

 Navigation

 	
 index

 	QuickCheck.jl development documentation

QuickCheck.jl — Specification-Based Randomized Testing

This package is a Julia implementation of QuickCheck [http://www.cse.chalmers.se/~rjmh/QuickCheck/] by Koen Claessen and John Hughes. QuickCheck is a technique for testing software by specifying properties of a function, then randomly searching for inputs for which the property fails to hold.

Example

Let’s look at a property of zip. Zipping two iterables should produce a new iterable whose length is the same as the length of the shorter of the two iterables:

julia> using QuickCheck

julia> property((x::Vector{Int}, y::Vector{Int}) -> length(zip(x,y)) == min(length(x), length(y)))
OK, passed 100 tests.

QuickCheck supplied 100 random pairs of arguments to this function, all of which met the specification. What happens when the function does not meet the specification?:

julia> property((x::Vector{Int}, y::Vector{Int}) -> length(zip(x,y)) == max(length(x), length(y)))
ERROR: Falsifiable, after 1 tests:
{[2, 1], [2]}

QuickCheck not only points out that the specification is not met, but provides the test inputs that failed.

Methods

	
property(prop[, typs][, ntests])

	Test the property prop, with argument types typs, running ntests tests. If prop is an anonymous function with typed arguments, and those types are defined in Base, the types can be inferred, otherwise, typs should be a Vector{Type}. By default, QuickCheck will run 100 tests.

	
condproperty(prop[, typs], ntests, maxtests, argconds...)

	Test the property prop, with argument types typs, attempting to run ntests tests (but no more than maxtests tests), with arguments subject to the predicates argconds.... This can be used to discard test cases where the property is not expected to hold. For instance, the following test will have random failures due to division by zero:

julia> property((x::Int, y::Int)->(x/y)>=floor(x/y))
OK, passed 100 tests.

julia> property((x::Int, y::Int)->(x/y)>=floor(x/y))
ERROR: Falsifiable, after 1 tests:
{0, 0}

That probem can be solved by adding a condition that requires y to be nonzero:

julia> condproperty((x::Int, y::Int)->(x/y)>=floor(x/y), 100, 1000, (x,y) -> y!=0)
OK, passed 100 tests.

	
quantproperty(prop[, typs], ntests, arggens...)

	Test the property prop, with argument tpyes typs, running ntests tests, and using the argument generators arggens. Each argument generator must be a function in a single positive integer which returns an item of the appropriate type which has “size” of the integer. This integer is used to scale the tests. This is a more efficient and flexible approach than conditional properties, but is sometimes harder to express:

julia> quantproperty((x::Int, y::Int)->(x/y)>=floor(x/y), 100, (size)->QuickCheck.generator(Int,size), (size)->randbool() ? rand(1:size) : rand(-size:1))
OK, passed 100 tests.

Generators

QuickCheck specifies properties for most of Julia’s built in numeric types and strings, as well as arrays and composite types that are composed of those types. However, you might need to extend the specifications to new types for which a generator does not exist and cannot be automatically constructed, or for which the default generator might provide poor coverage. To do this, import QuickCheck.generator and extend the generator method, which takes a type and a “size” argument (a positive integer) and should return a new instance of that type scaled appropriately by the size. As a contrived example, consider the type:

type A
 b::Int
end

We can create a custom generator as follows:

import QuickCheck.generator
generator(::Type{A}, size) = A(rand(10000:(10000*size)))

Then we can test a property using the new type:

julia> property((x)->x.b > sqrt(x.b), [A])
OK, passed 100 tests.

 Copyright 2013, Patrick O'Leary.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	QuickCheck.jl development documentation

Index

 C
 | P
 | Q

C

 	

 	condproperty() (built-in function)

P

 	

 	property() (built-in function)

Q

 	

 	quantproperty() (built-in function)

 Copyright 2013, Patrick O'Leary.
 Created using Sphinx 1.2.

 search.html

 Navigation

 		
 index

 		QuickCheck.jl development documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Patrick O'Leary.
 Created using Sphinx 1.2.

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/comment-close.png

_static/minus.png

_static/down-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment.png

_static/up.png

_static/down.png

