

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	rpy2 2.8.4 documentation

Documentation for rpy2

[image: _images/rpy2_logo.png]
The first section contains a quick introduction, as well as how to get started
(requirements, install rpy2). This should be the natural place to
start if you are new to R, or rpy2. Hints for porting existing code to a newer
version of rpy2 are also given.

	Getting started
	Overview
	Background

	Installation

	Contents

	Design notes

	Acknowledgements

	Introduction to rpy2
	Getting started

	R packages

	The r instance

	R vectors

	Calling R functions

	Getting help

	Examples

	Porting code to rpy2
	From R

	From rpy
	Compatibility layer

	Faithful example

	From rpy2-2.0.x
	Camelcase

	R-prefixed class names
	Namespace for R packages

	Parameter names in function call

	Missing values

	Graphics

The high-level interface in rpy2 is designed to facilitate the use of R by
Python programmers. R objects are exposed as instances of Python-implemented
classes, with R functions as bound methods to those objects in a number of cases.
This section also contains an introduction to graphics with R: trellis (lattice)
plots as well as the grammar of graphics implemented in ggplot2 let one
make complex and informative plots with little code written, while the underlying
grid graphics allow all possible customization is outlined.

	High-level interface
	The robjects package
	Overview

	r: the instance of R

	R objects

	Environments

	Functions

	Formulae

	R packages

	Working with R’s OOPs

	Object serialization

	Class diagram

	Vectors and arrays
	Creating vectors

	Extracting items

	Assigning items

	Missing values

	Operators

	Names

	Array

	Matrix

	DataFrame

	R help
	Querying on aliases

	Package documentation

	Documentation page

	Mapping rpy2 objects to arbitrary python objects
	Protocols

	Conversion

	Graphics
	Introduction

	Package lattice

	Package ggplot2

	Package grid

	DataFrames and dplyr
	dplyr

	dplyr in Python

	tidyr

	tidyr in Python

R is often used in a read-eval-print loop (REPL), where interactivity is important.
Utilities are available in rpy2.interactive.

	Interactive work
	Overview

	IPython magic integration (was rmagic)

	R event loop

	Utilities for interactive work
	R vectors

	R packages

Users of the Python signature numerical package numpy can continue using
the data structures they are familiar with, and share objects seamlessly with R.

	Numpy
	High-level interface
	From rpy2 to numpy:

	From numpy to rpy2:

	Low-level interface

A lower-level interface, closer to R’s C-level API, is available. It can be used
when performance optimization is needed, or when extensions to the high-level
interface are developped.

	Low-level interface
	Overview
	Initialization

	R space and Python space

	Pass-by-value paradigm

	Parsing and evaluating R code

	Calling Python functions from R

	Interactive features
	I/O with the R console

	Processing interactive events

	Classes
	Sexp

	SexpVector

	SexpEnvironment

	Functions

	SexpS4

	SexpExtPtr

	Class diagram

	Misc. variables
	R types

	Memory management and garbage collection
	Reference counting

	Capsules of R objects

	R’s NAMED

Finally, the documentation covers the subpackage with R-like Python classes
and functions, callback functions, as well as compatibility with rpy-1.x.
and benchmarks.

	rlike
	Overview

	Containers
	OrdDict

	TaggedList

	Tools for working with sequences

	Indexing

	Miscellaneous topics
	Callbacks
	Console I/O

	Files

	Other

	Client-Server
	Simple socket-based server and client

	rpy_classic
	Conversion

	R instance

	Functions

	Partial use of rpy_classic

	Related projects
	Bioinformatics

	Interactive consoles

	Alternative interfaces

	R-like data strucutures

	Performances
	Optimizing for performances

	A simple benchmark

	Custom graphical devices

The list of changes across versions can be helpful when
upgrading to a newer version of rpy2.

	Appendix
	Changes in rpy2

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

Getting started

	Overview
	Background

	Installation
	Docker image
	ipython console

	jupyter notbook

	Requirements
	Alternative Python implementations

	Upgrading from an older release of rpy2

	Download

	Linux precompiled binaries

	Microsoft’s Windows precompiled binaries

	Install from source
	easy_install and pip

	source archive

	Compiling on Linux

	Compiling on OS X

	Using rpy2 with other versions of R or Python

	Test an installation

	Contents
	rpy2.rinterface

	rpy2.robjects

	rpy2.interactive

	rpy2.rpy_classic

	rpy2.rlike

	Design notes

	Acknowledgements

	Introduction to rpy2
	Getting started

	R packages
	Importing packages

	Installing packages

	The r instance
	Getting R objects

	Evaluating R code

	Interpolating R objects into R code strings

	R vectors
	Creating rpy2 vectors

	Calling R functions

	Getting help
	Help on a topic within a given package, or currently loaded packages

	Locate topics among available packages

	Examples
	Graphics and plots

	Linear models

	Principal component analysis

	Creating an R vector or matrix, and filling its cells using Python code

	One more example

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	Getting started

Overview

Background

Python [http://www.python.org] is a popular
all-purpose scripting language, while R [http://www.r-project.org] (an open source implementation
of the S/Splus language)
is a scripting language mostly popular for data analysis, statistics, and
graphics. If you are reading this, there are good chances that you are
at least familiar with one of both.

Having an interface between both languages to benefit from the
libraries of one language while working in the other appeared
desirable; an early option to achieve it was the RSPython project,
itself part of the Omegahat project [http://www.omegahat.org/RSPython].

A bit later, the RPy project appeared and focused on providing simple and
robust access to R from within Python, with the initial Unix-only releases
quickly followed by Microsoft and MacOS compatible versions.
This project is referred to as RPy-1.x in the
rest of this document.

The present documentation describes RPy2, an evolution of RPy-1.x.
Naturally RPy2 is inspired by RPy, but also by A. Belopolskys’s contributions
that were waiting to be included into RPy.

This effort can be seen as a redesign and rewrite of the RPy package, and this
unfortunately means there is not enough left in common to ensure compatibility.

Installation

Docker image

There is a Docker image available to try rpy2 out
without concerns about the installation process.

ipython console

docker run -it --rm -p 8888:8888 \
 rpy2/rpy2:2.8.x ipython

jupyter notbook

To run the jupyter notebook on port 8888:

docker run --rm -p 8888:8888 \
 rpy2/rpy2:2.8.x

Once started, point a web browser to http://localhost:8888.

Note

If using docker-machine (which should be the case when on
a Mac or a Windows PC), this will not be localhost. The IP
address will be given by:

docker-machine ip [name-of-your-docker-machine-vm]

If usure about the name of your docker-machine VM, check the
output of the command docker-machine ls.

Requirements

Currently the development is done on UNIX-like operating systems with the
following software versions. Those are the recommended
versions to run rpy2 with.

	Software
	Versions

	Python
	3.5, with intended compatibility with 2.7 and >3.3

	R
	3.2+ (down to 3.0 might be OK)

Running Rpy2 will require compiled libraries for R, Python, and readline;
building rpy2 will require the corresponding development headers
(check the documentation for more information about builing rpy2).

rpy2 is almost certainly not working with Python 2.6.
Older Python versions are even less likely to work.

While Python 3.3 should be working, earlier version of Python 3 are not
expected to (they might work, they might not - you are on your own).

Rpy2 is not expected to work at all with an R version < 2.8. The use of the
latest rpy2 with an R version older than the current release is not
adviced (and mostly unsupported).

Alternative Python implementations

CPython is the target implementation, and because of presence of C code
in rpy2 is it currently not possible to run the package on Jython.
For that same reason, running it with Pypy is expected to require
some effort.

Upgrading from an older release of rpy2

In order to upgrade one will have to first remove older
installed rpy2 packages then and only then install
a version of rpy2.

To do so, or to check whether you have an earlier version
of rpy2 installed, do the following in a Python console:

import rpy2
rpy2.__path__

An error during execution means that you do not have any older
version of rpy2 installed and you should proceed to the next section.

If this returns a string containing a path, you should go to that path
and remove all files and directories starting with rpy2. To make sure
that the cleaning is complete, open a new Python session and check that
the above code results in an error.

Download

The following options are, or could be, available for download:

	Source packages. Released versions are available on Sourceforge as well as
on Pypi. Snapshots of the development version can be downloaded from
bitbucket

Note

The repository on bitbucket has several branches. Make sure to select
the one you are interested in.

	Pre-compiled binary packages for

	Microsoft’s Windows - unofficial and unsupported binaries are provided
by Christoph Gohlke (http://www.lfd.uci.edu/~gohlke/pythonlibs/);
there is otherwise currently
close to no support for this platform

	Apple’s MacOS X (although Fink and Macports are available, there does not
seem to be binaries currently available)

	Linux distributions

rpy2 has been reported compiling successfully on all 3 platforms, provided
that development items such as Python headers and a C compiler are installed.

Note

Choose files from the rpy2 package, not rpy.

Note

The pip or easy_install commands can be used,
although they currently only provide installation from source
(see easy_install and pip).

Linux precompiled binaries

Linux distribution have packaging systems, and rpy2 is present
in a number of them, either as a pre-compiled package or a source
package compiled on-the-fly.

Note

Those versions will often be older than the latest rpy2 release.

Known distributions are: Debian and related (such as Ubuntu - often
the most recent thanks to Dirk Eddelbuettel), Suse, RedHat, Mandrake,
Gentoo.

On, OS X rpy2 is in Macports and Fink.

Microsoft’s Windows precompiled binaries

If available, the executable can be run; this will install the package
in the default Python installation.

For few releases in the 2.0.x series, Microsoft Windows binaries were contributed
by Laurent Oget from Predictix.

There is currently no binaries or support for Microsoft Windows (more for lack of
ressources than anything else).

Install from source

easy_install and pip

The source package is on the PYthon Package Index (PYPI), and the
pip or easy_install scripts can be used whenever available.
The shell command will then just be:

recommended:
pip install rpy2

or
easy_install rpy2

Upgrading an existing installation is done with:

 # recommended:
pip install rpy2 --upgrade

or
easy_install rpy2 --upgrade

Both utilities have a list of options and their respective documentation should
be checked for details.

source archive

To install from a downloaded source archive <rpy_package>, do in a shell:

tar -xzf <rpy_package>.tar.gz
cd <rpy_package>
python setup.py build install

This will build the package, guessing the R HOME from
the R executable found in the PATH.

Beside the regular options for distutils [http://docs.python.org/library/distutils.html#module-distutils]-way of building and installing
Python packages, it is otherwise possible to give explicitly the location for the R HOME:

python setup.py build --r-home /opt/packages/R/lib install

Other options to build the package are:

--r-home-lib # for exotic location of the R shared libraries

--r-home-modules # for R shared modules

Compiling on Linux

Given that you have the libraries and development headers listed above, this
should be butter smooth.

The most frequent errors seem to be because of missing headers.

Compiling on OS X

XCode tools will be required in order to compile rpy2. Please refer to the documentation on the Apple
site for more details about what they are and how to install them.

On OS X “Snow Leopard” (10.6.8), it was reported that setting architecture flags was sometimes needed

env ARCHFLAGS="-arch i386 -arch x86_64" pip install rpy2

or

env ARCHFLAGS="-arch i386 -arch x86_64" python setup.py build install

Some people have reported trouble with OS X “Lion”. Please check the bug tracker if you are in that situation.

Using rpy2 with other versions of R or Python

Warning

When building rpy2, it is checked that this is against a recommended
version of R. Building against a different version is possible, although
not supported at all, through the flag –ignore-check-rversion

python setup.py build_ext --ignore-check-rversion install

Since recently, development R is no longer returning
an R version and the check ends with an error
“Error: R >= <some version> required (and R told ‘development.’).”.
The flag –ignore-check-rversion is then required in order to build.

Note

When compiling R from source, do not forget to specify
–enable-R-shlib at the ./configure step.

Test an installation

An installation can be tested for functionalities, and whenever necessary
the different layers constituting the packages can be tested independently.

python -m 'rpy2.tests'

On Python 2.6, this should return that all tests were successful.

Whenever more details are needed, one can consider running explicit tests.

import rpy2.tests
import unittest

the verbosity level can be increased if needed
tr = unittest.TextTestRunner(verbosity = 1)
suite = rpy2.tests.suite()
tr.run(suite)

Note

Running the tests in an interactive session appears to trigger spurious exceptions
when testing callback functions raising exceptions.
If unsure, simply use the former way to test (in a shell).

Warning

For reasons that remain to be elucidated, running the test suites used to leave the Python
interpreter in a fragile state, soon crashing after the tests have been run.

It is not clear whether this is still the case, but is recommended to terminate the
Python process after the tests and start working with a fresh new session.

To test the rpy2.robjects high-level interface:

python -m 'rpy2.robjects.tests.__init__'

or for a full control of options

import rpy2.robjects.tests
import unittest

the verbosity level can be increased if needed
tr = unittest.TextTestRunner(verbosity = 1)
suite = rpy2.robjects.tests.suite()
tr.run(suite)

If interested in the lower-level interface, the tests can be run with:

python -m 'rpy2.rinterface.tests.__init__'

or for a full control of options

import rpy2.rinterface.tests
import unittest

the verbosity level can be increased if needed
tr = unittest.TextTestRunner(verbosity = 1)
suite = rpy2.rinterface.tests.suite()
tr.run(suite)

Contents

The package is made of several sub-packages or modules:

rpy2.rinterface

Low-level interface to R, when speed and flexibility
matter most. Close to R’s C-level API.

rpy2.robjects

High-level interface, when ease-of-use matters most.
Should be the right pick for casual and general use.
Based on the previous one.

rpy2.interactive

High-level interface, with an eye for interactive work. Largely based
on rpy2.robjects.

rpy2.rpy_classic

High-level interface similar to the one in RPy-1.x.
This is provided for compatibility reasons, as well as to facilitate the migration
to RPy2.

rpy2.rlike

Data structures and functions to mimic some of R’s features and specificities
in pure Python (no embedded R process).

Design notes

When designing rpy2, attention was given to:

	render the use of the module simple from both a Python or R user’s perspective,

	minimize the need for knowledge about R, and the need for tricks and workarounds,

	allow to customize a lot while remaining at the Python level (without having to go down to C-level).

rpy2.robjects implements an extension to the interface in
rpy2.rinterface by extending the classes for R
objects defined there with child classes.

The choice of inheritance was made to facilitate the implementation
of mostly inter-exchangeable classes between rpy2.rinterface
and rpy2.robjects. For example, an rpy2.rinterface.SexpClosure
can be given any rpy2.robjects.RObject as a parameter while
any rpy2.robjects.Function can be given any
rpy2.rinterface.Sexp. Because of R’s functional basis,
a container-like extension is also present.

The module rpy2.rpy_classic is using delegation, letting us
demonstrate how to extend rpy2.rinterface with an alternative
to inheritance.

Acknowledgements

Acknowledgements for contributions, support, and early testing go to (alphabetical order):

Alexander Belopolsky,
Brad Chapman,
Peter Cock,
Dirk Eddelbuettel,
Thomas Kluyver,
Walter Moreira,
Laurent Oget,
John Owens,
Nicolas Rapin,
Grzegorz Slodkowicz,
Nathaniel Smith,
Gregory Warnes,
as well as
the JRI author(s),
the R authors,
R-help list responders,
Numpy list responders,
and other contributors.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	Getting started

Introduction to rpy2

This introduction is intended for new users, or users who never consulted
the documentation but encountered blockers after guessing successfully
their first steps through the API.

Getting started

It is assumed here that the rpy2 package has been properly installed.
This will be the case if working out of one of the Docker containers available,
of if the instructions were followed (see Installation).

rpy2 is like any other python package binding to a C library. Its top
level can be imported, and the version obtained.

import rpy2
print(rpy2.__version__)

Note

The rpy2 version is rather important when reporting an issue with rpy2,
or in your own code if trying to assess whether rpy2 is matching the
expected version.

The version of R against which rpy2 was build (compiled) is also available:

from rpy2.rinterface import R_VERSION_BUILD
print(R_VERSION_BUILD)

rpy2 is providing 2 levels of interface with R:
- low-level (rpy2.rinterface)
- high-level (rpy2.robjects)

The high-level interface is trying to make the use of R as natural as
possible for a Python user (something sometimes referred to as
“pythonic”), and this introduction is only coverage that interface.

Importing the top-level sub-package is also initializing and starting
R embedded in the current Python process:

import rpy2.robjects as robjects

R packages

R is arguably one of the best data analysis toolboxes because of the
breadth and depth of its packages.

Importing packages

Importing R packages is often the first step when running R code, and
rpy2 is providing a function rpy2.robjects.packages.importr()
that makes that step very similar to importing Python packages.

from rpy2.robjects.packages import importr
import R's "base" package
base = importr('base')

import R's "utils" package
utils = importr('utils')

In essence, that step is importing the R package in the embedded R,
and is exposing all R objects in that package as Python objects.

Note

There is a twist though. R object names can contain a ”.” (dot)
while in Python the dot means “attribute in a namespace”. Because
of this, importr is trying to translate ”.” into “_”. The details
will not be necessary in most of the cases, but when they do the
documentation for R packages should be consulted.

Installing packages

Knowing how to install R packages is an important skill to have,
although not always a mandatory one if working out of an R installation
designed to meet all reasonable needs for a task or a project.

Note

Package installation is presented early in the introduction,
but this subsection
can be skipped if difficulties such as an absence of internet connection,
an uncooperative proxy (or proxy maintainer),
or insufficient write priviledges to install
the package are met.

Downloading and installing R packages is usually performed by fetching
R packages from a package repository and installing them locally.
Capabilities to do this are provided by R libraries, and when in Python
we can simply use them using rpy2. An interface to the R features is
provided in rpy2.robjects.packages (where the function importr()
introduced above is defined).

Getting ready to install packages from the first mirror known to R is done
with:

import rpy2's package module
import rpy2.robjects.packages as rpackages

import R's utility package
utils = rpackages.importr('utils')

select a mirror for R packages
utils.chooseCRANmirror(ind=1) # select the first mirror in the list

We are now ready to install packages using R’s own function install.package:

R package names
packnames = ('ggplot2', 'hexbin')

R vector of strings
from rpy2.robjects.vectors import StrVector

Selectively install what needs to be install.
We are fancy, just because we can.
names_to_install = [x for packnames if not rpackages.isinstalled(x)]
if len(names_to_install) > 0:
 utils.install_packages(StrVector(names_to_install))

The code above can be part of Python code you distribute if you are relying
on CRAN packages not distributed with R by default.

More documentation about the handling of R packages in rpy2 can be found
Section R packages.

The r instance

We mentioned earlier that rpy2 is running an embedded R. This is may be
a little abstract, so there is an object rpy2.robjects.r to make
it tangible.

This object can be used as rudimentary communication channel between
Python and R,
similar to the way one would interact with a subprocess yet more efficient,
better integrated with Python, and easier to use.

Getting R objects

The __getitem__() method of rpy2.robjects.r,
gets the R object associated with a given symbol, just
as typing that symbol name in the R console would do it
(see the note below for details).

Example in R:

> pi
[1] 3.141593

With rpy2:

>>> pi = robjects.r['pi']
>>> pi[0]
3.14159265358979

Note

Under the hood, the variable pi is gotten by default from the
R base package, unless an other variable with the name pi was
created in R’s .globalEnv.

Whenever one wishes to be specific about where the symbol
should be looked for (which should be most of the time),
it possible to wrap R packages in Python namespace objects
(see R packages).

For more details on environments, see Section
Environments.

Also, note that pi is not a scalar but a vector of length 1

Evaluating R code

The object r is also callable, and the string passed in
a call is evaluated as R code.

The simplest such strings would be the name of an R object,
and this provide an alternative to
the method __getitem__ described earlier.

Example in R:

> pi
[1] 3.141593

With rpy2:

>>> pi = robjects.r('pi')
>>> pi[0]
3.14159265358979

Warning

The result is an R vector. The Section
R vectors below will provide explanation
for the following behavior:

>>> piplus2 = robjects.r('pi') + 2
>>> piplus2.r_repr()
c(3.14159265358979, 2)
>>> pi0plus2 = robjects.r('pi')[0] + 2
>>> print(pi0plus2)
5.1415926535897931

More complex strings are R expressions of arbitrary complexity,
or even sequences of expressions (snippets of R code).
Their evaluation is performed in what is known to R users as the
Global Environment, that is the place one starts at when in
the R console. Whenever the R code creates variables, those
variables are “located” in that Global Environment by default.

For example, the string below returns the value 18.85.

robjects.r('''
 # create a function `f`
 f <- function(r, verbose=FALSE) {
 if (verbose) {
 cat("I am calling f().\n")
 }
 2 * pi * r
 }
 # call the function `f` with argument value 3
 f(3)
 ''')

That string is a snippet of R code (complete with comments) that
first creates an R function, then binds it to the symbol f (in R),
finally calls that function f. The results of the call (what the
R function f is returns) is returned to Python.

Since that function f is now present in the R Global Environment,
it can be accessed with the __getitem__ mechanism outlined above:

>>> r_f = robjects.globalenv['f']
>>> print(r_f.r_repr())
function (r, verbose = FALSE)
{
 if (verbose) {
 cat("I am calling f().\n")
 }
 2 * pi * r
}

Note

As shown earlier, an alternative way to get the function
is to get it from the R singleton

>>> r_f = robjects.r['f']

The function r_f is callable, and can be used like a regular Python function.

>>> res = r_f(3)

Jump to Section Calling R functions for more on calling
functions.

Interpolating R objects into R code strings

Against the first impression one may get from the title
of this section, simple and handy features of rpy2 are
presented here.

An R object has a string representation that can be used
directly into R code to be evaluated.

Simple example:

>>> letters = robjects.r['letters']
>>> rcode = 'paste(%s, collapse="-")' %(letters.r_repr())
>>> res = robjects.r(rcode)
>>> print(res)
"a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z"

R vectors

In R, data are mostly represented by vectors, even when looking
like scalars.

When looking closely at the R object pi used previously,
we can observe that this is in fact a vector of length 1.

>>> len(robjects.r['pi'])
1

As such, the python method add() will result in a concatenation
(function c() in R), as this is the case for regular python lists.

Accessing the one value in that vector has to be stated
explicitly:

>>> robjects.r['pi'][0]
3.1415926535897931

There is much that can be achieved with vectors, having them to behave
more like Python lists or R vectors.
A comprehensive description of the behavior of vectors is found in
robjects.vector.

Creating rpy2 vectors

Creating R vectors can be achieved simply:

>>> res = robjects.StrVector(['abc', 'def'])
>>> print(res.r_repr())
c("abc", "def")
>>> res = robjects.IntVector([1, 2, 3])
>>> print(res.r_repr())
1:3
>>> res = robjects.FloatVector([1.1, 2.2, 3.3])
>>> print(res.r_repr())
c(1.1, 2.2, 3.3)

R matrixes and arrays are just vectors with a dim attribute.

The easiest way to create such objects is to do it through
R functions:

>>> v = robjects.FloatVector([1.1, 2.2, 3.3, 4.4, 5.5, 6.6])
>>> m = robjects.r['matrix'](v, nrow = 2)
>>> print(m)
 [,1] [,2] [,3]
[1,] 1.1 3.3 5.5
[2,] 2.2 4.4 6.6

Calling R functions

Calling R functions is disappointingly similar to calling
Python functions:

>>> rsum = robjects.r['sum']
>>> rsum(robjects.IntVector([1,2,3]))[0]
6L

Keywords are also working:

>>> rsort = robjects.r['sort']
>>> res = rsort(robjects.IntVector([1,2,3]), decreasing=True)
>>> print(res.r_repr())
c(3L, 2L, 1L)

Note

By default, calling R functions return R objects.

More information on functions is in Section Functions.

Getting help

R has a builtin help system that, just like the pydoc strings are used frequently
in python during interactive sessions, is used very frequently by R programmmers.
This help system is accessible from an R function, therefore accessible from rpy2.

Help on a topic within a given package, or currently loaded packages

>>> from rpy2.robjects.packages import importr
>>> utils = importr("utils")
>>> help_doc = utils.help("help")
>>> help_doc[0]
'/where/R/is/installed/library/utils/help/help'

Converting the object returned to a string produces the full help text
on the topic:

>>> str(help_doc)
[...long output...]

Warning

The help message so produced is not a string returned to the console
but is directly printed by R to the standard output. The call to
str() only returns an empty string, and the reason for this is
somewhat involved for an introductory documentation.
This behaviour is rooted in R itself and in rpy2 the
string representation of R objects is the string representation as
given by the R console,
which in that case takes a singular route.

For a Python friendly help to the R help system, consider the module
rpy2.robjects.help.

Locate topics among available packages

>>> help_where = utils.help_search("help")

As before with help, the result can be printed / converted to a string,
giving a similar result to what is obtained from an R session.

Note

The data structure returned can otherwise be used to access the information
returned in details.

>>> tuple(help_where)
(<StrVector - Python:0x1f9a968 / R:0x247f908>,
 <StrVector - Python:0x1f9a990 / R:0x25079d0>,
 <StrVector - Python:0x1f9a9b8 / R:0x247f928>,
 <Matrix - Python:0x1f9a850 / R:0x1ec0390>)
>>> tuple(help_where[3].colnames)
('topic', 'title', 'Package', 'LibPath')

However, this is beyond the scope of an introduction, and one should
master the content of the module robjects.vector before anything else.

Examples

This section demonstrates some of the features of
rpy2.

Graphics and plots

import rpy2.robjects as robjects

r = robjects.r

x = robjects.IntVector(range(10))
y = r.rnorm(10)

r.X11()

r.layout(r.matrix(robjects.IntVector([1,2,3,2]), nrow=2, ncol=2))
r.plot(r.runif(10), y, xlab="runif", ylab="foo/bar", col="red")

Setting dynamically the number of arguments in a function call can be
done the usual way in python.

There are several ways to plot data in R, some of which are
presented in this documentation:

The general setup is repeated here:

from rpy2 import robjects
from rpy2.robjects import Formula, Environment
from rpy2.robjects.vectors import IntVector, FloatVector
from rpy2.robjects.lib import grid
from rpy2.robjects.packages import importr, data
from rpy2.rinterface import RRuntimeError
import warnings

The R 'print' function
rprint = robjects.globalenv.get("print")
stats = importr('stats')
grdevices = importr('grDevices')
base = importr('base')
datasets = importr('datasets')

grid.activate()

The setup specific to ggplot2 is:

import math, datetime
import rpy2.robjects.lib.ggplot2 as ggplot2
import rpy2.robjects as ro
from rpy2.robjects.packages import importr
base = importr('base')

mtcars = data(datasets).fetch('mtcars')['mtcars']

pp = ggplot2.ggplot(mtcars) + \
 ggplot2.aes_string(x='wt', y='mpg', col='factor(cyl)') + \
 ggplot2.geom_point() + \
 ggplot2.geom_smooth(ggplot2.aes_string(group = 'cyl'),
 method = 'lm')
pp.plot()

[image: _images/graphics_ggplot2_smoothbycylwithcolours.png]
More about plots and graphics in R, as well as more advanced
plots are presented in Section Graphics.

Warning

By default, the embedded R open an interactive plotting device,
that is a window in which the plot is located.
Processing interactive events on that devices, such as resizing or closing
the window must be explicitly required
(see Section Processing interactive events).

Linear models

The R code is:

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)

anova(lm.D9 <- lm(weight ~ group))

summary(lm.D90 <- lm(weight ~ group - 1))# omitting intercept

One way to achieve the same with rpy2.robjects is

from rpy2.robjects import FloatVector
from rpy2.robjects.packages import importr
stats = importr('stats')
base = importr('base')

ctl = FloatVector([4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14])
trt = FloatVector([4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69])
group = base.gl(2, 10, 20, labels = ["Ctl","Trt"])
weight = ctl + trt

robjects.globalenv["weight"] = weight
robjects.globalenv["group"] = group
lm_D9 = stats.lm("weight ~ group")
print(stats.anova(lm_D9))

omitting the intercept
lm_D90 = stats.lm("weight ~ group - 1")
print(base.summary(lm_D90))

This way to perform a linear fit it matching precisely the way in R presented
above, but there are other ways (see Section Formulae
for storing the variables directly in the lookup environment of the formula).

Q: Now how to extract data from the resulting objects ?

A: Well, it all depends on the object. R is very much designed
for interactive sessions, and users often inspect what a
function is returning in order to know how to extract information.

When taking the results from the code above, one could go like:

>>> print(lm_D9.rclass)
[1] "lm"

Here the resulting object is a list structure, as either inspecting
the data structure or reading the R man pages for lm would tell us.
Checking its element names is then trivial:

>>> print(lm_D9.names)
 [1] "coefficients" "residuals" "effects" "rank"
 [5] "fitted.values" "assign" "qr" "df.residual"
 [9] "contrasts" "xlevels" "call" "terms"
[13] "model"

And so is extracting a particular element:

>>> print(lm_D9.rx2('coefficients'))
(Intercept) groupTrt
 5.032 -0.371

or

>>> print(lm_D9.rx('coefficients'))
$coefficients
(Intercept) groupTrt
 5.032 -0.371

More about extracting elements from vectors is available
at Extracting items.

Principal component analysis

The R code is

m <- matrix(rnorm(100), ncol=5)
pca <- princomp(m)
plot(pca, main="Eigen values")
biplot(pca, main="biplot")

The rpy2.robjects code can be as close to the
R code as possible:

import rpy2.robjects as robjects

r = robjects.r

m = r.matrix(r.rnorm(100), ncol=5)
pca = r.princomp(m)
r.plot(pca, main="Eigen values")
r.biplot(pca, main="biplot")

However, the same example can be made a little tidier
(with respect to being specific about R functions used)

from rpy2.robjects.packages import importr

base = importr('base')
stats = importr('stats')
graphics = importr('graphics')

m = base.matrix(stats.rnorm(100), ncol = 5)
pca = stats.princomp(m)
graphics.plot(pca, main = "Eigen values")
stats.biplot(pca, main = "biplot")

Creating an R vector or matrix, and filling its cells using Python code

from rpy2.robjects import NA_Real
from rpy2.rlike.container import TaggedList
from rpy2.robjects.packages import importr

base = importr('base')

create a numerical matrix of size 100x10 filled with NAs
m = base.matrix(NA_Real, nrow=100, ncol=10)

fill the matrix
for row_i in xrange(1, 100+1):
 for col_i in xrange(1, 10+1):
 m.rx[TaggedList((row_i,), (col_i,))] = row_i + col_i * 100

None

One more example

"""
short demo.

"""

from rpy2.robjects.packages import importr
graphics = importr('graphics')
grdevices = importr('grDevices')
base = importr('base')
stats = importr('stats')

import array

x = array.array('i', range(10))
y = stats.rnorm(10)

grdevices.X11()

graphics.par(mfrow = array.array('i', [2,2]))
graphics.plot(x, y, ylab = "foo/bar", col = "red")

kwargs = {'ylab':"foo/bar", 'type':"b", 'col':"blue", 'log':"x"}
graphics.plot(x, y, **kwargs)

m = base.matrix(stats.rnorm(100), ncol=5)
pca = stats.princomp(m)
graphics.plot(pca, main="Eigen values")
stats.biplot(pca, main="biplot")

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

Porting code to rpy2

From R

From rpy

Compatibility layer

A compatibility layer exists, although it currently does not implement
completely the rpy interface.

Faithful example

In years, Tim Church’s Old faithful example seems to have reached an
almost iconic status for many rpy users.
That example is the obvious text for a Rosetta stone and we provide
its translation into rpy2.robjects for rpy2-2.1.0. This example
is based on John A. Schroeder’s translation for rpy2-2.0.8 (that is
also working with version 2.1, but cannot use new features for obvious
compatibility reasons).

Setting up

rpy2 can hide more of the R layer, providing an interface that only
requires Python knowledge.

from rpy2.robjects.vectors import DataFrame
from rpy2.robjects.packages import importr, data

r_base = importr('base')

The example only uses explicitly a rpy2.robjects.vectors.DataFrame, and
defined R packages. The function rpy2.robjects.packages.importr() allows
the encapsulation of R functions in packages into a Python-friendly form.

Importing the data

faithful_data = DataFrame.from_csvfile('faithful.dat', sep = " ")

If you do not have the data file nearby, this dataset can be loaded from
R’s own collection of datasets:

datasets = importr('datasets')
faithful_data = data(datasets).fetch('faithful')['faithful']

Summary

edsummary = r_base.summary(faithful_data.rx2("eruptions"))
for k, v in edsummary.items():
 print("%s: %.3f\n" %(k, v))

Stem-and-leaf plot

graphics = importr('graphics')

print("Stem-and-leaf plot of Old Faithful eruption duration data")
graphics.stem(faithful_data.rx2("eruptions"))

Histogram

grdevices = importr('grDevices')
stats = importr('stats')
grdevices.png('faithful_histogram.png', width = 733, height = 550)
ed = faithful_data.rx2("eruptions")
graphics.hist(ed, r_base.seq(1.6, 5.2, 0.2),
 prob = True, col = "lightblue",
 main = "Old Faithful eruptions", xlab = "Eruption duration (seconds)")
graphics.lines(stats.density(ed,bw=0.1), col = "orange")
graphics.rug(ed)
grdevices.dev_off()

Alternatively, the ggplot2 package can be used to make the plots:

from rpy2.robjects.lib import ggplot2

p = ggplot2.ggplot(faithful_data) + \
 ggplot2.aes_string(x = "eruptions") + \
 ggplot2.geom_histogram(fill = "lightblue") + \
 ggplot2.geom_density(ggplot2.aes_string(y = '..count..'), colour = "orange") + \
 ggplot2.geom_rug() + \
 ggplot2.scale_x_continuous("Eruption duration (seconds)") + \
 ggplot2.opts(title = "Old Faithful eruptions")

p.plot()

from rpy2.robjects.vectors import FloatVector

long_ed = FloatVector([x for x in ed if x > 3])
grdevices.png('faithful_ecdf.png', width = 733, height = 550)

stats = importr('stats')

params = {'do.points' : False,
 'verticals' : 1,
 'main' : "Empirical cumulative distribution function of " + \
 "Old Faithful eruptions longer than 3 seconds"}
graphics.plot(stats.ecdf(long_ed), **params)
x = r_base.seq(3, 5.4, 0.01)
graphics.lines(x, stats.pnorm(x, mean = r_base.mean(long_ed),
 sd = r_base.sqrt(stats.var(long_ed))),
 lty = 3, lwd = 2, col = "salmon")
grdevices.dev_off()

grdevices.png('faithful_qq.png', width = 733, height = 550)
graphics.par(pty="s")
stats.qqnorm(long_ed,col="blue")
stats.qqline(long_ed,col="red") # strangely in stats, not in graphics
grdevices.dev_off()

From rpy2-2.0.x

This section refers to changes in the rpy2.objects layer.
If interested in changes to the lower level rpy2.rinterface,
the list of changes in the appendix should be consulted.

Camelcase

The camelCase naming disappeared from variables and methods, as it seemed
to be mostly absent from such obejcts in the standard library
(although nothing specific appears about that in PEP 8 [https://www.python.org/dev/peps/pep-0008]).

Practically, this means that the following name changes occurred:

	old name
	new name

	rpy2.robjects

	globalEnv
	globalenv

	baseNameSpaceEnv
	baseenv

	rpy2.rinterface

	globalEnv
	globalenv

	baseEnv
	baseenv

R-prefixed class names

Class names prefixed with the letter R were cleaned from that prefix.
For example, RVector became Vector, RDataFrame became DataFrame, etc...

	old name
	new name

	rpy2.robjects

	RVector
	Vector

	RArray
	Array

	RMatrix
	Matrix

	RDataFrame
	DataFrame

	REnvironment
	Environment

	RFunction
	Function

	RFormula
	Formula

Namespace for R packages

The function rpy2.robjects.packages.importr() should be used to import an R package
name space as a Python-friendly object

>>> from rpy2.robjects.packages import importr
>>> base = importr("base")
>>> base.letters[0]
'a'

Whenever possible, this steps performs a safe
conversion of ‘.’ in R variable names into ‘_’ for the Python variable
name.

The documentation in Section R packages gives more details.

Parameter names in function call

By default, R functions exposed will have a safe translation of their named parameters
attempted (‘.’ will become ‘_’). Section Functions should be checked for
details.

Missing values

R has a built-in concept of missing values, and of types for missing values.
This now better integrated into rpy2 (see more about missing values)

Graphics

The combined use of namespaces for R packages (see above),
and of custom representation of few specific R libraries is making
the generation of graphics (even) easier (see Section Graphics).

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

High-level interface

	The robjects package
	Overview

	r: the instance of R
	Evaluating a string as R code

	R objects

	Environments

	Functions
	Callable

	rcall()

	Docstrings

	Formulae

	R packages
	Importing R packages

	Importing arbitrary R code as a package
	R namespaces

	Class diagram

	Finding where an R symbol is coming from

	Installing/removing R packages

	Working with R’s OOPs
	S3 objects

	S4 objects
	Basic handling

	Mapping S4 classes to Python classes
	Custom conversion

	Class attributes

	Methods

	Manual R-in-Python class definition

	Automated R-in-Python class definitions

	Automated mapping of user-defined classes

	Object serialization

	Class diagram

	Vectors and arrays
	Creating vectors
	FactorVector

	Extracting items
	Extracting, Python-style

	Extracting, R-style

	Assigning items
	Assigning, Python-style

	Assigning, R-style

	Missing values

	Operators

	Names

	Array

	Matrix
	Computing on matrices

	Extracting

	DataFrame
	Creating objects

	Extracting elements

	Python docstrings

	R help
	Querying on aliases

	Package documentation

	Documentation page

	Mapping rpy2 objects to arbitrary python objects
	Protocols

	Conversion
	Converter objects

	Local conversion rules

	ri2ro()

	ri2py()

	p2ri()

	Customizing the conversion

	Graphics
	Introduction
	Graphical devices

	Getting ready

	Package lattice
	Introduction

	Scatter plot

	Box plot

	Other plots

	Package ggplot2
	Introduction

	Plot
	Aesthethics mapping

	Geometry

	Axes

	Facets

	Package grid
	Custom ggplot2 layout with grid

	Classes

	Class diagram

	DataFrames and dplyr
	dplyr

	dplyr in Python

	tidyr

	tidyr in Python

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

The robjects package

	Overview

	r: the instance of R

	R objects

	Environments

	Functions

	Formulae

	R packages

	Working with R’s OOPs

	Object serialization

Class diagram

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

 	The robjects package

Overview

This module should be the right pick for casual and general use.
Its aim is to abstract some of the details and provide an
intuitive interface to both Python and R programmers.

>>> import rpy2.robjects as robjects

rpy2.robjects is written on top of rpy2.rinterface, and one
not satisfied with it could easily build one’s own flavor of a
Python-R interface by modifying it (rpy2.rpy_classic is another
example of a Python interface built on top of rpy2.rinterface).

Visible differences with RPy-1.x are:

	no CONVERSION mode in rpy2, the design has made this unnecessary

	easy to modify or rewrite with an all-Python implementation

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

 	The robjects package

r: the instance of R

This class is currently a singleton, with
its one representation instanciated when the
module is loaded:

>>> robjects.r
>>> print(robjects.r)

The instance can be seen as the entry point to an
embedded R process.

Being a singleton means that each time the constructor
for R is called the same instance is returned;
this is required by the fact that the embedded R is stateful.

The elements that would be accessible
from an equivalent R environment are accessible as attributes
of the instance.
Readers familiar with the ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] module for Python will note
the similarity with it.

R vectors:

>>> pi = robjects.r.pi
>>> letters = robjects.r.letters

R functions:

>>> plot = robjects.r.plot
>>> dir = robjects.r.dir

This approach has limitation as:

	The actual Python attributes for the object masks the R elements

	
	‘.’ (dot) is syntactically valid in names for R objects, but not for

	python objects.

That last limitation can partly be removed by using rpy2.rpy_classic if
this feature matters most to you.

>>> robjects.r.as_null
AttributeError raised
>>> import rpy2.rpy_classic as rpy
>>> rpy.set_default_mode(rpy.NO_CONVERSION)
>>> rpy.r.as_null
R function as.null() returned

Note

The section Partial use of rpy_classic outlines how to integrate
rpy2.rpy_classic code.

Behind the scene, the steps for getting an attribute of r are
rather straightforward:

	Check if the attribute is defined as such in the python definition for
r

	Check if the attribute is can be accessed in R, starting from globalenv

When safety matters most, we recommend using __getitem__() to get
a given R object.

>>> as_null = robjects.r['as.null']

Storing the object in a python variable will protect it from garbage
collection, even if deleted from the objects visible to an R user.

>>> robjects.globalenv['foo'] = 1.2
>>> foo = robjects.r['foo']
>>> foo[0]
1.2

Here we remove the symbol foo from the R Global Environment.

>>> robjects.r['rm']('foo')
>>> robjects.r['foo']
LookupError: 'foo' not found

The object itself remains available, and protected from R’s
garbage collection until foo is deleted from Python

>>> foo[0]
1.2

Evaluating a string as R code

Just like it is the case with RPy-1.x, on-the-fly
evaluation of R code contained in a string can be performed
by calling the r instance:

>>> print(robjects.r('1+2'))
[1] 3
>>> sqr = robjects.r('function(x) x^2')

>>> print(sqr)
function (x)
x^2
>>> print(sqr(2))
[1] 4

The astute reader will quickly realize that R objects named
by python variables can
be plugged into code through their R representation:

>>> x = robjects.r.rnorm(100)
>>> robjects.r('hist(%s, xlab="x", main="hist(x)")' %x.r_repr())

Warning

Doing this with large objects might not be the best use of
your computing power.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

 	The robjects package

R objects

The class rpy2.robjects.RObject
can represent any R object, although it will often
be used for objects without any more specific representation
in Python/rpy2 (such as Vector,
functions.Function, Environment).

The class inherits from the lower-level
rpy2.rinterface.Sexp
and from rpy2.robjects.robject.RObjectMixin, the later defining
higher-level methods for R objects to be shared by other higher-level
representations of R objects.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

 	The robjects package

Environments

R environments can be described to the Python user as
an hybrid of a dictionary and a scope.

The first of all environments is called the Global Environment,
that can also be referred to as the R workspace.

An R environment in RPy2 can be seen as a kind of Python
dictionnary.

Assigning a value to a symbol in an environment has been
made as simple as assigning a value to a key in a Python
dictionary:

>>> robjects.r.ls(globalenv)
>>> robjects.globalenv["a"] = 123
>>> print(robjects.r.ls(globalenv))

Care must be taken when assigning objects into an environment
such as the Global Environment, as this can hide other objects
with an identical name.
The following example should make one measure that this can mean
trouble if no care is taken:

>>> globalenv["pi"] = 123
>>> print(robjects.r.pi)
[1] 123
>>>
>>> robjects.r.rm("pi")
>>> print(robjects.r.pi)
[1] 3.1415926535897931

The class inherits from the class
rpy2.rinterface.SexpEnvironment.

An environment is also iter-able, returning all the symbols
(keys) it contains:

>>> env = robjects.r.baseenv()
>>> [x for x in env]
<a long list returned>

Note

Although there is a natural link between environment
and R packages, one should consider using the convenience wrapper
dedicated to model R packages (see R packages).

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

 	The robjects package

Functions

Note

This section is about calling R functions from Python.
To make Python functions
callable by R, see the low-level function rpy2.rinterface.rternalize().

R functions exposed by rpy2‘s high-level interface can be used:

	like any regular Python function as they are callable objects
(see Section Callable)

	through their method rcall() (see Section rcall())

Callable

from rpy2.robjects.packages import importr
base = importr('base')
stats = importr('stats')
graphics = importr('graphics')

plot = graphics.plot
rnorm = stats.rnorm
plot(rnorm(100), ylab="random")

This is all looking fine and simple until R arguments with names
such as na.rm are encountered. By default, this is addressed by
having a translation of ‘.’ (dot) in the R argument name into a
‘_’ in the Python
argument name.

Let’s take an example in R:

rank(0, na.last = TRUE)
or without the implicit namespace:
base::(0, na.last = TRUE)

In Python one can write:

from rpy2.robjects.packages import importr
base = importr('base')

base.rank(0, na_last = True)

Note

In this example, the object base.rank is an instance of
functions.SignatureTranslatedFunction,
a child class of functions.Function, and the translation of
the argument names is made during the creation of the instance.
Making the translation during the creation obviously
saves the need to perform translation operations on parameter names,
such as replacing ‘.’ with ‘_’,
at each function call, and allows rpy2 to perform sanity checks
regarding possible ambiguous translations (R functions, even in
the base libraries, happen to sometimes have both argument names
foo.bar and foo_bar in the signature of the same function).
The cost of performing the mapping is amortized when a function
is called repeatedly since this is only performed when the instance
is created.

If no translation is desired, the class functions.Function
can be used. With
that class, using the special Python syntax **kwargs is one way to specify
named arguments to R functions that contain a dot ‘.’

One will note that the translation is done by inspecting
the signature of the R function, and that not much can be guessed from the
R ellipsis ‘...’ whenever present. Arguments falling in the ‘...’
will need
to have their R names passed to the constructor for
functions.SignatureTranslatedFunction as show in the example below:

>>> graphics = importr('graphics')
>>> graphics.par(cex_axis = 0.5)
Warning message:
In function (..., no.readonly = FALSE) :
"cex_axis" is not a graphical parameter
<Vector - Python:0xa1688cc / R:0xab763b0>
>>> graphics.par(**{'cex.axis': 0.5})
<Vector - Python:0xae8fbec / R:0xaafb850>

There exists a way to specify manually an argument mapping:

from rpy2.robjects.functions import SignatureTranslatedFunction
STM = SignatureTranslatedFunction
from rpy2.robjects.packages import importr
graphics = importr('graphics')
graphics.par = STM(graphics.par,
 init_prm_translate = {'cex_axis': 'cex.axis'})

>>> graphics.par(cex_axis = 0.5)
<Vector - Python:0xa2cc90c / R:0xa5f7fd8>

Translating blindly each ‘.’ in argument names into ‘_’
currently appearsto be a risky
practice, and is left to one to decide for his/her own code.
The code example is a demonstration of how to do, not a recommendation
to do it:

def iamfeelinglucky(func):
 def f(*args, **kwargs):
 d = {}
 for k, v in kwargs.items():
 d[k.replace('_', '.')] = v
 return func(**d)
 return f

lucky_par = iamfeelinglucky(graphics.par)
lucky_path(cex_axis = 0.5)

Things are also not always that simple, as the use of a dictionary does
not ensure that the order in which the arguments are passed is conserved.

R is capable of introspection, and can return the arguments accepted
by a function through the function formals(), modelled as a method of
functions.Function.

>>> from rpy2.robjects.packages import importr
>>> stats = importr('stats')
>>> rnorm = stats.rnorm
>>> rnorm.formals()
<Vector - Python:0x8790bcc / R:0x93db250>
>>> tuple(rnorm.formals().names)
('n', 'mean', 'sd')

Warning

Here again there is a twist coming from R, and some functions are “special”.
rpy2 is exposing as rpy2.rinterface.SexpClosure R objects that
can be either CLOSXP, BUILTINSXP, or SPECIALSXP. However, only CLOSXP objects
will return non-null formals.

rcall()

The method Function.rcall() is an alternative way to call an
underlying R function. When using R environment
in which the function should be evaluated must be specified.

We use again the example with plot():

from rpy2.robjects.packages import importr
base = importr('base')
stats = importr('stats')
graphics = importr('graphics')

plot = graphics.plot
rnorm = stats.rnorm

import R's "GlobalEnv" to evaluate the function
from rpy2.robjects import globalenv

build a tuple of 2-tuple as arguments
args = (('x', rnorm(100)),)

run the function in globalenv
plot.rcall(args, globalenv)

In the example above the label for y-axis is inferred from the call (in R,
using the function deparse()) and this is producing rather undesirably
long labels. This is the case because the vector x is an anonymous
object as far a R is concerned: while it has a symbol for Python (“x”),
it does not have any for R.

The method rcall() can help overcome this by letting one use
an environment in which the R objects can be bound to a symbol (a name).
While globalenv can be used, a dedicated environment can lead
to a better compartmentalization of code.

The call above can then become:

from rpy2.robjects import Environment

Create an R environment
env = Environment()

Bind in R the R vector to the symbol "x" and
in that environment
env['x'] = rnorm(100)

Build a tuple of pairs (<argument name>, <argument>).
Note that the argument is a symbol. R will resolve what
object is associated to that symbol when the function
is executed.
args = (('x', base.as_symbol('x')),)

plot
plot.rcall(args, env)

Docstrings

The R functions as defined in rpy2.robjects inherit from the class
rpy2.rinterface.SexpClosure, and further documentation
on the behavior of function can be found in Section Functions.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

 	The robjects package

Formulae

For tasks such as modelling and plotting, an R formula can be
a terse, yet readable, way of expressing what is wanted.

In R, it generally looks like:

x <- 1:10
y <- x + rnorm(10, sd=0.2)

fit <- lm(y ~ x)

In the call to lm, the argument is a formula, and it can read like
model y using x.
A formula is a R language object, and the terms in the formula
are evaluated in the environment it was defined in. Without further
specification, that environment is the environment in which the
the formula is created.

The class robjects.Formula is representing an R formula.

import array
from rpy2.robjects import IntVector, Formula
from rpy2.robjects.packages import importr
stats = importr('stats')

x = IntVector(range(1, 11))
y = x.ro + stats.rnorm(10, sd=0.2)

fmla = Formula('y ~ x')
env = fmla.environment
env['x'] = x
env['y'] = y

fit = stats.lm(fmla)

One drawback with that approach is that pretty printing of
the fit object is note quite as good as what one would
expect when working in R: the call item now displays the code
for the function used to perform the fit.

If one still wants to avoid polluting the R global environment,
the answer is to evaluate R call within the environment where the
function is defined.

from rpy2.robjects import Environment

eval_env = Environment()
eval_env['fmla'] = fmla
base = importr('base')

fit = base.eval.rcall(base.parse(text = 'lm(fmla)'), stats._env)

Other options are:

	Evaluate R code on the fly so we that model fitting function has a symbol
in R

fit = robjects.r('lm(%s)' %fmla.r_repr())

	Evaluate R code where all symbols are defined

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

 	The robjects package

R packages

Importing R packages

In R, objects can be bundled into packages for distribution.
In similar fashion to Python modules, the packages can be installed,
and then loaded when their are needed. This is achieved by the R
functions library() and require() (attaching the namespace of
the package to the R search path).

from rpy2.robjects.packages import importr
utils = importr("utils")

The object utils is now a namespace object, in the sense that
its __dict__ contains keys corresponding to the R symbols.
For example the R function data() can be accessed like:

>>> utils.data
<SignatureTranslatedFunction - Python:0x913754c / R:0x943bdf8>

Unfortunately, accessing an R symbol can be a little less straightforward
as R symbols can contain characters that are invalid in Python symbols.
Anyone with experience in R can even add there is a predilection for
the dot (.).

In an attempt to address this, during the import of the package a
translation of the R symbols is attempted, with dots becoming underscores.
This is not unlike what could be found in rpy, but with distinctive
differences:

	The translation is performed once, when the package is imported,
and the results cached. The caching allows us to perform the check below.

	A check that the translation is not masking other R symbols in the package
is performed (e.g., both ‘print_me’ and ‘print.me’ are present).
Should it happen, a rpy2.robjects.packages.LibraryError is raised.
To avoid this, use the optional argument robject_translations
in the function importr().

d = {'print.me': 'print_dot_me', 'print_me': 'print_uscore_me'}
thatpackage = importr('thatpackage', robject_translations = d)

	Thanks to the namespace encapsulation,
translation is restricted to one package, limiting the risk
of masking when compared to rpy translating relatively blindly and
retrieving the first match

Note

There has been (sometimes vocal) concerns over the seemingly unnecessary
trouble with not translating blindly ‘.’ into ‘_’ for all R symbols in
packages, as rpy was doing it.

Fortunately the R development team is providing
a real-life example in R’s standard library
(the /recommended packages/) to demonstrate the point a final time: the
R package tools contains a function package.dependencies
and a function package_dependencies, with different behaviour,
signatures, and documentation pages.

If using rpy2.robjects.packages, we leave how to resolve this
up to you. One way is to do:

d = {'package.dependencies': 'package_dot_dependencies',
 'package_dependencies': 'package_uscore_dependencies'}
tools = importr('tools', robject_translations = d)

The translation of ‘.’ into ‘_’ is clearly not sufficient, as
R symbols can use a lot more characters illegal in Python symbols.
Those more exotic symbols can be accessed through __dict__.

Example:

>>> utils.__dict__['?']
<Function - Python:0x913796c / R:0x9366fac>

In addition to the translation of robjects symbols,
objects that are R functions see their named arguments translated as similar way
(with ‘.’ becoming ‘_’ in Python).

>>> base = importr('base')
>>> base.scan._prm_translate
{'blank_lines_skip': 'blank.lines.skip',
 'comment_char': 'comment.char',
 'multi_line': 'multi.line',
 'na_strings': 'na.strings',
 'strip_white': 'strip.white'}

Importing arbitrary R code as a package

R packages are not the only way to distribute code. From this
author’s experience there exists R code circulating as .R files.

This is most likely not a good thing, but as a Python developers
this also what you might be given with the task to implement an
application (such a web service) around that code. In most working
places you will not have the option to refuse the code until
it is packaged; fortunately rpy2 is trying to make this situation
as simple as possible.

It is possible to take R code in a string, such as for example
the content of a .R file and wrap it up as an rpy2 R package.
If you are given various R files, it is possible to wrap all
of them into their own package-like structure, making concerns such conflicting
names in the respective files unnecessary.

square <- function(x) {
 return(x^2)
}

cube <- function(x) {
 return(x^3)
}

from rpy2.robjects.packages import SignatureTranslatedAnonymousPackage

string = """
square <- function(x) {
 return(x^2)
}

cube <- function(x) {
 return(x^3)
}
"""

powerpack = SignatureTranslatedAnonymousPackage(string, "powerpack")

The R functions square and cube can be called with powerpack.square()
and powerpack.cube.

Package-less R code can be accessible from an URL, and some R users
will just source it from the URL. A recent use-case is to source
files from a code repository (for example GitHub).

Using a snippet on stackoverflow [http://stackoverflow.com/questions/7715723/sourcing-r-script-over-https]:

library(devtools)
source_url('https://raw.github.com/hadley/stringr/master/R/c.r')

Note

If concerned about computer security, you’ll want to think about
the origin of the code and to which level you trust the origin
to be what it really is.

Python has utilities to read data from URLs.

import urllib2
from rpy2.robjects.packages import SignatureTranslatedAnonymousPackage

bioc_url = urllib2.urlopen('https://raw.github.com/hadley/stringr/master/R/c.r')
string = ''.join(bioc_url.readlines())

stringr_c = SignatureTranslatedAnonymousPackage(string, "stringr_c")

The object stringr_c encapsulates the funtions defined in the R file
into something like what the rpy2 importr is returning.

>>> type(stringr_c)
rpy2.robjects.packages.SignatureTranslatedAnonymousPackage
>>> stringr_c._rpy2r.keys()
['str_join', 'str_c']

Unlike the R code first shown, this is not writing anything into the
the R global environment.

>>> from rpy2.robjects import globalenv
>>> globalenv.keys()
()

R namespaces

In R, a namespace is describing something specific in which symbols can be
exported, or kept internal. A lot of recent R packages are declaring a
namespace but this is not mandatory, although recommended in some R
development circles.

Namespaces and the ability to control the export of symbols
were introduced several years ago in R and were probably meant
to address the relative lack of control on symbol encapsulation an R
programmer has. Without it importing a package is in R is like
systematically writing import * on all packages and modules used in Python,
that will predictably create potential problems as the number
of packages used is increasing.

Since Python does not generally have the same requirement by default,
importr() exposes all objects in an namespace,
no matter they are exported or not.

Class diagram

Finding where an R symbol is coming from

Knowing which object is effectively considered when a given symbol
is resolved can be of much importance in R, as the number of packages
attached grows and the use of the namespace accessors ”::” and ”:::”
is not so frequent.

The function wherefrom() offers a way to find it:

>>> import rpy2.robjects.packages as rpacks
>>> env = rpacks.wherefrom('lm')
>>> env.do_slot('name')[0]
'package:stats'

Note

This does not generalize completely, and more details regarding
environment, and packages as environment should be checked
Section SexpEnvironment.

Installing/removing R packages

R is shipped with a set of recommended packages
(the equivalent of a standard library), but there is a large
(and growing) number of other packages available.

Installing those packages can be done within R, or using R on the command line.
The R documentation should be consulted when doing so.

It also possible to install R packages from Python/rpy2, and a non interactive way.

import rpy2.robjects.packages as rpackages
utils = rpackages.importr('utils')

utils.chooseCRANmirror(ind=1) # select the first mirror in the list

If you are a user of bioconductor:

utils.chooseBioCmirror(ind=1) # select the first mirror in the list

The choose<organization>mirror functions sets an R global option that indicates
which repository should be used by default.
The next step is to simply call R’s function to install from a repository.

packnames = ('ggplot2', 'hexbin')
from rpy2.robjects.vectors import StrVector
utils.install_packages(StrVector(packnames))

Note

The global option that sets the default repository will remain until the R
process ends (or the default is changed).

Calling install_packages() without first choosing a mirror will require the user
to interactively choose a mirror.

Control on mostly anything is possible; the R documentation should be consulted
for more information.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

 	The robjects package

Working with R’s OOPs

Object-Oriented Programming can be achieved in R, but in more than
one way. Beside the official S3 and S4 systems, there is a rich
ecosystem of alternative implementations of objects, like aroma, or proto.

S3 objects

S3 objects are default R objects (i.e., not S4 instances) for which
an attribute “class” has been added.

>>> x = robjects.IntVector((1, 3))
>>> tuple(x.rclass)
('integer',)

Making the object x an instance of a class pair, itself inheriting from
integer is only a matter of setting the attribute:

>>> x.rclass = robjects.StrVector(("pair", "integer"))
>>> tuple(x.rclass)
('pair', 'integer')

Methods for S3 classes are simply R functions with a name such as name.<class_name>,
the dispatch being made at run-time from the first argument in the function call.

For example, the function plot.lm plots objects of class lm. The call
plot(something) makes R extract the class name of the object something, and see
if a function plot.<class_of_something> is in the search path.

Note

This rule is not strict as there can exist functions with a dot in their name
and the part after the dot not correspond to an S3 class name.

S4 objects

S4 objects are a little more formal regarding their class definition, and all
instances belong to the low-level R type SEXPS4.

The definition of methods for a class can happen anytime after the class has
been defined (a practice something referred to as monkey patching
or duck punching in the Python world).

There are obviously many ways to try having a mapping between R classes and Python
classes, and the one proposed here is to make Python classes that inherit
rpy2.rinterface.methods.RS4.

Before looking at automated ways to reflect R classes as Python classes, we look
at how a class definition in Python can be made to reflect an R S4 class.
We take the R class lmList in the package lme4 and show how to write
a Python wrapper for it.

Note

The information relative to this section is also available
as a jupyter notebook s4class.ipynb (HTML render: s4class.html)

	Basic handling

	Mapping S4 classes to Python classes
	Custom conversion

	Class attributes

	Methods

Manual R-in-Python class definition

Note

The R package lme4 is not distributed with R, and will have to be installed
for this example to work.

First, a bit of boilerplate code is needed. We
import the higher-level interface and the function
rpy2.robjects.packages.importr(). The R class we want to represent
is defined in the
rpy2 modules and utilities.

import rpy2.robjects as robjects
import rpy2.rinterface as rinterface
from rpy2.robjects.packages import importr

lme4 = importr("lme4")
getmethod = robjects.baseenv.get("getMethod")

StrVector = robjects.StrVector

Once done, the Python class definition can be written.
In the first part of that code, we choose a static mapping of the
R-defined methods. The advantage for doing so is a bit of speed
(as the S4 dispatch mechanism has a cost), and the disadvantage
is that a modification of the method at the R level would require
a refresh of the mappings concerned. The second part of the code
is a wrapper to those mappings, where Python-to-R operations prior
to calling the R method can be performed.
In the last part of the class definition, a static method is defined.
This is one way to have polymorphic constructors implemented.

class LmList(robjects.methods.RS4):
 """ Reflection of the S4 class 'lmList'. """

 _coef = getmethod("coef",
 signature = StrVector(["lmList",]),
 where = "package:lme4")
 _confint = getmethod("confint",
 signature = StrVector(["lmList",]),
 where = "package:lme4")
 _formula = getmethod("formula",
 signature = StrVector(["lmList",]),
 where = "package:lme4")
 _lmfit_from_formula = getmethod("lmList",
 signature = StrVector(["formula", "data.frame"]),
 where = "package:lme4")

 def _call_get(self):
 return self.do_slot("call")
 def _call_set(self, value):
 return self.do_slot("call", value)
 call = property(_call_get, _call_set, None, "Get or set the RS4 slot 'call'.")

 def coef(self):
 """ fitted coefficients """
 return self._coef(self)

 def confint(self):
 """ confidence interval """
 return self._confint(self)

 def formula(self):
 """ formula used to fit the model """
 return self._formula(self)

 @staticmethod
 def from_formula(formula,
 data = rinterface.MissingArg,
 family = rinterface.MissingArg,
 subset = rinterface.MissingArg,
 weights = rinterface.MissingArg):
 """ Build an LmList from a formula """
 res = LmList._lmfit_from_formula(formula, data,
 family = family,
 subset = subset,
 weights = weights)
 res = LmList(res)
 return res

Creating a instance of LmList can now be achieved by specifying
a model as a Formula and a dataset.

sleepstudy = lme4.sleepstudy
formula = robjects.Formula('Reaction ~ Days | Subject')
lml1 = LmList.from_formula(formula,
 sleepstudy)

A drawback of the approach above is that the R “call” is stored,
and as we are passing the DataFrame sleepstudy
(and as it is believed to to be an anonymous structure by R) the call
is verbose: it comprises the explicit structure of the data frame
(try to print lml1). This becomes hardly acceptable as datasets grow bigger.
An alternative to that is to store the columns of the data frame into
the environment for the Formula, as shown below:

sleepstudy = lme4.sleepstudy
formula = robjects.Formula('Reaction ~ Days | Subject')
for varname in ('Reaction', 'Days', 'Subject'):
 formula.environment[varname] = sleepstudy.rx2(varname)

lml1 = LmList.from_formula(formula)

Automated R-in-Python class definitions

The S4 system allows polymorphic definitions of methods, that is,
there can be several methods with the same name but different number and types of arguments.
(This is like Clojure’s multimethods). Mapping R methods to Python methods
automatically and reliably requires a bit of work, and we chose to concatenate
the method name with the type of the parameters in the signature.

Using the automatic mapping is very simple. One only needs to declare
a Python class with the following attributes:

	__rname__
	mandatory
	the name of the R class

	__rpackagename__
	optional
	the R package in which the
class is declared

	__attr_translation__
	optional
	dict [http://docs.python.org/library/stdtypes.html#dict] to translate

	__meth_translation__
	optional
	dict [http://docs.python.org/library/stdtypes.html#dict] to translate

Example:

from rpy2.robjects.packages import importr
stats4 = importr('stats4')
from rpy2.robjects.methods import RS4Auto_Type
use "six" for Python2/Python3 compatibility
import six

class MLE(six.with_metaclass(RS4Auto_Type)):
 __rname__ = 'mle'
 __rpackagename__ = 'stats4'

The class MLE just defined has all attributes and methods needed
to represent all slots (attributes in the S4 nomenclature)
and methods defined for the class when the class is declared
(remember that class methods can be declared afterwards, or even in a different
R package).

Automated mapping of user-defined classes

Once a Python class mirroring an R classis is defined, the mapping can be made
automatic by adding new rules to the conversion system
(see Section Mapping rpy2 objects to arbitrary python objects).

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

 	The robjects package

Object serialization

The R objects in rpy2 are implementing the pickle protocol in Python,
giving access to Python’s pickling (serialize objects to disk,
and restore them from their serialized form).

import pickle
import rpy2.robjects as ro

x = ro.StrVector(('a', 'b', 'c'))

x_serialized = pickle.dumps(x, f)

x_again = pickle.loads(x_serialized)

This is also giving access to Python code using the pickling system
communicate objects across networks or processes such as
multiprocessing [http://docs.python.org/library/multiprocessing.html#module-multiprocessing] and pyspark.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

Vectors and arrays

Beside functions and environments, most of the objects
an R user is interacting with are vector-like.
For example, this means that any scalar is in fact a vector
of length one.

The class Vector has a constructor:

>>> x = robjects.Vector(3)

Creating vectors

Creating vectors can be achieved either from R or from Python.

When the vectors are created from R, one should not worry much
as they will be exposed as they should by rpy2.robjects.

When one wants to create a vector from Python, either the
class Vector or the convenience classes
IntVector, FloatVector, BoolVector,
StrVector can be used.

Sequences of date or time points can be stored in
POSIXlt or POSIXct objects. Both can be created
from Python sequences of time.struct_time [http://docs.python.org/library/time.html#time.struct_time] objects or
from R objects.

New in version 2.2.0: Vectors for date or time points

FactorVector

R’s factors are somewhat peculiar: they aim at representing
a memory-efficient vector of labels, and in order to achieve it
are implemented as vectors of integers to which are associated a (presumably
shorter) vector of labels. Each integer represents the position
of the label in the associated vector of labels.

For example, the following vector of labels

	a
	b
	a
	b
	b
	c

will become

	1
	2
	1
	2
	2
	3

and

	a
	b
	c

>>> sv = ro.StrVector('ababbc')
>>> fac = ro.FactorVector(sv)
>>> print(fac)
[1] a b a b b c
Levels: a b c
>>> tuple(fac)
(1, 2, 1, 2, 2, 3)
>>> tuple(fac.levels)
('a', 'b', 'c')

Since a FactorVector is an IntVector with attached
metadata (the levels), getting items Python-style was not changed from
what happens when gettings items from a IntVector.
A consequence to that is that information about the
levels is then lost.

>>> item_i = 0
>>> fac[item_i]
1

Getting the level corresponding to an item requires using the levels,:

>>> fac.levels[fac[item_i] - 1]
'a'

Warning

Do not forget to subtract one to the value in the FactorVector.
Indexing in Python starts at zero while indexing R starts at one,
and recovering the level for an item requires an adjustment between the two.

When extracting elements from a FactorVector a sensible default
might be to use R-style extracting (see Extracting items),
as it preserves the integer/string duality.

Extracting items

Extracting elements of sequence/vector can become a thorny issue
as Python and R differ on a number of points
(index numbers starting at zero / starting at one,
negative index number meaning index from the end / everything except,
names cannot / can be used for subsettting).

In order to solve this, the Python way and the R way were
made available through two different routes.

Extracting, Python-style

The python __getitem__() method behaves like a Python user would expect
it for a vector (and indexing starts at zero).

>>> x = robjects.r.seq(1, 5)
>>> tuple(x)
(1, 2, 3, 4, 5)
>>> x.names = robjects.StrVector('abcde')
>>> print(x)
a b c d e
1 2 3 4 5
>>> x[0]
1
>>> x[4]
5
>>> x[-1]
5

Extracting, R-style

Access to R-style extracting/subsetting is granted though the two
delegators rx and rx2, representing the R functions [and [[
respectively.

In short, R-style extracting has the following characteristics:

	indexing starts at one

	the argument to subset on can be a vector of
	integers (negative integers meaning exlusion of the elements)

	booleans

	strings (whenever the vector has names for its elements)

>>> print(x.rx(1))
[1] 1
>>> print(x.rx('a'))
a
1

R can extract several elements at once:

>>> i = robjects.IntVector((1, 3))
>>> print(x.rx(i))
[1] 1 3
>>> b = robjects.BoolVector((False, True, False, True, True))
>>> print(x.rx(b))
[1] 2 4 5

When a boolean extract vector is of smaller length than the vector,
is expanded as necessary (this is know in R as the recycling rule):

>>> print(x.rx(True))
1:5
>>> b = robjects.BoolVector((False, True))
>>> print(x.rx(b))
[1] 2 4

In R, negative indices are understood as element exclusion.

>>> print(x.rx(-1))
2:5
>>> i = robjects.IntVector((-1, -3))
>>> print(x.rx(i))
[1] 2 4 5

That last example could also be written:

>>> i = - robjects.IntVector((1, 3)).ro
>>> print(x.rx(i))
[1] 2 4 5

This extraction system is quite expressive, as it allows a very simple writting of
very common tasks in data analysis such as reordering and random sampling.

>>> from rpy2.robjects.packages import importr
>>> base = importr('base')
>>> x = robjects.IntVector((5,3,2,1,4))
>>> o_i = base.order(x)
>>> print(x.rx(o_i))
[1] 1 2 3 4 5
>>> rnd_i = base.sample(x)
>>> x_resampled = x.rx(o_i)

R operators are vector operations, with the operator applyied
to each element in the vector. This can be used to build extraction
indexes.

>>> i = x.ro > 3 # extract values > 3
>>> i = (x.ro >= 2).ro & (x.ro <= 4) # extract values between 2 and 4

(More on R operators in Section Operators).

R/S also have particularities, in which some see consistency issues.
For example although the indexing starts at 1, indexing on 0
does not return an index out of bounds error but a vector
of length 0:

>>> print(x.rx(0))
integer(0)

Assigning items

Assigning, Python-style

Since vectors are exposed as Python mutable sequences, the assignment works
as for regular Python lists.

>>> x = robjects.IntVector((1,2,3))
>>> print(x)
[1] 1 2 3
>>> x[0] = 9
>>> print(x)
[1] 9 2 3

In R vectors can be named, that is elements of the vector have a name.
This is notably the case for R lists. Assigning based on names can be made
easily by using the method Vector.index(), as shown below.

>>> x = robjects.ListVector({'a': 1, 'b': 2, 'c': 3})
>>> x[x.names.index('b')] = 9

Note

Vector.index() has a complexity linear in the length of the vector’s length;
this should be remembered if performance issues are met.

Assigning, R-style

Differences between the two languages require few adaptations, and in
appearance complexify a little the task.
Should other Python-based systems for the representation of (mostly numerical)
data structure, such a numpy be preferred, one will be encouraged to expose
our rpy2 R objects through those structures.

The attributes rx and rx2 used previously can again be used:

>>> x = robjects.IntVector(range(1, 4))
>>> print(x)
[1] 1 2 3
>>> x.rx[1] = 9
>>> print(x)
[1] 9 2 3

For the sake of complete compatibility with R, arguments can be named
(and passed as a dict [http://docs.python.org/library/stdtypes.html#dict] or rpy2.rlike.container.TaggedList).

>>> x = robjects.ListVector({'a': 1, 'b': 2, 'c': 3})
>>> x.rx2[{'i': x.names.index('b')}] = 9

Missing values

Anyone with experience in the analysis of real data knows that
some of the data might be missing. In S/Splus/R special NA values can be used
in a data vector to indicate that fact, and rpy2.robjects makes aliases for
those available as data objects NA_Logical, NA_Real,
NA_Integer, NA_Character, NA_Complex.

>>> x = robjects.IntVector(range(3))
>>> x[0] = robjects.NA_Integer
>>> print(x)
[1] NA 1 2

The translation of NA types is done at the item level, returning a pointer to
the corresponding NA singleton class.

>>> x[0] is robjects.NA_Integer
True
>>> x[0] == robjects.NA_Integer
True
>>> [y for y in x if y is not robjects.NA_Integer]
[1, 2]

Note

NA_Logical is the alias for R’s NA.

Note

The NA objects are imported from the corresponding
rpy2.rinterface objects.

Operators

Mathematical operations on two vectors: the following operations
are performed element-wise in R, recycling the shortest vector if, and
as much as, necessary.

To expose that to Python, a delegating attribute ro is provided
for vector-like objects.

	Python
	R

	+
	+

	-
	-

	*
	*

	/
	/

	**
	** or ^

	or
	|

	and
	&

	<
	<

	<=
	<=

	==
	==

	!=
	!=

>>> x = robjects.r.seq(1, 10)
>>> print(x.ro + 1)
2:11

Note

In Python, using the operator + on two sequences
concatenates them and this behavior has been conserved:

>>> print(x + 1)
[1] 1 2 3 4 5 6 7 8 9 10 1

Note

The boolean operator not cannot be redefined in Python (at least up to
version 2.5), and its behavior could not be made to mimic R’s behavior

Names

R vectors can have a name given to all or some of the elements.
The property names can be used to get, or set, those names.

>>> x = robjects.r.seq(1, 5)
>>> x.names = robjects.StrVector('abcde')
>>> x.names[0]
'a'
>>> x.names[0] = 'z'
>>> tuple(x.names)
('z', 'b', 'c', 'd', 'e')

Array

In R, arrays are simply vectors with a dimension attribute. That fact
was reflected in the class hierarchy with robjects.Array inheriting
from robjects.Vector.

Matrix

A Matrix is a special case of Array. As with arrays,
one must remember that this is just a vector with dimension attributes
(number of rows, number of columns).

>>> m = robjects.r.matrix(robjects.IntVector(range(10)), nrow=5)
>>> print(m)
 [,1] [,2]
[1,] 0 5
[2,] 1 6
[3,] 2 7
[4,] 3 8
[5,] 4 9

Note

In R, matrices are column-major ordered, although the constructor
matrix() accepts a boolean argument byrow that, when true,
will build the matrix as if row-major ordered.

Computing on matrices

Regular operators work element-wise on the underlying vector.

>>> m = robjects.r.matrix(robjects.IntVector(range(4)), nrow=2)
>>> print(m.ro + 1)
 [,1] [,2]
[1,] 1 3
[2,] 2 4

For more on operators, see Operators.

Matrix multiplication is available as Matrix.dot(),
transposition as Matrix.transpose(). Common
operations such as cross-product, eigen values computation
, and singular value decomposition are also available through
method with explicit names.

>>> print(m.crossprod(m))
 [,1] [,2]
[1,] 1 3
[2,] 3 13
>>> print(m.transpose().dot(m))
 [,1] [,2]
[1,] 1 3
[2,] 3 13

Extracting

Extracting can still be performed Python-style or
R-style.

>>> m = ro.r.matrix(ro.IntVector(range(2, 8)), nrow=3)
>>> print(m)
 [,1] [,2]
[1,] 2 5
[2,] 3 6
[3,] 4 7
>>> m[0]
2
>>> m[5]
7
>>> print(m.rx(1))
[1] 2
>>> print(m.rx(6))
[1] 7

Matrixes are two-dimensional arrays, and elements can
be extracted according to two indexes:

>>> print(m.rx(1, 1))
[1] 2
>>> print(m.rx(3, 2))
[1] 7

Extracting a whole row, or column can be achieved by replacing an index number
by True or False

Extract the first column:

>>> print(m.rx(True, 1))

Extract the second row:

>>> print(m.rx(2, True))

DataFrame

Data frames are a common way in R to
represent the data to analyze.

A data frame can be thought of as a tabular representation of data,
with one variable per column, and one data point per row. Each column
is an R vector, which implies one type for all elements
in one given column, and which allows for possibly different types across
different columns.

If we consider for example tre data about pharmacokinetics of theophylline in
different subjects, the data table could look like this:

	Subject
	Weight
	Dose
	Time
	conc

	1
	79.6
	4.02
	0.00
	0.74

	1
	79.6
	4.02
	0.25
	2.84

	1
	79.6
	4.02
	0.57
	6.57

	2
	72.4
	4.40
	7.03
	5.40

	...
	...
	...
	...
	...

Such data representation shares similarities with a table in
a relational database: the structure between the variables, or columns,
is given by other column. In the example above, the grouping of
measures by subject is given by the column Subject.

In rpy2.robjects,
DataFrame represents the R class data.frame.

Creating objects

Creating a DataFrame can be done by:

	Using the constructor for the class

	Create the data.frame through R

	Read data from a file using the instance method from_csvfile()

The DataFrame constructor accepts either an
rinterface.SexpVector
(with typeof equal to VECSXP, that is, an R list)
or any Python object implementing the method items()
(for example dict [http://docs.python.org/library/stdtypes.html#dict] or rpy2.rlike.container.OrdDict).

Empty data.frame:

>>> dataf = robjects.DataFrame({})

data.frame with 2 two columns (not that the order of
the columns in the resulting DataFrame can be different
from the order in which they are declared):

>>> d = {'a': robjects.IntVector((1,2,3)), 'b': robjects.IntVector((4,5,6))}
>>> dataf = robject.DataFrame(d)

To create a DataFrame and be certain of the clumn order order,
an ordered dictionary can be used:

>>> import rpy2.rlike.container as rlc
>>> od = rlc.OrdDict([('value', robjects.IntVector((1,2,3))),
 ('letter', robjects.StrVector(('x', 'y', 'z')))])
>>> dataf = robjects.DataFrame(od)
>>> print(dataf.colnames)
[1] "letter" "value"

Creating the data.frame in R can otherwise be achieved in numerous ways,
as many R functions do return a data.frame, such as the
function data.frame().

Note

When creating a DataFrame, vectors of strings are automatically
converted by R into instances of class Factor. This behavior
can be prevented by wrapping the call into the R base function I.

from rpy2.robjects.vectors import DataFrame, StrVector
from rpy2.robjects.packages import importr
base = importr('base')
dataf = DataFrame({'string': base.I(StrVector('abbab')),
 'factor': StrVector('abbab')})

Here the DataFrame dataf now has two columns, one as
a Factor, the other one as a StrVector

>>> dataf.rx2('string')
<StrVector - Python:0x95fe5ec / R:0x9646ea0>
>>> dataf.rx2('factor')
<FactorVector - Python:0x95fe86c / R:0x9028138>

Extracting elements

Here again, Python’s __getitem__() will work
as a Python programmer will expect it to:

>>> len(dataf)
2
>>> dataf[0]
<Vector - Python:0x8a58c2c / R:0x8e7dd08>

The DataFrame is composed of columns,
with each column being possibly of a different type:

>>> [column.rclass[0] for column in dataf]
['factor', 'integer']

Using R-style access to elements is a little richer,
with the rx2 accessor taking more importance than earlier.

Like with Python’s __getitem__() above,
extracting on one index selects columns:

>>> dataf.rx(1)
<DataFrame - Python:0x8a584ac / R:0x95a6fb8>
>>> print(dataf.rx(1))
 letter
1 x
2 y
3 z

Note that the result is itself
of class DataFrame. To get the column as
a vector, use rx2:

>>> dataf.rx2(1)
<Vector - Python:0x8a4bfcc / R:0x8e7dd08>
>>> print(dataf.rx2(1))
[1] x y z
Levels: x y z

Since data frames are table-like structure, they
can be thought of as two-dimensional arrays and
can therefore be extracted on two indices.

>>> subdataf = dataf.rx(1, True)
>>> print(subdataf)
 letter value
1 x 1
>>> rows_i <- robjects.IntVector((1,3))
>>> subdataf = dataf.rx(rows_i, True)
>>> print(subdataf)
 letter value
1 x 1
3 z 3

That last example is extremely common in R. A vector of indices,
here rows_i, is used to take a subset of the DataFrame.

Python docstrings

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

R help

R has a documentation system that ensures that documentation for code
distributed as packages is installed when packages are installed.
This documentation can be called and searched from R itself.

Unlike Python docstrings, where the documentation string
can be found in the special attribute __doc__,
the R documentation lives outside objects in documentation pages.
Each documentation page is associated at minimum one alias, aliases often
corresponding to the name of an R object defined in a package
(function, dataset, etc...).

For example, querying documentation for the R function sum
becomes a matter of finding which documentation page has the alias sum,
and retrieve that page.

Querying on aliases

When working with R, a frequent use case for using the documention
is to query on an alias (a function name, a dataset, or a class name)
and retrieve the associated documentation.

While the R packaging system will make checks that any given alias
is associated with only one page within the same package, it is well
possible to have several packages defining a documentation page for the
same alias.

With rpy2’s interface to the help system, an easy way to retrive
pages associated with an alias is to
use the function pages(), which returns a tuple
of Page instances.

Package documentation

The documentation for a package is represented with the class
Package.

>>> import rpy2.robjects.help as rh
>>> base_help = rh.Package('base')
>>> base_help.fetch('sum')

Documentation page

A documentation page is represented as an instance of
class Page.

>>> hp = base_help.fetch('sum')

>>> hp.sections.keys()
('title', 'name', 'alias', 'keyword', 'description', 'usage', 'arguments', 'deta
ils', 'value', 'section', 'references', 'seealso')

Note

>>> print(''.join(hp.to_docstring(('details',))))

details

 This is a generic function: methods can be defined for it
 directly or via the Summary group generic.
 For this to work properly, the arguments should be
 unnamed, and dispatch is on the first argument.

 If na.rm is FALSE an NA
 value in any of the arguments will cause
 a value of NA to be returned, otherwise
 NA values are ignored.

 Logical true values are regarded as one, false values as zero.
 For historical reasons, NULL is accepted and treated as if it
 were integer(0) .

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

Mapping rpy2 objects to arbitrary python objects

Note

Switching between a conversion and a no conversion mode,
an operation often present when working with RPy-1.x, is no longer
necessary with rpy2.

The approach followed in rpy2 has 2 levels (rinterface and robjects),
and conversion functions help moving between them.

Protocols

At the lower level (rpy2.rinterface), the rpy2 objects exposing
R objects implement Python protocols to make them feel as natural to a Python
programmer as possible. With them they can be passed as arguments to many
non-rpy2 functions without the need for conversion.

R vectors are mapped to Python objects implementing the methods
__getitem__() / __setitem__() in the sequence
protocol so elements can be accessed easily. They also implement the Python buffer protocol,
allowing them be used in numpy functions without the need for data copying or conversion.

R functions are mapped to Python
objects implementing the __call__() so they can be called just as if
they were functions.

R environments are mapped to Python objects implementing __getitem__() / __setitem__() in the mapping
protocol so elements can be accessed similarly to in a Python dict [http://docs.python.org/library/stdtypes.html#dict].

Note

The rinterface level is largely implemented in C, bridging Python and R C-APIs.
There is no easy way to customize it.

Conversion

In its high-level interface rpy2 is using a conversion system that has the task of
convertion objects between the following 3 representations:
- lower-level interface to R (rpy2.rinterface level),
- higher-level interface to R (rpy2.robjects level)
- other (no rpy2) representations

For example, if one wanted have all Python tuple turned into R character vectors
(1D arrays of strings) as exposed by rpy2‘s low-level interface the function would look like:

from rpy2.rinterface import StrSexpVector
def tuple_str(tpl):
 res = StrSexpVector(tpl)
 return res

Converter objects

The class rpy2.robjects.conversion.Converter groups such conversion functions
into one object.

Our conversion function defined above can then be registered as follows:

from rpy2.robjects.conversion import Converter
my_converter = Converter('my converter')
my_converter.py2ri.register(tuple, tuple_str)

Converter objects are additive, which can be an easy way to create simple combinations of
conversion rules. For example, creating a converter that adds the rule above to the default
conversion rules is written:

from rpy2.robjects import default_converter
default_converter + my_converter

Local conversion rules

The conversion rules can be customized globally (See section Customizing the conversion)
or through the use of local converters as context managers. The latter is
recommended when experimenting or wishing a specific behavior of the conversion
system that is limited in time.

We can use this to example, if we want to change rpy2‘s current refusal to handle
sequences of unspecified type.

The following code is throwing an error that rpy2 does not know how to handle
Python sequences.

x = (1,2,'c')

from rpy2.robjects.packages import importr
base = importr('base')

error here:
res = base.paste(x, collapse="-")

This can be changed by using our converter as an addition to the default conversion scheme:

from rpy2.robjects import default_converter
from rpy2.robjects.conversion import Converter, localconverter
with localconverter(default_converter + my_converter) as cv:
 res = base.paste(x, collapse="-")

ri2ro()

At this level the conversion is between lower-level (rpy2.rinterface)
objects and higher-level (rpy2.robjects) objects.
This method is a generic as implemented in functools.singledispatch()
(with Python 2, singledispatch.singledispatch()).

ri2py()

At this level the conversion is between lower-level (rpy2.rinterface)
objects and any objects (presumably non-rpy2 is the conversion can be made).
This method is a generic as implemented in functools.singledispatch()
(with Python 2, singledispatch.singledispatch()).

For example the optional conversion scheme for numpy objects
will return numpy arrays whenever possible.

Note

robjects-level objects are also implicitly rinterface-level objects
because of the inheritance relationship in their class definition,
but the reverse is not true.
The robjects level is an higher level of abstraction, aiming at simplifying
one’s use of R from Python (although at the possible cost of performances).

p2ri()

At this level the conversion is between (presumably) non-rpy2 objects
and rpy2 lower-level (rpy2.rinterface).

This method is a generic as implemented in functools.singledispatch()
(with Python 2, singledispatch.singledispatch()).

Customizing the conversion

As an example, let’s assume that one want to return atomic values
whenever an R numerical vector is of length one. This is only a matter
of writing a new function ri2py that handles this, as shown below:

import rpy2.robjects as robjects
from rpy2.rinterface import SexpVector

@robjects.conversion.ri2ro.register(SexpVector)
def my_ri2ro(obj):
 if len(obj) == 1:
 obj = obj[0]
 return obj

Then we can test it with:

>>> pi = robjects.r.pi
>>> type(pi)
<type 'float'>

At the time of writing singledispath() does not provide a way to unregister.
Removing the additional conversion rule without restarting Python is left as an
exercise for the reader.

Warning

The example is bending a little the rpy2 rules, as it is using ri2ro while it does not
return an robjects instance when an R vector of length one. We are getting away with it
because atomic Python types such as int [http://docs.python.org/library/functions.html#int], float [http://docs.python.org/library/functions.html#float], bool [http://docs.python.org/library/functions.html#bool], complex [http://docs.python.org/library/functions.html#complex],
str [http://docs.python.org/library/functions.html#str] are well handled by rpy2 at the rinterface/C level.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

Graphics

Introduction

This section shows how to make R graphics from rpy2,
using some of the different graphics systems available to R users.

The purpose of this section is to get users going, and be able to figure out
by reading the R documentation how to perform the same plot in rpy2.

Graphical devices

With R, all graphics are plotted into a so-called graphical device.
Graphical devices can be interactive, like for example X11,
or non-interactive, like png or pdf. Non-interactive devices
appear to be files. It is possible to create custom graphical devices
from Python/rpy2, but this an advanced topic (see Custom graphical devices).

By default an interactive R session will open an interactive device
when needing one. If a non-interactive graphical device is needed,
one will have to specify it.

Note

Do not forget to close a non-interactive device when done.
This can be required to flush pending data from the buffer.

The module grdevices aims at representing the R package
grDevices*. Example with the R functions png and dev.off:

from rpy2.robjects.packages import importr
grdevices = importr('grDevices')

grdevices.png(file="path/to/file.png", width=512, height=512)
plotting code here
grdevices.dev_off()

The package contains an Environment grdevices_env that
can be used to access an object known to belong to that R packages, e.g.:

>>> palette = grdevices.palette()
>>> print(palette)
[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow"
[8] "gray"

Getting ready

To run examples in this section we first import
rpy2.robjects and define few helper
functions.

from rpy2 import robjects
from rpy2.robjects import Formula, Environment
from rpy2.robjects.vectors import IntVector, FloatVector
from rpy2.robjects.lib import grid
from rpy2.robjects.packages import importr, data
from rpy2.rinterface import RRuntimeError
import warnings

The R 'print' function
rprint = robjects.globalenv.get("print")
stats = importr('stats')
grdevices = importr('grDevices')
base = importr('base')
datasets = importr('datasets')

grid.activate()

Package lattice

Introduction

Importing the package lattice is done the
same as it is done for other R packages.

lattice = importr('lattice')

Scatter plot

We use the dataset mtcars, and will use
the lattice function xyplot to make scatter plots.

xyplot = lattice.xyplot

Lattice is working with formulae (see Formulae),
therefore we build one and store values in its environment.
Making a plot is then a matter of calling
the function xyplot with the formula as
as an argument.

datasets = importr('datasets')
mtcars = data(datasets).fetch('mtcars')['mtcars']
formula = Formula('mpg ~ wt')
formula.getenvironment()['mpg'] = mtcars.rx2('mpg')
formula.getenvironment()['wt'] = mtcars.rx2('wt')

p = lattice.xyplot(formula)
rprint(p)

[image: _images/graphics_lattice_xyplot_1.png]
The display of group information can be done
simply by using the named parameter groups.
This will indicate the different groups by
color-coding.

p = lattice.xyplot(formula, groups = mtcars.rx2('cyl'))
rprint(p)

[image: _images/graphics_lattice_xyplot_2.png]
An alternative to color-coding is to have
points is different panels. In lattice,
this done by specifying it in the formula.

formula = Formula('mpg ~ wt | cyl')
formula.getenvironment()['mpg'] = mtcars.rx2('mpg')
formula.getenvironment()['wt'] = mtcars.rx2('wt')
formula.getenvironment()['cyl'] = mtcars.rx2('cyl')

p = lattice.xyplot(formula, layout = IntVector((3, 1)))
rprint(p)

[image: _images/graphics_lattice_xyplot_3.png]

Box plot

p = lattice.bwplot(Formula('mpg ~ factor(cyl) | gear'),
 data = mtcars, fill = 'grey')
rprint(p, nrow=1)

[image: _images/graphics_lattice_bwplot_1.png]

Other plots

The R package lattice contains a number of other plots, which unfortunately cannot all be detailled here.

tmpenv = data(datasets).fetch("volcano")
volcano = tmpenv["volcano"]

p = lattice.wireframe(volcano, shade = True,
 zlab = "",
 aspect = FloatVector((61.0/87, 0.4)),
 light_source = IntVector((10,0,10)))
rprint(p)

[image: _images/graphics_lattice_wireframe_1.png]
Splitting the information into different panels can also be specified in the formula. Here we show an artifial
example where the split is made according to the values plotted on the Z axis.

reshape2 = importr('reshape2')
dataf = reshape2.melt(volcano)
dataf = dataf.cbind(ct = lattice.equal_count(dataf.rx2("value"), number=3, overlap=1/4))
p = lattice.wireframe(Formula('value ~ Var1 * Var2 | ct'),
 data = dataf, shade = True,
 aspect = FloatVector((61.0/87, 0.4)),
 light_source = IntVector((10,0,10)))
rprint(p, nrow = 1)

[image: _images/graphics_lattice_wireframe_2.png]

Package ggplot2

Introduction

The R package ggplot2 implements the Grammar of Graphics.
While more documentation on the package and its usage with R can be found
on the ggplot2 website [http://had.co.nz/ggplot2/], this section will introduce the basic concepts required
to build plots. Obviously, the R package ggplot2 is expected to be installed in the R
used from rpy2.

The package is using the grid lower-level plotting infrastructure, that can be accessed
through the module rpy2.robjects.lib.grid. Whenever separate plots on the same device,
or arbitrary graphical elements overlaid, or significant plot customization, or editing,
are needed some knowledge of grid will be required.

Here again, having data in a DataFrame is expected
(see DataFrame for more information on such objects).

import math, datetime
import rpy2.robjects.lib.ggplot2 as ggplot2
import rpy2.robjects as ro
from rpy2.robjects.packages import importr
base = importr('base')

mtcars = data(datasets).fetch('mtcars')['mtcars']

rnorm = stats.rnorm
dataf_rnorm = robjects.DataFrame({'value': rnorm(300, mean=0) + rnorm(100, mean=3),
 'other_value': rnorm(300, mean=0) + rnorm(100, mean=3),
 'mean': IntVector([0,]*300 + [3,] * 100)})

Plot

gp = ggplot2.ggplot(mtcars)

pp = gp + \
 ggplot2.aes_string(x='wt', y='mpg') + \
 ggplot2.geom_point()

pp.plot()

[image: _images/graphics_ggplot2mtcars.png]

Aesthethics mapping

An important concept for the grammar of graphics is the
mapping of variables, or columns in a data frame, to
graphical representations.

Like it was shown for lattice, a third variable can be represented
on the same plot using color encoding, and this is now done by
specifying that as a mapping (the parameter col when calling
the constructor for the AesString).

gp = ggplot2.ggplot(mtcars)

pp = gp + \
 ggplot2.aes_string(x='wt', y='mpg', col='factor(cyl)') + \
 ggplot2.geom_point()

pp.plot()

[image: _images/graphics_ggplot2mtcarscolcyl.png]
The size of the graphical symbols plotted (here circular dots) can
also be mapped to a variable:

pp = gp + \
 ggplot2.aes_string(x='wt', y='mpg', size='factor(carb)',
 col='factor(cyl)', shape='factor(gear)') + \
 ggplot2.geom_point()

pp.plot()

[image: _images/graphics_ggplot2aescolsize.png]

Geometry

The geometry is how the data are represented. So far we used a scatter
plot of points, but there are other ways to represent our data.

Looking at the distribution of univariate data can be achieved with
an histogram:

gp = ggplot2.ggplot(mtcars)

pp = gp + \
 ggplot2.aes_string(x='wt') + \
 ggplot2.geom_histogram()

#pp.plot()

[image: _images/graphics_ggplot2geomhistogram.png]
gp = ggplot2.ggplot(mtcars)

pp = gp + \
 ggplot2.aes_string(x='wt', fill='factor(cyl)') + \
 ggplot2.geom_histogram()

pp.plot()

[image: _images/graphics_ggplot2geomhistogramfillcyl.png]
Barplot-based representations of several densities on the same
figure can often be lacking clarity and line-based representation,
either geom_freqpoly() (representation of the frequency as broken
lines) or geom_density() (plot a density estimate),
can be in better.

pp = gp + \
 ggplot2.aes_string(x='value', fill='factor(mean)') + \
 ggplot2.geom_density(alpha = 0.5)

[image: _images/graphics_ggplot2geomfreqpolyfillcyl.png]
Whenever a large number of points are present, it can become interesting
to represent the density of “dots” on the scatterplot.

With 2D bins:

gp = ggplot2.ggplot(dataf_rnorm)

pp = gp + \
 ggplot2.aes_string(x='value', y='other_value') + \
 ggplot2.geom_bin2d() + \
 ggplot2.ggtitle('geom_bin2d')
pp.plot(vp = vp)

With a kernel density estimate:

gp = ggplot2.ggplot(dataf_rnorm)

pp = gp + \
 ggplot2.aes_string(x='value', y='other_value') + \
 ggplot2.geom_density2d() + \
 ggplot2.ggtitle('geom_density2d')
pp.plot(vp = vp)

With hexagonal bins:

gp = ggplot2.ggplot(dataf_rnorm)

pp = gp + \
 ggplot2.aes_string(x='value', y='other_value') + \
 ggplot2.geom_hex() + \
 ggplot2.ggtitle('geom_hex')
pp.plot(vp = vp)

[image: _images/graphics_ggplot2geombin2d.png]
Box plot:

gp = ggplot2.ggplot(mtcars)

pp = gp + \
 ggplot2.aes_string(x='factor(cyl)', y='mpg') + \
 ggplot2.geom_boxplot()

pp.plot()

[image: _images/graphics_ggplot2geomboxplot.png]
Boxplots can be used to represent a summary of the data with an emphasis
on location and spread.

gp = ggplot2.ggplot(mtcars)

pp = gp + \
 ggplot2.aes_string(x='factor(cyl)', y='mpg', fill='factor(cyl)') + \
 ggplot2.geom_boxplot()

pp.plot()

[image: _images/graphics_ggplot2aescolboxplot.png]
Models fitted to the data are also easy to add to a plot:

pp = gp + \
 ggplot2.aes_string(x='wt', y='mpg') + \
 ggplot2.geom_point() + \
 ggplot2.stat_smooth(method = 'lm')
pp.plot()

[image: _images/graphics_ggplot2addsmooth.png]
The method can be one of {glm, gam, loess, rlm},
and formula can be specified to declared the fitting (see example below).

[image: _images/graphics_ggplot2addsmoothmethods.png]
The constructor for GeomSmooth also accepts a parameter
groupr that indicates if the fit should be done according to groups.

pp = gp + \
 ggplot2.aes_string(x='wt', y='mpg') + \
 ggplot2.geom_point() + \
 ggplot2.geom_smooth(ggplot2.aes_string(group = 'cyl'),
 method = 'lm')
pp.plot()

[image: _images/graphics_ggplot2smoothbycyl.png]
Encoding the information in the column cyl is again
only a matter of specifying it in the AesString mapping.

pp = ggplot2.ggplot(mtcars) + \
 ggplot2.aes_string(x='wt', y='mpg', col='factor(cyl)') + \
 ggplot2.geom_point() + \
 ggplot2.geom_smooth(ggplot2.aes_string(group = 'cyl'),
 method = 'lm')
pp.plot()

[image: _images/graphics_ggplot2_smoothbycylwithcolours.png]
As can already be observed in the examples with GeomSmooth,
several geometry objects can be added on the top of each other
in order to create the final plot. For example, a marginal rug
can be added to the axis of a regular scatterplot:

gp = ggplot2.ggplot(mtcars)

pp = gp + \
 ggplot2.aes_string(x='wt', y='mpg') + \
 ggplot2.geom_point() + \
 ggplot2.geom_rug()

pp.plot()

[image: _images/graphics_ggplot2geompointandrug.png]
gp = ggplot2.ggplot(dataf_rnorm)

pp = gp + \
 ggplot2.aes_string(x='value', y='other_value') + \
 ggplot2.geom_point(alpha = 0.3) + \
 ggplot2.geom_density2d(ggplot2.aes_string(col = '..level..')) + \
 ggplot2.ggtitle('point + density')
pp.plot()

[image: _images/graphics_ggplot2geompointdensity2d.png]
Polygons can be used for maps, as shown in the relatively artificial
example below:

map = importr('maps')
fr = ggplot2.map_data('france')

add a column indicating which region names have an "o".
fr = fr.cbind(fr, has_o = base.grepl('o', fr.rx2("region"),
 ignore_case = True))
p = ggplot2.ggplot(fr) + \
 ggplot2.geom_polygon(ggplot2.aes_string(x = 'long', y = 'lat',
 group = 'group', fill = 'has_o'),
 col="black")
p.plot()

[image: _images/graphics_ggplot2map_polygon.png]

Axes

Axes can be transformed and configured in various ways.

A common transformation is the log-transform of the coordinates.

from rpy2.robjects.lib import grid
grid.newpage()
grid.viewport(layout=grid.layout(2, 3)).push()

diamonds = ggplot2.ggplot2.__rdata__.fetch('diamonds')['diamonds']
gp = ggplot2.ggplot(diamonds)

for col_i, trans in enumerate(("identity", "log2", "sqrt")):
 # fetch viewport at position col_i+1 on the first row
 vp = grid.viewport(**{'layout.pos.col':col_i+1, 'layout.pos.row': 1})
 pp = gp + \
 ggplot2.aes_string(x='carat', y='price') + \
 ggplot2.geom_point(alpha = 0.1, size = 1) + \
 ggplot2.coord_trans(x = trans, y = trans) + \
 ggplot2.ggtitle("%s on axis" % trans)
 # plot into the viewport
 pp.plot(vp = vp)

 # fetch viewport at position col_i+1 on the second row
 vp = grid.viewport(**{'layout.pos.col':col_i+1, 'layout.pos.row': 2})
 pp = gp + \
 ggplot2.aes_string(x='%s(carat)' % trans, y='%s(price)' % trans) + \
 ggplot2.geom_point(alpha = 0.1, size = 1) + \
 ggplot2.ggtitle("%s(<variable>)" % trans)
 pp.plot(vp = vp)

[image: _images/graphics_ggplot2mtcars_coordtrans.png]

Note

The red square is an example of adding graphical
elements to a ggplot2 figure.

vp = grid.viewport(**{'layout.pos.col':2, 'layout.pos.row': 1})
grid.rect(x = grid.unit(0.7, "npc"),
 y = grid.unit(0.2, "npc"),
 width = grid.unit(0.1, "npc"),
 height = grid.unit(0.1, "npc"),
 gp = grid.gpar(fill = "red"),
 vp = vp).draw()

Facets

Splitting the data into panels, in a similar fashion to what we did
with lattice, is now a matter of adding facets.
A central concept to ggplot2 is that plot are made of added
graphical elements, and adding specifications such as “I want my data
to be split in panel” is then a matter of adding that information
to an existing plot.

For example, splitting the plots on the data in column cyl
is still simply done by adding a FacetGrid.

pp = gp + \
 ggplot2.aes_string(x='wt', y='mpg') + \
 ggplot2.geom_point() + \
 ggplot2.facet_grid(ro.Formula('. ~ cyl')) + \
 ggplot2.geom_smooth(ggplot2.aes_string(group="cyl"),
 method = "lm",
 data = mtcars)

pp.plot()

[image: _images/graphics_ggplot2smoothbycylfacetcyl.png]
The way data are represented (the geometry in the terminology
used the grammar of graphics) are still specified the usual way.

pp = gp + \
 ggplot2.aes_string(x='wt') + \
 ggplot2.geom_histogram(binwidth=2) + \
 ggplot2.facet_grid(ro.Formula('. ~ cyl'))

pp.plot()

[image: _images/graphics_ggplot2histogramfacetcyl.png]
pp = gp + \
 ggplot2.aes_string(x='wt', y='mpg') + \
 ggplot2.geom_point() + \
 ggplot2.geom_abline(intercept = 30)
pp.plot()

[image: _images/graphics_ggplot2_qplot_4.png]
pp = gp + \
 ggplot2.aes_string(x='wt', y='mpg') + \
 ggplot2.geom_point() + \
 ggplot2.geom_abline(intercept = 30) + \
 ggplot2.geom_abline(intercept = 15)
pp.plot()

[image: _images/graphics_ggplot2_qplot_5.png]
pp = gp + \
 ggplot2.aes_string(x='wt', y='mpg') + \
 ggplot2.geom_point() + \
 ggplot2.stat_smooth(method = 'lm', fill = 'blue',
 color = 'red', size = 3)
pp.plot()

[image: _images/graphics_ggplot2smoothblue.png]
pp = gp + \
 ggplot2.aes_string(x='wt', y='mpg') + \
 ggplot2.geom_point() + \
 ggplot2.stat_smooth(method = 'lm', fill = 'blue',
 color = 'red', size = 3)
pp.plot()

[image: _images/graphics_ggplot2smoothblue.png]

Package grid

The grid package is the underlying plotting environment for lattice
and ggplot2 figures. In few words, it consists in pushing and poping systems
of coordinates (viewports) into a stack, and plotting graphical elements into them.
The system can be thought of as a scene graph, with each viewport a node in
the graph.

>>> from rpy2.robjects.lib import grid

Getting a new page is achieved by calling the function grid.newpage().

Calling layout() will create a layout, e.g. create a layout with one row
and 3 columns:

>>> lt = grid.layout(1, 3)

That layout can be used to construct a viewport:

>>> vp = grid.viewport(layout = lt)

The created viewport corresponds to a graphical entity.
Pushing into the current viewport, can be done by using the class method
grid.Viewport.push():

>>> vp.push()

Example:

grid.newpage()
create a rows/columns layout
lt = grid.layout(2, 3)
vp = grid.viewport(layout = lt)
push it the plotting stack
vp.push()

create a viewport located at (1,1) in the layout
vp = grid.viewport(**{'layout.pos.col':1, 'layout.pos.row': 1})
create a (unit) rectangle in that viewport
grid.rect(vp = vp).draw()

vp = grid.viewport(**{'layout.pos.col':2, 'layout.pos.row': 2})
create text in the viewport at (1,2)
grid.text("foo", vp = vp).draw()

vp = grid.viewport(**{'layout.pos.col':3, 'layout.pos.row': 1})
create a (unit) circle in the viewport (1,3)
grid.circle(vp = vp).draw()

[image: _images/graphics_grid.png]

Custom ggplot2 layout with grid

grid.newpage()

create a viewport as the main plot
vp = grid.viewport(width = 1, height = 1)
vp.push()

tmpenv = data(datasets).fetch("rock")
rock = tmpenv["rock"]

p = ggplot2.ggplot(rock) + \
 ggplot2.geom_point(ggplot2.aes_string(x = 'area', y = 'peri')) + \
 ggplot2.theme_bw()
p.plot(vp = vp)

vp = grid.viewport(width = 0.6, height = 0.6, x = 0.37, y=0.69)
vp.push()
p = ggplot2.ggplot(rock) + \
 ggplot2.geom_point(ggplot2.aes_string(x = 'area', y = 'shape')) + \
 ggplot2.theme(**{'axis.text.x': ggplot2.element_text(angle = 45)})

p.plot(vp = vp)

[image: _images/graphics_ggplot2withgrid.png]

Classes

Class diagram

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	High-level interface

DataFrames and dplyr

dplyr

Note

This section is available as a jupyter notebook dplyr.ipynb (HTML render: dplyr.html)

from functools import partial
from rpy2.ipython import html
html.html_rdataframe=partial(html.html_rdataframe, table_class="docutils")

dplyr in Python

We need 2 things for this:

1- A data frame (using one of R’s demo datasets).

from rpy2.robjects.packages import importr, data
datasets = importr('datasets')
mtcars_env = data(datasets).fetch('mtcars')
mtcars = mtcars_env['mtcars']

In addition to that, and because this tutorial is in a notebook, we
initialize HTML rendering for R objects (pretty display of R data
frames).

import rpy2.ipython.html
rpy2.ipython.html.init_printing()

2- dplyr

from rpy2.robjects.lib.dplyr import DataFrame

With this we have the choice of chaining (D3-style)

dataf = (DataFrame(mtcars).
 filter('gear>3').
 mutate(powertoweight='hp*36/wt').
 group_by('gear').
 summarize(mean_ptw='mean(powertoweight)'))

dataf

DataFrame with 2 rows and 2 columns:

 	
 	
 	gear
 	mean_ptw

 	0
 	1
 	4.0
 	1237.1266499803169

 	1
 	2
 	5.0
 	2574.0331639315027

or piping (magrittr style).

from rpy2.robjects.lib.dplyr import (filter,
 mutate,
 group_by,
 summarize)

dataf = (DataFrame(mtcars) >>
 filter('gear>3') >>
 mutate(powertoweight='hp*36/wt') >>
 group_by('gear') >>
 summarize(mean_ptw='mean(powertoweight)'))

dataf

DataFrame with 2 rows and 2 columns:

 	
 	
 	gear
 	mean_ptw

 	0
 	1
 	4.0
 	1237.1266499803169

 	1
 	2
 	5.0
 	2574.0331639315027

The strings passed to the dplyr function are evaluated as expression,
just like this is happening when using dplyr in R. This means that when
writing mean(powertoweight) the R function mean() is used.

Using a Python function is not too difficult though. We can just call
Python back from R. To achieve this we simply use the decorator
rternalize.

Define a python function, and make
it a function R can use through `rternalize`
from rpy2.rinterface import rternalize
@rternalize
def mean_np(x):
 import numpy
 return numpy.mean(x)

Bind that function to a symbol in R's
global environment
from rpy2.robjects import globalenv
globalenv['mean_np'] = mean_np

Write a dplyr chain of operations,
using our Python function `mean_np`
dataf = (DataFrame(mtcars) >>
 filter('gear>3') >>
 mutate(powertoweight='hp*36/wt') >>
 group_by('gear') >>
 summarize(mean_ptw='mean(powertoweight)',
 mean_np_ptw='mean_np(powertoweight)'))

dataf

DataFrame with 2 rows and 3 columns:

 	
 	
 	gear
 	mean_np_ptw
 	mean_ptw

 	0
 	1
 	4.0
 	1237.126649980317
 	1237.1266499803169

 	1
 	2
 	5.0
 	2574.0331639315023
 	2574.0331639315027

It is also possible to carry this out without having to place the custom
function in R’s global environment.

del(globalenv['mean_np'])

from rpy2.robjects.lib.dplyr import StringInEnv
from rpy2.robjects import Environment
my_env = Environment()
my_env['mean_np'] = mean_np

dataf = (DataFrame(mtcars) >>
 filter('gear>3') >>
 mutate(powertoweight='hp*36/wt') >>
 group_by('gear') >>
 summarize(mean_ptw='mean(powertoweight)',
 mean_np_ptw=StringInEnv('mean_np(powertoweight)',
 my_env)))

dataf

DataFrame with 2 rows and 3 columns:

 	
 	
 	gear
 	mean_np_ptw
 	mean_ptw

 	0
 	1
 	4.0
 	1237.126649980317
 	1237.1266499803169

 	1
 	2
 	5.0
 	2574.0331639315023
 	2574.0331639315027

note: rpy2’s interface to dplyr is implementing a fix to the
(non-?)issue 1323 (https://github.com/hadley/dplyr/issues/1323)

The seamless translation of transformations to SQL whenever the data are
in a table can be used directly. Since we are lifting the original
implementation of dplyr, it just works.

from rpy2.robjects.lib.dplyr import dplyr
in-memory SQLite database broken in dplyr's src_sqlite
db = dplyr.src_sqlite(":memory:")
import tempfile
with tempfile.NamedTemporaryFile() as db_fh:
 db = dplyr.src_sqlite(db_fh.name)
 # copy the table to that database
 dataf_db = DataFrame(mtcars).copy_to(db, name="mtcars")
 res = (dataf_db >>
 filter('gear>3') >>
 mutate(powertoweight='hp*36/wt') >>
 group_by('gear') >>
 summarize(mean_ptw='mean(powertoweight)'))
 print(res)
#

Source: sqlite 3.8.6 [/tmp/tmp1zb7gwm3]
From: <derived table> [?? x 2]

 gear mean_ptw
 (dbl) (dbl)
1 4 1237.127
2 5 2574.033
..

Since we are manipulating R objects, anything available to R is also
available to us. If we want to see the SQL code generated that’s:

print(res.rx2("query")["sql"])

<SQL> SELECT "gear", "mean_ptw"
FROM (SELECT "gear", AVG("powertoweight") AS "mean_ptw"
FROM (SELECT "mpg", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb", "hp" * 36.0 / "wt" AS "powertoweight"
FROM "mtcars"
WHERE "gear" > 3.0) AS "zzz1"
GROUP BY "gear") AS "zzz2"

And if the starting point is a pandas data frame, do the following and
start over again.

from rpy2.robjects import pandas2ri
from rpy2.robjects import default_converter
from rpy2.robjects.conversion import localconverter
with localconverter(default_converter + pandas2ri.converter) as cv:
 mtcars = mtcars_env['mtcars']
 mtcars = pandas2ri.ri2py(mtcars)
print(type(mtcars))

<class 'pandas.core.frame.DataFrame'>

Using a local converter lets us also go from the pandas data frame to
our dplyr-augmented R data frame.

with localconverter(default_converter + pandas2ri.converter) as cv:
 dataf = (DataFrame(mtcars).
 filter('gear>=3').
 mutate(powertoweight='hp*36/wt').
 group_by('gear').
 summarize(mean_ptw='mean(powertoweight)'))

dataf

DataFrame with 3 rows and 2 columns:

 	
 	
 	gear
 	mean_ptw

 	0
 	1
 	3.0
 	1633.989574118287

 	1
 	2
 	4.0
 	1237.1266499803169

 	2
 	3
 	5.0
 	2574.0331639315027

Reuse. Get things done. Don’t reimplement.

tidyr

Note

This section is available as a jupyter notebook tidyr.ipynb (HTML render: tidyr.html)

from functools import partial
from rpy2.ipython import html
html.html_rdataframe=partial(html.html_rdataframe, table_class="docutils")

tidyr in Python

from rpy2.robjects.lib.tidyr import DataFrame

(note: dplyr is implicitly used by tidyr.)

In addition to that, and because this tutorial is in a notebook, we
initialize HTML rendering for R objects (pretty display of R data
frames).

import rpy2.ipython.html
rpy2.ipython.html.init_printing()

from collections import OrderedDict
from rpy2.robjects.vectors import (StrVector,
 IntVector)
dataf = DataFrame(OrderedDict(x=StrVector(("a", "b", "b")),
 y=IntVector((3, 4, 5)),
 z=IntVector((6, 7, 8))))
dataf

DataFrame with 3 rows and 3 columns:

 	
 	
 	z
 	x
 	y

 	0
 	1
 	6
 	a
 	3

 	1
 	2
 	7
 	b
 	4

 	2
 	3
 	8
 	b
 	5

dataf.spread('x', 'y')

DataFrame with 3 rows and 3 columns:

 	
 	
 	z
 	a
 	b

 	0
 	1
 	6
 	3
 	NA

 	1
 	2
 	7
 	NA
 	4

 	2
 	3
 	8
 	NA
 	5

Reuse. Get things done. Don’t reimplement.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

Interactive work

Overview

Note

This is an experimental package, and some of the ideas experimented
here have already made it to rpy2.robjects.

For interactive work the “R magic” extension to ipython is
the preferred way / most tested way for interactive work.

IPython magic integration (was rmagic)

R event loop

In order to perform operations like refreshing interactive graphical
devices, R need to process the events triggering the refresh.

>>> from rpy2.interactive import process_revents
>>> process_revents.start()

>>> from rpy2.robjects.packages import importr
>>> from rpy2.robjects.vectors import IntVector
>>> graphics = importr("graphics")
>>> graphics.barplot(IntVector((1,3,2,5,4)), ylab="Value")

Now the R graphical device is updated when resized.
Should one wish to stop processing the events:

>>> process_revents.stop()

The processing can be resumed, stopped again, and this repeated ad libitum.

The frequency with which the processing of R events is performed can be roughly
controlled. The thread is put to sleep for an arbitray duration between
each processing of R events.

>>> process_revents.EventProcessor.interval
0.2

This value can be changed and set to an other value if more or less frequent
processing is wished. This can be done while the threaded processing is
active and will be taken into account at the next sleep cycle.

>>> process_revents.EventProcessor.interval = 1.0

Utilities for interactive work

Note

This module contains a number of experimental features, some of
them no longer necessary since the “R magic” extension for ipython.
They are becoming deprecated, and will removed from the code base
in future versions.

R is very often used as an interactive toplevel, or read-eval-print loop (REPL).
This is convenient when analyzing data: type some code, get the result,
type some new code and further analysis based on the results.

Python can also be used in a similar fashion, but limitations of the
default Python console have lead to the creation of alternative consoles
and interactive development editors
(idle, ipython, bpython, emacs mode, komodo, ...).
Features such as code highlighting, autocompletion, and convenient display of
help strings or function signatures have made those valuable tools.

The package rpy2.interactive aims at interactive users, but can be used
in non-interactive code as well. It is trading flexibility
or performances for ease-of-use.

>>> import rpy2.interactive as r
>>> import rpy2.interactive.packages # this can take few seconds
>>> v = r.IntVector((1,2,3))
>>> r.packages.importr('datasets')
rpy2.robjecs.packages.Package as a <module 'datasets' (built-in)>
>>> data = rpy2.interactive.packages.data
>>> rpackages = r.packages.packages
>>> # list of datasets
>>> data(rpackages.datasets).names()
list here
>>> env = data(rpackages.datasets).fetch('trees')
>>> tuple(env['trees'].names)
('Girth', 'Height', 'Volume')

R vectors

>>> import rpy2.interactive as r
>>> r.IntVector(range(10))
<IntVector - Python:0x935774c / R:0xa22b440>
[0, 1, 2, ..., 7, 8, 9]
>>> r.IntVector(range(100))
<IntVector - Python:0xa1c2dcc / R:0x9ac5540>
[0, 1, 2, ..., 97, 98, 99]

In R, there are no scalars.

>>> r.packages.base.pi
<FloatVector - Python:0xa1d7a0c / R:0x9de02a8>
[3.141593]

To know more, please check Section R vectors.

R packages

R has a rich selection of packages, known in other computer
languages and systems as libraries.

R Packages can be:

	available in R repositories (public or private)

	installed

	attached (loaded)

Loading installed packages

When starting R, the base package as well as by default the packages
grDevices, graphics, methods, stats, and utils are loaded.

We start with the loading of R packages since this is a very common
operation in R, and since R is typically distributed
with recommended packages one can immediately start playing with.

Loading installed R packages can be done through the function importr().

>>> import rpy2.interactive as r
>>> import rpy2.interactive.packages # this can take few seconds
>>> r.packages.importr("cluster")
rpy2.robjecs.packages.Package as a <module 'cluster' (built-in)>

The function returns a package object, and also adds a reference to it
in r.packages.packages

>>> rlib = r.packages.packages
>>> rlib.cluster
rpy2.robjecs.packages.Package as a <module 'cluster' (built-in)>

All objects in the R package cluster can subsequently be accessed
through that namespace object. For example, for the function barplot:

>>> rlib.cluster.silhouette
<SignatureTranslatedFunction - Python:0x24f9418 / R:0x2f5b008>

Similarly, other packages such as nlme, and datasets
can be loaded.

>>> r.packages.importr("nlme")
rpy2.robjecs.packages.Package as a <module 'stats' (built-in)>
>>> r.packages.importr("datasets")
rpy2.robjecs.packages.Package as a <module 'datasets' (built-in)>

We can then demonstrate how to access objects in R packages through
a graphical example:

r.packages.graphics.coplot(r.Formula('Time ~ conc | Wt'),
 r.packages.datasets.Theoph)

Available packages

R has a function to list the available packages.

>>> import rpy2.interactive as r
>>> import rpy2.interactive.packages # this can take few seconds
>>> r.packages.importr("utils")
>>> rlib = r.packages.packages
>>> m = rlib.utils.available_packages()

The object returned is a rpy2.robjects.vectors.Matrix, with one
package per row (there are many packages in the default CRAN repository).

>>> tuple(m.dim)
(2692, 13)

>>> tuple(m.colnames)
('Package', 'Version', 'Priority', 'Depends', 'Imports', 'LinkingTo', 'Suggests', 'Enhances', 'OS_type', 'License', 'Archs', 'File', 'Repository')

Note

Specific repositories can be specified.

For example with bioconductor.

import rpy2.rinteractive as r

bioc_rooturl = "http://www.bioconductor.org/packages"
bioc_version = "2.7"
bioc_sections = ("bioc", "data/annotation", "data/experiment", "extra")

repos = r.vectors.StrVector(["/".join((bioc_rooturl, bioc_version, x)) for x in bioc_sections])

m_bioc = rlib.utils.available_packages(contriburl = r.packages.utils.contrib_url(repos))

Installing packages

Note

To install a package for repositories, we have to load the package utils.
See Section load-packages for details about loading packages

>>> import rpy2.interactive as r
>>> import rpy2.interactive.packages # this can take few seconds
>>> rlib = r.packages.packages
>>> r.packages.importr("utils")
>>> package_name = "lme4"
>>> rlib.utils.install_packages(package_name)

Once a package is installed it is available for future use without having
the need to install it again (unless a different version of R is used).

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

Numpy

A popular solution for scientific computing with Python is numpy
(previous instances were Numpy and numarray).

rpy2 has features to ease bidirectional communication with numpy.

High-level interface

From rpy2 to numpy:

R vectors or arrays can be converted to numpy arrays using
numpy.array() or numpy.asarray():

import numpy

ltr = robjects.r.letters
ltr_np = numpy.array(ltr)

This behavior is inherited from the low-level interface;
vector-like objects inheriting from rpy2.rinterface.SexpVector
present an interface recognized by numpy.

from rpy2.robjects.packages import importr, data
import numpy

datasets = importr('datasets')
ostatus = data(datasets).fetch('occupationalStatus')['occupationalStatus']
ostatus_np = numpy.array(ostatus)
ostatus_npnc = numpy.asarray(ostatus)

The matrix ostatus is an 8x8 matrix:

>>> print(ostatus)
 destination
origin 1 2 3 4 5 6 7 8
 1 50 19 26 8 7 11 6 2
 2 16 40 34 18 11 20 8 3
 3 12 35 65 66 35 88 23 21
 4 11 20 58 110 40 183 64 32
 5 2 8 12 23 25 46 28 12
 6 12 28 102 162 90 554 230 177
 7 0 6 19 40 21 158 143 71
 8 0 3 14 32 15 126 91 106

Its content has been copied to a numpy array:

>>> ostatus_np
array([[50, 19, 26, 8, 7, 11, 6, 2],
 [16, 40, 34, 18, 11, 20, 8, 3],
 [12, 35, 65, 66, 35, 88, 23, 21],
 [11, 20, 58, 110, 40, 183, 64, 32],
 [2, 8, 12, 23, 25, 46, 28, 12],
 [12, 28, 102, 162, 90, 554, 230, 177],
 [0, 6, 19, 40, 21, 158, 143, 71],
 [0, 3, 14, 32, 15, 126, 91, 106]])
>>> ostatus_np[0, 0]
50
>>> ostatus_np[0, 0] = 123
>>> ostatus_np[0, 0]
123
>>> ostatus.rx(1, 1)[0]
50

On the other hand, ostatus_npnc is a view on ostatus; no copy was made:

>>> ostatus_npnc[0, 0] = 456
>>> ostatus.rx(1, 1)[0]
456

Since we did modify an actual R dataset for the session, we should restore it:

>>> ostatus_npnc[0, 0] = 50

As we see, numpy.asarray(): provides a way to build a view on the underlying
R array, without making a copy. This will be of particular appeal to developpers whishing
to mix rpy2 and numpy code, with the rpy2 objects or the numpy view passed to
functions, or for interactive users much more familiar with the numpy syntax.

Note

The current interface is relying on the __array_struct__ defined
in numpy.

Python buffers, as defined in PEP 3118 [https://www.python.org/dev/peps/pep-3118], is the way to the future,
and rpy2 is already offering them... although as a (poorly documented)
experimental feature.

From numpy to rpy2:

The activation (and deactivation) of the automatic conversion
of numpy objects into rpy2 objects can be made with:

from rpy2.robjects import numpy2ri
numpy2ri.activate()
numpy2ri.deactivate()

Warning

In earlier versions of rpy2, the import was all that was needed to
have the conversion. A side-effect when importing a module can
lead to problems, and there is now an extra step to make the
conversion active: call the function rpy2.robjects.numpy2ri.activate().

Note

Why make this an optional import, while it could have been included
in the function py2ri() (as done in the original patch
submitted for that function) ?

Although both are valid and reasonable options, the design decision
was taken in order to decouple rpy2 from numpy the most, and
do not assume that having numpy installed automatically
meant that a programmer wanted to use it.

Note

The module numpy2ri is an example of how custom conversion to
and from rpy2.robjects can be performed.

Low-level interface

The rpy2.rinterface.SexpVector objects are made to
behave like arrays, as defined in the Python package numpy.

The functions numpy.array() and numpy.asarray() can
be used to construct numpy arrays:

>>> import numpy
>>> rx = rinterface.SexpVector([1,2,3,4], rinterface.INTSXP)
>>> nx = numpy.array(rx)
>>> nx_nc = numpy.asarray(rx)

Note

when using numpy.asarray(), the data are not copied.

>>> rx[2]
3
>>> nx_nc[2] = 42
>>> rx[2]
42
>>>

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

Low-level interface

Overview

The package rinterface is provided as a lower-level interface,
for situations where either the use-cases addressed by robjects
are not covered, or for the cases where the layer in robjects
has an excessive cost in terms of performance.

The package can be imported with:

>>> import rpy2.rinterface as rinterface

Initialization

One has to initialize R before much can be done.
The function initr() lets one initialize
the embedded R.

This is done with the function initr().

>>> rinterface.initr()

Initialization should only be performed once.
To avoid unpredictable results when using the embedded R,
subsequent calls to initr() will not have any effect.

The functions get_initoptions() and set_initoptions()
can be used to modify the options.
Default parameters for the initialization are otherwise
in the module variable initoptions.

Warning

Currently the set of default initialization option contains –vanilla,
which implies that R_LIBS, whenever set, is ignored.
The initialization options will have to be set _before_ the R
is started.

This can be achieved very simply by added the following lines before initializing
the embedded R, or importing rpy2.robjects as this action performs an initialization.

import rpy2.rinterface
rpy2.rinterface.set_initoptions(('rpy2', '--verbose', '--no-save'))

Note

If calling initr() returns an error stating that
R_HOME is not defined, you should either have the R executable in
your path (PATH on unix-alikes, or Path on Microsoft Windows) or
have the environment variable R_HOME defined.

Should the initialization fail, a mismatch between the version of the R
rpy2 was compiled against and the R rpy2 is run with should be investigated.
The variable rpy2.rinterface.R_BUILD_VERSION contains information
about the R version rpy2 was built against.
rpy2 is relatively independent of R versions, but changes in the R C API
might cause problems.

Ending R

Ending the R process is possible, but starting it again with
initr() does appear to lead to an R process that is hardly usable.
For that reason, the use of endr() should be considered
carefully, if at all.

Note

When writing a GUI for R, a developper may want to either prevent a user
to call R quit(), or ensure that specific code is executed
before terminating R (for example a confirmation dialog window
“do you really want to terminate ?”).
This can be done by replacing the callback cleanup with an appropriate
function (see Clean up).

R space and Python space

When using the RPy2 package, two realms are co-existing: R and Python.

The Sexp_Type objects can be considered as Python envelopes pointing
to data stored and administered in the R space.

R variables are existing within an embedded R workspace, and can be accessed
from Python through their python object representations.

We distinguish two kind of R objects: named objects and anonymous objects.
Named objects have an associated symbol in the R workspace.

Named objects

For example, the following R code is creating two objects, named x and hyp
respectively, in the global environment.
Those two objects could be accessed from Python using their names.

x <- c(1,2,3)

hyp <- function(x, y) sqrt(x^2 + y^2)

Two environments are provided as rpy2.rinterface.SexpEnvironment

globalenv

The global environment can be seen as the root (or topmost) environment,
and is in fact a list, that is a sequence, of environments.

When an R library (package in R’s terminology) is loaded,
is it added to the existing sequence of environments. Unless
specified, it is inserted in second position. The first position
being always attributed to the global environment.
The library is said to be attached to the current search path.

baseenv

The base package has a namespace, that can be accessed as an environment.

Note

Depending on what is in globalenv and on the attached packages, base
objects can be masked when starting the search from globalenv.
Use baseenv
when you want to be sure to access a function you know to be
in the base namespace.

Anonymous objects

Anonymous R objects do not have an associated symbol, yet are protected
from garbage collection.

Such objects can be created when using the constructor for an Sexp* class.

For example:

>>> x = rinterface.IntVector((1,2,3))

creates a fully usable R vector, but it does not have an associtated
R symbol (it is in memory, but cannot be called by name fomr R). It is
also protected from garbage collection until, until
x is deleted and the Python garbage collector destroys x.

Note

To finalize the recovery of the memory used, the R garbage collector
must be also be called. This should happen automatically while running
R code when a threshold of memory usage is reached, but it
is also possible to call explicitly both garbage collectors.
See Memory management and garbage collection for more details.

Pass-by-value paradigm

The root of the R language is functional, with arguments passed by value.
R is actually using tricks to lower memory usage, such as only copying an object
when needed (that is when the object is modified in a local block),
but copies of objects are nevertheless frequent. This can remain unnoticed
by a user until large objects are in use or a large number of modification
of objects are performed, in which case performance issues may appear.
An infamous example is when the column names for a matrix are changed,
bringing a system to its knees when the matrix is very large,
as the whole matrix ends up being copied.

On the contrary, Python is using pointer objects passed around
through function calls, and since rpy2, is a Python-to-R interface
the Python approach was conserved.

Although being contrived, the example below will illustrate the point.
With R, renaming a column is like:

create a matrix
m <- matrix(1:10, nrow = 2,
 dimnames = list(c("1", "2"),
 c("a", "b", "c", "d", "e")))
rename the third column
i <- 3
colnames(m)[i] <- "foo"

With rpy2.rinterface:

import and initialize
import rpy2.rinterface as ri
ri.initr()

make a function to rename column i
def rename_col_i(m, i, name):
 m.do_slot("dimnames")[1][i] = name

create a matrix
matrix = ri.baseenv["matrix"]
rlist = ri.baseenv["list"]
m = matrix(ri.baseenv[":"](1, 10),
 nrow = 2,
 dimnames = rlist(ri.StrSexpVector(("1", "2")),
 ri.StrSexpVector(("a", "b", "c", "d", "e"))))

Now we can check that the column names

>>> tuple(m.do_slot("dimnames")[1])
('a', 'b', 'c', 'd', 'e')

And rename the third column (remembering that R vectors are 1-indexed
while Python sequences are 0-indexed).

>>> i = 3-1
>>> rename_col_i(m, i, ri.StrSexpVector(("foo",)))
>>> tuple(m.do_slot("dimnames")[1])
('a', 'b', 'foo', 'd', 'e')

Unlike with the R code, neither the matrix or the vector with the column names
are copied. Whenever this is not a good thing, R objects can be copied the
way Python objects are usually copied (using copy.deepcopy() [http://docs.python.org/library/copy.html#copy.deepcopy],
Sexp implements Sexp.__deepcopy__()).

Parsing and evaluating R code

The R C-level function for parsing an arbitrary string a R code is exposed
as the function parse()

>>> expression = ri.parse('1 + 2')

The resulting expression is a nested list of R statements.

>>> len(expression)
1
>>> len(expression[0])
3

The R code 1 + 2 translates to an expression of length 3:
+(1, 2), that is a call to the function + (or rather the symbol associated
with the function) with the arguments 1 and 2.

>>> ri.str_typeint(expression[0][0].typeof)
'SYMSXP'
>>> tuple(expression[0][1])
(1.0,)
>>> tuple(expression[0][2])
(2.0,)

Note

The expression must be evaluated if the result from its execution
is wanted.

Calling Python functions from R

As could be expected from R’s functional roots,
functions are first-class objects.
This means that the use of callback functions as passed as parameters
is not seldom,
and this also means that the Python programmer has to either
be able write R code for functions as arguments, or have a way
to pass Python functions to R as genuine R functions.
That last option is becoming possible, in other words one can
write a Python function and expose it to R in such a way that
the embedded R engine can use as a regular R function.

As an example, let’s consider the R function
optim() that looks for optimal parameters for a given cost function.
The cost function should be passed in the call to optim() as it will be
repeatedly called as the parameter space is explored, and only Python
coding skills are necessary as the code below demonstrates it.

from rpy2.robjects.vectors import FloatVector
from rpy2.robjects.packages import importr
import rpy2.rinterface as ri
stats = importr('stats')

cost function, callable from R
@ri.rternalize
def cost_f(x):
 # Rosenbrock Banana function as a cost function
 # (as in the R man page for optim())
 x1, x2 = x
 return 100 * (x2 - x1 * x1)**2 + (1 - x1)**2

starting parameters
start_params = FloatVector((-1.2, 1))

call R's optim() with our cost funtion
res = stats.optim(start_params, cost_f)

For convenience, the code example uses the higher-level interface
robjects whenever possible.

The lower-level function rternalize() will take an arbitray
Python function and return an rinterface.SexpClosure instance,
that is a object that can be used by R as a function.

Interactive features

The embedded R started from rpy2 is interactive by default, which
means that a number of interactive features present when working
in an interactive R console will be available for use.

Such features can be called explicitly by the rpy2 user, but
can also be triggered indirectly, as some on the R functions will behave
differently when run interactively compared to when run in the so-called
BATCH mode.

Note

However, interactive use may mean the ability to periodically check
and process events. This is for example the case with interactive
graphics devices or with the HTML-based help system
(see Processing interactive events).

I/O with the R console

See Console I/O.

Processing interactive events

An interactive R session is can start interactive activities
that require a continuous monitoring for events. A typical example
is the interactive graphical devices (plotting windows),
as they can be resized and the information they display is refreshed.

However, to do so the R process must be instructed to process
pending interactive events. This is done by the R console for example,
but rpy2 is designed as a library rather than a threaded R process
running within Python (yet this can be done as shown below).

The way to restore interactivity is to simply call the function
rinterface.process_revents() at regular intervals.

An higher-level interface is available, running the processing of
R events in a thread (see Section R event loop).

Classes

Sexp

The class Sexp is the base class for all R objects.

	
class rpy2.rinterface.Sexp

	
	
__sexp__

	Python C capsule wrapping the pointer to the underlying R object (SEXP)

	
named

	R does not count references for its object. This method
returns the NAMED value (an integer).
See the R-extensions manual for further details.

	
typeof

	Internal R type for the underlying R object

>>> letters.typeof
16

	
__deepcopy__(self)

	Make a deep copy of the object, calling the R-API C function
c:function::Rf_duplicate() for copying the R object wrapped.

New in version 2.0.3.

	
do_slot(name)

	R objects can be given attributes. In R, the function
attr lets one access an object’s attribute; it is
called do_slot() in the C interface to R.

	Parameters:	name – string

	Return type:	instance of Sexp

>>> matrix = rinterface.globalenv.get("matrix")
>>> letters = rinterface.globalenv.get("letters")
>>> m = matrix(letters, ncol = 2)
>>> [x for x in m.do_slot("dim")]
[13, 2]
>>>

	
do_slot_assign(name, value)

	Assign value to the slot with the given name, creating the slot whenver
not already existing.

	Parameters:	
	name – string

	value – instance of Sexp

	
rsame(sexp_obj)

	Tell whether the underlying R object for sexp_obj is the same or not.

	Return type:	boolean

Underlying R object

The underlying R object is a pointer to a c:type::SEXPREC as defined in R’s
Rinternals.h. That object is wrapped in a c:type::SexpObj and placed in
a Python capsule.

The capsule is providing a relatively safe mechanism to exchange underlying
R objects between rpy2 objects.

from rpy2.rinterface import SexpIntVector, SexpFloatVector
vector1=SexpIntVector((1, 2, 3))
vector2=SexpFloatVector((4.0, 5.0, 6.0))

vector1.__sexp__ = vector2.__sexp_

SexpVector

Overview

In R all scalars are in fact vectors.
Anything like a one-value variable is a vector of
length 1.

To use again the constant pi:

>>> pi = rinterface.globalenv.get("pi")
>>> len(pi)
1
>>> pi
<rinterface.SexpVector - Python:0x2b20325d2660 / R:0x16d5248>
>>> pi[0]
3.1415926535897931
>>>

The letters of the (western) alphabet are:

>>> letters = rinterface.globalenv.get("letters")
>>> len(letters)
26
>>> LETTERS = rinterface.globalenv.get("LETTERS")

R types

R vectors all have a type, sometimes referred to in R as a mode.
This information is encoded as an integer by R, but it can sometimes be
better for human reader to be able to provide a string.

	
rpy2.rinterface.str_typeint(typeint)

	Return a string corresponding to a integer-encoded R type.

	Parameters:	typeint – integer (as returned by Sexp.typeof)

	Return type:	string [http://docs.python.org/library/string.html#module-string]

Indexing

The indexing is working like it would on regular Python
tuples or lists.
The indexing starts at 0 (zero), which differs from R,
where indexing start at 1 (one).

Note

The __getitem__ operator [
is returning a Python scalar. Casting
an SexpVector into a list is only a matter
of either iterating through it, or simply calling
the constructor list().

Common attributes

Names

In R, vectors can be named, that is each value in the vector
can be given a name (that is be associated a string).
The names are added to the other as an attribute (conveniently
called names), and can be accessed as such:

>>> options = rinterface.globalenv.get("options")()
>>> option_names = options.do_slot("names")
>>> [x for x in options_names]

Note

Elements in a name vector do not have to be unique. A Python
counterpart is provided as rpy2.rlike.container.TaggedList.

Dim and dimnames

In the case of an array, the names across the
respective dimensions of the object are accessible
through the slot named dimnames.

Missing values

Note

R also has the notion of missing parameters in function calls.
This is a separate concept, and more information about are given in
Section Functions.

In R missing the symbol NA represents a missing value.
The general rule that R scalars are in fact vectors applies here again,
and the following R code is creating a vector of length 1.

x <- NA

The type of NA is logical (boolean), and one can specify a different
type with the symbols
NA_character_, NA_integer_, NA_real_, and NA_complex_.

In rpy2.rinterface, the symbols can be accessed by through
NA_Character,
NA_Integer,
NA_Real.

Those are singleton instance from respective NA<something>Type classes.

>>> my_naint = rinterface.NAIntegerType()
>>> my_naint is rinterface.NA_Integer
True
>>> my_naint == rinterface.NA_Integer
True

NA values can be present in vectors returned by R functions.

>>> rinterface.baseenv['as.integer'](rinterface.StrSexpVector(("foo",)))[0]
NA_integer_

NA values can have operators implemented, but the results will then
be missing values.

>>> rinterface.NA_Integer + 1
NA_integer_
>>> rinterface.NA_Integer * 10
NA_integer_

Warning

Python functions relying on C-level implementations might not be following
the same rule for NAs.

>>> x = rinterface.IntSexpVector((1, rinterface.NA_Integer, 2))
>>> sum(x)
3
>>> max(x)
2
>>> min(x)
NA_integer_

This should be preferred way to use R’s NA as those symbol are little
peculiar and cannot be retrieved with SexpEnvironment.get().

Those missing values can also be used with the rpy2.robjects layer
and more documentation about their usage can be found there
(see Missing values).

Constructors

Convenience classes are provided to create vectors of a given type:

SexpEnvironment

__getitem__() / __setitem__() / __delitem__()

The [operator will only look for a symbol in the environment
without looking further in the path of enclosing environments.

The following will return an exception LookupError:

>>> rinterface.globalenv["pi"]

The constant pi is defined in R’s base package,
and therefore cannot be found in the Global Environment.

The assignment of a value to a symbol in an environment is as
simple as assigning a value to a key in a Python dictionary:

>>> x = rinterface.IntSexpVector([123,])
>>> rinterface.globalenv["x"] = x
>>> len(x)
1
>>> tuple(rinterface.globalenv)
('x',)

Removing an element can be done like one would do it for a Python dict [http://docs.python.org/library/stdtypes.html#dict]:

>>> del(rinterface.globalenv['x'])
>>> len(x)
0

Note

Not all R environment are hash tables, and this may
influence performances when doing repeated lookups

Note

a copy of the R object is made in the R space.

__iter__()

The object is made iter-able.

For example, we take the base name space (that is the environment
that contains R’s base objects:

>>> base = rinterface.baseenv
>>> basetypes = [x.typeof for x in base]

Warning

In the current implementation the content of the environment
is evaluated only once, when the iterator is created. Adding
or removing elements to the environment will not update the iterator
(this is a problem, that will be solved in the near future).

get()

Whenever a search for a symbol is performed, the whole
search path is considered: the environments in the list
are inspected in sequence and the value for the first symbol found
matching is returned.

Let’s start with an example:

>>> rinterface.globalenv.get("pi")[0]
3.1415926535897931

The constant pi is defined in the package base, that
is always in the search path (and in the last position, as it is
attached first). The call to get() will
look for pi first in globalenv, then in the next environment
in the search path and repeat this until an object is found or the
sequence of environments to explore is exhausted.

We know that pi is in the base namespace and we could have gotten
here directly from there:

>>> ri.baseenv.get("pi")[0]
3.1415926535897931
>>> ri.baseenv["pi"][0]
3.1415926535897931
>>> ri.globalenv["pi"][0]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
LookupError: 'pi' not found

R can look specifically for functions, which is happening when
a parsed function call is evaluated.
The following example of an R interactive session should demonstrate it:

> mydate <- "hohoho"
> mydate()
Error: could not find function "mydate"
>
> date <- "hohoho"
> date()
[1] "Sat Aug 9 15:27:40 2008"

The base function date is still found, although a non-function object
is present earlier on the search path.

The same behavior can be obtained from rpy2
with the optional parameter wantfun (specify that get()
should return an R function).

>>> ri.globalenv["date"] = ri.StrSexpVector(["hohoho",])
>>> ri.globalenv.get("date")[0]
'hohoho'
>>> ri.globalenv.get("date", wantfun=True)
<rinterface.SexpClosure - Python:0x7f142aa96198 / R:0x16e9500>
>>> date = ri.globalenv.get("date", wantfun=True)
>>> date()[0]
'Sat Aug 9 15:48:42 2008'

R packages as environments

In a Python programmer’s perspective, it would be nice to map loaded R
packages as modules and provide access to R objects in packages the
same way than Python object in modules are accessed.

This is unfortunately not possible in a completely
robust way: the dot character .
can be used for symbol names in R (like pretty much any character), and
this can make an exact correspondance between R and Python names
rather difficult.
rpy uses transformation functions that translates ‘.’ to ‘_’ and back,
but this can lead to complications since ‘_’ can also be used for R symbols
(although this is the approach taken for the high-level interface, see
Section R packages).

There is a way to provide explict access to object in R packages, since
loaded packages can be considered as environments. To make it convenient
to use, one can consider making a function such as the one below:

def rimport(packname):
 """ import an R package and return its environment """
 as_environment = rinterface.baseenv['as.environment']
 require = rinterface.baseenv['require']
 require(rinterface.StrSexpVector(packname),
 quiet = rinterface.BoolSexpVector((True,)))
 packname = rinterface.StrSexpVector(('package:' + str(packname)))
 pack_env = as_environment(packname)
 return pack_env

>>> class_env = rimport("class")
>>> class_env['knn']

For example, we can reimplement in Python the R function
returning the search path (search).

def rsearch():
 """ Return a list of package environments corresponding to the
 R search path. """
 spath = [ri.globalenv,]
 item = ri.globalenv.enclos()
 while not item.rsame(ri.emptyenv):
 spath.append(item)
 item = item.enclos()
 spath.append(ri.baseenv)
 return spath

As an other example, one can implement simply a function that
returns from which environment an object called by get() comes
from.

def wherefrom(name, startenv=ri.globalenv):
 """ when calling 'get', where the R object is coming from. """
 env = startenv
 obj = None
 retry = True
 while retry:
 try:
 obj = env[name]
 retry = False
 except LookupError, knf:
 env = env.enclos()
 if env.rsame(ri.emptyenv):
 retry = False
 else:
 retry = True
 return env

>>> wherefrom('plot').do_slot('name')[0]
'package:graphics'
>>> wherefrom('help').do_slot('name')[0]
'package:utils'

Note

Unfortunately this does not generalize to all cases: the base package does not have a name.

>>> wherefrom('get').do_slot('name')[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
LookupError: The object has no such attribute.

Functions

A function with a context

In R terminology, a closure is a function (with its enclosing
environment). That enclosing environment can be thought of as
a context to the function.

Note

Technically, the class SexpClosure corresponds to the R
types CLOSXP, BUILTINSXP, and SPECIALSXP, with only the first one
(CLOSXP) being a closure.

>>> sum = rinterface.globalenv.get("sum")
>>> x = rinterface.IntSexpVector([1,2,3])
>>> s = sum(x)
>>> s[0]
6

Named arguments

Named arguments to an R function can be specified just the way
they would be with any other regular Python function.

>>> rnorm = rinterface.globalenv.get("rnorm")
>>> rnorm(rinterface.IntSexpVector([1,]),
 mean = rinterface.IntSexpVector([2,]))[0]
0.32796768001636134

There are however frequent names for R parameters causing problems: all the names with a dot. using such parameters for an R function will either require
to:

	use the special syntax **kwargs on a dictionary with the named parameters

	use the method rcall().

Order for named parameters

One point where function calls in R can differ from the ones in
Python is that
all parameters in R are passed in the order they are in the call
(no matter whether the parameter is named or not),
while in Python only parameters without a name are passed in order.
Using the class OrdDict in the module rpy2.rlike.container,
together with the method rcall(),
permits calling a function the same way it would in R. For example:

import rpy2.rlike.container as rpc
args = rpc.OrdDict()
args['x'] = rinterface.IntSexpVector([1,2,3])
args[None] = rinterface.IntSexpVector([4,5])
args['y'] = rinterface.IntSexpVector([6,])
rlist = rinterface.baseenv['list']
rl = rlist.rcall(args.items(), rinterface.globalenv)

>>> [x for x in rl.do_slot("names")]
['x', '', 'y']

closureEnv

In the example below, we inspect the environment for the
function plot, that is the namespace for the
package graphics.

>>> plot = rinterface.globalenv.get("plot")
>>> ls = rinterface.globalenv.get("ls")
>>> envplot_list = ls(plot.closureEnv())
>>> [x for x in envplot_ls]
>>>

Missing parameters

In R function calls can contain explicitely missing parameters.

> sum(1,,3)
Error: element 2 is empty;
 the part of the args list of 'sum' being evaluated was:
 (1, , 3)

This is used when extracting a subset of an array, with a missing
parameter interpreted by the extract function [like all elements
across that dimension must be taken.

m <- matrix(1:10, nrow = 5, ncol = 2)

extract the second column
n <- m[, 2]

can also be written
n <- "["(m, , 2)

rinterface.MissingArg is a pointer to the singleton rinterface.MissingArgType,
allowing to explicitly pass missing parameters to a function call.

For example, the extraction of the second column of a matrix with R shown above,
will write almost identically in rpy2.

import rpy2.rinterface as ri
ri.initr()

matrix = ri.baseenv['matrix']
extract = ri.baseenv['[']

m = matrix(ri.IntSexpVector(range(1, 11)), nrow = 5, ncol = 2)

n = extract(m, ri.MissingArg, 2)

SexpS4

Object-Oriented programming in R exists in several flavours, and one
of those is called S4.
It has its own type at R’s C-API level, and because of that specificity
we defined a class. Beside that, the class does not provide much specific
features (see the pydoc for the class below).

An instance’s attributes can be accessed through the parent
class Sexp method
do_slot().

SexpExtPtr

External pointers are intended to facilitate the handling of C or C++ data structures
from R. In few words they are pointers to structures external to R. They have
been used to implement vectors and arrays in shared memory, or storage-based vectors
and arrays.

External pointers also do not obey the pass-by-value rule and can represent a way
to implement pointers in R.

Let us consider the following simple example:

ep = rinterface.SexpExtPtr("hohoho")

The Python string is now encapsulated into an R external pointer, and visible as such
by the embedded R process.

When thinking of sharing C-level structures between R and Python more involved examples
can be considered (here still a simple example):

import ctypes
class Point2D(ctypes.Structure):
 fields = [("x", ctypes.c_int),
 ("y", ctypes.c_int)]

pt = Point2D()

ep = rinterface.SexpExtPtr(pt)

However, this remains a rather academic exercise unless there exists a way to access the
data from R; when used in R packages, external pointers have companion functions to
manipulate the C-level data structures.

In the case of external pointers and their companion functions and methods
defined by R packages, the rpy2 interface lets a programmer create such external pointers
directly from Python, using ctypes [http://docs.python.org/library/ctypes.html#module-ctypes] for example.

However, the rpy2 interface allows more than that since a programmer is able to make
a Python function accessible to R has is was a function of its own. It is possible
to define arbitrary Python data structures as well as functions or methods to operate
on them, pass the data structure to R as an external pointer, and expose the functions
and methods to R.

Class diagram

Misc. variables

	R_HOME

	R HOME

	R_LEN_T_MAX

	largest usable integer for indexing R vectors

	TRUE/FALSE

	R’s TRUE and FALSE

R types

Vector types

	CPLXSXP

	Complex

	INTSXP

	Integer.

	LGLSXP

	Boolean (logical in the R terminology)

	RAWSXP

	Raw (bytes) value

	REALSXP

	Numerical value (float / double)

	STRSXP

	String

	VECSXP

	List

	LISTSXP

	Paired list

	LANGSXP

	Language object.

	EXPRSXP

	Unevaluated expression.

Function types

	CLOSXP

	Function with an enclosure. Represented by rpy2.rinterface.SexpClosure.

	BUILTINSXP

	Base function

	SPECIALSXP

	Some other kind of function

Other types

	ENVSXP

	Environment. Represented by rpy2.rinterface.SexpEnvironment.

	S4SXP

	Instance of class S4. Represented by rpy2.rinterface.SexpS4.

Types one should not meet

	PROMSXP

	Promise.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

Memory management and garbage collection

The tracking tracking of R object (SEXP in R’s C-API)
differs from Python as it does not involve reference counting.
It is using at attribute NAMED (more on this below),
and only considers for collection objects that are not preserved by
being contained in an other R object (for floating object, R’s C-API
has 2 functions R_PreserveObject() and R_ReleaseObject() that do little more than placing object is in a container called R_PreciousList).

Reference counting

Rpy2 is using its own reference counting system in order to bridge R with
Python and keep as much as possible the pass-by-reference approach familiar
to Python users.

The number of times an R object is used in rpy2, therefore is protected
from garbage collection, is available from Python (obviously read-only):

>>> import rpy2.rinterface as ri
>>> ri.initr()
>>> x = ri.IntSexpVector([1,2,3])
>>> x.__sexp_refcount__
1

That counter will increment each time a new Python reference to it is created.

>>> letters = ri.baseenv['letters']
>>> letters.__sexp_refcount__
1
>>> letters_again = ri.baseenv['letters']
>>> # check that the R ID is the same
>>> letters_again.rid == letters.rid
True
>>> # reference count has increased
>>> letters_again.__sexp_refcount__
2
>>> letters.__sexp_refcount__
2

Note

The attribute rid is simply the memory address at which the R-defined
C-structure containing the R objects is located.

A list of all R IDs protected from garbage collection by rpy2
along with their reference count can be obtained by calling
rpy2.rinterface.protected_rids().

We can check that our python object x is in indeed listed as protected
from garbage collection (yet it is not bound to any symbol in R - as far as
R is concerned it is like an anonymous variable):

>>> x.rid in (elt[0] for elt in ri.protected_rids())
True

The number of Python/rpy2 objects protecting the R objects from
garbage collection can is also available.

>>> [elt[1] for elt in ri.protected_rids() if elt[0]==x.rid]
[1]

Note

The exact count will depend on what has happened with the current Python
process, that is whether the R object is already tracked by rpy2 or not.

Binding the rpy2 object to a new Python symbol will not increase the count
(because Python knows that the two objects are the same, and R has not been
involved in that):

>>> y = x
>>> [elt[1] for elt in ri.protected_rids() if elt[0]==x.rid]
[1]

On the other hand, explictly wrapping again the R object through an rpy2
constructor will increase the count by one:

>>> z = ri.IntSexpVector(x)
>>> [elt[1] for elt in ri.protected_rids() if elt[0]==x.rid]
[2]
>>> x.rid == z.rid
True

In the last case, Python does not know that the 2 objects point to the
same underlying R object and this mechanism is intended to prevent a
premature garbage collection of the R object.

>>> del(x); del(y) # remember that we did `y = x`
>>> [elt[1] for elt in ri.protected_rids() if elt[0]==z.rid]
[1]

To achieve this, and keep close to the pass-by-reference approach in Python,
the SexpObject for a given R object is not part of a Python object
representing it. The Python object only holds a reference to it,
and each time a Python object pointing to a given R object
(identified by its SEXP) is created the rpy counter for it is
incremented.

The rpy2 object (proxy for an R object) is implemented as a regular Python
object to which a SexpObject pointer is appended.

typedef struct {
 PyObject_HEAD
 SexpObject *sObj;
} PySexpObject;

The tracking of the capsule itself is what protects the
object from garbage collection on either the R or the Python side.

>>> letters_cstruct = letters.__sexp__
>>> del(letters, letters_again)

The underlying R object is available for collection after the capsule
is deleted (that particular object won’t be deleted because R itself tracks it
as part of the base package).

>>> del(letters_cstruct)

Capsules of R objects

The SexpObject can be passed around as a (relatively) opaque
C structure, using the attribute __sexp__ (a Python capsule).

Behind the scene, the capsule is a singleton: given an R object,
it is created with the first Python (rpy2) object wrapping it and
a counter is increased and decreased as other Python objects
expose it as well.

At the C level, the struct SexpObject is defined as:

	a reference count on the Python side

	a possible future reference count on the R side
(currently unused)

	a pointer to the R SEXPREC

typedef struct {
 Py_ssize_t pycount;
 int rcount;
 SEXP sexp;
} SexpObject;

The capsule is used to provide a relatively safe composition-like flavor
to the inheritance-based general design of R objects in rpy2, but should
one require access to the underlying R SEXP object it remains
possible to access it. The following example demonstrates one way to do
it without writing any C code:

import ctypes

Python C API: get the capsule name (of a capsule object)
pycapsule_getname=ctypes.pythonapi.PyCapsule_GetName
pycapsule_getname.argtypes = [ctypes.py_object,]
pycapsule_getname.restype=ctypes.c_char_p

Python C API: return whether a Python objects is a valid capsule object
pycapsule_isvalid=ctypes.pythonapi.PyCapsule_IsValid
pycapsule_isvalid.argtypes=[ctypes.py_object, ctypes.c_char_p]
pycapsule_isvalid.restype=ctypes.c_bool

Python C API: return the C pointer
pycapsule_getpointer=ctypes.pythonapi.PyCapsule_GetPointer
pycapsule_getpointer.argtypes=[ctypes.py_object, ctypes.c_char_p]
pycapsule_getpointer.restype=ctypes.c_void_p

class SexpObject(ctypes.Structure):
 """ C structure SexpObject as defined in the C
 layer of rpy2. """
 fields = [('pycount', ctypes.c_ssize_t),
 ('rcount', ctypes.c_int),
 ('sexp', ctypes.c_void_p)]

Function to extract the pointer to the underlying R object
(*SEXPREC, that is SEXP)
RPY2_CAPSULENAME=b'rpy2.rinterface._rinterface.SEXPOBJ_C_API'
def get_sexp(obj):
 assert pycapsule_isvalid(obj, RPY2_CAPSULENAME)
 void_p=pycapsule_getpointer(obj, RPY2_CAPSULENAME)
 return ctypes.cast(void_p, ctypes.POINTER(SexpObject).contents.sexp

from rpy2.rinterface import globalenv
Pointer to SEXPREC for the R Global Environment
sexp=get_sexp(globalenv)

Changing the SEXP in SexpObject this way is not advised because
of the risk to confuse the object tracking in rpy2, and ultimately create a segfault.
(I have not thought too long about this. May be the object tracking is more robust
than it think. Just be warned.)

R’s NAMED

Whenever the pass-by-value paradigm is applied stricly,
garbage collection is straightforward as objects only live within
the scope they are declared, but R is using a slight modification
of this in order to minimize memory usage. Each R object has an
attribute Sexp.named attached to it, indicating
the need to copy the object.

>>> import rpy2.rinterface as ri
>>> ri.initr()
0
>>> ri.baseenv['letters'].named
0

Now we assign the vector letters in the R base namespace
to a variable mine in the R globalenv namespace:

>>> ri.baseenv['assign'](ri.StrSexpVector(("mine",)), ri.baseenv['letters'])
<rpy2.rinterface.SexpVector - Python:0xb77ad280 / R:0xa23c5c0>
>>> tuple(ri.globalenv)
("mine",)
>>> ri.globalenv["mine"].named
2

The named is 2 to indicate to R that mine should be
copied if a modication of any sort is performed on the object. That copy
will be local to the scope of the modification within R.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

rlike

Overview

The package proposes R features for a pure Python
context, that is without an embedded R running.

Containers

The module contains data collection-type data structures.
OrdDict and TaggedList are structures
with which contained items/elements can be tagged.

The module can be imported as follows:

>>> import rpy2.rlike.container as rlc

OrdDict

The OrdDict proposes an implementation of what is
sometimes referred to in Python as an ordered dictionnary, with a
particularity: a key None means that, although an item has a rank
and can be retrieved from that rank, it has no “name”.

In the hope of simplifying its usage, the API for an ordered dictionnary
in PEP 372 [https://www.python.org/dev/peps/pep-0372] was implemented. An example of usage is:

>>> x = (('a', 123), ('b', 456), ('c', 789))
>>> nl = rlc.OrdDict(x)

>>> nl['a']
123
>>> nl.index('a')
0

Not all elements have to be named, and specifying a key value equal
to None indicates a value for which no name is associated.

>>> nl[None] = 'no name'

The Python docstring for the class is:

TaggedList

A TaggedList is a Python list [http://docs.python.org/library/functions.html#list] in which each item has
an associated tag.
This is similar to named vectors in R.

>>> tl = rlc.TaggedList([1,2,3])
>>> tl
[1, 2, 3]
>>> tl.tags()
(None, None, None)
>>> tl.settag(0, 'a')
>>> tl.tags()
('a', None, None)

>>> tl = rlc.TaggedList([1,2,3], tags=('a', 'b', 'c'))
>>> tl
[1, 2, 3]
>>> tl.tags()
('a', 'b', 'c')
>>> tl.settag(2, 'a')
>>> tl.tags()
('a', 'b', 'a')
>>> it = tl.iterontag('a')
>>> [x for x in it]
[1, 3]

>>> [(t, sum([i for i in tl.iterontag(t)])) for t in set(tl.itertags())]
[('a', 4), ('b', 2)]

The Python docstring for the class is:

Tools for working with sequences

Tools for working with objects implementing the
sequence protocol can be found here.

>>> import rpy2.rlike.functional as rlf
>>> rlf.tapply((1,2,3), ('a', 'b', 'a'), sum)
[('a', 4), ('b', 2)]

TaggedList objects can be used with their tags
(although more flexibility can be achieved using their
method iterontags()):

>>> import rpy2.rlike.container as rlc
>>> tl = rlc.TaggedList([1, 2, 3], tags = ('a', 'b', 'a'))
>>> rlf.tapply(tl, tl.tags(), sum)
[('a', 4), ('b', 2)]

Indexing

Much of the R-style indexing can be achieved with Python’s list comprehension:

>>> l = ('a', 'b', 'c')
>>> l_i = (0, 2)
>>> [l[i] for i in l_i]
['a', 'c']

In R, negative indexes mean that values should be excluded. Again,
list comprehension can be used (although this is not the most efficient way):

>>> l = ('a', 'b', 'c')
>>> l_i = (-1, -2)
>>> [x for i, x in enumerate(l) if -i not in l_i]
['a']

	
rpy2.rlike.indexing.order(seq, cmp = default_cmp, reverse = False)

	Give the order in which to take the items in the sequence seq and
have them sorted.
The optional function cmp should return +1, -1, or 0.

	Parameters:	
	seq – sequence

	cmp – function

	reverse – boolean

	Return type:	list of integers

>>> import rpy2.rlike.indexing as rli
>>> x = ('a', 'c', 'b')
>>> o = rli.order(x)
>>> o
[0, 2, 1]
>>> [x[i] for i in o]
['a', 'b', 'c']

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

Miscellaneous topics

	Callbacks
	Console I/O
	Read console

	Write console

	Flush console

	Files
	Showing files

	Choosing files

	Other
	Clean up

	Client-Server
	Simple socket-based server and client
	Server

	Client

	rpy_classic
	Conversion

	R instance

	Functions

	Partial use of rpy_classic

	Related projects
	Bioinformatics
	Cloud computing

	Bioconductor

	Interactive consoles
	Other interactive environments

	Embeddeding an R console

	Alternative interfaces

	R-like data strucutures

	Performances
	Optimizing for performances
	Memory usage

	Low-level interface

	A simple benchmark

	Custom graphical devices

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	Miscellaneous topics

Callbacks

Although R has been tightly bound to its console, the R-core development team has
great progress in letting front-end developpers customize R’s interactive behavior
to their needs.

rpy2 is offering to customize R’s interactive behavior through callback functions.

Console I/O

During an interactive session, much of the communication between R and the user happen
happen through the console. How the console reads input and writes output, can be
defined through callback functions.

Read console

The ‘read console’ function is called whenever console input is expected.

The default callback for inputing data is rinterface.consoleRead()

A suitable callback function will be such as it accepts one parameter of class str [http://docs.python.org/library/functions.html#str],
that is the prompt, and returns the user input as a str [http://docs.python.org/library/functions.html#str].

The pair of functions
rpy2.rinterface.set_readconsole() and rpy2.rinterface.get_readconsole()
can be used to set and retrieve the callback function respectively.

Write console

The ‘write console’ function is called whenever output is sent to the R console.

A suitable callback function will be such as it accepts one parameter of class str [http://docs.python.org/library/functions.html#str]
and only has side-effects (does not return anything).

The pair of functions
rpy2.rinterface.set_writeconsole() and rpy2.rinterface.get_writeconsole()
can be used to set and retrieve the callback function respectively.

The default callback function, called rinterface.consolePrint()
is a simple write to sys.stdout [http://docs.python.org/library/sys.html#sys.stdout]

An example should make it obvious:

buf = []
def f(x):
 # function that append its argument to the list 'buf'
 buf.append(x)

output from the R console will now be appended to the list 'buf'
rinterface.set_writeconsole(f)

date = rinterface.baseenv['date']
rprint = rinterface.baseenv['print']
rprint(date())

the output is in our list (as defined in the function f above)
print(buf)

restore default function
rinterface.set_writeconsole(rinterface.consolePrint)

Flush console

The ‘write console’ function is called whenever output is sent to the R console.

A suitable callback function will be such as it accepts no parameter
and only has side-effects (does not return anything).

The pair of functions
rpy2.rinterface.set_flushconsole() and rpy2.rinterface.get_flushconsole()
can be used to set and retrieve the callback function respectively.

Files

Showing files

Choosing files

File choosing a on basic R console has very little bells and whistles.

def choose_csv(prompt):
 print(prompt)
 return(filename)

Other

Clean up

When asked to terminate, through either its terminal console
win32 or quartz GUI front-end, R will perform a cleanup operation
at the begining of which whether the user wants to save the workspace
or not.

What is happening during that cleaning step can be specified through
a callback function that will take three parameters saveact, status,
and runlast, return of 1 (save the workspace),
0 (do not save the workspace), and None (cancel the exit/cleanup, raising
an RRuntimeError).

import rpy2.rinterface

rpy2.rinterface.initr()

rquit = rpy2.rinterface.baseenv['q']

def cleanup(saveact, status, runlast):
 # cancel all attempts to quit R programmatically
 print("One can't escape...")
 return None

>>> orig_cleanup = rpy2.rinterface.get_cleanup()
>>> rpy2.rinterface.set_cleanup(cleanup)
>>> rquit()

Restore the original cleanup:

>>> rpy2.rinterface.set_cleanup(orig_cleanup)

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	Miscellaneous topics

Client-Server

Rserve is currently the default solution when looking
for a server solution for R, but rpy2 can be used
to develop very easily one’s own server, tailored to answer
specific requirements. Such requirements can include for example
access restriction, a security model, access to subsets of the R
engine, distribution of jobs to other servers, all of which
are currently difficult or impossible to achieve with R serve.

The pyRserve package addresses the connection to Rserve
from Python, and although it frees one from handling the R server is
also constrains one to use Rserve.

Simple socket-based server and client

Server

An implementation of a simplistic socket server listening
on a given port for a string to evaluate as R code
is straightforward with Python’s SocketServer module.

Our example server will be in a file rpyserve.py, containing
the following code.

import socketserver
import sys
import rpy2.robjects as robjects

class MyTCPHandler(socketserver.StreamRequestHandler):

 def handle(self):
 # verbose server
 print("%s wrote:" % self.client_address[0])

 # self.rfile is a file-like object created by the handler;
 # we can now use e.g. readline() instead of raw recv() calls
 encoding = self.rfile.readline().strip()
 encoding = str(encoding, 'ASCII')
 print(' encoding: %s' % encoding)

 size = int.from_bytes(self.rfile.read(8), 'little')
 print(' size: %i bytes' % size)

 rcv = self.rfile.read(size)
 rcv = str(rcv, encoding)

 # verbose server
 print(' R code string:')
 print(rcv)

 # evaluate the data passed as a string of R code
 results = robjects.r(rcv)

 # return the result of the evaluation as a string
 # to the client
 results = bytes(str(results), encoding)
 size_res = len(results).to_bytes(8, 'little')
 print(' Result size: %i' % len(results))
 self.wfile.write(size_res +
 results)

if __name__ == "__main__":
 import argparse

 parser = argparse.ArgumentParser()
 parser.add_argument('-p', '--port',
 type=int,
 default=8080,
 help='port')
 parser.add_argument('--hostname',
 default='localhost')
 options = parser.parse_args()

 # Create the server, binding to localhost on port 9999
 server = socketserver.TCPServer((options.hostname, options.port),
 MyTCPHandler)

 print('Server listening on %s:%i' % (options.hostname, options.port))
 # Activate the server; this will keep running until you
 # interrupt the program with Ctrl-C
 server.serve_forever()

Running a server listening on port 9090 is then:

python rpyserve.py --hostname localhost

Client

Using Python’s socket module, implementing a client is
just as easy. We write the code for ours into a file
rpyclient.py:

import socket
import sys
import locale
import argparse

def send_R_code(rcode, hostname, port):
 """
 Evaluate the R code in `rcode` (on a possibly remote machine)
 """
 # Create a socket (SOCK_STREAM means a TCP socket)
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 # Connect to server and send data
 sock.connect((hostname, port))
 size_send = len(rcode).to_bytes(8, 'little')
 sock.send(bytes(encoding, 'ASCII') + b'\n' + \
 size_send + \
 rcode)

 # Receive data from the server and shut down
 print("Received:")
 size = int.from_bytes(sock.recv(8), 'little') # 64 bits max
 print(" size: %i bytes" % size)
 received = sock.recv(size)
 sock.close()
 print(" R output:")
 print(str(received, encoding))

if __name__ == '__main__':

 parser = argparse.ArgumentParser()
 parser.add_argument('-p', '--port',
 type=int,
 default=8080)
 parser.add_argument('--hostname',
 default='localhost')

 options = parser.parse_args()

 # read R code from STDIN
 rcode = sys.stdin.read()
 encoding = locale.getlocale()[1]
 rcode = bytes(rcode, encoding)

 send_R_code(rcode, options.hostname, options.port)

Evaluating R code on a local server as defined in the previous
section, listening on port 9090 is then:

echo 'R.version' | python rpyclient.py --hostname localhost

In this example, the client is querying the R version.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	Miscellaneous topics

rpy_classic

This module provides an API similar to the one
in RPy-1.x (rpy).

Warning

The implementation of the RPy-1.x characteristics is incomplete.
This is likely not due to limitations in the low-level interface
rpy2.rinterface but due to limited time from this author,
and from limited contributions to get it improved.

To match examples and documentation for rpy,
we load the module as:

>>> import rpy2.rpy_classic as rpy

Conversion

Although the proposed high-level interface in rpy2.robjects
does not need explicit conversion settings, the conversion system
existing in rpy is provided, and the default
mode can be set with set_default_mode():

>>> rpy.set_default_mode(rpy.NO_CONVERSION)
>>> rpy.set_default_mode(rpy.BASIC_CONVERSION)

R instance

The r instance of class R behaves like before:

>>> rpy.r.help

‘dots’ in the R name are translated to underscores:

>>> rpy.r.wilcox_test

>>> rpy.r.wilcox_test([1,2,3], [4,5,6])

>>> x = rpy.r.seq(1, 3, by=0.5)
>>> rpy.r.plot(x)

An example:

degrees = 4
grid = rpy.r.seq(0, 10, length=100)
values = [rpy.r.dchisq(x, degrees) for x in grid]
rpy.r.par(ann=0)
rpy.r.plot(grid, values, type='l')

rpy.r.library('splines')

type(rpy.r.seq)

Functions

As in RPy-1.x, all R objects are callable:

>>> callable(rpy.r.seq)
True
>>> callable(rpy.r.pi)
True
>>>

If an object is not a R function, a RuntimeError
is thrown by R whenever called:

>>> rpy.r.pi()

The function are called like regular Python functions:

>>> rpy.r.seq(1, 3)
>>> rpy.r.seq(1, 3, by=0.5)
>>> rpy.r['options'](show_coef_Pvalues=0)
>>>

>>> m = rpy.r.matrix(r.rnorm(100), 20, 5)
>>> pca = rpy.r.princomp(m)
>>> rpy.r.plot(pca, main = "PCA")
>>>

Partial use of rpy_classic

The use of rpy_classic does not need to be
exclusive of the other interface(s) proposed
in rpy2.

Chaining code designed for either of the interfaces
is rather easy and, among other possible use-cases,
should make the inclusion of legacy rpy code into newly
written rpy2 code a simple take.

The link between rpy_classic and the rest
of rpy2 is the property RObj.sexp,
that give the representation of the underlying R object
in the low-level rpy2.rinterface definition.
This representation can then be used in function calls
with rpy2.rinterface and rpy2.robjects.
With rpy2.robjects, a conversion using
rpy2.robjects.default_ri2py() can be considered.

Note

Obviously, that property sexp is not part of the original
Robj in rpy.

An example:

import rpy2.robjects as ro
import rpy2.rpy_classic as rpy
rpy.set_default_mode(rpy.NO_CONVERSION)

def legacy_paste(v):
 # legacy rpy code
 res = rpy.r.paste(v, collapse = '-')
 return res

rletters = ro.r['letters']

the legaxy code is called using an rpy2.robjects object
alphabet_rpy = legacy_paste(rletters)

convert the resulting rpy2.rpy_classic object to
an rpy2.robjects object
alphabet = ro.default_ri2py(alphabet_rpy.sexp)

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	Miscellaneous topics

Related projects

Bioinformatics

Cloud computing

rpy2 is among the many bioinformatics-oriented packages
provided with CloudBioLinux [http://cloudbiolinux.org/]. Check it out if
you are considering a project involving cloud computing.

Bioconductor

Bioconductor is a popular set of R packages for bioinformatics.
A number of classes defined within that project are exposed as Python
classes through rpy2,
in the project rpy2-bioconductor-extensions [http://pypi.python.org/pypi/rpy2-bioconductor-extensions/0.2-dev]. The bioconductor project is evolving quite rapidely the mapping might not longer be working.

The blog of Brad Chapman [http://bcbio.wordpress.com/] also has good examples about how to use rpy2 for bioinformatics tasks (or Python for bioinformatics
in general).

Interactive consoles

Data analysts often like to work interactively, that is going through short
cycles like:

	write a bit of code, which can be mostly involving a call to an existing function

	run that code

	inspect the results, often using plots and figures

R users will be particularly familiar with this sort of approach, and will likely
want it when working with rpy2.

Obviously the Python console can be used, but there exist improvements to it, making
the user experience more pleasant with features such as history and autocompletion.

Other interactive environments

	bpython: curse-based enhancement to the Python console

	emacs: the Emacs text editor can be used to host a python session,
or an ipython session

Embeddeding an R console

Python can be used to develop full-fledged applications, including applications with
a graphical user interface.

rpy2 can be used to provide an R console embedded in such applications,
or build an alternative R GUI.

When offering an R console, the developer(s) may want to retain control on the
the way interaction with R is handled, at the level of the console and for the
base R functions targetting interactivity (see Section Callbacks).

The RPyGTK project [http://code.google.com/p/rpygtk/] demonstrates how
rpy2 can be used to implement a full-blown GUI for R using python.

Alternative interfaces

The rtools [http://pypi.python.org/pypi/rtools] package proposes additions / customizations of the higher-level
interface in rpy2.

The pandas <http://pypi.python.org/pypi/pandas> package proposes an interpretation of data frames in Python,
tied to numpy structures. A custom interfacing with rpy2 is mentioned, but it appears not as much developed as
the rest of the project.

R-like data strucutures

R’s data frames are extremely convient when manipulating data.
In rpy2 the original R data.frame is represented by
rpy2.robjects.vectors.DataFrame, but the
pydataframe [http://code.google.com/p/pydataframe/] project
has a pure Python implementation of them (with a compatibility
layer with rpy2 providing a seamless transition
whenever needed.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	Miscellaneous topics

Performances

Optimizing for performances

Memory usage

R objects live in the R memory space, their size unbeknown to Python,
and because of that it seems that Python does not always garbage collect often enough when
large objects are involved. This is sometimes leading to transient increased memory usage when large
objects are overwritten in loops, and although reaching a system’s memory limit appears
to trigger garbage collection, one may wish to explicitly trigger the collection.

import gc
gc.collect()

As a concrete example, consider the code below. This has been used somewhere a unique benchmark
Python-to-R bridge, unfortunately without considering specificities of the Python and R respective garbage
collection mechanisms. The outcome of the benchmark changes dramatically, probably putting back rpy2 as
the fastest, most memory efficient, and most versatile Python-to-R bridge.

import rpy2.robjects
import gc

r = rpy2.robjects.r

r("a <- NULL")
for i in range(20):
 rcode = "a <- rbind(a, seq(1000000) * 1.0 * %d)" % i
 r(rcode)
 print r("sum(a)")
 # explicit garbage collection
 gc.collect()

Low-level interface

The high-level layer rpy2.robjects brings a lot of convenience, such a class mappings and interfaces, but obviously
with a cost in term of performances. This cost is neglibible for common usage, but compute-intensive programms traversing the
Python-to-R bridge way and back a very large number of time will notice it.

For those cases, the rpy2.rinterface low-level layer gets the programmer closer to R’s C-level interface, bring rpy2
faster than R code itself, as shown below.

A simple benchmark

As a simple benchmark, we took a function that would sum
up all elements in a numerical vector.

In pure R, the code is like:

function(x)
{
 total = 0;
 for (elt in x) {
 total <- total + elt
 }
}

while in pure Python this is like:

def python_sum(x):
 total = 0.0
 for elt in x:
 total += elt
 return total

R has obviously a vectorized function sum() calling underlying C code, but the purpose of the benchmark
is to measure the running time of pure R code.

We ran this function over different types of sequences (of the same length)

 n = 20000
 x_list = [random.random() for i in range(n)]
 module = None
 if kind == "array.array":
 import array as module
 res = module.array('f', x_list)
 elif kind == "numpy.array":
 import numpy as module
 res = module.array(x_list, 'f')
 elif kind == "FloatVector":
 import rpy2.robjects as module
 res = module.FloatVector(x_list)
 elif kind == "SexpVector":
 import rpy2.rinterface as module
 module.initr()
 res = module.IntSexpVector(x_list)
 elif kind == "list":
 res = x_list
 elif kind == "R":
 import rpy2.robjects as module
 res = module.rinterface.IntSexpVector(x_list)
 module.globalenv['x'] = res
 res = None

The running times are summarized in the figure below.

[image: _static/benchmark_sum.png]
Iterating through a list [http://docs.python.org/library/functions.html#list] is likely the fastest, explaining
why implementations of the sum in pure Python over this type are the fastest.
Python is much faster than R for iterating through a vector/list.

Measuring the respective slopes, and using the slope for the R code
as reference we obtain relative speedup, that is how many times faster
code runs.

	Function
	Sequence
	Speedup

	builtin python
	array.array
	28.94

	builtin python
	FloatVector
	0.34

	builtin python
	list
	47.94

	builtin python
	numpy.array
	1.00

	builtin python
	SexpVector
	11.74

	pure python
	array.array
	8.29

	pure python
	FloatVector
	0.34

	pure python
	list
	9.93

	pure python
	numpy.array
	0.91

	pure python
	SexpVector
	5.10

	R compiled
	R compiled
	5.16

	R
	R
	1.00

	reduce python
	array.array
	3.45

	reduce python
	FloatVector
	0.30

	reduce python
	list
	3.54

	reduce python
	numpy.array
	0.93

	reduce python
	SexpVector
	3.00

The object one iterates through matters much for the speed, and
the poorest performer is rpy2.robjects.vectors.FloatVector,
being almost twice slower than pure R. This is expected since the iteration
relies on R-level mechanisms to which a penalty for using a higher-level
interface must be added.
On the other hand, using a rpy2.rinterface.SexpVector provides
an impressive speedup, making the use of R through rpy2 faster that using
R from R itself. This was not unexpected, as the lower-level interface is
closer to the C API for R.
Since casting back a rpy2.robjects.vectors.FloatVector to its
parent class rpy2.rinterface.SexpVector is straightforward, we
have a mechanism that allows rpy2 to run code over R objects faster than
R can. It also means than rpy2 is at faster than other Python-to-R bridges
delegating all there code to be evaluated by R when considering the execution of
code. Traversing from Python to R and back will also be faster with rpy2
than with either pipes-based solutions or Rserve-based solutions.

What might seem more of a surprise is that iterating through a numpy.array is only
slightly faster than pure R, and slower than when using rpy2.rinterface.SexpVector.
This is happening because the subsetting mechanism for the later is kept much lighter weight,
giving speed when needed. On the other hand, accessing
rpy2.robjects.vectors.FloatVector is slower because the interface is currently
implemented in pure Python, while it is in C for numpy.array.

Finally, and to put the earlier benchmarks in perspective, it would be
fair to note that python and R have a builtin function sum,
calling C-compiled code, and to compare their performances.

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

 	Miscellaneous topics

Custom graphical devices

Warning

This is still very experimental, and using this may result in
crashing the Python interpreter.

The C-API to R allows extension writers to implement custom
graphical devices (using C). This feature was used to implement
drivers to SVG or Cairo, for example (Cairo support made it later to the R
codebase).

Rpy2 is exposing the creation of custome graphical devies to Python
programmer, without the need for C.

To demonstrate how to implement a graphical, we consider the following
example:
a device that counts the number of times graphical primitives are used.
This is something of very limited practical use, but enough to explain
the principles.

Such a device would be implemented as follows:

import rpy2.rinterface._rpy_device as rdevice
from collections import Counter

class BeancounterDevice(rdevice.GraphicalDevice):
 """ Graphical devive for R that counts the
 number of times primitives are called."""

 def __init__(self):
 super(BeancounterDevice, self).__init__()
 self._ct = Counter()

 def circle(self, x, y, radius):
 self._ct['circle'] += 1

 def clip(self, x0, x1, y0, y1):
 self._ct['clip'] += 1

 def line(self, x1, y1, x2, y2):
 self._ct['lines'] += 1

 def mode(self, mode):
 self._ct['mode'] += 1

 def rect(self, x0, x1, y0, y1):
 self._ct['rectangle'] += 1

 def strwidth(self, text):
 self._ct['strwidth'] += 1
 return float(0)

 def text(x, y, string, rot, hadj):
 self._ct['text'] += 1

The class BeancounterDevice can now be used as genuine
R plotting device.

from rpy2.robjects.packages import importr

dev = BeancounterDevice()

graphics = importr("graphics")
plot into our counting device
graphics.plot(0, 0)

Print the counts
print(dev._ct)

To implement a new custom graphical device for R, one only has to
extend the class rpy2.rinterface._rpy_device.GraphicalDevice.
Error messages will be printed if that new device does not implement
functionalities used by R.

The Python documentation strings for the class and its methods are:

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rpy2 2.8.4 documentation

Appendix

	Changes in rpy2
	Release 2.8.3

	Release 2.8.2

	Release 2.8.1

	Release 2.8.0

	Release 2.7.9

	Release 2.7.8

	Release 2.7.7

	Release 2.7.6

	Release 2.7.5

	Release 2.7.4

	Release 2.7.3

	Release 2.7.2

	Release 2.7.1

	Release 2.7.0

	Release 2.6.3

	Release 2.6.2

	Release 2.6.1

	Release 2.6.0

	Release 2.5.7

	Release 2.5.6

	Release 2.5.5

	Release 2.5.4

	Release 2.5.3

	Release 2.5.2

	Release 2.5.1

	Release 2.5.0

	Release 2.4.4

	Release 2.4.3

	Release 2.4.2

	Release 2.4.1

	Release 2.4.0

	Release 2.3.10

	Release 2.3.9

	Release 2.3.8

	Release 2.3.7

	Release 2.3.6

	Relase 2.3.5

	Relase 2.3.4

	Release 2.3.3

	Release 2.3.2

	Release 2.3.1

	Release 2.3.0

	Release 2.2.6

	Release 2.2.5

	Release 2.2.4

	Release 2.2.3

	Release 2.2.2

	Release 2.2.1

	Release 2.2.0

	Release 2.1.9

	Release 2.1.8

	Release 2.1.7

	Release 2.1.6

	Release 2.1.5

	Release 2.1.4

	Release 2.1.3

	Release 2.1.2

	Release 2.1.1

	Release 2.1.0

	Release 2.0.7

	Release 2.0.6

	Release 2.0.5

	Release 2.0.4

	Release 2.0.3

	Release 2.0.2

	Release 2.0.1

	Release 2.0.0

	Release 2.0.0rc1

	Release 2.0.0rc1

	Release 2.0.0b1

	Release 2.0.0a3

	Release 2.0.0a2

	Release 2.0.0a1

	Release 1.0a0

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	rpy2 2.8.4 documentation

 	Appendix

Changes in rpy2

Release 2.8.3

Bugs fixed

	Fixed the error when the transformation of R “man” pages into Python
docstrings was failing when the section “arguments” was missing
(issue #368)

	Failing to find R in the PATH during the installation of rpy2
is now printing an error message instead of a warning (issue #366)

Release 2.8.2

Bugs fixed

	R’s dplyr::src_dt was moved to dtdplyr::src_dt with dplyr release 0.5.0.
To address this, src_dt will become a None if the R package dplyr is
discovered to be of version >= 0.5.0 at runtime. (issue #357)

	Conversion issue when R symbols were accessed as attribute of the singleton
rpy2.robjects.R. (issue #334)

	The rmagic extension for ipython was no longer loading with the latest
ipython (version 5.0.0). (issue #359)

Changes

	The fix to issue #357 (see bugs fixed above) was expanded to cover all
R packages wrapped in rpy2.robjects.lib and ensure that the respective
Python modules can loaded even if symbols are no longer defined in future
versions of the corresponding R packages.

Release 2.8.1

New features

	Dockerfile with automated build on dockerhub (https://hub.docker.com/r/rpy2/rpy2)

Bugs Fixed

	Trying to install rpy2 while R is not in the PATH resulted in an error
in setup.py.

Release 2.8.0

New features

	New class rpy2.robjects.SourceCode. The class extends Python’s
str [http://docs.python.org/library/functions.html#str] and is meant to represent R source code. An HTML
renderer for the ipython notebook (syntax highlighting using
pygment is also added).

	New module rpy2.robjects.lib.tidyr providing a custom
wrapper for the R library tidyr

	The long-deprecated functions rpy2.rinterface.set_writeconsole() and
rpy2.rinterface.get_writeconsole() are no longer available. One of
rpy2.rinterface.set_writeconsole_regular() / rpy2.rinterface.set_writeconsole_warnerror()
or rpy2.rinterface.get_writeconsole_regular() / rpy2.rinterface.get_writeconsole_warnerror()
respectively should be used instead.

	The attribute rpy2.robjects.RObject.slots can now be implictly interated on
(the method __iter__() is now an alias for keys()).

	The default Python-R conversion is now handling functions. This means that
Python function can directly be used as parameters to R functions (when
relevant).

	Ipython display hook display_png for ggplot2 graphics.

	pandas “category” vectors are better handled by the pandas conversion.

	New module rpy2.robjects.lib.grdevices providing a custom
wrapper for the R library ‘grDevices’, exposing few key functions in
the package and providing context managers (render_to_file and
render_to_bytesio) designed to simplify the handling of static plots
(e.g., webserver producing graphics on the fly or figure embedded in a
Jupyter notebook).

	Numpy conversion is handling better arrays with dtype equal to “O”
when all objects are either all inheriting from str [http://docs.python.org/library/functions.html#str] or from
bytes. Such arrays are now producing StrSexpVector or
BytesSexpVector objects respectively.

	R’s own printing of warnings if now transformed to warnings of type
rinterface.RRuntimeWarning (it used to be a regular UserWarning)

	The family of functions src_* and the function tbl in the R package
dplyr have aliases in the module rpy2.robjects.lib.dplyr, and
a class DataSource has been added for convenience.

	rpy2.robjects.vectors.DataFrame has a method head corresponding
to R’s method of the same name. The method takes the n first row of a
data frame.

	dplyr’s functions count_ and tally are now exposed as methods for
the class dplyr.DataFrame.

Changes

	Building/installing rpy2 with a development version of R does not require
the use of option –ignore-check-rversion any longer. A warning is
simply issue when the R version is “development”.

	On MSWindows, the dependency on pywin32 was removed (issue #315)

	GroupedDataFrame in the dplyr interface module is now inheriting
from the definition of DataFrame in that same module (it was previously
inheriting from robjects.vectors.DataFrame).

	The default repr() for R objects is now printing the R classes
(as suggested in issue #349).

Bugs Fixed

	Parameter names to R function that are in UTF-8 are no longer causing a
segfault (issue #332)

	Looking for a missing key in an R environment (using __getitem__ or [)
could raise a LookupError instead of a KeyError.

	R environment can now handle unicode keys as UTF-8 (was previously
trying Latin1)

	rpy2 is interrupting attempts to install with Python < 2.7 with an
informative error message (issue #338)

	Setting the R class can be done by using a simple Python string (issue #341)

	rpy2.robjects.lib.grid.viewport is now returning an instance of class
Viewport (defined in the same module) (issue #350)

Release 2.7.9

Bug fixed

	Python objects exposed to R could lead to segfault when the Python process is
exiting (issue #331)

Release 2.7.8

Bugs fixed

	American English spelling was missing for some of the function names
to specify colour (color) scales.

	Fix for printing R objects on Windows (pull request #47)

Release 2.7.7

Bugs fixed

	Pickling robjects-level objects resulted in rinterface-level objects
when unpickled (issue #324).

Release 2.7.6

Changes

	rpy2.robjects.lib.ggplot2 was modified to match the newly released
ggplot2-2.0.0. This is introducing API-breaking changes, which breaks the
promise to keep the API stable through bugfix releases within series, but
without it 2.7.x will not a work with new default installation of the R
package ggplot2.

Release 2.7.5

Bugs fixed

	Division and floordivision through the delegator .ro provided with
R vectors wrapped by robjects. (issue #320)

	Memory leak when unserializing (unpickling) R objects bundled in Python
objects (issue #321)

Release 2.7.4

Bugs fixed

	Python 3.5 highlighted slightly incorrect C-level flags in rpy2 objects
declarations, and rpy2.robjects could not be imported.

	Fixed unit tests for rmagic when numpy is not installed, and
for numpy is installed by pandas in missing.

Release 2.7.3

Bugs fixed

	method DataFrame.collect() in rpy2.robjects.lib.dplyr
was not functioning.

	Applied patch by Matthias Klose to fix implict pointer conversions.

	pandas2ri.ri2py_dataframe is now propagating the row names
in the R data frame into an index in the pandas data frame (issue #285)

	methods union, intersect, setdiff, ungroup defined in the R package
dplyr were missing from the
DataFrame definition in rpy2.robjects.lib.dplyr

Release 2.7.2

Bugs fixed

	methods distinct, sample_n, and sample_frac defined in the R package
dplyr were missing from the DataFrame definition in
rpy2.robjects.lib.dplyr

	The fix for the inheritance problem with
rpy2.robjects.lib.dplyr.DataFrame introduced a regression whenever
group_by is used.

	The methods to perform joins on dplyr DataFrame objects where not
working properly.

Release 2.7.1

Bugs fixed

	The __repr__() for robjects-level vectors
was broken for vectors of length 1 (issue #306)

	The ipython notebook-based sections of the documentation
were not building

	Classes inheriting from dplyr.DataFrame had dplyr methods
returning objects of their parent class.

Release 2.7.0

New features

	New exception rpy2.rinterface.RParsingError. Errors
occurring when parsing R code through rpy2.rinterface.parse()
raise this exception (previously rpy2.rinterface.RRuntimeError).

	New class rpy2.robjects.conversion.Converter to replace
the namedtuple of the same name

	New class rpy2.robjects.converter.ConversionContext. This is
a context manager allowing an easy setting of local conversion rules.
The constructor has an alias called
rpy2.robjects.constructor.localconverter().

	New module rpy2.robjects.lib.dplyr providing a custom
wrapper for the R library dplyr

	Method :method:`Environment.items()` to iterate through the symbols
and associated objects in an R environment.

	Exception rpy2.rinterface.ParsingIncompleError, a child class of
rpy2.rinterface.ParsingError, raised when
calling rpy2.rinteface.parse() results in R’s C-level status
to be PARSE_INCOMPLETE. This can make the Python implementation of an
IDE for R easier.

	Attribute slots for rpy2.robjects-level objects. The
attribute is a rpy2.robjects.Rslots which
behaves like a Python mapping to provide access to R-attributes
for the object (see issue #275).

	The R “magic” for ipython %%R can be passed a local converter
(see new features above) by using -c.

Bugs fixed

	Conversion rules were not applied when parsing and evaluating string
as R with rpy2.robjects.R.

	Calling the constructor for rpy2.robjects.vectors.FactorVector
with an R factor is no longer making a copy, loosing the associated
R attributes if any (fixes issue #299).

	rpy2 could crash when R was unable to dynamically load the C extension for
one of its packages (noticed with issue #303).

Changes

	rpy2.rinterface.is_initialized() is now a function.

	rpy2.robjects.R.__call__() is now calling R’s base::parse()
to parse the string rather the parser through R’s C-API. The workaround
let’s us retrieve R’s error message in case of failure (see issue #300)

Release 2.6.3

Bug fixed

	Metaclass RS4Auto_Type facilitating the creation of Python
classes from R S4 classes was not handling classes without
methods (issue #301)

Release 2.6.2

Bugs fixed

	Check that R >= 3.2 is used at build time (issue #291)

	Conversion rules were not applied when parsing and evaluating string
as R code with rpy2.robjects.R.

Release 2.6.1

New features

	Because of their long names, the classes
SignatureTranslatedAnonymousPackage,
SignatureTranslatedPackage, and
SignatureTranslatedFunction
in rpy2.robjects.packages have now the aliases
STAP, STP, and STF respectively.

Bugs fixed

	Typo in function name emitting warnings at build time (issue #283)

	The conversion of TaggedList instances is now handling the names
of items in the list (issue #286)

Changes

	Loading the ipython extension in the absence of pandas or numpy
is now issuing a warning (issue #279)

Release 2.6.0

New features

	Report the existence during build time of a file .Renviron,
or the definition of the environment variables R_ENVIRON’ or
`R_ENVIRON_USER with a warning. (issue #204)

	Moved console writting callback to use ptr_R_WriteConsoleEx
rather than ptr_R_WriteConsole. This allows callbacks
for warnings and messages. get/set_writeconsole is now
replaced by get/set_writeconsole_regular (regular
output) and get/set_writeconsole_warnerror (warning and error).
In order to conserve backward compatibility an alias for
get/set_writeconsole_regular called get/set_writeconsole is
provided.

	Added callback for ptr_R_ResetConsole.

	pandas Categorical objects are automatically handled
in the pandas converter.

	The translation of R symbols into Python symbols used in importr and
underlying classes and methods can be customized with a callback.
The default translation turning . into _ is default_symbol_r2python.

	Translation of named arguments in R function is now sharing code with the
translation of R symbols (see point above), providing a consistent way to
perform translations.

	Utility function sequence_to_vector in robjects to convert Python
sequences (e.g., list or tuple) to R vector without having to
specify the type (the type is inferred from the list).

	robjects.vectors object have a property NAvalue that contains
the NA value for the vector, allowing generic code on R vectors.
For example, testing whether any vector contains NA can be written as
any(x is myvector.NAvalue for x in myvector). Making numpy /masked/ array
is an other application.

Changes

	The automatic name translation from R to Python used in importr is
now slightly more complex. It will not only translate . to _ but
should a conflict arise from the existence in R of both the . and _
versions the . version will be appended a _ (in accordance with
:pep:0008). The change was discussed in issue #274).

	The ipython ‘R magic’ is now starting with a default conversion mode
that is pandas2ri if it can find it, then numpy2ri if it can find it,
and then the basic conversion.

	R vectors are now typed at the C level (IntSexpVector, FloatSexpVector,
ListSexpVector, etc...) whenever retrieving them from the embedded R
with the low-level rinterface. This is facilitating dispatch on vector
type (e.g., with singledispatch now used for the conversion system).

Bugs fixed

	The evaluation of R code through R’s C-level function tryEval
caused console output whenever an error occurred. Moving to
the seemingly experimental tryEvalSilent makes evaluations less
verbose.

	Multiple plots in one ipython cell (pull request #44)

Release 2.5.7

	simplegeneric was moved of ipython 4.0.0 (pull request #43)

Release 2.5.6

Bugs fixed

	Detection of the R version during setup on Win8 (issues #255 and #258)

	Segmentation fault when converting pandas Series with
elements of type object (issue #264)

	The default converter from Python (non-rpy2) objects to rinterface-level
objects was producing robjects-level objects whenever the input was of
type list [http://docs.python.org/library/functions.html#list] (discovered while fixing issue #264)

	Implemented suggested fix for issue with unlinking files on Windows
(issue #191)

	Testing rpy2 in the absence of ipython no longer stops with an error
(issue #266)

Release 2.5.5

Bugs fixed

	Crash (segfault) when querying an R object in an R environment triggers an
error (symbol exists, but associated values resolves to an error - issue #251)

	Change in the signature of rcall was not updated in the documentation
(issue #259)

	Minor update to the documentation (issue #257)

Release 2.5.4

Bugs fixed

	Filter PNG files on size, preventing empty files causing trouble to be
ipython notebook rendering of graphics later on (slight modification of
the pull request #39)

	Fix installation left unresolved with rpy2-2.5.3 (issue #248)

	Possible segfault with Python 3.4 (issue #249)

Release 2.5.3

Changes

	
	setup.py has install_requires in addition to requires in the hope to

	fix the missing dependency with Python 2 (singledispatch is required
but not installed).

Bugs fixed

	Extracting configuration information from should now work when R is emitting a warning (issue #247)

	On OS X the library discovery step can yield nothing (see issue #246). A tentative fix is to issue
a warning and keep moving.

Release 2.5.2

Bugs fixed

	String representation of robjects.R (issue #238)

	Check during build_ext if unsupported version of R (pull request #32)

	HTMl display of columns of factors in a DataFrame (issue #236)

	HTML display of factors (issue #242)

Release 2.5.1

Bugs fixed

	Require singledispatch if Python 3.3 (issue #232)

	Fixed bug when R spits out a warning when asked configuration information (issue #233)

	Restored printing of compilation information when running setup.py

	Fixed installation issue on some systems (issue #234)

	Workaround obscure failure message from unittest if Python < 3.4 and
singledispatch cannot be imported (issue #235)

Release 2.5.0

New features

	Experimental alternative way to preserve R objects from garbage collection.
This can be activated with rinterface.initr(r_preservehash=True) (default
is False.

	GGPlot object getting a method save()
mirroring R’s ggplot2::ggsave().

	The conversion system is now using generics/single dispatch.

	New module rpy2.ipython.html with HTML display for rpy2 objects

	[Experimental] New function robjects.methods.rs4instance_factory()
to type RS4 objects with more specificity.

Changes

	The script setup.py was rewritten for clarity and ease of maintenance.
Now it only uses setuptools.

Release 2.4.4

Bugs fixed

	Use input rather than raw_input in the default console callback
with Python 3 (fixes issue #222)

	Issues with conversions, pandas, and rmagic (fixes issue #218 and more)

Release 2.4.3

Bugs fixed

	geom_raster was missing from rpy2.robjects.lib.ggplot2 (pull request #30)

	Fixed issue with SVG rendering in ipython notebook (issue #217)

	Regression with rx2() introduced with new conversion (issue #219)

	Fixed documentation (missing import) (issue #213)

Release 2.4.2

Bugs fixed

	Assigning an R DataFrame into an environment was failing if
the conversion for Pandas was activated. (Issue #207)

Release 2.4.1

Bugs fixed

	rpy2.ipython() fixed spurious output to notebook cells.

Release 2.4.0

Changes

	Conversion system slightly changed, with the optional
conversions for numpy and pandas modified
accordingly. The changes should only matter if using
third-party conversion functions.

	The Python 3 version is now a first class citizen. 2to3
is no longer used, and the code base is made directly
compatible with Python. This lowers significantly the
installation time with Python 3
(which matters when developping rpy2).

	The default options to initialize R (rpy2.rinterface.initoptions’) are no longer
`(‘rpy2’, ‘–quiet’, ‘–vanilla’, ‘–no-save’) but now
(‘rpy2’, ‘–quiet’, ‘–no-save’).

	robjects.vectors.ListVector can be instanciated from
any objects with a method items() with the expectation that the method
returns an iterable of (name, value) tuples, or even be an iterable
of (name, value) tuples.

New features

	For instances of rpy2.robjects.Function,
the __doc__ is now a property fetching information
about the parameters in the R signature.

	Convenience function rpy2.robjects.packages.data()
to extract the datasets in an R pacakges

	ipython‘s rmagic is now part of rpy. To use, %load_ext
rpy2.ipython from within IPython.

	new method rpy2.rinterface.SexpEnvironment.keys(), returnings
the names in the environment as a tuple of Python strings.

	convenience class robjects.packages.InstalledPackages, with a companion function
robjects.packages.isinstalled().

	new class rinterface.SexpSymbol to represent R symbols

Bugs fixed

	rpy2.rinterface.Sexp.do_slot() was crashing when
the parameter was an empty string (PR #155)

Release 2.3.10

Bugs fixed

	setup.py build was broken when new R compiled with OpenMP (Issue #183)

Release 2.3.9

	Changes in pandas 0.13.0 broke the rpy2 conversion layer (Issue #173)

Release 2.3.8

Bugs fixed

	Crash with R-3.0.2. Changes in R-3.0.2’s C API coupled to a strange behaviour
with R promises caused the problem. (PR #150)

Release 2.3.7

Bugs fixed

	ggplot2’s “guides” were missing

	ggplot2’s “theme_classic” was missing (PR #143)

	ggplot2’s “element_rect” was missing (PR #144)

	rpy2.interactive.packages() was broken (PR #142)

Release 2.3.6

Bugs fixed

	Several reports of segfault on OS X (since rpy2-2.3.1 - PR #109)

	More fixes in converting DataFrames with dates from pandas

Relase 2.3.5

Bugs fixed

	Missing mapping to ggplot2’s scale_shape_discrete function

	Better handling of dates in Pandas

	Constructor for POSIXct improved (and fixed)

Changes

	The attribute rclass is no longer read-only and can be set
(since R allows it)

	Importing the module rpy2.interactive no longer activates
event processing by default (triggering concurrency errors
when used with ipython).

New features

	New module rpy2.interactive.ipython (so far plotting
automatically a ggplot2 figure in the iPython’s console)

	It is now possible to set the rclass.

Relase 2.3.4

Bugs fixed

	Spurious error when running unit tests with Python 3 and numpy
installed

	Missing mapping to ggplot2’s geom_dotplot function

	Warnings are not longer printed (see Changes below)

Changes

	Bumped target version of ggplot2 to 0.9.3.1

	Warnings are not longer printed. The C-level function in R became
hidden in R-3.0, and the cost of an R-level check/print is relatively
high if the R code called is very short. This might evolve into
printing warnings only if interactive mode in Python (if this can
be checked reliably).

Release 2.3.3

Bugs fixed

	Some of the data.frames converted from pandas were triggering
a TypeError when calling repr() [http://docs.python.org/library/functions.html#repr]

	In rpy2.robjects.lib.ggplot2, a mapping to coord_fixed was
missing (PR #120)

	Using the parameter lib_loc in a call to
rpy2.robjects.packages.importr() was resulting in an error (PR #119)

	Creating a layer through the rpy2.robjects.lib.ggplot2 interface did
not accept parameters (PR #122)

	Testing the Python version was crashing of a number of unsupported Python
versions (<= 2.6) (PR #117)

New features

	New module pandas2ri to convert from mod:pandas DataFrame objects

	New classes rpy2.robjects.lib.grid.Unit and
rpy2.robjects.lib.grid.Gpar to model their counterparts in
R’s grid package as they were previously missing from rpy2.

Release 2.3.2

Bug fixed

	Building on Win64 (pull request #6)

	Fetching data from an R package through importr was masking
any R object called data in that package. The data are now
under the attribute name __rdata__. This is not completely
safe either, although much less likely, a warning will
be issued if still masking anything.

Changes

	More informative error message when failing to build because R CMD config
does not return what is expected

Release 2.3.1

Bugs fixed

	default console print callback with Python (issue #112 linked to it)

	deprecation warnings with ggplot2 (issue #111 and contributed patch)

Release 2.3.0

New Features

rpy2.rinterface:

	C-level API, allowing other C-level modules to make use of utilities
without going through the Python level. The exact definition of
the API is not yet fixed. For now there is
PyRinteractive_IsInitialized() to assess whether R was initialized
(through rpy2.rinterface or not).

	C-module _rpy_device, allowing one to implement R graphical devices
in Python [(very) experimental]

	Tracking of R objects kept protected from garbage collection by rpy2
is now possible.

	New method Sexp.rid() to return the identifier of the R object
represented by a Python/rpy2 object

rpy2.rinteractive:

	Dynamic build of Python docstrings out of the R manual pages

rpy2.robjects.help:

	Build dynamic help

rpy2.robjects.packages:

	Build anonymous R packages from strings

	When using importr(), the datasets are added as an attribute
data, itself an instance of a new class PackageData.
It no longer possible to access datasets are regular objects from
a code package (because of changes in R), and the new system is
more robust against quirks.

Changes

rpy2.rinterface:

	SexpClosure.env to replace the method closureenv.

Release 2.2.6

Bugs fixed

	Newest R-2.15 and ggplot2 0.9 broke the ggplot2 interaface
in rpy2.robjects.lib.ggplot2

Release 2.2.5

Bugs fixed

	install process: Library location for some of the R installations

	
	should compile on win32 (thanks to a patch from Evgeny Cherkashin),

	a work to a limited extend

Release 2.2.4

Bugs fixed

	Memory leak when creating R vectors from Python (issue #82)

Release 2.2.3

Bugs fixed

	Dynamic construction of S4 classes was looking for R help as ‘class.<class>’
rather than ‘<class>-class’

	The cleanup of temporary directories created by R was not happening if
the Python process terminated without calline rpy2.rinterface.endr()
(issue #68, and proof-of-principle fix by chrish42)

Release 2.2.2

Bugs fixed

	With the robjects layer, repr() on a list containing non-vector elements
was failing

Release 2.2.1

Bugs fixed

	MANIFEST.in was missing from MANIFEST.in, required with Python 3

Release 2.2.0

New Features

	Support for Python 3, and for some of its features ported to Python 2.7

rpy2.robjects:

	Environment.keys() to list the keys

	classes robjects.vectors.POSIXlt and
robjects.vectors.POSIXlt to represent vectors of R
dates/time

	packages.get_packagepath() to get the path to an R package

	module rpy2.robjects.help to expose the R help system to Python

	Metaclass utilities in rpy2.robjects.methods, allowing to reflect
automatically R S4 classes as Python classes.

	rpy2.robjects.vectors.FactorVector.iter_labels() to iterate over the labels

	rpy2.robjects.vectors.ListVector to represent R lists.

	Constructor for rpy2.robjects.vectors.ListVector and
rpy2.robjects.vectors.DataFrame accept any iterable at the condition
that the elements iterated through also valid subscripts for it (e.g., given
an iterable v, the following is valid:

x[k] for x in v

rpy2.rinterface:

	NA_Complex and NAComplexType for missing complex values.

	SexpExtPtr to represent R objects of type EXTPTR (external pointers).

	rpy2.rinterface.parse() to parse a string a R code

	rpy2.rinterface.rternalise() to wrap Python function as SexpClosure that can
be called by R just as it was a function of its own.

	rpy2.rinterface.RNULLType for R’s C-level NULL value and
rpy2.rinterface.UnboundValueType for R’s C-level R_UnboundValue
(both singletons).

	rinterface.SexpVector.index(), of similar behaviour to list.index().

	rpy2.rinterface.Sexp.list_attrs() to list the names of all R attributes
for a given object.

	rpy2.rinterface.ByteSexpVector to represent R ‘raw’ vectors.

	constant R_LEN_T_MAX to store what is the maximum length for a vector in R.

	tuple R_VERSION_BUILD to store the version of R rpy2 was built against

	getter Sexp.rclass to return the R class associated with an object

rpy2.rlike:

	container.OrdDict get proper methods keys() and get

rpy2.interactive:

	A new sub-package to provide utilities for interactive work, either for
handling R interactive events or use Python for interactive programming
(as often done with the R console)

Changes

rpy2.robjects:

	NA_bool, NA_real, NA_integer, NA_character and NA_complex are now
deprecated (and removed).
NA_Logical, NA_Real, NA_Integer, NA_Character, NA_Complex should be used.

	rpy2.robjects.packages.Package now inherits from types.ModuleType

	classes representing R vector also inherit their type-specific
rinterface-level counterpart.

	Importing the rpy2.robjects.numpy2ri is no longer sufficient
to active the conversion. Explicit activation is now needed; the function
activate can do that.

rpy2.rinterface:

	IntSexpVector, FloatSexpVector,
StrSexpVector, BoolSexpVector, ComplexSexpVector
are now defined at the C level, improving performances
and memory footprint whenever a lot of instances are created.

Bugs fixed

	Better and more explicit detection system for needed libraries when
compiling rpy2 (ported to release 2.1.6)

	Long-standing issue with readline fixed (issue #10)

Release 2.1.9

Bugs fixed

	The R class in rpy2.robjects is now truly a singleton

	When using numpy 1.5 and Python >= 2.7, the exposed buffer for R numerical (double)
vectors or arrays was wrong.

Release 2.1.8

Bugs fixed

	Fixed issue with R arrays with more than 2 dimensions and numpy arrays
(issue #47 - backported from the branch 2.2.x).

Release 2.1.7

Bugs fixed

	More fixes for the automated detection of include and libraries at build time.

Release 2.1.6

Bugs fixed

	Further fixes in the automatic detection of includes and libraries
needed to compile rpy2 against R. The detection code has
been refactored (backport from the 2.2.x branch)

Release 2.1.5

Bugs fixed

	fixes the automatic detection of R_HOME/lib during building/compiling
when R_HOME/lib is not in lib/ (issue #54)

Release 2.1.4

New features

	rpy2.robjects.lib.ggplot2 now has the functions limits(),
xlim(), ylim() exposed (patch contributed anonymously)

Bugs fixed

	Install script when the BLAS library used by R is specified as a library
file (patch by Michael Kuhn)

Release 2.1.3

Bugs fixed

	Spurious error message when using DataFrame.from_csvfile() without
specifying col_names or row_names

	Patch to finally compile with Python < 2.6 (contribDuted by Denis Barbier)

Release 2.1.2

New Features

rpy2.robjects:

	NA_Logical, NA_Real, NA_Integer, NA_Character from rpy2.rinterface
are imported by robjects.

Changes

rpy2.robjects:

	NA_bool, NA_real, NA_integer, NA_character and NA_complex are now
robjects-level vectors
(they were rinterface-level vectors).
Consider using the rinterface-defined NAs instead of them.

Bugs fixed

	Missing conditional C definition to compile with Python 2.4 # issue 38

	Fixed error when calling robjects.vectors.Vector.iteritems() on an R
vector without names

	Fixed automatic conversion issues (issue #41)

Release 2.1.1

Bugs fixed

	Issues with NA values # issue 37

	Missing manual scale functions in rpy2.robjects.lib.ggplot2 # issue 39

Release 2.1.0

New Features

rpy2.robjects:

	Method formals() for Function (formerly RFunction)

	Methods slotnames(), isclass(), and validobject()
for RS4

	Vector-like objects now in a module rpy2.robjects.vectors

	set_accessors() for adding simply accessors to a class inheriting
from RS4

	RS4_Type for metaclass-declared accessors

	Delegating classes ExtractDelegator and
DoubleExtractDelegator for extracting the R-way

	DataFrame (formerly RDataFrame) can now be created
from :rlike.container.OrdDict
instances, or any other object inheriting from dict.

	FactorVector to represent R factors

	the conversion is now returning subclasses of
robjects.vectors.Vector -formerly RVector-
(such as IntVector,
FloatVector, etc...) rather than only return Vector

	StrVector has a method factor() to turn a
vector of strings into an R factor

	Matrix was added the methods: dot(), svd(), crossprod(),
tcrossprod(), transpose().

	IntVector.tabulate() to count the number of times a value is found in the vector

	Vector.sample() to draw a (random) sample of arbitrary size from a vector

	NA_Bool, NA_Real, NA_Integer, NA_Character,
NA_Complex as aliases for R’s missing values.

	ComplexVector for vectors of complex (real + imaginary) elements

	packages to provide utility functions to handle R packages
(import of R packages)

	functions to provide classes related to R functions, with the new
class SignatureTranslatedFunction

	DataFrame.iter_row() and DataFrame.iter_column(), iterating
through rows and columns respectively.

	DataFrame.cbind() and DataFrame.rbind() for binding columns or
rows to a DataFrame.

	Vector.iteritems() to iterate on pairs of names and values.

	Robject.__rname__ to store the “R name”

rpy2.rinterface:

	New functions for specifying callback functions for R’s front-ends:
set_showmessage(), set_flushconsole(),
set_choosefile(), set_showfiles()

	New object MissingArg, exposing R’s special object for representing
a “missing” parameter in a function call.
(#this was first a patch by Nathaniel Smith with a function getMissingArgSexp)

	Initial commit of a callback-based implementation of an R graphical device
(this is for the moment very experimental - and not fully working)

	SexpClosure.rcall() is now taking 2 parameters,
a tuple with the parameters and
an SexpEnvironment in which the call is to be evaluated.

	Sexp.__sexp__ now has a setter method. This permits the rebinding
of the underlying R SEXP, and allows to expose foo<- type of R methods
as Python function/methods with side effects.

	Objects of R type RAWSXP are now exposed as instances of class
SexpVector.

	Factory function unserialize() to build Sexp* instances from byte
string serialized with R’s own ‘serialize’.

	Method Sexp.__reduce__() for pickling/unpickling

	Ability to specify a callback function for R_CleanUp (called upon exiting R)
through get_cleanup() and set_cleanup() [very experimental]

	Class ListSexpVector for creating R lists easily
(complementing IntSexpVector, StrSexpVector, and friends)

	colnames(), rownames() for Array (formerly RArray) are now
property-style getters

	Pairlists (LISTSXP) now handled

	Experimental function set_interactive() to set whether R is in interactive
mode or not (#following an issue reported by Yaroslav Halchenko)

	New object R_NilValue, exposing R’s special object for representing
a “NULL”.

	ComplexSexpVector for vectors of complex (real + imaginary) elements

	Scalar Python parameters of type int [http://docs.python.org/library/functions.html#int], long [http://docs.python.org/library/functions.html#long],
double, bool [http://docs.python.org/library/functions.html#bool], and None
in a call (using SexpClosure) are now automatically converted
to length-one R vectors (at the exception of None, converted
to R_NilValue).

	Python slices can now be used on R vector-like objects

	Better handling of R’s missing values NA, NA_integer_, NA_real_,
and NA_character_.

rpy2.rlike:

	iteritems() for OrdDict (formerly:class:ArgDict)
and TaggedList

	static method from_iteritems() for TaggedList,
for creating a TaggedList from any object having a method iteritems()

Changes

	The setup.py script is now taking command-line arguments when specifying
R library-related paths are wished. python setup.py –help build_ext will
list them

rpy2.robjects:

	RS4 no longer makes R’s slots as Python attributes through __attr__()

	The package is split into modules

	The broken variables NA_STRING, NA_INTEGER, NA_LOGICAL, and NA_REAL are
removed. The documentation on missing values was revised.

	globalEnv and baseNameSpaceEnv were renamed to
globalenv and baseenv respectively

	The parameter wantFun in Environment.get()
(formerly REnvironment.get()) is now wantfun

	Vector.r does not have a __getitem__ method any longer
(see in .rx and .rx2 in the new features)

	colnames(), rownames(), nrow(), ncol()
for DataFrame are now property-style getters

	nrow(), ncol() for Array
are now property-style getters

	static method from_csvfile() and
instance method to_csvfile() for DataFrame

	module lib to store modules representing R packages

	module lib.ggplot2 for the CRAN package ggplot2.

	renaming of few classes, the R prefix: Formula (from RFormula),
DataFrame (from RDataFrame), Array (from RArray),
Matrix (from RMatrix), Environment (from REnvironment),
Function (from RFunction), Vector (from RVector).

	robjects.vectors.Vector lost the (now redundant) methods
subset and assign. Those operations were just aliases to the
ExtractDelegator

rpy2.rinterface:

	globalEnv, baseNameSpaceEnv, and emptyEnv
were renamed to globalenv, baseenv and emptyenv
respectively

	The parameter wantFun in SexpEnvironment.get() is now wantfun

	The call-back getters and setters are now get_readconsole(),
set_readconsole(), get_writeconsole(), set_writeconsole(),
get_flushconsole(), and set_flushconsole().

	Functions also accept named parameters equal to Py_None, and transform them to R
NULL (previously only accepted parameters inheriting from Sexp).

rpy2.rlike:

	ArgDict becomes OrdDict.

	tags() of TaggedList is now a property (with a getter
and a setter)

rpy2.rpy_classic:

	R named lists are returned as Python dict [http://docs.python.org/library/stdtypes.html#dict], like rpy-1.x does it, with the
notable difference that duplicate names are not silently overwritten: an exception
of class ValueError is thrown whenever happening

Bugs fixed

	REnvironment.get() now accepts a named parameter wantFun
(like rinterface.SexpEnvironment() does)

	rinterface.SexpVector will now properly raise an exception
when trying to create vector-like object of impossible type

	Crash when trying to create a SexpVector of a non-vector type

	R objects of class matrix are now properly converted into RMatrix
(instead of Array)

	Robj.as_py() was not working at all (and now it does to some extent)

Release 2.0.7

Bugs fixed

	On win32, printing an object was leaving an open file handle behind each time,
leading to an error and the impossibility to print
(# bug report and fix by Christopher Gutierrez)

Release 2.0.6

No user-visible change. Win32-specific additions to the C module
were made to compile it.

Release 2.0.5

Bugs fixed

	Crash when calling SexpEnvironment.get() with an empty string
#bug report by Walter Moreira

	SexpEnvironment.__getitem__() called with an empty string
caused unpredictable (and bad) things

Release 2.0.4

Bugs fixed

	Added missing named parameter wantfun to method REnvironment.get()
(making it similar to SexpEnvironment.get())

	Leak in reference counting when creating SexpVector objects fixed
(the symptom was a process growing in size when creating R vector from
Python list or numpy arrays)

	R CMD config LAPACK_LIBS could return an empty string when R was compiled
with the veclib framework, causing the setup.py script to raise an exception.
setup.py now only print a message about an empty string returned from
R CMD config

	Numpy arrays with complex elements are no longer causing segfaults

	Calls to SexpClosure.rcall() with something else that the expected
kind of tuple could cause a segfault

Release 2.0.3

New Features

rpy2.rinterface:

	process_revents(), a Wrapper for R_ProcessEvents
(# suggested by June Kim to help with issues related to interactive display on win32),
and for R_RunHandlers on UNIX-like systems
(# patch by Nathaniel Smith).

	All callbacks are getting a get<callback> to complement the set<callback>.
(# Patch by Nathaniel Smith)

	
	Sexp.__deepcopy__() to copy an object (calling Rf_Duplicate)

	(# from a patch by Nathaniel Smith)

Changes

	the default for reading and writing the console are now using sys.stdin and sys.stdout
(# patch submitted by Nathaniel Smith)

	console IO callbacks (reading and writing) are complemented by
one to flush the console

	Sexp.do_slot_assign() now creates the slot if missing
(design-fix - # patch by Nathaniel Smith)

Bugs fixed

	fixed problem of numpy interface with R boolean vectors.
They are now presented as ‘i’ rather than ‘b’ to numpy
(# patch submitted by Nathaniel Smith)

	The mechanism for setting arbitrary callaback functions for console I/O
now ensures that a traceback is printed to stderr whenever an error
occurs during the evalutation of the callback (the raised exception used
to be silently propagated to the next python call, leading to problems).

Release 2.0.2

Bugs fixed

	Fix installation bug when the include directories contain either ‘-‘ or ‘I’
#spotted by James Yoo

	Failing to initialize R now throws a RuntimeError

	Copying an R “NA” into Python returns a None (and no longer a True)
(#fixes a bug reported by Jeff Gentry)

Release 2.0.1

New features

rpy2.robjects:

	Property names for the RVector methods getnames()
and setnames() (this was likely forgotten for Release 2.0.0).

	Property rclass for RObjectMixin

Changes

rpy2.robjects:

	rclass() becomes getrclass()

Bugs fixed

	Having the environment variable R_HOME specified resulted in an error
when importing rpy2.rinterface # root of the problem spotted by Peter

	Setup.py has no longer a (possibly outdated) static hardcoded version number
for rpy2

	Testing no longer stops with an error in the absence of the third-party
module numpy

	rpy2.rlike.container.TaggedList.pop() is now returning the element
matching the given index

Release 2.0.0

New features

	New module rpy2.robjects.conversion.

	New module rpy2.robjects.numpy2ri to convert numpy objects
into rpy2 objects.
adapted from a patch contributed by Nathaniel Smith

Changes

	RObject.__repr__() moved to RObject.r_repr()

Bugs fixed

	Informative message returned as RuntimeError when failing to find R’s HOME

	Use the registry to find the R’s HOME on win32
snatched from Peter’s earlier contribution to rpy-1.x

Release 2.0.0rc1

rpy2.rpy_classic:

	rpy_classic.RObj.getSexp() moved to a
property rpy_classic.Robj.sexp.

rpy2.robjects:

	RObject.__repr__() moved to RObject.r_repr()

	ri2py(), ro2py(), and py2ri() moved to the new module
conversion. Adding the prefix conversion. to calls
to those functions will be enough to update existing code

Bugs fixed

	Informative message returned as RuntimeError when failing to find R’s HOME

	Use the registry to find the R’s HOME on win32
snatched from Peter’s earlier contribution to rpy-1.x

Release 2.0.0rc1

New features

	added __version__ to rpy2/__init__.py

rpy2.robjects:

	added classes StrVector, IntVector, FloatVector, BoolVector

rpy2.rinterface:

	added missing class BoolSexpVector.

Changes

rpy2.robjects:

	does not alias rinterface.StrSexpVector, rinterface.IntSexpVector, rinterface.FloatSexpVector anymore

	Constructor for rpy2.robjects.RDataFrame checks that R lists are data.frames (not all lists are data.frame)

	Formerly new attribute _dotter for R is now gone. The documentaion now points to rpy2.rpy_classic for this sort of things.

Bugs fixed

	conditional typedef in rinterface.c to compile under win32 # reported and initial proposed fix from Paul Harrington

	__pow__ was missing from the delegator object for robjects.RVector (while the documentation was claiming it was there) # bug report by Robert Nuske

	Earlier change from Sexp.typeof() to getter Sexp.typeof was not reflected in rpy2.rpy_classic # bug report by Robert Denham

Release 2.0.0b1

New features

rpy2.robjects:

	added setenvironment() for RFormula, and defined environment as a property

	defined names as a property for RVector

rpy2.rinterface:

	added functions get_initoptions() and set_initoptions().

	new attribute _dotter for R singleton. Setting it to True will translate ‘_’ into ‘.’ if the attribute is not found

Changes

rpy2.robjects:

	constructor for RDataFrame now now accepts either rlike.container.TaggedList or rinterface.SexpVector

rpy2.rinterface:

	sexpTypeEmbeddedR() is now called str_typeint().

	initOptions is now called initoptions. Changes of options can only be done through set_initoptions().

Bugs fixed

	crash of Sexp.enclos() when R not yet initialized (bug report #2078176)

	potential crash of Sexp.frame() when R not yet initialized

	proper reference counting when handling, and deleting, Sexp.__sexp__ generated CObjects

	setup.py: get properly the include directories (no matter where they are) #bug report and fix adapted from Robert Nuske

	setup.py: link to external lapack or blas library when relevant

	added a MANIFEST.in ensuring that headers get included in the source distribution #missing headers reported by Nicholas Lewin-Koh

	rinterface.str_typeint() was causing segfault when called with 99

	fixed subsetting for LANGSXP objects

Release 2.0.0a3

New features

rpy2.rinterface:

	setReadConsole(): specify Python callback for console input

	R string vectors can now be built from Python unicode objects

	getter __sexp__ to return an opaque C pointer to the underlying R object

	method rsame() to test if the underlying R objects for two Sexp are the same.

	added emptyEnv (R’s C-level R_EmptyEnv)

	added method Sexp.do_slot_assign()

rpy2.robjects:

	R string vectors can now be built from Python unicode objects

rpy2.rlike:

	module functional with the functions tapply(), listify(), iterify().

	module indexing with the function order()

	method TaggedList.sort() now implemented

Changes

rpy2.rinterface:

	initEmbeddedR() is only initializing if R is not started (no effect otherwise, and no exception thrown anymore)

	the method Sexp.typeof() was replaced by a Python getter typeof.

	the method Sexp.named() was replaced by a Python getter named.

	R objects of type LANGSXP are now one kind of vector (... but this may change again)

	R objects of type EXPRSXP are now handled as vectors (... but this may change again)

	initEmbeddedR() renamed to initr()

	endEmbeddedR() renamed to endr()

rpy2.robjects:

	R remains a singleton, but does not throw an exception when multiple instances are requested

Bugs fixed

	unable to compile on Python2.4 (definition of aliases to Python2.5-specific were not where they should be).

	overflow issues on Python 2.4/64 bits when indexing R vector with very large integers.

	handling of negative indexes for SexpVector‘s __getitem__() and __setitem__() was missing

	trying to create an instance of SexpVector before initializing R raises a RuntimeException (used to segfault)

	experimental method enclos() was not properly exported

	setup.py was exiting prematurely when R was compiled against an existing BLAS library

	complex vectors should now be handled properly by rpy2.rinterface.robjects.

	methods rownames() and colnames() for RDataFrame were incorrect.

Release 2.0.0a2

New features

rpy2.rlike:

	package for R-like features in Python

	module rpy2.rlike.container

	class ArgsDict in rpy2.rlike.container

	class TaggedList in rpy2.rlike.container

rpy2.rinterface:

	method named(), corresponding to R’s C-level NAMED

	experimental methods frame() and enclos() for SexpEnvironment corresponding to R’s C-level FRAME and ENCLOS

	method rcall() for ClosureSexp

	new experimental class SexpLang for R language objects.

Bugs fixed

	R stack checking is disabled (no longer crashes when multithreading)

	fixed missing R_PreserveObject for vectors (causing R part of the object to sometimes vanish during garbage collection)

	prevents calling an R function when R has been ended (raise RuntimeException).

Release 2.0.0a1

New features

rpy2.robjects:

	method getnames() for RVector

	experimental methods __setitem__() and setnames() for RVector

	method ‘getnames’ for RArray

	new class RFormula

	new helper class RVectorDelegator (see below)

	indexing RVector the “R way” with subset is now possible through a delegating attribute (e.g., myvec.r[True] rather than myvec.subset(True)). #suggested by Michael Sorich

	new class RDataFrame. The constructor __init__() is still experimental (need for an ordered dictionnary, that will be in before the beta

	filled documentation about mapping between objects

Changes

	many fixes and additions to the documentation

	improved GTK console in the demos

	changed the major version number to 2 in order to avoid confusion with rpy 1.x # Suggested by Peter and Gregory Warnes

	moved test.py to demos/example01.py

rpy2.robjects:

	changed method name getNames to getnames where available (all lower-case names for methods seems to be the accepted norm in Python).

Bugs fixed

rpy2.robjects:

	fixed string representation of R object on Microsoft Windows (using fifo, not available on win32)

	__getattr__() for RS4 is now using ri2py()

rpy2.rinterface:

	fixed context of evaluation for R functions (now R_GlobalEnv)

Release 1.0a0

	first public release

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	rpy2 2.8.4 documentation

 Python Module Index

 r

 			

 		
 r	

 	[image: -]
 	
 rpy2	

 	
 	
 rpy2.interactive	

 	
 	
 rpy2.interactive.process_revents	
 Processing R events for interactivity

 	
 	
 rpy2.ipython	

 	
 	
 rpy2.rinterface (Unix, Windows)	
 Low-level interface with R

 	
 	
 rpy2.rlike (Unix, Windows)	
 Operate (a bit) like in R

 	
 	
 rpy2.rlike.container	

 	
 	
 rpy2.rlike.functional	

 	
 	
 rpy2.rlike.indexing	

 	
 	
 rpy2.robjects (Unix, Windows)	
 High-level interface with R

 	
 	
 rpy2.robjects.conversion	
 Shuttling between low-level and higher(er)-level representations

 	
 	
 rpy2.robjects.help (Unix, Windows)	
 High-level interface with R

 	
 	
 rpy2.robjects.lib.grdevices	
 High-level interface with R

 	
 	
 rpy2.robjects.methods	
 S4 OOP in R

 	
 	
 rpy2.robjects.vector (Unix, Windows)	
 High-level interface with R

 	
 	
 rpy2.rpy_classic	
 Emulate the orignal rpy

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	rpy2 2.8.4 documentation

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V

_

 	

 	__deepcopy__() (rpy2.rinterface.Sexp method)

 	

 	__sexp__ (rpy2.rinterface.Sexp attribute)

B

 	

 	
 baseenv

 	

 	rinterface

C

 	

 	closure

 	closureEnv

 	

 	conversion

 	CPLXSXP

D

 	

 	dim

 	dimnames

 	

 	do_slot() (rpy2.rinterface.Sexp method)

 	do_slot_assign() (rpy2.rinterface.Sexp method)

E

 	

 	
 Environment

 	

 	robjects

 	
 environment variable

 	

 	PATH

 	Path

 	R_HOME, [1]

 	R_LIBS

 	

 	ENVSXP

 	
 extracting

 	

 	Vector

F

 	

 	FALSE

 	
 Formula

 	

 	robjects

 	formula

 	

 	
 Function

 	

 	robjects

 	
 function

 	

 	rinterface

 	robjects

 	rpy_classic

G

 	

 	globalenv

 	

 	robjects

I

 	

 	
 indexing

 	

 	rinterface

 	initialization

 	initialize R_HOME

 	

 	
 install

 	

 	source

 	win32

 	INTSXP

L

 	

 	LANGSXP

 	

 	LGLSXP

M

 	

 	missing values

N

 	

 	named (rpy2.rinterface.Sexp attribute)

 	

 	
 names

 	

 	rinterface

 	robjects

O

 	

 	OrdDict

 	

 	order() (in module rpy2.rlike.indexing)

P

 	

 	PATH

 	Path

 	

 	
 Python Enhancement Proposals

 	

 	PEP 3118

 	PEP 372

 	PEP 8

R

 	

 	R_HOME, [1], [2]

 	R_LEN_T_MAX

 	R_LIBS

 	RAWSXP

 	
 rcall

 	

 	order of parameters

 	REALSXP

 	
 rinterface

 	

 	SexpClosure

 	SexpEnvironment

 	SexpVector

 	baseenv

 	function

 	indexing

 	
 robjects

 	

 	Environment

 	Formula

 	Function

 	function

 	globalenv

 	rpy2.interactive (module)

 	rpy2.interactive.process_revents (module)

 	rpy2.ipython (module)

 	rpy2.rinterface (module)

 	rpy2.rlike (module)

 	

 	rpy2.rlike.container (module)

 	rpy2.rlike.functional (module)

 	rpy2.rlike.indexing (module)

 	rpy2.robjects (module)

 	rpy2.robjects.conversion (module)

 	rpy2.robjects.help (module)

 	rpy2.robjects.lib.grdevices (module)

 	rpy2.robjects.methods (module)

 	rpy2.robjects.vector (module)

 	rpy2.rpy_classic (module)

 	
 rpy_classic

 	

 	conversion

 	function

 	rsame() (rpy2.rinterface.Sexp method)

S

 	

 	Sexp (class in rpy2.rinterface)

 	SexpClosure

 	SexpEnvironment

 	

 	baseenv

 	globalenv

 	

 	SexpVector

 	str_typeint() (in module rpy2.rinterface)

 	STRSXP

T

 	

 	TaggedList

 	
 test

 	

 	whole installation

 	TRUE

 	

 	
 type

 	

 	CPLXSXP

 	ENVSXP

 	INTSXP

 	LANGSXP

 	LGLSXP

 	RAWSXP

 	REALSXP

 	STRSXP

 	typeof (rpy2.rinterface.Sexp attribute)

V

 	

 	
 Vector

 	

 	extracting

 Copyright 2008-2016, Laurent Gautier & rpy2 contributors.
 Created using Sphinx 1.3.5.

 _static/graphics_ggplot2_qplot_5.png

_static/graphics_ggplot2geompointandrug.png
mpg

w

|
i

_static/up.png

_static/graphics_ggplot2geomboxplot.png
factor(eyl)

_static/graphics_ggplot2_smoothbycylwithcolours.png

_static/graphics_lattice_bwplot_1.png
mpg

5

_static/graphics_ggplot2_qplot_4.png
N . H

_static/graphics_lattice_xyplot_2.png
mpg

5

0

000

_static/graphics_lattice_xyplot_1.png
mpg

5

0

%00

_static/graphics_ggplot2map_polygon.png
at

500-

Tong.

has o
Wrase

B

_static/ajax-loader.gif

_static/down-pressed.png

_static/graphics_ggplot2smoothblue.png
-

B

_static/graphics_ggplot2mtcarscolcyl.png

_static/graphics_ggplot2histogramfacetcyl.png

_static/down.png

_static/graphics_ggplot2smoothbycylfacetcyl.png

_static/comment-close.png

_static/comment.png

_static/rpy2_logo_64x64.png

_static/graphics_lattice_xyplot_3.png
Baw

5

0

_static/plus.png

_static/graphics_lattice_wireframe_2.png

_static/graphics_ggplot2addsmooth.png
g

5

_static/graphics_ggplot2geompointdensity2d.png
s0-

25

other_valve

00-

25-

2

point + density

valve.

fevel
0100

oors
o050
oo

_static/graphics_ggplot2geomhistogram.png
col=black - fill=black

count

count

col=black - fill=white

w

col=white - fill=black

count

w

_static/rpy2_logo.png

_static/graphics_ggplot2aescolsize.png
35

-

ma

factor(gear)
.3
“a
-5

A factor(ey)
.a

a .e
“s

factorcart)
o
A .:
. ° o:
A o
L [

_static/graphics_ggplot2mtcars.png
mpg

_static/file.png

_static/graphics_ggplot2addsmoothmethods.png
Im-y ~x

Im -y ~ poly(x. 2)

loess -y ~ x

B
B

_static/graphics_lattice_wireframe_1.png

_static/graphics_grid.png
foo

_static/graphics_ggplot2mtcars_coordtrans.png
identity on axis. log2 on axis sqrt on axis

price
price

i H 3 i 5
carat

carat carat

identity(<variable>) log2(<variable>) sqrt(cvariable>)

dentiy(price)

sariprice)

s
sart{carat)

dentiy(carat)

_static/graphics_ggplot2smoothbycyl.png

_static/graphics_ggplot2geombin2d.png
other_value

geom_density2d

_static/graphics_ggplot2withgrid.png
peri

1000+

area

750

o0

250

_static/graphics_ggplot2perfcolor_both.png

_static/up-pressed.png

_static/graphics_ggplot2geomhistogramfillcyl.png
A

1 ‘ factor(cy))

count

_static/minus.png

_static/graphics_ggplot2aescolboxplot.png
35

-

-

2-

é
factor(eyl)

factorfey)

_static/graphics_ggplot2geomfreqpolyfillcyl.png

_static/graphics_ggplot2_ggplot_1.png

_static/comment-bright.png

