

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pysftp 0.2.9 documentation

Welcome to pysftp’s documentation!

A simple interface to sftp. based on zeth’s ssh.py

Example

import pysftp

with pysftp.Connection('hostname', username='me', password='secret') as sftp:
 with sftp.cd('public'): # temporarily chdir to public
 sftp.put('/my/local/filename') # upload file to public/ on remote
 sftp.get('remote_file') # get a remote file

Supports

Tested on Python 2.7, 3.2, 3.3, 3.4

[image: Build Status]
 [https://drone.io/bitbucket.org/dundeemt/pysftp/latest]

Additional Information

	Project: https://bitbucket.org/dundeemt/pysftp

	Download: https://pypi.python.org/pypi/pysftp

	Documentation: https://pysftp.rtfd.org/

	License: BSD

requirements

paramiko >= 1.15.2

Contents:

	Cook Book
	pysftp.Connection()

	pysftp.CnOpts

	pysftp.Connection.get()

	pysftp.Connection.get_d()

	pysftp.Connection.get_r()

	pysftp.Connection.put()

	pysftp.Connection.put_d()

	pysftp.Connection.put_r()

	pysftp.Connection.cd()

	pysftp.Connection.chmod()

	pysftp.st_mode_to_int()

	pysftp.Connection.chown()

	pysftp.Connection.cwd()

	pysftp.Connection.pwd

	pysftp.Connection.listdir()

	pysftp.Connection.listdir_attr()

	pysftp.Connection.makedirs()

	pysftp.Connection.mkdir()

	pysftp.Connection.isdir()

	pysftp.Connection.isfile()

	pysftp.Connection.readlink()

	pysftp.Connection.exists()

	pysftp.Connection.lexists()

	pysftp.Connection.truncate()

	pysftp.Connection.walktree()

	pysftp.Connection.sftp_client

	pysftp.path_advance

	pysftp.path_retreat

	pysftp.reparent

	pysftp.walktree

	pysftp.cd

	Remarks

	API
	SFTPAttributes

	SFTPFile

	SecurityOptions

	Change Log

	Contributing
	Code

	Docs

	Bug Reports

	Issue Priorities

	Testing

	Authors
	Acknowledgment

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Jeff Hinrichs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pysftp 0.2.9 documentation

Cook Book

While in many ways, pysftp is just a thin wrapper over paramiko’s SFTPClient,
there are a number of ways that we make it more productive and easier to
accomplish common, higher-level tasks. The following snippets show where we
add value to this great module. See the API docs for a complete
listing.

pysftp.Connection()

The Connection object is the base of pysftp. It supports connections via
username and password.

import pysftp
sftp = pysftp.Connection('hostname', username='me', password='secret')
#
... do sftp operations
#
sftp.close() # close your connection to hostname

The Connection object is also context aware so you can use it with a with
statement.

import pysftp
with pysftp.Connection('hostname', username='me', password='secret') as sftp:
 #
 # ... do sftp operations
 #
connection closed automatically at the end of the with-block

Want to use an RSA or DSA key pair, that is simple too.

import pysftp
with pysftp.Connection('hostname', username='me', private_key='/path/to/keyfile') as sftp:
 #
 # ... do sftp operations
 #

If you key is password protected, just add private_key_pass to the argument list.

How about a paramiko.AgentKey ? no problem, just set the private_key equal to it.

import pysftp
with pysftp.Connection('hostname', username='me', private_key=my_agentkey) as sftp:
 #
 # ... do sftp operations
 #

The connection object also allows you to use an IP Address for the host and
you can set the port which defaults to 22, as well.

pysftp.CnOpts

You can also specify additional connection options using the pysftp.CnOpts
object. These options are advanced and not applicable to most uses, because of
this they have been segmented from the Connection parameter list and made
available via CnOpts obj/parameter.

Host Key checking is enabled by default. It will use ~/.ssh/known_hosts by
default. If you wish to disable host key checking (NOT ADVISED) you will need
to modify the default CnOpts and set the .hostkeys to None.

import pysftp
cnopts = pysftp.CnOpts()
cnopts.hostkeys = None
with pysftp.Connection('host', username='me', password='pass', cnopts=cnopts):
 # do stuff here

To use a completely different known_hosts file, you can override CnOpts looking
for ~/.ssh/known_hosts by specifying the file when instantiating.

import pysftp
cnopts = pysftp.CnOpts(knownhosts='path/to/your/knownhostsfile')
cnopts.hostkeys = None
with pysftp.Connection('host', username='me', password='pass', cnopts=cnopts):
 # do stuff here

If you wish to use ~/.ssh/known_hosts but add additional known host keys
you can merge with update additional known_host format files by using .load
method.

import pysftp
cnopts = pysftp.CnOpts()
cnopts.hostkeys.load('path/to/your/extra_knownhosts')
with pysftp.Connection('host', username='me', password='pass', cnopts=cnopts):
 # do stuff here

For both the knownhost parameter and the load argument, pysftp expands user, so
you can use tilde notation in your pathing.

OTHER AVAILABLE CONNECTION OPTIONS via CnOpts:

	.log - replaces the log parameter in the Connection method

	.compression - False (Default) no compression, True - enable compression

	.ciphers - replaces the ciphers parameter in the Connection method.

	log and ciphers in the Connection parameter list are deprecated and will be
removed in version 0.3.0 Use the CnOpts to specify them.

Here is a common scenario, you have your connection information stored in a
persistence mechanism, like yamjam [http://yamjam.rtfd.org/] and when you access
it, it is returned in dictionary form. {'host':'myhost', username:'me', ...}
Just send the dict into the connection object like so:

import pysftp
cinfo = {'host':'hostname', 'username':'me', 'password':'secret', 'port':2222}
with pysftp.Connection(**cinfo) as sftp:
 #
 # ... do sftp operations
 #

pysftp.Connection.get()

In addition to the normal paramiko call, you can optionally set the
preserve_mtime parameter to True and the operation will make sure that
the modification times on the local copy match those on the server.

...
sftp.get('myfile', preserve_mtime=True)

pysftp.Connection.get_d()

This pysftp method is an abstraction above get() that allows you to copy
all the files in a remote directory to a local path.

copy all files under public to a local path, preserving modification time
sftp.get_d('public', 'local-backup', preserve_mtime=True)

pysftp.Connection.get_r()

This pysftp method is an abstraction that recursively copies files and
directories from the remote to a local path.

copy all files AND directories under public to a local path
sftp.get_r('public', 'local-backup', preserve_mtime=True)

pysftp.Connection.put()

In addition to the normal paramiko call, you can optionally set the
preserve_mtime parameter to True and the operation will make sure that
the modification times on the server copy match those on the local.

copy myfile, to the current working directory on the server, preserving modification time
sftp.put('myfile', preserve_mtime=True)

pysftp.Connection.put_d()

The opposite of get_d(), put_d allows you to copy the contents of a
local directory to a remote one via SFTP.

copy files from images, to remote static/images directory, preserving modification time
sftp.put_d('images', 'static/images', preserve_mtime=True)

pysftp.Connection.put_r()

This method copies all files and directories from a local path to a remote path.
It creates directories, and happily succeeds even if the target directories already exist.

recursively copy files and directories from local static, to remote static,
preserving modification times on the files
sftp.put_r('static', 'static', preserve_mtime=True)

pysftp.Connection.cd()

This method is a with-context capable version of chdir(). Restoring the
original directory when the with statement goes out of scope. It can be
called with a remote directory to temporarily change to

with sftp.cd('static'): # now in ./static
 sftp.chdir('here') # now in ./static/here
 sftp.chdir('there') # now in ./static/here/there
now back to the original current working directory

Or it can be called without a remote directory to just act as a bookmark you
want to return to later.

with sftp.cd(): # still in .
 sftp.chdir('static') # now in ./static
 sftp.chdir('here') # now in ./static/here
now back to the original current working directory

pysftp.Connection.chmod()

chmod() is a wrapper around paramiko’s except for the fact it will
takes an integer representation of the octal mode. No leading 0 or 0o
wanted. We know it’s suppose to be an octal, but who really remembers that?

This way it is just like a command line chmod 644 readme.txt

user group other
rwx rwx rwx
421 421 421

user - read/write = 4+2 = 6
group - read = 4 = 4
other - read = 4 = 4

sftp.chmod('readme.txt', 644)

pysftp.st_mode_to_int()

converts an octal mode result back to an integer representation. The .st_mode
information returned in SFTPAttribute object .stat(fname).st_mode contains
extra things you probably don’t care about, in a form that has been converted
from octal to int so you won’t recognize it at first. This function clips the
extra bits and hands you the file mode bits in a way you’ll recognize.

>>> attr = sftp.stat('readme.txt')
>>> attr.st_mode
33188
>>> pysftp.st_mode_to_int(attr.st_mode)
644

pysftp.Connection.chown()

pysftp’s method allows you to specify just, gid or the uid or both. If either
gid or uid is None (default), then pysftp does a stat to get the current ids
and uses that to fill in the missing parameter because the underlying paramiko
method requires that you explicitly set both.

NOTE uid and gid are integers and relative to each system. Just because you
are uid 102 on your local system, a uid of 102 on the remote system most likely
won’t be your login. You will need to do some homework to make sure that you
are setting these values as you intended.

pysftp.Connection.cwd()

cwd() is a synonym for chdir(). Its purpose is to make transposing
hand typed commands at an sftp command line into those used by pysftp, easier
to do.

...
sftp.cwd('public') # is equivalent to sftp.chdir('public')

pysftp.Connection.pwd

Returns the current working directory. It returns the result of
.normalize(‘.’) but makes your code and intention easier to read. Paramiko
has a method, getcwd(), that we expose, but that method returns
None if chdir() has
not been called prior.

...
>>> print(sftp.getcwd())
None
>>> sftp.pwd
u'/home/test'

pysftp.Connection.listdir()

The difference here, is that pysftp’s version returns a sorted list instead of
paramiko’s arbitrary order. Sorted by filename.

...
>>> sftp.listdir()
[u'pub', u'readme.sym', u'readme.txt']

pysftp.Connection.listdir_attr()

The difference here, is that pysftp’s version returns a sorted list instead of
paramiko’s arbitrary order. Sorted by SFTPAttribute.filename.

...
>>> for attr in sftp.listdir_attr():
... print attr.filename, attr
...
pub dr-xrwxr-x 1 501 502 5 19 May 23:22 pub
readme.sym lrwxr-xr-x 1 501 502 10 21 May 23:29 readme.sym
readme.txt -r--r--r-- 1 501 502 8192 26 May 23:32 readme.txt

pysftp.Connection.makedirs()

A common scenario where you need to create all directories in a path as
needed, setting their mode, if created. Takes a mode argument, just like
chmod(), that is an integer representation of the mode you want.

...
sftp.makedirs('pub/show/off') # will happily make all non-existing directories

pysftp.Connection.mkdir()

Just like chmod(), the mode is an integer representation of the octal
number to use. Just like the unix cmd, chmod you use 744 not 0744 or 0o744.

...
sftp.mkdir('show', mode=644) # user r/w, group and other read-only

pysftp.Connection.isdir()

Does all the busy work of stat’ing and dealing with the stat module returning
a simple True/False.

...
>>> sftp.isdir('pub')
True

pysftp.Connection.isfile()

Does all the busy work of stat’ing and dealing with the stat module returning
a simple True/False.

...
>>> sftp.isfile('pub')
False

pysftp.Connection.readlink()

The underlying paramiko method can return either an absolute or a relative path.
pysftp forces this to always be an absolute path by laundering the result with
a .normalize before returning.

...
>>> sftp.readlink('readme.sym')
u'/home/test/readme.txt'

pysftp.Connection.exists()

Returns True if a remote entity exists

...
>>> sftp.exists('readme.txt') # a file
True
>>> sftp.exists('pub') # a dir
True

pysftp.Connection.lexists()

Like exists(), but returns True for a broken symbolic link

pysftp.Connection.truncate()

Like the underlying .truncate method, by pysftp returns the file’s new size
after the operation.

>>> sftp.truncate('readme.txt', 4096)
4096

pysftp.Connection.walktree()

Is a powerful method that can recursively (default) walk a remote directory
structure and calls a user-supplied callback functions for each file, directory
or unknown entity it encounters. It is used in the get_x methods of pysftp
and can be used with great effect to do your own bidding. Each callback is
supplied the pathname of the entity. (form: func(str))

pysftp.Connection.sftp_client

Don’t like how we have over-ridden or modified a paramiko method? Use this
attribute to get at paramiko’s original version. Remember, our goal is to
augment not supplant paramiko.

pysftp.path_advance

generator to iterate over a file path

...
>>> list(pysftp.path_advance('./pub/example/example01'))
['.', './pub', './pub/example', './pub/example/example01']

pysftp.path_retreat

generator to iterate over a file path in reverse

...
>>> list(pysftp.path_retreat('./pub/example/example01'))
['./pub/example/example01', './pub/example', './pub', '.']

pysftp.reparent

Pythons os.path.join('backup', '/home/test/pub') returns ‘/home/test/pub’,
but if you want to copy a directory structure to a new path this won’t do what
you want. But, reparent will.

...
 >>> pysftp.reparent('backup', '/home/test/pub')
'backup/./home/test/pub'

pysftp.walktree

Is similar to pysftp.Connection.walktree() except that it walks a local
directory structure. It has the same callback mechanism.

pysftp.cd

A with-context aware version of os.chdir for use on the local file
system. The yin to pysftp.Connection.cd() yang.

...
>>> import os
>>> os.getcwd()
'/home/jlh/Projects/pysftp/src'
>>> with pysftp.cd('docs'):
... print os.getcwd()
...
/home/jlh/Projects/pysftp/src/docs
>>> os.getcwd()
'/home/jlh/Projects/pysftp/src'

Remarks

We think paramiko is a great python library and it is the backbone of pysftp.
The methods pysftp has created are abstractions that serve a programmer’s
productivity by encapsulating many of the higher function use cases of
interacting with SFTP. Instead of writing your own code to walk directories
and call get and put, dealing with not only paramiko but Python’s own os
and stat modules and writing tests (many code snippets on the net are
incomplete and don’t account for edge cases) pysftp supplies a complete
library for dealing with all three. Leaving you to focus on your primary task.

Paramiko also tries very hard to stay true to Python’s os module, which
means sometimes, things are weird or a bit too low level. We think paramiko’s
goals are good and don’t believe they should change. Those changes are for an
abstraction library like pysftp.

 Copyright 2016, Jeff Hinrichs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pysftp 0.2.9 documentation

API

A friendly Python SFTP interface.

	
class pysftp.CnOpts(knownhosts=None)

	additional connection options beyond authentication

	Variables:	
	log (bool|str) – initial value: False -
log connection/handshake details? If set to True,
pysftp creates a temporary file and logs to that. If set to a valid
path and filename, pysftp logs to that. The name of the logfile can
be found at .logfile

	compression (bool) – initial value: False - Enables compression on the
transport, if set to True.

	ciphers (list|None) – initial value: None -
List of ciphers to use in order.

	hostkeys (paramiko.hostkeys.HostKeys|None) – HostKeys object to use for
host key checking.

	Parameters:	knownhosts (filepath|None) – initial value: None - file to load
hostkeys. If not specified, uses ~/.ssh/known_hosts

	Returns:	(obj) CnOpts - A connection options object, used for passing
extended options to the Connection

	Raises:	HostKeysException –

	
get_hostkey(host)

	return the matching hostkey to use for verification for the host
indicated or raise an SSHException

	
class pysftp.Connection(host, username=None, private_key=None, password=None, port=22, private_key_pass=None, ciphers=None, log=False, cnopts=None, default_path=None)

	Connects and logs into the specified hostname.
Arguments that are not given are guessed from the environment.

	Parameters:	
	host (str) – The Hostname or IP of the remote machine.

	username (str|None) – Default: None -
Your username at the remote machine.

	private_key (str|obj|None) – Default: None -
path to private key file(str) or paramiko.AgentKey

	password (str|None) – Default: None -
Your password at the remote machine.

	port (int) – Default: 22 -
The SSH port of the remote machine.

	private_key_pass (str|None) – Default: None -
password to use, if private_key is encrypted.

	ciphers (list|None) – Deprecated -
see pysftp.CnOpts and cnopts parameter

	log (bool|str) – Deprecated -
see pysftp.CnOpts and cnopts parameter

	cnopts (None|CnOpts) – Default: None - extra connection options
set in a CnOpts object.

	default_path (str|None) – Default: None -
set a default path upon connection.

	Returns:	(obj) connection to the requested host

	Raises:	
	ConnectionException –

	CredentialException –

	SSHException –

	AuthenticationException –

	PasswordRequiredException –

	HostKeysException –

	
active_ciphers

	Get tuple of currently used local and remote ciphers.

	Returns:	(tuple of str) currently used ciphers (local_cipher,
remote_cipher)

	
active_compression

	Get tuple of currently used local and remote compression.

	Returns:	(tuple of str) currently used compression (local_compression,
remote_compression)

	
cd(remotepath=None)

	context manager that can change to a optionally specified remote
directory and restores the old pwd on exit.

	Parameters:	remotepath (str|None) – Default: None -
remotepath to temporarily make the current directory

	Returns:	None

	Raises:	IOError, if remote path doesn’t exist

	
chdir(remotepath)

	change the current working directory on the remote

	Parameters:	remotepath (str) – the remote path to change to

	Returns:	None

	Raises:	IOError, if path does not exist

	
chmod(remotepath, mode=777)

	set the mode of a remotepath to mode, where mode is an integer
representation of the octal mode to use.

	Parameters:	
	remotepath (str) – the remote path/file to modify

	mode (int) – Default: 777 -
int representation of octal mode for directory

	Returns:	None

	Raises:	IOError, if the file doesn’t exist

	
chown(remotepath, uid=None, gid=None)

	set uid and/or gid on a remotepath, you may specify either or both.
Unless you have permission to do this on the remote server, you
will raise an IOError: 13 - permission denied

	Parameters:	
	remotepath (str) – the remote path/file to modify

	uid (int) – the user id to set on the remotepath

	gid (int) – the group id to set on the remotepath

	Returns:	None

	Raises:	IOError, if you don’t have permission or the file doesn’t exist

	
close()

	Closes the connection and cleans up.

	
cwd(remotepath)

	change the current working directory on the remote

	Parameters:	remotepath (str) – the remote path to change to

	Returns:	None

	Raises:	IOError, if path does not exist

	
execute(command)

	Execute the given commands on a remote machine. The command is
executed without regard to the remote pwd.

	Parameters:	command (str) – the command to execute.

	Returns:	(list of str) representing the results of the command

	Raises:	Any exception raised by command will be passed through.

	
exists(remotepath)

	Test whether a remotepath exists.

	Parameters:	remotepath (str) – the remote path to verify

	Returns:	(bool) True, if remotepath exists, else False

	
get(remotepath, localpath=None, callback=None, preserve_mtime=False)

	Copies a file between the remote host and the local host.

	Parameters:	
	remotepath (str) – the remote path and filename, source

	localpath (str) – the local path and filename to copy, destination. If not specified,
file is copied to local current working directory

	callback (callable) – optional callback function (form: func(int, int)) that accepts
the bytes transferred so far and the total bytes to be transferred.

	preserve_mtime (bool) – Default: False - make the modification time(st_mtime) on the
local file match the time on the remote. (st_atime can differ
because stat’ing the localfile can/does update it’s st_atime)

	Returns:	None

	Raises:	IOError

	
get_d(remotedir, localdir, preserve_mtime=False)

	get the contents of remotedir and write to locadir. (non-recursive)

	Parameters:	
	remotedir (str) – the remote directory to copy from (source)

	localdir (str) – the local directory to copy to (target)

	preserve_mtime (bool) – Default: False -
preserve modification time on files

	Returns:	None

	Raises:	

	
get_r(remotedir, localdir, preserve_mtime=False)

	recursively copy remotedir structure to localdir

	Parameters:	
	remotedir (str) – the remote directory to copy from

	localdir (str) – the local directory to copy to

	preserve_mtime (bool) – Default: False -
preserve modification time on files

	Returns:	None

	Raises:	

	
getcwd()

	return the current working directory on the remote. This is a wrapper
for paramiko’s method and not to be confused with the SFTP command,
cwd.

	Returns:	(str) the current remote path. None, if not set.

	
getfo(remotepath, flo, callback=None)

	Copy a remote file (remotepath) to a file-like object, flo.

	Parameters:	
	remotepath (str) – the remote path and filename, source

	flo – open file like object to write, destination.

	callback (callable) – optional callback function (form: func(int, int)) that accepts
the bytes transferred so far and the total bytes to be transferred.

	Returns:	(int) the number of bytes written to the opened file object

	Raises:	Any exception raised by operations will be passed through.

	
isdir(remotepath)

	return true, if remotepath is a directory

	Parameters:	remotepath (str) – the path to test

	Returns:	(bool)

	
isfile(remotepath)

	return true if remotepath is a file

	Parameters:	remotepath (str) – the path to test

	Returns:	(bool)

	
lexists(remotepath)

	Test whether a remotepath exists. Returns True for broken symbolic
links

	Parameters:	remotepath (str) – the remote path to verify

	Returns:	(bool), True, if lexists, else False

	
listdir(remotepath='.')

	return a list of files/directories for the given remote path.
Unlike, paramiko, the directory listing is sorted.

	Parameters:	remotepath (str) – path to list on the server

	Returns:	(list of str) directory entries, sorted

	
listdir_attr(remotepath='.')

	return a list of SFTPAttribute objects of the files/directories for
the given remote path. The list is in arbitrary order. It does not
include the special entries ‘.’ and ‘..’.

The returned SFTPAttributes objects will each have an additional field:
longname, which may contain a formatted string of the file’s
attributes, in unix format. The content of this string will depend on
the SFTP server.

	Parameters:	remotepath (str) – path to list on the server

	Returns:	(list of SFTPAttributes), sorted

	
logfile

	return the name of the file used for logging or False it not logging

	Returns:	(str)logfile or (bool) False

	
lstat(remotepath)

	return information about file/directory for the given remote path,
without following symbolic links. Otherwise, the same as .stat()

	Parameters:	remotepath (str) – path to stat

	Returns:	(obj) SFTPAttributes object

	
makedirs(remotedir, mode=777)

	create all directories in remotedir as needed, setting their mode
to mode, if created.

If remotedir already exists, silently complete. If a regular file is
in the way, raise an exception.

	Parameters:	
	remotedir (str) – the directory structure to create

	mode (int) – Default: 777 -
int representation of octal mode for directory

	Returns:	None

	Raises:	OSError

	
mkdir(remotepath, mode=777)

	Create a directory named remotepath with mode. On some systems,
mode is ignored. Where it is used, the current umask value is first
masked out.

	Parameters:	
	remotepath (str) – directory to create`

	mode (int) – Default: 777 -
int representation of octal mode for directory

	Returns:	None

	
normalize(remotepath)

	Return the expanded path, w.r.t the server, of a given path. This
can be used to resolve symlinks or determine what the server believes
to be the pwd, by passing ‘.’ as remotepath.

	Parameters:	remotepath (str) – path to be normalized

	Returns:	(str) normalized form of the given path

	Raises:	IOError, if remotepath can’t be resolved

	
open(remote_file, mode='r', bufsize=-1)

	Open a file on the remote server.

See http://paramiko-docs.readthedocs.org/en/latest/api/sftp.html for
details.

	Parameters:	
	remote_file (str) – name of the file to open.

	mode (str) – mode (Python-style) to open file (always assumed binary)

	bufsize (int) – Default: -1 - desired buffering

	Returns:	(obj) SFTPFile, a handle the remote open file

	Raises:	IOError, if the file could not be opened.

	
put(localpath, remotepath=None, callback=None, confirm=True, preserve_mtime=False)

	Copies a file between the local host and the remote host.

	Parameters:	
	localpath (str) – the local path and filename

	remotepath (str) – the remote path, else the remote pwd and filename is used.

	callback (callable) – optional callback function (form: func(int, int)) that accepts
the bytes transferred so far and the total bytes to be transferred.

	confirm (bool) – whether to do a stat() on the file afterwards to confirm the file
size

	preserve_mtime (bool) – Default: False - make the modification time(st_mtime) on the
remote file match the time on the local. (st_atime can differ
because stat’ing the localfile can/does update it’s st_atime)

	Returns:	(obj) SFTPAttributes containing attributes about the given file

	Raises:	
	IOError – if remotepath doesn’t exist

	OSError – if localpath doesn’t exist

	
put_d(localpath, remotepath, confirm=True, preserve_mtime=False)

	Copies a local directory’s contents to a remotepath

	Parameters:	
	localpath (str) – the local path to copy (source)

	remotepath (str) – the remote path to copy to (target)

	confirm (bool) – whether to do a stat() on the file afterwards to confirm the file
size

	preserve_mtime (bool) – Default: False - make the modification time(st_mtime) on the
remote file match the time on the local. (st_atime can differ
because stat’ing the localfile can/does update it’s st_atime)

	Returns:	None

	Raises:	
	IOError – if remotepath doesn’t exist

	OSError – if localpath doesn’t exist

	
put_r(localpath, remotepath, confirm=True, preserve_mtime=False)

	Recursively copies a local directory’s contents to a remotepath

	Parameters:	
	localpath (str) – the local path to copy (source)

	remotepath (str) – the remote path to copy to (target)

	confirm (bool) – whether to do a stat() on the file afterwards to confirm the file
size

	preserve_mtime (bool) – Default: False - make the modification time(st_mtime) on the
remote file match the time on the local. (st_atime can differ
because stat’ing the localfile can/does update it’s st_atime)

	Returns:	None

	Raises:	
	IOError – if remotepath doesn’t exist

	OSError – if localpath doesn’t exist

	
putfo(flo, remotepath=None, file_size=0, callback=None, confirm=True)

	Copies the contents of a file like object to remotepath.

	Parameters:	
	flo – a file-like object that supports .read()

	remotepath (str) – the remote path.

	file_size (int) – the size of flo, if not given the second param passed to the
callback function will always be 0.

	callback (callable) – optional callback function (form: func(int, int)) that accepts
the bytes transferred so far and the total bytes to be transferred.

	confirm (bool) – whether to do a stat() on the file afterwards to confirm the file
size

	Returns:	(obj) SFTPAttributes containing attributes about the given file

	Raises:	TypeError, if remotepath not specified, any underlying error

	
pwd

	return the current working directory

	Returns:	(str) current working directory

	
readlink(remotelink)

	Return the target of a symlink (shortcut). The result will be
an absolute pathname.

	Parameters:	remotelink (str) – remote path of the symlink

	Returns:	(str) absolute path to target

	
remote_server_key

	return the remote server’s key

	
remove(remotefile)

	remove the file @ remotefile, remotefile may include a path, if no
path, then pwd is used. This method only works on files

	Parameters:	remotefile (str) – the remote file to delete

	Returns:	None

	Raises:	IOError

	
rename(remote_src, remote_dest)

	rename a file or directory on the remote host.

	Parameters:	
	remote_src (str) – the remote file/directory to rename

	remote_dest (str) – the remote file/directory to put it

	Returns:	None

	Raises:	IOError

	
rmdir(remotepath)

	remove remote directory

	Parameters:	remotepath (str) – the remote directory to remove

	Returns:	None

	
security_options

	return the available security options recognized by paramiko.

	Returns:	(obj) security preferences of the ssh transport. These are tuples
of acceptable .ciphers, .digests, .key_types, and key
exchange algorithms .kex, listed in order of preference.

	
sftp_client

	give access to the underlying, connected paramiko SFTPClient object

see http://paramiko-docs.readthedocs.org/en/latest/api/sftp.html

	Params:	None

	Returns:	(obj) the active SFTPClient object

	
stat(remotepath)

	return information about file/directory for the given remote path

	Parameters:	remotepath (str) – path to stat

	Returns:	(obj) SFTPAttributes

	
symlink(remote_src, remote_dest)

	create a symlink for a remote file on the server

	Parameters:	
	remote_src (str) – path of original file

	remote_dest (str) – path of the created symlink

	Returns:	None

	Raises:	any underlying error, IOError if something already exists at
remote_dest

	
timeout

	
	(float|None) Default: None -

	get or set the underlying socket timeout for pending read/write
ops.

	Returns:	(float|None) seconds to wait for a pending read/write operation
before raising socket.timeout, or None for no timeout

	
truncate(remotepath, size)

	Change the size of the file specified by path. Used to modify the
size of the file, just like the truncate method on Python file objects.
The new file size is confirmed and returned.

	Parameters:	
	remotepath (str) – remote file path to modify

	size (int|long) – the new file size

	Returns:	(int) new size of file

	Raises:	IOError, if file does not exist

	
unlink(remotefile)

	remove the file @ remotefile, remotefile may include a path, if no
path, then pwd is used. This method only works on files

	Parameters:	remotefile (str) – the remote file to delete

	Returns:	None

	Raises:	IOError

	
walktree(remotepath, fcallback, dcallback, ucallback, recurse=True)

	recursively descend, depth first, the directory tree rooted at
remotepath, calling discreet callback functions for each regular file,
directory and unknown file type.

	Parameters:	
	remotepath (str) – root of remote directory to descend, use ‘.’ to start at
pwd

	fcallback (callable) – callback function to invoke for a regular file.
(form: func(str))

	dcallback (callable) – callback function to invoke for a directory. (form: func(str))

	ucallback (callable) – callback function to invoke for an unknown file type.
(form: func(str))

	recurse (bool) – Default: True - should it recurse

	Returns:	None

	Raises:	

SFTPAttributes

see http://paramiko-docs.readthedocs.org/en/latest/api/sftp.html?highlight=sftpattributes#paramiko.sftp_attr.SFTPAttributes for details

SFTPFile

see http://paramiko-docs.readthedocs.org/en/latest/api/sftp.html?highlight=paramiko.sftp_file.sftpfile#paramiko.sftp_file.SFTPFile for details

SecurityOptions

a simple object returned with available Security Options

see http://paramiko-docs.readthedocs.org/en/latest/api/transport.html?highlight=ciphers#paramiko.transport.SecurityOptions for details

 Copyright 2016, Jeff Hinrichs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pysftp 0.2.9 documentation

Change Log

	0.2.9 (current, released 2016-07-04)
	bugfix: correctly implement hostcheck. Now, be default pysftp will verify
the host. See pysftp.CnOpts.hostkeys

	added pysftp.Connection.remote_server_key() - used to retrieve the
remote hosts server key.

	added support for enabling compression, compression (J. Kruth)

	added active_compression, to return the active local and remote compression settings as a tuple

	fixed an unwanted logging side-effect, after you set logging, it would remain, even if you closed the .Connection and couldn’t be changed to something else. Now when Connection closes, any logging handlers are closed and can be changed to something else upon the next .Connection

	moved log parameter of Connection to the new CnOpts connection options object, deprecated the existing log parameter, will be removed in 0.3.0

	modified pysftp.Conection.walktree() to always use posixpath conventions when walking a remote directory per the latest draft-ietf-secsh-filexfer-13.txt. Issue encountered with windows clients (#60)

	modified pysftp.reparent() to handle mis-matched pathing, i.e. windows -> posix, better (#61)

	0.2.8 (released 2014-05-28)
	created pysftp.walktree() for walking local directories

	added param recurse to pysftp.Connection.walktree() to allow it to do another trick

	created put_d() to put the contents of a local directory to a remote one

	created a context manager chdir method, pysftp.Connection.cd()

	created put_r() to recursively put the contents of a local directory to a remote one

	fixed a bug with st_mode_to_int() on py3 (#52)

	listdir_attr() now returns a sorted list, sorted on filename

	created pysftp.cd() with-context version of os.chdir for local directories

	created docs, cookbook to show off some of the notable features of pysftp

	0.2.7 (released 2014-05-24)
	created pysftp.Connection.walktree(), recursively walk, depth first, a remote directory structure. Used as the base of get_r(). See tests/test_walktree.py for examples.

	added unlink() as synonym for remove()

	added normalize()

	created get_r() to recursively copy remote directories to a local path

	created pwd to return the current working directory

	created cwd() as synonym for chdir()

	modified listdir() to return a sorted list instead of an arbitrary one

	added readlink(), always returns an absolute path

	created get_d() to copy the remote directory to a local path (non-recursive)

	added timeout to set the read/write timeout of the underlying channel for pending read/write ops

	added listdir_attr(), wrapper for paramiko method

	added truncate(), method returns the new file size

	improved DRY’ness of test suite

	0.2.6 (released 2014-05-17)
	added preserve_mtime parameter to put(), optionally updates the remote file’s st_mtime to match the local file.

	added preserve_mtime parameter to get(), optionally updates the local file’s st_mtime to match the remote file

	added exists() and lexists(), use stat() and lstat() respectively

	added symlink()

	created isdir(), isfile(), makedirs()

	added chmod()

	added chown()

	added sftp_client which exposes underlying, active SFTPClient object for advance use

	0.2.5 (released 2014-05-15)
	added ciphers parameter to Connection object (D. Reilly)

	added active_ciphers to return local and remote cipher in use

	added security_options, where you can get available ciphers, among other information

	enhanced logging, and added documentation and tests

	0.2.4 (released 2014-05-13)
	Connection can be used in a with statement

	add remove()

	added support for callback and confirm params to put()

	added support for callback on get()

	added support for open()

	fixed password bug and now differentiates between an empty string and None

	added support for paramiko.AgentKey to be passed in as the private_key for Connection

	added support for mkdir()

	added support for rmdir()

	added support for stat() and lstat()

	added helper function, st_mode_to_int(),to convert the st_mode value back into a common integer representation

	added getfo()

	added putfo()

	0.2.3 (released 2014-05-10)
	host code on pypi to keep pip happy

	move code to bitbucket

	enhance testing

	README.rst and LICENSE named properly

	cleaner error handling

	0.2.2
	additions
	chdir(self, path) - change the current working directory on the remote

	getcwd(self) - return the current working directory on the remote

	listdir(self, path=’.’)return a list of files for the given path

 Copyright 2016, Jeff Hinrichs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pysftp 0.2.9 documentation

Contributing

You can contribute to the project in a number of ways. Code is always good,
bugs are interesting but tests make your famous!

Bug reports or feature enhancements that include a test are given preferential treatment. So instead of voting for an issue, write a test.

Code

	Fork the repository on Bitbucket [https://bitbucket.org/dundeemt/pysftp] .

	Install supporting software packages and pysftp in –editable mode
	Make a virtualenv, clone the repos, install the deps from pip install -r requirements-dev.txt

	Install pysftp in editable mode, pip install -e .

	Write any new tests needed and ensure existing tests continue to pass without modification.

	Setup CI testing on drone.io for your Fork. See current script [https://drone.io/bitbucket.org/dundeemt/pysftp/admin] .

	As of verion 0.2.9, no tests are run against a public SFTP server. Keeping a server available was/is problematic and made for brittle testing. Becuase of this, we now use the pytest-sftpserver plugin for many tests. Testing features the concern authentication or authorization, i.e. different login types, chmod, chown have to be run against a local sshd and not the plugin as it does NOT support these types of tests.

	You will need to setup an ssh daemon on your local machine and create a user: test with password of test1357 – Tests that can only be run locally are skipped using the @skip_if_ci decorator so they don’t fail when the test suite is run on the CI server.

	Ensure that your name is added to the end of the Authors file using the format Name <email@domain.com> (url), where the (url) portion is optional.

	Submit a Pull Request to the project on Bitbucket.

Docs

We use sphinx to build the docs. make html is your friend, see docstrings for details on params, etc.

Bug Reports

If you encounter a bug or some surprising behavior, please file an issue on our tracker [https://bitbucket.org/dundeemt/pysftp/issues?status=new&status=open]

Issue Priorities

This section lists the priority that will be assigned to an issue.

	Developer Issues

	Issues that have a pull request with a test(s) displaying the issue and code change(s) that satisfies the test suite

	Issues that have a pull request with a test(s) displaying the issue

	Naked pull requests - a code change request with no accompaning test

	An issue without a pull request with a test displaying the issue

	badly documented issue with no code or test - pysftp is not an end-user tool, it is a developer tool and it is expected that issues will be submitted like a developer and not an end-user. Issues in the realm of “the internet is broke” will be marked as invalid with a comment pointing the submitter to this section.

Testing

Tests specific to an issue should be put in the tests/ directory and the module should be named test_issue_xx.py The tests within that module should be named test_issue_xx or test_issue_xx_YYYYYY if more than one test. Pull requests should not modify existing tests. See tests/test_issue_xx.py for a template and further explanation.

 Copyright 2016, Jeff Hinrichs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pysftp 0.2.9 documentation

Authors

Contributors of code, tests and documentation to the project who have agreed
to have their work enjoined into the project and project license (BSD).

	Jeff Hinrichs <dundeemt@gmail.com>, http://inre.dundeemt.com/

	Don Reilly <dreilly1982@gmail.com>, http://github.com/dreilly1982

	James Kruth <james@kruth.org>, http://james.kruth.org/

	Nick Robinson-Wall

Acknowledgment

	pysftp is a fork, with permission, of ssh.py, originally authored by
Zeth @ http://zeth.net/archive/2008/05/29/sftp-python-really-simple-ssh/

	paramiko - http://paramiko-docs.readthedocs.org/

	Justin Reiners - for support of the project by the donation of a SFTP server
for testing

 Copyright 2016, Jeff Hinrichs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pysftp 0.2.9 documentation

 Python Module Index

 p

 			

 		
 p	

 	
 	
 pysftp	

 Copyright 2016, Jeff Hinrichs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pysftp 0.2.9 documentation

Index

 A
 | C
 | E
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	active_ciphers (pysftp.Connection attribute)

 	

 	active_compression (pysftp.Connection attribute)

C

 	

 	cd() (pysftp.Connection method)

 	chdir() (pysftp.Connection method)

 	chmod() (pysftp.Connection method)

 	chown() (pysftp.Connection method)

 	

 	close() (pysftp.Connection method)

 	CnOpts (class in pysftp)

 	Connection (class in pysftp)

 	cwd() (pysftp.Connection method)

E

 	

 	execute() (pysftp.Connection method)

 	

 	exists() (pysftp.Connection method)

G

 	

 	get() (pysftp.Connection method)

 	get_d() (pysftp.Connection method)

 	get_hostkey() (pysftp.CnOpts method)

 	

 	get_r() (pysftp.Connection method)

 	getcwd() (pysftp.Connection method)

 	getfo() (pysftp.Connection method)

I

 	

 	isdir() (pysftp.Connection method)

 	

 	isfile() (pysftp.Connection method)

L

 	

 	lexists() (pysftp.Connection method)

 	listdir() (pysftp.Connection method)

 	listdir_attr() (pysftp.Connection method)

 	

 	logfile (pysftp.Connection attribute)

 	lstat() (pysftp.Connection method)

M

 	

 	makedirs() (pysftp.Connection method)

 	

 	mkdir() (pysftp.Connection method)

N

 	

 	normalize() (pysftp.Connection method)

O

 	

 	open() (pysftp.Connection method)

P

 	

 	put() (pysftp.Connection method)

 	put_d() (pysftp.Connection method)

 	put_r() (pysftp.Connection method)

 	

 	putfo() (pysftp.Connection method)

 	pwd (pysftp.Connection attribute)

 	pysftp (module)

R

 	

 	readlink() (pysftp.Connection method)

 	remote_server_key (pysftp.Connection attribute)

 	remove() (pysftp.Connection method)

 	

 	rename() (pysftp.Connection method)

 	rmdir() (pysftp.Connection method)

S

 	

 	security_options (pysftp.Connection attribute)

 	sftp_client (pysftp.Connection attribute)

 	

 	stat() (pysftp.Connection method)

 	symlink() (pysftp.Connection method)

T

 	

 	timeout (pysftp.Connection attribute)

 	

 	truncate() (pysftp.Connection method)

U

 	

 	unlink() (pysftp.Connection method)

W

 	

 	walktree() (pysftp.Connection method)

 Copyright 2016, Jeff Hinrichs.
 Created using Sphinx 1.3.5.

 _static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pysftp 0.2.9 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Jeff Hinrichs.
 Created using Sphinx 1.3.5.

_static/minus.png

