

RealmJoin v4

RealmJoin is the perfect companion to Microsoft Intune [https://www.microsoft.com/en-us/cloud-platform/microsoft-intune]. Securely connect to the cloud and manage large Windows 10 ecosystems with software and policies - without any on premise servers or other local requirements. Manage devices and users no matter if work happens in corporate headquarter or at Starbucks [https://www.starbucks.com/].

To connect and configure your system, please install the client application available below and sign-in using your Azure AD [https://azure.microsoft.com/en-us/services/active-directory/] credentials.

Additional Information at www.realmjoin.com [http://realmjoin.com].

Deployment Guide

Contents:

	Introduction

	Installation
	Download RealmJoin Client

	Via Microsoft Intune

	Interactive Installation

	Command Line Installation

	Connecting a tenant with RealmJoin

	Infrastructure
	Requirements

	Components

	Security Features

	Managing RealmJoin
	User Client

	RealmJoin Portal

	Settings and Policies
	Delivery Optimization for Windows Update

	BitLocker

	Domain Passwort expiry

	Intranet Zone

	Other Configuration Settings

	Types of RealmJoin packages
	Craft packages

	Chocolatey packages

	Microsoft Application Virtualization (App-V)

	Organic

	Creating packages
	General Steps

	Chocolatey Package

	Craft Package

	Organic Package

	App-V Package

	Conventions and RealmJoin helpers

	Updating Packages
	GitClone of current repository

	Content Update

	Versioning

	Push & CI/CD

	Core Extension
	Ensure Core Extension in RealmJoin portal

	Enable extension CmdLets in Craft packages

	AppV Packages

	Logs and Transforms

	Chocolatey Packages

	Command line

	Custom States

	Scheduled Tasks

	Shortcuts

	FAQ
	Which links should I bookmark?

	Am I able to maintain my own packages and updates

	Which platforms are supported?

	I do not see my groups in the Admin Console

	Does RealmJoin support Multi User Devices?

	How to enter the Debug Mode in RealmJoin client?

	I accidentally uninstalled Realmjoin-deployed software using the Windows Apps control

	Can I get rid of Bloatware using RealmJoin?

	Is RealmJoin providing an uninstall of software?

	Should I use the applications internal auto updater or not?

	Re-Install failed software installations

	Since the packages are based on open protocols, can others access my packages?

	What Firewall/Proxy settings do I have to configure?

	Does G&K have any recommendations on workflows?

	What is the recommendation for reporting?

	In the future, may RealmJoin packages be used in Intune?

	Is RealmJoin GDPR compliant?

	Troubleshooting
	Possible reasons why a software package might not install

	Review installed & available Software

	RealmJoin Log Files

	Logging

	Advanced RealmJoin Options

	Verify Group Membership in Office 365 Admin Center

	Token Error

	RealmJoin Backend

	Corrupted chocolatey installation

	How can I remove the RealmJoin application from a client?

	Where does RealmJoin file the packge scripts on the client?

	How can I send feedback to the RealmJoin team?

	Where is the changelog located?

	Workflow (internal GK)
	Upload through customer

	Get involved

	Check the requirements

	Create the package

	Testing of the package

	Dispatching

	Tools

	Specialised Packages
	WLAN packages

	Something special: Microsoft Office 2016

	Packaging In-Depth
	Preface

	Testing Chocolatey Packages from Source

	Packing Chocolatey Packages Locally for Testing

	Importing the Chocolatey and RealmJoin Cmdlets into a PowerShell Session

	Thoughts About Updates and Uninstalls

	3rd Party NuGet Packages on https://packages.gkdatacenter.net/
	PowerShell Modules

	Appendix
	Protocol Handler

	NoGraph Option

	Custom States

	Scheduled Tasks

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The modern, mobile workplace feeds on the ability to be productive fast as well as independent from regional infrastructure. A centerpiece of the modern workplace is the usage of cloud based software-as-a-service (SaaS) solutions and clean provisioned devices, allowing the access to corporate data and software in a short time.
With Windows 10 as central OS, Azure AD for identity management and Microsoft Intune MDM service to manage all user devices, Microsoft offers a nearly complete package for an efficient work environment. However, Microsoft Intune lacks the ability to manage classic Win32 applications.

RealmJoin is developed as a ‘Companion to Intune’, solving the classic Win32 software gap when using Microsoft Intune in corporate and enterprise environments,
and providing a broad range of additional feature to elevate the management and general working experience.
[image: RJ Slide]

Installation

RealmJoin can be deployed on a device using one of multiple ways, depending on the individual scenario. As a first step, download the RealmJoin installer of your choice and procede to the desired installation method.

Download RealmJoin Client

Release

RealmJoin Release Version [https://gkrealmjoin.s3.amazonaws.com/win-release/RealmJoin.msi]

Beta Channel

RealmJoin Beta Version [https://gkrealmjoin.s3.amazonaws.com/win-beta/RealmJoin.msi]

Canary Channel

RealmJoin Canary Version [https://gkrealmjoin.s3.amazonaws.com/win-canary/RealmJoin.msi]

Via Microsoft Intune

Currently, it is only possible to deploy RealmJoin through Microsoft Intune by deploying the MSI as a Line-of-Business app. The deployment through an Intune PowerShell script is not supported as the MSI installer will then be unable to launch the RealmJoin tray in the logged-in user’s context at the end of the installation.

Azure Intune Portal

The deployment of RealmJoin using Azure Intune requires only the .MSI installer to be configured. If the RealmJoin app in the desired release version is not registered in Intune, it can be added as a Line-of-Business app via the Azure Portal blade Microsoft Intune / Mobile Apps / Apps / Add.

[image: RJ Intune Deploy]

In the configuration tab basic and advanced information can be provided.

[image: RJ Intune Deploy2]

Like any other application in Intune, ReamJoin then can be assigned to the desired user groups as (required) software. It is not neccessary to install additional software on the client devices to run RealmJoin. RealmJoin will be deployed on the client devices on next Azure sync.

Windows Defender Exceptions

RealmJoin might be recognized by the Windows Defender as a possible thread. While this behaviour is not certain, it is recommended to implement some Windows Defender exceptions. Create a new device configuration profile, type Device restriction, or edit your existing profile and add the following Windows Defender Antivirus Exceptions:

	Files and folders

	%ProgramFiles%\RealmJoin

	Processes

	%ProgramFiles%\RealmJoin\RealmJoin.exe

	%ProgramFiles%\RealmJoin\RealmJoinService.exe

	%ProgramFiles%\RealmJoin\RealmJoinUpdate.exe

Interactive Installation

If an administrator wants to install RealmJoin on a device without mass deployment or the Microsoft Intune infrastructure, he/she may download the MSI and do an interactive installation or copy one of the command lines below to download and run in a single step.

Command Line Installation

You may download and install RealmJoin in a single step by using the following command lines. This may help especially when testing scenarios or new software packages in virtual machines.

Release Channel

@powershell -NoProfile -ExecutionPolicy unrestricted -Command "((new-object net.webclient).DownloadFile('https://gkrealmjoin.s3.amazonaws.com /win-release/RealmJoin.exe', 'realmjoin.exe'))" && .\realmjoin.exe

Beta Channel

@powershell -NoProfile -ExecutionPolicy unrestricted -Command "((new-object net.webclient).DownloadFile('https://gkrealmjoin.s3.amazonaws.com
/win-beta/RealmJoin.exe', 'realmjoin.exe'))" && .\realmjoin.exe

Canary Version

@powershell -NoProfile -ExecutionPolicy unrestricted -Command "((new-object net.webclient).DownloadFile('https://gkrealmjoin.s3.amazonaws.com
/win-canary/RealmJoin.exe', 'realmjoin.exe'))" && .\realmjoin.exe

Silent Installation

When installing RealmJoin during unattend OS installation or any other non-interactive deployment method you may favour not to have any UI interaction during installation. To install RealmJoin in such a scenario use the silent installation option:

reamjoin.exe -install

Connecting a tenant with RealmJoin

To a connect a tenant to the Glück&Kanja RealmJoin backend, a hello token is needed. This token might be requested from Glück&Kanja. A RealmJoin administrator group has to be created upfront in AAD with the name “cfg-RealmJoin Admin” and all dedicated RealmJoin administrators should be added to it. The connect wizard is located under the URL RealmJoin connect [https://realmjoin-web.azurewebsites.net/global/graph]. The token and the tenant name are to be entered and the request submitted.[image: RJ connection interface]A tenant administrator has to give consent to RealmJoin. The connect wizard creates the necessary entries in Intune. After the success, it is important to revisit the first tab/browser window and the “Check&Install” option as to be executed.

RealmJoin Permissions

The following permissions are admitted by the administrator consent and set in Azure via the GraphAPI:[image: RJ azure permissions]

Default Software for new tenants

Per default, we currently provide the following software packages within the RealmJoin portal after the successfull connection:

	MS Office with Usersettings and Proofingtools

	7-Zip

	Microsoft Teams

	Google Chrome

	Mozilla Firefox

	Win10PinUnpin

Infrastructure

Requirements

Environment

RealmJoin is designed as a companion to Microsoft Intune to increase the usability in a 100% cloud environment with Microsoft Azure AD. The following pre-requirements are necessary:

	Microsoft Azure with Azure AD

	Windows 10

	Microsoft Intune

Hardware

RealmJoin runs on every Windows 10 device. A Windows 10 certified device with TPM chip is recommended to ensure Bitlocker initialization.

Network

(No) Proxy

Initial deployment needs direct internet access. No proxy would be ideal, a transparent proxy should be ok (if really transparent). If there is a proxy unavoidable as a minimum requirement the following services/addresses need to be directly accessible (not recommended, list might not be exhaustive):

For a list of the corresponding IP ranges please see

Microsoft Azure Datacenter IP Ranges [https://www.microsoft.com/en-us/download/details.aspx?id=41653]

This file contains the compute IP address ranges (including SQL ranges) used by the Microsoft Azure Datacenters. A new xml file will be uploaded every Wednesday (Pacific Time) with the new planned IP address ranges. New IP address ranges will be effective on the following Monday (Pacific Time). Please download the new xml file and perform the necessary changes on your site before Monday.

Office 365 URLs and IP address ranges [https://support.office.com/en-us/article/Office-365-URLs-and-IP-address-ranges-8548a211-3fe7-47cb-abb1-355ea5aa88a2]

This article links a file that contains the compute IP address ranges that you should include in your outbound allow lists to ensure your computers can successfully use Office 365.

WARNING: IP addresses filtering alone is not a complete solution due to dependencies on internet based services such as Domain Name Services, Content Delivery Networks (CDNs), Certificate Revocation Lists, and other third party or dynamic services. These dependencies include dependencies on other Microsoft services such as the Azure Content Delivery Network and will result in network traces or firewall logs indicating connections to IP addresses owned by third parties or Microsoft but not listed on this page. These unlisted IP addresses, whether from third party or Microsoft owned CDN and DNS services are dynamically assigned and can change at any time.

No (VLans/WLAN-/Port)-Isolation

For BranchCache to be effective the clients need to be able to communicate directly with each other. So they shouldn’t be separated by different VLans, WLAN-Isolation or Port-Isolation. For mass rollouts “BranchCache Servers” with pre-populated caches are recommended. BranchCache is limited to a single subnet, if a site has multiple subnets the “BranchCache Servers” must be placed in the same subnet as the clients to be effective.

RealmJoin connection endpoints

RealmJoin connects to the following URLs, that might be considered in your firewall settings:

	https://cdn.realmjoin.com/

	https://realmjoin-backend.azurewebsites.net/

	https://packages.gkdatacenter.net/

	https://enterpriseregistration.windows.net/

	https://gkrealmjoin.s3.amazonaws.com/

	https://login.microsoftonline.com/

	https://graph.microsoft.com/

Components

Frontend (Client)

The frontend component of RealmJoin is the RealmJoin client, which is installed on the Windows 10 device. With the installed RealmJoin client the individual user is able to access and install provided software in self service. Packages assigned as required by the administrator are installed automatically on the first Logon after assignment.Realmjoin is responsible for two different processes running on the device:

	The realmjoin.exe process is started up automatically on Logon. The process is always running and sends upstream data (compare to chapter Managing RealmJoin / States) every 15 minutes.

	The realjoinservice.exe is called when a package requires the SYSTEM mode to be processed. It is not running by default.

There are three different version of the RealmJoin client available:

	Stable - Stable release

	Beta - Near to stable, for long time testing

	Canaray - Experimental, first testing

 Managing RealmJoin

Managing RealmJoin

Administrative users have access to the RealmJoin administrator console. As RealmJoin is highly compatible with Microsoft Intune and Microsoft Azure, it incorporates the same group based user and policy management experience and uses the Azure AD defined groups as basis for software deployment. The default interval for group synchronization between Azure AD and RealmJoin is 15 minutes, while only groups with a defined prefix are taken into consideration. Only groups with at least one assigned user are syncronized, and the syncronization interval can be adjusted.

User Client

The RealmJoin client is enrolled on evey Windows 10 device. RealmJoin seamlessly fits into the modern workplace with its focus on user self-service and mobility. Using the RealmJoin client module, the user may install provided software, get basic information on the device and membership in the tenant domain wihout the need of contact an IT administrative.

Initial Start

When RealmJoin is enrolled and started for the first time, it asks for the User-Identity and then calls to the cloud Service for a policy.

[image: RJ AAD Auth]

RealmJoin “Security Requirement” assessment does some pre-checks (Encryption, Patch Level, Firewall, Anti-Virus, etc. – this is optional and can be replaced in parts by Intune-Health-Check). In the last step, all mandatory software will be installed (black screen installation). During this installation, any interaction with the client is suppressed.

[image: RJ Sec Check]

If no error ocurs during deployment, RealmJoin is ready to use.

Client usage

After being successfully installed, RealmJoin is automatically started on the user login and is permanent active in the background. It is represented with an ID card icon. Clicking on the icon opens up the RealmJoin client menu. It contains basic information in the lower and a number of links in the upper part. The selector Software Packages opens a second context menu with all the software packages that are allocated to the user.

[image: RJ Tray]

If a user wishes to install any of the listed software, he/she is only required to select the package to start the installation.

[image: RJ Add Package]

The installation mode depends on the packages selected: If those are only user mode packages, they are installed immediately. In case of a higher permission level, RealmJoin starts a service (realmjoinservice.exe) and installs the packages with the SYSTEM user account.

Debug Mode

If neccessary, a debug window can be opened by clicking on the RealmJoin icon while pressing Shift+Strg on the keyboard. This reveals a new entry in the context menu listed as Show Debug Window. This window offers seven different diagnostic tools. If a device is not able to be addressed by the server or can not connect to the backend, this tool will provide the user with the tools for the first steps of diagnosis. Another new tray menu entry showing up in debug mode is Retry base installation, which allows the user to reinstall the RealmJoin client. Additionally, when the client tray menu is opened in debug mode, all packages are shown with the package version number.

[image: RJ Debug Menu]

Collect Logs is a quick way to access all log files, which will be saved in a zip-file to the users desktop. See chapter troubleshooting for a detailed description of the RealmJoin debug window and its features.

RealmJoin Portal

Device provisioning and RealmJoin configuration is done with the RealmJoin portal. Designed to mirror the style of the new Microsoft administration services, it is the main tool for the management of the RealmJoin clients and users. The web application can be reached under https://realmjoin-web.azurewebsites.net/ or the beta version under https://realmjoin-web-staging.azurewebsites.net/.

[image: RJ Dashboard]

The dashboard provides a quick and beneficial overview. All sections can be accessed by either clicking on the corresponding number or selecting the section in the toolbar on the left.

Roles

There are two different roles available for the RealmJoin portal:

	Administrator: Full rights within the portal.

	Auditor: Read-only rights within the portal, access to all settings and assignments.

Clients

[image: RJ clientsicon]The clients tab gives you a transparent overview over all enrolled devices as well as the respective primary user. To enter the devices’ states (see section States) or associate users, just click on the green numbers on the right.
In this details you find two JSON files with basic information on the client and the primary user. It is possible change the primary device user if there is an inconsistency between the Azure and the RealmJoin portal. This might happen if a device is not correctly reseted and issued to a new user afterwards.Client:

{
 "id": 3714,
 "clientID": "f19c3d1a-75e3-0000-afe9-f8d3da72e2f1",
 "firstSeen": "2017-09-26T08:10:46.3211008",
 "lastSeen": "2018-03-20T14:50:25.4933509",
 "lastMachineName": "DESKTOP-B0815",
 "lastVersion": "4.11.6+25493.9f206a6d",
 "primaryUserID": 6325,
 "primaryUserName": "Test@test.onmicrosoft.com",
 "stateCount": 7242,
 "userCount": 0
}

Primary User:

 {
 "id": 6325,
 "userID": "3239d4dd-0000-0000-90d6-611a7fd93dba",
 "userName": "Test@test.onmicrosoft.com",
 "graphUser": {
 "displayName": "testuser",
 "department": null,
 "jobTitle": null,
 "mail": "Test@test.onmicrosoft.com",
 "city": null,
 "officeLocation": null,
 "businessPhones": [],
 "mobilePhone": null
 }
}

NOTE: It is important to understand, that the userID is equal to the userID from the Azure identity management, while the clientID is the ID Windows submitts during the installation and NOT equal to the clientID in Azure/Intune.

Users

[image: RJ rj-ac-usersicon]A list of all users assigned to the tenant. The selectable details on the right include states, group membership, installed software packages, client devices and (to come…) individual settings. Users can’t be added or assigned to groups using RealmJoin, the management of users and groups has to be done in Azure AD.
Selecting a user opens up the users detail page, which contains information gathered by RealmJoin using the Microsoft Graph API.

User settings

[image: RJ usersettingsicon]Configurable group settings and policies. See section Policies for a list of implemented features. See Group Settings [http://docs.realmjoin.com/managing-realmjoin.html#group-settings] for a detailed description on configurating policies.

Groups

[image: RJ rj-ac-groupsicon]All in this tenant registered user groups. RealmJoin synchronizes groups from Azure Active Directory into the RealmJoin backend. The details on the right contain users within the individual group, packages that are assigned to a group as well as group settings. Since not all users in Azure AD might be equipped with RealmJoin, only a specified range of groups are transfered into RealmJoin (depending on the group name). The groups can not be added or altered within RealmJoin, therefore the group naming conventions have to be established in advance.

While there are not strict naming pattern requirements in RealmJoin, we recommend the following convention:

APP|CFG - Location-[Vendor-Product-Language-Type-Flavor]

Examples:

CFG - Global-Core
CFG - DE-Core
CFG - DE7499-Core
APP - Adobe-Photoshop
APP - Microsoft-Visio
APP - Mozilla-Firefox
APP - Mozilla-Firefox-PreRelease
APP - Mozilla-Firefox-Optional
APP - Mozilla-Firefox-Optional-PreRelease
APP - Mozilla-Firefox-x86
APP - Mozilla-Firefox-x64
APP - Mozilla-Firefox-DE7499
APP - Mozilla-Firefox-withFlash

The standard sychronization time is 20 minutes (hh:00, hh:20, hh:40), and all groups that start with *APP - * or *CFG - * are taking into consideration.The synchronization time schedule and the prefixes that are taken into account can be adjusted, currently only on request. Groups won’t be deleted from the RealmJoin backend, if they are removed in Azure/Intune.NOTE: The RealmJoin - All Users group is automatically created, containg all users with a RealmJoin installation on at least one of their clients.

Group settings

[image: RJ rj-ac-groupsettingsicon]Configurable group settings and policies. See chapter policies [http://docs.realmjoin.com/policies.html#other-configuration-settings] for a list of implemented features. To change a policy, you have to first select the group, and then select the group settings number on the right. This will open the group settings web page with a filter on the selected group, allowing to create policies for this group. To configure a policy, add the tree path in the key field and the setting in the value section, e.g.:Policies.SetCurrentUserAdministratortrueto set a user or the users within the group to local administrators or set Key WebLinks with the following Value:

[
 {
 "Name": "RealmJoin",
 "Target": "https://realmjoin.com",
 "Platform": "any"
 },
 {
 "Name": "Google",
 "Target": "https://google.com",
 "Platform": "any"
 }
]

This creates new links available in the RealmJoin client tray. The created settings overwrite all default values.

Software Packages

[image: RJ rj-ac-packagesicon]A list of all added packages.
The detail list contains the package version, install order, auto upgradibility and user/group assignment.

Add packages

The administrator is able to add created craft and choco packages to RealmJoin using the Add Choco / Add Craft buttons. This open the package setup window.

[image: RJ rj-ac-packages]

There are two ways to add the neccessary information: Entering the required fields Name, Version, Chocolatey Package ID (Chocolatey packages only), ID (Chocolatey Package ID and ID are usually similar), Location, Hash and Scope (all three craft packages only) manually or pasting the JSON code, which can be found in the corresponding package repository (pipeline).

[image: RJ package-json-pipeline]

While adding a package the following configuration entries are available:

	Name

	The name under which the package is listed in the client and RealmJoin admin console. Otherwise not used as an unique identifier.

	GroupName

	An optional group name may be entered. This name has no connection to the user groups, instead it will be shown in the RealmJoin client context menu to group the depicted applications.

	ID

	The RealmJoin internal name of the package, for example generic-videolan-vlc.

	DependsOn

	The DependsOn option is used to indicate if a package needs another package to be installed to work properly. This may be the case for Office user setting packages, that require an office installation upfront. It is possible to hide packages, so that the client context menu only shows one installation option (see section Package Assignment), but all involved packages have to be assigned to the user group for dependencies to work.For a working correlation, the correct package name has to be provided.
If there is a multiple level-dependency, RealmJoin takes this into consideration. Before the installation process, all dependency-related packages are sorted (also including mandatories) and installed afterwards. The following images show the assignment of package dependency for the chocolatey package Microsoft Office 2016 ProPlus, which will be installed with usersettings:

[image: RJ package-dependency]

The user setting package Microsoft Office 2016 ProPlus ML UserSettings is assigned as usual, with the ID of the parent package generic-microsoft-office-2016-proplus entered as DependsOn. During the installation process in the RealmJoin client, RealmJoin understands the need of the generic-microsoft-office-2016-proplus package and installs the deployed version of it first.

[image: RJ dependency-installation]RealmJoin takes 1:n dependenciey into account. It is possible to add more than one dependency using the synthax:["package-id-1","package-id-2"]

	Order

	The order number is an Int32 type figure and provides RealmJoin with a basic structure to determine the package installation sequence. The lower the number the higher the importance, therefore a 10 will be installed before 100.
It has to be noted that a 0 is translated to “no sequence given” and the order number is only taken into account at the first roll out.

	Args

	If the packaged software has to be installed with arguments. If the package to be deployed is a chocolatey package, make sure to use the prefix -params and correct escaping, since chocolatey might mistake the arguments to be directed to it, for craft packages, the arguments can just be added.It has to be noted, that it is also possible to provide arguments in the package assignment stage (see section below). Globally relevant parameters (e.g. volume license number) should be provided at the package addition step, while more individualized arguments (e.g. language packs) are better specified during the assignment step.

NOTE: Do not use the dependency and order option on mandatory packages parallel. This might prevent the backend from correctly resolve the order installation: During the initial rollout, or any rollout of mandatory packages after a log-in for this purpose, RealmJoin in the first step resolves all dependencies of the packages. If there are any, all packages which are listed as a dependency for a different package are installed. In the second step, the original packages are installed. This may cancel out any order numbers. E.g.:Package A, order 1. Package B, order 101 and dependend on Package C, order 100. If all packages are assigned as mandatory, the installation sequence will be C - A - B.

	Version

	Version of the package to be installed (for conventions of the version numbering see chapter Packages).

	Chocolatey Package ID (chocolatey packages only)

	Exact chocolatey repository name of the package to be installed. The combination of name and version is used ensure that the correct package is installed. Usually similar to the internal RealmJoin ID.

	Location (craft only)

	Location of the package on the backend.

	Hash (craft only)

	Hash of the package

	Scope

	Craft packages might be installed in the user or system scope.

Options:

	Availability

	Allow Reinstall: This option allows the client user to reinstall and therefore override their current installation of the package. In case of craft type packages, the craft scripts are re-run.

	Allow Background Install: The software package may be installed outside of the black screen installation, thus not blocking the access to the clients desktop and software.

	Pre-Release: The pre-release flag as two distinctive features within RealmJoin. It allows a) to add a package with ID and version similar to another existing package in the portal and b), if assigned to a group or user, overwrites all other packages with the same ID assigned to the group or user.Those features are usually used for the testing of new packages or updates of existing one: The test-groups or test-users get the pre-release version of a package assigned during the testing.Note: Under normal circumstance it is highly advised to prevent a normal user having the same package assigned more than once.The pre-release flagged package is visually highlighted in the portal’s package list with an lightning symbol behind the name.

	Require Intune Compliance (BETA): The package is installed, as soon as RealmJoin is able to verify via the GraphAPI that the machine is considered compliant. This might stop the rollout for some time. The installation of the package, and therefore all other mandatory packages with higher order numbers that are queued to be installed afterwards, is resumed when the client is compliant.

	Auto Upgrade

	The Auto Upgrade feature may be enabled to automatically update the package if a new version is assigned in RealmJoin. If not chosen, the user has to manually select the package to be upgraded. The automatic upgrade does apply to mandatory and non-mandatory packages.

	Staggered Deployment

	It is possible to use staggered deployment and distribute the risk of updating a software if desired. The two parameters needed are the target date and the amount of days over which the update should take place.
The clients are not equally distributed in the deployment groups, with fewer deployments in the first part of the timeline and the majority on the last.
Deployed package versions for each can be found in the user details of the package or the deployed package details of the users.
Example distribution for n = 10000 and 8 days update time:

[image: RJ autoupdate_sim]

NOTE: Do not edit assigned packages in the way, that you change the package name or ID (version number is fine). If you need a package in a different flavour, please add a new package and delete the obsolete one.

Advanced Options

With RealmJoin version 4.13 a new feature was published: the support of multi user devices. To represent these scenarios within the RealmJoin, advanced options are available when configuring a package.

[image: RJ advanced options]To access this plane, press the Show Advanced Options button on the right. All new options will be available:

	Includes User Script

	In the latest generation of packages, it is not necessary anymore to create a second package for the deployment of corresponding user settings, but such a script can be part of the main package. If this is the case, it will be run automatically if this options is checked. Parameters can be transferred via arguments as established.

	Main Script Restrictions: Users

	This options allows the RealmJoin administrator to define, if this package should be run other for just the primary device user (default) or also/exclusively secondary users.

	Main Script Restrictions: Phases

	This options allows the RealmJoin administrator to define, if this package should be run during the initial provisioning of the device or during other phases.

Duplicate a package

Whenever a package with identical content is needed multiple times for the same user or group, the RealmJoin portal offers the possibility to use the same package multiple times while preventing conflicting installations.

A possible scenario may be: One user group needs the same package with different arguments (for example to map several network drives) and the RJ-Client requires unique package IDs.

	Notation

	To make the ID unique, a hash is written behind the ID and provided with a meaningful word/index, for example “package-id#Value”.

[image: RJ rj-duplicate-packages]

Assign Packages

Similar to the profile management with Microsoft Azure AD, packages can be assigned to groups and individual users. To assign a package, enter the group or user detail for the package in the package control panel.
There are four options to override the package configuration when assigning, if in conflict with the package settings, the assignment settings override:

	Availability

	Packages can be labeled as mandatory to make the software package non-optional.

	Packages might also be labeled as hidden, making them invisible in the RealmJoin client context menu. This might be used for mandatory software or for multiple level dependencies, when the user should only be able to install the highest hierachie and the underlying packages should be installed automatically.

	Auto Upgrade

	In addition to the configuration of the package itself (see section above for the feature description), auto upgrade can be enabled for the selected group / user individually.

	Staggered Deployment

	In addition to the configuration of the package itself (see section above for the feature description), staggered deployment can be enabled for the selected group / user individually.

	Args

	In addition to the configuration of the package itself (see section above for the feature description), Args can be set for the selected group / user individually.

	Advanced Options

	See the section advanced options in the “Add Packages” section [http://docs.realmjoin.com/managing-realmjoin.html#advanced-options].

[image: RJ rj-ac-packageoverrides]

AppStore

[image: RJ rj-ac-statesicon]Glück & Kanja maintains an ever-expanding library of ready-to-go applications that might instantly be added to the list of available packages and assigned to groups or users. For details, please check the AppStore section [http://docs.realmjoin.com/requestsoftware.html#appstore] in the application sources chapter [http://docs.realmjoin.com/requestsoftware.html].

States

[image: RJ rj-ac-statesicon]The states detail of the client or user control panel provides a list of the devices of the user and how frequently data was upstreamed.
The Branch Cache column indicates how much this client has contributed to the package distribution over the Branch Cache feature (see chapter Infrastructure).
Selecting the white arrow in the green circle returns the complete upstream file.
It contains all the information about the device, OS, Defender Pattern States and installed packages that are transfered to the backend, where some of it is evaluated.

[image: RJ rj-ac-states]

It is possible to extend the states by custom states. See Custom States [http://docs.realmjoin.com/appendix.html#a-name-customstates-a-custom-states] for details.

Settings

List of states

Information on the device:

Basic Client Information

{
 "Type": "win",
 "ClientID": "75cf4d56-0676-ae02-73ad-a1af9b89f269",
 "VersionTray": "4.9.15-canary+14869.bf207295",
 "VersionService": "4.9.15-canary+14869.bf207295",
 "OperatingSystem": {
 "Name": "Windows 10 Enterprise",
 "Edition": "Enterprise",
 "CompositionEdition": "Enterprise",
 "Version": "10.0.14393.0",
 "ReleaseID": "1607",
 "BuildBranch": "rs1_release",
 "Build": 14393,
 "BuildRevision": 0,
 "InstallDate": "2017-08-16T12:53:01Z",
 "Bits": 64,
 "Activated": false
 },
 "MachineName": "DESKTOP-VH66R7X",
 "DomainName": "LEGACYDOMAIN",
 "JoinedDomainName": "legacydomain.local",
 "HostName": "DESKTOP-VH66R7X",
 "Timestamp": "2017-09-14T07:07:39.2543111+00:00",
 "User": {
 "LocalName": "JONDOE",
 "LocalLogonAt": "2017-09-14T07:07:06.3167385+00:00",
 "IsAdministrator": false
 },
 "Firewall": {
 "ProfileStates": [
 "ON",
 "ON",
 "ON"
]
 },

Key	Value	SubKey	SubValue		—	—	—	—																																																																																
“Type”:	“win”,				“ClientID”:	“75cf4d56-0676-ae02-73ad-a1af9b89f269”,				“VersionTray”:	“4.9.15-canary+14869.bf207295”,				“VersionService”:	“4.9.15-canary+14869.bf207295”,				“OperatingSystem”:	{						“Name”:	“Windows 10 Enterprise”,				“Edition”:	“Enterprise”,				“CompositionEdition”:	“Enterprise”,				“Version”:	“10.0.14393.0”,				“ReleaseID”:	“1607”,				“BuildBranch”:	“rs1_release”,				“Build”:	14393,				“BuildRevision”:	0,				“InstallDate”:	“2017-08-16T12:53:01Z”,				“Bits”:	64,				“Activated”:	false,			},				“MachineName”:	“DESKTOP-VH66R7X”,		
“DomainName”:	“LEGACYDOMAIN”,				“JoinedDomainName”:	“legacydomain.local”,				“HostName”:	“DESKTOP-0815VHX”,				“Timestamp”:	“2017-09-14T07:07:39.2543111+00:00”,				“User”:	{						“LocalName”:	“JONDOE”,				“LocalLogonAt”:	“2017-09-14T07:07:06.3167385+00:00”,				“IsAdministrator”:	false			},				“Firewall”:	{						“ProfileStates”:	[“ON”, “ON”, “ON”]			},																																

 Settings and Policies

Settings and Policies

After installing the RealmJoin client on the device, a configuration is saved locally. This configuration is encrypted and cannot be modified by the user. RealmJoin compares the hash value of the local configuration to the hash value of the configuration for this user on the backend. If the hash deviates, the configuration is re-synced from the server to the local device. The configuration is signed with the server’s public key, therefore the local RealmJoin client can validate the configuration.

Delivery Optimization for Windows Update

Windows Update Delivery Optimization (or WUDO) is a self-organised solution for distributed caches for Windows Updates. In default mode, WUDO identifies peers as part of a WAN based on their external IP. In case of streched out WANs with just one breakout point, this leads to a high network load and a bottleneck.
To improve the handling, Microsoft Intune can be used to set WUDO to DownloadMode=2, where peers are grouped by a groupID. The ID (GUID) is set for each device using network fingerprinting and the MAC address of the default gateway and therefore creating a more localized group. RealmJoin can be used to set the groupID for each client.

The following registry key is set to define the DOGroupID:

Network-Fingerprint-GUID in Reg-Key

HKLM\SOFTWARE\Policies\Microsoft\Windows\DeliveryOptimization\DOGroupId
HKLM\SOFTWARE\Policies\Microsoft\Windows\DeliveryOptimization\GroupId

Remember to set the Download Mode to Group via Windows Update settings in Intune:

Delivery optimization download mode: HTTP blended with peering across private group

This is effectively DownloadMode=2. Opting-out of setting the groupID via RealmJoin can be done by setting the Policies.SetNetworkOptimizationID [http://docs.realmjoin.com/policies.html#policies] to false.

For more on WUDO see the Microsoft WUDO documentation (DE) [https://docs.microsoft.com/de-de/windows/deployment/update/waas-delivery-optimization].

BitLocker

BitLocker enforcement

It is possible to force BitLocker encryption for OS volumes. The configuration file (see chapter Policies) allows to set the switch BitlockerEnabled to true. If the device is equipped with a ready state TPM chip the encryption is activated. To allow the BitLocker enforcement, the registry key HKLM\SYSTEM\CurrentControlSet\Control\BitLocker:PreventDeviceEncryption is set to false.
For virtual machines the encryption is only enforced, if the virtual machine variable $env:RjDisableVmDetection=1 is set.

BitLocker recovery key

If the client device is Azure AD joined, RealmJoin uploads the BitLocker recovery key to Azure AD. If the upload is not successful on first try, it will be retried. If the upload cannot be performed successfully, the RealmJoin rollout fails.
In case of a non-AAD-joined device, the BitLocker recovery key is not saved anywhere.

Domain Passwort expiry

RealmJoin uses the Azure AD attribute msDS-UserPasswordExpiryTimeComputed to check if the user passwort is expired.

Intranet Zone

Site may be added to the Intranet Zone (in Internet Options) by specifying a setting with the key Policies.TrustedSites and an array of URLs. These URLs are parsed by RealmJoin and written to a registry key called ZoneMap.

One might specify the following JSON array:

["file://example.com", "https://foo.example.com"]

Which will result in the following rules:

[image: Policies.TrustedSites]

Caveats

	Windows will interpret a naked domain like file://example.com as file://*.example.com.

	RealmJoin does not allow for wildcard protocols. You must specify all protocols explicitly.

	RealmJoin will manage all protocols for a configured domain and remove any user added protocols.

	RealmJoin will not manage other domains which are not configured in this setting.

Recommendations

Many customers have extensive Intranet Zone list. Clean it up! Investigate whether a site works without adding it to the Intranet Zone.

	Add a site using https protocol if it uses Integrated Windows Authentication or other legacy features like ActiveX.

	Add a server using file protocol if it is accessed using SMB.

Other Configuration Settings

Comments on the individual settings in italics

	“Environment”

	“UpdateCheckInterval”: “01:00”

	“ConfigCheckInterval”: “00:30”
Set as “hh:mm”

	“FirstRun”

	“EnableSecureDesktop”: true
Enable the Windows secure desktop feature

	“Realm”

	“Domain”: “glueckkanja.net”

	“NetBIOS”: “GLUECKKANJA”

	“DomainConnect”

	“Domain”: “glueckkanja.net”,

	“NetBIOS”: “GLUECKKANJA”,

	“CheckInterval”: “01:00”

	“CredentialManager”:Allows to configure WAN/LAN connections and manage authentication

	“Type”: “wlan”,

	“Target”: “GKEnterprise”,

	“Type”: “ntlm”,

	“Target”: “identity.glueckkanja.net”

	“Type”: “smb”,

	“Target”: “files.glueckkanja.net”,

	“Share”: “Filestore”

	“IpSec”:

	“Rules”:

	“Name”: “Domain Controller - glueckkanja.net”,

	“Targets”: “glueckkanja.net”,

	“Protocol”: “tcp”,

	“Range”: “135,389,445,30000-30400”,

	“RangeOSX”: “135,389,445”,

	“Key”: “xxxxxxxxxxxxxxxxxxxxx”

	“Branchbox”:

	“RescanInterval”: “00:15”,

	“Rules”:

	“Name”: “Branchbox”,

	“Target”: “files.glueckkanja.net”,

	“IPs”: “172.27.0.20”,

	“CheckPort”: 63069,

	“CN”: “*.glueckkanja.net”

	“CloudVPN”:

	“Gateway”: “cloudvpn.gkdatacenter.net”,

	“Username”: “”,

	“Password”: “”

	“WebLinks”:

	“Name”: “GK Help”,

	“Target”: “https://help.glueckkanja.net/”,

	“Platform”: “any”

	“BranchCache”:

	“Mode”: “Distributed”

	“Chocolatey”:

	“Version”: “0.10.3”,

	“Sources”:

	“Name”: “gkpackages”,

	“Source”: “https://packages.gkdatacenter.net/nuget”,

	“User”: “packages”,

	“Password”: “xxxxxxxxxxxxxxxxxxxxx”,

	“Priority”: 10

	“SoftwarePackages”:

	“Package”: “bcurl”,

	“ID”: “bcurl”,

	“Platform”: “winchoco”,

	“Version”: “1.0.11”,

	“Args”: “”,

	“Name”: “BcUrl”,

	“Order”: 500,

	“PreRelease”: false,

	“AllowReinstall”: false,

	“DependsOn”: [],

	“AutoUpgrade”: true,

	“AutoUpgradeStaggered”: “”,

	“GroupName”: “Development”,

	“Hidden”: false,

	“Mandatory”: false

	“Location”: “https://packages.gkdatacenter.net/blobs/v1.0.0.0.zip”,

	“Hash”: “46298d7dfe399cc46bd62ee359ab983771f5bcf1”,

	“Scope”: “user”,

	“ID”: “glueckkanja-core-settings-wlan-gkenterprise”,

	“Platform”: “win”,

	“Version”: “1.0.0.0”,

	“Args”: “”,

	“Name”: “GK WLAN (GKEnterprise)”,

	“Order”: 999999,

	“PreRelease”: false,

	“AllowReinstall”: false,

	“DependsOn”: [],

	“AutoUpgrade”: true,

	“AutoUpgradeStaggered”: “”,

	“GroupName”: “Glueckkanja”,

	“Hidden”: false,

	“Mandatory”: false

Policies

Comments on the individual settings in italics

	“Policies”:

	“SMimeEnabled”: false,

	“OsActivationEnabled”: false,

	“SetTimeserver”: [“time.windows.com”, “time.apple.com”],

	“TrustedSites”: [“file://glueckkanja.net”, “https://glueckkanja.net”],

	“RequireSecurityFeatures”:

	“WinVersion”: “Win7”,

	“BitlockerEnabled”: null,

	If set to “true”, BitLocker will be enforced if the device has a TPM.

	The following key value is changed to allow BitLocker force: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\BitLocker;
Entry: PreventDeviceEncryption;
Value: null/false

	The BitLocker key is synced to AAD if the client is AAD-joined, otherwise no backup will be made.

	“FirewallEnabled”: true,

	“AvEnabled”: null,

	“EnvironmentCheck”: null

	“SetCurrentUserAdministrator”:null,Recommended setting: Set to “false” for all users. This removes the administrator privileges for all users. Set to “true” for all users that should have local admin privileges. The privileges are only granted to users on clients where they are the primary user/device owner.

	“SetNetworkOptimizationID”: null,Opt-out from using a DOGroupID from Realmjoin

	“AwsAccess”:

	“AccessKey”: “AKIAIHFASK3VCX4EWCAA”,

	“SecretKey”: “xxxxxxxxxxxxxxxxxxxxx”

	“DisableExplorerLibraries”: true,

	“Rms”:

	“Enabled”: null,

	“Hostname”: “12323815-123c-123a-1230-123aab12ba3a.rms.eu.aadrm.com”

	“OneDrive”:

	“Enabled”: false,

	“DisplayName”: “OneDrive Business”,

	“FolderRedirection”: false,

	“DisableOneDrivePersonal”: false,

	“DisableStartupShortcut”: false

	“Office”:

	“NoDomainKey”: false,

	“SetGenericCredentials”: false,

	“SetLyncUsername”: false

Client

	“Client”:

	“IsPrimaryOfUser”: true

	Autogenerated by the server

The IsPrimaryOfUser attribute is set when the RealmJoin client on the device contacts the backend for the first time. The user who is signed on during this process is registered as primary user of the device.
Mandatory packages will only be installed when the primary user is logged in. If the makeAdmin property is set in the user/group settings, the primary user is promoted to administrator.
It is possibly to manually set another user to the primary of the device. If a device is decomissioned and given another user without changing the primary, the old primary user might persist in the backend.

Signatures

RealmJoin provides Outlook with signature files. Those files can be found in:

	%userprofile%\AppData\Roaming\Microsoft\Signatures

	.\anyname.txt

	.\anyname.htm

The following fields for signatures are extracted from the Microsoft Graph API and may be used:

Graph_User_BusinessPhone
Graph_User_City
Graph_User_CompanyName
Graph_User_Country
Graph_User_Department
Graph_User_DisplayName
Graph_User_GivenName
Graph_User_Id
Graph_User_JobTitle
Graph_User_Mail
Graph_User_MobilePhone
Graph_User_OfficeLocation
Graph_User_PostalCode
Graph_User_State
Graph_User_StreetAddress
Graph_User_Surname

 Types of RealmJoin packages

Types of RealmJoin packages

There are four different kinds of packages that can be deployed to the enrolled devices using RealmJoin. It is recommended to use the most generic package types (craft and chocolatey) if possible.

Craft packages

Basically, a craft package is just a container to transfer a batch or powershell script and related files to a device. Typical examples would be to set system or user based settings in the registry, prepare files with user specific details like Outlook signatures or Office templates or to install drivers.

If powershell is used, the primary powershell script will be executed by calling:

powershell.exe -NoProfile -NonInteractive -ExecutionPolicy Bypass -File "rj_install.ps1" arg1 arg2

If batch is used, the primary batch script will be executed by calling:

rj_install.cmd arg1 arg2

It is important to know that craft packages can run in user or system context, which can be specified during the package crafting process.
Packages that are run in user mode are installed using the current user without administrative rights, even if the user is local administrator on the device.
Packages that are run in the system mode use the SYSTEM account on the device.

Environment Variables

	Graph_User_BusinessPhone

	Graph_User_City

	Graph_User_CompanyName

	Graph_User_Country

	Graph_User_Department

	Graph_User_DisplayName

	Graph_User_GivenName

	Graph_User_Id

	Graph_User_JobTitle

	Graph_User_Mail

	Graph_User_MobilePhone

	Graph_User_OfficeLocation

	Graph_User_PostalCode

	Graph_User_State

	Graph_User_StreetAddress

	Graph_User_Surname

Chocolatey packages

Chocolatey packages are created with the Chocolatey engine, which is using the NuGet infrastructure.

NuGet

NuGet is a open-source package manager to enable delevopers to create, share and use libraries and packages within the .NET framework. NuGet provides the tools and services to create, host and consume packages for the .NET framework.
In addition to providing over 80.000 of publicly-available packages, NuGet allows developers to host packages privately in their favourite environment. The available hosting options are listed here NuGet packages hosting [https://docs.microsoft.com/en-us/nuget/hosting-packages/overview]. Independet from the method, the NuGet hosted packages are made available to the consumers.For a more detailed documentation of NuGet see the Microsoft NuGet documentation [https://docs.microsoft.com/en-us/nuget/#pivot=start&panel=start-all] and https://www.nuget.org/ for available packages.

Chocolatey

Chocolatey is a powershell execution engine that provides a single, unified interface for the managment of software on Windows, utilizing the NuGet infrastructure. It might be compared to linux’ apt-get when it comes to (un-)installing software. With just a simple command line, software packages (publicly and privately hosted) can be installed with a high level of automation. RealmJoin uses Chocolatey to manage packages cleanly, silently and without any user intervention needed during the installation process.
Chocolatey packages contain all neccessary files, e.g. installes, zip-files, scripts etc., in one compiled package. During package installation, Chocolatey checks for dependencies (specified during package assignment in RealmJoin) and takes care of those, silently installing the needed packages.
Chocolatey uses Nuget.Core to retrieve packages from the source. Before installing, Chocolatey takes snapshots, then runs automation scripts (Powershell) if provided in the package. In the next step, installers or exeutables are run. After the installation, Chocolatey prepares uninstall information based on the pre-installation snapshots of registry and file/folder structre.
In case of Windows installer based software, it will be installed into the default path, mostly Program Files. Other packages are installed into ChocolateyInstall\Lib.The Chocolatey install command can be run with various parameters to e.g. suppress prompts, specifiy an installation directory. The full list of options can be found in the Chocolatey wiki [https://github.com/chocolatey/choco/wiki/CommandsInstall#options-and-switches].

Note: If you want to provide command line parameters for the software that should be installed, they have to be correclty escaped to prevent Chocolatey from trying to interpret them as install options.For a more detailed documentation of Chocolatey see the official Chocolatey wiki on Github [https://github.com/chocolatey/choco/wiki].

Microsoft Application Virtualization (App-V)

APP-V is an application virtualization solution from Microsoft. The APP-V platform allows applications to be streamed to any client from a virtual application server. It is not needed to install the application locally, only the APP-V client needs to be.
APP-V packages, are the most exotic packages supported by RealmJoin. They are created as the difference between an out-of-the-box Windows 10 and an out-of-the-box Windows 10 with the software installed. It therefore contains all the differences in data, keys and file structure that result from the installation.
APP-V sandboxes the execution environment, hosting a virtual file system, registry keys, services and so on, based on the App-V package. All the data specific to the software version is enclosed in the sandbox, resulting in no changes on the clients operation system. This also allows to use different version of the same software parallel, even if they contain contradicting settings and key values. APP-V might be considered as an intermediate step towards a virtual machine.Generally spoken, App-V is the most sophisticated package type in RealmJoin, while highly customized, allowing most applications to be run.For a more detailed view on APP-V see the Microsoft documentation on Application Virtualization [https://technet.microsoft.com/en-us/library/hh826068.aspx].

Organic

Organic packages contain raw and unprocessed application setups. When handeling those, RealmJoin is basically just used as a transport vehicle to move the zipped container to a specified location. Depending on its payload, the installer then has to be manually started by the user (if user mode) or an remote administrator or field service.

The idea of organic packages is based on the experience that large infrastructures sometimes need specialized software only used by up to five users. Because lots of these applications is not identified as relevant to the overall company strategy but users often insist to have it, there was a need to offer a fast and cost effective way to transport the setup in a controlled and auditable way to the client but to have it’s installation be a manual process.

With organic packages the organization knows exactly which software based on the detailed binaries and versions is in use on the client machines. If there is a security issue with one of these versions, all information is at hand. And if the user needs a new device, the special software packages are again available.

The used binaries are scanned for maleware when transfered to the RealmJoin infrastructure. Because of their highly individualized nature and manual on-device management those packages are not maintained in a standard process, possible effects have to be addressed locally.

 Creating packages

Creating packages

[image: RJ ecosystem]

The picture above provides a schematic overview over the RealmJoin package distribution ecosystem. The step of creating packages will be illuminiated in this chapter.
It documents the basic steps in creating craft, chocolatey, chocolatey App-V and organic packages. While all types follow the same rough outline, there are some differences when handling the packages.

General Steps

This section describes the shared steps for craft and chocolatey packages. The packaging process will be demonstrated on the well known VLC player.

Create local repository folder

Run cmd.exe as administrator and navigate to the desired folder, in which the packages are to be created. Then create a new folder for the new repository:
mkdir videolan-vlc-2.26

Use Jumpstarter to create repository

Gk provides a Jumpstarter script that can be used to automatically create the template for a new package. Run the following code in the cmd shell:

@"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.exe" -NoProfile -ExecutionPolicy Bypass -Command "iex ((New-Object System.Net.WebClient).DownloadString('https://raw.githubusercontent.com/realmjoin/realmjoin-package-jumpstarter/master/JumpstartRealmJoinPackage.ps1'))"

Optional parameters are -DoNotCloneRepository and -DoNotCopyTemplate.After the execution you are confronted by the following prompt and asked to specify details:

Repository path (leave empty for current folder name, Format: {VENDOR}-{PRODUCTNAME}): videolan-vlc
Repository name (leave empty for repository path): Videolan VLC Player
Repository namespace (leave empty for 'generic-packages', Format: {CUSTOMER}-packages): (your namespace)
Personal Access Token:(your token)
Cloning into....[installation messages]
[...]
Possible Packagetypes:
 [1] Chocolatey
 [2] Chocolatey and Usersettings
 [3] Chocolatey and multi Usersettings
 [4] Craft
Please enter the type of package. (all samples found in: '.realmjoin-gitlab-ci-helpers'): 1
Please enter the PackageVersion (Format: 1.0.0.0): w.x.y.z

[image: RJ package-jump]

After a short while, a new repository is created and the template files are copied into the local package folder. Files not necessary for the selected package type will be deleted. If the correct package version and type are selected, it is not necessary to edit the choco-package.nuspec and .gitlab-ci.yml files. Nevertheless it is highly recommended to check those files for consistency.Before working on the files, please check the readme.md. Depending on the type of package that is to be created, the next steps will vary.

Jumpstarter Beta

RealmJoin and the automatization tools are constantly adapted and refined. Advanced features are implemented and tested in a beta branch.
The beta version of the Jumpstarter script can be used by running the following code in a cmd shell:

@"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.exe" -NoProfile -ExecutionPolicy Bypass -Command "iex ((New-Object System.Net.WebClient).DownloadString('https://raw.githubusercontent.com/realmjoin/realmjoin-package-jumpstarter/raw/beta/JumpstartRealmJoinPackage.ps1'))"

Chocolatey Package

Edit Package files

	Create .gitlab-ci.ymlThere are 8 different sample files (might be already deleted when using a Jumpstarter script and selecting a specific package type), while those starting with Sample1* are considered outdated. Therefore, select and edit the most fitting Sample0*.gitlab-ci.yml file and delete the other ones. You might need to adjust the content. Remove the prefix of the filename and save it as .gitlab-ci.yml.

[image: RJ package-sample]

The .gitlab-ci.ymlfile contain the build and deploy information. In the build stage, the build-deploy.ps1 helper script is called, while the argument -build indicates the build stage and -ChocoMachine the chocolatey type package.
In the deploy stage, the build-deploy.ps1 helper script is called, while the argument -deploy indicates the deploy stage, -ChocoMachine the chocolatey type package and depending on the deploy mode, the -flavourCollection:

	Deploy Generic: Deployment of the -flavourCollection generic.

	Deploy Customers: Deployment of the -flavourCollection customers, the deployment for all users.

	Deploy Special: Deployment of the -flavourCollection special, the deployment for only the
Those options are not available for customized packages, where only one deploy mode exists, therefore making the distinction obsolete.
See next step for the configuration of flavours and section Conventions and helpers for more detailed information on the helper scripts.

	Check build-deploy-flavor-definitions.ps1
Check the file .realmjoin-gitlab-ci-helpers/build-deploy-flavor-definitions.ps1 for your desired flavour.
If it is not included in the $genericFlavors, $specialFlavors or $customerFlavors range, the helperscript has to be adjusted. Please contact the responsible person.[image: RJ build-flavours]

	Customize choco-package.nuspecAdd the metadata according to the desired software.
[image: RJ package-nuspec]

	id: flavour-vendor-program. It is necessary to add generic for non-customized packages.

	version: Package version W.X.Y.Z. See section Conventions and helpers for more detailed information on the numbering convention.

	title: Displayed name of the package.

	description: Description of the package.

	authors: Creator of the package.

	requireLicenseAcceptance: true/false.

	Move binariesMove the executables, installer or zip files into the subfolder blobs. Make sure the files name does not contain spaces or irregular characters but does contain the version number.

	Create SHA256 hashOpen a Powershell and navigate into the blobs subfolder. Execute

Get-ChildItem | % {(Get-FileHash $_.name).hash + " *" + $_.name | out-file ($_.name + ".sha256")}

A *.sha256 file is created for every item in the folder. The command is also listed in the placeholder file zzz_Place_installer_files_here_and_delete_me.txt, which is to be deleted afterwards (as well as any zzz_Place_installer_files_here_and_delete_me.txt.sha256 item).
Alternatively it is possible to run the mh_hash.cmd with elevated rights to automatically create the hash file.

	Customize tools\chocolateyInstall.ps1Based on the samples in the file, choose the most fitting one and adapt accordingly. To ad additional installation parameters, the -silentArgs"" or -additionalArgs options may be used.[image: RJ package-install]

	Customize rj_install.cmd and rj_install.ps1

	With User Settings

	Customize one of usersettings\rj_install.cmd and usersettings\rj_install.ps1, if necessary, and delete the other one. This file may contain various modifications and adjustments, e.g. registry keys or (un-)pinning of start icons.

	Delete rj_install.cmd and rj_install.ps1 in root folder.

	Without User Settings

	Delete subfolder usersettings completely.

	Deleterj_install.cmd and rj_install.ps1 in root folder.

	Rewrite Readme.mdProvide all information necessary in the Readme.md file. Alternatively delete the file completely.

	UploadCommit the file and upload it with Git to the Gitlab.

	Deploy packageAfter uploading the package to Gitlab, navigate with a browser of your choice into the repository and select the Pipelines section. Select your release and use the deploy function. Depending on the package type, there are different possibilites.

	10 generic: Deploys a new version of the generic flavour package.

	20 customers: Deploys a new version of all customer flavour packages. Do not do this, if you do not want to deploy a new version for all flavours listed here.

	90 special: Deploys a new version of the special flavour package. This is used, when a package is already deployed for more than one customer. It prevents unwanted deployment of new package versions.[image: RJ package-deploy]After the successfull deployment, the package can be found in the chocolatey library and added. See chapter managing RealmJoin for information on assigning packages.

Installers in zip-files

In some cases .msi or .exe installers require additional files in their execution folder. It is possible, to merge the installer and additional files in a zip container and execute the installer without unpacking forehand.To do so, the zip container is put into the blobs folder and a hash value has to be created. In the chocolateyInstall.ps1, the install command may be used as described above, but the installer file has to be escaped with #, installation parameters can be provide similar to simpler cases :´´´
Install-ChocolateyRealmjoinPackage “CONTAINER.zip#INSTALLER.msi” “HASH” -additionalArgs “/Additional Args”
´´´

Installation Pre-Actions

The Install-ChocolateyRealmjoinPackage command can be run with the execution of pre-actions:

Install-ChocolateyRealmjoinPackage "INSTALLER.msi" "HASH" -preActions {param($setupFolder) Copy-Item -force "$packageToolsFolder\Oracle CONFIG.ini" $setupFolder }

Installation Post-Actions

The Install-ChocolateyRealmjoinPackage command can be run with the execution of post-actions:

Install-ChocolateyRealmjoinPackage "INSTALLER.msi" "HASH" -postActions { Remove-Item "$env:PUBLIC\Desktop\SHORTCUT.lnk" -ErrorAction SilentlyContinue }

Parameters in chocolatey packages

To utilize parameters in chocolatey packages, it is necessary to invoke the read-out of the entered text in the optional args [http://docs.realmjoin.com/managing-realmjoin.html#add-packages] text field: Import-ChocolateyRealmjoinPackageParameters.The chocolatey extension now parses the argument string and automatically creates and fill the variables with the following pattern:Example parameters: "/Key:xx-yy-cc /Language:EN"Available variables: $packParamKey with value xx-yy-cc and $packParamLanguage with value ENThose variables may now be used for any purposes within the chocolatyinstall.ps1 script.

Craft Package

Edit Package files

	Delete non-craft itemsDelete subfolders blobs, tools and usersettings and file choco-package.nuspec.

	Create .gitlab-ci.ymlSelect and add the most fitting sample*.gitlab-ci.yml file and delete the other ones. In the following example, the flavour [companyname] was added, to provide the package with the desired corporate meta data. NOTE: make sure to provide the -build / -deployCraft parameters for craft packages. Remove the prefix of the filename and save it as .gitlab-ci.yml.[image: RJ sample-craft]

	Customize rj_install.cmd and rj_install.ps1Customize one of rj_install.cmd and rj_install.ps1 in root folder if necessary, delete the other one. This file may contain various modifications and adjustments, e.g. registry keys or (un-)pinning of start icons.[image: RJ craft-installer]

	Any additional files can also go into the root folder.

	Rewrite Readme.mdProvide all information necessary in the Readme.md file.

	UploadCommit the file and upload it with Git to the Gitlab.

	Deploy packageAfter uploading the package to Gitlab, navigate with a browser of your choice into the repository and select the Pipelines section. Select your release and use the deploy function. Depending on the package type, there are different possibilites.

	10 generic: Deploys a new version of the generic flavour package.

	20 customers: Deploys a new version of all customer flavour packages. Do not do this, if you do not want to deploy a new version for all flavours listed here.

	90 special: Deploys a new version of the special flavour package. This is used, when a package is already deployed for more than one customer. It prevents unwanted deployment of new package versions.[image: RJ choco-deploy]After the successfull deployment, the package can be found in the chocolatey library and added. See chapter managing RealmJoin for information on assigning packages.

Parameters in craft packages

RealmJoin executes the rj_install.ps1/cmd script as rj_install.ps1/cmd argument. Thus, the parameters in the RealmJoin portal can just be added in the argument field as -genericname argument1 -genericname2 argument2, while genericname will not be evaluated and serves as a visual help.Within in the script, the parameters are initialized as

 param(
 [ValidateNotNullOrEmpty()]
 $argument1,
 $argument2
)

Organic Package

Organic packages are created similar to Chocolatey packages, but instead of a software install, they unzip a specified file into a specified folder on the device. Therefore, the main differences are the provided blobs and the chocolateyInstall.ps1script.

	Create .gitlab-ci.ymlSelect and add the most fitting sample*.gitlab-ci.yml file and delete the other ones. In the following example, the flavour [companyname] was added, to provide the package with the desired corporate meta data. NOTE: make sure to provide the -build / -deployChocoMachine parameters for organic packages. Remove the prefix of the filename and save it as .gitlab-ci.yml.[image: RJ package-sample]

	Customize choco-package.nuspecAdd the metadata according to the desired software.
[image: RJ package-nuspec]

	Move *.zipZip the files that should be delivered onto the devices. Move the executables or installer files into the subfolder blobs.

	Create SHA256 hashOpen a Powershell and navigate into the blobs subfolder. Execute Get-ChildItem | % {(Get-FileHash $_.name).hash + " *" + $_.name | out-file ($_.name + ".sha256")}. A *.sha256 file is created for every item in the folder. The command is also listed in the placeholder file zzz_Place_installer_files_here_and_delete_me.txt, which is to be deleted afterwards (as well as any zzz_Place_installer_files_here_and_delete_me.txt.sha256 item).

	Customize tools\chocolateyInstall.ps1Specify the desired $targetDir location on the device and the correct $filename of the zip container.[image: RJ organic-install]

	Delete rj_install.cmd and rj_install.ps1

	Delete subfolder usersettings completely.

	Delete rj_install.cmd and rj_install.ps1 in root folder.

	Rewrite Readme.mdProvide all information necessary in the Readme.md file.

	UploadCommit the file and upload it with Git to the Gitlab.

	Deploy packageAfter uploading the package to Gitlab, navigate with a browser of your choice into the repository and select the Pipelines section. Select your release and use the deploy function. Depending on the package type, there are different possibilites.

	10 generic: Deploys a new version of the generic flavour package.

	20 customers: Deploys a new version of all customer flavour packages. Do not do this, if you do not want to deploy a new version for all flavours listed here.

	90 special: Deploys a new version of the special flavour package. This is used, when a package is already deployed for more than one customer. It prevents unwanted deployment of new package versions.[image: RJ package-deploy]After the successfull deployment, the package can be found in the chocolatey library and added. See chapter managing RealmJoin for information on assigning packages.

App-V Package

APP-V packages are highly sophisticated and unique. Therefore, a general guide can at this point not be provided. If an APP-V package is required, please contact GK for examples and further information or package creation.

Conventions and RealmJoin helpers

The helper scripts are provided by GK. They can not be altered while choco/craft packages are created. If a change is necessary, e.g. add a new flavour, the helper scripts have to be recreated. Please contact GK.

realmjoin-gitlab-ci-helpers.ps1

The realmjoin-gitlab-ci-helpers.ps1 is a helper script called in all package types in the .gitlab-ci.yml, e.g. script: ./.realmjoin-gitlab-ci-helpers/realmjoin-gitlab-ci-helpers.ps1 -buildChocoMachine -flavors "generic","glueckkanja". The following switches are available:

	[switch]$buildCraft,

	Build craft package, user or system

	[switch]$buildChocoMachine,

	Build chocolatey package, system only

	[switch]$buildUsersettingsChild,

	Variation of-buildCraft, designed to build user only UserSettings craft packages

	[switch]$deployCraft,

	Upload craft package to repository (no config in RJ yet, only storage)

	[switch]$deployChocoMachine,

	Upload chocolatey package to repository (no config in RJ yet, only storage)

	[switch]$deployUsersettingsChild,

	Variation of deployCraft

	[string]$craftSubfolder,

	override default dirs (-buildCraft = root, -buildUsersettingsChild: usersettings)

	[string]$usersettingsSuffix,

	override suffix for UserSetting packages (default: usersettings)

	[string]$packagePrefix,

	

	[string[]]$flavors

	Metadata to assign to a company

build-deploy-flavor-definitions.ps1

The build-deploy-flavor-definitions.ps1 script contains the available flavours for all deploy modes. There are currently 3 different deploy modes:

	generic: Just the generic flavour, nothing to change here.

	customers: All customer flavours. The deploy mode customer will result in a customer-package-name deployment for each listed here. This means, if you redeploy in customer mode, it affects all customers at once.

	special: Might be used to deploy for a new customer without the need of the customers deploy mode. Any flavour that is not included in the other deploy modes might be inserted here to deploy without disturbing existing deployments.
The build-deploy-flavor-definitions.ps1 script is part of the extensions package and linked to your packages. It is not possible to just change the extensions files in your local package folder, to add flavours, it is necessary to update the extensions package separatly.

Capitalization and Naming

Please use only small letters for all naming purposes and use vendor-program-version as folder names.

Version numbering

Software packages are assigned a individual version number. It is recommended to divide the version number into four parts W.X.Y.Z and use one of two different conventions:

	For non-chocolatey packages GK is suggesting, to use W as major release number, X as majer sub-version, Y as minor release number and Z as (re-)packaging number (when rebuilding the package without changes in software but in the build itself).

	For chocolatey packages it is recommended to use the softwares version number, and use Z as (re-)packing number. If the software itself has a four part version number, chocolatey suggests to multiply the Z by 100 and increase the number by 1 every (re-)packaging.Note: When a new version is tested, the package might be crafted as a pre release package, which, if testing is successfull and no further changes have to be done, has the same version number as the final build.

Variables

The following variables may be used in the RealmJoin install scripts:

	$Global:packagePrefix = $env:packageName.Split(“-“)[0]

	$Global:packageName = $env:packageName

	$Global:packageVersion = $env:packageVersion

	$Global:packageVersionObject = [System.Version]$env:packageVersion

	$Global:packageVersionNoRevisionObject = New-Object System.Version -ArgumentList $packageVersionObject.Major, $packageVersionObject.Minor, $packageVersionObject.Build

	$Global:packageParameters = $env:packageParameters

	$Global:packageFolder = $env:packageFolder

	$Global:packageToolsFolder = Join-Path $env:packageFolder “tools”

	$Global:packageTempDir = Join-Path $env:TEMP (Join-Path $env:chocolateyPackageName $env:chocolateyPackageVersion)

	$PackageID

	$Version

	$UserSID

	$RJ_DeploymentPhase = contains information on the installation. Can be:

Blank

RunningFirstDeployment
RunningFirstDeploymentAuto
Now the installations start
CompletedFirstDeployment

RunningDeployment
Now the installations start
CompletedDeployment

ManualDeployment
Now the installations start

Updating Packages

GitClone of current repository

Using the Git tool of choice, the current repository is cloned onto the local client.If an already locally available package is updated, a pull request has to be performed beforehand to avoid overwriting more recent changes.

Content Update

Replace binaries in /blobs and/or the code in the rj_install or chocolateyInstall scripts.

Versioning

Make sure to update:

	the package version in the .nuspec file, either the revision number or the complete software version.

	the version of the executable/installer/zip file, if any content was changed. Pushing /blobs files onto the Git-Lfs does never overwrite existing files with the same name. Therefore, not changing the version may result in installing the outdated, thus wrong, application or zip on the client.

Push & CI/CD

After all updates and bugfixes are implemented, the changes have to be committed and pushed into the master repository. The build job will automatically start and the new version of the package may then be deployed and tested as usual.

 Core Extension

Core Extension

Ensure Core Extension in RealmJoin portal

To ensure the extenions are correctly deployed on all clients, please add the core extensions chocolatey package to the backend with order 1 and assign it to the global core group.

Enable extension CmdLets in Craft packages

Out of chocolatey packages, the usage of the extension CmdLets have to be enabled:

Import-Module (Get-ItemPropertyValue -Path "Registry::HKLM\SOFTWARE\RealmJoin\Variables" -Name RealmjoinCraftSupportModulePath)

AppV Packages

Enable-ChocolateyRealmjoinAppv

Syntax

Enable-ChocolateyRealmjoinAppv

Install-ChocolateyRealmjoinAppvPackage

Syntax

Install-ChocolateyRealmjoinAppvPackage [[-fileName] <string>] [[-fileChecksum] <string>] [[-DynamicDeploymentConfiguration] <string>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
DynamicDeploymentConfiguration None false false
fileChecksum None false false
fileName None false false

Uninstall-ChocolateyRealmjoinAppvPackage

Syntax

Uninstall-ChocolateyRealmjoinAppvPackage [[-name] <string>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
name None false false

Get-ChocolateyRealmjoinAppvPackageVfsPath

Syntax

Get-ChocolateyRealmjoinAppvPackageVfsPath [[-appvPackage] <Object>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
appvPackage None false false

Logs and Transforms

Get-ChocolateyRealmjoinLocaleId

Syntax

Get-ChocolateyRealmjoinLocaleId [[-localeString] <string>] [[-defaultLocaleId] <int>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
defaultLocaleId None false false
localeString None false false

Get-ChocolateyRealmjoinLocaleMsiTransform

Syntax

Get-ChocolateyRealmjoinLocaleMsiTransform [[-localeString] <string>] [[-localeTransformsFolder] <string>] [[-defaultLocaleId] <int>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
defaultLocaleId None false false
localeString None false false
localeTransformsFolder None false false

Get-ChocolateyRealmjoinLogFilePath

Syntax

Get-ChocolateyRealmjoinLogFilePath [[-operation] <string>] [[-target] <string>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
operation None false false
target None false false

Chocolatey Packages

Install-ChocolateyRealmjoinPackage

Syntax

Install-ChocolateyRealmjoinPackage [[-installerFileName] <string>] [[-installerFileChecksum] <string>] [[-msiTransforms] <string[]>] [[-msiTransformsCabs] <string[]>] [[-additionalArgs] <string[]>] [[-silentArgs] <string[]>] [[-validExitCodes] <int[]>] [[-installers] <psobject[]>] [[-preActions] <scriptblock>] [[-postActions] <scriptblock>] [[-installPackage] <bool>] [[-noInstallMessage] <string>] [-installerFileNameIsLocalPath] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
additionalArgs None false false
installPackage None false false
installerFileChecksum None false false
installerFileName None false false
installerFileNameIsLocalPath None false false
installers None false false
msiTransforms None false false
msiTransformsCabs None false false
noInstallMessage None false false
postActions None false false
preActions None false false
silentArgs None false false
validExitCodes None false false

Uninstall-ChocolateyRealmjoinPackage

Syntax

Uninstall-ChocolateyRealmjoinPackage [[-uninstallerFile] <string>] [[-additionalArgs] <string[]>] [[-silentArgs] <string[]>] [[-validExitCodes] <int[]>] [[-subPackageName] <string>] [[-uninstallers] <psobject[]>] [[-uninstallInfo] <Object>] [-WhatIf] [-Confirm] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
Confirm cf false false
WhatIf wi false false
additionalArgs None false false
silentArgs None false false
subPackageName None false false
uninstallInfo None false true (ByValue)
uninstallerFile None false false
uninstallers None false false
validExitCodes None false false

Import-ChocolateyRealmjoinPackageParameters

Syntax

Import-ChocolateyRealmjoinPackageParameters [[-params] <string>] [-setVariables] [-clearVariables] [-returnKeyValuePairs] [-returnParameterHashset] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
clearVariables None false false
params None false false
returnKeyValuePairs None false false
returnParameterHashset None false false
setVariables None false false

Test-ChocolateyRealmjoinRegistryUninstallExists

Syntax

Test-ChocolateyRealmjoinRegistryUninstallExists [[-keyNameFilter] <string>] [[-displayNameFilter] <string>] [[-publisherFilter] <string>] [[-versionGe] <version>] [[-versionGt] <version>] [[-versionLe] <version>] [[-versionLt] <version>] [[-filterScriptblock] <scriptblock>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
displayNameFilter None false false
filterScriptblock None false false
keyNameFilter None false false
publisherFilter None false false
versionGe None false false
versionGt None false false
versionLe None false false
versionLt None false false

Get-ChocolateyRealmjoinRegistryUninstallInfo

Syntax

Get-ChocolateyRealmjoinRegistryUninstallInfo [[-keyNameFilter] <string>] [[-displayNameFilter] <string>] [[-publisherFilter] <string>] [[-versionGe] <version>] [[-versionGt] <version>] [[-versionLe] <version>] [[-versionLt] <version>] [[-filterScriptblock] <scriptblock>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
displayNameFilter None false false
filterScriptblock None false false
keyNameFilter None false false
publisherFilter None false false
versionGe None false false
versionGt None false false
versionLe None false false
versionLt None false false

Get-ChocolateyRealmjoinRegistryUninstallStrings

Syntax

Get-ChocolateyRealmjoinRegistryUninstallStrings [-uninstallKeyNameFilter] <string> [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
uninstallKeyNameFilter None true false

Get-ChocolateyRealmjoinWebFile

Syntax

Get-ChocolateyRealmjoinWebFile [[-fileName] <string>] [[-fileChecksum] <string>] [[-remoteFileName] <string>] [-extractArchive] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
extractArchive None false false
fileChecksum None false false
fileName None false false
remoteFileName None false false

Invoke-RealmjoinChocoPackageInstallation

Syntax

Invoke-RealmjoinChocoPackageInstallation [[-packageName] <string>] [[-params] <hashtable>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
packageName None false false
params None false false

Command line

Join-RealmjoinCommandLine

Syntax

Join-RealmjoinCommandLine [[-CommandOnly] <string>] [[-ArgumentsOnly] <string>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
ArgumentsOnly None false false
CommandOnly None false false

Split-RealmjoinCommandLine

Syntax

Split-RealmjoinCommandLine [[-CommandLine] <string>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
CommandLine None false false

Get-RealmjoinCommandLineWithLauncher

Syntax

Get-RealmjoinCommandLineWithLauncher [[-CommandLine] <string>] [[-CommandOnly] <string>] [[-ArgumentsOnly] <string>] [-ReturnSplit] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
ArgumentsOnly None false false
CommandLine None false false
CommandOnly None false false
ReturnSplit None false false

Restart-RealmjoinComputer

Syntax

Restart-RealmjoinComputer [[-Delay] <timespan>] [[-Message] <string>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
Delay None false false
Message None false false

Get-RealmjoinComputerSystemBiosVersion

Syntax

Get-RealmjoinComputerSystemBiosVersion

Get-RealmjoinComputerSystemModel

Syntax

Get-RealmjoinComputerSystemModel [-IncludeDebugInfoIfUnsure] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
IncludeDebugInfoIfUnsure None false false

Custom States

Out-RealmjoinCustomState

Syntax

Out-RealmjoinCustomState [-Name] <string> [[-InputObject] <Object>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
InputObject None false true (ByValue)
Name None true false

Remove-RealmjoinCustomState

Syntax

Remove-RealmjoinCustomState [-Name] <string> [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
Name None true false

Scheduled Tasks

Register-RealmjoinCustomStateScheduledTask

Syntax

Register-RealmjoinCustomStateScheduledTask [[-RepetitionInterval] <timespan>] [[-TaskName] <string>] [[-PublishStateScriptFile] <string>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
PublishStateScriptFile None false false ".\publishState.ps1"
RepetitionInterval None false false "1.00:00:00"
TaskName None false false $env:packageTitle

Unregister-RealmjoinCustomStateScheduledTask

Syntax

Unregister-RealmjoinCustomStateScheduledTask [[-TaskName] <string>] [[-PublishStateScriptFile] <string>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
PublishStateScriptFile None false false
TaskName None false false

Get-RealmjoinInvocationParameters

Syntax

Get-RealmjoinInvocationParameters [[-Invocation] <InvocationInfo>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
Invocation None false false

Get-RealmjoinPathRooted

Syntax

Get-RealmjoinPathRooted [[-Path] <string>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
Path None false false

New-RealmjoinScheduledTaskBootTrigger

Syntax

New-RealmjoinScheduledTaskBootTrigger [[-Enabled] <bool>] [[-StartBoundary] <datetime>] [[-EndBoundary] <datetime>] [[-RepetitionInterval] <timespan>] [[-RepetitionDuration] <timespan>] [[-Delay] <timespan>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
Delay None false false
Enabled None false false
EndBoundary None false false
RepetitionDuration None false false
RepetitionInterval None false false
StartBoundary None false false

New-RealmjoinScheduledTaskDailyTrigger

Syntax

New-RealmjoinScheduledTaskDailyTrigger [[-Enabled] <bool>] [[-StartBoundary] <datetime>] [[-EndBoundary] <datetime>] [[-RepetitionInterval] <timespan>] [[-RepetitionDuration] <timespan>] [[-RandomDelay] <timespan>] [[-DaysInterval] <uint32>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
DaysInterval None false false
Enabled None false false
EndBoundary None false false
RandomDelay None false false
RepetitionDuration None false false
RepetitionInterval None false false
StartBoundary None false false

New-RealmjoinScheduledTaskLogonTrigger

Syntax

New-RealmjoinScheduledTaskLogonTrigger [[-Enabled] <bool>] [[-StartBoundary] <datetime>] [[-EndBoundary] <datetime>] [[-RepetitionInterval] <timespan>] [[-RepetitionDuration] <timespan>] [[-Delay] <timespan>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
Delay None false false
Enabled None false false
EndBoundary None false false
RepetitionDuration None false false
RepetitionInterval None false false
StartBoundary None false false

New-RealmjoinScheduledTaskTimeTrigger

Syntax

New-RealmjoinScheduledTaskTimeTrigger [[-DelayFromNow] <timespan>] [[-Enabled] <bool>] [[-StartBoundary] <datetime>] [[-EndBoundary] <datetime>] [[-RepetitionInterval] <timespan>] [[-RepetitionDuration] <timespan>] [[-RandomDelay] <timespan>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
DelayFromNow None false false
Enabled None false false
EndBoundary None false false
RandomDelay None false false
RepetitionDuration None false false
RepetitionInterval None false false
StartBoundary None false false

New-RealmjoinScheduledTaskXml

Syntax

New-RealmjoinScheduledTaskXml [[-Principal] <ScheduledTaskPrincipal>] [[-Action] <Object[]>] [[-Trigger] <Object[]>] [[-Enabled] <bool>] [[-ExecutionTimeLimit] <timespan>] [[-TaskName] <string>] [-DeleteAfterFirstRun] [-Register] [-StartOnce] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
Action None false false
DeleteAfterFirstRun None false false
Enabled None false false
ExecutionTimeLimit None false false
Principal None false false
Register None false false
StartOnce None false false
TaskName None false false
Trigger None false false

Shortcuts

New-RealmjoinShortcut

Syntax

New-RealmjoinShortcut [-shortcutPath] <string> [-targetPath] <string> [[-targetArguments] <string>] [[-workingDirectory] <string>] [[-description] <string>] [[-iconLocation] <string>] [[-hotKey] <string>] [[-windowStyle] <int>] [-forCurrentUser] [-onDesktop] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
description None false false
forCurrentUser None false false
hotKey None false false
iconLocation None false false
onDesktop None false false
shortcutPath None true false
targetArguments None false false
targetPath None true false
windowStyle None false false
workingDirectory None false false

Remove-RealmjoinShortcut

Syntax

Remove-RealmjoinShortcut [-shortcutPath] <string> [-forCurrentUser] [-onDesktop] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
forCurrentUser None false false
onDesktop None false false
shortcutPath None true false

Format-RealmjoinShortcutPath

Syntax

Format-RealmjoinShortcutPath [-shortcutPath] <string> [-forCurrentUser] [-onDesktop] [-doNotCheckCreateFolder] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
doNotCheckCreateFolder None false false
forCurrentUser None false false
onDesktop None false false
shortcutPath None true false

Start-RealmjoinSoftwarePackageInstallation

Syntax

Start-RealmjoinSoftwarePackageInstallation [[-packageName] <string>] [<CommonParameters>]

Parameters

Name Aliases Description Required? Pipeline Input? Default Value
---- ------- ----------- --------- --------------- -------------
packageName None false false

 FAQ

FAQ

Which links should I bookmark?

	RealmJoin Admin Portalhttps://realmjoin-web.azurewebsites.net/

	Gitlab Packageshttps://gitlab.glueckkanja.net/

	General RealmJoin website
https://realmjoin.com/

	Documentationhttps://docs.realmjoin.com/

Am I able to maintain my own packages and updates

Yes. RealmJoin offers packaging-as-a-service but you may also check in ready-to-use packages. In addition it is possible to use additional deployment repositories completely maintained independently.

Which platforms are supported?

RealmJoin v4 is only available for Windows 10.

I do not see my groups in the Admin Console

The sync between Azure AD and RealmJoin is scheduled every 15 minutes and based on your custom pattern rule set.

Does RealmJoin support Multi User Devices?

Yes, starting with version 4.13 RealmJoin allows applications to be installed not only for the primary device user but also secondary users.

How to enter the Debug Mode in RealmJoin client?

Click on the RealmJoin tray icon while pressing CTRL and Shift on the Keyboard. For a detailed description of the debug mode see chapter troubleshooting.

I accidentally uninstalled Realmjoin-deployed software using the Windows Apps control

Force reinstall by using the debug mode.

Can I get rid of Bloatware using RealmJoin?

TBD

Is RealmJoin providing an uninstall of software?

A general uninstall feature is currently not implemented. Choco packages provide a generic uninstall component which would be usable for RealmJoin, but because of the volatile history of unattends and the sometimes unpredictable issues with incomplete uninstalls we have decided against using it.

In real world there are typically three reasons to uninstall software:

	The license should be re-used for a different user. In this case it’s easy to just create a package to enable/disable a license for a user.

	The software needs to be removed because of [choose your reason]. In this case a dedicated remove-software-package can be created.

	There is a newer version of the software. This is not a reason to use an uninstall command but instead it is a common practice for every software package used by RealmJoin to ‘clean’ any precursory binaries or settings.

Should I use the applications internal auto updater or not?

This highly depends on the application itself as well as your internal processes. For some applications, that might be prone to attacking and are very well maintained by the vendor - like Google Chrome - we recommend to use the applications internal update. For other software, it might be more useful to include a regular update via RealmJoin into your processes.

Re-Install failed software installations

RealmJoin tries to redo failed installations on the next three logons. If the installations still fails the package is marked as permanent-failed. To reinstall it at a later time use “Retry base installation” in debug mode.

Since the packages are based on open protocols, can others access my packages?

Yes. NuGet and Chocolatey repositories are based on open protocols. Using search commands one is able to find all repositories that are hosted on the GK tenant. Since packages should not contain personalized information like licenses or user specific data, there is no potential harm in e.g. installing a Office package with a different companies name in the package description.
It is in principle possible to host the RealmJoin

What Firewall/Proxy settings do I have to configure?

Please check the infrastructure requirements [http://docs.realmjoin.com/infrastructure.html#network] for detailed information on the RealmJoin connections.

Does G&K have any recommendations on workflows?

Yes. Our suggestions can be found in the workflow section of this documentation.

What is the recommendation for reporting?

Using the (custom) states [http://docs.realmjoin.com/managing-realmjoin.html#states], it is possible to get virtually any information from each client in JSON-form There are several applications available to evaluate the data, for example PowerBI, which allows to sort and process the data in logical and visually pleasing ways.

In the future, may RealmJoin packages be used in Intune?

If in the future, Microsoft Intune becomes more capable and the installation of software is as versatile and organized as with RealmJoin, you may use the existing packages in Intune. Since RealmJoin does only need chocolatey and powershell to run the installers, there might be possibilities to use Intune to install software.

Is RealmJoin GDPR compliant?

Glück&Kanja takes data protection very seriously. All contracts with customers and partners take data protection into consideration.

 Troubleshooting

Troubleshooting

Possible reasons why a software package might not install

1. The software package is not properly assigned to the user

	In Azure AD: is there a software distribution group for this software and is the user member of this group?

	In RealmJoin Admin Portal: is there a package for this software and is this package assigned to the correct Azure AD group?

	Is the software package assigned for automatic or manual install?

2. The software is assigned but the assignment is not received by the client

	Is RealmJoin running?

	Is the RealmJoin configuration up to date?

	Is the RealmJoin version up to date?

	Are there any errors in the RealmJoin logs?

3. The assignment reaches the client but the installation is not started or fails

	Is the software assigned for manual installation?

	Is it possible to start the installation manually and are there any errors shown?

	Check RealmJoin logs and software installation logs if available?

Review installed & available Software

Find the RealmJoin Icon in your taskbar.

[image: Tray]

Click the RealmJoin icon and click „Software Packages“. Check if the Software is listed and which status is displayed. Grayed-out indicated Software is already installed. “Black Text” (ready to install) indicates Software is not installed. In this case the installation failed or the software package is configured for manual installation.

[image: Tray-Menu]

Click the software if it is shown as ready to install. This should start the Software installation. Click “Show Details”

[image: Install-Citrix]

Select and copy everything in the details If the software installation fails. Attach this information to the incident ticket.

[image: Install-Citrix-Details]

RealmJoin Log Files

Logging

RealmJoin records all event data into log files. Those can easily be accessed on the client device using the Windows Event Viewer (eventvwr.msc).
RealmJoin logs can be found under Event Viewer (Local) / Windows Logs / Application.

To troubleshoot package execution problems or RealmJoin Problems there are several Log Files available:

System Context Installations and other system tasks: C:\Windows\Logs\realmjoin.log

[image: Log]

User Context Installations and other tray component tasks: %LocalAppData%\RealmJoin\tray.log

[image: Log]

RealmJoin Service events in the application eventlog.

[image: Log]

Chocolatey Install Logfiles: C:\ProgramData\chocolatey\logs\chocolatey.log

[image: Log]

MSI Installations logs.

[image: Log]

Alternatively the logs can be automatically collected and save to the current users desktop via the debug window (see section below).

Advanced RealmJoin Options

Hold “control” & “shift” keys and klick RealmJoin Tray icon. Select “Show Debug Window”.

[image: Advanced]

You can ping the RealmJoin Backend to check connectivity.

[image: Advanced]

You can check if the client version is up to date.

[image: Advanced]

You can check if the user configuration is up to date. This includes the assigned software packages.

[image: Advanced]

If a new user configuration is available you can update the configuration.

[image: Advanced]

You can reset the user configuration. After this is done it is required to update the user configuration with “Check Config”

[image: Advanced]

You can collect the RealmJoin logfiles automatically.

[image: Advanced]

Verify Group Membership in Office 365 Admin Center

You need to know the Software Distribution Group to which the software should be deployed.

Open Office 365 Admin Center Group management at: Office 365 Admin Center [https://portal.office.com/adminportal/home#/groups]

[image: O365 Portal]

Select appropriate software distribution group and verify if the user is member of this group.

[image: O365 Portal]

Token Error

There are several possible approaches to repair token errors.

Delete Token.dat

To trigger a new token request, delete the fileC:\Users\username\AppData\Local\RealmJoin\token.datand restart your device. Newer RealmJoin (starting with v4.10) versions that detect broken tokens may repair them automatically.

Reconnet to Domain

In the RealmJoin tray, you might use the Reconnet to Domain or Change Domain Password options to reinstate the connection authentication.

RealmJoin Backend

Replaced with Admin Console!

Go to RealmJoin Backend admin portal at: RealmJoin Backend Portal [https://realmjoin-backend.azurewebsites.net]

[image: RealmJoin Portal]

In “Software” select the required software package.
At the right you can see which users and groups have been assigned this software package.
In this example it has not been assigned to any individual user but to 2 groups. Assignments for automatic installation are shown in bold letters.

[image: RealmJoin Portal]

Corrupted chocolatey installation

If the installation of software packages produce error messages hinting to a corrupt chocolatey installation, it is possible to reenforce the automatic chocolatey installation through RealmJoin.To do so, remove the %chocolatey% environment variable and enforce a reboot of the client machine and the RealmJoin agent. This will trigger a reinstallation of chocolatey.

How can I remove the RealmJoin application from a client?

It is not supported to remove the RealmJoin application from a client.However, for test scenarios, there are two ways to remove the application from a client.

	Reimage the client.

	Delete manually.

Manual deletion instruction:

	Stop all running RealmJoin processes

	Remove the service, execute “sc delete realmjoin”

	Remove the executables from C:\Program Files\RealmJoin

	Delete registry hive HKLM and HKCU\SOFTWARE\RealmJoin

	Delete folder %LocalAppData%\RealmJoin

	Delete folder C:\ProgramData\RealmJoin

	Uninstalling Chocolatey (https://chocolatey.org/docs/uninstallation)

Where does RealmJoin file the packge scripts on the client?

You may find the data as follows:

	Chocolatey install scripts: %PROGRAMDATA%\chocolatey\lib<package-id>\tools\chocolateyInstall.ps1

	Chocolatey blobs: Windows\Temp\chocolatey<package-id><package-version>

	Craft scripts are cleaned up after the execution

How can I send feedback to the RealmJoin team?

Please use the offical user voice website:https://realmjoin.canny.io/features

Where is the changelog located?

https://headwayapp.co/realmjoin-platform-changelog

 Workflow (internal GK)

Workflow (internal GK)

Upload through customer

The package management team of a customer uses the option RealmJoin Request Package within the portal to upload a * .zip file containing the .msi or .exe file as well as the instructions on the desired installation mode.

Get involved

The customers upload triggers an automatic ticket in the Packaging as a Service ticketing system.

Check the requirements

Before building your package, there are different checks to be performed:

	Did the customer provide all information that is needed to create the package: EXE / MSI? Readme with installation requirements? …?

	If not, get in touch with the customer to clarify the required information.

	Is this package neccessary:

	Check if the package already exists. If so: Same software version and parameters?

	If the requested software exists in a different version: Might an update be more reasonable? Are different version required due to features or similar?

	Get in touch with the customer to discuss and clarify the need for a additional version of this package.

	Is this package generic:

	ALWAYS TRY TO GO GENERIC This will make maintaining and updating a lot easier, plus you may reuse the package for different users later on.

	Does the customer request parameter or arguments that prevent the package to be used as a generic package?

	If so, check if those are really neccessary: How is the software installed? Instead of reg keys, is it possible to use installation parameters in the package assigning step to configure the software?
Why do the customer need this configuration and not the generic package?

	Get in touch with the customer, if neccessay and try to make the package generic.

	Check provided setup files

	If a setup or ini file is added in the upload, check the file for installation command. It is common, that those files contain specific installation instructions or even registry keys or license information.

	If an *.mst file is provided, use a tool like DDIF to compare it to the *.msi and decide, if any of the changes are to be kept. Do not keep uninstall blocker or similar. Create a new *.mst file if necessary (use Orca).
Do not start creating the package before you have a reasonable assumption of what to pack

Create the package

Creating packages

[image: RJ ecosystem]The picture above provides a schematic overview over the RealmJoin package distribution ecosystem. The step of creating packages will be illuminiated in this chapter.
It documents the basic steps in creating craft, chocolatey, chocolatey App-V and organic packages. While all types follow the same rough outline, there are some differences when handling the packages.

General Steps

This section describes the shared steps for craft and chocolatey packages. The packaging process will be demonstrated on the well known VLC player.

Create local repository folder

Run cmd.exe as administrator and navigate to the desired folder, in which the packages are to be created. Then create a new folder for the new repository:
mkdir videolan-vlc-2.26

Use Jumpstarter to create repository

Gk provides a Jumpstarter script that can be used to automatically create the template for a new package. Run the following code in the cmd shell:

@"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.exe" -NoProfile -ExecutionPolicy Bypass -Command "iex ((New-Object System.Net.WebClient).DownloadString('https://github.com/realmjoin/realmjoin-package-jumpstarter/raw/master/JumpstartRealmJoinPackage.ps1'))"

You confronted by the following prompt and asked to specify details:

* Please enter the RealmJoin GitLab repository path: test-vlc
* Please enter the RealmJoin GitLab repository name: test-vlc
* Please enter the RealmJoin GitLab repository namespace: (your namespace)
* Please enter the RealmJoin GitLab Access Token: (your token)
Cloning into....[installation messages]

[image: RJ package-jump]

After a short while, a new repository is created and the template files are copied into the local package folder. Before working on the files, please check the readme.md. Depending on the type of package that is to be created, the next steps will vary.

Chocolatey Package

Edit Package files

	Create .gitlab-ci.yml
There are 8 different sample files, while those starting with Sample1* are considered outdated. Therefore, select and edit the most fitting Sample0*.gitlab-ci.yml file and delete the other ones. You might need to adjust the content. Remove the prefix of the filename and save it as .gitlab-ci.yml.[image: RJ package-sample]The .gitlab-ci.ymlfile contain the build and deploy information. In the build stage, the build-deploy.ps1 helper script is called, while the argument -build indicates the build stage and -ChocoMachine the chocolatey type package.
In the deploy stage, the build-deploy.ps1 helper script is called, while the argument -deploy indicates the deploy stage, -ChocoMachine the chocolatey type package and depending on the deploy mode, the -flavourCollection:

	Deploy Generic: Deployment of the -flavourCollection generic.

	Deploy Customers: Deployment of the -flavourCollection customers, the deployment for all users.

	Deploy Special: Deployment of the -flavourCollection special, the deployment for only the
Those options are not available for customized packages, where only one deploy mode exists, therefore making the distinction obsolete.
See next step for the configuration of flavours and section Conventions and helpers for more detailed information on the helper scripts.

	Check build-deploy-flavor-definitions.ps1
Check the file .realmjoin-gitlab-ci-helpers/build-deploy-flavor-definitions.ps1 for your desired flavour.
If it is not included in the $genericFlavors, $specialFlavors or $customerFlavors range, the helperscript has to be adjusted. Please contact the responsible person.[image: RJ build-flavours]

	Customize choco-package.nuspecAdd the metadata according to the desired software.
[image: RJ package-nuspec]

	id: flavour-vendor-program. It is necessary to add generic for non-customized packages.

	version: Package version W.X.Y.Z. See section Conventions and helpers for more detailed information on the numbering convention.

	title: Displayed name of the package.

	description: Description of the package.

	authors: Creator of the package.

	requireLicenseAcceptance: true/false.

	Move binaries
Move the executables, installer or zip files into the subfolder blobs.

	Create SHA256 hashOpen a Powershell and navigate into the blobs subfolder. Execute

Get-ChildItem | % {(Get-FileHash $_.name).hash + " *" + $_.name | out-file ($_.name + ".sha256")}

A *.sha256 file is created for every item in the folder. The command is also listed in the placeholder file zzz_Place_installer_files_here_and_delete_me.txt, which is to be deleted afterwards (as well as any zzz_Place_installer_files_here_and_delete_me.txt.sha256 item).

	Customize tools\chocolateyInstall.ps1Based on the samples in the file, choose the most fitting one and adapt accordingly.
[image: RJ package-install]

	Customize rj_install.cmd and rj_install.ps1

	With User Settings

	Customize one of usersettings\rj_install.cmd and usersettings\rj_install.ps1, if necessary, and delete the other one. This file may contain various modifications and adjustments, e.g. registry keys or (un-)pinning of start icons.

	Delete rj_install.cmd and rj_install.ps1 in root folder.

	Without User Settings

	Delete subfolder usersettings completely.

	Deleterj_install.cmd and rj_install.ps1 in root folder.

	Rewrite Readme.mdProvide all information necessary in the Readme.md file. Alternatively delete the file completely.

	UploadCommit the file and upload it with Git to the Gitlab.

	Deploy packageAfter uploading the package to Gitlab, navigate with a browser of your choice into the repository and select the Pipelines section. Select your release and use the deploy function. Depending on the package type, there are different possibilites.

	10 generic: Deploys a new version of the generic flavour package.

	20 customers: Deploys a new version of all customer flavour packages. Do not do this, if you do not want to deploy a new version for all flavours listed here.

	90 special: Deploys a new version of the special flavour package. This is used, when a package is already deployed for more than one customer. It prevents unwanted deployment of new package versions.[image: RJ package-deploy]After the successfull deployment, the package can be found in the chocolatey library and added. See chapter managing RealmJoin for information on assigning packages.

Craft Package

Edit Package files

	Delete non-craft itemsDelete subfolders blobs, tools and usersettings and file choco-package.nuspec.

	Create .gitlab-ci.ymlSelect and add the most fitting sample*.gitlab-ci.yml file and delete the other ones. In the following example, the flavour [companyname] was added, to provide the package with the desired corporate meta data. NOTE: make sure to provide the -build / -deployCraft parameters for craft packages. Remove the prefix of the filename and save it as .gitlab-ci.yml.[image: RJ sample-craft]

	Customize rj_install.cmd and rj_install.ps1Customize one of rj_install.cmd and rj_install.ps1 in root folder if necessary, delete the other one. This file may contain various modifications and adjustments, e.g. registry keys or (un-)pinning of start icons.[image: RJ craft-installer]

	Any additional files can also go into the root folder.

	Rewrite Readme.mdProvide all information necessary in the Readme.md file.

	UploadCommit the file and upload it with Git to the Gitlab.

	Deploy packageAfter uploading the package to Gitlab, navigate with a browser of your choice into the repository and select the Pipelines section. Select your release and use the deploy function. Depending on the package type, there are different possibilites.

	10 generic: Deploys a new version of the generic flavour package.

	20 customers: Deploys a new version of all customer flavour packages. Do not do this, if you do not want to deploy a new version for all flavours listed here.

	90 special: Deploys a new version of the special flavour package. This is used, when a package is already deployed for more than one customer. It prevents unwanted deployment of new package versions.[image: RJ choco-deploy]After the successfull deployment, the package can be found in the chocolatey library and added. See chapter managing RealmJoin for information on assigning packages.

Organic Package

Organic packages are created similar to Chocolatey packages, but instead of a software install, they unzip a specified file into a specified folder on the device. Therefore, the main differences are the provided blobs and the chocolateyInstall.ps1script.

	Create .gitlab-ci.ymlSelect and add the most fitting sample*.gitlab-ci.yml file and delete the other ones. In the following example, the flavour [companyname] was added, to provide the package with the desired corporate meta data. NOTE: make sure to provide the -build / -deployChocoMachine parameters for organic packages. Remove the prefix of the filename and save it as .gitlab-ci.yml.
[image: RJ package-sample]

	Customize choco-package.nuspecAdd the metadata according to the desired software.
[image: RJ package-nuspec]

	Move *.zipZip the files that should be delivered onto the devices. Move the executables or installer files into the subfolder blobs.

	Create SHA256 hashOpen a Powershell and navigate into the blobs subfolder. Execute Get-ChildItem | % {(Get-FileHash $_.name).hash + " *" + $_.name | out-file ($_.name + ".sha256")}. A *.sha256 file is created for every item in the folder. The command is also listed in the placeholder file zzz_Place_installer_files_here_and_delete_me.txt, which is to be deleted afterwards (as well as any zzz_Place_installer_files_here_and_delete_me.txt.sha256 item).

	Customize tools\chocolateyInstall.ps1Specify the desired $targetDir location on the device and the correct $filename of the zip container.[image: RJ organic-install]

	Delete rj_install.cmd and rj_install.ps1

	Delete subfolder usersettings completely.

	Delete rj_install.cmd and rj_install.ps1 in root folder.

	Rewrite Readme.mdProvide all information necessary in the Readme.md file.

	UploadCommit the file and upload it with Git to the Gitlab.

	Deploy packageAfter uploading the package to Gitlab, navigate with a browser of your choice into the repository and select the Pipelines section. Select your release and use the deploy function. Depending on the package type, there are different possibilites.

	10 generic: Deploys a new version of the generic flavour package.

	20 customers: Deploys a new version of all customer flavour packages. Do not do this, if you do not want to deploy a new version for all flavours listed here.

	90 special: Deploys a new version of the special flavour package. This is used, when a package is already deployed for more than one customer. It prevents unwanted deployment of new package versions.[image: RJ organic-install]After the successfull deployment, the package can be found in the chocolatey library and added. See chapter managing RealmJoin for information on assigning packages.

App-V Package

APP-V packages are highly sophisticated and unique. Therefore, a general guide can at this point not be provided. If an APP-V package is required, please contact GK for examples and further information or package creation.

Conventions and RealmJoin helpers

The helper scripts are provided by GK. They can not be altered while choco/craft packages are created. If a change is necessary, e.g. add a new flavour, the helper scripts have to be recreated. Please contact GK.

realmjoin-gitlab-ci-helpers.ps1

The realmjoin-gitlab-ci-helpers.ps1 is a helper script called in all package types in the .gitlab-ci.yml, e.g. script: ./.realmjoin-gitlab-ci-helpers/realmjoin-gitlab-ci-helpers.ps1 -buildChocoMachine -flavors "generic","glueckkanja". The following switches are available:

	[switch]$buildCraft,

	Build craft package, user or system

	[switch]$buildChocoMachine,

	Build chocolatey package, system only

	[switch]$buildUsersettingsChild,

	Variation of-buildCraft, designed to build user only UserSettings craft packages

	[switch]$deployCraft,

	Upload craft package to repository (no config in RJ yet, only storage)

	[switch]$deployChocoMachine,

	Upload chocolatey package to repository (no config in RJ yet, only storage)

	[switch]$deployUsersettingsChild,

	Variation of deployCraft

	[string]$craftSubfolder,

	override default dirs (-buildCraft = root, -buildUsersettingsChild: usersettings)

	[string]$usersettingsSuffix,

	override suffix for UserSetting packages (default: usersettings)

	[string]$packagePrefix,

	

	[string[]]$flavors

	Metadata to assign to a company

build-deploy-flavor-definitions.ps1

The build-deploy-flavor-definitions.ps1 script contains the available flavours for all deploy modes. There are currently 3 different deploy modes:

	generic: Just the generic flavour, nothing to change here.

	customers: All customer flavours. The deploy mode customer will result in a customer-package-name deployment for each listed here. This means, if you redeploy in customer mode, it affects all customers at once.

	special: Might be used to deploy for a new customer without the need of the customers deploy mode. Any flavour that is not included in the other deploy modes might be inserted here to deploy without disturbing existing deployments.
The build-deploy-flavor-definitions.ps1 script is part of the extensions package and linked to your packages. It is not possible to just change the extensions files in your local package folder, to add flavours, it is necessary to update the extensions package separatly.

Capitalization and Naming

Please use only small letters for all naming purposes and use vendor-program(-version) as folder names.

Version numbering

Software packages are assigned a individual version number. It is recommended to divide the version number into four parts W.X.Y.Z and use one of two different conventions:

	For non-chocolatey packages GK is suggesting, to use W as major release number, X as majer sub-version, Y as minor release number and Z as (re-)packaging number (when rebuilding the package without changes in software but in the build itself).

	For chocolatey packages it is recommended to use the softwares version number, and use Z as (re-)packing number. If the software itself has a four part version number, chocolatey suggests to multiply the Z by 100 and increase the number by 1 every (re-)packaging.Note: When a new version is tested, the package might be crafted as a pre release package, which, if testing is successfull and no further changes have to be done, has the same version number as the final build.

Testing of the package

The testing of a package is indispensable. Before a package is deployed in the final version and dispatched, check the install and reinstall functionality as well as the program start up.

Virtual Machine

After building and deploying the generic flavour of the package (if possible, for customer packages use the single deploy channel), enter your own or the contoso test RealmJoin admin console and assign the package to your test account. Start up your testing VM (your test user should be local admin) and try install and reinstall of the package. Check the detail message and, if necessary, the log files for any errors. Test dependencies as well, if they are apparent.

Chocolatey packages

If you encounter any problems, it might be a good idea to check choco install and choco uninstall in an admin powershell.
There are some extension helpers, that might be useful. To use them, enter the following commands in your admin powershell:

function Write-FunctionCallLogMessage(){}
import-module C:\ProgramData\chocolatey\lib\realmjoin-core.extension\extensions\Get-ChocolateyRealmjoinLogFilePath.ps1
import-module C:\ProgramData\chocolatey\lib\realmjoin-core.extension\extensions\Get-ChocolateyRealmjoinRegistryUninstallInfo.ps1
Import-Module C:\ProgramData\chocolatey\helpers\chocolateyProfile.psm1
import-module C:\ProgramData\chocolatey\lib\realmjoin-core.extension\extensions\Uninstall-ChocolateyRealmjoinPackage.ps1
import-Module C:\ProgramData\chocolatey\helpers\chocolateyInstaller.psm1

It might be required the repeat the last command if you encounter an error message. Now you are able to use the RealmJoin specific chocolatey commands individually.

Craft packages

Check if you are able to use the install commands in a powershell without RealmJoin. Make sure, your package is assigned in the correct scope (user or system).

Dispatching

TBD

Tools

The following tools are somewhere between useful and necessary:

	Git

	Choose a client of your choosing, recommendations: Tortoise

	Code Editor

	Recommendations: Visual Studio Code, Notepad2

	DDIF

	In the tool package

	Orca

	In the tool package

	Tool package

	If you are a member of the packaging as a service group, you might have access to https://guk.sharepoint.com/sites/packaging/Shared%20Documents/Forms/AllItems.aspx.

 Specialised Packages

Specialised Packages

WLAN packages

Glück&Kanja provides two different approaches to WLAN packages, which allow the configuration of WLAN profiles via RealmJoin.Both packages contain a wifi.xml file, that can be configured with the assignment arguments in the RealmJoin portal.
The editing is embedded within a powershell script and the configured wifi.cml is added as wifiCustom.xml to the device using netsh:netsh wlan add profile filename = "wifiCustom.xml".
Customer-flavoured WLAN packages can be requested from Glück&Kanja.

WPA2-Enterprise package AddWlanProfileEnt

The WPA2-Enterprise package has to be assigned with the parameters:

	SSID: mandatory

	Encryption: optional, default value is “AES”

Argumentsynthax:-SSID "xyz" [-Encryption "xyz"]

WPA2-PSK package *AddWlanProfilePsk *

The WPA2-PSK package has to be assigned with the parameters:

	SSID: mandatory

	PreSharedKey: madatory

	Encryption: optional, default value is “AES”

Argumentsynthax:-SSID "xyz" -PreSharedKey "xyz" [-Encryption "xyz"]

Something special: Microsoft Office 2016

The Office 365/2016 package as maintained by Glück&Kanja

Update infrastructure

Languages, cdn, updates,

Assignment

 Packaging In-Depth

Packaging In-Depth

Preface

Most of the command lines below need to be run with adminitrative rights. As RealmJoin itself will install Chocolatey and machine Craft packages from within the System context, the command lines can also be run from a System command prompt to resemble the production situation as close as possible.To open a System command prompt, the tool psexec from the Windows Sysinternals [https://docs.microsoft.com/en-us/sysinternals/] tools can be used: psexec /d /i /s cmd.exe

Updating to the Latest RealmJoin Core Extension

In some cases, it may be necessary to update to the latest version of the RealmJoin Core Extension for the latest development features to become available:choco upgrade realmjoin-core.extension -y --force

Testing Chocolatey Packages from Source

To test a Chocolatey package from source without packing, building or deploying it, a helper within the RealmJoin Core Extension can be used. Change to the folder were the package sources are located (i.e. where the .nuspec file is located) and run the following command (as Administrator!):"%ProgramData%\chocolatey\extensions\realmjoin-core\choco-install-local-nuspec-file.bat"

This command will also accept parameters like -uninstall (to uninstall instead of installing) and -params (to pass args like they would be specified in the RealmJoin Backend package definition).

Also, the contents of the blobs folder will automatically be copied to the temporary location where they would normally be downloaded to. Therefore the download of blob files from the RealmJoin CDN might fail (in case a file has never been deployed to the CDN), but the installation should still complete successfully as Chocolatey will detect that a file with the correct name and checksum is already available locally.

Except for very specific cases, this command should also work from a folder shared with a virtual machine from outside (e.g. VMware Shared Folders or local drives shared with Hyper-V guests in enhanced session mode [https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect]). This might be helpful if package development and testing are done on two different (virtual) machines.

Packing Chocolatey Packages Locally for Testing

In specific cases (if the blobs folder is not being used at all or if it’s contents have already been deployed to the RealmJoin CDN before, see above), a package can also be packed locally for testing by running the following command from from the folder where the .nuspec file is located:choco pack

On the testing machine, a normal file system folder can be added as a Chocolatey repository, e.g.:choco source add -n=rjlocaltemp -s"c:\temp"

The resulting package (.nupkg) from step 1 can then be copied to this folder and be installed by Chocolatey natively:choco install customername-packagename -y --force

Importing the Chocolatey and RealmJoin Cmdlets into a PowerShell Session

To import all Chocolatey and RealmJoin cmdlets into a PowerShell session, the following PowerShell command can be used:Import-Module "$env:ProgramData\chocolatey\helpers\chocolateyInstaller.psm1"This will also import the RealmJoin Core extension module and can be useful to run some of it’s cmdlets interactively, e.g. Get-ChocolateyRealmjoinRegistryUninstallInfo

If run with administrative rights, there are a few more development cmdlets available to load package information from a .nuspec file and to even run a chocolatey script (e.g. chocolateyInstall.ps1) directly from within the PowerShell session:

	Initialize-RealmjoinChocoDevChocoEnvironment [[-nuspecFile] <string>] [[-packageName] <string>] [[-packageVersion] <string>] [[-packageTitle] <string>] [[-packageFolder] <string>] [[-params] <string>] [<CommonParameters>]

	Invoke-RealmjoinChocoDevScript [[-scriptToRun] <string>] [[-params] <Object>] [-uninstall] [-copyBlobs]

For further details, please take a look at the files in %ProgramData%\chocolatey\lib\realmjoin-core.extension and specifically at the code in the following files:

	extensions\choco-install-local-nuspec-file.bat

	extensions\choco-install-local-nuspec-file.ps1

	tools\RealmjoinChocoDevUtils\RealmjoinChocoDevUtils.bat

	tools\RealmjoinChocoDevUtils\RealmjoinChocoDevUtils.psm1

Thoughts About Updates and Uninstalls

A short summary on how the RealmJoin packaging team usually handles software updates and/or uninstalls when package software:

	We do not expect uninstalls to be generally really necessary in real life (see FAQ). But if it’s not too complicated we usually anyway implement the uninstall part for Chocolatey packages as it aids testing etc. (chocolateyUninstall.ps1 usually just calls chocolateyInstall.ps1 -uninstall to keep all logic inside chocolateyInstall.ps1).

	The second time that Get-ChocolateyRealmjoinRegistryUninstallInfo is used inside chocolateyInstall.ps1 of our standard packages only uninstalls newer or same versions of the software (-versionGe means versions greater or equal), as this is usually not being handled well by the installers themselves.

	In case of updating an older version of an installed software, we expect this to be handled well by the installer itself. Therefore we do not do any uninstalls in this case (the vendor’s installer might even contain logic to migrate settings etc. if it finds an older version already installed).

	If an uninstaller is unable to handle software updates properly, chocolateyInstall.ps1 will be customized to handle this itself (e.g. by always uninstalling any related software before installing).

	In case we should ever really need to uninstall a Chocolatey package (despite our first assumption), we usually build a craft package that more or less literally calls choco uninstall abc-xyz -y --skip-autouninstaller.

	Calling choco uninstall from within Chocolatey packages seems to work, but there is no guarantee here and we recommend to use craft packages for this purpose.

 3rd Party NuGet Packages on https://packages.gkdatacenter.net/

3rd Party NuGet Packages on https://packages.gkdatacenter.net/

PowerShell Modules

PSIni

	Used to read and write ini files from within choco or craft packages

	Source & License: https://www.powershellgallery.com/packages/PsIni

	Project Home: http://lipkau.github.io/PsIni/

Use: Deploy as package through RealmJoin (or add dependency in nuspec, e.g.: <dependency id="PSini" version="[2.0,3.0)" />)
Import: Import-Module "$env:ProgramData\chocolatey\lib\PSini\PsIni.psm1"

 Appendix

Appendix

Protocol Handler

It is possible to install RealmJoin packages using an URL-link.The correct format for this command consists of the realmjoin: call, the subcommand install and the package ID, e.g. generic-google-chrome.The complete link therefore would be written as:realmjoin:install:generic-google-chrome.The package has to be assigned for the user in the RealmJoin backend.

NoGraph Option

To install RealmJoin without Graph API consent, the registry key

Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\realmjoin\Parameters\NoGraph

can be set to 1.It is also possible to set this key during the installation of RealmJoin as a argument for the msi:

msiexec /i "RealmJoin.msi" NOGRAPH=1.

Custom States

It is possible to extend the standard RealmJoin states with arbitrary custom states. JSON files located in %ProgramData%\RealmJoin\CustomStates are automatically evaluated and added to the telemetry upload in the RealmJoin portal.A RealmJoin extensions allows to create custom JSON files using a scheduled task, therefore executing a script on regular basis and recreating the JSON.Create a chocolatey package which uses the task registration extensions:Register-RealmjoinCustomStateScheduledTask
For optional parameters check Register-RealmjoinCustomStateScheduledTask [http://docs.realmjoin.com/core-extension.html#a-name-regcstask-a-register-realmjoincustomstatescheduledtask] in the core extension section.As per default, the newly created task executes the script .\publishState.ps1 once per day.

The within the powershell script created JSON file might be designed as:

 "CustomStates": {
 "bad-json": {
 "Error": "File cannot be parsed: Unexpected character encountered while parsing value: a. Path '', line 0, position 0."
 },
 "is-not-json-object": {
 "Error": "File cannot be parsed: Error reading JObject from JsonReader. Current JsonReader item is not an object: StartArray. Path '', line 1, position 1."
 },
 "name . test $ foo": {
 "test": "ok"
 },
 "test": {
 "hello": "world"
 },
 "too-big": {
 "Error": "File size (66075 bytes) exceeds limit of 65536 bytes."
 }
 }

Scheduled Tasks

The RealmJoin extensions contain CmdLets to simply register and unregister a scheduled task on the client. The task is executed by the system account. For all available CmdLets see Scheduled Tasks [http://docs.realmjoin.com/core-extension.html#a-name-schedtasks-a-scheduled-tasks].

 Index

Index

 Zu kl�rende Punke

Zu kl�rende Punke

Issues mit geringem Informationsgehalt

Welcher dieser Issues soll in die Doku, dann bitte den Inhalt etwas erl�utern oder als unwichtig markieren

https://gitlab.glueckkanja.net/gk-realmjoin/realmjoin-windows/issues/141 - laut Issue 164 (teilweise) implementiert, aber wohl nicht endg�ltig. Wichtiger Punkthttps://gitlab.glueckkanja.net/gk-realmjoin/realmjoin-windows/issues/177https://gitlab.glueckkanja.net/gk-realmjoin/realmjoin-windows/issues/169

https://gitlab.glueckkanja.net/gk-realmjoin/realmjoin-windows/issues/137https://gitlab.glueckkanja.net/gk-realmjoin/realmjoin-windows/issues/1 - �berholt?https://gitlab.glueckkanja.net/gk-realmjoin/realmjoin-windows/issues/144 - welche Policy?https://gitlab.glueckkanja.net/gk-realmjoin/realmjoin-windows/issues/101https://gitlab.glueckkanja.net/gk-realmjoin/realmjoin-windows/issues/104 - Docu?https://gitlab.glueckkanja.net/gk-realmjoin/realmjoin-windows/issues/153https://gitlab.glueckkanja.net/gk-realmjoin/realmjoin-windows/issues/124https://gitlab.glueckkanja.net/gk-realmjoin/realmjoin-windows/issues/111 - Wurde hier etwas umgesetzt oder verworfen?

Policies

Ich habe ein JSON mit einigen Policies, diese Liste ich erstmal auf.
Settings etc sind ja aktuell nicht in der Admin COnsole einstellbar - trotzdem schon in die Doku?

Porting

Zu klären: Behind the scences tech, welches Porting, wie genau erfolgt die Authentifizierung von RJ client gegen�ber dem Backend

 Application Resources

Application Resources

There are several ways to provide the applications for the distribution via RealmJoin. The RealmJoin infrastructure allows to choose from three approaches, depending on the individual packaging needs of every application.

Create the package

With the RealmJoin infrastructure and the light-touch approach to packaging, it is possible for each customer to have a dedicated packaging team and create packages as needed. The process of creating packages is described in the corresponding chapter [http://docs.realmjoin.com/managing-realmjoin.html#states] of this documentation.

Subscribe from the AppStore

Glück&Kanja offer an ever-expandin