

Ramses

Ramses is a framework that generates a RESTful API using RAML [http://raml.org]. It uses Pyramid and Nefertari [https://nefertari.readthedocs.org/] which provides Elasticsearch / Posgres / MongoDB / Your Data Store™ -powered views. Using Elasticsearch enables Elasticsearch-powered requests [http://nefertari.readthedocs.org/en/stable/making_requests.html] which provides near real-time search.

	Website:

	http://ramses.tech

	Source code:

	http://github.com/ramses-tech/ramses

Table of Contents

	Getting started
	Requirements

	Examples

	Tutorials

	RAML Configuration
	Authentication

	ACLs

	Enabling HTTP Methods

	Defining Schemas
	JSON Schema

	Showing Fields

	Nested Documents

	Custom “user” Model

	Fields
	Types

	Required Fields

	Primary Key

	Constraints

	Default Value

	Update Default Value

	List Fields

	Other _db_settings

	Event Handlers
	Setup

	Example

	Other Things You Can Do

	Field processors
	Setup

	Example

	Relationships
	Basics

	Field “type”: “relationship”

	Field “type”: “foreign_key”

	One to One relationship

	Multiple relationships

	Complete example

	Changelog

[image: _images/ramses.jpg]
Image credit: Wikipedia

Getting started

	Create your project in a virtualenv directory (see the virtualenv documentation [https://virtualenv.pypa.io])

$ virtualenv my_project
$ source my_project/bin/activate
$ pip install ramses
$ pcreate -s ramses_starter my_project
$ cd my_project
$ pserve local.ini

	Tada! Start editing api.raml to modify the API and items.json for the schema.

Requirements

	Python 2.7, 3.3 or 3.4

	Elasticsearch (data is automatically indexed for near real-time search)

	Postgres or Mongodb or Your Data Store™

Examples

	For a more complete example of a Pyramid project using Ramses, you can take a look at the Example Project [https://github.com/ramses-tech/ramses-example].

	RAML can be used to generate an end-to-end application, check out this example [https://github.com/jstoiko/raml-javascript-client] using Ramses on the backend and RAML-javascript-client + BackboneJS on the front-end.

Tutorials

	Create a REST API in Minutes With Pyramid and Ramses [https://realpython.com/blog/python/create-a-rest-api-in-minutes-with-pyramid-and-ramses/]

	Make an Elasticsearch-powered REST API for any data with Ramses [https://www.elastic.co/blog/make-an-elasticsearch-powered-rest-api-for-any-data-with-ramses]

RAML Configuration

You can read the full RAML specs here [http://raml.org/spec.html].

Authentication

In order to enable authentication, add the auth parameter to your .ini file:

auth = true

In the root section of your RAML file, you can add a securitySchemes, define the x_ticket_auth method and list it in your root-level securedBy. This will enable cookie-based authentication.

securitySchemes:
 - x_ticket_auth:
 description: Standard Pyramid Auth Ticket policy
 type: x-Ticket
 settings:
 secret: auth_tkt_secret
 hashalg: sha512
 cookie_name: ramses_auth_tkt
 http_only: 'true'
securedBy: [x_ticket_auth]

A few convenience routes will be automatically added:

	POST /auth/register: register a new user

	POST /auth/login: login an existing user

	GET /auth/logout: logout currently logged-in user

	GET /users/self: returns currently logged-in user

ACLs

In your securitySchemes, you can add as many ACLs as you need. Then you can reference these ACLs in your resource’s securedBy.

securitySchemes:
 (...)
 - read_only_users:
 description: ACL that allows authenticated users to read
 type: x-ACL
 settings:
 collection: |
 allow admin all
 allow authenticated view
 item: |
 allow admin all
 allow authenticated view
(...)
/items:
 securedBy: [read_only_users]

Enabling HTTP Methods

Listing an HTTP method in your resource definition is all it takes to enable such method.

/items:
 (...)
 post:
 description: Create an item
 get:
 description: Get multiple items
 patch:
 description: Update multiple items
 delete:
 description: delete multiple items

 /{id}:
 displayName: One item
 get:
 description: Get a particular item
 delete:
 description: Delete a particular item
 patch:
 description: Update a particular item

You can link your schema definition for each resource by adding it to the post section.

/items:
 (...)
 post:
 (...)
 body:
 application/json:
 schema: !include schemas/items.json

Defining Schemas

JSON Schema

Ramses supports JSON Schema Draft 3 and Draft 4. You can read the official JSON Schema documentation here [http://json-schema.org/documentation.html].

{
 "type": "object",
 "title": "Item schema",
 "$schema": "http://json-schema.org/draft-04/schema",
 (...)
}

All Ramses-specific properties are prefixed with an underscore.

Showing Fields

If you’ve enabled authentication, you can list which fields to return to authenticated users in _auth_fields and to non-authenticated users in _public_fields. Additionaly, you can list fields to be hidden but remain hidden (with proper persmissions) in _hidden_fields.

{
 (...)
 "_auth_fields": ["id", "name", "description"],
 "_public_fields": ["name"],
 "_hidden_fields": ["token"],
 (...)
}

Nested Documents

If you use Relationship fields in your schemas, you can list those fields in _nested_relationships. Your fields will then become nested documents instead of just showing the id. You can control the level of nesting by specifying the _nesting_depth property, defaul is 1.

{
 (...)
 "_nested_relationships": ["relationship_field_name"],
 "_nesting_depth": 2
 (...)
}

Custom “user” Model

When authentication is enabled, a default “user” model will be created automatically with 4 fields: “username”, “email”, “groups” and “password”. You can extend this default model by defining your own “user” schema and by setting _auth_model to true on that schema. You can add any additional fields in addition to those 4 default fields.

{
 (...)
 "_auth_model": true,
 (...)
}

Fields

Types

You can set a field’s type by setting the type property under _db_settings.

"created_at": {
 (...)
 "_db_settings": {
 "type": "datetime"
 }
}

This is a list of all available types:

	biginteger

	binary

	boolean

	choice

	date

	datetime

	decimal

	dict

	float

	foreign_key

	id_field

	integer

	interval

	list

	pickle

	relationship

	smallinteger

	string

	text

	time

	unicode

	unicodetext

Required Fields

You can set a field as required by setting the required property under _db_settings.

"password": {
 (...)
 "_db_settings": {
 (...)
 "required": true
 }
}

Primary Key

You can use an id_field in lieu of primary key.

"id": {
 (...)
 "_db_settings": {
 (...)
 "primary_key": true
 }
}

You can alternatively elect a field to be the primary key of your model by setting its primary_key property under _db_settings. For example, if you decide to use username as the primary key of your User model. This will enable resources to refer to that field in their url, e.g. /api/users/john

"username": {
 (...)
 "_db_settings": {
 (...)
 "primary_key": true
 }
}

Constraints

You can set a minimum and/or maximum length of your field by setting the min_length / max_length properties under _db_settings. You can also add a unique constraint on a field by setting the unique property.

"field": {
 (...)
 "_db_settings": {
 (...)
 "unique": true,
 "min_length": 5,
 "max_length": 50
 }
}

Default Value

You can set a default value for you field by setting the default property under _db_settings.

"field": {
 (...)
 "_db_settings": {
 (...)
 "default": "default value"
 }
},

The default value can also be set to a Python callable, e.g.

"datetime_field": {
 (...)
 "_db_settings": {
 (...)
 "default": "{{datetime.datetime.utcnow}}"
 }
},

Update Default Value

You can set an update default value for your field by setting the onupdate property under _db_settings. This is particularly useful to update ‘datetime’ fields on every updates, e.g.

"datetime_field": {
 (...)
 "_db_settings": {
 (...)
 "onupdate": "{{datetime.datetime.utcnow}}"
 }
},

List Fields

You can list the accepted values of any list or choice fields by setting the choices property under _db_settings.

"field": {
 (...)
 "_db_settings": {
 "type": "choice",
 "choices": ["choice1", "choice2", "choice3"],
 "default": "choice1"
 }
}

You can also provide the list/choice items’ item_type.

"field": {
 (...)
 "_db_settings": {
 "type": "list",
 "item_type": "string"
 }
}

Other _db_settings

Note that you can pass any engine-specific arguments to your fields by defining such arguments in _db_settings.

Event Handlers

Ramses supports Nefertari event handlers [http://nefertari.readthedocs.org/en/stable/event_handlers.html]. Ramses event handlers also have access to Nefertari’s wrapper API [http://nefertari.readthedocs.org/en/stable/models.html#wrapper-api] which provides additional helpers.

Setup

Writing Event Handlers

You can write custom functions inside your __init__.py file, then add the @registry.add decorator before the functions that you’d like to turn into CRUD event handlers. Ramses CRUD event handlers has the same API as Nefertari CRUD event handlers. Check Nefertari CRUD Events doc for more details on events API.

Example:

import logging
from ramses import registry

log = logging.getLogger('foo')

@registry.add
def log_changed_fields(event):
 changed = ['{}: {}'.format(name, field.new_value)
 for name, field in event.fields.items()]
 logger.debug('Changed fields: ' + ', '.join(changed))

Connecting Event Handlers

When you define event handlers in your __init__.py as described above, you can apply them on per-model basis. If multiple handlers are listed, they are executed in the order in which they are listed. Handlers should be defined in the root of JSON schema using _event_handlers property. This property is an object, keys of which are called “event tags” and values are lists of handler names. Event tags are composed of two parts: <type>_<action> whereby:

	type

	Is either before or after, depending on when handler should run - before view method call or after respectively. You can read more about when to use before vs after event handlers [http://nefertari.readthedocs.org/en/stable/event_handlers.html#before-vs-after].

	action

	Exact name of Nefertari view method that processes the request (action) and special names for authentication actions.

	Complete list of actions:

	
	index - Collection GET

	create - Collection POST

	update_many - Collection PATCH/PUT

	delete_many - Collection DELETE

	collection_options - Collection OPTIONS

	show - Item GET

	update - Item PATCH

	replace - Item PUT

	delete - Item DELETE

	item_options - Item OPTIONS

	login - User login (POST /auth/login)

	logout - User logout (POST /auth/logout)

	register - User register (POST /auth/register)

	set - triggers on all the following actions: create, update, replace, update_many and register.

Example

We will use the following handler to demonstrate how to connect handlers to events. This handler logs request to the console.

import logging
from ramses import registry

log = logging.getLogger('foo')

@registry.add
def log_request(event):
 log.debug(event.view.request)

Assuming we had a JSON schema representing the model User and we want to log all collection GET requests on the User model after they are processed using the log_request handler, we would register the handler in the JSON schema like this:

{
 "type": "object",
 "title": "User schema",
 "$schema": "http://json-schema.org/draft-04/schema",
 "_event_handlers": {
 "after_index": ["log_request"]
 },
 ...
}

Other Things You Can Do

You can update another field’s value, for example, increment a counter:

from ramses import registry

@registry.add
def increment_count(event):
 instance = event.instance or event.response
 counter = instance.counter
 incremented = counter + 1
 event.set_field_value('counter', incremented)

You can update other collections (or filtered collections), for example, mark sub-tasks as completed whenever a task is completed:

from ramses import registry
from nefertari import engine

@registry.add
def mark_subtasks_completed(event):
 if 'task' not in event.fields:
 return

 completed = event.fields['task'].new_value
 instance = event.instance or event.response

 if completed:
 subtask_model = engine.get_document_cls('Subtask')
 subtasks = subtask_model.get_collection(task_id=instance.id)
 subtask_model._update_many(subtasks, {'completed': True})

You can perform more complex queries using Elasticsearch:

from ramses import registry
from nefertari import engine
from nefertari.elasticsearch import ES

@registry.add
def mark_subtasks_after_2015_completed(event):
 if 'task' not in event.fields:
 return

 completed = event.fields['task'].new_value
 instance = event.instance or event.response

 if completed:
 subtask_model = engine.get_document_cls('Subtask')
 es_query = 'task_id:{} AND created_at:[2015 TO *]'.format(instance.id)
 subtasks_es = ES(subtask_model.__name__).get_collection(_raw_terms=es_query)
 subtasks_db = subtask_model.filter_objects(subtasks_es)
 subtask_model._update_many(subtasks_db, {'completed': True})

Field processors

Ramses supports Nefertari field processors [http://nefertari.readthedocs.org/en/stable/field_processors.html]. Ramses field processors also have access to Nefertari’s wrapper API [http://nefertari.readthedocs.org/en/stable/models.html#wrapper-api] which provides additional helpers.

Setup

To setup a field processor, you can define the _processors property in your field definition (same level as _db_settings). It should be an array of processor names to apply. You can also use the _backref_processors property to specify processors for backref field. For backref processors to work, _db_settings must contain the following properties: document, type=relationship and backref_name.

"username": {
 ...
 "_processors": ["lowercase"]
},
...

You can read more about processors in Nefertari’s field processors documentation [http://nefertari.readthedocs.org/en/stable/field_processors.html] including the list of keyword arguments [http://nefertari.readthedocs.org/en/stable/field_processors.html#keyword-arguments] passed to processors.

Example

If we had following processors defined:

from .my_helpers import get_stories_by_ids

@registry.add
def lowercase(**kwargs):
 """ Make :new_value: lowercase """
 return (kwargs['new_value'] or '').lower()

@registry.add
def validate_stories_exist(**kwargs):
 """ Make sure added stories exist. """
 story_ids = kwargs['new_value']
 if story_ids:
 # Get stories by ids
 stories = get_stories_by_ids(story_ids)
 if not stories or len(stories) < len(story_ids):
 raise Exception("Some of provided stories do not exist")
 return story_ids

User model json
{
 "type": "object",
 "title": "User schema",
 "$schema": "http://json-schema.org/draft-04/schema",
 "properties": {
 "stories": {
 "_db_settings": {
 "type": "relationship",
 "document": "Story",
 "backref_name": "owner"
 },
 "_processors": ["validate_stories_exist"],
 "_backref_processors": ["lowercase"]
 },
 ...
 }
}

	Notes:

	
	validate_stories_exist processor will be run when request changes User.stories value. The processor will make sure all of story IDs from request exist.

	lowercase processor will be run when request changes Story.owner field. The processor will lowercase new value of the Story.owner field.

Relationships

Basics

Relationships in Ramses are used to represent One-To-Many(o2m) and One-To-One(o2o) relationships between objects in database.

To set up relationships fields of types foreign_key and relationship are used. foreign_key field is not required when using nefertari_mongodb engine and is ignored.

For this tutorial we are going to use the example of users and
stories. In this example we have a OneToMany relationship betweed User
and Story. One user may have many stories but each story has only one
owner. Check the end of the tutorial for the complete example RAML
file and schemas.

Example code is the very minimum needed to explain the subject. We will be referring to the examples along all the tutorial.

Field “type”: “relationship”

Must be defined on the One side of OneToOne or OneToMany
relationship (User in our example). Relationships are created as
OneToMany by default.

Example of using relationship field (defined on User model in our example):

"stories": {
 "_db_settings": {
 "type": "relationship",
 "document": "Story",
 "backref_name": "owner"
 }
}

Required params:

	type

	String. Just relationship.

	document

	String. Exact name of model class to which relationship is set up. To find out the name of model use singularized uppercased version of route name. E.g. if we want to set up relationship to objects of /stories then the document arg will be Story.

	backref_name

	String. Name of back reference field. This field will be auto-generated on model we set up relationship to and will hold the instance of model we are defining. In our example, field Story.owner will be generated and it will hold instance of User model to which story instance belongs. Use this field to change relationships between objects.

Field “type”: “foreign_key”

This represents a Foreign Key constraint in SQL and is only required
when using nefertari_sqla engine. It is used in conjunction with
the relationship field, but is used on the model that relationship
refers to. For example, if the User model contained the
relationship field, than the Story model would need a
foreign_key field.

Notes:

	This field is not required and is ignored when using nefertari_mongodb engine.

	Name of the foreign_key field does not depend on relationship params in any way.

	This field MUST NOT be used to change relationships. This field only exists because it is required by SQLAlchemy.

Example of using foreign_key field (defined on Story model in our example):

"owner_id": {
 "_db_settings": {
 "type": "foreign_key",
 "ref_document": "User",
 "ref_column": "user.username",
 "ref_column_type": "string"
 }
}

Required params:

	type

	String. Just foreign_key.

	ref_document

	String. Exact name of model class to which foreign key is set up. To find out the name of model use singularized uppercased version of route name. E.g. if we want to set up foreign key to objects of /user then the ref_document arg will be User.

	ref_column

	String. Dotted name/path to ref_document model’s primary key
column. ref_column is the lowercased name of model we refer to in
ref_document joined by a dot with the exact name of its primary key column. In our example this is "user.username".

	ref_column_type

	String. Ramses field type of ref_document model’s primary key column specified in ref_column parameter. In our example this is "string" because User.username is "type": "string".

One to One relationship

To create OneToOne relationships, specify "uselist": false in _db_settings of relationship field. When setting up One-to-One relationship, it doesn’t matter which side defines the relationship field.

E.g. if we had Profile model and we wanted to set up One-to-One relationship between Profile and User, we would have to define a regular foreign_key field on Profile:

"user_id": {
 "_db_settings": {
 "type": "foreign_key",
 "ref_document": "User",
 "ref_column": "user.username",
 "ref_column_type": "string"
 }
}

and relationship field with "uselist": false on User:

"profile": {
 "_db_settings": {
 "type": "relationship",
 "document": "Profile",
 "backref_name": "user",
 "uselist": false
 }
}

This relationship could also be defined the other way but with the same result: foreign_key field on User and relationship field on Profile pointing to User.

Multiple relationships

Note: This part is only valid(required) for nefertari_sqla engine, as nefertari_mongodb engine does not use foreign_key fields.

If we were to define multiple relationships from model A to model B,
each relationship must have a corresponding foreign_key
defined. Also you must use a foreign_keys parameter on each
relationship field to specify which foreign_key each
relationship uses.

E.g. if we were to add new relationship field User.assigned_stories, relationship fields on User would have to be defined like this:

"stories": {
 "_db_settings": {
 "type": "relationship",
 "document": "Story",
 "backref_name": "owner",
 "foreign_keys": "Story.owner_id"
 }
},
"assigned_stories": {
 "_db_settings": {
 "type": "relationship",
 "document": "Story",
 "backref_name": "assignee",
 "foreign_keys": "Story.assignee_id"
 }
}

And fields on Story like so:

"owner_id": {
 "_db_settings": {
 "type": "foreign_key",
 "ref_document": "User",
 "ref_column": "user.username",
 "ref_column_type": "string"
 }
},
"assignee_id": {
 "_db_settings": {
 "type": "foreign_key",
 "ref_document": "User",
 "ref_column": "user.username",
 "ref_column_type": "string"
 }
}

Complete example

example.raml

#%RAML 0.8

title: Example REST API
documentation:
 - title: Home
 content: |
 Welcome to the example API.
baseUri: http://{host}:{port}/{version}
version: v1

/stories:
 displayName: All stories
 get:
 description: Get all stories
 post:
 description: Create a new story
 body:
 application/json:
 schema: !include story.json
 /{id}:
 displayName: One story
 get:
 description: Get a particular story

/users:
 displayName: All users
 get:
 description: Get all users
 post:
 description: Create a new user
 body:
 application/json:
 schema: !include user.json
 /{username}:
 displayName: One user
 get:
 description: Get a particular user

user.json

{
 "type": "object",
 "title": "User schema",
 "$schema": "http://json-schema.org/draft-04/schema",
 "required": ["username"],
 "properties": {
 "username": {
 "_db_settings": {
 "type": "string",
 "primary_key": true
 }
 },
 "stories": {
 "_db_settings": {
 "type": "relationship",
 "document": "Story",
 "backref_name": "owner"
 }
 }
 }
}

story.json

{
 "type": "object",
 "title": "Story schema",
 "$schema": "http://json-schema.org/draft-04/schema",
 "properties": {
 "id": {
 "_db_settings": {
 "type": "id_field",
 "primary_key": true
 }
 },
 "owner_id": {
 "_db_settings": {
 "type": "foreign_key",
 "ref_document": "User",
 "ref_column": "user.username",
 "ref_column_type": "string"
 }
 }
 }
}

Changelog

Next feature release

	[Support]: Scaffold defaults to Pyramid 1.6.1

	[Support] #99: Use ACL mixin from nefertari-guards (if enabled)

0.5.3 2016-05-17

	[Bug] #107 [https://github.com/ramses-tech/ramses/issues/107]: Fixed issue with hyphens in resource paths

0.5.2 2016-05-17

	[Support]: Scaffold defaults to Pyramid 1.6.1

	[Support] #99 [https://github.com/ramses-tech/ramses/issues/99] [https://github.com/ramses-tech/ramses/issues/99]: Use ACL mixin from nefertari-guards (if enabled)

0.5.1 2015-11-18

	[Bug] #88 [https://github.com/ramses-tech/ramses/issues/88]: Reworked the creation of related/auth_model models, order does not matter anymore

0.5.0 2015-10-07

	[Bug]: Fixed a bug using ‘required’ ‘_db_settings’ property on ‘relationship’ field

	[Support]: Added support for the property ‘_nesting_depth’ in schemas

	[Support]: ACL permission names in RAML now match real permission names instead of http methods

	[Support]: Simplified field processors, ‘_before_processors’ is now called ‘_processors’, removed ‘_after_processors’

	[Support]: Added support for Nefertari event handlers

	[Support]: Added support for Nefertari ‘_hidden_fields’

	[Support]: Added support for ‘nefertari-guards’ [https://nefertari-guards.readthedocs.org/]

0.4.1 2015-09-02

	[Bug]: Simplified ACLs (refactoring)

0.4.0 2015-08-19

	[Feature]: Error response bodies are now returned as JSON

	[Feature]: Prefixed all Ramses schema properties by an underscore: ‘_auth_fields’, ‘_public_fields’, ‘_nested_relationships’, ‘_auth_model’, ‘_db_settings’

	[Feature]: Properties ‘type’ and ‘required’ are now under ‘_db_settings’

	[Feature]: Renamed schema’s ‘args’ property to ‘_db_settings’

	[Feature]: Added support for relationship processors and backref relationship processors (‘backref_after_validation’/’backref_before_validation’)

	[Feature]: Field name and request object are now passed to field processors under ‘field’ and ‘request’ kwargs respectively

	[Feature]: Renamed setting ‘debug’ to ‘enable_get_tunneling’

	[Feature]: Renamed setting ‘ramses.auth’ to ‘auth’

	[Feature]: Boolean values in RAML don’t have to be strings anymore (previous limitation of pyraml-parser)

	[Bug]: Fixed a limitation preventing collection names to use nouns that do not have plural forms

	[Bug]: Fixed processors not applied on fields of type ‘list’ and type ‘dict’

	[Support]: Added support for ‘onupdate’ field argument

	[Support]: Added support for callables in ‘default’ field argument

	[Support]: RAML is now parsed using ramlfications instead of pyraml-parser

	[Support]: Added support for JSON schema draft 04

0.3.1 2015-07-07

	[Support]: Added support for ‘onupdate’ field argument

	[Support]: Added support for callables in ‘default’ field argument

0.3.0 2015-06-14

	[Support]: Added python3 support

0.2.3 2015-06-05

	[Bug]: Forward compatibility with nefertari releases

0.2.2 2015-06-03

	[Bug]: Fixed race condition in Elasticsearch indexing

	[Bug]: Fixed password minimum length support by adding before and after validation processors

0.2.1 2015-05-27

	[Bug]: Fixed custom processors

	[Bug]: Fixed login issue

	[Bug]: Fixed limiting fields to be searched

0.2.0 2015-05-18

	[Feature]: Add support for custom auth model

	[Feature]: Add support for processors in schema definition

	[Feature]: Added support for securitySchemes, authentication (Pyramid ‘auth ticket’) and ACLs

	[Support]: ES views now read from ES on update/delete_many

	[Support]: Improved docs

	[Support]: Added unit tests

	[Support]: Added several display options to schemas

0.1.1 2015-04-21

	[Bug]: Ramses could not be used in an existing Pyramid project

0.1.0 2015-04-08

	[Support]: Initial release!

Index

 _static/comment-close.png

_static/up.png

_images/ramses.jpg

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Ramses

 		Getting started

 		Requirements

 		Examples

 		Tutorials

 		RAML Configuration

 		Authentication

 		ACLs

 		Enabling HTTP Methods

 		Defining Schemas

 		JSON Schema

 		Showing Fields

 		Nested Documents

 		Custom “user” Model

 		Fields

 		Types

 		Required Fields

 		Primary Key

 		Constraints

 		Default Value

 		Update Default Value

 		List Fields

 		Other _db_settings

 		Event Handlers

 		Setup

 		Writing Event Handlers

 		Connecting Event Handlers

 		Example

 		Other Things You Can Do

 		Field processors

 		Setup

 		Example

 		Relationships

 		Basics

 		Field “type”: “relationship”

 		Field “type”: “foreign_key”

 		One to One relationship

 		Multiple relationships

 		Complete example

 		Changelog

_static/comment.png

_static/down.png

_static/up-pressed.png

