

Welcome to python-twitter’s documentation!

A Python wrapper around the Twitter API.

Author: The Python-Twitter Developers <python-twitter@googlegroups.com>

Contents:

	Installation & Testing

	Getting Started

	Contributing

	Migration from v2 to v3

	Changelog

	Rate Limiting

	Models

	Searching

	Using with Django

	Modules Documentation

Introduction

This library provides a pure Python interface for the Twitter API [https://dev.twitter.com/]. It works with Python 2.7+ and Python 3.

Twitter [http://twitter.com] provides a service that allows people to connect via the web, IM, and SMS. Twitter exposes a web services API [http://dev.twitter.com/doc] and this library is intended to make it even easier for Python programmers to use.

Indices and tables

	Index

	Module Index

	Search Page

Installation & Testing

Installation

From PyPI

$ pip install python-twitter

From source

Install the dependencies:

	Requests [http://docs.python-requests.org/en/latest/]

	Requests OAuthlib [https://requests-oauthlib.readthedocs.io/en/latest/]

Alternatively use pip:

$ pip install -r requirements.txt

Download the latest python-twitter library from: https://github.com/bear/python-twitter/

Extract the source distribution and run:

$ python setup.py build
$ python setup.py install

Testing

The following requires pip install pytest and pip install pytest-cov. Run:

$ make test

If you would like to see coverage information:

$ make coverage

Getting the code

The code is hosted at Github [https://github.com/bear/python-twitter].

Check out the latest development version anonymously with:

$ git clone git://github.com/bear/python-twitter.git
$ cd python-twitter

Getting Started

Getting your application tokens

This section is subject to changes made by Twitter and may not always be completely up-to-date. If you see something change on their end, please create a new issue on Github [https://github.com/bear/python-twitter/issues/new] or submit a pull request to update it.

In order to use the python-twitter API client, you first need to acquire a set of application tokens. These will be your consumer_key and consumer_secret, which get passed to twitter.Api() when starting your application.

Create your app

The first step in doing so is to create a Twitter App [https://apps.twitter.com/]. Click the “Create New App” button and fill out the fields on the next page.

[image: _images/python-twitter-app-creation-part1.png]
If there are any problems with the information on that page, Twitter will complain and you can fix it. (Make sure to get the name correct - it is unclear if you can change this later.) On the next screen, you’ll see the application that you created and some information about it:

Your app

Once your app is created, you’ll be directed to a new page showing you some information about it.

[image: _images/python-twitter-app-creation-part2.png]

Your Keys

Click on the “Keys and Access Tokens” tab on the top there, just under the green notification in the image above.

[image: _images/python-twitter-app-creation-part3.png]
At this point, you can test out your application using the keys under “Your Application Tokens”. The twitter.Api() object can be created as follows:

import twitter
api = twitter.Api(consumer_key=[consumer key],
 consumer_secret=[consumer secret],
 access_token_key=[access token],
 access_token_secret=[access token secret])

Note: Make sure to enclose your keys in quotes (ie, api = twitter.Api(consumer_key=‘1234567’, …) and so on) or you will receive a NameError.

If you are creating an application for end users/consumers, then you will want them to authorize you application, but that is outside the scope of this document.

And that should be it! If you need a little more help, check out the examples on Github [https://github.com/bear/python-twitter/tree/master/examples]. If you have an open source application using python-twitter, send us a link and we’ll add a link to it here.

Contributing

Getting the code

The code is hosted at Github [https://github.com/bear/python-twitter].

Check out the latest development version anonymously with:

$ git clone git://github.com/bear/python-twitter.git
$ cd python-twitter

The following sections assuming that you have pyenv [https://github.com/yyuu/pyenv] installed and working on your computer.

To install dependencies, run:

$ make dev

This will install all of the required packages for the core library, testing,
and installation.

Testing

Once you have your development environment set up, you can run:

$ make test

to ensure that all tests are currently passing before starting work. You can
also check test coverage by running:

$ make coverage

Pull requests are welcome or, if you are having trouble, please open an issue on
GitHub.

Migration from v2 to v3

Changes to Existing Methods

twitter.api.Api()

	shortner parameter has been removed. Please see Issue
#298 [https://github.com/bear/python-twitter/issues/298].

twitter.api.Api.CreateFavorite()

	kwarg param has been changed to status_id from id to be consistent
with other method calls and avoid shadowing builtin function id.

twitter.api.Api.DestroyFavorite()

	kwarg param has been changed to status_id from id to be consistent
with other method calls and avoid shadowing builtin function id.

twitter.api.Api.DestroyBlock()

	Kwarg id has been changed to user_id in order to avoid shadowing
a builtin and be more descriptive.

twitter.api.Api.DestroyStatus()

	kwarg id has been changed to status_id in keeping with the rest of
the Api and to avoid shadowing a builtin.

twitter.api.Api.GetBlocks()

	Method no longer accepts parameters user_id or screen_name as these are not honored by Twitter. The data returned will be for the authenticated user only.

	Parameter cursor is no longer accepted – this method will return all users being blocked by the currently authenticated user. If you need paging, please use twitter.api.Api.GetBlocksPaged() instead.

twitter.api.Api.GetFollowers()

	Method no longer honors a count or cursor parameter. These have been deprecated in favor of making this method explicitly a convenience function to return a list of every twitter.User who is following the specified or authenticated user. A warning will be raised if count or cursor is passed with the expectation that breaking behavior will be introduced in a later version.

	Method now takes an optional parameter of total_count, which limits the number of users to return. If this is not set, the data returned will be all users following the specified user.

	The kwarg include_user_entities now defaults to True. This was set to False previously, but would not be included in query parameters sent to Twitter. Without the query parameter in the URL, Twitter would default to returning user_entities, so this change makes this behavior explicit.

twitter.api.Api.GetFollowersPaged()

	The third value of the tuple returned by this method is now a list of twitter.User objects in accordance with its doc string rather than the raw data from API.

	The kwarg include_user_entities now defaults to True. This was set to False previously, but would not be included in query parameters sent to Twitter. Without the query parameter in the URL, Twitter would default to returning user_entities, so this change makes this behavior explicit and consistent with the previously ambiguous behavior.

twitter.api.Api.GetFriends()

	Method no longer honors a count or cursor parameter. These have been deprecated in favor of making this method explicitly a convenience function to return a list of every twitter.User who is followed by the specified or authenticated user. A warning will be raised if count or cursor is passed with the expectation that breaking behavior will be introduced in a later version.

	Method now takes an optional parameter of total_count, which limits the number of users to return. If this is not set, the data returned will be all users followed by the specified user.

	The kwarg include_user_entities now defaults to True. This was set to False previously, but would not be included in query parameters sent to Twitter. Without the query parameter in the URL, Twitter would default to returning user_entities, so this change makes this behavior explicit.

twitter.api.Api.GetFriendsPaged()

	The third value of the tuple returned by this method is now a list of twitter.User objects in accordance with its doc string rather than the raw data from API.

	The kwarg include_user_entities now defaults to True. This was set to False previously, but would not be included in query parameters sent to Twitter. Without the query parameter in the URL, Twitter would default to returning user_entities, so this change makes this behavior explicit.

twitter.api.Api.GetListMembers()

	No longer accepts cursor parameter. If you require granular control over the paging of the twitter.list.List members, please user twitter.api.Api.GetListMembersPaged instead.

twitter.api.Api.GetStatus()

	Kwarg id has been changed to status_id in keeping with the rest of
the Api and to avoid shadowing a builtin.

twitter.api.Api.GetStatusOembed()

	Kwarg id has been changed to status_id in keeping with the rest of
the Api and to avoid shadowing a builtin.

twitter.api.Api.GetSearch()

	Adds raw_query method. See Raw Queries for more information.

twitter.api.Api.GetTrendsWoeid()

	Kwarg id has been changed to woeid in order to avoid shadowing
a builtin and be more descriptive.

twitter.api.Api.GetUserStream()

	Parameter ‘stall_warning’ is now ‘stall_warnings’ in line with GetStreamFilter and Twitter’s naming convention. This should now actually return stall warnings, whereas it did not have any effect previously.

twitter.api.Api.LookupFriendship()

	Method will now accept a list for either user_id or screen_name. The list can contain either ints, strings, or twitter.user.User objects for either user_id or screen_name.

	Return value is a list of twitter.user.UserStatus objects.

twitter.api.Api.PostUpdate()

	Now accepts three new parameters: media, media_additional_owners, and media_category. media can be a URL, a local file, or a file-like object (something with a read() method), or a list of any combination of the above.

	media_additional_owners should be a list of user ids representing Twitter users that should be able to use the uploaded media in their tweets. If you pass a list of media, then additional owners will apply to each object. If you need more granular control, please use the UploadMedia* methods.

	media_category: Only for use with the AdsAPI. See https://dev.twitter.com/ads/creative/promoted-video-overview if this applies to your application.

twitter.api.Api.PostRetweet()

	Kwarg original_id has been changed to status_id in order to avoid shadowing
a builtin and be more descriptive.

Deprecation

twitter.api.Api.PostMedia()

	This endpoint is deprecated by Twitter. Python-twitter will throw a warning about using the method and advise you to use PostUpdate() instead. There is no schedule for when this will be removed from Twitter.

twitter.api.Api.PostMultipleMedia()

	This method should be replaced by passing a list of media objects (either URLs, local files, or file-like objects) to PostUpdate. You are limited to a maximum of 4 media files per tweet.

New Methods

twitter.api.Api.GetBlocksIDs()

	Returns all the users currently blocked by the authenticated user as user IDs. The user IDs will be integers.

twitter.api.Api.GetBlocksIDsPaged()

	Returns one page, specified by the cursor parameter, of the users currently blocked by the authenticated user as user IDs.

twitter.api.Api.GetBlocksPaged()

	Allows you to page through the currently authenticated user’s blocked users. Method returns three values: the next cursor, the previous cursor, and a list of twitter.User instances representing the blocked users.

twitter.api.Api.GetListMembersPaged()

	Allows you to page through a the members of a given twitter.list.List.

	cursor parameter operates as with other methods, denoting the page of members that you wish to retrieve.

	Returns next_cursor, previous_cursor, and a list containing the users that are members of the given twitter.list.List.

twitter.api.Api.GetListsPaged()

	Much like twitter.api.Api.GetFriendsPaged() and similar methods, this allows you to retrieve an arbitrary page of twitter.list.List for either the currently authenticated user or a user specified by user_id or screen_name.

	cursor should be -1 for the first page.

	Returns the next_cursor, previous_cursor, and a list of twitter.list.List instances.

twitter.api.Api.UploadMediaChunked()

	API method allows chunked upload to upload.twitter.com. Similar to Api.PostMedia(), this method can take either a local filename (str), a URL (str), or a file-like object. The image or video type will be determined by mimetypes (see twitter.twitter_utils.parse_media_file() for details).

	Optionally, you can specify a chunk_size for uploads when instantiating the Api object. This should be given in bytes. The default is 1MB (that is, 1048576 bytes). Any chunk_size given below 16KB will result in a warning: Twitter will return an error if you try to upload more than 999 chunks of data; for example, if you are uploading a 15MB video, then a chunk_size lower than 15729 bytes will result in 1000 APPEND commands being sent to the API, so you’ll get an error. 16KB seems like a reasonable lower bound, but if your use case is well-defined, then python-twitter will not enforce this behavior.

	Another thing to take into consideration: if you’re working in a RAM-constrained environment, a very large chunk_size will increase your RAM usage when uploading media through this endpoint.

	The return value will be the media_id of the uploaded file.

twitter.api.Api.UploadMediaSimple()

	Provides the ability to upload a single media file to Twitter without using the ChunkedUpload endpoint. This method should be used on smaller files and reduces the roundtrips from Twitter from three (for UploadMediaChunked) to one.

	Return value is the media_id of the uploaded file.

Changelog

Version 3.4.2

Bugfixes:

	Allow upload of GIFs with size up to 15mb. See #538 [https://github.com/bear/python-twitter/pull/538]

Version 3.4.1

Bugfixes:

	Fix an issue where twitter.twitter_utils.calc_expected_status_length() was failing for python 2 due to a failure to convert a bytes string to unicode. Github issue #546 [https://github.com/bear/python-twitter/issues/546].

	Documentation fix for twitter.api.Api.UsersLookup(). UsersLookup can take a string or a list and properly parses both of them now. Github issues #535 [https://github.com/bear/python-twitter/issues/535] and #549 [https://github.com/bear/python-twitter/issues/549].

	Properly decode response content for twitter.twitter_utils.http_to_file(). Github issue #521 [https://github.com/bear/python-twitter/issues/521].

	Fix an issue with loading extended_tweet entities from Streaming API where tweets would be truncated when converting to a twitter.models.Status. Github issues #491 [https://github.com/bear/python-twitter/issues/491] and #506 [https://github.com/bear/python-twitter/issues/506].

Version 3.4

Deprecations

	twitter.api.Api.UpdateBackgroundImage(). Please make sure that your code does not call this function as it will now return a hard error. There is no replacement function. This was deprecated by Twitter around July 2015.

	twitter.api.Api.PostMedia() has been removed. Please use twitter.api.Api.PostUpdate() instead.

	twitter.api.Api.PostMultipleMedia(). Please use twitter.api.Api.PostUpdate() instead.

Version 3.3.1

	Adds support for 280 character limit.

Version 3.3

	Adds application only authentication. See Twitter’s documentation for details [https://dev.twitter.com/oauth/application-only]. To use application only authentication, pass application_only_auth when creating the Api; the bearer token will be automatically retrieved.

	Adds function twitter.api.GetAppOnlyAuthToken()

	Adds filter_level keyword argument for twitter.api.GetStreamFilter(), twitter.api.GetUserStream()

	Adds proxies keyword argument for creating an Api instance. Pass a dictionary of proxies for the request to pass through, if not specified allows requests lib to use environmental variables for proxy if any.

	Adds support for quoted_status to the twitter.models.Status model.

Version 3.2.1

	twitter.twitter_utils.calc_expected_status_length() should now function properly. Previously, URLs would be counted incorrectly. See PR #416 [https://github.com/bear/python-twitter/pull/416]

	twitter.api.Api.PostUpdates() now passes any keyword arguments on the edge case that only one tweet was actually being posted.

Version 3.2

Deprecations

Nothing is being deprecationed this version, however here’s what’s being deprecated as of v. 3.3.0:

	twitter.api.Api.UpdateBackgroundImage(). Please make sure that your code does not call this function as it will be returning a hard error. There is no replace function. This was deprecated by Twitter around July 2015.

	twitter.api.Api.PostMedia() will be removed. Please use twitter.api.Api.PostUpdate() instead.

	twitter.api.Api.PostMultipleMedia(). Please use twitter.api.Api.PostUpdate() instead.

	twitter.api.GetFriends() will no longer accept a cursor or count parameter. Please use twitter.api.GetFriendsPaged() instead.

	twitter.api.GetFollowers() will no longer accept a cursor or count parameter. Please use twitter.api.GetFollowersPaged() instead.

What’s New

	We’ve added new deprecation warnings, so it’s easier to track when things go away. All of python-twitter’s deprecation warnings will be a subclass of twitter.error.PythonTwitterDeprecationWarning and will have a version number associated with them such as twitter.error.PythonTwitterDeprecationWarning330.

	twitter.models.User now contains a following attribute, which describes whether the authenticated user is following the User. PR #351 [https://github.com/bear/python-twitter/pull/351]

	twitter.models.DirectMessage contains a full twitter.models.User object for both the DirectMessage.sender and DirectMessage.recipient properties. PR #384 [https://github.com/bear/python-twitter/pull/384].

	You can now upload Quicktime movies (*.mov). PR #372 [https://github.com/bear/python-twitter/pull/372].

	If you have a whitelisted app, you can now get the authenticated user’s email address through a call to twitter.api.Api.VerifyCredentials(). If your app isn’t whitelisted, no error is returned. PR #376 [https://github.com/bear/python-twitter/pull/376].

	Google App Engine support has been reintegrated into the library. Check out PR #383 [https://github.com/bear/python-twitter/pull/383].

	video_info is now available on a twitter.models.Media object, which allows access to video urls/bitrates/etc. in the extended_entities node of a tweet.

What’s Changed

	twitter.models.Trend’s volume attribute has been renamed tweet_volume in line with Twitter’s naming convention. This change should allow users to access the number of tweets being tweeted for a given Trend. PR #375 [https://github.com/bear/python-twitter/pull/375]

	twitter.ratelimit.RateLimit should behave better now and adds a 1-second padding to requests after sleeping.

	twitter.ratelimit.RateLimit now keeps track of your rate limit status even if you don’t have sleep_on_rate_limit set to True when instatiating the API. If you want to add different behavior on hitting a rate limit, you should be able to now by querying the rate limit object. See PR #370 [https://github.com/bear/python-twitter/pull/370] for the technical details of the change. There should be no difference in behavior for the defaults, but let us know.

Bugfixes

	twitter.models.Media again contains a sizes attribute, which was missed back in the Version 3.0 release. PR #360 [https://github.com/bear/python-twitter/pull/360]

	The previously bloated twitter.api.Api.UploadMediaChunked() function has been broken out into three related functions and fixes two an incompatibility with python 2.7. Behavior remains the same, but this should simplify matters. PR #347 [https://github.com/bear/python-twitter/pull/347]

	Fix for twitter.api.Api.PostUpdate() where a passing an integer to the media parameter would cause an iteration error to occur. PR #347 [https://github.com/bear/python-twitter/pull/347]

	Fix for 401 errors that were occuring in the Streaming Endpoints. PR #364 [https://github.com/bear/python-twitter/pull/364]

Version 3.1

What’s New

	twitter.api.Api.PostMediaMetadata() Method allows the posting of alt text (hover text) to a photo on Twitter. Note that it appears that you have to call this method prior to attaching the photo to a status.

	A couple new methods have been added related to showing the connections between two users:

	twitter.api.Api.ShowFriendship() shows the connection between two users (i.e., are they following each other?)

	twitter.api.Api.IncomingFriendship() shows all of the authenticated user’s pending follower requests (if the user has set their account to private).

	twitter.api.Api.OutgoingFriendship() shows the authenticated user’s request to follow other users (i.e. the user has attempted to follow a private account).

	Several methods were added related to muting users:

	twitter.api.Api.GetMutes() returns all users the currently authenticated user is muting (as twitter.models.User objects).

	twitter.api.Api.GetMutesPaged() returns a page of twitter.models.User objects.

	twitter.api.Api.GetMutesIDs() returns all of the users the currently authenticated user is muting as integers.

	twitter.api.Api.GetMutesIDsPaged() returns a single page of the users the currently authenticated user is muting as integers.

What’s Changed

	twitter.api.Api.GetStatus() Now accepts the keyword argument include_ext_alt_text which will request alt text to be included with the Status object being returned (if available). Defaults to True.

	[model].__repr__() functions have been revised for better Unicode compatibility. If you notice any weirdness, please let us know.

	twitter.api.Api() no longer accepts the shortner parameter; however, see examples/shorten_url.py for an example of how to use a URL shortener with the API.

	twitter.api.Api._Encode() and twitter.api.Api._EncodePostData() have both been refactored out of the API.

	twitter.models.Media now has an attribute ext_alt_text for alt (hover) text for images posted to Twitter.

	twitter.models.Status no longer has the properties relative_created_at, now, or Now. If you require a relative time, we suggest using a third-party library.

	Updated examples, specifically examples/twitter-to-xhtml.py, examples/view_friends.py, examples/shorten_url.py

	Updated get_access_token.py script to be python3 compatible.

	twitter.api.Api.GetStreamFilter() now accepts an optional languages parameter as a list.

Rate Limiting

Overview

Twitter imposes rate limiting based either on user tokens or application
tokens. Please see: API Rate Limits [https://dev.twitter.com/rest/public/rate-limiting] for a more detailed
explanation of Twitter’s policies. What follows will be a summary of how Python-Twitter attempts to
deal with rate limits and how you should expect those limits to be respected
(or not).

Python-Twitter tries to abstract away the details of Twitter’s rate limiting by
allowing you to globally respect those limits or ignore them. If you wish to
have the application sleep when it hits a rate limit, you should instantiate
the API with sleep_on_rate_limit=True like so:

import twitter
api = twitter.Api(consumer_key=[consumer key],
 consumer_secret=[consumer secret],
 access_token_key=[access token],
 access_token_secret=[access token secret],
 sleep_on_rate_limit=True)

By default, python-twitter will raise a hard error for rate limits

Effectively, when the API determines that the next call to an endpoint will
result in a rate limit error being thrown by Twitter, it will sleep until you
are able to safely make that call. For most API methods, the headers in the
response from Twitter will contain the following information:

x-rate-limit-limit: The number of times you can request the given
endpoint within a certain number of minutes (otherwise known as a window).

x-rate-limit-remaining: The number of times you have left for a given endpoint within a window.

x-rate-limit-reset: The number of seconds left until the window resets.

For most endpoints, this is 15 requests per 15 minutes. So if you have set the
global sleep_on_rate_limit to True, the process looks something like this:

api.GetListMembersPaged()
GET /list/{id}/members.json?cursor=-1
GET /list/{id}/members.json?cursor=2
GET /list/{id}/members.json?cursor=3
GET /list/{id}/members.json?cursor=4
GET /list/{id}/members.json?cursor=5
GET /list/{id}/members.json?cursor=6
GET /list/{id}/members.json?cursor=7
GET /list/{id}/members.json?cursor=8
GET /list/{id}/members.json?cursor=9
GET /list/{id}/members.json?cursor=10
GET /list/{id}/members.json?cursor=11
GET /list/{id}/members.json?cursor=12
GET /list/{id}/members.json?cursor=13
GET /list/{id}/members.json?cursor=14

This last GET request returns a response where x-rate-limit-remaining
is equal to 0, so the API sleeps for 15 minutes

GET /list/{id}/members.json?cursor=15

... etc ...

If you would rather not have your API instance sleep when hitting, then do not
pass sleep_on_rate_limit=True to your API instance. This will cause the API
to raise a hard error when attempting to make call #15 above.

Technical

The twitter/ratelimit.py file contains the code that handles storing and
checking rate limits for endpoints. Since Twitter does not send any information
regarding the endpoint that you are requesting with the x-rate-limit-*
headers, the endpoint is determined by some regex using the URL.

The twitter.Api instance contains an Api.rate_limit object that you can inspect
to see the current limits for any URL and exposes a number of methods for
querying and setting rate limits on a per-resource (i.e., endpoint) basis. See
twitter.ratelimit.RateLimit() for more information.

Models

Python-twitter provides the following models of the objects returned by the Twitter API:

	twitter.models.Category

	twitter.models.DirectMessage

	twitter.models.Hashtag

	twitter.models.List

	twitter.models.Media

	twitter.models.Status

	twitter.models.Trend

	twitter.models.Url

	twitter.models.User

	twitter.models.UserStatus

Searching

Raw Queries

To the Api.GetSearch() method, you can pass the parameter raw_query, which should be the query string you wish to use for the search omitting the leading “?”. This will override every other parameter. Twitter’s search parameters are quite complex, so if you have a need for a very particular search, you can find Twitter’s documentation at https://dev.twitter.com/rest/public/search.

For example, if you want to search for only tweets containing the word “twitter”, then you could do the following:

results = api.GetSearch(
 raw_query="q=twitter%20&result_type=recent&since=2014-07-19&count=100")

If you want to build a search query and you’re not quite sure how it should look all put together, you can use Twitter’s Advanced Search tool: https://twitter.com/search-advanced, and then use the part of search URL after the “?” to use for the Api, removing the &src=typd portion.

Using with Django

Additional template tags that expand tweet urls and urlize tweet text. See the django template tags available for use with python-twitter: https://github.com/radzhome/python-twitter-django-tags

Modules Documentation

API

A library that provides a Python interface to the Twitter API

	
class twitter.api.Api(consumer_key=None, consumer_secret=None, access_token_key=None, access_token_secret=None, application_only_auth=False, input_encoding=None, request_headers=None, cache=<object object>, base_url=None, stream_url=None, upload_url=None, chunk_size=1048576, use_gzip_compression=False, debugHTTP=False, timeout=None, sleep_on_rate_limit=False, tweet_mode='compat', proxies=None)

	Bases: object

A python interface into the Twitter API

By default, the Api caches results for 1 minute.

Example usage:

To create an instance of the twitter.Api class, with no authentication:

>>> import twitter
>>> api = twitter.Api()

To fetch a single user’s public status messages, where “user” is either
a Twitter “short name” or their user id.

>>> statuses = api.GetUserTimeline(user)
>>> print([s.text for s in statuses])

To use authentication, instantiate the twitter.Api class with a
consumer key and secret; and the oAuth key and secret:

>>> api = twitter.Api(consumer_key='twitter consumer key',
 consumer_secret='twitter consumer secret',
 access_token_key='the_key_given',
 access_token_secret='the_key_secret')

To fetch your friends (after being authenticated):

>>> users = api.GetFriends()
>>> print([u.name for u in users])

To post a twitter status message (after being authenticated):

>>> status = api.PostUpdate('I love python-twitter!')
>>> print(status.text)
I love python-twitter!

There are many other methods, including:

>>> api.PostUpdates(status)
>>> api.PostDirectMessage(user, text)
>>> api.GetUser(user)
>>> api.GetReplies()
>>> api.GetUserTimeline(user)
>>> api.GetHomeTimeline()
>>> api.GetStatus(status_id)
>>> api.GetStatuses(status_ids)
>>> api.DestroyStatus(status_id)
>>> api.GetFriends(user)
>>> api.GetFollowers()
>>> api.GetFeatured()
>>> api.GetDirectMessages()
>>> api.GetSentDirectMessages()
>>> api.PostDirectMessage(user, text)
>>> api.DestroyDirectMessage(message_id)
>>> api.DestroyFriendship(user)
>>> api.CreateFriendship(user)
>>> api.LookupFriendship(user)
>>> api.VerifyCredentials()

	
CheckRateLimit(url)

	Checks a URL to see the rate limit status for that endpoint.

	Parameters

	url (str) – URL to check against the current rate limits.

	Returns

	EndpointRateLimit namedtuple.

	Return type

	namedtuple

	
ClearCredentials()

	Clear any credentials for this instance

	
CreateBlock(user_id=None, screen_name=None, include_entities=True, skip_status=False)

	Blocks the user specified by either user_id or screen_name.

	Parameters

	
	user_id (int, optional) – The numerical ID of the user to block.

	screen_name (str, optional) – The screen name of the user to block.

	include_entities (bool, optional) – The entities node will not be included if set to False.

	skip_status (bool, optional) – When set to False, the blocked User’s statuses will not be included
with the returned User object.

	Returns

	A twitter.User instance representing the blocked user.

	
CreateFavorite(status=None, status_id=None, include_entities=True)

	Favorites the specified status object or id as the authenticating user.

Returns the favorite status when successful.

	Parameters

	
	status_id (int, optional) – The id of the twitter status to mark as a favorite.

	status (twitter.Status, optional) – The twitter.Status object to mark as a favorite.

	include_entities (bool, optional) – The entities node will be omitted when set to False.

	Returns

	A twitter.Status instance representing the newly-marked favorite.

	
CreateFriendship(user_id=None, screen_name=None, follow=True, retweets=True, **kwargs)

	Befriends the user specified by the user_id or screen_name.

	Parameters

	
	user_id (int, optional) – A user_id to follow

	screen_name (str, optional) – A screen_name to follow

	follow (bool, optional) – Set to False to disable notifications for the target user

	retweets (bool, optional) – Enable or disable retweets from the target user.

	Returns

	A twitter.User instance representing the befriended user.

	
CreateList(name, mode=None, description=None)

	Creates a new list with the give name for the authenticated user.

	Parameters

	
	name (str) – New name for the list

	mode (str, optional) – ‘public’ or ‘private’. Defaults to ‘public’.

	description (str, optional) – Description of the list.

	Returns

	A twitter.List instance representing the new list

	Return type

	twitter.list.List

	
CreateListsMember(list_id=None, slug=None, user_id=None, screen_name=None, owner_screen_name=None, owner_id=None)

	Add a new member (or list of members) to the specified list.

	Parameters

	
	list_id (int, optional) – The numerical id of the list.

	slug (str, optional) – You can identify a list by its slug instead of its numerical id.
If you decide to do so, note that you’ll also have to specify the
list owner using the owner_id or owner_screen_name parameters.

	user_id (int, optional) – The user_id or a list of user_id’s to add to the list.
If not given, then screen_name is required.

	screen_name (str, optional) – The screen_name or a list of screen_name’s to add to the list.
If not given, then user_id is required.

	owner_screen_name (str, optional) – The screen_name of the user who owns the list being requested by
a slug.

	owner_id (int, optional) – The user ID of the user who owns the list being requested by
a slug.

	Returns

	A twitter.List instance representing the list
subscribed to.

	Return type

	twitter.list.List

	
CreateMute(user_id=None, screen_name=None, include_entities=True, skip_status=False)

	Mutes the user specified by either user_id or screen_name.

	Parameters

	
	user_id (int, optional) – The numerical ID of the user to mute.

	screen_name (str, optional) – The screen name of the user to mute.

	include_entities (bool, optional) – The entities node will not be included if set to False.

	skip_status (bool, optional) – When set to False, the muted User’s statuses will not be included
with the returned User object.

	Returns

	A twitter.User instance representing the muted user.

	
CreateSubscription(owner_screen_name=None, owner_id=None, list_id=None, slug=None)

	Creates a subscription to a list by the authenticated user.

	Parameters

	
	owner_screen_name (str, optional) – The screen_name of the user who owns the list being requested
by a slug.

	owner_id (int, optional) – The user ID of the user who owns the list being requested
by a slug.

	list_id (int, optional) – The numerical id of the list.

	slug (str, optional) – You can identify a list by its slug instead of its numerical id.
If you decide to do so, note that you’ll also have to specify
the list owner using the owner_id or owner_screen_name parameters.

	Returns

	A twitter.User instance representing the user subscribed

	Return type

	twitter.user.User

	
DEFAULT_CACHE_TIMEOUT = 60

	

	
DestroyBlock(user_id=None, screen_name=None, include_entities=True, skip_status=False)

	Unlocks the user specified by either user_id or screen_name.

	Parameters

	
	user_id (int, optional) – The numerical ID of the user to block.

	screen_name (str, optional) – The screen name of the user to block.

	include_entities (bool, optional) – The entities node will not be included if set to False.

	skip_status (bool, optional) – When set to False, the blocked User’s statuses will not be included
with the returned User object.

	Returns

	A twitter.User instance representing the blocked user.

	
DestroyDirectMessage(message_id, include_entities=True, return_json=False)

	Destroys the direct message specified in the required ID parameter.

The twitter.Api instance must be authenticated, and the
authenticating user must be the recipient of the specified direct
message.

	Parameters

	
	message_id – The id of the direct message to be destroyed

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A twitter.DirectMessage instance representing the message destroyed

	
DestroyFavorite(status=None, status_id=None, include_entities=True)

	Un-Favorites the specified status object or id as the authenticating user.

Returns the un-favorited status when successful.

	Parameters

	
	status_id (int, optional) – The id of the twitter status to mark as a favorite.

	status (twitter.Status, optional) – The twitter.Status object to mark as a favorite.

	include_entities (bool, optional) – The entities node will be omitted when set to False.

	Returns

	A twitter.Status instance representing the newly-unmarked favorite.

	
DestroyFriendship(user_id=None, screen_name=None)

	Discontinues friendship with a user_id or screen_name.

	Parameters

	
	user_id – A user_id to unfollow [Optional]

	screen_name – A screen_name to unfollow [Optional]

	Returns

	A twitter.User instance representing the discontinued friend.

	
DestroyList(owner_screen_name=None, owner_id=None, list_id=None, slug=None)

	Destroys the list identified by list_id or slug and one of
owner_screen_name or owner_id.

	Parameters

	
	owner_screen_name (str, optional) – The screen_name of the user who owns the list being requested
by a slug.

	owner_id (int, optional) – The user ID of the user who owns the list being requested
by a slug.

	list_id (int, optional) – The numerical id of the list.

	slug (str, optional) – You can identify a list by its slug instead of its numerical id.
If you decide to do so, note that you’ll also have to specify
the list owner using the owner_id or owner_screen_name parameters.

	Returns

	A twitter.List instance representing the
removed list.

	Return type

	twitter.list.List

	
DestroyListsMember(list_id=None, slug=None, owner_screen_name=None, owner_id=None, user_id=None, screen_name=None)

	Destroys the subscription to a list for the authenticated user.

	Parameters

	
	list_id (int, optional) – The numerical id of the list.

	slug (str, optional) – You can identify a list by its slug instead of its numerical id.
If you decide to do so, note that you’ll also have to specify
the list owner using the owner_id or owner_screen_name parameters.

	owner_screen_name (str, optional) – The screen_name of the user who owns the list being requested by a
slug.

	owner_id (int, optional) – The user ID of the user who owns the list being requested by a slug.

	user_id (int, optional) – The user_id or a list of user_id’s to remove from the list.
If not given, then screen_name is required.

	screen_name (str, optional) – The screen_name or a list of Screen_name’s to remove from the list.
If not given, then user_id is required.

	Returns

	A twitter.List instance representing the
removed list.

	Return type

	twitter.list.List

	
DestroyMute(user_id=None, screen_name=None, include_entities=True, skip_status=False)

	Unlocks the user specified by either user_id or screen_name.

	Parameters

	
	user_id (int, optional) – The numerical ID of the user to mute.

	screen_name (str, optional) – The screen name of the user to mute.

	include_entities (bool, optional) – The entities node will not be included if set to False.

	skip_status (bool, optional) – When set to False, the muted User’s statuses will not be included
with the returned User object.

	Returns

	A twitter.User instance representing the muted user.

	
DestroyStatus(status_id, trim_user=False)

	Destroys the status specified by the required ID parameter.

The authenticating user must be the author of the specified
status.

	Parameters

	
	status_id (int) – The numerical ID of the status you’re trying to destroy.

	trim_user (bool, optional) – When set to True, each tweet returned in a timeline will include
a user object including only the status authors numerical ID.

	Returns

	A twitter.Status instance representing the destroyed status message

	
DestroySubscription(owner_screen_name=None, owner_id=None, list_id=None, slug=None)

	Destroys the subscription to a list for the authenticated user.

	Parameters

	
	owner_screen_name (str, optional) – The screen_name of the user who owns the list being requested
by a slug.

	owner_id (int, optional) – The user ID of the user who owns the list being requested
by a slug.

	list_id (int, optional) – The numerical id of the list.

	slug (str, optional) – You can identify a list by its slug instead of its numerical id.
If you decide to do so, note that you’ll also have to specify the
list owner using the owner_id or owner_screen_name parameters.

	Returns

	A twitter.List instance representing
the removed list.

	Return type

	twitter.list.List

	
static GetAppOnlyAuthToken(consumer_key, consumer_secret)

	Generate a Bearer Token from consumer_key and consumer_secret

	
GetBlocks(skip_status=False, include_entities=False)

	Fetch the sequence of all users (as twitter.User instances),
blocked by the currently authenticated user.

	Parameters

	
	skip_status (bool, optional) – If True the statuses will not be returned in the user items.

	include_entities (bool, optional) – When True, the user entities will be included.

	Returns

	A list of twitter.User instances, one for each blocked user.

	
GetBlocksIDs(stringify_ids=False)

	Fetch the sequence of all user IDs blocked by the
currently authenticated user.

	Parameters

	stringify_ids (bool, optional) – If True user IDs will be returned as strings rather than integers.

	Returns

	A list of user IDs for all blocked users.

	
GetBlocksIDsPaged(cursor=-1, stringify_ids=False)

	Fetch a page of the user IDs blocked by the currently
authenticated user.

	Parameters

	
	cursor (int, optional) – Should be set to -1 if you want the first page, thereafter denotes
the page of blocked users that you want to return.

	stringify_ids (bool, optional) – If True user IDs will be returned as strings rather than integers.

	Returns

	next_cursor, previous_cursor, list of user IDs of blocked users.

	
GetBlocksPaged(cursor=-1, skip_status=False, include_entities=False)

	Fetch a page of the users (as twitter.User instances)
blocked by the currently authenticated user.

	Parameters

	
	cursor (int, optional) – Should be set to -1 if you want the first page, thereafter denotes
the page of blocked users that you want to return.

	skip_status (bool, optional) – If True the statuses will not be returned in the user items.

	include_entities (bool, optional) – When True, the user entities will be included.

	Returns

	next_cursor, previous_cursor, list of twitter.User instances,
one for each blocked user.

	
GetDirectMessages(since_id=None, max_id=None, count=None, include_entities=True, skip_status=False, full_text=False, page=None, return_json=False)

	Returns a list of the direct messages sent to the authenticating user.

	Parameters

	
	since_id – Returns results with an ID greater than (that is, more recent
than) the specified ID. There are limits to the number of
Tweets which can be accessed through the API. If the limit of
Tweets has occurred since the since_id, the since_id will be
forced to the oldest ID available. [Optional]

	max_id – Returns results with an ID less than (that is, older than) or
equal to the specified ID. [Optional]

	count – Specifies the number of direct messages to try and retrieve, up to a
maximum of 200. The value of count is best thought of as a limit to the
number of Tweets to return because suspended or deleted content is
removed after the count has been applied. [Optional]

	include_entities – The entities node will be omitted when set to False.
[Optional]

	skip_status – When set to True statuses will not be included in the returned user
objects. [Optional]

	full_text – When set to True full message will be included in the returned message
object if message length is bigger than CHARACTER_LIMIT characters. [Optional]

	page – If you want more than 200 messages, you can use this and get 20 messages
each time. You must recall it and increment the page value until it
return nothing. You can’t use count option with it. First value is 1 and
not 0.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A sequence of twitter.DirectMessage instances

	
GetFavorites(user_id=None, screen_name=None, count=None, since_id=None, max_id=None, include_entities=True, return_json=False)

	Return a list of Status objects representing favorited tweets.

Returns up to 200 most recent tweets for the authenticated user.

	Parameters

	
	user_id (int, optional) – Specifies the ID of the user for whom to return the
favorites. Helpful for disambiguating when a valid user ID
is also a valid screen name.

	screen_name (str, optional) – Specifies the screen name of the user for whom to return the
favorites. Helpful for disambiguating when a valid screen
name is also a user ID.

	since_id (int, optional) – Returns results with an ID greater than (that is, more recent
than) the specified ID. There are limits to the number of
Tweets which can be accessed through the API. If the limit of
Tweets has occurred since the since_id, the since_id will be
forced to the oldest ID available.

	max_id (int, optional) – Returns only statuses with an ID less than (that is, older
than) or equal to the specified ID.

	count (int, optional) – Specifies the number of statuses to retrieve. May not be
greater than 200.

	include_entities (bool, optional) – The entities node will be omitted when set to False.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A sequence of Status instances, one for each favorited tweet up to count

	
GetFollowerIDs(user_id=None, screen_name=None, cursor=None, stringify_ids=False, count=None, total_count=None)

	Returns a list of twitter user id’s for every person
that is following the specified user.

	Parameters

	
	user_id – The id of the user to retrieve the id list for. [Optional]

	screen_name – The screen_name of the user to retrieve the id list for. [Optional]

	cursor – Specifies the Twitter API Cursor location to start at.
Note: there are pagination limits. [Optional]

	stringify_ids – if True then twitter will return the ids as strings instead of
integers. [Optional]

	count – The number of user id’s to retrieve per API request. Please be aware
that this might get you rate-limited if set to a small number.
By default Twitter will retrieve 5000 UIDs per call. [Optional]

	total_count – The total amount of UIDs to retrieve. Good if the account has many
followers and you don’t want to get rate limited. The data returned
might contain more UIDs if total_count is not a multiple of count
(5000 by default). [Optional]

	Returns

	A list of integers, one for each user id.

	
GetFollowerIDsPaged(user_id=None, screen_name=None, cursor=-1, stringify_ids=False, count=5000)

	Make a cursor driven call to return a list of one page followers.

The caller is responsible for handling the cursor value and looping
to gather all of the data

	Parameters

	
	user_id – The twitter id of the user whose followers you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	screen_name – The twitter name of the user whose followers you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	cursor – Should be set to -1 for the initial call and then is used to
control what result page Twitter returns.

	stringify_ids – if True then twitter will return the ids as strings instead of
integers. [Optional]

	count – The number of user id’s to retrieve per API request. Please be aware
that this might get you rate-limited if set to a small number.
By default Twitter will retrieve 5000 UIDs per call. [Optional]

	Returns

	next_cursor, previous_cursor, data sequence of user ids,
one for each follower

	
GetFollowers(user_id=None, screen_name=None, cursor=None, count=None, total_count=None, skip_status=False, include_user_entities=True)

	Fetch the sequence of twitter.User instances, one for each follower.

If both user_id and screen_name are specified, this call will return
the followers of the user specified by screen_name, however this
behavior is undocumented by Twitter and may change without warning.

	Parameters

	
	user_id – The twitter id of the user whose followers you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	screen_name – The twitter name of the user whose followers you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	cursor – Should be set to -1 for the initial call and then is used to
control what result page Twitter returns.

	count – The number of users to return per page, up to a maximum of 200.
Defaults to 200. [Optional]

	total_count – The upper bound of number of users to return, defaults to None.

	skip_status – If True the statuses will not be returned in the user items. [Optional]

	include_user_entities – When True, the user entities will be included. [Optional]

	Returns

	A sequence of twitter.User instances, one for each follower

	
GetFollowersPaged(user_id=None, screen_name=None, cursor=-1, count=200, skip_status=False, include_user_entities=True)

	Make a cursor driven call to return the list of all followers

	Parameters

	
	user_id – The twitter id of the user whose followers you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	screen_name – The twitter name of the user whose followers you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	cursor – Should be set to -1 for the initial call and then is used to
control what result page Twitter returns.

	count – The number of users to return per page, up to a maximum of 200.
Defaults to 200. [Optional]

	skip_status – If True the statuses will not be returned in the user items.
[Optional]

	include_user_entities – When True, the user entities will be included. [Optional]

	Returns

	next_cursor, previous_cursor, data sequence of twitter.User
instances, one for each follower

	
GetFriendIDs(user_id=None, screen_name=None, cursor=None, count=None, stringify_ids=False, total_count=None)

	Fetch a sequence of user ids, one for each friend.
Returns a list of all the given user’s friends’ IDs. If no user_id or
screen_name is given, the friends will be those of the authenticated
user.

	Parameters

	
	user_id – The id of the user to retrieve the id list for. [Optional]

	screen_name – The screen_name of the user to retrieve the id list for. [Optional]

	cursor – Specifies the Twitter API Cursor location to start at.
Note: there are pagination limits. [Optional]

	stringify_ids – if True then twitter will return the ids as strings instead of integers.
[Optional]

	count – The number of user id’s to retrieve per API request. Please be aware that
this might get you rate-limited if set to a small number.
By default Twitter will retrieve 5000 UIDs per call. [Optional]

	total_count – The total amount of UIDs to retrieve. Good if the account has many followers
and you don’t want to get rate limited. The data returned might contain more
UIDs if total_count is not a multiple of count (5000 by default). [Optional]

	Returns

	A list of integers, one for each user id.

	
GetFriendIDsPaged(user_id=None, screen_name=None, cursor=-1, stringify_ids=False, count=5000)

	Make a cursor driven call to return the list of all friends

The caller is responsible for handling the cursor value and looping
to gather all of the data

	Parameters

	
	user_id – The twitter id of the user whose friends you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	screen_name – The twitter name of the user whose friends you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	cursor – Should be set to -1 for the initial call and then is used to
control what result page Twitter returns.

	stringify_ids – if True then twitter will return the ids as strings instead of
integers. [Optional]

	count – The number of user id’s to retrieve per API request. Please be aware
that this might get you rate-limited if set to a small number.
By default Twitter will retrieve 5000 UIDs per call. [Optional]

	Returns

	next_cursor, previous_cursor, data sequence of twitter.User instances,
one for each friend

	
GetFriends(user_id=None, screen_name=None, cursor=None, count=None, total_count=None, skip_status=False, include_user_entities=True)

	Fetch the sequence of twitter.User instances, one for each friend.

If both user_id and screen_name are specified, this call will return
the followers of the user specified by screen_name, however this
behavior is undocumented by Twitter and may change without warning.

	Parameters

	
	user_id – The twitter id of the user whose friends you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	screen_name – The twitter name of the user whose friends you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	cursor – Should be set to -1 for the initial call and then is used to
control what result page Twitter returns.

	count – The number of users to return per page, up to a maximum of 200.
Defaults to 200. [Optional]

	total_count – The upper bound of number of users to return, defaults to None.

	skip_status – If True the statuses will not be returned in the user items.
[Optional]

	include_user_entities – When True, the user entities will be included. [Optional]

	Returns

	A sequence of twitter.User instances, one for each friend

	
GetFriendsPaged(user_id=None, screen_name=None, cursor=-1, count=200, skip_status=False, include_user_entities=True)

	Make a cursor driven call to return the list of all friends.

	Parameters

	
	user_id – The twitter id of the user whose friends you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	screen_name – The twitter name of the user whose friends you are fetching.
If not specified, defaults to the authenticated user. [Optional]

	cursor – Should be set to -1 for the initial call and then is used to
control what result page Twitter returns.

	count – The number of users to return per page, up to a current maximum of
200. Defaults to 200. [Optional]

	skip_status – If True the statuses will not be returned in the user items.
[Optional]

	include_user_entities – When True, the user entities will be included. [Optional]

	Returns

	next_cursor, previous_cursor, data sequence of twitter.User
instances, one for each follower

	
GetHelpConfiguration()

	Get basic help configuration details from Twitter.

	Parameters

	None –

	Returns

	Sets self._config and returns dict of help config values.

	Return type

	dict

	
GetHomeTimeline(count=None, since_id=None, max_id=None, trim_user=False, exclude_replies=False, contributor_details=False, include_entities=True)

	Fetch a collection of the most recent Tweets and retweets posted
by the authenticating user and the users they follow.

The home timeline is central to how most users interact with Twitter.

	Parameters

	
	count – Specifies the number of statuses to retrieve. May not be
greater than 200. Defaults to 20. [Optional]

	since_id – Returns results with an ID greater than (that is, more recent
than) the specified ID. There are limits to the number of
Tweets which can be accessed through the API. If the limit of
Tweets has occurred since the since_id, the since_id will be
forced to the oldest ID available. [Optional]

	max_id – Returns results with an ID less than (that is, older than) or
equal to the specified ID. [Optional]

	trim_user – When True, each tweet returned in a timeline will include a user
object including only the status authors numerical ID. Omit this
parameter to receive the complete user object. [Optional]

	exclude_replies – This parameter will prevent replies from appearing in the
returned timeline. Using exclude_replies with the count
parameter will mean you will receive up-to count tweets -
this is because the count parameter retrieves that many
tweets before filtering out retweets and replies. [Optional]

	contributor_details – This parameter enhances the contributors element of the
status response to include the screen_name of the contributor.
By default only the user_id of the contributor is included. [Optional]

	include_entities – The entities node will be disincluded when set to false.
This node offers a variety of metadata about the tweet in a
discreet structure, including: user_mentions, urls, and
hashtags. [Optional]

	Returns

	A sequence of twitter.Status instances, one for each message

	
GetListMembers(list_id=None, slug=None, owner_id=None, owner_screen_name=None, skip_status=False, include_entities=False)

	Fetch the sequence of twitter.User instances, one for each member
of the given list_id or slug.

	Parameters

	
	list_id (int, optional) – Specifies the ID of the list to retrieve.

	slug (str, optional) – The slug name for the list to retrieve. If you specify None for the
list_id, then you have to provide either a owner_screen_name or
owner_id.

	owner_id (int, optional) – Specifies the ID of the user for whom to return the
list timeline. Helpful for disambiguating when a valid user ID
is also a valid screen name.

	owner_screen_name (str, optional) – Specifies the screen name of the user for whom to return the
user_timeline. Helpful for disambiguating when a valid screen
name is also a user ID.

	skip_status (bool, optional) – If True the statuses will not be returned in the user items.

	include_entities (bool, optional) – If False, the timeline will not contain additional metadata.
Defaults to True.

	Returns

	A sequence of twitter.user.User instances, one for each
member of the twitter.list.List.

	Return type

	list

	
GetListMembersPaged(list_id=None, slug=None, owner_id=None, owner_screen_name=None, cursor=-1, count=100, skip_status=False, include_entities=True)

	Fetch the sequence of twitter.User instances, one for each member
of the given list_id or slug.

	Parameters

	
	list_id (int, optional) – Specifies the ID of the list to retrieve.

	slug (str, optional) – The slug name for the list to retrieve. If you specify None for the
list_id, then you have to provide either a owner_screen_name or
owner_id.

	owner_id (int, optional) – Specifies the ID of the user for whom to return the
list timeline. Helpful for disambiguating when a valid user ID
is also a valid screen name.

	owner_screen_name (str, optional) – Specifies the screen name of the user for whom to return the
user_timeline. Helpful for disambiguating when a valid screen
name is also a user ID.

	cursor (int, optional) – Should be set to -1 for the initial call and then is used to
control what result page Twitter returns.

	skip_status (bool, optional) – If True the statuses will not be returned in the user items.

	include_entities (bool, optional) – If False, the timeline will not contain additional metadata.
Defaults to True.

	Returns

	A sequence of twitter.user.User instances, one for each
member of the twitter.list.List.

	Return type

	list

	
GetListTimeline(list_id=None, slug=None, owner_id=None, owner_screen_name=None, since_id=None, max_id=None, count=None, include_rts=True, include_entities=True, return_json=False)

	Fetch the sequence of Status messages for a given List ID.

	Parameters

	
	list_id (int, optional) – Specifies the ID of the list to retrieve.

	slug (str, optional) – The slug name for the list to retrieve. If you specify None for the
list_id, then you have to provide either a owner_screen_name or
owner_id.

	owner_id (int, optional) – Specifies the ID of the user for whom to return the
list timeline. Helpful for disambiguating when a valid user ID
is also a valid screen name.

	owner_screen_name (str, optional) – Specifies the screen name of the user for whom to return the
user_timeline. Helpful for disambiguating when a valid screen
name is also a user ID.

	since_id (int, optional) – Returns results with an ID greater than (that is, more recent than)
the specified ID. There are limits to the number of Tweets which
can be accessed through the API.
If the limit of Tweets has occurred since the since_id, the
since_id will be forced to the oldest ID available.

	max_id (int, optional) – Returns only statuses with an ID less than (that is, older than) or
equal to the specified ID.

	count (int, optional) – Specifies the number of statuses to retrieve.
May not be greater than 200.

	include_rts (bool, optional) – If True, the timeline will contain native retweets (if they exist)
in addition to the standard stream of tweets.

	include_entities (bool, optional) – If False, the timeline will not contain additional metadata.
Defaults to True.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A list of twitter.status.Status instances, one for each
message up to count.

	Return type

	list

	
GetLists(user_id=None, screen_name=None)

	Fetch the sequence of lists for a user. If no user_id or screen_name
is passed, the data returned will be for the authenticated user.

	Parameters

	
	user_id – The ID of the user for whom to return results for. [Optional]

	screen_name – The screen name of the user for whom to return results
for. [Optional]

	count – The amount of results to return per page.
No more than 1000 results will ever be returned in a single page.
Defaults to 20. [Optional]

	cursor – The “page” value that Twitter will use to start building the list
sequence from. Use the value of -1 to start at the beginning.
Twitter will return in the result the values for next_cursor and
previous_cursor. [Optional]

	Returns

	A sequence of twitter.List instances, one for each list

	
GetListsList(screen_name=None, user_id=None, reverse=False, return_json=False)

	Returns all lists the user subscribes to, including their own.
If no user_id or screen_name is specified, the data returned will be
for the authenticated user.

	Parameters

	
	screen_name (str, optional) – Specifies the screen name of the user for whom to return the
user_timeline. Helpful for disambiguating when a valid screen
name is also a user ID.

	user_id (int, optional) – Specifies the ID of the user for whom to return the
user_timeline. Helpful for disambiguating when a valid user ID
is also a valid screen name.

	reverse (bool, optional) – If False, the owned lists will be returned first, othewise
subscribed lists will be at the top. Returns a maximum of 100
entries regardless. Defaults to False.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A sequence of twitter.List instances.

	Return type

	list

	
GetListsPaged(user_id=None, screen_name=None, cursor=-1, count=20)

	Fetch the sequence of lists for a user. If no user_id or
screen_name is passed, the data returned will be for the
authenticated user.

	Parameters

	
	user_id (int, optional) – The ID of the user for whom to return results for.

	screen_name (str, optional) – The screen name of the user for whom to return results
for.

	count (int, optional) – The amount of results to return per page. No more than 1000 results
will ever be returned in a single page. Defaults to 20.

	cursor (int, optional) – The “page” value that Twitter will use to start building the list
sequence from. Use the value of -1 to start at the beginning.
Twitter will return in the result the values for next_cursor and
previous_cursor.

	Returns

	next_cursor (int), previous_cursor (int), list of twitter.List
instances, one for each list

	
GetMemberships(user_id=None, screen_name=None, count=20, cursor=-1, filter_to_owned_lists=False, return_json=False)

	Obtain the lists the specified user is a member of. If no user_id or
screen_name is specified, the data returned will be for the
authenticated user.

Returns a maximum of 20 lists per page by default.

	Parameters

	
	user_id (int, optional) – The ID of the user for whom to return results for.

	screen_name (str, optional) – The screen name of the user for whom to return
results for.

	count (int, optional) – The amount of results to return per page.
No more than 1000 results will ever be returned in a single page.
Defaults to 20.

	cursor (int, optional) – The “page” value that Twitter will use to start building the list
sequence from. Use the value of -1 to start at the beginning.
Twitter will return in the result the values for next_cursor and
previous_cursor.

	filter_to_owned_lists (bool, optional) – Set to True to return only the lists the authenticating user
owns, and the user specified by user_id or screen_name is a
member of. Default value is False.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A list of twitter.List instances, one for each list in which
the user specified by user_id or screen_name is a member

	Return type

	list

	
GetMentions(count=None, since_id=None, max_id=None, trim_user=False, contributor_details=False, include_entities=True, return_json=False)

	Returns the 20 most recent mentions (status containing @screen_name)
for the authenticating user.

	Parameters

	
	count – Specifies the number of tweets to try and retrieve, up to a maximum of
200. The value of count is best thought of as a limit to the number of
tweets to return because suspended or deleted content is removed after
the count has been applied. [Optional]

	since_id – Returns results with an ID greater than (that is, more recent
than) the specified ID. There are limits to the number of
Tweets which can be accessed through the API. If the limit of
Tweets has occurred since the since_id, the since_id will be
forced to the oldest ID available. [Optional]

	max_id – Returns only statuses with an ID less than
(that is, older than) the specified ID. [Optional]

	trim_user – When set to True, each tweet returned in a timeline will include a user
object including only the status authors numerical ID. Omit this
parameter to receive the complete user object. [Optional]

	contributor_details – If set to True, this parameter enhances the contributors element of the
status response to include the screen_name of the contributor. By
default only the user_id of the contributor is included. [Optional]

	include_entities – The entities node will be disincluded when set to False. [Optional]

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A sequence of twitter.Status instances, one for each mention of the user.

	
GetMutes(skip_status=False, include_entities=False)

	Fetch the sequence of all users (as twitter.User instances),
muted by the currently authenticated user.

	Parameters

	
	skip_status (bool, optional) – If True the statuses will not be returned in the user items.

	include_entities (bool, optional) – When True, the user entities will be included.

	Returns

	A list of twitter.User instances, one for each muted user.

	
GetMutesIDs(stringify_ids=False)

	Fetch the sequence of all user IDs muted by the
currently authenticated user.

	Parameters

	stringify_ids (bool, optional) – If True user IDs will be returned as strings rather than integers.

	Returns

	A list of user IDs for all muted users.

	
GetMutesIDsPaged(cursor=-1, stringify_ids=False)

	Fetch a page of the user IDs muted by the currently
authenticated user.

	Parameters

	
	cursor (int, optional) – Should be set to -1 if you want the first page, thereafter denotes
the page of muted users that you want to return.

	stringify_ids (bool, optional) – If True user IDs will be returned as strings rather than integers.

	Returns

	next_cursor, previous_cursor, list of user IDs of muted users.

	
GetMutesPaged(cursor=-1, skip_status=False, include_entities=False)

	Fetch a page of the users (as twitter.User instances)
muted by the currently authenticated user.

	Parameters

	
	cursor (int, optional) – Should be set to -1 if you want the first page, thereafter denotes
the page of muted users that you want to return.

	skip_status (bool, optional) – If True the statuses will not be returned in the user items.

	include_entities (bool, optional) – When True, the user entities will be included.

	Returns

	next_cursor, previous_cursor, list of twitter.User instances,
one for each muted user.

	
GetReplies(since_id=None, count=None, max_id=None, trim_user=False)

	Get a sequence of status messages representing the 20 most
recent replies (status updates prefixed with @twitterID) to the
authenticating user.

	Parameters

	
	since_id – Returns results with an ID greater than (that is, more recent
than) the specified ID. There are limits to the number of
Tweets which can be accessed through the API. If the limit of
Tweets has occurred since the since_id, the since_id will be
forced to the oldest ID available. [Optional]

	max_id – Returns results with an ID less than (that is, older than) or
equal to the specified ID. [Optional]

	trim_user – If True the returned payload will only contain the user IDs,
otherwise the payload will contain the full user data item.
[Optional]

	Returns

	A sequence of twitter.Status instances, one for each reply to the user.

	
GetRetweeters(status_id, cursor=None, count=100, stringify_ids=False)

	Returns a collection of up to 100 user IDs belonging to users who have
retweeted the tweet specified by the status_id parameter.

	Parameters

	
	status_id – the tweet’s numerical ID

	cursor – breaks the ids into pages of no more than 100.

	stringify_ids – returns the IDs as unicode strings. [Optional]

	Returns

	A list of user IDs

	
GetRetweets(statusid, count=None, trim_user=False)

	Returns up to 100 of the first retweets of the tweet identified
by statusid

	Parameters

	
	statusid (int) – The ID of the tweet for which retweets should be searched for

	count (int, optional) – The number of status messages to retrieve.

	trim_user (bool, optional) – If True the returned payload will only contain the user IDs,
otherwise the payload will contain the full user data item.

	Returns

	A list of twitter.Status instances, which are retweets of statusid

	
GetRetweetsOfMe(count=None, since_id=None, max_id=None, trim_user=False, include_entities=True, include_user_entities=True)

	Returns up to 100 of the most recent tweets of the user that have been
retweeted by others.

	Parameters

	
	count – The number of retweets to retrieve, up to 100.
Defaults to 20. [Optional]

	since_id – Returns results with an ID greater than
(newer than) this ID. [Optional]

	max_id – Returns results with an ID less than or equal
to this ID. [Optional]

	trim_user – When True, the user object for each tweet will
only be an ID. [Optional]

	include_entities – When True, the tweet entities will be included. [Optional]

	include_user_entities – When True, the user entities will be included. [Optional]

	
GetSearch(term=None, raw_query=None, geocode=None, since_id=None, max_id=None, until=None, since=None, count=15, lang=None, locale=None, result_type='mixed', include_entities=None, return_json=False)

	Return twitter search results for a given term. You must specify one
of term, geocode, or raw_query.

	Parameters

	
	term (str, optional) – Term to search by. Optional if you include geocode.

	raw_query (str, optional) – A raw query as a string. This should be everything after the “?” in
the URL (i.e., the query parameters). You are responsible for all
type checking and ensuring that the query string is properly
formatted, as it will only be URL-encoded before be passed directly
to Twitter with no other checks performed. For advanced usage only.
This will override any other parameters passed

	since_id (int, optional) – Returns results with an ID greater than (that is, more recent
than) the specified ID. There are limits to the number of
Tweets which can be accessed through the API. If the limit of
Tweets has occurred since the since_id, the since_id will be
forced to the oldest ID available.

	max_id (int, optional) – Returns only statuses with an ID less than (that is, older
than) or equal to the specified ID.

	until (str, optional) – Returns tweets generated before the given date. Date should be
formatted as YYYY-MM-DD.

	since (str, optional) – Returns tweets generated since the given date. Date should be
formatted as YYYY-MM-DD.

	geocode (str or list or tuple, optional) – Geolocation within which to search for tweets. Can be either a
string in the form of “latitude,longitude,radius” where latitude
and longitude are floats and radius is a string such as “1mi” or
“1km” (“mi” or “km” are the only units allowed). For example:

>>> api.GetSearch(geocode="37.781157,-122.398720,1mi").

Otherwise, you can pass a list of either floats or strings for
lat/long and a string for radius:

>>> api.GetSearch(geocode=[37.781157, -122.398720, "1mi"])
>>> # or:
>>> api.GetSearch(geocode=(37.781157, -122.398720, "1mi"))
>>> # or:
>>> api.GetSearch(geocode=("37.781157", "-122.398720", "1mi"))

	count (int, optional) – Number of results to return. Default is 15 and maxmimum that
Twitter returns is 100 irrespective of what you type in.

	lang (str, optional) – Language for results as ISO 639-1 code. Default is None
(all languages).

	locale (str, optional) – Language of the search query. Currently only ‘ja’ is effective.
This is intended for language-specific consumers and the default
should work in the majority of cases.

	result_type (str, optional) – Type of result which should be returned. Default is “mixed”.
Valid options are “mixed, “recent”, and “popular”.

	include_entities (bool, optional) – If True, each tweet will include a node called “entities”.
This node offers a variety of metadata about the tweet in a
discrete structure, including: user_mentions, urls, and
hashtags.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.Userret

	Returns

	A sequence of twitter.Status instances, one for each message
containing the term, within the bounds of the geocoded area, or
given by the raw_query.

	Return type

	list

	
GetSentDirectMessages(since_id=None, max_id=None, count=None, page=None, include_entities=True, return_json=False)

	Returns a list of the direct messages sent by the authenticating user.

	Parameters

	
	since_id (int, optional) – Returns results with an ID greater than (that is, more recent
than) the specified ID. There are limits to the number of
Tweets which can be accessed through the API. If the limit of
Tweets has occured since the since_id, the since_id will be
forced to the oldest ID available.

	max_id (int, optional) – Returns results with an ID less than (that is, older than) or
equal to the specified ID.

	count (int, optional) – Specifies the number of direct messages to try and retrieve, up to a
maximum of 200. The value of count is best thought of as a limit to the
number of Tweets to return because suspended or deleted content is
removed after the count has been applied.

	page (int, optional) – Specifies the page of results to retrieve.
Note: there are pagination limits. [Optional]

	include_entities (bool, optional) – The entities node will be omitted when set to False.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A sequence of twitter.DirectMessage instances

	
GetShortUrlLength(https=False)

	Returns number of characters reserved per URL included in a tweet.

	Parameters

	https (bool, optional) – If True, return number of characters reserved for https urls
or, if False, return number of character reserved for http urls.

	Returns

	Number of characters reserved per URL.

	Return type

	(int)

	
GetStatus(status_id, trim_user=False, include_my_retweet=True, include_entities=True, include_ext_alt_text=True)

	Returns a single status message, specified by the status_id parameter.

	Parameters

	
	status_id – The numeric ID of the status you are trying to retrieve.

	trim_user – When set to True, each tweet returned in a timeline will include
a user object including only the status authors numerical ID.
Omit this parameter to receive the complete user object. [Optional]

	include_my_retweet – When set to True, any Tweets returned that have been retweeted by
the authenticating user will include an additional
current_user_retweet node, containing the ID of the source status
for the retweet. [Optional]

	include_entities – If False, the entities node will be disincluded.
This node offers a variety of metadata about the tweet in a
discreet structure, including: user_mentions, urls, and
hashtags. [Optional]

	Returns

	A twitter.Status instance representing that status message

	
GetStatusOembed(status_id=None, url=None, maxwidth=None, hide_media=False, hide_thread=False, omit_script=False, align=None, related=None, lang=None)

	Returns information allowing the creation of an embedded representation of a
Tweet on third party sites.

Specify tweet by the id or url parameter.

	Parameters

	
	status_id – The numeric ID of the status you are trying to embed.

	url – The url of the status you are trying to embed.

	maxwidth – The maximum width in pixels that the embed should be rendered at.
This value is constrained to be between 250 and 550 pixels. [Optional]

	hide_media – Specifies whether the embedded Tweet should automatically expand images. [Optional]

	hide_thread – Specifies whether the embedded Tweet should automatically show the original
message in the case that the embedded Tweet is a reply. [Optional]

	omit_script – Specifies whether the embedded Tweet HTML should include a <script>
element pointing to widgets.js. [Optional]

	align – Specifies whether the embedded Tweet should be left aligned, right aligned,
or centered in the page. [Optional]

	related – A comma sperated string of related screen names. [Optional]

	lang – Language code for the rendered embed. [Optional]

	Returns

	A dictionary with the response.

	
GetStatuses(status_ids, trim_user=False, include_entities=True, map=False)

	Returns a list of status messages, specified by the status_ids parameter.

	Parameters

	
	status_ids – A list of the numeric ID of the statuses you are trying to retrieve.

	trim_user – When set to True, each tweet returned in a timeline will include
a user object including only the status authors numerical ID.
Omit this parameter to receive the complete user object. [Optional]

	include_entities – If False, the entities node will be disincluded.
This node offers a variety of metadata about the tweet in a
discreet structure, including: user_mentions, urls, and
hashtags. [Optional]

	map – If True, returns a dictionary with status id as key and returned
status data (or None if tweet does not exist or is inaccessible)
as value. Otherwise returns an unordered list of successfully
retrieved Tweets. [Optional]

	Returns

	A dictionary or unordered list (depending on the parameter ‘map’) of
twitter Status instances representing the status messages.

	
GetStreamFilter(follow=None, track=None, locations=None, languages=None, delimited=None, stall_warnings=None, filter_level=None)

	Returns a filtered view of public statuses.

	Parameters

	
	follow – A list of user IDs to track. [Optional]

	track – A list of expressions to track. [Optional]

	locations – A list of Longitude,Latitude pairs (as strings) specifying
bounding boxes for the tweets’ origin. [Optional]

	delimited – Specifies a message length. [Optional]

	stall_warnings – Set to True to have Twitter deliver stall warnings. [Optional]

	languages – A list of Languages.
Will only return Tweets that have been detected as being
written in the specified languages. [Optional]

	filter_level – Specifies level of filtering applied to stream.
Set to None, ‘low’ or ‘medium’. [Optional]

	Returns

	A twitter stream

	
GetStreamSample(delimited=False, stall_warnings=True)

	Returns a small sample of public statuses.

	Parameters

	
	delimited – Specifies a message length. [Optional]

	stall_warnings – Set to True to have Twitter deliver stall warnings. [Optional]

	Returns

	A Twitter stream

	
GetSubscriptions(user_id=None, screen_name=None, count=20, cursor=-1, return_json=False)

	Obtain a collection of the lists the specified user is
subscribed to. If neither user_id or screen_name is specified, the
data returned will be for the authenticated user.

The list will contain a maximum of 20 lists per page by default.

Does not include the user’s own lists.

	Parameters

	
	user_id (int, optional) – The ID of the user for whom to return results for.

	screen_name (str, optional) – The screen name of the user for whom to return results for.

	count (int, optional) – The amount of results to return per page.
No more than 1000 results will ever be returned in a single
page. Defaults to 20.

	cursor (int, optional) – The “page” value that Twitter will use to start building the
list sequence from. Use the value of -1 to start at the
beginning. Twitter will return in the result the values for
next_cursor and previous_cursor.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A sequence of twitter.List instances,
one for each list

	Return type

	twitter.list.List

	
GetTrendsCurrent(exclude=None)

	Get the current top trending topics (global)

	Parameters

	exclude – Appends the exclude parameter as a request parameter.
Currently only exclude=hashtags is supported. [Optional]

	Returns

	A list with 10 entries. Each entry contains a trend.

	
GetTrendsWoeid(woeid, exclude=None)

	Return the top 10 trending topics for a specific WOEID, if trending
information is available for it.

	Parameters

	
	woeid – the Yahoo! Where On Earth ID for a location.

	exclude – Appends the exclude parameter as a request parameter.
Currently only exclude=hashtags is supported. [Optional]

	Returns

	A list with 10 entries. Each entry contains a trend.

	
GetUser(user_id=None, screen_name=None, include_entities=True, return_json=False)

	Returns a single user.

	Parameters

	
	user_id (int, optional) – The id of the user to retrieve.

	screen_name (str, optional) – The screen name of the user for whom to return results for.
Either a user_id or screen_name is required for this method.

	include_entities (bool, optional) – The entities node will be omitted when set to False.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A twitter.User instance representing that user

	
GetUserRetweets(count=None, since_id=None, max_id=None, trim_user=False)

	Fetch the sequence of retweets made by the authenticated user.

	Parameters

	
	count – The number of status messages to retrieve. [Optional]

	since_id – Returns results with an ID greater than (that is, more recent
than) the specified ID. There are limits to the number of
Tweets which can be accessed through the API. If the limit of
Tweets has occurred since the since_id, the since_id will be
forced to the oldest ID available. [Optional]

	max_id – Returns results with an ID less than (that is, older than) or
equal to the specified ID. [Optional]

	trim_user – If True the returned payload will only contain the user IDs,
otherwise the payload will contain the full user data item.
[Optional]

	Returns

	A sequence of twitter.Status instances, one for each message up to count

	
GetUserStream(replies='all', withuser='user', track=None, locations=None, delimited=None, stall_warnings=None, stringify_friend_ids=False, filter_level=None, session=None, include_keepalive=False)

	Returns the data from the user stream.

	Parameters

	
	replies – Specifies whether to return additional @replies in the stream.
Defaults to ‘all’.

	withuser – Specifies whether to return information for just the authenticating
user, or include messages from accounts the user follows. [Optional]

	track – A list of expressions to track. [Optional]

	locations – A list of Latitude,Longitude pairs (as strings) specifying
bounding boxes for the tweets’ origin. [Optional]

	delimited – Specifies a message length. [Optional]

	stall_warnings – Set to True to have Twitter deliver stall warnings. [Optional]

	stringify_friend_ids – Specifies whether to send the friends list preamble as an array of
integers or an array of strings. [Optional]

	filter_level – Specifies level of filtering applied to stream.
Set to None, low or medium. [Optional]

	Returns

	A twitter stream

	
GetUserSuggestion(category)

	Returns a list of users in a category
:param category: The Category object to limit the search by

	Returns

	A list of users in that category

	
GetUserSuggestionCategories()

	
	Return the list of suggested user categories, this can be used in

	GetUserSuggestion function

	Returns

	A list of categories

	
GetUserTimeline(user_id=None, screen_name=None, since_id=None, max_id=None, count=None, include_rts=True, trim_user=False, exclude_replies=False)

	Fetch the sequence of public Status messages for a single user.

The twitter.Api instance must be authenticated if the user is private.

	Parameters

	
	user_id (int, optional) – Specifies the ID of the user for whom to return the
user_timeline. Helpful for disambiguating when a valid user ID
is also a valid screen name.

	screen_name (str, optional) – Specifies the screen name of the user for whom to return the
user_timeline. Helpful for disambiguating when a valid screen
name is also a user ID.

	since_id (int, optional) – Returns results with an ID greater than (that is, more recent
than) the specified ID. There are limits to the number of
Tweets which can be accessed through the API. If the limit of
Tweets has occurred since the since_id, the since_id will be
forced to the oldest ID available.

	max_id (int, optional) – Returns only statuses with an ID less than (that is, older
than) or equal to the specified ID.

	count (int, optional) – Specifies the number of statuses to retrieve. May not be
greater than 200.

	include_rts (bool, optional) – If True, the timeline will contain native retweets (if they
exist) in addition to the standard stream of tweets.

	trim_user (bool, optional) – If True, statuses will only contain the numerical user ID only.
Otherwise a full user object will be returned for each status.

	exclude_replies (bool, optional) – If True, this will prevent replies from appearing in the returned
timeline. Using exclude_replies with the count parameter will mean you
will receive up-to count tweets - this is because the count parameter
retrieves that many tweets before filtering out retweets and replies.
This parameter is only supported for JSON and XML responses.

	Returns

	A sequence of Status instances, one for each message up to count

	
GetUsersSearch(term=None, page=1, count=20, include_entities=None)

	Return twitter user search results for a given term.

	Parameters

	
	term – Term to search by.

	page – Page of results to return. Default is 1
[Optional]

	count – Number of results to return. Default is 20
[Optional]

	include_entities – If True, each tweet will include a node called “entities,”.
This node offers a variety of metadata about the tweet in a
discrete structure, including: user_mentions, urls, and hashtags.
[Optional]

	Returns

	A sequence of twitter.User instances, one for each message containing
the term

	
IncomingFriendship(cursor=None, stringify_ids=None)

	Returns a collection of user IDs belonging to users who have
pending request to follow the authenticated user.

	Parameters

	
	cursor – breaks the ids into pages of no more than 5000.

	stringify_ids – returns the IDs as unicode strings. [Optional]

	Returns

	A list of user IDs

	
InitializeRateLimit()

	Make a call to the Twitter API to get the rate limit
status for the currently authenticated user or application.

	Returns

	None.

	
LookupFriendship(user_id=None, screen_name=None, return_json=False)

	Lookup friendship status for user to authed user.

Users may be specified either as lists of either user_ids,
screen_names, or twitter.User objects. The list of users that
are queried is the union of all specified parameters.

Up to 100 users may be specified.

	Parameters

	
	user_id (int, User, or list of ints or Users, optional) – A list of user_ids to retrieve extended information.

	screen_name (string, User, or list of strings or Users, optional) – A list of screen_names to retrieve extended information.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A list of twitter.UserStatus instance representing the
friendship status between the specified users and the authenticated
user.

	Return type

	list

	
OutgoingFriendship(cursor=None, stringify_ids=None)

	Returns a collection of user IDs for every protected user
for whom the authenticated user has a pending follow request.

	Parameters

	
	cursor – breaks the ids into pages of no more than 5000.

	stringify_ids – returns the IDs as unicode strings. [Optional]

	Returns

	A list of user IDs

	
PostDirectMessage(text, user_id=None, screen_name=None, return_json=False)

	Post a twitter direct message from the authenticated user.

	Parameters

	
	text – The message text to be posted.

	user_id – The ID of the user who should receive the direct message.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.DirectMessage

	Returns

	A twitter.DirectMessage instance representing the message posted

	
PostMediaMetadata(media_id, alt_text=None)

	Provide addtional data for uploaded media.

	Parameters

	
	media_id – ID of a previously uploaded media item.

	alt_text – Image Alternate Text.

	
PostRetweet(status_id, trim_user=False)

	Retweet a tweet with the Retweet API.

	Parameters

	
	status_id – The numerical id of the tweet that will be retweeted

	trim_user – If True the returned payload will only contain the user IDs,
otherwise the payload will contain the full user data item.
[Optional]

	Returns

	A twitter.Status instance representing the original tweet with retweet details embedded.

	
PostUpdate(status, media=None, media_additional_owners=None, media_category=None, in_reply_to_status_id=None, auto_populate_reply_metadata=False, exclude_reply_user_ids=None, latitude=None, longitude=None, place_id=None, display_coordinates=False, trim_user=False, verify_status_length=True, attachment_url=None)

	Post a twitter status message from the authenticated user.

https://dev.twitter.com/docs/api/1.1/post/statuses/update

	Parameters

	
	status (str) – The message text to be posted. Must be less than or equal to
CHARACTER_LIMIT characters.

	media (int, str, fp, optional) – A URL, a local file, or a file-like object (something with a
read() method), or a list of any combination of the above.

	media_additional_owners (list, optional) – A list of user ids representing Twitter users that should be able
to use the uploaded media in their tweets. If you pass a list of
media, then additional_owners will apply to each object. If you
need more granular control, please use the UploadMedia* methods.

	media_category (str, optional) – Only for use with the AdsAPI. See
https://dev.twitter.com/ads/creative/promoted-video-overview if
this applies to your application.

	in_reply_to_status_id (int, optional) – The ID of an existing status that the status to be posted is
in reply to. This implicitly sets the in_reply_to_user_id
attribute of the resulting status to the user ID of the
message being replied to. Invalid/missing status IDs will be
ignored.

	auto_populate_reply_metadata (bool, optional) – Automatically include the @usernames of the users mentioned or
participating in the tweet to which this tweet is in reply.

	exclude_reply_user_ids (list, optional) – Remove given user_ids (not @usernames) from the tweet’s
automatically generated reply metadata.

	attachment_url (str, optional) – URL to an attachment resource: one to four photos, a GIF,
video, Quote Tweet, or DM deep link. If not specified and
media parameter is not None, we will attach the first media
object as the attachment URL. If a bad URL is passed, Twitter
will raise an error.

	latitude (float, optional) – Latitude coordinate of the tweet in degrees. Will only work
in conjunction with longitude argument. Both longitude and
latitude will be ignored by twitter if the user has a false
geo_enabled setting.

	longitude (float, optional) – Longitude coordinate of the tweet in degrees. Will only work
in conjunction with latitude argument. Both longitude and
latitude will be ignored by twitter if the user has a false
geo_enabled setting.

	place_id (int, optional) – A place in the world. These IDs can be retrieved from
GET geo/reverse_geocode.

	display_coordinates (bool, optional) – Whether or not to put a pin on the exact coordinates a tweet
has been sent from.

	trim_user (bool, optional) – If True the returned payload will only contain the user IDs,
otherwise the payload will contain the full user data item.

	verify_status_length (bool, optional) – If True, api throws a hard error that the status is over
CHARACTER_LIMIT characters. If False, Api will attempt to post
the status.

	Returns

	(twitter.Status) A twitter.Status instance representing the
message posted.

	
PostUpdates(status, continuation=None, **kwargs)

	Post one or more twitter status messages from the authenticated user.

Unlike api.PostUpdate, this method will post multiple status updates
if the message is longer than CHARACTER_LIMIT characters.

	Parameters

	
	status – The message text to be posted.
May be longer than CHARACTER_LIMIT characters.

	continuation – The character string, if any, to be appended to all but the
last message. Note that Twitter strips trailing ‘…’ strings
from messages. Consider using the unicode u2026 character
(horizontal ellipsis) instead. [Defaults to None]

	**kwargs – See api.PostUpdate for a list of accepted parameters.

	Returns

	A of list twitter.Status instance representing the messages posted.

	
SetCache(cache)

	Override the default cache. Set to None to prevent caching.

	Parameters

	cache – An instance that supports the same API as the twitter._FileCache

	
SetCacheTimeout(cache_timeout)

	Override the default cache timeout.

	Parameters

	cache_timeout – Time, in seconds, that responses should be reused.

	
SetCredentials(consumer_key, consumer_secret, access_token_key=None, access_token_secret=None, application_only_auth=False)

	Set the consumer_key and consumer_secret for this instance

	Parameters

	
	consumer_key – The consumer_key of the twitter account.

	consumer_secret – The consumer_secret for the twitter account.

	access_token_key – The oAuth access token key value you retrieved
from running get_access_token.py.

	access_token_secret – The oAuth access token’s secret, also retrieved
from the get_access_token.py run.

	application_only_auth – Whether to generate a bearer token and use Application-Only Auth

	
SetSource(source)

	Suggest the “from source” value to be displayed on the Twitter web site.

The value of the ‘source’ parameter must be first recognized by
the Twitter server.

New source values are authorized on a case by case basis by the
Twitter development team.

	Parameters

	source – The source name as a string. Will be sent to the server as
the ‘source’ parameter.

	
SetUrllib(urllib)

	Override the default urllib implementation.

	Parameters

	urllib – An instance that supports the same API as the urllib2 module

	
SetUserAgent(user_agent)

	Override the default user agent.

	Parameters

	user_agent – A string that should be send to the server as the user-agent.

	
SetXTwitterHeaders(client, url, version)

	Set the X-Twitter HTTP headers that will be sent to the server.

	Parameters

	
	client – The client name as a string. Will be sent to the server as
the ‘X-Twitter-Client’ header.

	url – The URL of the meta.xml as a string. Will be sent to the server
as the ‘X-Twitter-Client-URL’ header.

	version – The client version as a string. Will be sent to the server
as the ‘X-Twitter-Client-Version’ header.

	
ShowFriendship(source_user_id=None, source_screen_name=None, target_user_id=None, target_screen_name=None)

	Returns information about the relationship between the two users.

	Parameters

	
	source_id – The user_id of the subject user [Optional]

	source_screen_name – The screen_name of the subject user [Optional]

	target_id – The user_id of the target user [Optional]

	target_screen_name – The screen_name of the target user [Optional]

	Returns

	A Twitter Json structure.

	
ShowSubscription(owner_screen_name=None, owner_id=None, list_id=None, slug=None, user_id=None, screen_name=None, include_entities=False, skip_status=False, return_json=False)

	Check if the specified user is a subscriber of the specified list.

Returns the user if they are subscriber.

	Parameters

	
	owner_screen_name (str, optional) – The screen_name of the user who owns the list being requested
by a slug.

	owner_id (int, optional) – The user ID of the user who owns the list being requested
by a slug.

	list_id (int, optional) – The numerical ID of the list.

	slug (str, optional) – You can identify a list by its slug instead of its numerical ID.
If you decide to do so, note that you’ll also have to specify
the list owner using the owner_id or owner_screen_name parameters.

	user_id (int, optional) – The user_id or a list of user_id’s to add to the list.
If not given, then screen_name is required.

	screen_name (str, optional) – The screen_name or a list of screen_name’s to add to the list.
If not given, then user_id is required.

	include_entities (bool, optional) – If False, the timeline will not contain additional metadata.
Defaults to True.

	skip_status (bool, optional) – If True the statuses will not be returned in the user items.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A twitter.User instance representing the user
requested.

	Return type

	twitter.user.User

	
UpdateBanner(image, include_entities=False, skip_status=False)

	Updates the authenticated users profile banner.

	Parameters

	
	image – Location of image in file system

	include_entities – If True, each tweet will include a node called “entities.”
This node offers a variety of metadata about the tweet in a
discrete structure, including: user_mentions, urls, and hashtags.
[Optional]

	Returns

	A twitter.List instance representing the list subscribed to

	
UpdateFriendship(user_id=None, screen_name=None, follow=True, retweets=True, **kwargs)

	Updates a friendship with the user specified by the user_id or screen_name.

	Parameters

	
	user_id (int, optional) – A user_id to update

	screen_name (str, optional) – A screen_name to update

	follow (bool, optional) – Set to False to disable notifications for the target user

	retweets (bool, optional) – Enable or disable retweets from the target user.

	device – Set to False to disable notifications for the target user

	Returns

	A twitter.User instance representing the befriended user.

	
UpdateImage(image, include_entities=False, skip_status=False)

	Update a User’s profile image. Change may not be immediately
reflected due to image processing on Twitter’s side.

	Parameters

	
	image (str) – Location of local image file to use.

	include_entities (bool, optional) – Include the entities node in the return data.

	skip_status (bool, optional) – Include the User’s last Status in the User entity returned.

	Returns

	Updated User object.

	Return type

	(twitter.models.User)

	
UpdateProfile(name=None, profileURL=None, location=None, description=None, profile_link_color=None, include_entities=False, skip_status=False)

	Update’s the authenticated user’s profile data.

	Parameters

	
	name (str, optional) – Full name associated with the profile.

	profileURL (str, optional) – URL associated with the profile.
Will be prepended with “http://” if not present.

	location (str, optional) – The city or country describing where the user of the account is located.
The contents are not normalized or geocoded in any way.

	description (str, optional) – A description of the user owning the account.

	profile_link_color (str, optional) – hex value of profile color theme. formated without ‘#’ or ‘0x’. Ex: FF00FF

	include_entities (bool, optional) – The entities node will be omitted when set to False.

	skip_status (bool, optional) – When set to either True, t or 1 then statuses will not be included
in the returned user objects.

	Returns

	A twitter.User instance representing the modified user.

	
UploadMediaChunked(media, additional_owners=None, media_category=None)

	Upload a media file to Twitter in multiple requests.

	Parameters

	
	media – File-like object to upload.

	additional_owners – additional Twitter users that are allowed to use
The uploaded media. Should be a list of integers. Maximum
number of additional owners is capped at 100 by Twitter.

	media_category – Category with which to identify media upload. Only use with Ads
API & video files.

	Returns

	ID of the uploaded media returned by the Twitter API. Raises if
unsuccesful.

	Return type

	media_id

	
UploadMediaSimple(media, additional_owners=None, media_category=None)

	Upload a media file to Twitter in one request. Used for small file
uploads that do not require chunked uploads.

	Parameters

	
	media – File-like object to upload.

	additional_owners – additional Twitter users that are allowed to use
The uploaded media. Should be a list of integers. Maximum
number of additional owners is capped at 100 by Twitter.

	media_category – Category with which to identify media upload. Only use with Ads
API & video files.

	Returns

	ID of the uploaded media returned by the Twitter API or 0.

	Return type

	media_id

	
UsersLookup(user_id=None, screen_name=None, users=None, include_entities=True, return_json=False)

	Fetch extended information for the specified users.

Users may be specified either as lists of either user_ids,
screen_names, or twitter.User objects. The list of users that
are queried is the union of all specified parameters.

No more than 100 users may be given per request.

	Parameters

	
	user_id (int, list, optional) – A list of user_ids to retrieve extended information.

	screen_name (str, list, optional) – A list of screen_names to retrieve extended information.

	users (list, optional) – A list of twitter.User objects to retrieve extended information.

	include_entities (bool, optional) – The entities node that may appear within embedded statuses will be
excluded when set to False.

	return_json (bool, optional) – If True JSON data will be returned, instead of twitter.User

	Returns

	A list of twitter.User objects for the requested users

	
VerifyCredentials(include_entities=None, skip_status=None, include_email=None)

	Returns a twitter.User instance if the authenticating user is valid.

	Parameters

	
	include_entities – Specifies whether to return additional @replies in the stream.

	skip_status – When set to either true, t or 1 statuses will not be included in the
returned user object.

	include_email – Use of this parameter requires whitelisting.
When set to true email will be returned in the user objects as a string.
If the user does not have an email address on their account, or if the
email address is un-verified, null will be returned. If your app is
not whitelisted, then the ‘email’ key will not be present in the json
response.

	Returns

	A twitter.User instance representing that user if the
credentials are valid, None otherwise.

	
exception twitter.error.PythonTwitterDeprecationWarning

	Bases: exceptions.DeprecationWarning

Base class for python-twitter deprecation warnings

	
exception twitter.error.PythonTwitterDeprecationWarning330

	Bases: twitter.error.PythonTwitterDeprecationWarning

Warning for features to be removed in version 3.3.0

	
exception twitter.error.PythonTwitterDeprecationWarning340

	Bases: twitter.error.PythonTwitterDeprecationWarning

Warning for features to be removed in version 3.4.0

	
exception twitter.error.TwitterError

	Bases: exceptions.Exception

Base class for Twitter errors

	
message

	Returns the first argument used to construct this error.

Models

	
class twitter.models.Category(**kwargs)

	Bases: twitter.models.TwitterModel

A class representing the suggested user category structure.

	
class twitter.models.DirectMessage(**kwargs)

	Bases: twitter.models.TwitterModel

A class representing a Direct Message.

	
class twitter.models.Hashtag(**kwargs)

	Bases: twitter.models.TwitterModel

A class representing a twitter hashtag.

	
class twitter.models.List(**kwargs)

	Bases: twitter.models.TwitterModel

A class representing the List structure used by the twitter API.

	
class twitter.models.Media(**kwargs)

	Bases: twitter.models.TwitterModel

A class representing the Media component of a tweet.

	
class twitter.models.Status(**kwargs)

	Bases: twitter.models.TwitterModel

A class representing the Status structure used by the twitter API.

	
classmethod NewFromJsonDict(data, **kwargs)

	Create a new instance based on a JSON dict.

	Parameters

	data – A JSON dict, as converted from the JSON in the twitter API

	Returns

	A twitter.Status instance

	
created_at_in_seconds

	Get the time this status message was posted, in seconds since
the epoch (1 Jan 1970).

	Returns

	The time this status message was posted, in seconds since
the epoch.

	Return type

	int

	
class twitter.models.Trend(**kwargs)

	Bases: twitter.models.TwitterModel

A class representing a trending topic.

	
volume

	

	
class twitter.models.TwitterModel(**kwargs)

	Bases: object

Base class from which all twitter models will inherit.

	
AsDict()

	Create a dictionary representation of the object. Please see inline
comments on construction when dictionaries contain TwitterModels.

	
AsJsonString(ensure_ascii=True)

	Returns the TwitterModel as a JSON string based on key/value
pairs returned from the AsDict() method.

	
classmethod NewFromJsonDict(data, **kwargs)

	Create a new instance based on a JSON dict. Any kwargs should be
supplied by the inherited, calling class.

	Parameters

	data – A JSON dict, as converted from the JSON in the twitter API.

	
class twitter.models.Url(**kwargs)

	Bases: twitter.models.TwitterModel

A class representing an URL contained in a tweet.

	
class twitter.models.User(**kwargs)

	Bases: twitter.models.TwitterModel

A class representing the User structure.

	
classmethod NewFromJsonDict(data, **kwargs)

	

	
class twitter.models.UserStatus(**kwargs)

	Bases: twitter.models.TwitterModel

A class representing the UserStatus structure. This is an abbreviated
form of the twitter.User object.

	
connections

	

	
class twitter.ratelimit.EndpointRateLimit(limit, remaining, reset)

	Bases: tuple

	
limit

	Alias for field number 0

	
remaining

	Alias for field number 1

	
reset

	Alias for field number 2

	
class twitter.ratelimit.RateLimit(**kwargs)

	Bases: object

Object to hold the rate limit status of various endpoints for
the twitter.Api object.

This object is generally attached to the API as Api.rate_limit, but is not
created until the user makes a method call that uses _RequestUrl() or calls
Api.InitializeRateLimit(), after which it get created and populated with
rate limit data from Twitter.

Calling Api.InitializeRateLimit() populates the object with all of the
rate limits for the endpoints defined by Twitter; more info is available
here:

https://dev.twitter.com/rest/public/rate-limits

https://dev.twitter.com/rest/public/rate-limiting

https://dev.twitter.com/rest/reference/get/application/rate_limit_status

Once a resource (i.e., an endpoint) has been requested, Twitter’s response
will contain the current rate limit status as part of the headers, i.e.:

x-rate-limit-limit
x-rate-limit-remaining
x-rate-limit-reset

limit is the generic limit for that endpoint, remaining is how many
more times you can make a call to that endpoint, and reset is the time
(in seconds since the epoch) until remaining resets to its default for that
endpoint.

Generally speaking, each endpoint has a 15-minute reset time and endpoints
can either make 180 or 15 requests per window. According to Twitter, any
endpoint not defined in the rate limit chart or the response from a GET
request to application/rate_limit_status.json should be assumed to be
15 requests per 15 minutes.

	
get_limit(url)

	Gets a EndpointRateLimit object for the given url.

	Parameters

	url (str, optional) – URL of the endpoint for which to return the rate limit
status.

	Returns

	EndpointRateLimit object containing rate limit
information.

	Return type

	namedtuple

	
set_limit(url, limit, remaining, reset)

	If a resource family is unknown, add it to the object’s
dictionary. This is to deal with new endpoints being added to
the API, but not necessarily to the information returned by
/account/rate_limit_status.json endpoint.

For example, if Twitter were to add an endpoint
/puppies/lookup.json, the RateLimit object would create a resource
family puppies and add /puppies/lookup as the endpoint, along
with whatever limit, remaining hits available, and reset time would be
applicable to that resource+endpoint pair.

	Parameters

	
	url (str) – URL of the endpoint being fetched.

	limit (int) – Max number of times a user or app can hit the endpoint
before being rate limited.

	remaining (int) – Number of times a user or app can access the endpoint
before being rate limited.

	reset (int) – Epoch time at which the rate limit window will reset.

	
set_unknown_limit(url, limit, remaining, reset)

	

	
static url_to_resource(url)

	Take a fully qualified URL and attempts to return the rate limit
resource family corresponding to it. For example:

>>> RateLimit.url_to_resource('https://api.twitter.com/1.1/statuses/lookup.json?id=317')
>>> '/statuses/lookup'

	Parameters

	url (str) – URL to convert to a resource family.

	Returns

	Resource family corresponding to the URL.

	Return type

	string

	
class twitter.ratelimit.ResourceEndpoint(regex, resource)

	Bases: tuple

	
regex

	Alias for field number 0

	
resource

	Alias for field number 1

Utilities

	
twitter.twitter_utils.calc_expected_status_length(status, short_url_length=23)

	Calculates the length of a tweet, taking into account Twitter’s
replacement of URLs with https://t.co links.

	Parameters

	
	status – text of the status message to be posted.

	short_url_length – the current published https://t.co links

	Returns

	Expected length of the status message as an integer.

	
twitter.twitter_utils.enf_type(field, _type, val)

	Checks to see if a given val for a field (i.e., the name of the field)
is of the proper _type. If it is not, raises a TwitterError with a brief
explanation.

	Parameters

	
	field – Name of the field you are checking.

	_type – Type that the value should be returned as.

	val – Value to convert to _type.

	Returns

	val converted to type _type.

	
twitter.twitter_utils.http_to_file(http)

	

	
twitter.twitter_utils.is_url(text)

	Checks to see if a bit of text is a URL.

	Parameters

	text – text to check.

	Returns

	Boolean of whether the text should be treated as a URL or not.

	
twitter.twitter_utils.parse_arg_list(args, attr)

	

	
twitter.twitter_utils.parse_media_file(passed_media, async_upload=False)

	Parses a media file and attempts to return a file-like object and
information about the media file.

	Parameters

	
	passed_media – media file which to parse.

	async_upload – flag, for validation media file attributes.

	Returns

	file-like object, the filename of the media file, the file size, and
the type of media.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 twitter	

 	
 	
 twitter.api	

 	
 	
 twitter.error	

 	
 	
 twitter.models	

 	
 	
 twitter.ratelimit	

 	
 	
 twitter.twitter_utils	

Index

 A
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	Api (class in twitter.api)

 	
 	AsDict() (twitter.models.TwitterModel method)

 	AsJsonString() (twitter.models.TwitterModel method)

C

 	
 	calc_expected_status_length() (in module twitter.twitter_utils)

 	Category (class in twitter.models)

 	CheckRateLimit() (twitter.api.Api method)

 	ClearCredentials() (twitter.api.Api method)

 	connections (twitter.models.UserStatus attribute)

 	CreateBlock() (twitter.api.Api method)

 	
 	created_at_in_seconds (twitter.models.Status attribute)

 	CreateFavorite() (twitter.api.Api method)

 	CreateFriendship() (twitter.api.Api method)

 	CreateList() (twitter.api.Api method)

 	CreateListsMember() (twitter.api.Api method)

 	CreateMute() (twitter.api.Api method)

 	CreateSubscription() (twitter.api.Api method)

D

 	
 	DEFAULT_CACHE_TIMEOUT (twitter.api.Api attribute)

 	DestroyBlock() (twitter.api.Api method)

 	DestroyDirectMessage() (twitter.api.Api method)

 	DestroyFavorite() (twitter.api.Api method)

 	DestroyFriendship() (twitter.api.Api method)

 	
 	DestroyList() (twitter.api.Api method)

 	DestroyListsMember() (twitter.api.Api method)

 	DestroyMute() (twitter.api.Api method)

 	DestroyStatus() (twitter.api.Api method)

 	DestroySubscription() (twitter.api.Api method)

 	DirectMessage (class in twitter.models)

E

 	
 	EndpointRateLimit (class in twitter.ratelimit)

 	
 	enf_type() (in module twitter.twitter_utils)

G

 	
 	get_limit() (twitter.ratelimit.RateLimit method)

 	GetAppOnlyAuthToken() (twitter.api.Api static method)

 	GetBlocks() (twitter.api.Api method)

 	GetBlocksIDs() (twitter.api.Api method)

 	GetBlocksIDsPaged() (twitter.api.Api method)

 	GetBlocksPaged() (twitter.api.Api method)

 	GetDirectMessages() (twitter.api.Api method)

 	GetFavorites() (twitter.api.Api method)

 	GetFollowerIDs() (twitter.api.Api method)

 	GetFollowerIDsPaged() (twitter.api.Api method)

 	GetFollowers() (twitter.api.Api method)

 	GetFollowersPaged() (twitter.api.Api method)

 	GetFriendIDs() (twitter.api.Api method)

 	GetFriendIDsPaged() (twitter.api.Api method)

 	GetFriends() (twitter.api.Api method)

 	GetFriendsPaged() (twitter.api.Api method)

 	GetHelpConfiguration() (twitter.api.Api method)

 	GetHomeTimeline() (twitter.api.Api method)

 	GetListMembers() (twitter.api.Api method)

 	GetListMembersPaged() (twitter.api.Api method)

 	GetLists() (twitter.api.Api method)

 	GetListsList() (twitter.api.Api method)

 	GetListsPaged() (twitter.api.Api method)

 	GetListTimeline() (twitter.api.Api method)

 	GetMemberships() (twitter.api.Api method)

 	GetMentions() (twitter.api.Api method)

 	
 	GetMutes() (twitter.api.Api method)

 	GetMutesIDs() (twitter.api.Api method)

 	GetMutesIDsPaged() (twitter.api.Api method)

 	GetMutesPaged() (twitter.api.Api method)

 	GetReplies() (twitter.api.Api method)

 	GetRetweeters() (twitter.api.Api method)

 	GetRetweets() (twitter.api.Api method)

 	GetRetweetsOfMe() (twitter.api.Api method)

 	GetSearch() (twitter.api.Api method)

 	GetSentDirectMessages() (twitter.api.Api method)

 	GetShortUrlLength() (twitter.api.Api method)

 	GetStatus() (twitter.api.Api method)

 	GetStatuses() (twitter.api.Api method)

 	GetStatusOembed() (twitter.api.Api method)

 	GetStreamFilter() (twitter.api.Api method)

 	GetStreamSample() (twitter.api.Api method)

 	GetSubscriptions() (twitter.api.Api method)

 	GetTrendsCurrent() (twitter.api.Api method)

 	GetTrendsWoeid() (twitter.api.Api method)

 	GetUser() (twitter.api.Api method)

 	GetUserRetweets() (twitter.api.Api method)

 	GetUsersSearch() (twitter.api.Api method)

 	GetUserStream() (twitter.api.Api method)

 	GetUserSuggestion() (twitter.api.Api method)

 	GetUserSuggestionCategories() (twitter.api.Api method)

 	GetUserTimeline() (twitter.api.Api method)

H

 	
 	Hashtag (class in twitter.models)

 	
 	http_to_file() (in module twitter.twitter_utils)

I

 	
 	IncomingFriendship() (twitter.api.Api method)

 	
 	InitializeRateLimit() (twitter.api.Api method)

 	is_url() (in module twitter.twitter_utils)

L

 	
 	limit (twitter.ratelimit.EndpointRateLimit attribute)

 	
 	List (class in twitter.models)

 	LookupFriendship() (twitter.api.Api method)

M

 	
 	Media (class in twitter.models)

 	
 	message (twitter.error.TwitterError attribute)

N

 	
 	NewFromJsonDict() (twitter.models.Status class method)

 	(twitter.models.TwitterModel class method)

 	(twitter.models.User class method)

O

 	
 	OutgoingFriendship() (twitter.api.Api method)

P

 	
 	parse_arg_list() (in module twitter.twitter_utils)

 	parse_media_file() (in module twitter.twitter_utils)

 	PostDirectMessage() (twitter.api.Api method)

 	PostMediaMetadata() (twitter.api.Api method)

 	PostRetweet() (twitter.api.Api method)

 	
 	PostUpdate() (twitter.api.Api method)

 	PostUpdates() (twitter.api.Api method)

 	PythonTwitterDeprecationWarning

 	PythonTwitterDeprecationWarning330

 	PythonTwitterDeprecationWarning340

R

 	
 	RateLimit (class in twitter.ratelimit)

 	regex (twitter.ratelimit.ResourceEndpoint attribute)

 	remaining (twitter.ratelimit.EndpointRateLimit attribute)

 	
 	reset (twitter.ratelimit.EndpointRateLimit attribute)

 	resource (twitter.ratelimit.ResourceEndpoint attribute)

 	ResourceEndpoint (class in twitter.ratelimit)

S

 	
 	set_limit() (twitter.ratelimit.RateLimit method)

 	set_unknown_limit() (twitter.ratelimit.RateLimit method)

 	SetCache() (twitter.api.Api method)

 	SetCacheTimeout() (twitter.api.Api method)

 	SetCredentials() (twitter.api.Api method)

 	SetSource() (twitter.api.Api method)

 	
 	SetUrllib() (twitter.api.Api method)

 	SetUserAgent() (twitter.api.Api method)

 	SetXTwitterHeaders() (twitter.api.Api method)

 	ShowFriendship() (twitter.api.Api method)

 	ShowSubscription() (twitter.api.Api method)

 	Status (class in twitter.models)

T

 	
 	Trend (class in twitter.models)

 	twitter.api (module)

 	twitter.error (module)

 	twitter.models (module)

 	
 	twitter.ratelimit (module)

 	twitter.twitter_utils (module)

 	TwitterError

 	TwitterModel (class in twitter.models)

U

 	
 	UpdateBanner() (twitter.api.Api method)

 	UpdateFriendship() (twitter.api.Api method)

 	UpdateImage() (twitter.api.Api method)

 	UpdateProfile() (twitter.api.Api method)

 	UploadMediaChunked() (twitter.api.Api method)

 	
 	UploadMediaSimple() (twitter.api.Api method)

 	Url (class in twitter.models)

 	url_to_resource() (twitter.ratelimit.RateLimit static method)

 	User (class in twitter.models)

 	UsersLookup() (twitter.api.Api method)

 	UserStatus (class in twitter.models)

V

 	
 	VerifyCredentials() (twitter.api.Api method)

 	
 	volume (twitter.models.Trend attribute)

REST API Changes

Information compiled on Sept 14, 2016.

statuses/update Endpoint

auto_populate_reply_metadata

	Default is false

	Must have in_reply_to_status_id set.

	Unknown what happens if not set. Probably error (does it get posted?)

	If the status to which you’re replying is deleted, tweet will fail to post.

exclude_reply_user_ids

	List of user_ids to remove from result of auto_populate_reply_metadata.

	Doesn’t apply to the first user_id.

	If you try to remove it, this will be silently ignored by Twitter.

attachment_url

	Must be a status permalnk or a DM deep link.

	If it’s anything else and included in this parameter, Twitter will return an error.

Most Other Endpoints

tweet_mode

	Any endpoint that returns a tweet will accept this param.

	Must be in ['compat', 'extended']

	If tweet_mode == 'compat', then no extended_tweet node in the json returned.

	If tweet_mode == 'extended', then you’ll get the extended_tweet node.

Errors

	44 -> URL passed to attachment_url is invalid

	385 -> Replied to deleted tweet or tweet not visible to you

	386 -> Too many attachments types (ie a GIF + quote tweet)

Streaming API

Everything is going to be compatibility mode for now; however all tweets with have an extended_tweet node, which will contain the new information. According to Twitter’s documentation though, there’s the possibility that this node may not exist. We should be careful about making assumptions here.

Changes to Models

Classic tweet: tweet with length < 140 char.
Extended tweet: tweet with extended entities and text > 140 chars.

Twitter doesn’t say if extended tweet with a total length of < 140 characters will be considered a “Classic tweet”. They also state that an extended tweet shall have “text content [that] exceeds 140 characters in length”, however this is contradictory to earlier statements about total text length retaining a hard max at 140 characters.

There will be two rendering modes: Compatibility and Extended. If in compatibility mode and tweet is “classic”, no changes to tweet JSON. If in Extended mode, the following will change:

	text -> truncated version of the extended tweet’s text + “…” + permalink to tweet. (Twitter is mute on whether an extended tweet’s with (text + @mentions + urls) < 140 characters will have the @mentions + urls put back in text field.)

	truncated -> gets set to True if extended tweet is rendered in compat mode.

Modules

	Modules Documentation
	API

	Models

	Utilities

 _static/up-pressed.png

_static/up.png

_images/python-twitter-app-creation-part2.png
Your appiication has been created. Please take a moment to review and adjust your application's settings.

python-twitter-test-for-docs

Details |~ Settings ~ Keys and Access Tokens Permissions

Test Application for python-twitter documentation

hitps:/iwww.github.com/bear/python-twitter

Organization

Information about the organization or company associated with your application. This information is optional.
Organization None.

Organization website None

Application Settings

Your application’s Consumer Key and Secret are used o authenticate requests to the Twitter Platform.
Access level Read and write (modify app permissions)

‘Consumer Key (AP1 Key) P ————————s (manage keys and access
tokens)

Callback URL. hitp://127.0.0.1:8080
Callback URL Locked No
ign in with Twitter Yes

App-only authentication https://api.twitter.com/oauth2/token

Request token URL https://api.witter.com/oauth/request_token
Authorize URL. htps:/api.witter.com/oauth/authorize
Access token URL https:/apiwitter.com/oauth/access_token

Application Actions

Delete Application

Test OAuth

_images/python-twitter-app-creation-part3.png
python-twitter-test-for-docs Test oAt

Details ~ Settings ~ Keys and Access Tokens Permissions

Application Settings

Keep the "Consumer Secret” a secret. This key should never be human-readable in your application.

Consumer Key (API Key)

Consumer Secret (API Secret) = e e Tt
Access Level Read and write (modify app permissions)

Owner _ebl__

Owner ID —

Application Actions

Regenerate Consumer Key and Secret Change App Permissions

Your Access Token

This access token can be used to make AP/ requests on your own account's behalf. Do not share your access token secret with anyone.

Access Token o

e —
Access Token Secret i s
Access Level Read and write
Owner —ebl__
Owner ID ——

Token Actions

Regenerate My Access Token and Token Secret Revoke Token Access

_images/python-twitter-app-creation-part1.png
Create an application

Application Details
Name *
python-twitter-test-for-docs ®

Your application name. This s used o attibute the source of a tweet and in user-facing authorization screens. 32 characters max.

Description *
Test Application for python-twitter documentation

Your application description, which will be shown in user-acing authorization screens. Between 10 and 200 characters max.

Website *
hitps:/fwww,github.com/bear/python-twitter

Your application’s publicly accessible home page, where users can go to download, make use of, or find out more information about your application. This fully-qualified URL is used in the source attibution for
tweets created by your application and will be shown in user-facing authorization screens
(Iryou don't have a URL yet,just put a placeholder here but remember to change it ater,)

Callback URL
http://127.0.0.1:8080

Wnere should we retur after successfully authenticating? OAuth 1.0a applications should expliciy specify their oauth_callback URL on the request token step, regardess of the value given here. To restrct your
application from using callbacks, leave this ield blank.

Developer Agreement

Effective: May 18, 2015. I

“This Twitter Developer Agreement (*Agreement’) is made between you (either an individual or an entiy, referred to herein as “you")
‘and Twitter, Inc. and Twitter International Company (collectively, “Twitter") and governs your access to and use of the Licensed
Material (as defined below).

PLEASE READ THE TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY, INCLUDING WITHOUT LIMITATION ANY
LINKED TERMS AND CONDITIONS APPEARING OR REFERENCED BELOW, WHICH ARE HEREBY MADE PART OF THIS LICENSE
AGREEMENT. BY USING THE LICENSED MATERIAL, YOU ARE AGREEING THAT YOU HAVE READ, AND THAT YOU AGREE TO
COMPLY WITH AND TO BE BOUND BY THE TERMS AND CONDITIONS OF THIS AGREEMENT AND ALL APPLICABLE LAWS AND
REGULATIONS IN THEIR ENTIRETY WITHOUT LIMITATION OR QUALIFICATION. IF YOU DO NOT AGREE TO BE BOUND BY
THIS AGREEMENT, THEN YOU MAY NOT ACCESS OR OTHERWISE USE THE LICENSED MATERIAL. THIS AGREEMENT IS
EFFECTIVE AS OF THE FIRST DATE THAT YOU USE THE LICENSED MATERIAL (*EFFECTIVE DATE’).

IF YOU ARE AN INDIVIDUAL REPRESENTING AN ENTITY, YOU ACKNOWLEDGE THAT YOU HAVE THE APPROPRIATE
AUTHORITY TO ACCEPT THIS AGREEMENT ON BEHALF OF SUCH ENTITY. YOU MAY NOT USE THE LICENSED MATERIAL AND

(/ Yes, | agree

Having trouble creating your application?

If you're having trouble fulfling application creation requirements, please contact our Platform Operations team by using the "I have an API
policy question not covered by these points” option of the contact form at https://support witter.com/forms/platform

Create your Twitter application

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to python-twitter’s documentation!

 		
 Installation & Testing

 		
 Installation

 		
 Testing

 		
 Getting the code

 		
 Getting Started

 		
 Getting your application tokens

 		
 Create your app

 		
 Your app

 		
 Your Keys

 		
 Contributing

 		
 Getting the code

 		
 Testing

 		
 Migration from v2 to v3

 		
 Changes to Existing Methods

 		
 twitter.api.Api()

 		
 twitter.api.Api.CreateFavorite()

 		
 twitter.api.Api.DestroyFavorite()

 		
 twitter.api.Api.DestroyBlock()

 		
 twitter.api.Api.DestroyStatus()

 		
 twitter.api.Api.GetBlocks()

 		
 twitter.api.Api.GetFollowers()

 		
 twitter.api.Api.GetFollowersPaged()

 		
 twitter.api.Api.GetFriends()

 		
 twitter.api.Api.GetFriendsPaged()

 		
 twitter.api.Api.GetListMembers()

 		
 twitter.api.Api.GetStatus()

 		
 twitter.api.Api.GetStatusOembed()

 		
 twitter.api.Api.GetSearch()

 		
 twitter.api.Api.GetTrendsWoeid()

 		
 twitter.api.Api.GetUserStream()

 		
 twitter.api.Api.LookupFriendship()

 		
 twitter.api.Api.PostUpdate()

 		
 twitter.api.Api.PostRetweet()

 		
 Deprecation

 		
 twitter.api.Api.PostMedia()

 		
 twitter.api.Api.PostMultipleMedia()

 		
 New Methods

 		
 twitter.api.Api.GetBlocksIDs()

 		
 twitter.api.Api.GetBlocksIDsPaged()

 		
 twitter.api.Api.GetBlocksPaged()

 		
 twitter.api.Api.GetListMembersPaged()

 		
 twitter.api.Api.GetListsPaged()

 		
 twitter.api.Api.UploadMediaChunked()

 		
 twitter.api.Api.UploadMediaSimple()

 		
 Changelog

 		
 Version 3.4.2

 		
 Version 3.4.1

 		
 Version 3.4

 		
 Deprecations

 		
 Version 3.3.1

 		
 Version 3.3

 		
 Version 3.2.1

 		
 Version 3.2

 		
 Deprecations

 		
 What’s New

 		
 What’s Changed

 		
 Bugfixes

 		
 Version 3.1

 		
 What’s New

 		
 What’s Changed

 		
 Rate Limiting

 		
 Overview

 		
 Technical

 		
 Models

 		
 Searching

 		
 Raw Queries

 		
 Using with Django

 		
 Modules Documentation

 		
 API

 		
 Models

 		
 Utilities

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

