

rdc.etl

Extract Transform Load (ETL) toolkit for python.

Looking for an ETL for python 3.5+? Discover Bonobo [https://www.bonobo-project.org/].

DIY framework to create multithreaded python callables that can transform any stream(s) of key/value lists into any
other stream(s).

Concepts are similar to heavy market tools like talend or pentaho, but unlike those, it’s a lightweight framework and
there is no wysiwyg editor provided.

	Install
	Using PyPI

	Using git

	Kickstart
	Create an empty project

	Overview of concepts

	Run

	Jobs
	Concept

	API

	Transformations
	Extracts

	Loads

	Maps

	Filters

	Joins

	Utilities

	Flow-related

	Input / output design

	Filesystem

	Database

	Statuses
	ConsoleStatus

	Cookbook
	Recipe: Simple data processing

	Recipe: Read and write from/to CSV files

	Contributing
	Roadmap

Indices and tables

	Index

	Module Index

	Search Page

Install

Using PyPI

The project is currently marked as alpha. It’s available on PyPI, but you need to specify a version spec for pip to
find it:

$ pip install rdc.etl==1.0.0a3

You can also ask for the latest version:

$ pip install rdc.etl\>1.0.0a

You should be done. You can check in a python shell that it worked.

>>> from rdc.etl import __version__
>>> print __version__

Using git

You can also install rdc.etl from sources, using git. Depending on what you want to do, you can either use master
branch which contains the latest stable code (aka what is published to PyPI), or the dev branch (aka the target
of incoming cool features).

$ git clone https://github.com/rdcli/etl.git
$ cd etl
$ python setup.py develop

Note

Virtualenv usage is highly advised.

Kickstart

To get started, you should also read pragmatic examples in the Cookbook.

Create an empty project

If you want to bootstrap an ETL project on your computer, you can now do it using the provided PasteScript template.

pip install PasteScript
paster create -t etl_project MyProject

Overview of concepts

Extract

Extract is a flexible base class to write extract transformations. We use a generator here, real life
would usually use databases, webservices, files ...

from rdc.etl.transform.extract import Extract

@Extract
def my_extract():
 yield {'foo': 'bar', 'bar': 'min'}
 yield {'foo': 'boo', 'bar': 'put'}

For more informations, see the extracts reference.

Transform

Transform is a flexible base class for all kind of transformations.

from rdc.etl.transform import Transform

@Transform
def my_transform(hash, channel):
 yield hash.update({
 'foo': hash['foo'].upper()
 })

For more informations, see the transformations reference.

Load

We’ll use the screen as our load target ...

from rdc.etl.transform.util import Log

my_load = Log()

For more informations, see the loads reference.

Note

Log is not a “load” transformation stricto sensu (as it acts as an identity
transformation, sending to the default output channel whatever comes in its
default input channel), but we’ll use it as such for demonstration purpose.

Run

Let’s create a Job. It will be used to:

	Connect transformations

	Manage threads

	Monitor execution

from rdc.etl.job import Job

job = Job()

The Job has a add_chain() method that can be used to easily plug a list of ordered transformations together.

job.add_chain(my_extract, my_transform, my_load)

Our job is ready, you can run it.

job()

For more informations, see the jobs documentation.

Jobs

Concept

The Scheduler and the Overseer

Jobs, (previsouly harness), are the glue that ties transformations together and let them interract.

>>> job = Job()

Jobs have a few purposes:

	Manage the graph. and their input/output channels and connections.

>>> # Add a transform. Each transform has its own thread. You should avoid using the lower level method ``add()``
>>> # unless you perfectly understand the underlying mechanisms.
>>> job.add_chain(t1, t2, t3)

	Manage threads and work units. Each transform is contained in a thread that will live from the job start to
whatever means that the contained transform is now “dead”. The job will dispatch work between those threads, and
monitor their status.

>>> # Show thread status
>>> print '\n'.join(map(repr, h.get_threads()))
(1, - Extract-1 in=1 out=3)
(2, - SimpleTransform-2 in=3 out=3)
(3, - Log-3 in=3 out=3)

The format of the tuples shown is the following:

(id, state name statistics)

Id is a simple numeric identifier that indexes the transform and associated thread. State is either “+” for “alive
thread” or “-” for “finished/dead thread”. Name is the thread name, most often built using the transform name and a
thread id. Statistics is the number of lines that got read or written to input / output on this transform.

	Manage execution. Once configured, your ETL process will be runnable by calling the job instance.

>>> # Call the job == run the ETL process
>>> job()

API

	
class rdc.etl.harness.base.IHarness

	ETL harness interface.

The harness is basically the executable stuff that will actually run a job.

	
class rdc.etl.job.Job(debug=False, profile=False)

	
	
add_chain(*transforms, **kwargs)

	Main helper method to add chains of transforms to this harness. You can plug the whole chain from and to
other transforms by specifying input and output parameters.

The transforms provided should not be bound yet.

>>> h = ThreadedHarness()
>>> t1, t2, t3 = Transform(), Transform(), Transform()
>>> h.add_chain(t1, t2, t3)
<rdc.etl.harness.threaded.ThreadedHarness object at 0x...>

	
get_threads()

	Returns attached threads.

	
get_transforms()

	Returns attached transorms.

	
__call__()

	

Transformations

Transformations are the basic bricks to build ETL processes. Basically, it gets lines from its input and sends
transformed lines to its output.

You’re highly encouraged to use the rdc.etl.transform.Transform class as a base for your custom transforms, as it
defines the whole I/O logic. All transformations provided by the package are subclasses of
rdc.etl.transform.Transform.

	
class rdc.etl.transform.Transform(transform=None, input_channels=None, output_channels=None)

	Base class and decorator for transformations.

	
transform(hash, channel=0)

	Core transformation method that will be called for each input data row.

	
INPUT_CHANNELS

	List of input channel names.

	
OUTPUT_CHANNELS

	List of output channel names

Example:

>>> @Transform
... def my_transform(hash, channel=STDIN):
... yield hash.copy({'foo': hash['foo'].upper()})

>>> print list(my_transform(
... H(('foo', 'bar'), ('bar', 'alpha')),
... H(('foo', 'baz'), ('bar', 'omega')),
...))
[H{'foo': 'BAR', 'bar': 'alpha'}, H{'foo': 'BAZ', 'bar': 'omega'}]

Builtin transformations reference

	Extracts
	Extract (base class and decorator)

	DatabaseExtract

	FileExtract

	Loads
	DatabaseLoad

	Maps
	Map (base class and decorator)

	CsvMap

	XmlMap

	Filters

	Joins

	Utilities
	Log

	Stop

	Override

	Clean

	SimpleTransform

	Flow-related

Design notes

	Input / output design
	Basics

	Input and output

	Example

Extracts

Extracts are transformations that generate output lines from something that is not one of the input channel.
As it will yield all data for each input row, the input given is usually only one empty line.

Extract (base class and decorator)

	
class rdc.etl.transform.extract.Extract(extract=None)

	Base class for extract transforms.

	
extract

	Generator, iterable or iterable-typed callable that is used as the data source. Often used as a shortcut to
make fast prototypes of ETL processes from a dictionary, before going further with real data sources.

Each iterator value should be something Hash.copy() can take as an argument.

Example using a dict:

>>> from rdc.etl.transform.extract import Extract

>>> data = ({'foo': 'bar'}, {'foo': 'baz'},)
>>> my_extract = Extract(extract=data)

>>> list(my_extract({}))
[H{'foo': 'bar'}, H{'foo': 'baz'}]

Example using a callable:

>>> from rdc.etl.transform.extract import Extract

>>> @Extract
... def my_extract():
... return (
... {'bar': 'baz'},
... {'bar': 'boo'},
...)

>>> list(my_extract({}))
[H{'bar': 'baz'}, H{'bar': 'boo'}]

Example using a generator:

>>> from rdc.etl.transform.extract import Extract

>>> @Extract
... def my_extract():
... yield {'bar': 'baz'}
... yield {'bar': 'boo'}

>>> print list(my_extract({}))
[H{'bar': 'baz'}, H{'bar': 'boo'}]

Note

Whenever you can, prefer the generator approach so you’re not blocking anything while computing remaining
elements.

DatabaseExtract

	
class rdc.etl.extra.db.extract.DatabaseExtract(engine, query=None, limit=None)

	Extract data from a database using some raw SQL and yield one output line per query result.

	
engine

	The sqlalchemy engine to use for extraction.

	
query

	The database query that will be used to extract data from database. Should not contain OFFSET/LIMIT, nor ”;”.

	
pack_size

	The number of records to retrieve at a time (will be used to add OFFSET/LIMIT clauses to SQL).

FileExtract

	
class rdc.etl.transform.extract.file.FileExtract(uri=None, output_field=None)

	Extract data from a file into a field.

	
uri

	The path for source file. Can be either an absolute/relative filesystem path or an HTTP/HTTPS resource.

	
output_field

	The field that will contain file content. Use the topic (_) field by default.

Loads

Load transformations are the opposite of extracts. It take data from input and loads it into an external “thing”
(database, filesystem, webservice, ...).

The code there is lacking quality and completion, even if it works.

DatabaseLoad

	
class rdc.etl.extra.db.load.DatabaseLoad(engine=None, table_name=None, fetch_columns=None, discriminant=None, created_at_field=None, updated_at_field=None, insert_only_fields=None, allowed_operations=None)

	TODO doc this !!! test this !!!!

Maps

Maps are transforms that will yield rows depending on the value of one input field. In association with FileExtract
for example, it can parse the file content format and yield rows that have an added knowledge.

By default, maps use the topic (_) field for input

Map (base class and decorator)

	
class rdc.etl.transform.map.Map(map=None, field=None)

	Base class for mappers.

	
map

	Map logic callable. Takes the hash’s field value and yields iterable data.

	
field

	The input field.

Example:

>>> from rdc.etl.transform.map import Map
>>> from rdc.etl.transform.util import clean

>>> @Map
... def my_map(s_in):
... for l in s_in.split('\n'):
... yield {'f%d' % i: v for i, v in enumerate(l.split(':'))}

>>> map(clean, my_map({'_': 'a:b:c\nb:c:d\nc:d:e'}))
[H{'f0': 'a', 'f1': 'b', 'f2': 'c'}, H{'f0': 'b', 'f1': 'c', 'f2': 'd'}, H{'f0': 'c', 'f1': 'd', 'f2': 'e'}]

CsvMap

	
class rdc.etl.transform.map.csv.CsvMap(field=None, delimiter=None, quotechar=None, headers=None, skip=None)

	Reads a CSV and yield the values, line-by-line.

	
delimiter

	The CSV delimiter.

	
quotechar

	The CSV quote character.

	
headers

	The list of column names, if the CSV does not contain it as its first line.

	
skip

	The amount of lines to skip before it actually yield output.

XmlMap

	
class rdc.etl.transform.map.xml.XmlMap(map_item=None, xpath=None, field=None)

	Reads a XML and yield values for each root children.

Warning

This does not work, don’t use (or fix before :p).

Definitions:

XML Item: In the context of an XmlMap, we define an XML Item as being either a children of the XML root if no
xpath has been provided, or one item returned by the XPath provided.

	
map_item

	Will be called for each input XML Item, and should return a dictionary of values for this item.

	
field

	The input field (defined in parent).

	
xpath

	XPath used to select items before running them through item_map().

Filters

Filters remove some lines from the flux.

	
class rdc.etl.transform.filter.Filter(filter=None)

	Filter out hashes from the stream depending on the filter callable return value, when called with the
current hash as parameter.

Can be used as a decorator on a filter callable.

	
filter

	A callable used to filter the hashes. If return value is True for a given hash, then the hash will be yield to
output. Otherwise, it will be burnt.

Example:

>>> from rdc.etl.transform.filter import Filter
>>> from rdc.etl.hash import Hash

>>> @Filter
... def my_filter(hash, channel):
... return hash['keepme'] == True

>>> list(my_filter(
... (('foo', 'bar'), ('keepme', True),),
... (('foo', 'baz'), ('keepme', False),),
...))
[H{'foo': 'bar', 'keepme': True}]

Joins

Inner or outer join on data (similar to database joins/products)

Not to be mistaken for flow-based joins that work on I/O channels.

TODO

	
class rdc.etl.transform.join.Join(join=None, is_outer=False, default_outer_join_data=None)

	Join some key => value pairs, that can depend on the source hash.

This element can change the stream length, either positively (joining >1 item data) or negatively (joining <1 item data)

	
join(hash, channel=0)

	Abtract method that must be implemented in concrete subclasses, to return the data that should be joined with
the given row.

It should be iterable, or equivalent to False in a test.

If the result is iterable and its length is superior to 0, the result of this transform will be a cartesian
product between this method result and the original input row.

If the result is false or iterable but 0-length, the result of this transform will depend on the join type,
determined by the is_outer attribute.

	If is_outer == True, the transform output will be a simple union between the input row and the result of
self.get_default_outer_join_data()

	If is_outer == False, this row will be sinked, and will not generate any output from this transform.

Default join type is inner, to preserve backward compatibility.

Example:

>>> from rdc.etl.transform.join import Join
>>> from rdc.etl.transform.util import clean

>>> @Join
... def my_join(hash, channel=STDIN):
... return ({'a':1}, {'b':2},)

>>> map(clean, my_join({'foo': 'bar'}, {'foo': 'baz'},))
[H{'foo': 'bar', 'a': 1}, H{'foo': 'bar', 'b': 2}, H{'foo': 'baz', 'a': 1}, H{'foo': 'baz', 'b': 2}]

Utilities

Helper and utility transformations.

Log

	
class rdc.etl.transform.util.Log(field_filter=None, condition=None, clean=None)

	Identity transform that adds a console output side effect, to watch what is going through Queues at some point
of an ETL process.

Stop

	
class rdc.etl.transform.util.Stop(transform=None, input_channels=None, output_channels=None)

	Sinker transform that stops anything through the pipes.

Override

	
class rdc.etl.transform.util.Override(override_data=None)

	Simple transform that will overwrite some values with constant values provided in a Hash.

Clean

	
class rdc.etl.transform.util.Clean(transform=None, input_channels=None, output_channels=None)

	Remove all fields with keys starting by _

SimpleTransform

	
class rdc.etl.extra.simple.SimpleTransform(*filters)

	SimpleTransform is an attempt to make a trivial transformation easy to build, using fluid APIs and a lot of easy
shortcuts to apply filters to some fields.

The API is not stable and this will probably go into an “extra” module later.

Example:

>>> t = SimpleTransform()

Apply “upper” method on “name” field, and store it back in “name” field.

>>> t.add('name').filter('upper')
<rdc.etl.extra.simple._SimpleItemTransformationDescriptor object at ...>

Apply the lambda to “description” field content, and store it into the “full_description” field.

>>> t.add('full_description', 'description').filter(lambda v: 'Description: ' + v)
<rdc.etl.extra.simple._SimpleItemTransformationDescriptor object at ...>

Remove the previously defined “useless” descriptor. This does not remove the “useless” fields into transformed
hashes, it is only usefull to override some parent stuff.

>>> t.useless = 'foo'
>>> t.delete('useless')

Mark the “notanymore” field for deletion upon transform. Output hashes will not anymore contain this field./

>>> t.remove('notanymore')

Add a field (output hashes will contain this field, all with the same “foo bar” value).

>>> t.test_field = 'foo bar'

Flow-related

Flow related transformations are there to build jobs that will split data from one channel into more than one or
the opposite, taking more than one input channel and “joining” data into one output channel.

TODO

Input / output design

Basics

All you have to know as an ETL user, is that each transform may have 0..n input channels and 0..n output channels. Mostly
because it was fun, we named the channel with representative *nix-file-descriptor-like names, but the similarity ends
to the name.

The input multiplexer will group together whatever comes to one of the inputs channels and pass it to the
transformation’s transform() method.

	
class rdc.etl.transform.ITransform

	
	
transform(hash[, channel=STDIN])

	All input rows that comes to one of this transform’s input channels will be passed to this method. If you
only have one input channel, you can safely ignore the channel value, although you’ll need it in method
prototype.

The transform method should be a generator, yielding output lines (with an optional output channel id):

def transform(hash, channel=STDIN):
 yield hash.copy({'foo': 'bar'})
 yield hash.copy({'foo': 'baz'})

Input and output

All transforms are expected to have the following attributes:

	_input, which should implement IReadable

	_output, which should implement IWritable

When you’re using rdc.etl.transform.Transform, the base class will create them for you as an InputMultiplexer and
an OutputDemultiplexer, each one having a list of channels populated after reading the INPUT_CHANNELS and
OUTPUT_CHANNELS transformation attributes. By default, transformations have one default STDIN input, one default
STDOUT output and one alternate STDERR output. You can virtually have infinite input or outputs in your
transformations (as though I have hard time imagining a use).

	
class rdc.etl.io.InputMultiplexer(channels)

	

	
class rdc.etl.io.OutputDemultiplexer(channels)

	

[image: ../_images/io.png]

Example

Here is a simple transform that takes whatever comes to STDIN and put it on STDOUT and STDOUT2, and that puts everything
that comes to STDIN2 and send it to STDERR.

from rdc.etl.transform import Transform
from rdc.etl.io import STDIN, STDIN2, STDOUT, STDOUT2, STDERR

class MyTransform(Transform):
 INPUT_CHANNELS = (STDIN, STDIN2,)
 OUTPUT_CHANNELS = (STDOUT, STDOUT2, STDERR,)

 def transform(self, hash, channel=STDIN):
 if channel == STDIN:
 yield hash
 yield hash, STDOUT2
 elif channel == STDIN2:
 yield hash, STDERR

Filesystem

Not really implemented, would like some abstraction for this.

You can use FileExtract to read a file into a field.

t = FileExtract('/tmp/filename', output_field='_content')
job.add_chain(t)

If you don’t need to keep a lot of different things, you can use the default output_field (subject, context) that is
_. It can be handy as transforms that only act on one field will read this one by default.

t1 = FileExtract('/tmp/file.csv')
t2 = CsvMap()
job.add_chain(t1, t2)

Database

Database extracts, loads and joins are implemented in the rdc.etl.extra.db package. It’s considered as an
“addon”, because no work has been made yet on “connection management” in the core package.

You need sqlalchemy, below is an example.

-*- coding: utf-8 -*-

import datetime
import sqlalchemy

from rdc.etl.extra.db import DatabaseExtract, DatabaseLoad
from rdc.etl.extra.util import TransformBuilder
from rdc.etl.job import Job
from rdc.etl.status.console import ConsoleStatus
from rdc.etl.transform import Transform

DB_CONFIG = {
 'user': 'root',
 'pass': '',
 'name': 'my_database',
 'host': 'localhost',
}
TABLE_NAME = 'products'

Create SQLAlchemy engine
db_engine = sqlalchemy.create_engine('mysql://{user}:{pass}@{host}/{name}'.format(**DB_CONFIG))

Extract : use a SQL query
t1 = DatabaseExtract(
 db_engine,
 '''
 SELECT *
 FROM {table_name} t
 WHERE MOD(t.id, 100) > 98
 '''.format(table_name=TABLE_NAME)
)

Transform : Update a timestamp
@TransformBuilder(Transform)
def UpdateChangeTimestamp(hash, channel):
 hash['updated_at'] = datetime.datetime.now()
 yield hash

t2 = UpdateChangeTimestamp()

Load : same table as input (by choice)
t3 = DatabaseLoad(
 db_engine,
 TABLE_NAME,
 discriminant=('id',), # This is default behavior, but the selection criteria can be based on any field
 # combination as long as a select on those keys returns only ONE result line.
 updated_at_field=None, # Avoid default updated_at behavior as we reimplemented it manually.
)

Job creation
job = Job(profile=True)
job.add_chain(t1, t2, t3)
job.status.append(ConsoleStatus())

if __name__ == '__main__':
 job()

Statuses

Statuses are the tools to observe a process execution state. Not documented yet, but try the following before you run
the job:

>>> from rdc.etl.status.console import ConsoleStatus
>>> job.status.append(ConsoleStatus())

ConsoleStatus

	
class rdc.etl.status.console.ConsoleStatus(prefix='')

	Outputs status information to the connected stdout. Can be a TTY, with or without support for colors/cursor
movements, or a non tty (pipe, file, ...). The features are adapted to terminal capabilities.

	
prefix

	String prefix of output lines.

Cookbook

	Recipe: Simple data processing

	Recipe: Read and write from/to CSV files

Recipe: Simple data processing

What we want to achieve

[image: ../_images/01_simple_data.png]

Pipeline structure

[image: ../_images/01_simple_pipeline.png]

Code

-*- coding: utf-8 -*-

from rdc.common.util.text import slughifi
from rdc.etl.extra.util import TransformBuilder
from rdc.etl.hash import Hash
from rdc.etl.job import Job
from rdc.etl.transform.extract import Extract as _Extract
from rdc.etl.transform import Transform as _Transform
from rdc.etl.transform.util import Log

Create our data extractor. Here, we use a simple generator to create it.
@TransformBuilder(_Extract)
def Extract():
 yield Hash((
 ('id', 1,),
 ('name', 'John Doe',),
 ('position', 'CEO',),
))
 yield Hash((
 ('id', 2,),
 ('name', 'Jane Doe',),
 ('position', 'CTO',),
))
 yield Hash((
 ('id', 3,),
 ('name', 'George Sand',),
 ('position', 'Writer',),
))

Transform our data
#
A Transform created using a decorator is built from a function taking a hash and a channel id, we will ignore
channel id here.
@TransformBuilder(_Transform)
def Transform(h, c):
 # Create slug applying a field transformation
 h['slug'] = slughifi(h['name'])

 # Rename 'name' field and call it 'full_name
 h.rename('name', 'full_name')

 # Send our modified hash to the default output channel/pipeline
 yield h

Create the job
job = Job()
job.add_chain(Extract(), Transform(), Log())

Run it
if __name__ == '__main__':
 job()

Output

$ python example/cookbook/01_simple.py

····{1}···
 id:int → «1»
 position:str → «CEO»
 slug:str → «john-doe»
 full_name:str → «John Doe»
··

····{2}···
 id:int → «2»
 position:str → «CTO»
 slug:str → «jane-doe»
 full_name:str → «Jane Doe»
··

····{3}···
 id:int → «3»
 position:str → «Writer»
 slug:str → «george-sand»
 full_name:str → «George Sand»
··

Pitfalls

This job is pretty useless, because it reads hardcoded values and write the result to your current terminal. You may
want to read:

	Recipe: Read and write from/to CSV files

Recipe: Read and write from/to CSV files

What we want to achieve

We want to write the exact transformation that we wrote in Recipe: Simple data processing, except that we will read data from an
input CSV file, and write the result to an output CSV file.

[image: ../_images/02_csv_data.png]

Pipeline structure

[image: ../_images/02_csv_pipeline.png]

Contributing

The code is available on github [http://github.com/rdcli/etl/].

$ git clone https://github.com/rdcli/etl.git

The way to contribute is to fork the project in your own github account, and then make pull requests. If you don’t want
to use github, you can send pull requests by mail (git format-patch is your friend) to romain(at)rdc(dot)li.

It’s probably a good idea to discuss ideas before starting to implement.

You’re also (more than) very welcome to improve the documentation, or the unit tests.

The project roadmap is available below.

This package is used on live systems, and no backward incompatible feature will be implemented in 1.x after 1.0.0 has
been released (at least, we’ll try). See Semantic Versionning [http://semver.org/].

Roadmap

General

	Documentation, more documentation, better documentation

	Test coverage

	Examples

	“Job” tests

Milestone 1.0

IO channels management

	(DONE) Multiple input/output possible for each transformation, with default channels

	(DONE) “Converging stars” (V model), “diverging stars” (reverse V) and diamond should be possible

	See how we deal with cycles, I guess a “health check” pass is necessary to ensure that all paths have an end.

Error handling

	Exceptions are sent to stdout, destroying statuses

	There should be recoverable and fatal errors

	stderr should be a special output stream that handle exceptions, and all stdouts should be plugged into some
handler.

	errors should appear in status

	React to Control-C (KeyboardInterrupt)

Milestone 1.1

Services/Connections/...

	what is a good name for this ?

	databases, webservices, filesystems, http, ...

	stats (r/w)

Display/status

	Better Log() (nice tables wanted)

	wsgi status ? (html) mail status ?

	Catchall for unplugged IO channels ? For example, all messages going to unplugged STDERR channels could be sent to a
given transform, so we can act (email ...)

Milestone 1.2

	Whatever will be needed at this time, let’s focus on first versions for now (ideas welcome).

Ideas

	“daemon” jobs. Live forever, whenever something triggers an input, it runs through the transformations. Use cases: live
index update, PUT/POST webservice.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rdc	

 	
 	
 rdc.etl.extra.db.extract	

 	
 	
 rdc.etl.extra.db.load	

 	
 	
 rdc.etl.extra.simple	

 	
 	
 rdc.etl.io	

 	
 	
 rdc.etl.status	

 	
 	
 rdc.etl.status.console	

 	
 	
 rdc.etl.transform	

 	
 	
 rdc.etl.transform.extract	

 	
 	
 rdc.etl.transform.extract.file	

 	
 	
 rdc.etl.transform.filter	

 	
 	
 rdc.etl.transform.join	

 	
 	
 rdc.etl.transform.load	

 	
 	
 rdc.etl.transform.map	

 	
 	
 rdc.etl.transform.map.csv	

 	
 	
 rdc.etl.transform.map.xml	

 	
 	
 rdc.etl.transform.util	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | X

_

 	
 	__call__() (rdc.etl.job.Job method)

A

 	
 	add_chain() (rdc.etl.job.Job method)

C

 	
 	Clean (class in rdc.etl.transform.util)

 	
 	ConsoleStatus (class in rdc.etl.status.console)

 	CsvMap (class in rdc.etl.transform.map.csv)

D

 	
 	DatabaseExtract (class in rdc.etl.extra.db.extract)

 	
 	DatabaseLoad (class in rdc.etl.extra.db.load)

 	delimiter (rdc.etl.transform.map.csv.CsvMap attribute)

E

 	
 	engine (rdc.etl.extra.db.extract.DatabaseExtract attribute)

 	
 	Extract (class in rdc.etl.transform.extract)

 	extract (rdc.etl.transform.extract.Extract attribute)

F

 	
 	field (rdc.etl.transform.map.Map attribute)

 	(rdc.etl.transform.map.xml.XmlMap attribute)

 	
 	FileExtract (class in rdc.etl.transform.extract.file)

 	Filter (class in rdc.etl.transform.filter)

 	filter (rdc.etl.transform.filter.Filter attribute)

G

 	
 	get_threads() (rdc.etl.job.Job method)

 	
 	get_transforms() (rdc.etl.job.Job method)

H

 	
 	headers (rdc.etl.transform.map.csv.CsvMap attribute)

I

 	
 	IHarness (class in rdc.etl.harness.base)

 	INPUT_CHANNELS (rdc.etl.transform.Transform attribute)

 	
 	InputMultiplexer (class in rdc.etl.io)

 	ITransform (class in rdc.etl.transform)

J

 	
 	Job (class in rdc.etl.job)

 	
 	Join (class in rdc.etl.transform.join)

 	join() (rdc.etl.transform.join.Join method)

L

 	
 	Log (class in rdc.etl.transform.util)

M

 	
 	Map (class in rdc.etl.transform.map)

 	
 	map (rdc.etl.transform.map.Map attribute)

 	map_item (rdc.etl.transform.map.xml.XmlMap attribute)

O

 	
 	OUTPUT_CHANNELS (rdc.etl.transform.Transform attribute)

 	output_field (rdc.etl.transform.extract.file.FileExtract attribute)

 	
 	OutputDemultiplexer (class in rdc.etl.io)

 	Override (class in rdc.etl.transform.util)

P

 	
 	pack_size (rdc.etl.extra.db.extract.DatabaseExtract attribute)

 	
 	prefix (rdc.etl.status.console.ConsoleStatus attribute)

Q

 	
 	query (rdc.etl.extra.db.extract.DatabaseExtract attribute)

 	
 	quotechar (rdc.etl.transform.map.csv.CsvMap attribute)

R

 	
 	rdc.etl.extra.db.extract (module)

 	rdc.etl.extra.db.load (module)

 	rdc.etl.extra.simple (module)

 	rdc.etl.io (module), [1]

 	rdc.etl.status (module)

 	rdc.etl.status.console (module)

 	rdc.etl.transform (module)

 	rdc.etl.transform.extract (module), [1]

 	
 	rdc.etl.transform.extract.file (module)

 	rdc.etl.transform.filter (module)

 	rdc.etl.transform.join (module)

 	rdc.etl.transform.load (module)

 	rdc.etl.transform.map (module), [1]

 	rdc.etl.transform.map.csv (module)

 	rdc.etl.transform.map.xml (module)

 	rdc.etl.transform.util (module)

S

 	
 	SimpleTransform (class in rdc.etl.extra.simple)

 	
 	skip (rdc.etl.transform.map.csv.CsvMap attribute)

 	Stop (class in rdc.etl.transform.util)

T

 	
 	Transform (class in rdc.etl.transform)

 	
 	transform() (rdc.etl.transform.ITransform method)

 	(rdc.etl.transform.Transform method)

U

 	
 	uri (rdc.etl.transform.extract.file.FileExtract attribute)

X

 	
 	XmlMap (class in rdc.etl.transform.map.xml)

 	
 	xpath (rdc.etl.transform.map.xml.XmlMap attribute)

Transform

Just enough python

You’re interested in data processing, but you’re feeling like some of the python constructions used in this doc are
cryptic? Let me try to give a simplistic overview of python specific stuff you’ll have to use.

Decorators

Decorators are a shorthand syntax for a very common pattern.

def uppercase_decorator(f):
 def decorated_function(*args, **kwargs):
 return f(*args, **kwargs).toupper()
 return decorated_function

def hello(name='World'):
 return 'Hello, {0}'.format(name)

hello = uppercase_decorator(hello)

This is a bit cumbersome and hard to read, so the decorator syntax can come and help.

@uppercase_decorator
def hello(name='World'):
 return 'Hello, {0}'.format(name)

A decorator is a callable that takes another callable as its first parameter and returns a “decorated” version of
the former, probably adding some behavior. The previous example adds an “uppercase the former callable result”, which
is as useless as the decorated hello function.

In rdc.etl, we use decorator for various common operations. Although their use is recommended for better readability,
there is no obligation.

Decorators in rdc.etl: Transformations

Most transformation classes can be used in three different ways. You can instantiate them, subclass them, or use them
as decorators. Using it as a decorator means that it will be instantiated, passing as first parameter the callable
defined just after.

@Transform
def my_transform_implementation(hash, channel):
 hash['transformed'] = True
 yield hash

The resulting value of my_transform_implementation is an instance of the Transform class, and this code is
equivalent to the following.

def my_transform_implementation(hash, channel):
 hash['transformed'] = True
 yield hash

my_transform_implementation = Transform(my_transform_implementation)

However, you have to know a few pitfalls when using this:

	You’re getting an instance of Transform, which is not re-useable. The first Job into which you’ll add this
instance will bind input and output channels, and further adds to other jobs (or to the same job at another place
in the graph) will fail.

	You can’t pass more than one argument to the constructor.

To avoid those pitfalls, you’re advised to use TransformBuilder decorator, demonstrated in the next paragraph.

Decorators in rdc.etl: Transform builder

To create reusable transformations, you should use TransformBuilder.

@TransformBuilder(Transform, input_channels=(STDIN, STDIN2,))
def MyReusableTransform(hash, channel):
 if channel == STDIN:
 hash['from_channel'] = 1
 elif channel == STDIN2:
 hash['from_channel'] = 2
 else:
 raise NotImplementedError('Unknown channel')
 yield hash

The resulting value of MyReusableTransform is a type subclass, also known as a regular class definition, that
you can instantiate at will.

instance1 = MyReusableTransform()
instance2 = MyReusableTransform()
instance3 = MyReusableTransform()
... you got it, right ?

Return values, iterators, generators

In python, all callables have a return value. If it is not provided explicitly, it will be None.

def explicit_none():
 return None

def implicit_none():
 return

def even_more_implicit_none():
 pass

Some systems, like rdc.etl transformations, needs to have more than one return value, and it is important that values
can be passed as soon as each is computed. If we had to wait for thousands of entries to be processed before a return
value can be sent, the system would not be efficient at all.

Generators are one solution.

def my_slow_range(start, stop):
 for i in xrange(start, stop):
 time.sleep(1)
 yield i

This is a generator. Python, and you, recognize generators because they use the yield keyword. A generator can’t
have a return statement (try it).

When called, a generator will _not_ execute the function body, but return an iterable object. Each time the iterator
next() method is called, the execution of the function will be resumed where it has been left (at the beginning for
example if it is the first call to next()), and run until a yield statement is encountered.

for i in my_slow_range(0, 10):
 print i

 _images/01_simple_pipeline.png
Extract Transform

Log
Get dota into our Change field name. Output reult

pipeiine Create Slug

_images/01_simple_data.png
3[George Sand [writer 3[George Sand [Writer [george-sand

_images/io.png
TnputMultiplexer Transform OutputDemultiplexer

queues dict Cinput : IReadable channels - dict

_ouput : IWritable

transform(hash : Hash,channel - stn)

; 1
! 1 :
! o : 0
! input | [Output
| <<rel o i
| T y <<realizess <<realizesy
<7 | <<realizes=» ll

<<realizes=»
<<interface>> <<interface>>
IReadable IWritable

get(block : bool = True timeout : int = None) put(data,block : boo!

True,timeout - int = None)

_images/02_csv_data.png
inputcsv oututcsv

_static/comment-close.png

_static/up.png

_images/02_csv_pipeline.png
CsvMap

Transform raw content into lines,
using CSV format knowledge.

v

Transform

Change field name.
Create Slug

FileExtract

Read o fie

CsvReduce FileLoad

Complle lines into CSV format

Write result to disk

_static/minus.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		rdc.etl

 		Install

 		Using PyPI

 		Using git

 		Kickstart

 		Create an empty project

 		Overview of concepts

 		Extract

 		Transform

 		Load

 		Run

 		Jobs

 		Concept

 		API

 		Transformations

 		Extracts

 		Extract (base class and decorator)

 		DatabaseExtract

 		FileExtract

 		Loads

 		DatabaseLoad

 		Maps

 		Map (base class and decorator)

 		CsvMap

 		XmlMap

 		Filters

 		Joins

 		Utilities

 		Log

 		Stop

 		Override

 		Clean

 		SimpleTransform

 		Flow-related

 		Input / output design

 		Basics

 		Input and output

 		Example

 		Filesystem

 		Database

 		Statuses

 		ConsoleStatus

 		Cookbook

 		Recipe: Simple data processing

 		What we want to achieve

 		Pipeline structure

 		Code

 		Output

 		Pitfalls

 		Recipe: Read and write from/to CSV files

 		What we want to achieve

 		Pipeline structure

 		Contributing

 		Roadmap

 		General

 		Milestone 1.0

 		Milestone 1.1

 		Milestone 1.2

 		Ideas

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

