

What is Rally?

OpenStack is, undoubtedly, a really huge ecosystem of cooperative
services. Rally is a testing tool that answers the question:
“How does OpenStack work at scale?”. To make this possible, Rally
automates and unifies multi-node OpenStack deployment, cloud
verification, testing & profiling. Rally does it in a generic way,
making it possible to check whether OpenStack is going to work well on, say, a
1k-servers installation under high load. Thus it can be used as a basic tool
for an OpenStack CI/CD system that would continuously improve its SLA,
performance and stability.

[image: _images/Rally-Actions.png]

Contents

	Rally project overview
	Overview

	Glossary

	User stories

	Installation and upgrades
	Installation process

	Database upgrade in Rally

	Quick start
	Rally step-by-step

	Rally OpenStack Gates

	Command Line Interface
	Category: db

	Category: deployment

	Category: env

	Category: plugin

	Category: task

	Category: verify

	Task Component
	HTML Reports

	CLI References

	Verification Component
	Verifiers

	Verification reports

	Command Line Interface

	HowTo

	Historical background

	What is Verification Component and why do you need it?

	Rally Plugins
	Plugins Reference

	How plugins work

	Placement

	How to create a plugin

	Contribute to Rally
	Where to begin

	How to contribute

	Testing

	Request New Features
	Capture Logs from services

	Check queue perfdata

	Ability to compare results between task

	Distributed load generation

	Explicitly specify existing users for scenarios

	Historical performance data

	Enhancements to installation script: --version and --uninstall

	Installation script: --pypi-mirror, --package-mirror and --venv-mirror

	Launch Specific SubTask

	Using multi scenarios to generate load

	Multiple attach volume

	Add support of persistence task environment

	Production read cleanups

	Project Info and Release Notes
	Maintainers

	Useful links

	Where can I discuss and propose changes?

	Release Notes

Command Line Interface

	Category: db

	Category: deployment

	Category: env

	Category: plugin

	Category: task

	Category: verify

Category: db

CLI commands for DB management.

rally db create

Create Rally database.

rally db ensure

Creates Rally database if it doesn’t exists.

rally db recreate

Drop and create Rally database.

This will delete all existing data.

rally db revision

Print current Rally database revision UUID.

rally db show

Show the connection string.

Command arguments:

	–creds [ref]

Do not hide credentials from connection string

rally db upgrade

Upgrade Rally database to the latest state.

Category: deployment

Set of commands that allow you to manage deployments.

rally deployment check

Check all credentials and list all available services.

Command arguments:

	–deployment <uuid> [ref]

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.

type: str

rally deployment config

Display configuration of the deployment.

Output is the configuration of the deployment in a
pretty-printed JSON format.

Command arguments:

	–deployment <uuid> [ref]

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.

type: str

rally deployment create

Create new deployment.

This command will create a new deployment record in rally
database. In the case of ExistingCloud deployment engine, it
will use the cloud represented in the configuration. If the
cloud doesn’t exist, Rally can deploy a new one for you with
Devstack or Fuel. Different deployment engines exist for these
cases (see rally plugin list –plugin-base Engine for
more details).

If you use the ExistingCloud deployment engine, you can pass
the deployment config by environment variables with --fromenv:

OS_USERNAME
OS_PASSWORD
OS_AUTH_URL
OS_TENANT_NAME or OS_PROJECT_NAME
OS_ENDPOINT_TYPE or OS_INTERFACE
OS_ENDPOINT
OS_REGION_NAME
OS_CACERT
OS_INSECURE
OS_IDENTITY_API_VERSION

All other deployment engines need more complex configuration
data, so it should be stored in a configuration file.

You can use physical servers, LXC containers, KVM virtual
machines or virtual machines in OpenStack for deploying the
cloud. Except physical servers, Rally can create cluster nodes
for you. Interaction with virtualization software, OpenStack
cloud or physical servers is provided by server providers.

Command arguments:

	–name <name> [ref]

Name of the deployment.

type: str

	–fromenv [ref]

Read environment variables instead of config file.

	–filename <path> [ref]

Path to the configuration file of the deployment.

type: str

default: none

	–no-use [ref]

Don’t set new deployment as default for future operations.

rally deployment destroy

Destroy existing deployment.

This will delete all containers, virtual machines, OpenStack
instances or Fuel clusters created during Rally deployment
creation. Also it will remove the deployment record from the
Rally database.

Command arguments:

	–deployment <uuid> [ref]

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.

type: str

rally deployment list

List existing deployments.

rally deployment recreate

Destroy and create an existing deployment.

Unlike ‘deployment destroy’, the deployment database record
will not be deleted, so the deployment UUID stays the same.

Command arguments:

	–filename <path> [ref]

Path to the configuration file of the deployment.

type: str

default: none

	–deployment <uuid> [ref]

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.

type: str

rally deployment show

Show the credentials of the deployment.

Command arguments:

	–deployment <uuid> [ref]

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.

type: str

rally deployment use

Set active deployment.

Command arguments:

	–deployment <uuid> [ref]

UUID or name of a deployment.

type: str

Category: env

Set of commands that allow you to manage envs.

rally env check

Check availability of all platforms in environment.

Command arguments:

	–env <uuid> [ref]

UUID or name of the env.

type: str

default: none

	–json [ref]

Format output as JSON.

	–detailed [ref]

Show detailed information.

rally env cleanup

Perform disaster cleanup for specified environment.

Cases when Rally can leave undeleted resources after performing
workload:

	Rally execution was interrupted and cleanup was not performed

	The environment or a particular platform became unreachable which
fail Rally execution of cleanup

Command arguments:

	–json [ref]

Format output as JSON.

	–env <uuid> [ref]

UUID or name of the env.

type: str

default: none

rally env create

Create new environment.

Command arguments:

	–name <name>, -n <name> [ref]

Name of the env.

type: str

	–description <description>, -d <description> [ref]

Env description

type: str

default: none

	–extras <extras>, -e <extras> [ref]

JSON or YAML dict with custom non validate info.

type: str

default: none

	–from-sysenv [ref]

Iterate over all available platforms and check system environment for credentials.

	–spec <path>, -s <path> [ref]

Path to env spec.

type: str

default: none

	–json [ref]

Format output as JSON.

	–no-use [ref]

Don’t set new env as default for future operations.

rally env delete

Deletes all records related to the environment from db.

Command arguments:

	–env <uuid> [ref]

UUID or name of the env.

type: str

default: none

	–force [ref]

Delete DB records even if env is not destroyed.

rally env destroy

Destroy existing environment.

Command arguments:

	–env <uuid> [ref]

UUID or name of the env.

type: str

default: none

	–skip-cleanup [ref]

Do not perform platforms cleanup before destroy.

	–json [ref]

Format output as JSON.

	–detailed [ref]

Show detailed information.

rally env info

Retrieve and show environment information.

Command arguments:

	–env <uuid> [ref]

UUID or name of the env.

type: str

default: none

	–json [ref]

Format output as JSON.

rally env list

List existing environments.

Command arguments:

	–json [ref]

Format output as JSON.

rally env show

Show base information about the environment record.

Command arguments:

	–env <uuid> [ref]

UUID or name of the env.

type: str

default: none

	–json [ref]

Format output as JSON.

	–only-spec [ref]

Print only a spec for the environment.

rally env use

Set default environment.

Command arguments:

	–env <uuid> [ref]

UUID or name of a env.

type: str

	–json [ref]

Format output as JSON.

Category: plugin

Set of commands that allow you to manage Rally plugins.

rally plugin list

List all Rally plugins that match name and platform.

Command arguments:

	–name <name> [ref]

List only plugins that match the given name.

type: str

default: none

	–platform <platform> [ref]

List only plugins that are in the specified platform.

type: str

default: none

	–namespace [ref]

[deprecated since rally 0.10.0] use ‘–platform’ instead.

default: none

	–plugin-base <plugin_base> [ref]

Plugin base class.

type: str

default: none

rally plugin show

Show detailed information about a Rally plugin.

Command arguments:

	–name <name> [ref]

Plugin name.

type: str

	–platform <platform> [ref]

Plugin platform.

type: str

default: none

	–namespace [ref]

[deprecated since rally 0.10.0] use ‘–platform’ instead.

default: none

Category: task

Set of commands that allow you to manage tasks and results.

rally task abort

Abort a running task.

Command arguments:

	–uuid <uuid> [ref]

UUID of task.

type: str

	–soft [ref]

Abort task after current scenario finishes execution.

rally task delete

Delete task and its results.

Command arguments:

	–force [ref]

Force delete

	–uuid <task-id> [ref]

UUID of task or a list of task UUIDs.

type: str

rally task detailed

Command arguments:

	–uuid <uuid> [ref]

UUID of task. If –uuid is “last” the results of the most recently created task will be displayed.

type: str

	–iterations-data [ref]

Print detailed results for each iteration.

	–filter-by <filter_by> [ref]

Filter the displayed workloads.<sla-failures>: only display the failed workloads.

type: str

default: none

rally task export

Export task results to the custom task’s exporting system.

Command arguments:

	–uuid <uuid> [ref]

UUIDs of tasks or json reports of tasks

type: str

default: none

	–type <type> [ref]

Report type. Out-of-the-box types: JSON, HTML, HTML-Static, Elastic, JUnit-XML. HINT: You can list all types, executing rally plugin list –plugin-base TaskExporter command.

type: str

default: none

	–to <dest> [ref]

Report destination. Can be a path to a file (in case of JSON, HTML, HTML-Static, JUnit-XML, Elastic etc. types) to save the report to or a connection string. It depends on the report type.

type: str

default: none

	–deployment <deployment> [ref]

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Report all tasks with defined deployment

type: str

rally task import

Import json results of a test into rally database

Command arguments:

	–file <path> [ref]

JSON file with task results

type: str

default: none

	–deployment <uuid> [ref]

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.

type: str

	–tag <tag> [ref]

Mark the task with a tag or a few tags.

type: str

default: none

rally task list

List tasks, started and finished.

Displayed tasks can be filtered by status or deployment. By
default ‘rally task list’ will display tasks from the active
deployment without filtering by status.

Command arguments:

	–deployment <uuid> [ref]

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.

type: str

	–all-deployments [ref]

List tasks from all deployments.

	–status <status> [ref]

List tasks with specified status. Available statuses: aborted, aborting, crashed, finished, init, paused, running, sla_failed, soft_aborting, validated, validating, validation_failed

type: str

default: none

	–tag <tag> [ref]

Tags to filter tasks by.

type: str

default: none

	–uuids-only [ref]

List task UUIDs only.

rally task report

Generate a report for the specified task(s).

Command arguments:

	–tasks [ref]

[deprecated since rally 0.10.0] use ‘–uuid’ instead.

default: none

	–out <path> [ref]

Report destination. Can be a path to a file (in case of HTML, HTML-STATIC, etc. types) to save the report to or a connection string.

type: str

default: none

	–open [ref]

Open the output in a browser.

	–html [ref]

	–html-static [ref]

	–json [ref]

	–junit [ref]

[deprecated since rally 0.10.0] use ‘rally task export –type junit-xml’ instead.

	–uuid <uuid> [ref]

UUIDs of tasks or json reports of tasks

type: str

default: none

	–deployment <deployment> [ref]

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Report all tasks with defined deployment

type: str

rally task results

Display raw task results.

This will produce a lot of output data about every iteration.

Command arguments:

	–uuid <uuid> [ref]

UUID of task.

type: str

rally task sla-check

Display SLA check results table.

Command arguments:

	–uuid <uuid> [ref]

UUID of task.

type: str

	–json [ref]

Output in JSON format.

rally task sla_check

DEPRECATED since Rally 0.8.0, use rally task sla-check instead.

Command arguments:

	–uuid <uuid> [ref]

UUID of task.

type: str

	–json [ref]

Output in JSON format.

rally task start

Run task.

If both task_args and task_args_file are specified, they are going to
be merged. task_args has a higher priority so it overrides
values from task_args_file.
There are 3 kinds of return codes, 0: no error, 1: running error,
2: sla check failed.

Command arguments:

	–deployment <uuid> [ref]

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.

type: str

	–task <path>, –filename <path> [ref]

Path to the input task file.

	–task-args <json> [ref]

Input task args (JSON dict). These args are used to render the Jinja2 template in the input task.

default: none

	–task-args-file <path> [ref]

Path to the file with input task args (dict in JSON/YAML). These args are used to render the Jinja2 template in the input task.

default: none

	–tag <tag> [ref]

Mark the task with a tag or a few tags.

type: str

default: none

	–no-use [ref]

Don’t set new task as default for future operations.

	–abort-on-sla-failure [ref]

Abort the execution of a task when any SLA check for it fails for subtask or workload.

rally task status

Display the current status of a task.

Command arguments:

	–uuid <uuid> [ref]

UUID of task

type: str

rally task trends

Generate workloads trends HTML report.

Command arguments:

	–out <path> [ref]

Path to output file.

type: str

	–open [ref]

Open the output in a browser.

	–tasks <tasks> [ref]

UUIDs of tasks, or JSON files with task results

rally task use

Set active task.

Command arguments:

	–uuid <uuid> [ref]

UUID of the task

type: str

	–task [ref]

[deprecated since rally 0.2.0] use ‘–uuid’ instead.

type: str

rally task validate

Validate a task configuration file.

This will check that task configuration file has valid syntax and
all required options of scenarios, contexts, SLA and runners are set.

If both task_args and task_args_file are specified, they will
be merged. task_args has a higher priority so it will override
values from task_args_file.

Command arguments:

	–deployment <uuid> [ref]

Note

The default value for the --deployment argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.

type: str

	–task <path>, –filename <path> [ref]

Path to the input task file.

	–task-args <json> [ref]

Input task args (JSON dict). These args are used to render the Jinja2 template in the input task.

default: none

	–task-args-file <path> [ref]

Path to the file with input task args (dict in JSON/YAML). These args are used to render the Jinja2 template in the input task.

default: none

Category: verify

Verify an OpenStack cloud via a verifier.

rally verify add-verifier-ext

Add a verifier extension.

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

default: none

	–source <source> [ref]

Path or URL to the repo to clone verifier extension from.

type: str

default: none

	–version <version> [ref]

Branch, tag or commit ID to checkout before installation of the verifier extension (the ‘master’ branch is used by default).

type: str

default: none

	–extra-settings <extra_settings> [ref]

Extra installation settings for verifier extension.

type: str

default: none

rally verify configure-verifier

Configure a verifier for a specific deployment.

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

default: none

	–deployment-id <id> [ref]

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

type: str

	–reconfigure [ref]

Reconfigure verifier.

	–extend <path/json/yaml> [ref]

Extend verifier configuration with extra options. If options are already present, the given ones will override them. Can be a path to a regular config file or just a json/yaml.

type: str

default: none

	–override <path> [ref]

Override verifier configuration by another one from a given source.

type: str

default: none

	–show [ref]

Show verifier configuration.

rally verify create-verifier

Create a verifier.

Command arguments:

	–name <name> [ref]

Verifier name (for example, ‘My verifier’).

type: str

	–type <type> [ref]

Verifier plugin name. HINT: You can list all verifier plugins, executing command rally verify list-plugins.

type: str

	–platform <platform> [ref]

Verifier plugin platform. Should be specified in case of two verifier plugins with equal names but in different platforms.

type: str

default:

	–namespace [ref]

[deprecated since rally 0.10.0] use ‘–platform’ instead.

default:

	–source <source> [ref]

Path or URL to the repo to clone verifier from.

type: str

default: none

	–version <version> [ref]

Branch, tag or commit ID to checkout before verifier installation (the ‘master’ branch is used by default).

type: str

default: none

	–system-wide [ref]

Use the system-wide environment for verifier instead of a virtual environment.

	–extra-settings <extra_settings> [ref]

Extra installation settings for verifier.

type: str

default: none

	–no-use [ref]

Not to set the created verifier as the default verifier for future operations.

rally verify delete

Delete a verification or a few verifications.

Command arguments:

	–uuid <uuid> [ref]

UUIDs of verifications. HINT: You can list all verifications, executing command rally verify list.

type: str

rally verify delete-verifier

Delete a verifier.

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

	–deployment-id <id> [ref]

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. If specified, only the deployment-specific data will be deleted for verifier. HINT: You can list all deployments, executing command rally deployment list.

type: str

	–force [ref]

Delete all stored verifications of the specified verifier. If a deployment specified, only verifications of this deployment will be deleted. Use this argument carefully! You can delete verifications that may be important to you.

rally verify delete-verifier-ext

Delete a verifier extension.

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

default: none

	–name <name> [ref]

Verifier extension name.

type: str

default: none

rally verify import

Import results of a test run into the Rally database.

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

default: none

	–deployment-id <id> [ref]

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

type: str

	–file <path> [ref]

File to import test results from.

type: str

default: none

	–run-args <run_args> [ref]

Arguments that might be used when running tests. For example, ‘{concurrency: 2, pattern: set=identity}’.

type: str

default: none

	–no-use [ref]

Not to set the created verification as the default verification for future operations.

rally verify list

List all verifications.

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

default: none

	–deployment-id <id> [ref]

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

type: str

	–tag <tag> [ref]

Tags to filter verifications by.

type: str

default: none

	–status <status> [ref]

Status to filter verifications by.

type: str

default: none

rally verify list-plugins

List all plugins for verifiers management.

Command arguments:

	–platform <platform> [ref]

Requried patform (e.g. openstack).

type: str

default: none

	–namespace [ref]

[deprecated since rally 0.10.0] use ‘–platform’ instead.

default: none

rally verify list-verifier-exts

List all verifier extensions.

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

default: none

rally verify list-verifier-tests

List all verifier tests.

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

default: none

	–pattern <pattern> [ref]

Pattern which will be used for matching. Can be a regexp or a verifier-specific entity (for example, in case of Tempest you can specify ‘set=smoke’).

type: str

default:

rally verify list-verifiers

List all verifiers.

Command arguments:

	–status <status> [ref]

Status to filter verifiers by.

type: str

default: none

rally verify report

Generate a report for a verification or a few verifications.

Command arguments:

	–uuid <uuid> [ref]

UUIDs of verifications. HINT: You can list all verifications, executing command rally verify list.

type: str

default: none

	–type <type> [ref]

Report type (Defaults to JSON). Out-of-the-box types: HTML, HTML-Static, JSON, JUnit-XML. HINT: You can list all types, executing rally plugin list –plugin-base VerificationReporter command.

type: str

default: none

	–to <dest> [ref]

Report destination. Can be a path to a file (in case of HTML, JSON, etc. types) to save the report to or a connection string. It depends on the report type.

type: str

default: none

	–open [ref]

Open the output file in a browser.

rally verify rerun

Rerun tests from a verification for a specific deployment.

Command arguments:

	–uuid <uuid> [ref]

Verification UUID. HINT: You can list all verifications, executing command rally verify list.

type: str

default: none

	–deployment-id <id> [ref]

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

type: str

	–failed [ref]

Rerun only failed tests.

	–tag <tag> [ref]

Mark verification with a tag or a few tags.

type: str

default: none

	–concurrency <N> [ref]

How many processes to be used for running verifier tests. The default value (0) auto-detects your CPU count.

type: int

default: none

	–detailed [ref]

Show verification details such as errors of failed tests.

	–no-use [ref]

Not to set the finished verification as the default verification for future operations.

rally verify show

Show detailed information about a verification.

Command arguments:

	–uuid <uuid> [ref]

Verification UUID. HINT: You can list all verifications, executing command rally verify list.

type: str

default: none

	–sort-by <query> [ref]

Sort tests by ‘name’, ‘duration’ or ‘status’.

type: str

default: name

	–detailed [ref]

Show verification details such as run arguments and errors of failed tests.

rally verify show-verifier

Show detailed information about a verifier.

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

default: none

rally verify start

Start a verification (run verifier tests).

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

default: none

	–deployment-id <id> [ref]

Note

The default value for the --deployment-id argument is taken from the Rally environment. Usually, the default value is equal to the UUID of the last successful run of rally deployment create, if the --no-use argument was not used.

Hint

You can set the default value by executing rally deployment use <uuid> (ref).

Deployment name or UUID. HINT: You can list all deployments, executing command rally deployment list.

type: str

	–tag <tag> [ref]

Mark verification with a tag or a few tags.

type: str

default: none

	–pattern <pattern> [ref]

Pattern which will be used for running tests. Can be a regexp or a verifier-specific entity (for example, in case of Tempest you can specify ‘set=smoke’).

type: str

default: none

	–concurrency <N> [ref]

How many processes to be used for running verifier tests. The default value (0) auto-detects your CPU count.

type: int

default: 0

	–load-list <path> [ref]

Path to a file with a list of tests to run.

type: str

default: none

	–skip-list <path> [ref]

Path to a file with a list of tests to skip. Format: json or yaml like a dictionary where keys are test names and values are reasons.

type: str

default: none

	–xfail-list <path> [ref]

Path to a file with a list of tests that will be considered as expected failures. Format: json or yaml like a dictionary where keys are test names and values are reasons.

type: str

default: none

	–detailed [ref]

Show verification details such as errors of failed tests.

	–no-use [ref]

Not to set the finished verification as the default verification for future operations.

rally verify update-verifier

Update a verifier.

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

default: none

	–update-venv [ref]

Update the virtual environment for verifier.

	–version <version> [ref]

Branch, tag or commit ID to checkout. HINT: Specify the same version to pull the latest repo code.

type: str

default: none

	–system-wide [ref]

Switch to using the system-wide environment.

	–no-system-wide [ref]

Switch to using the virtual environment. If the virtual environment doesn’t exist, it will be created.

rally verify use

Choose a verification to use for the future operations.

Command arguments:

	–uuid <uuid> [ref]

Verification UUID. HINT: You can list all verifications, executing command rally verify list.

type: str

rally verify use-verifier

Choose a verifier to use for the future operations.

Command arguments:

	–id <id> [ref]

Verifier name or UUID. HINT: You can list all verifiers, executing command rally verify list-verifiers.

type: str

Contribute to Rally

Where to begin

Please take a look our Roadmap [https://docs.google.com/a/mirantis.com/spreadsheets/d/16DXpfbqvlzMFaqaXAcJsBzzpowb_XpymaK2aFY2gA2g/edit#gid=0] to get information about our current work
directions.

In case you have questions or want to share your ideas, be sure to contact us
either at Rally-dev/Lobby [https://gitter.im/rally-dev/Lobby] channel on Gitter messenger (or, less
preferably, at the #openstack-rally IRC channel on irc.freenode.net).

If you are going to contribute to Rally, you will probably need to grasp a
better understanding of several main design concepts used throughout our
project (such as scenarios, contexts etc.). To do so, please
read this article.

How to contribute

1. You need a Launchpad [https://launchpad.net/] account and need to be joined to the
OpenStack team [https://launchpad.net/openstack]. You can also join the Rally team [https://launchpad.net/rally] if you want to. Make
sure Launchpad has your SSH key, Gerrit (the code review system) uses this.

2. Sign the CLA as outlined in the account setup [https://docs.openstack.org/infra/manual/developers.html#development-workflow] section of the developer
guide.

	Tell git your details:

git config --global user.name "Firstname Lastname"
git config --global user.email "your_email@youremail.com"

4. Install git-review. This tool takes a lot of the pain out of remembering
commands to push code up to Gerrit for review and to pull it back down to edit
it. It is installed using:

pip install git-review

Several Linux distributions (notably Fedora 16 and Ubuntu 12.04) are also
starting to include git-review in their repositories so it can also be
installed using the standard package manager.

	Grab the Rally repository:

git clone git@github.com:openstack/rally.git

	Checkout a new branch to hack on:

git checkout -b TOPIC-BRANCH

	Start coding

8. Run the test suite locally to make sure nothing broke, e.g. (this will run
py34/py27/pep8 tests):

tox

(NOTE: you should have installed tox<=1.6.1)

If you extend Rally with new functionality, make sure you have also provided
unit and/or functional tests for it.

	Commit your work using:

git commit -a

Make sure you have supplied your commit with a neat commit message, containing
a link to the corresponding blueprint / bug, if appropriate.

	Push the commit up for code review using:

git review -R

That is the awesome tool we installed earlier that does a lot of hard work for
you.

11. Watch your email or review site [https://review.openstack.org/], it will automatically send your code
for a battery of tests on our Jenkins setup [http://jenkins.openstack.org/] and the core team for the
project will review your code. If there are any changes that should be made
they will let you know.

	When all is good the review site will automatically merge your code.

(This tutorial is based on:
http://www.linuxjedi.co.uk/2012/03/real-way-to-start-hacking-on-openstack.html)

Testing

Please, don’t hesitate to write tests ;)

Unit tests

Files: /tests/unit/*

The goal of unit tests is to ensure that internal parts of the code work
properly. All internal methods should be fully covered by unit tests with a
reasonable mocks usage.

About Rally unit tests:

	All unit tests [http://en.wikipedia.org/wiki/Unit_testing] are located inside /tests/unit/*

	Tests are written on top of: testtools and mock libs

	Tox [https://tox.readthedocs.org/en/latest/] is used to run unit tests

To run unit tests locally:

$ pip install tox
$ tox

To run py34, py27 or pep8 only:

$ tox -e <name>

#NOTE: <name> is one of py34, py27 or pep8

To run a single unit test e.g. test_deployment

$ tox -e <name> -- <test_name>

#NOTE: <name> is one of py34, py27 or pep8
<test_name> is the unit test case name, e.g tests.unit.test_osclients

To debug issues on the unit test:

	Add breakpoints on the test file using import pdb; pdb.set_trace()

	Then run tox in debug mode:

$ tox -e debug <test_name>
#NOTE: use python 2.7
#NOTE: <test_name> is the unit test case name

or

$ tox -e debug34 <test_name>
#NOTE: use python 3.4
#NOTE: <test_name> is the unit test case name

To get test coverage:

$ tox -e cover

#NOTE: Results will be in /cover/index.html

To generate docs:

$ tox -e docs

#NOTE: Documentation will be in doc/source/_build/html/index.html

Functional tests

Files: /tests/functional/*

The goal of functional tests [https://en.wikipedia.org/wiki/Functional_testing] is to check that everything works well
together. Functional tests use Rally API only and check responses without
touching internal parts.

To run functional tests locally:

$ source openrc
$ rally deployment create --fromenv --name testing
$ tox -e cli

#NOTE: openrc file with OpenStack admin credentials

Output of every Rally execution will be collected under some reports root in
directory structure like: reports_root/ClassName/MethodName_suffix.extension
This functionality implemented in tests.functional.utils.Rally.__call__ method.
Use ‘gen_report_path’ method of ‘Rally’ class to get automatically generated
file path and name if you need. You can use it to publish html reports,
generated during tests. Reports root can be passed throw environment variable
‘REPORTS_ROOT’. Default is ‘rally-cli-output-files’.

Rally CI scripts

Files: /tests/ci/*

This directory contains scripts and files related to the Rally CI system.

Rally Style Commandments

Files: /tests/hacking/

This module contains Rally specific hacking rules for checking commandments.

For more information about Style Commandments, read the
OpenStack Style Commandments manual [https://docs.openstack.org/hacking/latest/].

Request New Features

To request a new feature, you should create a document similar to other feature
requests and then contribute it to the doc/feature_request directory of the
Rally repository (see the How-to-contribute tutorial).

If you don’t have time to contribute your feature request via Gerrit, please
contact Boris Pavlovic (boris@pavlovic.me)

Active feature requests:

	Capture Logs from services

	Check queue perfdata

	Ability to compare results between task

	Distributed load generation

	Explicitly specify existing users for scenarios

	Historical performance data

	Enhancements to installation script: --version and --uninstall

	Installation script: --pypi-mirror, --package-mirror and --venv-mirror

	Launch Specific SubTask

	Using multi scenarios to generate load

	Multiple attach volume

	Add support of persistence task environment

	Production read cleanups

Index

 B
 | C
 | E
 | G
 | I
 | L
 | M
 | O
 | R
 | U
 | V

B

 	
 	base_ref (rally.verification.reporter.VerificationReporter attribute)

C

 	
 	configure() (rally.verification.manager.VerifierManager method)

E

 	
 	extend_configuration() (rally.verification.manager.VerifierManager method)

G

 	
 	generate() (rally.verification.reporter.VerificationReporter method)

 	
 	get_configuration() (rally.verification.manager.VerifierManager method)

I

 	
 	install() (rally.verification.manager.VerifierManager method)

 	
 	install_extension() (rally.verification.manager.VerifierManager method)

 	is_configured() (rally.verification.manager.VerifierManager method)

L

 	
 	list_extensions() (rally.verification.manager.VerifierManager method)

 	
 	list_tests() (rally.verification.manager.VerifierManager method)

M

 	
 	make() (rally.verification.reporter.VerificationReporter static method)

O

 	
 	override_configuration() (rally.verification.manager.VerifierManager method)

R

 	
 	run() (rally.verification.manager.VerifierManager method)

U

 	
 	uninstall() (rally.verification.manager.VerifierManager method)

 	
 	uninstall_extension() (rally.verification.manager.VerifierManager method)

V

 	
 	validate() (rally.verification.reporter.VerificationReporter class method)

 	validate_args() (rally.verification.manager.VerifierManager method)

 	
 	VerificationReporter (class in rally.verification.reporter)

 	VerifierManager (class in rally.verification.manager)

 _images/Rally_Architecture.png
Rally as a APP Rally Core

Rally CLI

entry point of python app

Magic that verifies,
benchmarks & deploys
OpenStack

Rally as a Service
local

(in single
roces;
Rally CLI P)
Rally Manager
ocal orchestrator
Jonal Manager
RPC API
Rally Rally DB.API
python lib AMQP sqlalchemy
HTe RPC API
oslo
messaging
REST API oS
pecan [—AMQP mysq/ postgres / sqlite

_images/Rally_QA.png
Going
to benchmark Openstack

Openstack cloud required
at scale?

Do you have
one?

You have zillon
servers

Your company
has a big cloud

You are very
rich!

No——»{

Deploy Openstack
on them

Create a lot of VMs.

Buy a bunch of (virtual) servers

Create alot of LXC containers on
hardware that you have

Yes:

_images/Rally-Plugins.png
Tasks
Plugins

<

Scenario Plugin Base
rally.task.scenario.Scenario

Context Plugin Base
rally.task.context.Context

Runner Plugin Base
rally.task.runner.Runner

SLA Plugin Base
rally.task.sla.SLA

OSclients plugin base
rally.osclients.OSClient

Task Processing Chart Plugin Base
rally.task.processing.charts.Chart

Deployment Plugin Base
rally.deployment.engine Engine

ServerProvider Plugin Base
rally.deployment.provider.ProviderFactory

Plugin Base

rally.common.plugin.plugin.Plugin

Deployment
Plugins

_images/Rally-UseCases.png
Rally for Devs & QA:

Not clear where is issue?
Just run another benchmark
or change load level

L A

" Process & Make
Deploy Simulate real
Rally OpenStack user load aggregate OpenStack
results better
Deploy new OpenStack with:
1) another configuration
2) code that fix performance issue
3) different third party components.
(mysql or psql, rabbit or qpid)
Rally for DevOps:
With admin access
/(crea(e temp usevs)\
Process & Ensure that
Use existing Simulate real
Rally cloud user load aggregate OpenStack
results pass SLA
without admin access /
use set of existing users
Rally CI/CD:

Improve
OpenStack

Deploy OpenStack on continuously

specific hardware and
configuration with

Run specific set Store historical
of benchmarks performance data

latest version of your
tool and code

Track
OpenStack
Quality

_images/Rally_who_is_using.png
CAN@NICAL

FLexTRONICS D]

MIRANTIS

O redhat

\W/

HUAWEI

YaHoO!

.|||.|||.
CISCO.

nte

V/ symantec

_images/Report-Abort-on-SLA-task-1.png

_images/Rally_VM_list.png
Duration (seconds)

4.56,

@Stacked OStream O Expanded Onova.boot_server novalist_servers

100
Iteration (order number of method's call)

_images/Rally_snapshot_vm.png
Duration (seconds)

@Stacked OStream O Expanded @novaboot_server nova.create_image
nova.delete_server " nova.boot_server
@ nova.delete_server () nova.delete_image

20 40 60 80 100
Iteration (order number of method's call)

_images/Hook-Per-Hook-Report.png
Task overview

Input file

v Dummy

Dummy.dummy (10.073s)

Overview | Hooks | Input task

[- JETe

Plugin Description

sye_cal Fun seript
Agoregated Per hook run
Weraon:2 fteralion: 5 fleraon:8 feration: 13 teration: 17

Staus Triggered by startod at

success eraton: 2 20161208 110113

Lines chart from Hook

Random data generated by rally-jobs/extra/hook_example_script.sh

Yeaxs label

2000

Pie chart from Hook

Yet another data generated by rally-jobs/extraihook_example_script.sh

™ s
m" Y

Finished at

20161208 110113

®Fc0 0Bar @Spam G uiz

@OCat O Tger @uaguar ©Paniner @Lnx

_images/Hook-Results.png
Task overview

Input fle

v Dummy.

Dummy.dummy (1.620s)

Overview | Hooks | Input task

Plugin Description

sys_call Hook dema.

Per hook run
Horation: 3 fteraion: &

Status. Tiggered by surtedat

suceass ferston: 3 2161213 105408

System call

Args: Ibin/echo foo
RetCode: 0

Staout: o0

‘StdEr: (empty)

Finished at

2161213 105408

_images/Amqp_rpc_single_reply_queue.png
Time to boot & destroy in seconds

200 times Start and Delete VM, with different

amqp_rpe_single_reply_queue values

16

Concurrent users

30

M tum off
M tum on

_images/Hook-Aggregated-Report.png
Task overview

Input fle

v Dummy.

Dummy.dummy (10.073s)

Overvw | Hooks | nputask
[JEEE

Pugn omcrpon
ot et

Agoregated Per hook run

Statistics table from Hook

Action Min (ssc) Median (sec) 0%ie sec) sie (sec)
Aica " P 122 1630
o " 2 210 208
caral = 190 1978 204

StackedArea chart from Hook
This is generated by rally-jobs/extralhook_example_script.sh

440000
00000,

Max (sec)

20

Mgl coumt
7 s
Y s
w7 s

@Apna 0B @Gamma

_images/Rally-Actions.png
Major Rally actions

Deploy
(or use existing)
OpenStack cloud

e

Verification,
results

Verify
(run tempest)

i

N S

Profiing
data from
Benchmark Ceilometer
(generate real
user load)
| senchmark
— resuits

Generate report
based on results
of verification,
benchmarks &
profilng info

Get verification
&
" benchmark results

S

Major Rally actions

