: The experiment must be in the RUNNING state before calling
the decorated method or entering the context.

Example Usage As a Decorator

LogFileWriter(ex) as a decorator can be used either on a function or
on a class method.

from sacred.stflow import LogFileWriter
from sacred import Experiment
import tensorflow as tf

ex = Experiment("my experiment")

@ex.automain
@LogFileWriter(ex)
def run_experiment(_run):
 with tf.Session() as s:
 swr = tf.summary.FileWriter("/tmp/1", s.graph)
 # _run.info["tensorflow"]["logdirs"] == ["/tmp/1"]
 swr2 = tf.summary.FileWriter("./test", s.graph)
 #_run.info["tensorflow"]["logdirs"] == ["/tmp/1", "./test"]

Example Usage As a Context Manager

There is a context manager available to catch the paths
in a smaller portion of code.

ex = Experiment("my experiment")
def run_experiment(_run):
 with tf.Session() as s:
 with LogFileWriter(ex):
 swr = tf.summary.FileWriter("/tmp/1", s.graph)
 # _run.info["tensorflow"]["logdirs"] == ["/tmp/1"]
 swr3 = tf.summary.FileWriter("./test", s.graph)
 # _run.info["tensorflow"]["logdirs"] == ["/tmp/1", "./test"]
 # This is called outside the scope and won't be captured
 swr3 = tf.summary.FileWriter("./nothing", s.graph)
 # Nothing has changed:
 # _run.info["tensorflow"]["logdirs"] == ["/tmp/1", "./test"]

API Documentation

This is a construction site…

Experiment

Note

Experiment inherits from Ingredient, so all methods from there also
available in the Experiment.

	
class sacred.Experiment(name=None, ingredients=(), interactive=False, base_dir=None)

	The central class for each experiment in Sacred.

It manages the configuration, the main function, captured methods,
observers, commands, and further ingredients.

An Experiment instance should be created as one of the first
things in any experiment-file.

	
__init__(name=None, ingredients=(), interactive=False, base_dir=None)

	Create a new experiment with the given name and optional ingredients.

	Parameters

	
	name (str, optional) – Optional name of this experiment, defaults to the filename.
(Required in interactive mode)

	ingredients (list[sacred.Ingredient], optional) – A list of ingredients to be used with this experiment.

	interactive (bool, optional) – If set to True will allow the experiment to be run in interactive
mode (e.g. IPython or Jupyter notebooks).
However, this mode is discouraged since it won’t allow storing the
source-code or reliable reproduction of the runs.

	base_dir (str, optional) – Optional full path to the base directory of this experiment. This
will set the scope for automatic source file discovery.

	
add_artifact(filename, name=None, metadata=None)

	Add a file as an artifact.

In Sacred terminology an artifact is a file produced by the experiment
run. In case of a MongoObserver that means storing the file in the
database.

This function can only be called during a run, and just calls the
sacred.run.Run.add_artifact() method.

	Parameters

	
	filename (str) – name of the file to be stored as artifact

	name (str, optional) – optionally set the name of the artifact.
Defaults to the relative file-path.

	metadata (dict, optional) – optionally attach metadata to the artifact.
This only has an effect when using the MongoObserver.

	
add_config(cfg_or_file=None, **kw_conf)

	Add a configuration entry to this ingredient/experiment.

Can be called with a filename, a dictionary xor with keyword arguments.
Supported formats for the config-file so far are: json, pickle
and yaml.

	The resulting dictionary will be converted into a

	ConfigDict.

	Parameters

	
	cfg_or_file (dict or str) – Configuration dictionary of filename of config file
to add to this ingredient/experiment.

	kw_conf – Configuration entries to be added to this
ingredient/experiment.

	
add_named_config(name, cfg_or_file=None, **kw_conf)

	Add a named configuration entry to this ingredient/experiment.

Can be called with a filename, a dictionary xor with keyword arguments.
Supported formats for the config-file so far are: json, pickle
and yaml.

	The resulting dictionary will be converted into a

	ConfigDict.

See Named Configurations

	Parameters

	
	name (str) – name of the configuration

	cfg_or_file (dict or str) – Configuration dictionary of filename of config file
to add to this ingredient/experiment.

	kw_conf – Configuration entries to be added to this
ingredient/experiment.

	
add_package_dependency(package_name, version)

	Add a package to the list of dependencies.

	Parameters

	
	package_name (str) – The name of the package dependency

	version (str) – The (minimum) version of the package

	
add_resource(filename)

	Add a file as a resource.

In Sacred terminology a resource is a file that the experiment needed
to access during a run. In case of a MongoObserver that means making
sure the file is stored in the database (but avoiding duplicates) along
its path and md5 sum.

This function can only be called during a run, and just calls the
sacred.run.Run.add_resource() method.

	Parameters

	filename (str) – name of the file to be stored as a resource

	
add_source_file(filename)

	Add a file as source dependency to this experiment/ingredient.

	Parameters

	filename (str) – filename of the source to be added as dependency

	
automain(function)

	Decorator that defines and runs the main function of the experiment.

The decorated function is marked as the default command for this
experiment, and the command-line interface is automatically run when
the file is executed.

The method decorated by this should be last in the file because is
equivalent to:

@ex.main
def my_main():
 pass

if __name__ == '__main__':
 ex.run_commandline()

	
capture(function=None, prefix=None)

	Decorator to turn a function into a captured function.

The missing arguments of captured functions are automatically filled
from the configuration if possible.
See Captured Functions for more information.

If a prefix is specified, the search for suitable
entries is performed in the corresponding subtree of the configuration.

	
captured_out_filter = None

	Filter function to be applied to captured output of a run

	
command(function=None, prefix=None, unobserved=False)

	Decorator to define a new command for this Ingredient or Experiment.

The name of the command will be the name of the function. It can be
called from the command-line or by using the run_command function.

Commands are automatically also captured functions.

The command can be given a prefix, to restrict its configuration space
to a subtree. (see capture for more information)

A command can be made unobserved (i.e. ignoring all observers) by
passing the unobserved=True keyword argument.

	
config(function)

	Decorator to add a function to the configuration of the Experiment.

The decorated function is turned into a
ConfigScope and added to the
Ingredient/Experiment.

When the experiment is run, this function will also be executed and
all json-serializable local variables inside it will end up as entries
in the configuration of the experiment.

	
config_hook(func)

	Decorator to add a config hook to this ingredient.

Config hooks need to be a function that takes 3 parameters and returns
a dictionary:
(config, command_name, logger) –> dict

Config hooks are run after the configuration of this Ingredient, but
before any further ingredient-configurations are run.
The dictionary returned by a config hook is used to update the
config updates.
Note that they are not restricted to the local namespace of the
ingredient.

	
gather_commands(ingredient)

	Collect all commands from this ingredient and its sub-ingredients.

	Yields

	
	cmd_name (str) – The full (dotted) name of the command.

	cmd (function) – The corresponding captured function.

	
gather_named_configs(ingredient)

	Collect all named configs from this ingredient and its
sub-ingredients.

	Yields

	
	config_name (str) – The full (dotted) name of the named config.

	config (ConfigScope or ConfigDict or basestring) – The corresponding named config.

	
get_default_options()

	Get a dictionary of default options as used with run.

	Returns

	A dictionary containing option keys of the form ‘–beat_interval’.
Their values are boolean if the option is a flag, otherwise None or
its default value.

	Return type

	dict

	
get_experiment_info()

	Get a dictionary with information about this experiment.

	Contains:

	
	name: the name

	sources: a list of sources (filename, md5)

	dependencies: a list of package dependencies (name, version)

	Returns

	experiment information

	Return type

	dict

	
get_usage(program_name=None)

	Get the commandline usage string for this experiment.

	
info

	Access the info-dict for storing custom information.

Only works during a run and is essentially a shortcut to:

@ex.capture
def my_captured_function(_run):
 # [...]
 _run.info # == ex.info

	
log_scalar(name, value, step=None)

	Add a new measurement.

The measurement will be processed by the MongoDB* observer
during a heartbeat event.
Other observers are not yet supported.

	Parameters

	
	name – The name of the metric, e.g. training.loss

	value – The measured value

	step – The step number (integer), e.g. the iteration number
If not specified, an internal counter for each metric
is used, incremented by one.

	
main(function)

	Decorator to define the main function of the experiment.

The main function of an experiment is the default command that is being
run when no command is specified, or when calling the run() method.

Usually it is more convenient to use automain instead.

	
named_config(func)

	Decorator to turn a function into a named configuration.

See Named Configurations.

	
open_resource(filename, mode=u'r')

	Open a file and also save it as a resource.

Opens a file, reports it to the observers as a resource, and returns
the opened file.

In Sacred terminology a resource is a file that the experiment needed
to access during a run. In case of a MongoObserver that means making
sure the file is stored in the database (but avoiding duplicates) along
its path and md5 sum.

This function can only be called during a run, and just calls the
sacred.run.Run.open_resource() method.

	Parameters

	
	filename (str) – name of the file that should be opened

	mode (str) – mode that file will be open

	Returns

	the opened file-object

	Return type

	file

	
option_hook(function)

	Decorator for adding an option hook function.

An option hook is a function that is called right before a run
is created. It receives (and potentially modifies) the options
dictionary. That is, the dictionary of commandline options used for
this run.

Note

The decorated function MUST have an argument called options.

The options also contain 'COMMAND' and 'UPDATE' entries,
but changing them has no effect. Only modification on
flags (entries starting with '--') are considered.

	
post_run_hook(func, prefix=None)

	Decorator to add a post-run hook to this ingredient.

Post-run hooks are captured functions that are run, just after the
main function is executed.

	
pre_run_hook(func, prefix=None)

	Decorator to add a pre-run hook to this ingredient.

Pre-run hooks are captured functions that are run, just before the
main function is executed.

	
run(command_name=None, config_updates=None, named_configs=(), meta_info=None, options=None)

	Run the main function of the experiment or a given command.

	Parameters

	
	command_name (str, optional) – Name of the command to be run. Defaults to main function.

	config_updates (dict, optional) – Changes to the configuration as a nested dictionary

	named_configs (list[str], optional) – list of names of named_configs to use

	meta_info (dict, optional) – Additional meta information for this run.

	options (dict, optional) – Dictionary of options to use

	Returns

	the Run object corresponding to the finished run

	Return type

	sacred.run.Run

	
run_command(command_name, config_updates=None, named_configs=(), args=(), meta_info=None)

	Run the command with the given name.

Note

Deprecated in Sacred 0.7
run_command() will be removed in Sacred 1.0.
It is replaced by run() which can now also handle command_names.

	
run_commandline(argv=None)

	Run the command-line interface of this experiment.

If argv is omitted it defaults to sys.argv.

	Parameters

	argv (list[str] or str, optional) – Command-line as string or list of strings like sys.argv.

	Returns

	The Run object corresponding to the finished run.

	Return type

	sacred.run.Run

	
traverse_ingredients()

	Recursively traverse this ingredient and its sub-ingredients.

	Yields

	
	ingredient (sacred.Ingredient) – The ingredient as traversed in preorder.

	depth (int) – The depth of the ingredient starting from 0.

	Raises

	CircularDependencyError: – If a circular structure among ingredients was detected.

Ingredient

	
class sacred.Ingredient(path, ingredients=(), interactive=False, _caller_globals=None, base_dir=None)

	Ingredients are reusable parts of experiments.

Each Ingredient can have its own configuration (visible as an entry in the
parents configuration), named configurations, captured functions and
commands.

Ingredients can themselves use ingredients.

	
__init__(path, ingredients=(), interactive=False, _caller_globals=None, base_dir=None)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
add_config(cfg_or_file=None, **kw_conf)

	Add a configuration entry to this ingredient/experiment.

Can be called with a filename, a dictionary xor with keyword arguments.
Supported formats for the config-file so far are: json, pickle
and yaml.

	The resulting dictionary will be converted into a

	ConfigDict.

	Parameters

	
	cfg_or_file (dict or str) – Configuration dictionary of filename of config file
to add to this ingredient/experiment.

	kw_conf – Configuration entries to be added to this
ingredient/experiment.

	
add_named_config(name, cfg_or_file=None, **kw_conf)

	Add a named configuration entry to this ingredient/experiment.

Can be called with a filename, a dictionary xor with keyword arguments.
Supported formats for the config-file so far are: json, pickle
and yaml.

	The resulting dictionary will be converted into a

	ConfigDict.

See Named Configurations

	Parameters

	
	name (str) – name of the configuration

	cfg_or_file (dict or str) – Configuration dictionary of filename of config file
to add to this ingredient/experiment.

	kw_conf – Configuration entries to be added to this
ingredient/experiment.

	
add_package_dependency(package_name, version)

	Add a package to the list of dependencies.

	Parameters

	
	package_name (str) – The name of the package dependency

	version (str) – The (minimum) version of the package

	
add_source_file(filename)

	Add a file as source dependency to this experiment/ingredient.

	Parameters

	filename (str) – filename of the source to be added as dependency

	
capture(function=None, prefix=None)

	Decorator to turn a function into a captured function.

The missing arguments of captured functions are automatically filled
from the configuration if possible.
See Captured Functions for more information.

If a prefix is specified, the search for suitable
entries is performed in the corresponding subtree of the configuration.

	
command(function=None, prefix=None, unobserved=False)

	Decorator to define a new command for this Ingredient or Experiment.

The name of the command will be the name of the function. It can be
called from the command-line or by using the run_command function.

Commands are automatically also captured functions.

The command can be given a prefix, to restrict its configuration space
to a subtree. (see capture for more information)

A command can be made unobserved (i.e. ignoring all observers) by
passing the unobserved=True keyword argument.

	
config(function)

	Decorator to add a function to the configuration of the Experiment.

The decorated function is turned into a
ConfigScope and added to the
Ingredient/Experiment.

When the experiment is run, this function will also be executed and
all json-serializable local variables inside it will end up as entries
in the configuration of the experiment.

	
config_hook(func)

	Decorator to add a config hook to this ingredient.

Config hooks need to be a function that takes 3 parameters and returns
a dictionary:
(config, command_name, logger) –> dict

Config hooks are run after the configuration of this Ingredient, but
before any further ingredient-configurations are run.
The dictionary returned by a config hook is used to update the
config updates.
Note that they are not restricted to the local namespace of the
ingredient.

	
gather_commands(ingredient)

	Collect all commands from this ingredient and its sub-ingredients.

	Yields

	
	cmd_name (str) – The full (dotted) name of the command.

	cmd (function) – The corresponding captured function.

	
gather_named_configs(ingredient)

	Collect all named configs from this ingredient and its
sub-ingredients.

	Yields

	
	config_name (str) – The full (dotted) name of the named config.

	config (ConfigScope or ConfigDict or basestring) – The corresponding named config.

	
get_experiment_info()

	Get a dictionary with information about this experiment.

	Contains:

	
	name: the name

	sources: a list of sources (filename, md5)

	dependencies: a list of package dependencies (name, version)

	Returns

	experiment information

	Return type

	dict

	
named_config(func)

	Decorator to turn a function into a named configuration.

See Named Configurations.

	
post_run_hook(func, prefix=None)

	Decorator to add a post-run hook to this ingredient.

Post-run hooks are captured functions that are run, just after the
main function is executed.

	
pre_run_hook(func, prefix=None)

	Decorator to add a pre-run hook to this ingredient.

Pre-run hooks are captured functions that are run, just before the
main function is executed.

	
traverse_ingredients()

	Recursively traverse this ingredient and its sub-ingredients.

	Yields

	
	ingredient (sacred.Ingredient) – The ingredient as traversed in preorder.

	depth (int) – The depth of the ingredient starting from 0.

	Raises

	CircularDependencyError: – If a circular structure among ingredients was detected.

The Run Object

The Run object can be accessed from python after the run is finished:
run = ex.run() or during a run using the _run
special value in a
captured function.

	
class sacred.run.Run(config, config_modifications, main_function, observers, root_logger, run_logger, experiment_info, host_info, pre_run_hooks, post_run_hooks, captured_out_filter=None)

	Represent and manage a single run of an experiment.

	
__call__(*args)

	Start this run.

	Parameters

	*args – parameters passed to the main function

	Returns

	

	Return type

	the return value of the main function

	
add_artifact(filename, name=None, metadata=None)

	Add a file as an artifact.

In Sacred terminology an artifact is a file produced by the experiment
run. In case of a MongoObserver that means storing the file in the
database.

See also sacred.Experiment.add_artifact().

	Parameters

	
	filename (str) – name of the file to be stored as artifact

	name (str, optional) – optionally set the name of the artifact.
Defaults to the filename.

	metadata (dict) – optionally attach metadata to the artifact.
This only has an effect when using the MongoObserver.

	
add_resource(filename)

	Add a file as a resource.

In Sacred terminology a resource is a file that the experiment needed
to access during a run. In case of a MongoObserver that means making
sure the file is stored in the database (but avoiding duplicates) along
its path and md5 sum.

See also sacred.Experiment.add_resource().

	Parameters

	filename (str) – name of the file to be stored as a resource

	
beat_interval = None

	The time between two heartbeat events measured in seconds

	
capture_mode = None

	Determines the way the stdout/stderr are captured

	
captured_out = None

	Captured stdout and stderr

	
captured_out_filter = None

	Filter function to be applied to captured output

	
config = None

	The final configuration used for this run

	
config_modifications = None

	A ConfigSummary object with information about config changes

	
debug = None

	Determines whether this run is executed in debug mode

	
experiment_info = None

	A dictionary with information about the experiment

	
fail_trace = None

	A stacktrace, in case the run failed

	
force = None

	Disable warnings about suspicious changes

	
host_info = None

	A dictionary with information about the host

	
info = None

	Custom info dict that will be sent to the observers

	
log_scalar(metric_name, value, step=None)

	Add a new measurement.

The measurement will be processed by the MongoDB observer
during a heartbeat event.
Other observers are not yet supported.

	Parameters

	
	metric_name – The name of the metric, e.g. training.loss

	value – The measured value

	step – The step number (integer), e.g. the iteration number
If not specified, an internal counter for each metric
is used, incremented by one.

	
main_function = None

	The main function that is executed with this run

	
meta_info = None

	A custom comment for this run

	
observers = None

	A list of all observers that observe this run

	
open_resource(filename, mode=u'r')

	Open a file and also save it as a resource.

Opens a file, reports it to the observers as a resource, and returns
the opened file.

In Sacred terminology a resource is a file that the experiment needed
to access during a run. In case of a MongoObserver that means making
sure the file is stored in the database (but avoiding duplicates) along
its path and md5 sum.

See also sacred.Experiment.open_resource().

	Parameters

	
	filename (str) – name of the file that should be opened

	mode (str) – mode that file will be open

	Returns

	the opened file-object

	Return type

	file

	
pdb = None

	If true the pdb debugger is automatically started after a failure

	
post_run_hooks = None

	List of post-run hooks (captured functions called after this run)

	
pre_run_hooks = None

	List of pre-run hooks (captured functions called before this run)

	
queue_only = None

	If true then this run will only fire the queued_event and quit

	
result = None

	The return value of the main function

	
root_logger = None

	The root logger that was used to create all the others

	
run_logger = None

	The logger that is used for this run

	
start_time = None

	The datetime when this run was started

	
status = None

	The current status of the run, from QUEUED to COMPLETED

	
stop_time = None

	The datetime when this run stopped

	
unobserved = None

	Indicates whether this run should be unobserved

	
warn_if_unobserved()

	

ConfigScope

	
class sacred.config.config_scope.ConfigScope(func)

	

ConfigDict

	
class sacred.config.config_dict.ConfigDict(d)

	

Observers

	
class sacred.observers.RunObserver

	Defines the interface for all run observers.

	
artifact_event(name, filename, metadata=None)

	

	
completed_event(stop_time, result)

	

	
failed_event(fail_time, fail_trace)

	

	
heartbeat_event(info, captured_out, beat_time, result)

	

	
interrupted_event(interrupt_time, status)

	

	
priority = 0

	

	
queued_event(ex_info, command, host_info, queue_time, config, meta_info, _id)

	

	
resource_event(filename)

	

	
started_event(ex_info, command, host_info, start_time, config, meta_info, _id)

	

	
class sacred.observers.MongoObserver(runs_collection, fs, overwrite=None, metrics_collection=None, priority=30)

	
	
COLLECTION_NAME_BLACKLIST = set([u'seach_space', u'fs.files', u'_properties', u'fs.chunks', u'system.indexes'])

	

	
VERSION = u'MongoObserver-0.7.0'

	

	
artifact_event(name, filename, metadata=None)

	

	
completed_event(stop_time, result)

	

	
static create(url=None, db_name=u'sacred', collection=u'runs', overwrite=None, priority=30, client=None, **kwargs)

	

	
failed_event(fail_time, fail_trace)

	

	
final_save(attempts)

	

	
heartbeat_event(info, captured_out, beat_time, result)

	

	
insert()

	

	
interrupted_event(interrupt_time, status)

	

	
log_metrics(metrics_by_name, info)

	Store new measurements to the database.

Take measurements and store them into
the metrics collection in the database.
Additionally, reference the metrics
in the info[“metrics”] dictionary.

	
queued_event(ex_info, command, host_info, queue_time, config, meta_info, _id)

	

	
resource_event(filename)

	

	
save()

	

	
save_sources(ex_info)

	

	
started_event(ex_info, command, host_info, start_time, config, meta_info, _id)

	

Host Info

This module helps to collect information about the host of an experiment.

	
sacred.host_info.host_info_gatherers = {u'ENV': <function _environment at 0x7f7c6bcbb6e0>, u'cpu': <function _cpu at 0x7f7c6bcbb5f0>, u'gpus': <function _gpus at 0x7f7c6bcbb668>, u'hostname': <function _hostname at 0x7f7c6bcbb488>, u'os': <function _os at 0x7f7c6bcbb500>, u'python_version': <function _python_version at 0x7f7c6bcbb578>}

	Global dict of functions that are used to collect the host information.

	
sacred.host_info.get_host_info()

	Collect some information about the machine this experiment runs on.

	Returns

	A dictionary with information about the CPU, the OS and the
Python version of this machine.

	Return type

	dict

	
sacred.host_info.host_info_getter(func, name=None)

	The decorated function is added to the process of collecting the host_info.

This just adds the decorated function to the global
sacred.host_info.host_info_gatherers dictionary.
The functions from that dictionary are used when collecting the host info
using get_host_info().

	Parameters

	
	func (callable) – A function that can be called without arguments and returns some
json-serializable information.

	name (str, optional) – The name of the corresponding entry in host_info.
Defaults to the name of the function.

	Returns

	

	Return type

	The function itself.

Custom Exceptions

	
class sacred.utils.SacredInterrupt

	Base-Class for all custom interrupts.

For more information see Custom Interrupts.

	
class sacred.utils.TimeoutInterrupt

	Signal that the experiment timed out.

This exception can be used in client code to indicate that the run
exceeded its time limit and has been interrupted because of that.
The status of the interrupted run will then be set to TIMEOUT.

For more information see Custom Interrupts.

Internals of Sacred

This section is meant as a reference for Sacred developers.
It should give a high-level description of some of the more intricate
internals of Sacred.

Configuration Process

The configuration process is executed when an experiment is started, and
determines the final configuration that should be used for the run:

	Determine the order for running the ingredients

	topological

	in the order they where added

	For each ingredient do:

	gather all config updates that apply (needs config_updates)

	gather all named configs to use (needs named_configs)

	gather all fallbacks that apply from subrunners (needs subrunners.config)

	make the fallbacks read-only

	run all named configs and use the results as additional config updates,
but with lower priority than the global ones. (needs named_configs, config_updates)

	run all normal configs

	update the global config

	run the config hook

	update the global config_updates

 Python Module Index

 e |
 s

 		 	

 		
 e	

 	[image: -]
 	
 examples	

 	
 	
 examples.01_hello_world	

 	
 	
 examples.02_hello_config_dict	

 	
 	
 examples.03_hello_config_scope	

 	
 	
 examples.04_captured_functions	

 	
 	
 examples.05_my_commands	

 	
 	
 examples.06_randomness	

 		 	

 		
 s	

 	[image: -]
 	
 sacred	

 	
 	
 sacred.host_info	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (sacred.run.Run method)

 	
 	__init__() (sacred.Experiment method)

 	(sacred.Ingredient method)

A

 	
 	add_artifact() (sacred.Experiment method)

 	(sacred.run.Run method)

 	add_config() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	add_named_config() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	add_package_dependency() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	
 	add_resource() (sacred.Experiment method)

 	(sacred.run.Run method)

 	add_source_file() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	artifact_event() (sacred.observers.MongoObserver method)

 	(sacred.observers.RunObserver method)

 	automain() (sacred.Experiment method)

B

 	
 	beat_interval (sacred.run.Run attribute)

C

 	
 	capture() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	capture_mode (sacred.run.Run attribute)

 	captured_out (sacred.run.Run attribute)

 	captured_out_filter (sacred.Experiment attribute)

 	(sacred.run.Run attribute)

 	COLLECTION_NAME_BLACKLIST (sacred.observers.MongoObserver attribute)

 	command() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	completed_event() (sacred.observers.MongoObserver method)

 	(sacred.observers.RunObserver method)

 	
 	config (sacred.run.Run attribute)

 	config() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	config_hook() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	config_modifications (sacred.run.Run attribute)

 	ConfigDict (class in sacred.config.config_dict)

 	ConfigScope (class in sacred.config.config_scope)

 	create() (sacred.observers.MongoObserver static method)

D

 	
 	debug (sacred.run.Run attribute)

E

 	
 	examples.01_hello_world (module)

 	examples.02_hello_config_dict (module)

 	examples.03_hello_config_scope (module)

 	examples.04_captured_functions (module)

 	
 	examples.05_my_commands (module)

 	examples.06_randomness (module)

 	Experiment (class in sacred)

 	experiment_info (sacred.run.Run attribute)

F

 	
 	fail_trace (sacred.run.Run attribute)

 	failed_event() (sacred.observers.MongoObserver method)

 	(sacred.observers.RunObserver method)

 	
 	final_save() (sacred.observers.MongoObserver method)

 	force (sacred.run.Run attribute)

G

 	
 	gather_commands() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	gather_named_configs() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	
 	get_default_options() (sacred.Experiment method)

 	get_experiment_info() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	get_host_info() (in module sacred.host_info)

 	get_usage() (sacred.Experiment method)

H

 	
 	heartbeat_event() (sacred.observers.MongoObserver method)

 	(sacred.observers.RunObserver method)

 	
 	host_info (sacred.run.Run attribute)

 	host_info_gatherers (in module sacred.host_info)

 	host_info_getter() (in module sacred.host_info)

I

 	
 	info (sacred.Experiment attribute)

 	(sacred.run.Run attribute)

 	Ingredient (class in sacred)

 	
 	insert() (sacred.observers.MongoObserver method)

 	interrupted_event() (sacred.observers.MongoObserver method)

 	(sacred.observers.RunObserver method)

L

 	
 	log_metrics() (sacred.observers.MongoObserver method)

 	
 	log_scalar() (sacred.Experiment method)

 	(sacred.run.Run method)

M

 	
 	main() (sacred.Experiment method)

 	main_function (sacred.run.Run attribute)

 	
 	meta_info (sacred.run.Run attribute)

 	MongoObserver (class in sacred.observers)

N

 	
 	named_config() (sacred.Experiment method)

 	(sacred.Ingredient method)

O

 	
 	observers (sacred.run.Run attribute)

 	open_resource() (sacred.Experiment method)

 	(sacred.run.Run method)

 	
 	option_hook() (sacred.Experiment method)

P

 	
 	pdb (sacred.run.Run attribute)

 	post_run_hook() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	post_run_hooks (sacred.run.Run attribute)

 	
 	pre_run_hook() (sacred.Experiment method)

 	(sacred.Ingredient method)

 	pre_run_hooks (sacred.run.Run attribute)

 	priority (sacred.observers.RunObserver attribute)

Q

 	
 	queue_only (sacred.run.Run attribute)

 	
 	queued_event() (sacred.observers.MongoObserver method)

 	(sacred.observers.RunObserver method)

R

 	
 	resource_event() (sacred.observers.MongoObserver method)

 	(sacred.observers.RunObserver method)

 	result (sacred.run.Run attribute)

 	root_logger (sacred.run.Run attribute)

 	Run (class in sacred.run)

 	
 	run() (sacred.Experiment method)

 	run_command() (sacred.Experiment method)

 	run_commandline() (sacred.Experiment method)

 	run_logger (sacred.run.Run attribute)

 	RunObserver (class in sacred.observers)

S

 	
 	sacred.host_info (module)

 	SacredInterrupt (class in sacred.utils)

 	save() (sacred.observers.MongoObserver method)

 	save_sources() (sacred.observers.MongoObserver method)

 	
 	start_time (sacred.run.Run attribute)

 	started_event() (sacred.observers.MongoObserver method)

 	(sacred.observers.RunObserver method)

 	status (sacred.run.Run attribute)

 	stop_time (sacred.run.Run attribute)

T

 	
 	TimeoutInterrupt (class in sacred.utils)

 	
 	traverse_ingredients() (sacred.Experiment method)

 	(sacred.Ingredient method)

U

 	
 	unobserved (sacred.run.Run attribute)

V

 	
 	VERSION (sacred.observers.MongoObserver attribute)

W

 	
 	warn_if_unobserved() (sacred.run.Run method)

 _static/plus.png

_static/up-pressed.png

_static/up.png

_images/slack_observer.png
L hello_slack interrupted after less than a second

i sacred-bot 50T 2:58 PM
€ hello_slack completed after 1 second with result= 22.23
X hello_slack failed after 1 second with zerobivistonError: division by zero

_images/sql_schema.png
artifact_id
flename
[content
run_id - - —oqrunid
command Y
start_time \
heartbeat \
stop_time. 1
queue_time ,‘
T o /
et ‘comment B
o fail_trace !
rodame 2 captured_out
o 1 Config !
0s_info 8 info 4
python_version N status l’
~oxhost id |
o< experiment_id ‘\
_ result \\ _
run_id
resource_id

name S
§ /
e \ . [e
1O« experiment_id
base_dir b =

I
'
T o4{dependency id \
\

experiment_id

Source i
Version o4 source t

resource_id |-

filename
filename -

mdSsum
mdSsum

content
content

Generated by SchemaSpy

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Sacred’s documentation!

 		
 Quickstart

 		
 Installation

 		
 Hello World

 		
 Our First Configuration

 		
 Experiment Overview

 		
 Create an Experiment

 		
 Run the Experiment

 		
 Configuration

 		
 Capture Functions

 		
 Observe an Experiment

 		
 Capturing stdout / stderr

 		
 Interrupted and Failed Experiments

 		
 Detecting Hard Failures

 		
 Debugging

 		
 Custom Interrupts

 		
 Queuing a Run

 		
 Configuration

 		
 Defining a Configuration

 		
 Config Scopes

 		
 Dictionaries

 		
 Config Files

 		
 Combining Configurations

 		
 Updating Config Entries

 		
 Named Configurations

 		
 Accessing Config Entries

 		
 Captured Functions

 		
 Special Values

 		
 Prefix

 		
 Command-Line Interface

 		
 Configuration Updates

 		
 Named Updates

 		
 Multiple Named Updates

 		
 Combination With Regular Updates

 		
 Config Files As Named Updates

 		
 Commands

 		
 Print Config

 		
 Print Dependencies

 		
 Save Configuration

 		
 Print Named Configs

 		
 Custom Commands

 		
 Flags

 		
 Help

 		
 Comment

 		
 Logging Level

 		
 MongoDB Observer

 		
 FileStorage Observer

 		
 TinyDB Observer

 		
 SQL Observer

 		
 Debug Mode

 		
 PDB Debugging

 		
 Beat Interval

 		
 Unobserved

 		
 Queue

 		
 Priority

 		
 Enforce Clean

 		
 Print Config

 		
 Name

 		
 Capture Mode

 		
 Custom Flags

 		
 Collected Information

 		
 Configuration

 		
 Experiment Info

 		
 Source Code

 		
 Version Control

 		
 Dependencies

 		
 Host Info

 		
 Live Information

 		
 Metrics API

 		
 Resources and Artifacts

 		
 Resources

 		
 Artifacts

 		
 Bookkeeping

 		
 Status

 		
 Meta Information

 		
 Observing an Experiment

 		
 Mongo Observer

 		
 Adding a MongoObserver

 		
 Authentication

 		
 Database Entry

 		
 File Storage Observer

 		
 Adding a FileStorageObserver

 		
 Directory Structure

 		
 Template Rendering

 		
 TinyDB Observer

 		
 Adding a TinyDbObserver

 		
 Directory Structure

 		
 The TinyDB Reader

 		
 SQL Observer

 		
 Adding a SqlObserver

 		
 Schema

 		
 Slack Observer

 		
 Telegram Observer

 		
 Events

 		
 Start

 		
 Queued

 		
 Heartbeat

 		
 Stop

 		
 Resources

 		
 Artifacts

 		
 Saving Custom Information

 		
 Info Dict

 		
 Resources

 		
 Artifacts

 		
 Custom Observer

 		
 Controlling Randomness

 		
 Automatic Seed

 		
 Global Seeds

 		
 Special Arguments

 		
 Resilience to Change

 		
 Logging

 		
 Adjusting Log-Levels

 		
 Integrate Logging Into Your Experiment

 		
 Customize the Logger

 		
 Ingredients

 		
 Simple Example

 		
 Overwriting the Default Configuration

 		
 Adding Commands

 		
 Nesting Ingredients

 		
 Explicit Nesting

 		
 Accessing the Ingredient Config

 		
 Hooks

 		
 Pre- and Post-Run Hooks

 		
 Configuration Hooks

 		
 Optional Features

 		
 Git Integration

 		
 Optional Observers

 		
 MongoDB

 		
 TinyDB

 		
 SQL

 		
 Template Rendering

 		
 Numpy and Pandas Integration

 		
 YAML Format for Configurations

 		
 Settings

 		
 Settings

 		
 Examples

 		
 Hello World

 		
 Hello Config Dict

 		
 Hello Config Scope

 		
 Captured Functions

 		
 My Commands

 		
 Randomness

 		
 Integration with Tensorflow

 		
 Storing Tensorflow Logs (FileWriter)

 		
 Example Usage As a Decorator

 		
 Example Usage As a Context Manager

 		
 API Documentation

 		
 Experiment

 		
 Ingredient

 		
 The Run Object

 		
 ConfigScope

 		
 ConfigDict

 		
 Observers

 		
 Host Info

 		
 Custom Exceptions

 		
 Internals of Sacred

 		
 Configuration Process

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

