

python-crfsuite

python-crfsuite is a python binding to CRFsuite [https://github.com/chokkan/crfsuite].

Installation

pip install python-crfsuite

Usage

	API Reference

	Example [https://github.com/scrapinghub/python-crfsuite/blob/master/examples/CoNLL%202002.ipynb]: building a Named Entity Recognition system with python-crfsuite.

python-crfsuite is licensed under MIT license.
CRFsuite [https://github.com/chokkan/crfsuite] C/C++ library is licensed under BSD license.

Development happens at github: https://github.com/scrapinghub/python-crfsuite

See Also

sklearn-crfsuite [https://github.com/TeamHG-Memex/sklearn-crfsuite] is a python-crfsuite wrapper which provides
API similar to scikit-learn.

Indices and tables

	Index

	Module Index

	Search Page

Changes

0.9.6 (2018-08-01)

	Python 3.7 support (thanks @fgregg, @danmacnaughtan and @fuhrysteve).

	Python 3.3 support is dropped.

	new Tagger.open_inmemory method which allows to load tagger data
without having a file on-disk (thanks @lucywang000).

	license information is added to setup.py (thanks @nils-werner).

0.9.5 (2017-09-05)

	Python 3.6 wheels for Windows (thanks @fgregg).

0.9.4 (2017-09-04)

	Packaging fix (thanks @fgregg).

0.9.3 (2017-09-03)

	Fixed compatibility with Python 3.5+ on Windows (thanks @fgregg);

	CRFSuite C++ library is updated to latest version, this fixes several
memory leaks and improves performance (thanks @fgregg);

	extension is rebuilt with Cython 0.26.1.

0.9.2 (2017-05-04)

	binary wheels for OS X and Linux (thanks @jeancochrane).

0.9.1 (2016-12-19)

This is a release without changes in functionality.

	Repository is moved to https://github.com/scrapinghub/python-crfsuite;

	We’re now providing Windows wheels for Python 2.7, 3.3. and 3.4.

0.9 (2016-12-08)

	Python 2.6 support is dropped;

	CRFSuite C++ library is updated to a more recent commit;

	improved Windows support (thanks @fgregg);

	fixed building with gcc < 5.0.0 (thanks @kantan2015);

	extension is rebuilt with Cython 0.25.1; this improves PyPy compatibility
(but we’re not quite there yet).

	docs: trainer.logparser example is added to the notebook (thanks @samgalen).

0.8.4 (2015-11-25)

	the wrapper is rebuilt with Cython 0.23.4;

	declared Python 3.5 compatibility;

	fixed an issue with feature names ending with white spaces.

0.8.3 (2015-04-24)

	fix build on Windows. (thanks @fgregg)

0.8.2 (2015-02-04)

	memory leak is fixed by updating the bundled CRFsuite C++ library;

	the wrapper is rebuilt with Cython 0.21.2.

0.8.1 (2014-10-10)

	fix packaging issues with 0.8 release.

0.8 (2014-10-10)

	ItemSequence wrapper is added;

	tox tests are fixed.

0.7 (2014-08-11)

	More data formats for xseq: {"prefix": {feature_dict}} and
{"key": set(["key1",...])} feature dicts are now accepted by
pycrfsuite.Trainer and pycrfsuite.Tagger;

	feature separator changed from “=” to “:” (it looks better in case of
multi-level features);

	small doc and README fixes.

0.6.1 (2014-06-06)

	Switch to setuptools;

	wheels are uploaded to pypi for faster installation.

0.6 (2014-05-29)

	More data formats for xseq: {"key": "value"} and
{"key": bool_value} feature dicts are now accepted by
pycrfsuite.Trainer and pycrfsuite.Tagger.

0.5 (2014-05-27)

	Exceptions in logging message handlers are now propogated and raised. This
allows, for example, to stop training earlier by pressing Ctrl-C.

	It is now possible to customize pycrfsuite.Trainer logging
more easily by overriding the following methods:
pycrfsuite.Trainer.on_start(),
pycrfsuite.Trainer.on_featgen_progress(),
pycrfsuite.Trainer.on_featgen_end(),
pycrfsuite.Trainer.on_prepared(),
pycrfsuite.Trainer.on_prepare_error(),
pycrfsuite.Trainer.on_iteration(),
pycrfsuite.Trainer.on_optimization_end()
pycrfsuite.Trainer.on_end(). The feature is implemented by parsing
CRFsuite log. There is pycrfsuite.BaseTrainer that is not
doing this.

0.4.1 (2014-05-18)

	pycrfsuite.Tagger.info() is fixed.

0.4 (2014-05-16)

	(backwards-incompatible) training parameters are now passed
using params argument of pycrfsuite.Trainer constructor
instead of **kwargs;

	(backwards-incompatible) logging support is dropped;

	verbose argument for pycrfsuite.Trainer constructor;

	pycrfsuite.Trainer.get_params() and
pycrfsuite.Trainer.set_params() for getting/setting multiple training
parameters at once;

	string handling in Python 3.x is fixed by rebuilding the wrapper with
Cython 0.21dev;

	algorithm names are normalized to support names used
by crfsuite console utility and documented in crfsuite manual;

	type conversion for training parameters is fixed: feature.minfreq
now works, and boolean arguments become boolean.

0.3 (2014-05-14)

python-crfsuite now detects the featue format (dict vs list of strings)
automatically - it turns out the performance overhead is negligible.

	Trainer.append_stringslists and Trainer.append_dicts methods
are replaced with a single pycrfsuite.Trainer.append() method;

	Tagger.set_stringlists and Tagger.set_dicts methods are
removed in favor of pycrfsuite.Tagger.set() method;

	feature_format arguments in pycrfsuite.Tagger methods
and constructor are dropped.

0.2 (2014-05-14)

	pycrfsuite.Tagger.dump() and pycrfsuite.Tagger.info()
methods for model debugging;

	a memory leak in Trainer is fixed (trainer instances were never
garbage collected);

	documentation and testing improvements.

0.1 (2014-04-30)

Many changes; python-crfsuite is almost rewritten.

0.0.1 (2014-04-24)

Initial release.

API Reference

	
class pycrfsuite.ItemSequence

	A wrapper for crfsuite ItemSequence - a class for storing
features for all items in a single sequence.

Using this class is an alternative to passing data to Trainer
and Tagger directly. By using this class it is possible to
save some time if the same input sequence is passed to trainers/taggers
more than once - features won’t be processed multiple times.
It also allows to get “processed” features/attributes that are sent
to CRFsuite - they could be helpful e.g. to check which attributes
(returned by info()) are active for a given observation.

Initialize ItemSequence with a list of item features:

>>> ItemSequence([{'foo': 1, 'bar': 0}, {'foo': 1.5, 'baz': 2}])
<ItemSequence of size 2>

Item features could be in one of the following formats:

	{“string_key”: float_weight, …} dict where keys are
observed features and values are their weights;

	{“string_key”: bool, …} dict; True is converted to 1.0 weight,
False - to 0.0;

	{“string_key”: “string_value”, …} dict; that’s the same as
{“string_key=string_value”: 1.0, …}

	[“string_key1”, “string_key2”, …] list; that’s the same as
{“string_key1”: 1.0, “string_key2”: 1.0, …}

	{“string_prefix”: {…}} dicts: nested dict is processed and
“string_prefix” s prepended to each key.

	{“string_prefix”: […]} dicts: nested list is processed and
“string_prefix” s prepended to each key.

	{“string_prefix”: set([…])} dicts: nested list is processed and
“string_prefix” s prepended to each key.

Dict-based features can be mixed, i.e. this is allowed:

{"key1": float_weight,
 "key2": "string_value",
 "key3": bool_value,
 "key4: {"key5": ["x", "y"], "key6": float_value},
 }

	
items(self)

	Return a list of prepared item features:
a list of {unicode_key: float_value} dicts.

>>> ItemSequence([["foo"], {"bar": {"baz": 1}}]).items()
[{'foo': 1.0}, {'bar:baz': 1.0}]

Training

	
class pycrfsuite.Trainer

	Bases: pycrfsuite._pycrfsuite.BaseTrainer

The trainer class.

This class maintains a data set for training, and provides an interface
to various training algorithms.

	Parameters

	
	algorithm{‘lbfgs’, ‘l2sgd’, ‘ap’, ‘pa’, ‘arow’}

	The name of the training algorithm. See Trainer.select().

	paramsdict, optional

	Training parameters. See Trainer.set_params()
and Trainer.set().

	verboseboolean

	Whether to print debug messages during training. Default is True.

	
append(self, xseq, yseq, int group=0)

	Append an instance (item/label sequence) to the data set.

	Parameters

	
	xseqa sequence of item features

	The item sequence of the instance. xseq should be a list
of item features or an ItemSequence instance.
Allowed item features formats are the same as described
in ItemSequence docs.

	yseqa sequence of strings

	The label sequence of the instance. The number
of elements in yseq must be identical to that
in xseq.

	groupint, optional

	The group number of the instance. Group numbers are used to
select subset of data for heldout evaluation.

	
clear(self)

	Remove all instances in the data set.

	
get(self, name)

	Get the value of a training parameter.
This function gets a parameter value for the graphical model and
training algorithm specified by Trainer.select() method.

	Parameters

	
	namestring

	The parameter name.

	
get_params(self)

	Get training parameters.

	Returns

	
	dict

	A dictionary with {parameter_name: parameter_value}
with all trainer parameters.

	
help(self, name)

	Get the description of a training parameter.
This function obtains the help message for the parameter specified
by the name. The graphical model and training algorithm must be
selected by Trainer.select() method before calling this method.

	Parameters

	
	namestring

	The parameter name.

	Returns

	
	string

	The description (help message) of the parameter.

	
logparser = None

	

	
message(self, message)

	

	
on_end(self, log)

	

	
on_featgen_end(self, log)

	

	
on_featgen_progress(self, log, percent)

	

	
on_iteration(self, log, info)

	

	
on_optimization_end(self, log)

	

	
on_prepare_error(self, log)

	

	
on_prepared(self, log)

	

	
on_start(self, log)

	

	
params(self)

	Obtain the list of parameters.

This function returns the list of parameter names available for the
graphical model and training algorithm specified in Trainer constructor
or by Trainer.select() method.

	Returns

	
	list of strings

	The list of parameters available for the current
graphical model and training algorithm.

	
select(self, algorithm, type='crf1d')

	Initialize the training algorithm.

	Parameters

	
	algorithm{‘lbfgs’, ‘l2sgd’, ‘ap’, ‘pa’, ‘arow’}

	The name of the training algorithm.

	‘lbfgs’ for Gradient descent using the L-BFGS method,

	‘l2sgd’ for Stochastic Gradient Descent with L2 regularization term

	‘ap’ for Averaged Perceptron

	‘pa’ for Passive Aggressive

	‘arow’ for Adaptive Regularization Of Weight Vector

	typestring, optional

	The name of the graphical model.

	
set(self, name, value)

	Set a training parameter.
This function sets a parameter value for the graphical model and
training algorithm specified by Trainer.select() method.

	Parameters

	
	namestring

	The parameter name.

	valuestring

	The value of the parameter.

	
set_params(self, params)

	Set training parameters.

	Parameters

	
	paramsdict

	A dict with parameters {name: value}

	
train(self, model, int holdout=-1)

	Run the training algorithm.
This function starts the training algorithm with the data set given
by Trainer.append() method.

	Parameters

	
	modelstring

	The filename to which the trained model is stored.
If this value is empty, this function does not
write out a model file.

	holdoutint, optional

	The group number of holdout evaluation. The
instances with this group number will not be used
for training, but for holdout evaluation.
Default value is -1, meaning “use all instances for training”.

	
verbose

	verbose: object

Tagging

	
class pycrfsuite.Tagger

	The tagger class.

This class provides the functionality for predicting label sequences for
input sequences using a model.

	
close(self)

	Close the model.

	
dump(self, filename=None)

	Dump a CRF model in plain-text format.

	Parameters

	
	filenamestring, optional

	File name to dump the model to.
If None, the model is dumped to stdout.

	
info(self)

	Return a ParsedDump structure with model internal information.

	
labels(self)

	Obtain the list of labels.

	Returns

	
	list of strings

	The list of labels in the model.

	
marginal(self, y, pos)

	Compute the marginal probability of the label y at position pos
for the current input sequence (i.e. a sequence set using
Tagger.set() method or a sequence used in a previous
Tagger.tag() call).

	Parameters

	
	ystring

	The label.

	tint

	The position of the label.

	Returns

	
	float

	The marginal probability of the label y at position t.

	
open(self, name)

	Open a model file.

	Parameters

	
	namestring

	The file name of the model file.

	
open_inmemory(self, bytes value)

	Open a model from memory.

	Parameters

	
	valuebytes

	Binary model data (content of a file saved by Trainer.train).

	
probability(self, yseq)

	Compute the probability of the label sequence for the current input
sequence (a sequence set using Tagger.set() method or
a sequence used in a previous Tagger.tag() call).

	Parameters

	
	yseqlist of strings

	The label sequence.

	Returns

	
	float

	The probability P(yseq|xseq).

	
set(self, xseq)

	Set an instance (item sequence) for future calls of
Tagger.tag(), Tagger.probability()
and Tagger.marginal() methods.

	Parameters

	
	xseqitem sequence

	The item sequence of the instance. xseq should be a list of
item features or an ItemSequence instance.
Allowed item features formats are the same as described
in ItemSequence docs.

	
tag(self, xseq=None)

	Predict the label sequence for the item sequence.

	Parameters

	
	xseqitem sequence, optional

	The item sequence. If omitted, the current sequence is used
(a sequence set using Tagger.set() method or
a sequence used in a previous Tagger.tag() call).

xseq should be a list of item features or
an ItemSequence instance. Allowed item features formats
are the same as described in ItemSequence docs.

	Returns

	
	list of strings

	The label sequence predicted.

Debugging

	
class pycrfsuite._dumpparser.ParsedDump

	CRFsuite model parameters. Objects of this type are returned by
pycrfsuite.Tagger.info() method.

	Attributes

	
	transitionsdict

	{(from_label, to_label): weight} dict with learned transition weights

	state_featuresdict

	{(attribute, label): weight} dict with learned (attribute, label) weights

	headerdict

	Metadata from the file header

	labelsdict

	{name: internal_id} dict with model labels

	attributesdict

	{name: internal_id} dict with known attributes

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pycrfsuite	

 	
 	
 pycrfsuite._dumpparser	

Index

 A
 | C
 | D
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | S
 | T
 | V

A

 	
 	append() (pycrfsuite.Trainer method)

C

 	
 	clear() (pycrfsuite.Trainer method)

 	
 	close() (pycrfsuite.Tagger method)

D

 	
 	dump() (pycrfsuite.Tagger method)

G

 	
 	get() (pycrfsuite.Trainer method)

 	
 	get_params() (pycrfsuite.Trainer method)

H

 	
 	help() (pycrfsuite.Trainer method)

I

 	
 	info() (pycrfsuite.Tagger method)

 	
 	items() (pycrfsuite.ItemSequence method)

 	ItemSequence (class in pycrfsuite)

L

 	
 	labels() (pycrfsuite.Tagger method)

 	
 	logparser (pycrfsuite.Trainer attribute)

M

 	
 	marginal() (pycrfsuite.Tagger method)

 	
 	message() (pycrfsuite.Trainer method)

O

 	
 	on_end() (pycrfsuite.Trainer method)

 	on_featgen_end() (pycrfsuite.Trainer method)

 	on_featgen_progress() (pycrfsuite.Trainer method)

 	on_iteration() (pycrfsuite.Trainer method)

 	on_optimization_end() (pycrfsuite.Trainer method)

 	
 	on_prepare_error() (pycrfsuite.Trainer method)

 	on_prepared() (pycrfsuite.Trainer method)

 	on_start() (pycrfsuite.Trainer method)

 	open() (pycrfsuite.Tagger method)

 	open_inmemory() (pycrfsuite.Tagger method)

P

 	
 	params() (pycrfsuite.Trainer method)

 	ParsedDump (class in pycrfsuite._dumpparser)

 	
 	probability() (pycrfsuite.Tagger method)

 	pycrfsuite (module)

 	pycrfsuite._dumpparser (module)

S

 	
 	select() (pycrfsuite.Trainer method)

 	set() (pycrfsuite.Tagger method)

 	(pycrfsuite.Trainer method)

 	
 	set_params() (pycrfsuite.Trainer method)

T

 	
 	tag() (pycrfsuite.Tagger method)

 	Tagger (class in pycrfsuite)

 	
 	train() (pycrfsuite.Trainer method)

 	Trainer (class in pycrfsuite)

V

 	
 	verbose (pycrfsuite.Trainer attribute)

 nav.xhtml

 Table of Contents

 		
 python-crfsuite

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

