

 Navigation

 	
 index

 	python4imprs 0.1 documentation

IMPRS Python Tutorial

Note

Please bring your laptop to the workshop!

The purpose of this tutorial is to get you started with Python and learn about
Packages you can use for your research.

Useful links

	Optional: Emergency Installation

	Running Python code

	Numpy [http://www.numpy.org]

	Scipy [http://www.scipy.org]

	Matplotlib [http://www.matplotlib.org]

	Astropy [http://www.astropy.org]

	More about the IPython notebook [http://ipython.org/notebook.html]

Notebooks

	Numbers, Strings, and Lists [http://mpia.de/~robitaille/python4imprs/notebooks/01.%20Numbers,%20String,%20and%20Lists.html]

	Control Flow [http://mpia.de/~robitaille/python4imprs/notebooks/02.%20Control%20Flow.html]

	Functions and Modules [http://mpia.de/~robitaille/python4imprs/notebooks/03.%20Functions%20and%20Modules.html]

	Introduction to Numpy [http://mpia.de/~robitaille/python4imprs/notebooks/04.%20Introduction%20to%20Numpy.html]

	Introduction to Matplotlib [http://mpia.de/~robitaille/python4imprs/notebooks/05.%20Introduction%20to%20Matplotlib.html]

	Exercise Sheet 1 [http://mpia.de/~robitaille/python4imprs/notebooks/Exercise%20Sheet%201.html]

Getting help

	astropy mailing list [http://mail.scipy.org/mailman/listinfo/astropy] (not just Astropy-related question, any astronomy & python questions)

	stackoverflow [http://stackoverflow.com] - use tag #astropy

	IRC [http://webchat.freenode.net/?channels=astropy]

	Twitter [https://twitter.com/astropy]

	Private feedback

 Copyright 2013, Thomas P. Robitaille.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	python4imprs 0.1 documentation

Index

 Copyright 2013, Thomas P. Robitaille.
 Created using Sphinx 1.1.3.

 _static/plus.png

_static/down.png

_static/comment.png

running.html

 Navigation

 		
 index

 		python4imprs 0.1 documentation »

Running Python code

Interactively

To run Python code interactively, you can use the standard Python prompt, which
can be launched by typing python in your standard shell:

$ python
Python 2.7.2 (default, Nov 5 2011, 20:09:20)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> indicates that Python is ready to accept commands. If you type a
= 1 then press enter, this will assign the value 1 to a. If you then
type a you will see the value of a (this is equivalent to print a):

>>> a = 1
>>> a
1

The Python shell can execute any Python code, even multi-line statements,
though it is often more convenient to use Python non-interactively for such
cases.

The default Python shell is limited, and in practice, you will want instead to
use the IPython (or interactive Python) shell. This is an add-on package that
adds many features to the default Python shell, including the ability to edit
and navigate the history of previous commands, as well as the ability to
tab-complete variable and function names. To start up IPython, type:

$ ipython
Python 2.7.2 (default, Nov 5 2011, 20:09:20)
Type "copyright", "credits" or "license" for more information.

IPython 0.11 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]:

The first time you start up IPython, it will display a message which you can
skip over by pressing ENTER. The >>> symbols are now replaced by In
[x], and output, when present, is prepended with Out [x]. If we now type
the same commands as before, we get:

In [1]: a = 1

In [2]: a
Out[2]: 1

If you now type the up arrow twice, you will get back to a = 1.

Running scripts

While the interactive Python mode is very useful to exploring and trying out
code, you will eventually want to write a script to record and reproduce what
you did, or to do things that are too complex to type in interactively
(defining functions, classes, etc.). To write a Python script, just use your
favorite code editor to put the code in a file with a .py extension. For
example, we can create a file called test.py containing:

a = 1
print a

We can then run the script on the command-line with:

$ python test.py
1

Note: The print statement is necessary, because typing a on its own
will only print out the value in interactive mode. In scripts, the printing has
to be explicitly requested with the print command. To print multiple variables,
just separate them with a comma after the print command:

print a, 1.5, "spam"

Combining interactive and non-interactive use

It can sometimes be useful to run a script to set things up, and to continue in
interactive mode. This can be done using the %run IPython command to run
the script, which then gets executed. The IPython session then has access to
the last state of the variables from the script:

$ ipython
Python 2.7.2 (default, Nov 5 2011, 20:09:20)
Type "copyright", "credits" or "license" for more information.

IPython 0.11 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]: %run test.py
1

In [2]: a + 1
Out[2]: 2

 © Copyright 2013, Thomas P. Robitaille.
 Created using Sphinx 1.1.3.

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

emergency_install.html

 Navigation

 		
 index

 		python4imprs 0.1 documentation »

Optional: Emergency Installation

If you already have a Scientific Python distribution, but not Astropy and APLpy, just do:

pip install astropy
pip install aplpy

If you have not previously installed a Scientific Python distribution, use the
following instructions for an EMERGENCY scientific Python install :-)

		Go to the Anaconda Downloads [http://continuum.io/anacondace.html] page.

		Download the file for your platform

		On Linux or Mac, do:

bash <downloaded_file>

and answer the questions with the default by just pressing <enter>. At
the end of the install, you will get a message like:

export PATH=/Users/tom/anaconda/bin:$PATH

Follow these instructions, rehash or open a new terminal, and then test that
if you type python, you get a prompt similar to:

Python 2.7.3 |AnacondaCE 1.3.1 (x86_64)| (default, Jan 10 2013, 12:10:41)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

with AnacondaCE in the first line.

On Windows, double click the .exe file to install.

		Install Astropy with:

conda install astropy
pip install aplpy

 © Copyright 2013, Thomas P. Robitaille.
 Created using Sphinx 1.1.3.

_static/file.png

search.html

 Navigation

 		
 index

 		python4imprs 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Thomas P. Robitaille.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

