

PySAL

 [image: So. Cal. taz network]
 [image: County components]

Releases

	Stable 1.14.1 (Released 2017-7-29)

	Development [http://github.com/pysal/pysal/tree/dev]

PySAL is an open source library of spatial analysis functions written in
Python intended to support the development of high level applications.
PySAL is open source under the BSD License.

	News [http://pysal.github.io/news.html]

	Events [http://pysal.github.io/upcoming_events.html]

	Funding [http://pysal.github.io/funding.html]

	Gallery [http://pysal.github.io/grid.html]

	User Guide

	Developer Guide

	Library Reference

 	

 [image: Download]

 User Guide

User Guide

	What is PySAL?

	Installing PySAL

	Getting Started with PySAL

 Introduction

Introduction

Contents

	Introduction
	History

	Scope

	Research Papers and Presentations

History

PySAL grew out of a collaborative effort between Luc Anselin’s group
previously located at the University of Illinois, Champaign-Urbana, and Serge
Rey who was at San Diego State University. It was born out of a recognition that
the respective projects at the two institutions, PySpace (now GeoDaSpace) [http://geodacenter.asu.edu/pyspaceimg] and STARS [http://regionalanalysislab.org/index.php/Main/STARS] - Space Time Analysis
of Regional Systems, could benefit from a shared analytical core, since
this would limit code duplication and free up additional developer time to
focus on enhancements of the respective applications.

This recognition also came at a time when Python was starting to make major
inroads in geographic information systems as represented by projects such as
the Python Cartographic Library [http://zmapserver.sourceforge.net/PCL/],
Shapely [http://trac.gispython.org/lab/wiki/Shapely] and ESRI’s adoption of
Python as a scripting language, among others. At the same time there was a
dearth of Python modules for spatial statistics, spatial econometrics, location
modeling and other areas of spatial analysis, and the role for PySAL was then
expanded beyond its support of STARS and GeoDaSpace to provide a library of core
spatial analytical functions that could support the next generation of spatial
analysis applications.

In 2008 the home for PySAL moved to the GeoDa Center for Geospatial Analysis
and Computation [http://geodacenter.asu.edu/] at Arizona State University.

Scope

It is important to underscore what PySAL is, and is not, designed to do. First
and foremost, PySAL is a library in the fullest sense of the word.
Developers looking for a suite of spatial analytical methods that they can
incorporate into application development should feel at home using PySAL.
Spatial analysts who may be carrying out research projects requiring customized
scripting, extensive simulation analysis, or those seeking to advance the state
of the art in spatial analysis should also find PySAL to be a useful
foundation for their work.

End users looking for a user friendly graphical user interface for spatial
analysis should not turn to PySAL directly. Instead, we would direct them to
projects like STARS and the GeoDaX suite of software products which wrap PySAL
functionality in GUIs. At the same time, we expect that with developments such
as the Python based plug-in architectures for QGIS [http://www.qgis.org/wiki/Python_Plugin_Repositories], GRASS [http://grass.osgeo.org/wiki/GRASS_and_Python], and the toolbox extensions
for ArcGIS [http://training.esri.com/gateway/index.cfm?fa=catalog.courseDetail&CourseID=50089911_9.X],
that end user access to PySAL functionality will be widening in the near
future.

Research Papers and Presentations

	Rey, Sergio J. (2012) PySAL: A Python Library for Exploratory Spatial Data Analysis and Geocomputation [http://www.youtube.com/watch?v=FN1nH4Fkd_Y] (Movie) SciPy 2012.

	Rey, Sergio J. and Luc Anselin. (2010) PySAL: A Python Library of
Spatial Analytical Methods. [http://books.google.com/books?hl=en&lr=&id=c0EP_6eYsjAC&oi=fnd&pg=PA174&dq=pysal&ots=JzI8vk8D4T&sig=J6FEAnbG5Wzw2nn2-0nfj4B6c3Q#v=onepage&q=pysal&f=false] In M. Fischer and A. Getis (eds.) Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Springer, Berlin.

	Rey, Sergio J. and Luc Anselin. (2009) PySAL: A Python Library for Spatial Analysis and Geocomputation [http://www.archive.org/details/scipy09_day2_10-Serge_Rey]. (Movie) Python for Scientific Computing. Caltech, Pasadena, CA August 2009.

	Rey, Sergio J. (2009). Show Me the Code: Spatial Analysis and Open Source [http://www.springerlink.com/content/91u84l471h043282/]. Journal of Geographical Systems 11: 191-2007.

	Rey, S.J., Anselin, L., & M. Hwang. (2008). Dynamic Manipulation of Spatial Weights Using Web Services. [http://geodacenter.asu.edu/node/174] GeoDa Center Working Paper 2008-12.

 Install PySAL

Install PySAL

Windows users can download an .exe installer here on
Sourceforge [http://sourceforge.net/projects/pysal/files/?source=navbar].

PySAL is built upon the Python scientific stack including numpy and
scipy. While these libraries are packaged for several platforms, the
Anaconda and Enthought Python distributions include them along with the core
Python library.

	Anaconda Python distribution [http://continuum.io/downloads.html]

	Enthought Canopy [https://www.enthought.com/downloads]

Note that while both Anaconda and Enthought Canopy will satisfy the
dependencies for PySAL, the version of PySAL included in these distributions
might be behind the latest stable release of PySAL. You can update to the latest
stable version of PySAL with either of these distributions as follows:

	In a terminal start the python version associated with the distribution.
Make sure you are not using a different (system) version of Python. To
check this use which python from a terminal to see if Anaconda or
Enthought appear in the output.

	pip install -U pysal

If you do not wish to use either Anaconda or Enthought, ensure the following software packages are available on your machine:

	Python [http://www.python.org/download] 2.6, 2.7 or 3.4

	numpy [http://scipy.org/install.html] 1.3 or later

	scipy [http://scipy.org/install.html] 0.11 or later

Getting your feet wet

You can start using PySAL right away on the web with Wakari,
PythonAnywhere, or SageMathCloud.

wakari http://continuum.io/wakari

PythonAnywhere https://www.pythonanywhere.com/

SageMathCloud https://cloud.sagemath.com/

Download and install

PySAL is available on the Python Package Index [http://pypi.python.org/pypi/pysal], which means it can be
downloaded and installed manually or from the command line using
pip, as follows:

pip install pysal

Alternatively, grab the source distribution (.tar.gz) and decompress it to your selected destination. Open a command shell and navigate to the decompressed pysal folder. Type:

pip install .

Development version on GitHub

Developers can checkout PySAL using git:

git clone https://github.com/pysal/pysal.git

Open a command shell and navigate to the cloned pysal
directory. Type:

pip install -e .[dev]

The ‘-e’ builds the modules in place
and symlinks from the python site packages directory to the pysal folder.
The advantage of this method is that you get the latest code
but don’t have to fuss with editing system environment variables.

To test your setup, start a Python session and type:

>>> import pysal

Keep up to date with pysal development by ‘pulling’ the latest
changes:

git pull

Windows

To keep up to date with PySAL development, you will need a Git client that allows you to access and
update the code from our repository. We recommend
GitHub Windows [http://windows.github.com/] for a more graphical client, or
Git Bash [https://code.google.com/p/msysgit/downloads/list?q=label:Featured] for a
command line client. This one gives you a nice Unix-like shell with
familiar commands. Here is a nice tutorial [http://openhatch.org/missions/windows-setup/] on getting going with Open
Source software on Windows.

After cloning pysal, install it in develop mode so Python knows where to find it.

Open a command shell and navigate to the cloned pysal
directory. Type:

pip install -e .[dev]

To test your setup, start a Python session and type:

>>> import pysal

Keep up to date with pysal development by ‘pulling’ the latest
changes:

git pull

Troubleshooting

If you experience problems when building, installing, or testing pysal, ask for
help on the
OpenSpace [http://geodacenter.asu.edu/support/community]
list or
browse the archives of the
pysal-dev [http://groups.google.com/group/pysal-dev?pli=1]
google group.

Please include the output of the following commands in your message:

	Platform information:

python -c 'import os,sys;print os.name, sys.platform'
uname -a

	Python version:

python -c 'import sys; print sys.version'

	SciPy version:

python -c 'import scipy; print scipy.__version__'

	NumPy version:

python -c 'import numpy; print numpy.__version__'

	Feel free to add any other relevant information.
For example, the full output (both stdout and stderr) of the pysal
installation command can be very helpful. Since this output can be
rather large, ask before sending it into the mailing list (or
better yet, to one of the developers, if asked).

 Getting Started with PySAL

Getting Started with PySAL

	Introduction to the Tutorials

	File Input and Output

	Spatial Weights

	Spatial Autocorrelation

	Spatial Econometrics

	Spatial Smoothing

	Regionalization

	Spatial Dynamics

	Shapely Extension

	Sample Datasets

	Next Steps

 Introduction to the Tutorials

Introduction to the Tutorials

Assumptions

The tutorials presented here are designed to illustrate a selection of the
functionality in PySAL. Further details on PySAL functionality not covered in
these tutorials can be found in the API. The reader is
assumed to have working knowledge of the particular spatial analytical
methods illustrated. Background on spatial analysis can be found in the
references cited in the tutorials.

It is also assumed that the reader has already installed PySAL.

Examples

The examples use several sample data sets that are included in the pysal/examples
directory. In the examples that follow, we refer to those using the path:

../pysal/examples/filename_of_example

You may need to adjust this path to match the location of the sample files on
your system.

Getting Help

Help for PySAL is available from a number of sources.

email lists

The main channel for user support is the openspace mailing list [http://groups.google.com/group/openspace-list].

Questions regarding the development of PySAL should be directed to
pysal-dev [http://groups.google.com/group/pysal-dev].

Documentation

Documentation is available on-line at pysal.org [http://pysal.org].

You can also obtain help at the interpreter:

>>> import pysal
>>> help(pysal)

which would bring up help on PySAL:

Help on package pysal:

NAME
 pysal

FILE
 /Users/serge/Dropbox/pysal/src/trunk/pysal/__init__.py

DESCRIPTION
 Python Spatial Analysis Library
 ===============================

 Documentation

 PySAL documentation is available in two forms: python docstrings and a html webpage at http://pysal.org/

 Available sub-packages

 cg
:

Note that you can use this on any option within PySAL:

>>> w=pysal.lat2W()
>>> help(w)

which brings up:

Help on W in module pysal.weights object:

class W(__builtin__.object)
 | Spatial weights
 |
Parameters
neighbors : dictionary
key is region ID, value is a list of neighbor IDS
Example: {'a':['b'],'b':['a','c'],'c':['b']}
weights = None : dictionary
key is region ID, value is a list of edge weights
If not supplied all edge wegiths are assumed to have a weight of 1.
Example: {'a':[0.5],'b':[0.5,1.5],'c':[1.5]}
id_order = None : list
An ordered list of ids, defines the order of
observations when iterating over W if not set,
lexicographical ordering is used to iterate and the
id_order_set property will return False. This can be
set after creation by setting the 'id_order' property.

Note that the help is truncated at the bottom of the terminal window and more of the contents can be seen by scrolling (hit any key).

 An Overview of the FileIO system in PySAL.

An Overview of the FileIO system in PySAL.

Contents

	An Overview of the FileIO system in PySAL.
	Introduction

	Examples: Reading files
	Shapefiles

	DBF Files

	CSV Files

	WKT Files

	GeoDa Text Files

	GAL Binary Weights Files

	GWT Weights Files

	ArcGIS Text Weights Files

	ArcGIS DBF Weights Files

	ArcGIS SWM Weights Files

	DAT Weights Files

	MATLAB MAT Weights Files

	LOTUS WK1 Weights Files

	GeoBUGS Text Weights Files

	STATA Text Weights Files

	MatrixMarket MTX Weights Files

	Examples: Writing files
	GAL Binary Weights Files

	GWT Weights Files

	ArcGIS Text Weights Files

	ArcGIS DBF Weights Files

	ArcGIS SWM Weights Files

	DAT Weights Files

	MATLAB MAT Weights Files

	LOTUS WK1 Weights Files

	GeoBUGS Text Weights Files

	STATA Text Weights Files

	MatrixMarket MTX Weights Files

	Examples: Converting the format of spatial weights files

	Alternative Tabular API

Introduction

PySAL contains a file input-output API that stands as a reference pure python
implementation for spatial IO. The design goal for this API is to abstract
file handling and return native PySAL data types when reading from known
file types. A list of known extensions can be found by issuing the
following command:

pysal.open.check()

Note that in some cases the FileIO module will peek inside your file to
determine its type. For example “geoda_txt” is just a unique scheme for ”.txt”
files, so when opening a ”.txt” pysal will peek inside the file to determine it
if has the necessary header information and dispatch accordingly. In the event
that pysal does not understand your file IO operations will be dispatched to
python’s internal open.

PySAL can also fully leverage Geopandas [http://geopandas.org] in analyses. It also provides an alternative, tabular data IO system, pdio.

Examples: Reading files

Shapefiles

>>> import pysal
>>> shp = pysal.open(pysal.examples.get_path('10740.shp'))
>>> poly = shp.next()
>>> type(poly)
<class 'pysal.cg.shapes.Polygon'>
>>> len(shp)
195
>>> shp.get(len(shp)-1).id
195
>>> polys = list(shp)
>>> len(polys)
195

DBF Files

>>> import pysal
>>> db = pysal.open(pysal.examples.get_path('10740.dbf'),'r')
>>> db.header
['GIST_ID', 'FIPSSTCO', 'TRT2000', 'STFID', 'TRACTID']
>>> db.field_spec
[('N', 8, 0), ('C', 5, 0), ('C', 6, 0), ('C', 11, 0), ('C', 10, 0)]
>>> db.next()
[1, '35001', '000107', '35001000107', '1.07']
>>> db[0]
[[1, '35001', '000107', '35001000107', '1.07']]
>>> db[0:3]
[[1, '35001', '000107', '35001000107', '1.07'], [2, '35001', '000108', '35001000108', '1.08'], [3, '35001', '000109', '35001000109', '1.09']]
>>> db[0:5,1]
['35001', '35001', '35001', '35001', '35001']
>>> db[0:5,0:2]
[[1, '35001'], [2, '35001'], [3, '35001'], [4, '35001'], [5, '35001']]
>>> db[-1,-1]
['9712']

CSV Files

>>> import pysal
>>> db = pysal.open('../pysal/examples/stl_hom.csv')
>>> db.header
['WKT', 'NAME', 'STATE_NAME', 'STATE_FIPS', 'CNTY_FIPS', 'FIPS', 'FIPSNO', 'HR7984', 'HR8488', 'HR8893', 'HC7984', 'HC8488', 'HC8893', 'PO7984', 'PO8488', 'PO8893', 'PE77', 'PE82', 'PE87', 'RDAC80', 'RDAC85', 'RDAC90']
>>> db[0]
[['POLYGON ((-89.585220336914062 39.978794097900391,-89.581146240234375 40.094867706298828,-89.603988647460938 40.095306396484375,-89.60589599609375 40.136119842529297,-89.6103515625 40.3251953125,-89.269027709960938 40.329566955566406,-89.268562316894531 40.285579681396484,-89.154655456542969 40.285774230957031,-89.152763366699219 40.054969787597656,-89.151618957519531 39.919403076171875,-89.224777221679688 39.918678283691406,-89.411857604980469 39.918041229248047,-89.412437438964844 39.931644439697266,-89.495201110839844 39.933486938476562,-89.4927978515625 39.980186462402344,-89.585220336914062 39.978794097900391))', 'Logan', 'Illinois', 17, 107, 17107, 17107, 2.115428, 1.290722, 1.624458, 4, 2, 3, 189087, 154952, 184677, 5.10432, 6.59578, 5.832951, -0.991256, -0.940265, -0.845005]]
>>> fromWKT = pysal.core.util.wkt.WKTParser()
>>> db.cast('WKT',fromWKT)
>>> type(db[0][0][0])
<class 'pysal.cg.shapes.Polygon'>
>>> db[0][0][1:]
['Logan', 'Illinois', 17, 107, 17107, 17107, 2.115428, 1.290722, 1.624458, 4, 2, 3, 189087, 154952, 184677, 5.10432, 6.59578, 5.832951, -0.991256, -0.940265, -0.845005]
>>> polys = db.by_col('WKT')
>>> from pysal.cg import standalone
>>> standalone.get_bounding_box(polys)[:]
[-92.70067596435547, 36.88180923461914, -87.91657257080078, 40.329566955566406]

WKT Files

>>> import pysal
>>> wkt = pysal.open('../pysal/examples/stl_hom.wkt', 'r')
>>> polys = wkt.read()
>>> wkt.close()
>>> print len(polys)
78
>>> print polys[1].centroid
(-91.19578469430738, 39.990883050220845)

GeoDa Text Files

>>> import pysal
>>> geoda_txt = pysal.open('../pysal/examples/stl_hom.txt', 'r')
>>> geoda_txt.header
['FIPSNO', 'HR8488', 'HR8893', 'HC8488']
>>> print len(geoda_txt)
78
>>> geoda_txt.dat[0]
['17107', '1.290722', '1.624458', '2']
>>> geoda_txt._spec
[<type 'int'>, <type 'float'>, <type 'float'>, <type 'int'>]
>>> geoda_txt.close()

GAL Binary Weights Files

>>> import pysal
>>> gal = pysal.open('../pysal/examples/sids2.gal','r')
>>> w = gal.read()
>>> gal.close()
>>> w.n
100

GWT Weights Files

>>> import pysal
>>> gwt = pysal.open('../pysal/examples/juvenile.gwt', 'r')
>>> w = gwt.read()
>>> gwt.close()
>>> w.n
168

ArcGIS Text Weights Files

>>> import pysal
>>> arcgis_txt = pysal.open('../pysal/examples/arcgis_txt.txt','r','arcgis_text')
>>> w = arcgis_txt.read()
>>> arcgis_txt.close()
>>> w.n
3

ArcGIS DBF Weights Files

>>> import pysal
>>> arcgis_dbf = pysal.open('../pysal/examples/arcgis_ohio.dbf','r','arcgis_dbf')
>>> w = arcgis_dbf.read()
>>> arcgis_dbf.close()
>>> w.n
88

ArcGIS SWM Weights Files

>>> import pysal
>>> arcgis_swm = pysal.open('../pysal/examples/ohio.swm','r')
>>> w = arcgis_swm.read()
>>> arcgis_swm.close()
>>> w.n
88

DAT Weights Files

>>> import pysal
>>> dat = pysal.open('../pysal/examples/wmat.dat','r')
>>> w = dat.read()
>>> dat.close()
>>> w.n
49

MATLAB MAT Weights Files

>>> import pysal
>>> mat = pysal.open('../pysal/examples/spat-sym-us.mat','r')
>>> w = mat.read()
>>> mat.close()
>>> w.n
46

LOTUS WK1 Weights Files

>>> import pysal
>>> wk1 = pysal.open('../pysal/examples/spat-sym-us.wk1','r')
>>> w = wk1.read()
>>> wk1.close()
>>> w.n
46

GeoBUGS Text Weights Files

>>> import pysal
>>> geobugs_txt = pysal.open('../pysal/examples/geobugs_scot','r','geobugs_text')
>>> w = geobugs_txt.read()
WARNING: there are 3 disconnected observations
Island ids: [6, 8, 11]
>>> geobugs_txt.close()
>>> w.n
56

STATA Text Weights Files

>>> import pysal
>>> stata_txt = pysal.open('../pysal/examples/stata_sparse.txt','r','stata_text')
>>> w = stata_txt.read()
WARNING: there are 7 disconnected observations
Island ids: [5, 9, 10, 11, 12, 14, 15]
>>> stata_txt.close()
>>> w.n
56

MatrixMarket MTX Weights Files

This file format or its variant is currently under consideration of the PySAL team
to store general spatial weights in a sparse matrix form.

>>> import pysal
>>> mtx = pysal.open('../pysal/examples/wmat.mtx','r')
>>> w = mtx.read()
>>> mtx.close()
>>> w.n
49

Examples: Writing files

GAL Binary Weights Files

>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> gal = pysal.open('../pysal/examples/virginia_queen.gal','w')
>>> gal.write(w)
>>> gal.close()

GWT Weights Files

Currently, it is not allowed to write a GWT file.

ArcGIS Text Weights Files

>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> arcgis_txt = pysal.open('../pysal/examples/virginia_queen.txt','w','arcgis_text')
>>> arcgis_txt.write(w, useIdIndex=True)
>>> arcgis_txt.close()

ArcGIS DBF Weights Files

>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> arcgis_dbf = pysal.open('../pysal/examples/virginia_queen.dbf','w','arcgis_dbf')
>>> arcgis_dbf.write(w, useIdIndex=True)
>>> arcgis_dbf.close()

ArcGIS SWM Weights Files

>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> arcgis_swm = pysal.open('../pysal/examples/virginia_queen.swm','w')
>>> arcgis_swm.write(w, useIdIndex=True)
>>> arcgis_swm.close()

DAT Weights Files

>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> dat = pysal.open('../pysal/examples/virginia_queen.dat','w')
>>> dat.write(w)
>>> dat.close()

MATLAB MAT Weights Files

>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> mat = pysal.open('../pysal/examples/virginia_queen.mat','w')
>>> mat.write(w)
>>> mat.close()

LOTUS WK1 Weights Files

>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> wk1 = pysal.open('../pysal/examples/virginia_queen.wk1','w')
>>> wk1.write(w)
>>> wk1.close()

GeoBUGS Text Weights Files

>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> geobugs_txt = pysal.open('../pysal/examples/virginia_queen','w','geobugs_text')
>>> geobugs_txt.write(w)
>>> geobugs_txt.close()

STATA Text Weights Files

>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> stata_txt = pysal.open('../pysal/examples/virginia_queen.txt','w','stata_text')
>>> stata_txt.write(w,matrix_form=True)
>>> stata_txt.close()

MatrixMarket MTX Weights Files

>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> mtx = pysal.open('../pysal/examples/virginia_queen.mtx','w')
>>> mtx.write(w)
>>> mtx.close()

Examples: Converting the format of spatial weights files

PySAL provides a utility tool to convert a weights file from one format to another.

From GAL to ArcGIS SWM format

>>> from pysal.core.util.weight_converter import weight_convert
>>> gal_file = '../pysal/examples/sids2.gal'
>>> swm_file = '../pysal/examples/sids2.swm'
>>> weight_convert(gal_file, swm_file, useIdIndex=True)
>>> wold = pysal.open(gal_file, 'r').read()
>>> wnew = pysal.open(swm_file, 'r').read()
>>> wold.n == wnew.n
True

For further details see the FileIO API.

Alternative Tabular API

For shapefile input and output, the dataframe API constructs a dataframe similar to that constructed by Geopandas, but populated by PySAL’s own shape classes. This is provided as a convenience method for users who have shapefile-heavy workflows and would like to get Geopandas-style interaction. This API is only a frontend to the existing PySAL api documented above, and users who have heavier spatial data needs may find Geopandas useful.

 Spatial Weights

Spatial Weights

Contents

	Spatial Weights
	Introduction

	PySAL Spatial Weight Types
	Contiguity Based Weights

	Distance Based Weights

	k-nearest neighbor weights

	Distance band weights

	Kernel Weights

	Weights from other python objects

	A Closer look at W
	Attributes of W

	Weight Transformations

	W related functions
	Generating a full array

	Shimbel Matrices

	Higher Order Contiguity Weights

	Spatial Lag

	Non-Zero Diagonal

	WSets
	Union

	Intersection

	Difference

	Symmetric Difference

	Subset

	WSP

	Further Information

Introduction

Spatial weights are central components of many areas of spatial analysis. In
general terms, for a spatial data set composed of n locations (points, areal
units, network edges, etc.), the spatial weights matrix expresses the potential
for interaction between observations at each pair i,j of locations. There is a rich
variety of ways to specify the structure of these weights, and
PySAL supports the creation, manipulation and analysis of spatial weights
matrices across three different general types:

	Contiguity Based Weights

	Distance Based Weights

	Kernel Weights

These different types of weights are implemented as instances or subclasses of
the PySAL weights class
W.

In what follows, we provide a high level overview of spatial weights in PySAL, starting with the three different types of weights, followed by
a closer look at the properties of the W class and some related functions. [1]

PySAL Spatial Weight Types

PySAL weights are handled in objects of the pysal.weights.W. The
conceptual idea of spatial weights is that of a nxn matrix in which the
diagonal elements ([image: w_{ii}]) are set to zero by definition and the rest of
the cells ([image: w_{ij}]) capture the potential of interaction. However, these
matrices tend to be fairly sparse (i.e. many cells contain zeros) and hence a
full nxn array would not be an efficient representation. PySAL employs a
different way of storing that is structured in two main dictionaries [2] :
neighbors which, for each observation (key) contains a list of the other ones
(value) with potential for interaction ([image: w_{ij} \neq 0]); and weights,
which contains the weight values for each of those observations (in the same
order). This way, large datasets can be stored when keeping the full matrix
would not be possible because of memory constraints. In addition to the sparse
representation via the weights and neighbors dictionaries, a PySAL W object
also has an attribute called sparse, which is a scipy.sparse [http://docs.scipy.org/doc/scipy/reference/sparse.html] CSR
representation of the spatial weights. (See WSP for an alternative
PySAL weights object.)

Contiguity Based Weights

To illustrate the general weights object, we start with a simple contiguity
matrix constructed for a 5 by 5 lattice (composed of 25 spatial units):

>>> import pysal
>>> w = pysal.lat2W(5, 5)

The w object has a number of attributes:

>>> w.n
25
>>> w.pct_nonzero
12.8
>>> w.weights[0]
[1.0, 1.0]
>>> w.neighbors[0]
[5, 1]
>>> w.neighbors[5]
[0, 10, 6]
>>> w.histogram
[(2, 4), (3, 12), (4, 9)]

n is the number of spatial units, so conceptually we could be thinking that the
weights are stored in a 25x25 matrix. The second attribute
(pct_nonzero) shows the sparseness of the matrix. The key
attributes used to store contiguity relations in W are the neighbors and
weights attributes. In the example above we see that the observation
with id 0 (Python is zero-offset) has two neighbors with ids [5, 1] each of
which have equal weights of 1.0.

The histogram attribute is a set of tuples indicating the cardinality of the
neighbor relations. In this case we have a regular lattice, so there are 4 units that have 2
neighbors (corner cells), 12 units with 3 neighbors (edge cells), and 9 units
with 4 neighbors (internal cells).

In the above example, the default criterion for contiguity on the lattice was
that of the rook which takes as neighbors any pair of cells that share an edge.
Alternatively, we could have used the queen criterion to include the vertices
of the lattice to define contiguities:

>>> wq = pysal.lat2W(rook = False)
>>> wq.neighbors[0]
[5, 1, 6]

The bishop criterion, which designates pairs of cells as neighbors if they share
only a vertex, is yet a third alternative for contiguity weights. A bishop matrix
can be computed as the Difference between the rook and queen cases.

The lat2W function is particularly useful in setting up simulation experiments
requiring a regular grid. For empirical research, a common use case is to have
a shapefile, which is a nontopological vector data structure, and a need
to carry out some form of spatial analysis that requires spatial weights. Since
topology is not stored in the underlying file there is a need to construct
the spatial weights prior to carrying out the analysis.

In PySAL, weights are constructed by default from any contiguity graph representation. Most users will find the .from_shapefile methods most useful:

>>> w = pysal.weights.Rook.from_shapefile("../pysal/examples/columbus.shp")
>>> w.n
49
>>> print "%.4f"%w.pct_nonzero
0.0833
>>> w.histogram
[(2, 7), (3, 10), (4, 17), (5, 8), (6, 3), (7, 3), (8, 0), (9, 1)]

If queen, rather than rook, contiguity is required then the following would work:

>>> w = pysal.weights.Queen.from_shapefile("../pysal/examples/columbus.shp")
>>> print "%.4f"%w.pct_nonzero
0.0983
>>> w.histogram
[(2, 5), (3, 9), (4, 12), (5, 5), (6, 9), (7, 3), (8, 4), (9, 1), (10, 1)]

In addition to these methods, contiguity weights can be built from dataframes with a geometry column. This includes dataframes built from geopandas or from the PySAL pandas IO extension, pdio. For instance:

>>> import geopandas as gpd
>>> test = gpd.read_file(pysal.examples.get_path('south.shp'))
>>> W = pysal.weights.Queen.from_dataframe(test)
>>> Wrook = pysal.weights.Rook.from_dataframe(test, idVariable='CNTY_FIPS')
>>> pdiodf = pysal.pdio.read_files(pysal.examples.get_path('south.shp'))
>>> W = pysal.weights.Rook.from_dataframe(pdiodf)

Or, weights can be constructed directly from an interable of shapely objects:

>>> import geopandas as gpd
>>> shapelist = gpd.read_file(pysal.examples.get_path('columbus.shp')).geometry.tolist()
>>> W = pysal.weights.Queen.from_iterable(shapelist)

The .from_file method on contigutiy weights simply passes down to the parent class’s .from_file method, so the returned object is of instance W, not Queen or Rook. This occurs because the weights cannot be verified as contiguity weights without the original shapes.

>>> W = pysal.weights.Rook.from_file(pysal.examples.get_path('columbus.gal')
>>> type(W)
pysal.weights.weights.W

Distance Based Weights

In addition to using contiguity to define neighbor relations, more general
functions of the distance separating observations can be used to specify the
weights.

Please note that distance calculations are coded for a flat surface, so you
will need to have your shapefile projected in advance for the output to be
correct.

k-nearest neighbor weights

The neighbors for a given observations can be defined using a k-nearest neighbor criterion.
For example we could use the the centroids of our
5x5 lattice as point locations to measure the distances. First, we import numpy to
create the coordinates as a 25x2 numpy array named data:

>>> import numpy as np
>>> x,y=np.indices((5,5))
>>> x.shape=(25,1)
>>> y.shape=(25,1)
>>> data=np.hstack([x,y])

then define the KNN weight as:

>>> wknn3 = pysal.weights.KNN(data, k = 3)
>>> wknn3.neighbors[0]
[1, 5, 6]
>>> wknn3.s0
75.0

For efficiency, a KDTree is constructed to compute efficient nearest neighbor queries. To construct many K-Nearest neighbor weights from the same data, a convenience method is provided that prevents re-constructing the KDTree while letting the user change aspects of the weight object. By default, the reweight method operates in place:

>>> w4 = wknn3.reweight(k=4, inplace=False)
>>> w4.neighbors[0]
[1,5,6,2]
>>> l1norm = wknn3.reweight(p=1, inplace=False)
>>> l1norm.neighbors
[1,5,2]
>>> set(w4.neighbors[0]) == set([1, 5, 6, 2])
True
>>> w4.s0
100.0
>>> w4.weights[0]
[1.0, 1.0, 1.0, 1.0]

Alternatively, we can use a utility function to build a knn W straight from a
shapefile:

>>> wknn5 = pysal.weights.KNN.from_shapefile(pysal.examples.get_path('columbus.shp'), k=5)
>>> wknn5.neighbors[0]
[2, 1, 3, 7, 4]

Or from a dataframe:

>>> import geopandas as gpd
>>> df = gpd.read_file(ps.examples.get_path('baltim.shp'))
>>> k5 = pysal.weights.KNN.from_dataframe(df, k=5)

Distance band weights

Knn weights ensure that all observations have the same number of neighbors. [3]
An alternative distance based set of weights relies on distance bands or
thresholds to define the neighbor set for each spatial unit as those other units
falling within a threshold distance of the focal unit:

>>> wthresh = pysal.weights.DistanceBand.from_array(data, 2)
>>> set(wthresh.neighbors[0]) == set([1, 2, 5, 6, 10])
True
>>> set(wthresh.neighbors[1]) == set([0, 2, 5, 6, 7, 11, 3])
True
>>> wthresh.weights[0]
[1, 1, 1, 1, 1]
>>> wthresh.weights[1]
[1, 1, 1, 1, 1, 1, 1]
>>>

As can be seen in the above example, the number of neighbors is likely to vary
across observations with distance band weights in contrast to what holds for
knn weights.

In addition to constructing these from the helper function, Distance Band weights. For example, a threshold binary W can be constructed from a dataframe:

>>> import geopandas as gpd
>>> df = gpd.read_file(ps.examples.get_path('baltim.shp'))
>>> ps.weights.DistanceBand.from_dataframe(df, threshold=6, binary=True)

Distance band weights can be generated for shapefiles as well as arrays of points. [4] First, the
minimum nearest neighbor distance should be determined so that each unit is assured of at least one
neighbor:

>>> thresh = pysal.min_threshold_dist_from_shapefile("../pysal/examples/columbus.shp")
>>> thresh
0.61886415807685413

with this threshold in hand, the distance band weights are obtained as:

>>> wt = pysal.weights.DistanceBand.from_shapefile("../pysal/examples/columbus.shp", threshold=thresh, binary=True)
>>> wt.min_neighbors
1
>>> wt.histogram
[(1, 4), (2, 8), (3, 6), (4, 2), (5, 5), (6, 8), (7, 6), (8, 2), (9, 6), (10, 1), (11, 1)]
>>> set(wt.neighbors[0]) == set([1,2])
True
>>> set(wt.neighbors[1]) == set([3,0])
True

Distance band weights can also be specified to take on continuous values rather
than binary, with the values set to the inverse distance separating each pair
within a given threshold distance. We illustrate this with a small set of 6
points:

>>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> wid = pysal.weights.DistanceBand.from_array(points,14.2,binary=False)
>>> wid.weights[0]
[0.10000000000000001, 0.089442719099991588]

If we change the distance decay exponent to -2.0 the result is so called gravity weights:

>>> wid2 = pysal.weights.DistanceBand.from_array(points,14.2,alpha = -2.0, binary=False)
>>> wid2.weights[0]
[0.01, 0.0079999999999999984]

Kernel Weights

A combination of distance based thresholds together with continuously valued
weights is supported through kernel weights:

>>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> kw = pysal.Kernel(points)
>>> kw.weights[0]
[1.0, 0.500000049999995, 0.4409830615267465]
>>> kw.neighbors[0]
[0, 1, 3]
>>> kw.bandwidth
array([[20.000002],
 [20.000002],
 [20.000002],
 [20.000002],
 [20.000002],
 [20.000002]])

The bandwidth attribute plays the role of the distance threshold with kernel
weights, while the form of the kernel function determines the distance decay
in the derived continuous weights (the following are available:
‘triangular’,’uniform’,’quadratic’,’epanechnikov’,’quartic’,’bisquare’,’gaussian’).
In the above example, the bandwidth is set to the default value and fixed
across the observations. The user could specify a different value for a fixed
bandwidth:

>>> kw15 = pysal.Kernel(points,bandwidth = 15.0)
>>> kw15[0]
{0: 1.0, 1: 0.33333333333333337, 3: 0.2546440075000701}
>>> kw15.neighbors[0]
[0, 1, 3]
>>> kw15.bandwidth
array([[15.],
 [15.],
 [15.],
 [15.],
 [15.],
 [15.]])

which results in fewer neighbors for the first unit. Adaptive bandwidths (i.e., different bandwidths
for each unit) can also be user specified:

>>> bw = [25.0,15.0,25.0,16.0,14.5,25.0]
>>> kwa = pysal.Kernel(points,bandwidth = bw)
>>> kwa.weights[0]
[1.0, 0.6, 0.552786404500042, 0.10557280900008403]
>>> kwa.neighbors[0]
[0, 1, 3, 4]
>>> kwa.bandwidth
array([[25.],
 [15.],
 [25.],
 [16.],
 [14.5],
 [25.]])

Alternatively the adaptive bandwidths could be defined endogenously:

>>> kwea = pysal.Kernel(points,fixed = False)
>>> kwea.weights[0]
[1.0, 0.10557289844279438, 9.99999900663795e-08]
>>> kwea.neighbors[0]
[0, 1, 3]
>>> kwea.bandwidth
array([[11.18034101],
 [11.18034101],
 [20.000002],
 [11.18034101],
 [14.14213704],
 [18.02775818]])

Finally, the kernel function could be changed (with endogenous adaptive bandwidths):

>>> kweag = pysal.Kernel(points,fixed = False,function = 'gaussian')
>>> kweag.weights[0]
[0.3989422804014327, 0.2674190291577696, 0.2419707487162134]
>>> kweag.bandwidth
array([[11.18034101],
 [11.18034101],
 [20.000002],
 [11.18034101],
 [14.14213704],
 [18.02775818]])

More details on kernel weights can be found in
Kernel. All kernel methods also support construction from shapefiles with Kernel.from_shapefile and from dataframes with Kernel.from_dataframe.

Weights from other python objects

PySAL weights can also be constructed easily from many other objects. Most importantly, all weight types can be constructed directly from geopandas geodataframes using the .from_dataframe method. For distance and kernel weights, underlying features should typically be points. But, if polygons are supplied, the centroids of the polygons will be used by default:

>>> import geopandas as gpd
>>> df = gpd.read_file(pysal.examples.get_path('columbus.shp'))
>>> kw = pysal.weights.Kernel.from_dataframe(df)
>>> dbb = pysal.weights.DistanceBand.from_dataframe(df, threshold=.9, binary=False)
>>> dbc = pysal.weights.DistanceBand.from_dataframe(df, threshold=.9, binary=True)
>>> q = pysal.weights.Queen.from_dataframe(df)
>>> r = pysal.weights.Rook.from_dataframe(df)

This also applies to dynamic views of the dataframe:

>>> q2 = pysal.weights.Queen.from_dataframe(df.query('DISCBD < 2'))

Weights can also be constructed from NetworkX objects. This is easiest to construct using a sparse weight, but that can be converted to a full dense PySAL weight easily:

>>> import networkx as nx
>>> G = nx.random_lobster(50,.2,.5)
>>> sparse_lobster = ps.weights.WSP(nx.adj_matrix(G))
>>> dense_lobster = sparse_lobster.to_W()

A Closer look at W

Although the three different types of spatial weights illustrated above cover a wide array of approaches
towards specifying spatial relations, they all share common attributes from the base W class in PySAL. Here
we take a closer look at some of the more useful properties of this class.

Attributes of W

W objects come with a whole bunch of useful attributes that may help you when
dealing with spatial weights matrices. To see a list of all of them, same as
with any other Python object, type:

>>> import pysal
>>> help(pysal.W)

If you want to be more specific and learn, for example, about the attribute
s0, then type:

>>> help(pysal.W.s0)
Help on property:

float

[image: s0 = \sum_i \sum_j w_{i,j}]

Weight Transformations

Often there is a need to apply a transformation to the spatial weights, such as in the case of row standardization.
Here each value in the row of the spatial weights matrix is rescaled to sum to one:

[image: ws_{i,j} = w_{i,j}/ \sum_j w_{i,j}]

This and other weights transformations in PySAL are supported by the transform property of the W class. To see this
let’s build a simple contiguity object for the Columbus data set:

>>> w = pysal.rook_from_shapefile("../pysal/examples/columbus.shp")
>>> w.weights[0]
[1.0, 1.0]

We can row standardize this by setting the transform property:

>>> w.transform = 'r'
>>> w.weights[0]
[0.5, 0.5]

Supported transformations are the following:

	‘b‘: binary.

	‘r‘: row standardization.

	‘v‘: variance stabilizing.

If the original weights (unstandardized) are required, the transform property can be reset:

>>> w.transform = 'o'
>>> w.weights[0]
[1.0, 1.0]

Behind the scenes the transform property is updating all other characteristics of the spatial weights that are a function of the
values and these standardization operations, freeing the user from having to keep these other attributes updated. To determine the current
value of the transformation, simply query this attribute:

>>> w.transform
'O'

More details on other transformations that are supported in W can be found in
pysal.weights.W.

W related functions

Generating a full array

As the underlying data structure of the weights in W is based on a sparse representation, there may be a need to work with the full numpy array.
This is supported through the full method of W:

>>> wf = w.full()
>>> len(wf)
2

The first element of the return from w.full is the numpy array:

>>> wf[0].shape
(49, 49)

while the second element contains the ids for the row (column) ordering of the array:

>>> wf[1][0:5]
[0, 1, 2, 3, 4]

If only the array is required, a simple Python slice can be used:

>>> wf = w.full()[0]

Shimbel Matrices

The Shimbel matrix for a set of n objects contains the shortest path distance
separating each pair of units. This has wide use in spatial analysis for
solving different types of clustering and optimization problems. Using the
function shimbel with a W instance as an argument generates this
information:

>>> w = pysal.lat2W(3,3)
>>> ws = pysal.shimbel(w)
>>> ws[0]
[-1, 1, 2, 1, 2, 3, 2, 3, 4]

Thus we see that observation 0 (the northwest cell of our 3x3 lattice) is a first order neighbor to observations 1 and 3, second order
neighbor to observations 2, 4, and 6, a third order neighbor to 5, and 7, and a fourth order neighbor to observation 8 (the extreme southeast
cell in the lattice). The position of the -1 simply denotes the focal unit.

Higher Order Contiguity Weights

Closely related to the shortest path distances is the concept of a spatial weight based on a particular order of contiguity. For example, we could
define the second order contiguity relations using:

>>> w2 = pysal.higher_order(w, 2)
>>> w2.neighbors[0]
[4, 6, 2]

or a fourth order set of weights:

>>> w4 = pysal.higher_order(w, 4)
WARNING: there are 5 disconnected observations
Island ids: [1, 3, 4, 5, 7]
>>> w4.neighbors[0]
[8]

In both cases a new instance of the W class is returned with the weights and neighbors defined using the particular order of contiguity.

Spatial Lag

The final function related to spatial weights that we illustrate here is used to construct a new variable called the spatial lag. The spatial
lag is a function of the attribute values observed at neighboring locations. For example, if we continue with our regular 3x3 lattice and
create an attribute variable y:

>>> import numpy as np
>>> y = np.arange(w.n)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8])

then the spatial lag can be constructed with:

>>> yl = pysal.lag_spatial(w,y)
>>> yl
array([4., 6., 6., 10., 16., 14., 10., 18., 12.])

Mathematically, the spatial lag is a weighted sum of neighboring attribute values

[image: yl_i = \sum_j w_{i,j} y_j]

In the example above, the weights were binary, based on the rook criterion. If we row standardize our W object first
and then recalculate the lag, it takes the form of a weighted average of the neighboring attribute values:

>>> w.transform = 'r'
>>> ylr = pysal.lag_spatial(w,y)
>>> ylr
array([2. , 2. , 3. , 3.33333333, 4. ,
 4.66666667, 5. , 6. , 6.])

One important consideration in calculating the spatial lag is that the ordering
of the values in y aligns with the underlying order in W. In cases where the
source for your attribute data is different from the one to construct your
weights you may need to reorder your y values accordingly. To check if this is
the case you can find the order in W as follows:

>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8]

In this case the lag_spatial function assumes that the first value in the y
attribute corresponds to unit 0 in the lattice (northwest cell), while the last
value in y would correspond to unit 8 (southeast cell). In other words, for the
value of the spatial lag to be valid the number of elements in y must match w.n
and the orderings must be aligned.

Fortunately, for the common use case where both the attribute and weights information come from a
shapefile (and its dbf), PySAL handles the alignment automatically: [5]

>>> w = pysal.rook_from_shapefile("../pysal/examples/columbus.shp")
>>> f = pysal.open("../pysal/examples/columbus.dbf")
>>> f.header
['AREA', 'PERIMETER', 'COLUMBUS_', 'COLUMBUS_I', 'POLYID', 'NEIG', 'HOVAL', 'INC', 'CRIME', 'OPEN', 'PLUMB', 'DISCBD', 'X', 'Y', 'NSA', 'NSB', 'EW', 'CP', 'THOUS', 'NEIGNO']
>>> y = np.array(f.by_col['INC'])
>>> w.transform = 'r'
>>> y
array([19.531 , 21.232 , 15.956 , 4.477 , 11.252 ,
 16.028999, 8.438 , 11.337 , 17.586 , 13.598 ,
 7.467 , 10.048 , 9.549 , 9.963 , 9.873 ,
 7.625 , 9.798 , 13.185 , 11.618 , 31.07 ,
 10.655 , 11.709 , 21.155001, 14.236 , 8.461 ,
 8.085 , 10.822 , 7.856 , 8.681 , 13.906 ,
 16.940001, 18.941999, 9.918 , 14.948 , 12.814 ,
 18.739 , 17.017 , 11.107 , 18.476999, 29.833 ,
 22.207001, 25.872999, 13.38 , 16.961 , 14.135 ,
 18.323999, 18.950001, 11.813 , 18.796])
>>> yl = pysal.lag_spatial(w,y)
>>> yl
array([18.594 , 13.32133333, 14.123 , 14.94425 ,
 11.817857 , 14.419 , 10.283 , 8.3364 ,
 11.7576665 , 19.48466667, 10.0655 , 9.1882 ,
 9.483 , 10.07716667, 11.231 , 10.46185714,
 21.94100033, 10.8605 , 12.46133333, 15.39877778,
 14.36333333, 15.0838 , 19.93666633, 10.90833333,
 9.7 , 11.403 , 15.13825 , 10.448 ,
 11.81 , 12.64725 , 16.8435 , 26.0662505 ,
 15.6405 , 18.05175 , 15.3824 , 18.9123996 ,
 12.2418 , 12.76675 , 18.5314995 , 22.79225025,
 22.575 , 16.8435 , 14.2066 , 14.20075 ,
 15.2515 , 18.6079995 , 26.0200005 , 15.818 , 14.303])

>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]

Non-Zero Diagonal

The typical weights matrix has zeros along the main diagonal. This has the
practical result of excluding the self from any computation. However, this is
not always the desired situation, and so PySAL offers a function that adds
values to the main diagonal of a W object.

As an example, we can build a basic rook weights matrix, which has zeros on
the diagonal, then insert ones along the diagonal:

>>> w = pysal.lat2W(5, 5, id_type='string')
>>> w['id0']
{'id5': 1.0, 'id1': 1.0}
>>> w_const = pysal.weights.insert_diagonal(w)
>>> w_const['id0']
{'id5': 1.0, 'id0': 1.0, 'id1': 1.0}

The default is to add ones to the diagonal, but the function allows any values to
be added.

WSets

PySAL offers set-like manipulation of spatial weights matrices. While a W is
more complex than a set, the two objects have a number of commonalities
allowing for traditional set operations to have similar functionality on a W.
Conceptually, we treat each neighbor pair as an element of a set, and then
return the appropriate pairs based on the operation invoked (e.g. union,
intersection, etc.). A key distinction between a set and a W is that a W
must keep track of the universe of possible pairs, even those that do not
result in a neighbor relationship.

PySAL follows the naming conventions for Python sets, but adds optional flags
allowing the user to control the shape of the weights object returned. At
this time, all the functions discussed in this section return a binary W no
matter the weights objects passed in.

Union

The union of two weights objects returns a binary weights object, W, that
includes all neighbor pairs that exist in either weights object. This
function can be used to simply join together two weights objects, say one for
Arizona counties and another for California counties. It can also be used
to join two weights objects that overlap as in the example below.

>>> w1 = pysal.lat2W(4,4)
>>> w2 = pysal.lat2W(6,4)
>>> w = pysal.w_union(w1, w2)
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14]
>>> w2.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[19, 11, 14]

Intersection

The intersection of two weights objects returns a binary weights object, W,
that includes only those neighbor pairs that exist in both weights objects.
Unlike the union case, where all pairs in either matrix are returned, the
intersection only returns a subset of the pairs. This leaves open the
question of the shape of the weights matrix to return. For example, you have
one weights matrix of census tracts for City A and second matrix of tracts for
Utility Company B’s service area, and want to find the W for the tracts that
overlap. Depending on the research question, you may want the returned W to
have the same dimensions as City A’s weights matrix, the same as the utility
company’s weights matrix, a new dimensionality based on all the census tracts
in either matrix or with the dimensionality of just those tracts in the
overlapping area. All of these options are available via the w_shape parameter
and the order that the matrices are passed to the function. The following
example uses the all case:

>>> w1 = pysal.lat2W(4,4)
>>> w2 = pysal.lat2W(6,4)
>>> w = pysal.w_intersection(w1, w2, 'all')
WARNING: there are 8 disconnected observations
Island ids: [16, 17, 18, 19, 20, 21, 22, 23]
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14]
>>> w2.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[11, 14]
>>> w2.neighbors[16]
[12, 20, 17]
>>> w.neighbors[16]
[]

Difference

The difference of two weights objects returns a binary weights object, W, that
includes only neighbor pairs from the first object that are not in the second.
Similar to the intersection function, the user must select the shape of the
weights object returned using the w_shape parameter. The user must also
consider the constrained parameter which controls whether the observations and
the neighbor pairs are differenced or just the neighbor pairs are differenced.
If you were to apply the difference function to our city and utility company
example from the intersection section above, you must decide whether or not
pairs that exist along the border of the regions should be considered
different or not. It boils down to whether the tracts should be differenced
first and then the differenced pairs identified (constrained=True), or if the
differenced pairs should be identified based on the sets of pairs in the
original weights matrices (constrained=False). In the example below we
difference weights matrices from regions with partial overlap.

>>> w1 = pysal.lat2W(6,4)
>>> w2 = pysal.lat2W(4,4)
>>> w1.neighbors[15]
[11, 14, 19]
>>> w2.neighbors[15]
[11, 14]
>>> w = pysal.w_difference(w1, w2, w_shape = 'w1', constrained = False)
WARNING: there are 12 disconnected observations
Island ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
>>> w.neighbors[15]
[19]
>>> w.neighbors[19]
[15, 18, 23]
>>> w = pysal.w_difference(w1, w2, w_shape = 'min', constrained = False)
>>> 15 in w.neighbors
False
>>> w.neighbors[19]
[18, 23]
>>> w = pysal.w_difference(w1, w2, w_shape = 'w1', constrained = True)
WARNING: there are 16 disconnected observations
Island ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> w.neighbors[15]
[]
>>> w.neighbors[19]
[18, 23]
>>> w = pysal.w_difference(w1, w2, w_shape = 'min', constrained = True)
>>> 15 in w.neighbors
False
>>> w.neighbors[19]
[18, 23]

The difference function can be used to construct a bishop
contiguity weights matrix
by differencing a queen and rook matrix.

>>> wr = pysal.lat2W(5,5)
>>> wq = pysal.lat2W(5,5,rook = False)
>>> wb = pysal.w_difference(wq, wr,constrained = False)
>>> wb.neighbors[0]
[6]

Symmetric Difference

Symmetric difference of two weights objects returns a binary weights object,
W, that includes only neighbor pairs that are not shared by either matrix.
This function offers options similar to those in the difference function
described above.

>>> w1 = pysal.lat2W(6, 4)
>>> w2 = pysal.lat2W(2, 4)
>>> w_lower = pysal.w_difference(w1, w2, w_shape = 'min', constrained = True)
>>> w_upper = pysal.lat2W(4, 4)
>>> w = pysal.w_symmetric_difference(w_lower, w_upper, 'all', False)
>>> w_lower.id_order
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
>>> w_upper.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
>>> w.neighbors[11]
[7]
>>> w = pysal.w_symmetric_difference(w_lower, w_upper, 'min', False)
WARNING: there are 8 disconnected observations
Island ids: [0, 1, 2, 3, 4, 5, 6, 7]
>>> 11 in w.neighbors
False
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23]
>>> w = pysal.w_symmetric_difference(w_lower, w_upper, 'all', True)
WARNING: there are 16 disconnected observations
Island ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> w.neighbors[11]
[]
>>> w = pysal.w_symmetric_difference(w_lower, w_upper, 'min', True)
WARNING: there are 8 disconnected observations
Island ids: [0, 1, 2, 3, 4, 5, 6, 7]
>>> 11 in w.neighbors
False

Subset

Subset of a weights object returns a binary weights object, W, that includes
only those observations provided by the user. It also can be used to add
islands to a previously existing weights object.

>>> w1 = pysal.lat2W(6, 4)
>>> w1.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
>>> ids = range(16)
>>> w = pysal.w_subset(w1, ids)
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[11, 14]

WSP

A thin PySAL weights object is available to users with extremely large weights
matrices, on the order of 2 million or more observations, or users interested
in holding many large weights matrices in RAM simultaneously. The
pysal.weights.WSP is a thin weights object that does not include the
neighbors and weights dictionaries, but does contain the scipy.sparse form of
the weights. For many PySAL functions the W and WSP objects can be used
interchangeably.

A WSP object can be constructed from a Matrix Market [http://math.nist.gov/MatrixMarket/] file (see MatrixMarket MTX Weights Files for more info on
reading and writing mtx files in PySAL):

>>> mtx = pysal.open("../pysal/examples/wmat.mtx", 'r')
>>> wsp = mtx.read(sparse=True)

or built directly from a scipy.sparse object:

>>> import scipy.sparse
>>> rows = [0, 1, 1, 2, 2, 3]
>>> cols = [1, 0, 2, 1, 3, 3]
>>> weights = [1, 0.75, 0.25, 0.9, 0.1, 1]
>>> sparse = scipy.sparse.csr_matrix((weights, (rows, cols)), shape=(4,4))
>>> w = pysal.weights.WSP(sparse)

The WSP object has subset of the attributes of a W object; for example:

>>> w.n
4
>>> w.s0
4.0
>>> w.trcWtW_WW
6.3949999999999996

The following functionality is available to convert from a W to a WSP:

>>> w = pysal.weights.lat2W(5,5)
>>> w.s0
80.0
>>> wsp = pysal.weights.WSP(w.sparse)
>>> wsp.s0
80.0

and from a WSP to W:

>>> sp = pysal.weights.lat2SW(5, 5)
>>> wsp = pysal.weights.WSP(sp)
>>> wsp.s0
80
>>> w = pysal.weights.WSP2W(wsp)
>>> w.s0
80

Further Information

For further details see the Weights API.

Footnotes

	[1]	Although this tutorial provides an introduction to the functionality of the PySAL weights class, it is not exhaustive. Complete documentation for the class and associated functions can be found by accessing the help from within a Python interpreter.

	[2]	The dictionaries for the weights and value attributes in W are read-only.

	[3]	Ties at the k-nn distance band are randomly broken to ensure each observation has exactly k neighbors.

	[4]	If the shapefile contains geographical coordinates these distance calculations will be misleading and the user should first project their coordinates using a GIS.

	[5]	The ordering exploits the one-to-one relation between a record in the DBF file and the shape in the shapefile.

 Spatial Autocorrelation

Spatial Autocorrelation

Contents

	Spatial Autocorrelation
	Introduction

	Global Autocorrelation
	Gamma Index of Spatial Autocorrelation

	Join Count Statistics

	Moran’s I

	Geary’s C

	Getis and Ord’s G

	Local Autocorrelation
	Local Moran’s I

	Local G and G*

	Further Information

Introduction

Spatial autocorrelation pertains to the non-random pattern of attribute values
over a set of spatial units. This can take two general forms: positive
autocorrelation which reflects value similarity in space, and negative
autocorrelation or value dissimilarity in space. In either case the
autocorrelation arises when the observed spatial pattern is different from what would
be expected under a random process operating in space.

Spatial autocorrelation can be analyzed from two different perspectives. Global
autocorrelation analysis involves the study of the entire map pattern and
generally asks the question as to whether the pattern displays clustering or
not. Local autocorrelation, on the other hand, shifts the focus to explore
within the global pattern to identify clusters or so called hot spots that may be
either driving the overall clustering pattern, or that reflect heterogeneities
that depart from global pattern.

In what follows, we first highlight the global spatial autocorrelation classes
in PySAL. This is followed by an illustration of the analysis of local spatial
autocorrelation.

Global Autocorrelation

PySAL implements five different tests for global spatial autocorrelation:
the Gamma index of spatial autocorrelation, join count statistics,
Moran’s I, Geary’s C, and Getis and Ord’s G.

Gamma Index of Spatial Autocorrelation

The Gamma Index of spatial autocorrelation consists of the application of the principle
behind a general cross-product statistic to measuring spatial autocorrelation. [1]
The idea is to assess whether two similarity matrices for n objects, i.e., n by n
matrices A and B measure the same type of similarity. This is reflected in a so-called
Gamma Index [image: \Gamma = \sum_i \sum_j a_{ij}.b_{ij}]. In other words, the statistic
consists of the sum over all cross-products of matching elements (i,j) in the two
matrices.

The application of this principle to spatial autocorrelation consists of turning
the first similarity matrix into a measure of attribute similarity and the second
matrix into a measure of locational similarity. Naturally, the second matrix is the
a spatial weight matrix. The first matrix can be any reasonable measure of attribute
similarity or dissimilarity, such as a cross-product, squared difference or absolute
difference.

Formally, then, the Gamma index is:

[image: \Gamma = \sum_i \sum_j a_{ij}.w_{ij}]

where the [image: w_{ij}] are the elements of the weights matrix and
[image: a_{ij}] are corresponding measures of attribute similarity.

Inference for this statistic is based on a permutation approach in which the values
are shuffled around among the locations and the statistic is recomputed each
time. This creates a reference distribution for the statistic under the null
hypothesis of spatial randomness. The observed statistic is then compared to this
reference distribution and a pseudo-significance computed as

[image: p = (m + 1) / (n + 1)]

where m is the number of values from the reference distribution that are equal to
or greater than the observed join count and n is the number of permutations.

The Gamma test is a two-sided test in the sense that both extremely high values (e.g.,
larger than any value in the reference distribution) and extremely low values
(e.g., smaller than any value in the reference distribution) can be considered
to be significant. Depending on how the measure of attribute similarity is defined,
a high value will indicate positive or negative spatial autocorrelation, and vice
versa. For example, for a cross-product measure of attribute similarity, high values
indicate positive spatial autocorrelation and low values negative spatial autocorrelation.
For a squared difference measure, it is the reverse. This is similar to the
interpretation of the Moran’s I statistic and Geary’s C statistic respectively.

Many spatial autocorrelation test statistics can be shown to be special cases of the
Gamma index. In most instances, the Gamma index is an unstandardized version of the
commonly used statistics. As such, the Gamma index is scale dependent, since no
normalization is carried out (such as deviations from the mean or rescaling by the
variance). Also, since the sum is over all the elements, the value of a Gamma
statistic will grow with the sample size, everything else being the same.

PySAL implements four forms of the Gamma index. Three of these are pre-specified
and one allows the user to pass any function that computes a measure of attribute
similarity. This function should take three parameters: the vector of observations,
an index i and an index j.

We will illustrate the Gamma index using the same small artificial example
as we use for the Join Count Statistics in order to illustrate the similarities
and differences between them. The data consist of a regular 4 by 4 lattice with
values of 0 in the top half and values of 1 in the bottom half. We start with the usual
imports, and set the random seed to 12345 in order
to be able to replicate the results of the permutation approach.

>>> import pysal
>>> import numpy as np
>>> np.random.seed(12345)

We create the binary weights matrix for the 4 x 4 lattice and generate the
observation vector y:

>>> w=pysal.lat2W(4,4)
>>> y=np.ones(16)
>>> y[0:8]=0

The Gamma index function has five arguments, three of which are optional.
The first two arguments are the vector of observations (y) and the spatial
weights object (w). Next are operation, the measure of attribute similarity,
the default of which is operation = 'c' for cross-product similarity,
[image: a_{ij} = y_i.y_j]. The other two built-in options are operation = 's' for
squared difference, [image: a_{ij} = (y_i - y_j)^2] and operation = 'a' for
absolute difference, [image: a_{ij} = | y_i - y_j |]. The fourth option is to
pass an arbitrary attribute similarity function, as in operation = func, where func
is a function with three arguments, def func(y,i,j) with y as the vector
of observations, and i and j as indices. This function should return a single
value for attribute similarity.

The fourth argument allows the observed values to be standardized before the
calculation of the Gamma index. To some extent, this addresses the scale dependence
of the index, but not its dependence on the number of observations. The default
is no standardization, standardize = 'no'. To force standardization,
set standardize = 'yes' or 'y'. The final argument is the number of
permutations, permutations with the default set to 999.

As a first illustration, we invoke the Gamma index using all the default
values, i.e. cross-product similarity, no standardization, and permutations
set to 999. The interesting statistics are the magnitude of the Gamma index g,
the standardized Gamma index using the mean and standard deviation from the
reference distribution, g_z and the pseudo-p value obtained from the
permutation, g_sim_p. In addition, the minimum (min_g), maximum (max_g)
and mean (mean_g) of the reference distribution are available as well.

>>> g = pysal.Gamma(y,w)
>>> g.g
20.0
>>> "%.3f"%g.g_z
'3.188'
>>> g.p_sim_g
0.0030000000000000001
>>> g.min_g
0.0
>>> g.max_g
20.0
>>> g.mean_g
11.093093093093094

Note that the value for Gamma is exactly twice the BB statistic obtained in the
example below, since the attribute similarity criterion is identical, but Gamma is
not divided by 2.0. The observed value is very extreme, with only two replications
from the permutation equalling the value of 20.0. This indicates significant
positive spatial autocorrelation.

As a second illustration, we use the squared difference criterion, which
corresponds to the BW Join Count statistic. We reset the random seed to
keep comparability of the results.

>>> np.random.seed(12345)
>>> g1 = pysal.Gamma(y,w,operation='s')
>>> g1.g
8.0
>>> "%.3f"%g1.g_z
'-3.706'
>>> g1.p_sim_g
0.001
>>> g1.min_g
14.0
>>> g1.max_g
48.0
>>> g1.mean_g
25.623623623623622

The Gamma index value of 8.0 is exactly twice the value of the BW statistic for
this example. However, since the Gamma index is used for a two-sided test, this
value is highly significant, and with a negative z-value, this suggests positive
spatial autocorrelation (similar
to Geary’s C). In other words, this result is consistent with the finding for the
Gamma index that used cross-product similarity.

As a third example, we use the absolute difference for attribute similarity.
The results are identical to those for squared difference since these two
criteria are equivalent for 0-1 values.

>>> np.random.seed(12345)
>>> g2 = pysal.Gamma(y,w,operation='a')
>>> g2.g
8.0
>>> "%.3f"%g2.g_z
'-3.706'
>>> g2.p_sim_g
0.001
>>> g2.min_g
14.0
>>> g2.max_g
48.0
>>> g2.mean_g
25.623623623623622

We next illustrate the effect of standardization, using the default operation.
As shown, the value of the statistic is quite different from the unstandardized
form, but the inference is equivalent.

>>> np.random.seed(12345)
>>> g3 = pysal.Gamma(y,w,standardize='y')
>>> g3.g
32.0
>>> "%.3f"%g3.g_z
'3.706'
>>> g3.p_sim_g
0.001
>>> g3.min_g
-48.0
>>> g3.max_g
20.0
>>> "%.3f"%g3.mean_g
'-3.247'

Note that all the tests shown here have used the weights matrix in binary form.
However, since the Gamma index is perfectly general,
any standardization can be applied to the weights.

Finally, we illustrate the use of an arbitrary attribute similarity function.
In order to compare to the results above, we will define a function that
produces a cross product similarity measure. We will then pass this function
to the operation argument of the Gamma index.

>>> np.random.seed(12345)
>>> def func(z,i,j):
... q = z[i]*z[j]
... return q
...
>>> g4 = pysal.Gamma(y,w,operation=func)
>>> g4.g
20.0
>>> "%.3f"%g4.g_z
'3.188'
>>> g4.p_sim_g
0.0030000000000000001

As expected, the results are identical to those obtained with the default
operation.

Join Count Statistics

The join count statistics measure global spatial autocorrelation for binary data, i.e.,
with observations coded as 1 or B (for Black) and 0 or W (for White). They follow the
very simple principle of counting joins, i.e., the arrangement of values between
pairs of observations where the pairs correspond to neighbors. The three resulting
join count statistics are BB, WW and BW. Both BB and WW are measures of positive
spatial autocorrelation, whereas BW is an indicator of negative spatial autocorrelation.

To implement the join count statistics, we need the spatial weights matrix in
binary (not row-standardized) form. With [image: y] as the vector of observations
and the spatial weight as [image: w_{i,j}], the three statistics can be expressed as:

[image: BB = (1/2) \sum_{i}\sum_{j} y_i y_j w_{ij}]

[image: WW = (1/2) \sum_{i}\sum_{j} (1 - y_i)(1 - y_j) w_{ij}]

[image: BW = (1/2) \sum_{i}\sum_{j} (y_i - y_j)^2 w_{ij}]

By convention, the join counts are divided by 2 to avoid double counting. Also, since
the three joins exhaust all the possibilities, they sum to one half (because of the
division by 2) of the total sum of weights [image: J = (1/2)S_0 = (1/2)\sum_{i}\sum_{j} w_{ij}].

Inference for the join count statistics can be based on either an analytical approach
or a computational approach. The analytical approach starts from the binomial distribution
and derives the moments of the statistics under the assumption of free sampling
and non-free sampling. The resulting mean and variance are used to construct a
standardized z-variable which can be approximated as a standard normal variate. [2]
However, the approximation is often poor in practice. We therefore only implement the
computational approach.

Computational inference is based on a permutation approach in which the values of y
are randomly reshuffled many times to obtain a reference distribution of the statistics
under the null hypothesis of spatial randomness. The observed join count is then
compared to this reference distribution and a pseudo-significance computed as

[image: p = (m + 1) / (n + 1)]

where m is the number of values from the reference distribution that are equal to
or greater than the observed join count and n is the number of permutations. Note
that the join counts are a one sided-test. If the counts are extremely smaller
than the reference distribution, this is not an indication of significance. For
example, if the BW counts are extremely small, this is not an indication of
negative BW autocorrelation, but instead points to the presence of BB or WW
autocorrelation.

We will illustrate the join count statistics with a simple artificial example
of a 4 by 4 square lattice with values of 0 in the top half and values of 1 in
the bottom half.

We start with the usual imports, and set the random seed to 12345 in order
to be able to replicate the results of the permutation approach.

>>> import pysal
>>> import numpy as np
>>> np.random.seed(12345)

We create the binary weights matrix for the 4 x 4 lattice and generate the
observation vector y:

>>> w=pysal.lat2W(4,4)
>>> y=np.ones(16)
>>> y[0:8]=0

We obtain an instance of the joint count statistics BB, BW and WW as (J is
half the sum of all the weights and should equal the sum of BB, WW and BW):

>>> jc=pysal.Join_Counts(y,w)
>>> jc.bb
10.0
>>> jc.bw
4.0
>>> jc.ww
10.0
>>> jc.J
24.0

The number of permutations is set to 999 by default. For other values, this parameter
needs to be passed explicitly, as in:

>>> jc=pysal.Join_Counts(y,w,permutations=99)

The results in our simple example show that the BB counts are 10. There are
in fact 3 horizontal joins in each of the bottom rows of the lattice as well as
4 vertical joins, which makes for bb = 3 + 3 + 4 = 10. The BW joins are 4, matching the
separation between the bottom and top part.

The permutation results give a pseudo-p value for BB of 0.003, suggesting highly
significant positive spatial autocorrelation. The average BB count
for the sample of 999 replications is 5.5, quite a bit lower than the count of 10
we obtain. Only two instances of the replicated samples yield a value equal to 10,
none is greater (the randomly permuted samples yield bb values between 0 and 10).

>>> len(jc.sim_bb)
999
>>> jc.p_sim_bb
0.0030000000000000001
>>> np.mean(jc.sim_bb)
5.5465465465465469
>>> np.max(jc.sim_bb)
10.0
>>> np.min(jc.sim_bb)
0.0

The results for BW (negative spatial autocorrelation) show a probability of 1.0
under the null hypothesis. This means that all the values of BW from the randomly
permuted data sets were larger than the observed value of 4. In fact the range
of these values is between 7 and 24. In other words, this again strongly points
towards the presence of positive spatial autocorrelation. The observed number of
BB and WW joins (10 each) is so high that there are hardly any BW joins (4).

>>> len(jc.sim_bw)
999
>>> jc.p_sim_bw
1.0
>>> np.mean(jc.sim_bw)
12.811811811811811
>>> np.max(jc.sim_bw)
24.0
>>> np.min(jc.sim_bw)
7.0

Moran’s I

Moran’s I measures the global spatial autocorrelation in an attribute [image: y] measured over [image: n] spatial units and is given as:

[image: I = n/S_0 \sum_{i}\sum_j z_i w_{i,j} z_j / \sum_i z_i z_i]

where [image: w_{i,j}] is a spatial weight, [image: z_i = y_i - \bar{y}], and [image: S_0=\sum_i\sum_j w_{i,j}]. We illustrate the use of Moran’s I with a case study of homicide rates for a group of 78 counties surrounding St. Louis over the period 1988-93. [3]
We start with the usual imports:

>>> import pysal
>>> import numpy as np

Next, we read in the homicide rates:

>>> f = pysal.open(pysal.examples.get_path("stl_hom.txt"))
>>> y = np.array(f.by_col['HR8893'])

To calculate Moran’s I we first need to read in a GAL file for a rook weights
matrix and create an instance of W:

>>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()

The instance of Moran’s I can then be obtained with:

>>> mi = pysal.Moran(y, w, two_tailed=False)
>>> "%.3f"%mi.I
'0.244'
>>> mi.EI
-0.012987012987012988
>>> "%.5f"%mi.p_norm
'0.00014'

From these results, we see that the observed value for I is significantly above its expected value, under the assumption of normality for the homicide rates.

If we peek inside the mi object to learn more:

>>> help(mi)

which generates:

Help on instance of Moran in module pysal.esda.moran:

class Moran
 | Moran's I Global Autocorrelation Statistic
 |
Parameters
y : array
variable measured across n spatial units
w : W
spatial weights instance
permutations : int
number of random permutations for calculation of pseudo-p_values
Attributes

y : array
original variable
w : W
original w object
permutations : int
number of permutations
I : float
value of Moran's I
EI : float
expected value under normality assumption
VI_norm : float
variance of I under normality assumption
seI_norm : float
standard deviation of I under normality assumption
z_norm : float
z-value of I under normality assumption
p_norm : float
p-value of I under normality assumption (one-sided)
for two-sided tests, this value should be multiplied by 2
VI_rand : float
variance of I under randomization assumption
seI_rand : float
standard deviation of I under randomization assumption
z_rand : float
z-value of I under randomization assumption
p_rand : float
p-value of I under randomization assumption (1-tailed)
sim : array (if permutations>0)

we see that we can base the inference not only on the normality assumption, but also on random permutations of the values on the spatial units to generate a reference distribution for I under the null:

>>> np.random.seed(10)
>>> mir = pysal.Moran(y, w, permutations = 9999)

The pseudo p value based on these permutations is:

>>> print mir.p_sim
0.0022

in other words there were 14 permutations that generated values for I that
were as extreme as the original value, so the p value becomes (14+1)/(9999+1). [4]
Alternatively, we could use the realized values for I from the permutations and
compare the original I using a z-transformation to get:

>>> print mir.EI_sim
-0.0118217511619
>>> print mir.z_sim
4.55451777821
>>> print mir.p_z_sim
2.62529422013e-06

When the variable of interest ([image: y]) is rates based on populations with different sizes,
the Moran’s I value for [image: y] needs to be adjusted to account for the differences among populations. [5]
To apply this adjustment, we can create an instance of the Moran_Rate class rather than the Moran class.
For example, let’s assume that we want to estimate the Moran’s I for the rates of newborn infants who died of
Sudden Infant Death Syndrome (SIDS). We start this estimation by reading in the total number of newborn infants (BIR79)
and the total number of newborn infants who died of SIDS (SID79):

>>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))
>>> b = np.array(f.by_col('BIR79'))
>>> e = np.array(f.by_col('SID79'))

Next, we create an instance of W:

>>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()

Now, we create an instance of Moran_Rate:

>>> mi = pysal.esda.moran.Moran_Rate(e, b, w, two_tailed=False)
>>> "%6.4f" % mi.I
'0.1662'
>>> "%6.4f" % mi.EI
'-0.0101'
>>> "%6.4f" % mi.p_norm
'0.0042'

From these results, we see that the observed value for I is significantly higher than its expected value,
after the adjustment for the differences in population.

Geary’s C

The fourth statistic for global spatial autocorrelation implemented in PySAL is Geary’s C:

[image: C=\frac{(n-1)}{2S_0} \sum_i\sum_j w_{i,j} (y_i-y_j)^2 / \sum_i z_i^2]

with all the terms defined as above. Applying this to the St. Louis data:

>>> np.random.seed(12345)
>>> f = pysal.open(pysal.examples.get_path("stl_hom.txt"))
>>> y = np.array(f.by_col['HR8893'])
>>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()
>>> gc = pysal.Geary(y, w)
>>> "%.3f"%gc.C
'0.597'
>>> gc.EC
1.0
>>> "%.3f"%gc.z_norm
'-5.449'

we see that the statistic [image: C] is significantly lower than its expected
value [image: EC]. Although the sign of the standardized statistic is negative (in contrast to what held for [image: I], the interpretation is the same, namely evidence of strong positive spatial autocorrelation in the homicide rates.

Similar to what we saw for Moran’s I, we can base inference on Geary’s [image: C] using
random spatial permutations, which are actually run as a default with the
number of permutations=999 (this is why we set the seed of the random number
generator to 12345 to replicate the result):

>>> gc.p_sim
0.001

which indicates that none of the C values from the permuted samples was as extreme as our observed value.

Getis and Ord’s G

The last statistic for global spatial autocorrelation implemented in PySAL is Getis and Ord’s G:

[image: G(d)=\frac{\sum_i\sum_j w_{i,j}(d) y_i y_j}{\sum_i\sum_j y_i y_j}]

where [image: d] is a threshold distance used to define a spatial weight.
Only pysal.weights.Distance.DistanceBand weights objects are applicable to Getis and Ord’s G.
Applying this to the St. Louis data:

>>> dist_w = pysal.threshold_binaryW_from_shapefile('../pysal/examples/stl_hom.shp',0.6)
>>> dist_w.transform = "B"
>>> from pysal.esda.getisord import G
>>> g = G(y, dist_w)
>>> print g.G
0.103483215873
>>> print g.EG
0.0752580752581
>>> print g.z_norm
3.28090342959
>>> print g.p_norm
0.000517375830488

Although we switched the contiguity-based weights object into another distance-based one,
we see that the statistic [image: G] is significantly higher than its expected
value [image: EG] under the assumption of normality for the homicide rates.

Similar to what we saw for Moran’s I and Geary’s C, we can base inference on Getis and Ord’s G using random spatial permutations:

>>> np.random.seed(12345)
>>> g = G(y, dist_w, permutations=9999)
>>> print g.p_z_sim
0.000564384586974
>>> print g.p_sim
0.0065

with the first p-value based on a z-transform of the observed G relative to the
distribution of values obtained in the permutations, and the second based on
the cumulative probability of the observed value in the empirical distribution.

Local Autocorrelation

To measure local autocorrelation quantitatively,
PySAL implements Local Indicators of Spatial Association (LISAs) for Moran’s I and Getis and Ord’s G.

Local Moran’s I

PySAL implements local Moran’s I as follows:

[image: I_i = \frac{(n-1) z_i \sum_j w_{i,j} z_j}{\sum_j z_j^2}]

which results in [image: n] values of local spatial autocorrelation, 1 for each spatial unit. Continuing on with the St. Louis example, the LISA statistics are obtained with:

>>> f = pysal.open(pysal.examples.get_path("stl_hom.txt"))
>>> y = np.array(f.by_col['HR8893'])
>>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()
>>> np.random.seed(12345)
>>> lm = pysal.Moran_Local(y,w)
>>> lm.n
78
>>> len(lm.Is)
78

thus we see 78 LISAs are stored in the vector lm.Is. Inference about these values is obtained through conditional randomization [6] which leads to pseudo p-values for each LISA:

>>> lm.p_sim
array([0.176, 0.073, 0.405, 0.267, 0.332, 0.057, 0.296, 0.242,
 0.055, 0.062, 0.273, 0.488, 0.44 , 0.354, 0.415, 0.478,
 0.473, 0.374, 0.415, 0.21 , 0.161, 0.025, 0.338, 0.375,
 0.285, 0.374, 0.208, 0.3 , 0.373, 0.411, 0.478, 0.414,
 0.009, 0.429, 0.269, 0.015, 0.005, 0.002, 0.077, 0.001,
 0.088, 0.459, 0.435, 0.365, 0.231, 0.017, 0.033, 0.04 ,
 0.068, 0.101, 0.284, 0.309, 0.113, 0.457, 0.045, 0.269,
 0.118, 0.346, 0.328, 0.379, 0.342, 0.39 , 0.376, 0.467,
 0.357, 0.241, 0.26 , 0.401, 0.185, 0.172, 0.248, 0.4 ,
 0.482, 0.159, 0.373, 0.455, 0.083, 0.128])

To identify the significant [7] LISA values we can use numpy indexing:

>>> sig = lm.p_sim<0.05
>>> lm.p_sim[sig]
array([0.025, 0.009, 0.015, 0.005, 0.002, 0.001, 0.017, 0.033,
 0.04 , 0.045])

and then use this indexing on the q attribute to find out which quadrant of the Moran scatter plot each of the significant values is contained in:

>>> lm.q[sig]
array([4, 1, 3, 1, 3, 1, 1, 3, 3, 3])

As in the case of global Moran’s I, when the variable of interest is rates based on populations with different sizes,
we need to account for the differences among population to estimate local Moran’s Is.
Continuing on with the SIDS example above, the adjusted local Moran’s Is are obtained with:

 >>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))
 >>> b = np.array(f.by_col('BIR79'))
 >>> e = np.array(f.by_col('SID79'))
 >>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()
>>> np.random.seed(12345)
>>> lm = pysal.esda.moran.Moran_Local_Rate(e, b, w)
>>> lm.Is[:10]
array([-0.13452366, -1.21133985, 0.05019761, 0.06127125, -0.12627466,
 0.23497679, 0.26345855, -0.00951288, -0.01517879, -0.34513514])

As demonstrated above, significant Moran’s Is can be identified by using numpy indexing:

>>> sig = lm.p_sim<0.05
>>> lm.p_sim[sig]
array([0.021, 0.04 , 0.047, 0.015, 0.001, 0.017, 0.032, 0.031,
 0.019, 0.014, 0.004, 0.048, 0.003])

Local G and G*

Getis and Ord’s G can be localized in two forms: [image: G_i] and [image: G^*_i].

[image: G_i(d) = \frac{\sum_j w_{i,j}(d) y_j - W_i\bar{y}(i)}{s(i)\{[(n-1)S_{1i} - W^2_i]/(n-2)\}^(1/2)}, j \neq i]

[image: G^*_i(d) = \frac{\sum_j w_{i,j}(d) y_j - W^*_i\bar{y}}{s\{[(nS^*_{1i}) - (W^*_i)^2]/(n-1)\}^(1/2)}, j = i]

where we have [image: W_i = \sum_{j \neq i} w_{i,j}(d)], [image: \bar{y}(i) = \frac{\sum_j y_j}{(n-1)}], [image: s^2(i) = \frac{\sum_j y^2_j}{(n-1)} - [\bar{y}(i)]^2], [image: W^*_i = W_i + w{i,i}], [image: S_{1i} = \sum_j w^2_{i,j} (j \neq i)], and [image: S^*_{1i} = \sum_j w^2_{i,j} (\forall j)], [image: \bar{y}] and [image: s^2] denote the usual sample mean and variance of [image: y].

Continuing on with the St. Louis example, the [image: G_i] and [image: G^*_i] statistics are obtained with:

>>> from pysal.esda.getisord import G_Local
>>> np.random.seed(12345)
>>> lg = G_Local(y, dist_w)
>>> lg.n
78
>>> len(lg.Gs)
78
>>> lgstar = G_Local(y, dist_w, star=True)
>>> lgstar.n
78
>>> len(lgstar.Gs)
78

thus we see 78 [image: G_i] and [image: G^*_i] are stored in the vector lg.Gs and lgstar.Gs, respectively. Inference about these values is obtained through conditional randomization as in the case of local Moran’s I:

>>> lg.p_sim
array([0.301, 0.037, 0.457, 0.011, 0.062, 0.006, 0.094, 0.163,
 0.075, 0.078, 0.419, 0.286, 0.138, 0.443, 0.36 , 0.484,
 0.434, 0.251, 0.415, 0.21 , 0.177, 0.001, 0.304, 0.042,
 0.285, 0.394, 0.208, 0.089, 0.244, 0.493, 0.478, 0.433,
 0.006, 0.429, 0.037, 0.105, 0.005, 0.216, 0.23 , 0.023,
 0.105, 0.343, 0.395, 0.305, 0.264, 0.017, 0.033, 0.01 ,
 0.001, 0.115, 0.034, 0.225, 0.043, 0.312, 0.045, 0.092,
 0.118, 0.428, 0.258, 0.379, 0.408, 0.39 , 0.475, 0.493,
 0.357, 0.298, 0.232, 0.454, 0.149, 0.161, 0.226, 0.4 ,
 0.482, 0.159, 0.27 , 0.423, 0.083, 0.128])

To identify the significant [image: G_i] values we can use numpy indexing:

>>> sig = lg.p_sim<0.05
>>> lg.p_sim[sig]
array([0.037, 0.011, 0.006, 0.001, 0.042, 0.006, 0.037, 0.005,
 0.023, 0.017, 0.033, 0.01 , 0.001, 0.034, 0.043, 0.045])

Further Information

For further details see the ESDA API.

Footnotes

	[1]	Hubert, L., R. Golledge and C.M. Costanzo (1981). Generalized procedures for evaluating spatial autocorrelation. Geographical Analysis 13, 224-233.

	[2]	Technical details and derivations can be found in A.D. Cliff and J.K. Ord (1981). Spatial Processes, Models and Applications. London, Pion, pp. 34-41.

	[3]	Messner, S., L. Anselin, D. Hawkins, G. Deane, S. Tolnay, R. Baller (2000). An Atlas of the Spatial Patterning of County-Level Homicide, 1960-1990. Pittsburgh, PA, National Consortium on Violence Research (NCOVR)

	[4]	Because the permutations are random, results from those presented here may vary if you replicate this example.

	[5]	Assuncao, R. E. and Reis, E. A. 1999. A new proposal to adjust Moran’s I for population density. Statistics in Medicine. 18, 2147-2162.

	[6]	The n-1 spatial units other than i are used to generate the empirical distribution of the LISA statistics for each i.

	[7]	Caution is required in interpreting the significance of the LISA statistics due to difficulties with multiple comparisons and a lack of independence across the individual tests. For further discussion see Anselin, L. (1995). “Local indicators of spatial association – LISA”. Geographical Analysis, 27, 93-115.

 Spatial Econometrics

Spatial Econometrics

Comprehensive user documentation on spreg can be found in
Anselin, L. and S.J. Rey (2014) Modern Spatial Econometrics in Practice:
A Guide to GeoDa, GeoDaSpace and PySAL. [http://www.amazon.com/Modern-Spatial-Econometrics-Practice-GeoDaSpace-ebook/dp/B00RI9I44K]
GeoDa Press, Chicago.

spreg API

For further details see the spreg API.

 Spatial Smoothing

Spatial Smoothing

Contents

	Spatial Smoothing
	Introduction

	Age Standardization in PySAL
	Crude Age Standardization

	Direct Age Standardization

	Indirect Age Standardization

	Spatial Smoothing in PySAL
	Mean and Median Based Smoothing

	Non-parametric Smoothing

	Empirical Bayes Smoothers

	Excess Risk

	Further Information

Introduction

In the spatial analysis of attributes measured for areal units, it is often
necessary to transform an extensive variable, such as number of disease cases
per census tract, into an intensive variable that takes into account the
underlying population at risk. Raw rates, counts divided by population values,
are a common standardization in the literature, yet these tend to have unequal
reliability due to different population sizes across the spatial units. This problem becomes
severe for areas with small population values, since the raw rates for those
areas tend to have higher variance.

A variety of spatial smoothing methods have been suggested to address this problem by aggregating
the counts and population values for the areas neighboring an observation and
using these new measurements for its rate computation. PySAL provides a range
of smoothing techniques that exploit different types of moving windows and
non-parametric weighting schemes as well as the Empirical Bayesian principle.
In addition, PySAL offers several methods for calculating age-standardized
rates, since age standardization is critical in estimating rates of some events
where the probability of an event occurrence is different across different age
groups.

In what follows, we overview the methods for age standardization and spatial smoothing
and describe their implementations in PySAL. [1]

Age Standardization in PySAL

Raw rates, counts divided by populations values, are based on an implicit assumption
that the risk of an event is constant over all age/sex categories in the population.
For many phenomena, however, the risk is not uniform and often highly correlated with age.
To take this into account explicitly, the risks for individual age categories can be estimated
separately and averaged to produce a representative value for an area.

PySAL supports three approaches to this age standardization: crude, direct, and indirect
standardization.

Crude Age Standardization

In this approach, the rate for an area is simply the sum of age-specific rates weighted by
the ratios of each age group in the total population.

To obtain the rates based on this approach, we first need to create two variables
that correspond to event counts and population values, respectively.

>>> import numpy as np
>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])
>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])

Each set of numbers should include n by h elements where n and h are the number of areal units
and the number of age groups. In the above example there are two regions with 4 age groups.
Age groups are identical across regions. The first four elements in b represent the populations of 4 age
groups in the first region, and the last four elements the populations of the same age groups in the second
region.

To apply the crude age standardization, we need to make the following function call:

>>> from pysal.esda import smoothing as sm
>>> sm.crude_age_standardization(e, b, 2)
array([0.2375 , 0.26666667])

In the function call above, the last argument indicates the number of area units.
The outcome in the second line shows that the age-standardized rates for two areas
are about 0.24 and 0.27, respectively.

Direct Age Standardization

Direct age standardization is a variation of the crude age standardization.
While crude age standardization uses the ratios of each age group in the observed population,
direct age standardization weights age-specific rates by the ratios of each age group in a reference
population. This reference population, the so-called standard million, is another required
argument in the PySAL implementation of direct age standardization:

>>> s = np.array([100, 90, 100, 90, 100, 90, 100, 90])
>>> rate = sm.direct_age_standardization(e, b, s, 2, alpha=0.05)
>>> np.array(rate).round(6)
array([[0.23744 , 0.192049, 0.290485],
 [0.266507, 0.217714, 0.323051]])

The outcome of direct age standardization includes a set of standardized rates and their confidence
intervals. The confidence intervals can vary according to the value for the last argument, alpha.

Indirect Age Standardization

While direct age standardization effectively addresses the variety in the risks across
age groups, its indirect counterpart is better suited to handle the potential
imprecision of age-specific rates due to the small population size. This method
uses age-specific rates from the standard million instead of the observed
population. It then weights the rates by the ratios of each age group in the
observed population. To compute the age-specific rates from the standard
million, the PySAL implementation of indirect age standardization requires
another argument that contains the counts of the events occurred in the
standard million.

>>> s_e = np.array([10, 15, 12, 10, 5, 3, 20, 8])
>>> rate = sm.indirect_age_standardization(e, b, s_e, s, 2, alpha=0.05)
>>> np.array(rate).round(6)
array([[0.208055, 0.170156, 0.254395],
 [0.298892, 0.246631, 0.362228]])

The outcome of indirect age standardization is the same as that of its direct counterpart.

Spatial Smoothing in PySAL

Mean and Median Based Smoothing

A simple approach to rate smoothing is to find a local average or median from the rates of each
observation and its neighbors. The first method adopting this approach is the so-called locally
weighted averages or disk smoother. In this method a rate for each observation is replaced
by an average of rates for its neighbors. A spatial weights object is used to specify the neighborhood relationships among
observations. To obtain locally weighted averages of the homicide rates in the
counties surrounding St. Louis during 1979-84, we first read the corresponding
data table and extract data values for the homicide counts (the 11th column)
and total population (the 13th column):

>>> import pysal
>>> stl = pysal.open('../pysal/examples/stl_hom.csv', 'r')
>>> e, b = np.array(stl[:,10]), np.array(stl[:,13])

We then read the spatial weights file defining neighborhood relationships among the counties
and ensure that the order of observations in the weights object is the same as that in the data table.

>>> w = pysal.open('../pysal/examples/stl.gal', 'r').read()
>>> if not w.id_order_set: w.id_order = range(1,len(stl) + 1)

Now we calculate locally weighted averages of the homicide rates.

>>> rate = sm.Disk_Smoother(e, b, w)
>>> rate.r
array([4.56502262e-05, 3.44027685e-05, 3.38280487e-05,
 4.78530468e-05, 3.12278573e-05, 2.22596997e-05,
 ...
 5.29577710e-05, 5.51034691e-05, 4.65160450e-05,
 5.32513363e-05, 3.86199097e-05, 1.92952422e-05])

A variation of locally weighted averages is to use median instead of mean.
In other words, the rate for an observation can be replaced by the median of the rates of its neighbors.
This method is called locally weighted median and can be applied in the following way:

>>> rate = sm.Spatial_Median_Rate(e, b, w)
>>> rate.r
array([3.96047383e-05, 3.55386859e-05, 3.28308921e-05,
 4.30731238e-05, 3.12453969e-05, 1.97300409e-05,
 ...
 6.10668237e-05, 5.86355507e-05, 3.67396656e-05,
 4.82535850e-05, 5.51831429e-05, 2.99877050e-05])

In this method the procedure to find local medians can be iterated until no further change occurs.
The resulting local medians are called iteratively resmoothed medians.

>>> rate = sm.Spatial_Median_Rate(e, b, w, iteration=10)
>>> rate.r
array([3.10194715e-05, 2.98419439e-05, 3.10194715e-05,
 3.10159267e-05, 2.99214885e-05, 2.80530524e-05,
 ...
 3.81364519e-05, 4.72176972e-05, 3.75320135e-05,
 3.76863269e-05, 4.72176972e-05, 3.75320135e-05])

The pure local medians can also be replaced by a weighted median. To obtain weighted medians,
we need to create an array of weights. For example, we can use the total population of the counties
as auxiliary weights:

>>> rate = sm.Spatial_Median_Rate(e, b, w, aw=b)
>>> rate.r
array([5.77412020e-05, 4.46449551e-05, 5.77412020e-05,
 5.77412020e-05, 4.46449551e-05, 3.61363528e-05,
 ...
 5.49703305e-05, 5.86355507e-05, 3.67396656e-05,
 3.67396656e-05, 4.72176972e-05, 2.99877050e-05])

When obtaining locally weighted medians, we can consider only a specific subset of neighbors
rather than all of them. A representative method following this approach is the headbanging smoother.
In this method all areal units are represented by their geometric centroids.
Among the neighbors of each observation, only near collinear points are considered for median search.
Then, triples of points are selected from the near collinear points, and local medians are computed
from the triples’ rates. [2]
We apply this headbanging smoother to the rates of the deaths from Sudden Infant Death Syndrome (SIDS)
for North Carolina counties during 1974-78. We first need to read the source data and extract the event
counts (the 9th column) and population values (the 9th column).
In this example the population values correspond to the numbers of live births during 1974-78.

>>> sids_db = pysal.open('../pysal/examples/sids2.dbf', 'r')
>>> e, b = np.array(sids_db[:,9]), np.array(sids_db[:,8])

Now we need to find triples for each observation. To support the search of triples, PySAL
provides a class called Headbanging_Triples. This class requires an array of point observations,
a spatial weights object, and the number of triples as its arguments:

>>> from pysal import knnW
>>> sids = pysal.open('../pysal/examples/sids2.shp', 'r')
>>> sids_d = np.array([i.centroid for i in sids])
>>> sids_w = knnW(sids_d,k=5)
>>> if not sids_w.id_order_set: sids_w.id_order = sids_w.id_order
>>> triples = sm.Headbanging_Triples(sids_d,sids_w,k=5)

The second line in the above example shows how to extract centroids of polygons.
In this example we define 5 neighbors for each observation by using nearest neighbors criteria.
In the last line we define the maximum number of triples to be found as 5.

Now we use the triples to compute the headbanging median rates:

>>> rate = sm.Headbanging_Median_Rate(e,b,triples)
>>> rate.r
array([0.00075586, 0. , 0.0008285 , 0.0018315 , 0.00498891,
 0.00482094, 0.00133156, 0.0018315 , 0.00413223, 0.00142116,
 ...
 0.00221541, 0.00354767, 0.00259903, 0.00392952, 0.00207125,
 0.00392952, 0.00229253, 0.00392952, 0.00229253, 0.00229253])

As in the locally weighted medians, we can use a set of auxiliary weights and resmooth the medians
iteratively.

Non-parametric Smoothing

Non-parametric smoothing methods compute rates without making any assumptions of distributional
properties of rate estimates. A representative method in this approach is spatial filtering.
PySAL provides the most simplistic form of spatial filtering where a user-specified grid is imposed
on the data set and a moving window withi a fixed or adaptive radius visits each vertex of the grid to
compute the rate at the vertex. Using the previous SIDS example, we can use Spatial_Filtering class:

>>> bbox = [sids.bbox[:2], sids.bbox[2:]]
>>> rate = sm.Spatial_Filtering(bbox, sids_d, e, b, 10, 10, r=1.5)
>>> rate.r
array([0.00152555, 0.00079271, 0.00161253, 0.00161253, 0.00139513,
 0.00139513, 0.00139513, 0.00139513, 0.00139513, 0.00156348,
 ...
 0.00240216, 0.00237389, 0.00240641, 0.00242211, 0.0024854 ,
 0.00255477, 0.00266573, 0.00288918, 0.0028991 , 0.00293492])

The first and second arguments of the Spatial_Filtering class are a minimum bounding box containing the
observations and a set of centroids representing the observations.
Be careful that the bounding box is NOT the bounding box of the centroids.
The fifth and sixth arguments are to specify the numbers of grid cells along x and y axes.
The last argument, r, is to define the radius of the moving window. When this parameter is set,
a fixed radius is applied to all grid vertices. To make the size of moving window variable,
we can specify the minimum number of population in the moving window without specifying r:

>>> rate = sm.Spatial_Filtering(bbox, sids_d, e, b, 10, 10, pop=10000)
>>> rate.r
array([0.00157398, 0.00157398, 0.00157398, 0.00157398, 0.00166885,
 0.00166885, 0.00166885, 0.00166885, 0.00166885, 0.00166885,
 ...
 0.00202977, 0.00215322, 0.00207378, 0.00207378, 0.00217173,
 0.00232408, 0.00222717, 0.00245399, 0.00267857, 0.00267857])

The spatial rate smoother is another non-parametric smoothing method that PySAL supports.
This smoother is very similar to the locally weighted averages. In this method, however,
the weighted sum is applied to event counts and population values separately.
The resulting weighted sum of event counts is then divided by the counterpart of population
values. To obtain neighbor information, we need to use a spatial weights matrix as before.

>>> rate = sm.Spatial_Rate(e, b, sids_w)
>>> rate.r
array([0.00114976, 0.00104622, 0.00110001, 0.00153257, 0.00399662,
 0.00361428, 0.00146807, 0.00238521, 0.00288871, 0.00145228,
 ...
 0.00240839, 0.00376101, 0.00244941, 0.0028813 , 0.00240839,
 0.00261705, 0.00226554, 0.0031575 , 0.00254536, 0.0029003])

Another variation of spatial rate smoother is kernel smoother. PySAL supports kernel smoothing
by using a kernel spatial weights instance in place of a general spatial weights object.

>>> from pysal import Kernel
>>> kw = Kernel(sids_d)
>>> if not kw.id_order_set: kw.id_order = range(0,len(sids_d))
>>> rate = sm.Kernel_Smoother(e, b, kw)
>>> rate.r
array([0.0009831 , 0.00104298, 0.00137113, 0.00166406, 0.00556741,
 0.00442273, 0.00158202, 0.00243354, 0.00282158, 0.00099243,
 ...
 0.00221017, 0.00328485, 0.00257988, 0.00370461, 0.0020566 ,
 0.00378135, 0.00240358, 0.00432019, 0.00227857, 0.00251648])

Age-adjusted rate smoother is another non-parametric smoother that PySAL provides.
This smoother applies direct age standardization while computing spatial rates.
To illustrate the age-adjusted rate smoother, we create a new set of event counts and population values
as well as a new kernel weights object.

>>> e = np.array([10, 8, 1, 4, 3, 5, 4, 3, 2, 1, 5, 3])
>>> b = np.array([100, 90, 15, 30, 25, 20, 30, 20, 80, 80, 90, 60])
>>> s = np.array([98, 88, 15, 29, 20, 23, 33, 25, 76, 80, 89, 66])
>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> kw=Kernel(points)
>>> if not kw.id_order_set: kw.id_order = range(0,len(points))

In the above example we created 6 observations each of which has two age groups. To apply age-adjusted
rate smoothing, we use the Age_Adjusted_Smoother class as follows:

>>> rate = sm.Age_Adjusted_Smoother(e, b, kw, s)
>>> rate.r
array([0.10519625, 0.08494318, 0.06440072, 0.06898604, 0.06952076,
 0.05020968])

Empirical Bayes Smoothers

The last group of smoothing methods that PySAL supports is based upon the Bayesian principle. These methods adjust
a raw rate by taking into account information in the other raw rates.
As a reference PySAL provides a method for a-spatial Empirical Bayes smoothing:

>>> e, b = sm.sum_by_n(e, np.ones(12), 6), sm.sum_by_n(b, np.ones(12), 6)
>>> rate = sm.Empirical_Bayes(e, b)
>>> rate.r
array([0.09080775, 0.09252352, 0.12332267, 0.10753624, 0.03301368,
 0.05934766])

In the first line of the above example we aggregate the event counts and population values by observation.
Next we applied the Empirical_Bayes class to the aggregated counts and population values.

A spatial Empirical Bayes smoother is also implemented in PySAL. This method requires an additional
argument, i.e., a spatial weights object. We continue to reuse the kernel spatial weights object we built before.

>>> rate = sm.Spatial_Empirical_Bayes(e, b, kw)
>>> rate.r
array([0.10105263, 0.10165261, 0.16104362, 0.11642038, 0.0226908 ,
 0.05270639])

Excess Risk

Besides a variety of spatial smoothing methods, PySAL provides a class for estimating excess risk from event counts
and population values. Excess risks are the ratios of observed event counts over expected event counts.
An example for the class usage is as follows:

>>> risk = sm.Excess_Risk(e, b)
>>> risk.r
array([1.23737916, 1.45124717, 2.32199546, 1.82857143, 0.24489796,
 0.69659864])

Further Information

For further details see the Smoothing API.

Footnotes

	[1]	Although this tutorial provides an introduction to the PySAL implementations for spatial smoothing, it is not exhaustive. Complete documentation for the implementations can be found by accessing the help from within a Python interpreter.

	[2]	For the details of triple selection and headbanging smoothing please
refer to Anselin, L., Lozano, N., and Koschinsky, J. (2006). “Rate
Transformations and Smoothing [http://geodacenter.asu.edu/pdf/smoothing_06.pdf]”. GeoDa Center
Research Report.

 Regionalization

Regionalization

Introduction

PySAL offers a number of tools for the construction of regions. For the
purposes of this section, a “region” is a group of “areas,” and there are
generally multiple regions in a particular dataset. At this time, PySAL
offers the max-p regionalization algorithm and tools for constructing random
regions.

max-p

Most regionalization algorithms require the user to define a priori the number
of regions to be built (e.g. k-means clustering). The max-p algorithm [1]
determines the number of regions (p) endogenously based on a set of areas, a
matrix of attributes on each area and a floor constraint. The floor
constraint defines the minimum bound that a variable must reach for each
region; for example, a constraint might be the minimum population each region
must have. max-p further enforces a contiguity constraint on the areas within
regions.

To illustrate this we will use data on per capita income from the lower 48 US
states over the period 1929-2010. The goal is to form contiguous regions of
states displaying similar levels of income throughout this period:

>>> import pysal
>>> import numpy as np
>>> import random
>>> f = pysal.open("../pysal/examples/usjoin.csv")
>>> pci = np.array([f.by_col[str(y)] for y in range(1929, 2010)])
>>> pci = pci.transpose()
>>> pci.shape
(48, 81)

We also require set of binary contiguity weights for the Maxp class:

>>> w = pysal.open("../pysal/examples/states48.gal").read()

Once we have the attribute data and our weights object we can create an instance of Maxp:

>>> np.random.seed(100)
>>> random.seed(10)
>>> r = pysal.Maxp(w, pci, floor = 5, floor_variable = np.ones((48, 1)), initial = 99)

Here we are forming regions with a minimum of 5 states in each region, so we set the floor_variable to a simple unit vector to ensure this floor constraint is satisfied. We also specify the initial number of feasible solutions to 99 - which are then searched over to pick the optimal feasible solution to then commence with the more expensive swapping component of the algorithm. [2]

The Maxp instance s has a number of attributes regarding the solution. First is the definition of the regions:

>>> r.regions
[['44', '34', '3', '25', '1', '4', '47'], ['12', '46', '20', '24', '13'], ['14', '45', '35', '30', '39'], ['6', '27', '17', '29', '5', '43'], ['33', '40', '28', '15', '41', '9', '23', '31', '38'], ['37', '8', '0', '7', '21', '2'], ['32', '19', '11', '10', '22'], ['16', '26', '42', '18', '36']]

which is a list of eight lists of region ids. For example, the first nested list indicates there are seven states in the first region, while the last region has five states. To determine which states these are we can read in the names from the original csv file:

>>> f.header
['Name', 'STATE_FIPS', '1929', '1930', '1931', '1932', '1933', '1934', '1935', '1936', '1937', '1938', '1939', '1940', '1941', '1942', '1943', '1944', '1945', '1946', '1947', '1948', '1949', '1950', '1951', '1952', '1953', '1954', '1955', '1956', '1957', '1958', '1959', '1960', '1961', '1962', '1963', '1964', '1965', '1966', '1967', '1968', '1969', '1970', '1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979', '1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009']
>>> names = f.by_col('Name')
>>> names = np.array(names)
>>> print names
['Alabama' 'Arizona' 'Arkansas' 'California' 'Colorado' 'Connecticut'
 'Delaware' 'Florida' 'Georgia' 'Idaho' 'Illinois' 'Indiana' 'Iowa'
 'Kansas' 'Kentucky' 'Louisiana' 'Maine' 'Maryland' 'Massachusetts'
 'Michigan' 'Minnesota' 'Mississippi' 'Missouri' 'Montana' 'Nebraska'
 'Nevada' 'New Hampshire' 'New Jersey' 'New Mexico' 'New York'
 'North Carolina' 'North Dakota' 'Ohio' 'Oklahoma' 'Oregon' 'Pennsylvania'
 'Rhode Island' 'South Carolina' 'South Dakota' 'Tennessee' 'Texas' 'Utah'
 'Vermont' 'Virginia' 'Washington' 'West Virginia' 'Wisconsin' 'Wyoming']

and then loop over the region definitions to identify the specific states comprising each of the regions:

>>> for region in r.regions:
... ids = map(int,region)
... print names[ids]
...
['Washington' 'Oregon' 'California' 'Nevada' 'Arizona' 'Colorado' 'Wyoming']
['Iowa' 'Wisconsin' 'Minnesota' 'Nebraska' 'Kansas']
['Kentucky' 'West Virginia' 'Pennsylvania' 'North Carolina' 'Tennessee']
['Delaware' 'New Jersey' 'Maryland' 'New York' 'Connecticut' 'Virginia']
['Oklahoma' 'Texas' 'New Mexico' 'Louisiana' 'Utah' 'Idaho' 'Montana'
 'North Dakota' 'South Dakota']
['South Carolina' 'Georgia' 'Alabama' 'Florida' 'Mississippi' 'Arkansas']
['Ohio' 'Michigan' 'Indiana' 'Illinois' 'Missouri']
['Maine' 'New Hampshire' 'Vermont' 'Massachusetts' 'Rhode Island']

We can evaluate our solution by developing a pseudo pvalue for the regionalization.
This is done by comparing the within region sum of squares for the solution against
simulated solutions where areas are randomly assigned to regions that maintain
the cardinality of the original solution. This method must be explicitly called once the
Maxp instance has been created:

>>> r.inference()
>>> r.pvalue
0.01

so we see we have a regionalization that is significantly different than a chance partitioning.

Random Regions

PySAL offers functionality to generate random regions based on user-defined
constraints. There are three optional parameters to constrain the
regionalization: number of regions, cardinality and contiguity. The default
case simply takes a list of area IDs and randomly selects the number of
regions and then allocates areas to each region. The user can also pass a
vector of integers to the cardinality parameter to designate the number of
areas to randomly assign to each region. The contiguity parameter takes a
spatial weights object and uses that to ensure that each
region is made up of spatially contiguous areas. When the contiguity
constraint is enforced, it is possible to arrive at infeasible solutions; the
maxiter parameter can be set to make multiple attempts to find a feasible
solution. The following examples show some of the possible combinations of
constraints.

>>> import random
>>> import numpy as np
>>> import pysal
>>> from pysal.region import Random_Region
>>> nregs = 13
>>> cards = list(range(2,14)) + [10]
>>> w = pysal.lat2W(10,10,rook = False)
>>> ids = w.id_order
>>>
>>> # unconstrained
>>> random.seed(10)
>>> np.random.seed(10)
>>> t0 = Random_Region(ids)
>>> t0.regions[0]
[19, 14, 43, 37, 66, 3, 79, 41, 38, 68, 2, 1, 60]
>>> # cardinality and contiguity constrained (num_regions implied)
>>> random.seed(60)
>>> np.random.seed(60)
>>> t1 = pysal.region.Random_Region(ids, num_regions = nregs, cardinality = cards, contiguity = w)
>>> t1.regions[0]
[88, 97, 98, 89, 99, 86, 78, 59, 49, 69, 68, 79, 77]
>>> # cardinality constrained (num_regions implied)
>>> random.seed(100)
>>> np.random.seed(100)
>>> t2 = Random_Region(ids, num_regions = nregs, cardinality = cards)
>>> t2.regions[0]
[37, 62]
>>> # number of regions and contiguity constrained
>>> random.seed(100)
>>> np.random.seed(100)
>>> t3 = Random_Region(ids, num_regions = nregs, contiguity = w)
>>> t3.regions[1]
[71, 72, 70, 93, 51, 91, 85, 74, 63, 73, 61, 62, 82]
>>> # cardinality and contiguity constrained
>>> random.seed(60)
>>> np.random.seed(60)
>>> t4 = Random_Region(ids, cardinality = cards, contiguity = w)
>>> t4.regions[0]
[88, 97, 98, 89, 99, 86, 78, 59, 49, 69, 68, 79, 77]
>>> # number of regions constrained
>>> random.seed(100)
>>> np.random.seed(100)
>>> t5 = Random_Region(ids, num_regions = nregs)
>>> t5.regions[0]
[37, 62, 26, 41, 35, 25, 36]
>>> # cardinality constrained
>>> random.seed(100)
>>> np.random.seed(100)
>>> t6 = Random_Region(ids, cardinality = cards)
>>> t6.regions[0]
[37, 62]
>>> # contiguity constrained
>>> random.seed(100)
>>> np.random.seed(100)
>>> t7 = Random_Region(ids, contiguity = w)
>>> t7.regions[0]
[37, 27, 36, 17]
>>>

Further Information

For further details see the Regionalization API.

Footnotes

	[1]	Duque, J. C., L. Anselin and S. J. Rey. 2011. “The max-p-regions problem.” Journal of Regional Science DOI: 10.1111/j.1467-9787.2011.00743.x [http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9787.2011.00743.x/abstract]

	[2]	Because this is a randomized algorithm, results may vary when replicating this example. To reproduce a regionalization solution, you should first set the random seed generator. See http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html for more information.

 Spatial Dynamics

Spatial Dynamics

Contents

	Spatial Dynamics
	Introduction

	Markov Based Methods
	Classic Markov

	Spatial Markov

	LISA Markov

	Rank Based Methods
	Spatial Rank Correlation

	Rank Decomposition

	Space-Time Interaction Tests
	Knox Test

	Modified Knox Test

	Mantel Test

	Jacquez Test

	Spatial Dynamics API

Introduction

PySAL implements a number of exploratory approaches to analyze the
dynamics of longitudinal spatial data, or observations on fixed areal
units over multiple time periods. Examples could include time series
of voting patterns in US Presidential elections, time series of remote
sensing images, labor market dynamics, regional business cycles, among
many others. Two broad sets of spatial dynamics methods are implemented
to analyze these data types. The first are Markov based methods, while
the second are based on Rank dynamics.

Additionally, methods are included in this module to analyze patterns of individual events which have spatial and temporal coordinates associated with them. Examples include locations and times of individual cases of disease or crimes. Methods are included here to determine if these event patterns exhibit space-time interaction.

Markov Based Methods

The Markov based methods include classic Markov chains and extensions of
these approaches to deal with spatially referenced data. In what follows
we illustrate the functionality of these Markov methods. Readers
interested in the methodological foundations of these approaches are
directed to [1].

Classic Markov

We start with a look at a simple example of classic Markov methods
implemented in PySAL. A Markov chain may be in one of [image: k] different
states at any point in time. These states are exhaustive and mutually
exclusive. For example, if one had a time series of remote sensing images
used to develop land use classifications, then the states could be defined
as the specific land use classes and interest would center on the
transitions in and out of different classes for each pixel.

For example, let’s construct a small artificial chain consisting of 3 states
(a,b,c) and 5 different pixels at three different points in time:

 >>> import pysal
 >>> import numpy as np
 >>> c = np.array([['b','a','c'],['c','c','a'],['c','b','c'],['a','a','b'],['a','b','c']])
 >>> c
 array([['b', 'a', 'c'],
 ['c', 'c', 'a'],
 ['c', 'b', 'c'],
 ['a', 'a', 'b'],
 ['a', 'b', 'c']],
 dtype='|S1')

So the first pixel was in class ‘b’ in period 1, class ‘a’ in period 2,
and class ‘c’ in period 3. We can summarize the overall transition
dynamics for the set of pixels by treating it as a Markov chain:

 >>> m = pysal.Markov(c)
 >>> m.classes
 array(['a', 'b', 'c'],
 dtype='|S1')

The Markov instance m has an attribute class extracted from the chain -
the assumption is that the observations are on the rows of the input and
the different points in time on the columns. In addition to extracting the
classes as an attribute, our Markov instance will also have a transitions
matrix:

>>> m.transitions
array([[1., 2., 1.],
 [1., 0., 2.],
 [1., 1., 1.]])

indicating that of the four pixels that began a transition interval in
class ‘a’, 1 remained in that class, 2 transitioned to class ‘b’ and 1
transitioned to class ‘c’.

This simple example illustrates the basic creation of a Markov instance,
but the small sample size makes it unrealistic for the more advanced
features of this approach. For a larger example, we will look at an
application of Markov methods to understanding regional income dynamics in
the US. Here we will load in data on per capita income observed annually
from 1929 to 2010 for the lower 48 US states:

>>> f = pysal.open("../pysal/examples/usjoin.csv")
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
>>> pci.shape
(81, 48)

The first row of the array is the per capita income for the first year:

>>> pci[0, :]
array([323, 600, 310, 991, 634, 1024, 1032, 518, 347, 507, 948,
 607, 581, 532, 393, 414, 601, 768, 906, 790, 599, 286,
 621, 592, 596, 868, 686, 918, 410, 1152, 332, 382, 771,
 455, 668, 772, 874, 271, 426, 378, 479, 551, 634, 434,
 741, 460, 673, 675])

In order to apply the classic Markov approach to this series, we first
have to discretize the distribution by defining our classes. There are
many ways to do this, but here we will use the quintiles for each annual
income distribution to define the classes:

>>> q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
>>> q5.shape
(48, 81)
>>> q5[:, 0]
array([0, 2, 0, 4, 2, 4, 4, 1, 0, 1, 4, 2, 2, 1, 0, 1, 2, 3, 4, 4, 2, 0, 2,
 2, 2, 4, 3, 4, 0, 4, 0, 0, 3, 1, 3, 3, 4, 0, 1, 0, 1, 2, 2, 1, 3, 1,
 3, 3])

A number of things need to be noted here. First, we are relying on the
classification methods in PySAL for defining our quintiles. The class
Quantiles uses quintiles as the default and will create an instance of
this class that has multiple attributes, the one we are extracting in the
first line is yb - the class id for each observation. The second thing to
note is the transpose operator which gets our resulting array q5 in the
proper structure required for use of Markov. Thus we see that the first
spatial unit (Alabama with an income of 323) fell in the first quintile
in 1929, while the last unit (Wyoming with an income of 675) fell in the
fourth quintile [2].

So now we have a time series for each state of its quintile membership.
For example, Colorado’s quintile time series is:

>>> q5[4, :]
array([2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3,
 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3,
 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3])

indicating that it has occupied the 3rd, 4th and 5th quintiles in the
distribution at different points in time. To summarize the transition
dynamics for all units, we instantiate a Markov object:

>>> m5 = pysal.Markov(q5)
>>> m5.transitions
array([[729., 71., 1., 0., 0.],
 [72., 567., 80., 3., 0.],
 [0., 81., 631., 86., 2.],
 [0., 3., 86., 573., 56.],
 [0., 0., 1., 57., 741.]])

Assuming we can treat these transitions as a first order Markov chain, we can estimate
the transition probabilities:

>>> m5.p
matrix([[0.91011236, 0.0886392 , 0.00124844, 0. , 0.],
 [0.09972299, 0.78531856, 0.11080332, 0.00415512, 0.],
 [0. , 0.10125 , 0.78875 , 0.1075 , 0.0025],
 [0. , 0.00417827, 0.11977716, 0.79805014, 0.07799443],
 [0. , 0. , 0.00125156, 0.07133917, 0.92740926]])

as well as the long run steady state distribution:

>>> m5.steady_state
matrix([[0.20774716],
 [0.18725774],
 [0.20740537],
 [0.18821787],
 [0.20937187]])

With the transition probability matrix in hand, we can estimate the first
mean passage time:

>>> pysal.ergodic.fmpt(m5.p)
matrix([[4.81354357, 11.50292712, 29.60921231, 53.38594954,
 103.59816743],
 [42.04774505, 5.34023324, 18.74455332, 42.50023268,
 92.71316899],
 [69.25849753, 27.21075248, 4.82147603, 25.27184624,
 75.43305672],
 [84.90689329, 42.85914824, 17.18082642, 5.31299186,
 51.60953369],
 [98.41295543, 56.36521038, 30.66046735, 14.21158356,
 4.77619083]])

Thus, for a state with income in the first quintile, it takes on average
11.5 years for it to first enter the second quintile, 29.6 to get to the
third quintile, 53.4 years to enter the fourth, and 103.6 years to reach
the richest quintile.

Spatial Markov

Thus far we have treated all the spatial units as independent to estimate
the transition probabilities. This hides a number of implicit assumptions.
First, the transition dynamics are assumed to hold for all units and for
all time periods. Second, interactions between the transitions of
individual units are ignored. In other words regional context may be
important to understand regional income dynamics, but the classic Markov
approach is silent on this issue.

PySAL includes a number of spatially explicit extensions to the Markov
framework. The first is the spatial Markov class that we illustrate here.
We first are going to transform the income series to relative incomes (by
standardizing by each period by the mean):

>>> import pysal
>>> f = pysal.open("../pysal/examples/usjoin.csv")
>>> pci = np.array([f.by_col[str(y)] for y in range(1929, 2010)])
>>> pci = pci.transpose()
>>> rpci = pci / (pci.mean(axis = 0))

Next, we require a spatial weights object, and here we will create one
from an external GAL file:

>>> w = pysal.open("../pysal/examples/states48.gal").read()
>>> w.transform = 'r'

Finally, we create an instance of the Spatial Markov class using 5 states
for the chain:

>>> sm = pysal.Spatial_Markov(rpci, w, fixed = True, k = 5)

Here we are keeping the quintiles fixed, meaning the data are pooled over
space and time and the quintiles calculated for the pooled data. This is
why we first transformed the data to relative incomes. We can next
examine the global transition probability matrix for relative incomes:

>>> sm.p
matrix([[0.91461837, 0.07503234, 0.00905563, 0.00129366, 0.],
 [0.06570302, 0.82654402, 0.10512484, 0.00131406, 0.00131406],
 [0.00520833, 0.10286458, 0.79427083, 0.09505208, 0.00260417],
 [0. , 0.00913838, 0.09399478, 0.84856397, 0.04830287],
 [0. , 0. , 0. , 0.06217617, 0.93782383]])

The Spatial Markov allows us to compare the global transition dynamics to
those conditioned on regional context. More specifically, the transition
dynamics are split across economies who have spatial lags in different
quintiles at the beginning of the year. In our example we have 5 classes,
so 5 different conditioned transition probability matrices are estimated:

>>> for p in sm.P:
... print p
...
[[0.96341463 0.0304878 0.00609756 0. 0.]
 [0.06040268 0.83221477 0.10738255 0. 0.]
 [0. 0.14 0.74 0.12 0.]
 [0. 0.03571429 0.32142857 0.57142857 0.07142857]
 [0. 0. 0. 0.16666667 0.83333333]]
[[0.79831933 0.16806723 0.03361345 0. 0.]
 [0.0754717 0.88207547 0.04245283 0. 0.]
 [0.00537634 0.06989247 0.8655914 0.05913978 0.]
 [0. 0. 0.06372549 0.90196078 0.03431373]
 [0. 0. 0. 0.19444444 0.80555556]]
[[0.84693878 0.15306122 0. 0. 0.]
 [0.08133971 0.78947368 0.1291866 0. 0.]
 [0.00518135 0.0984456 0.79274611 0.0984456 0.00518135]
 [0. 0. 0.09411765 0.87058824 0.03529412]
 [0. 0. 0. 0.10204082 0.89795918]]
[[0.8852459 0.09836066 0. 0.01639344 0.]
 [0.03875969 0.81395349 0.13953488 0. 0.00775194]
 [0.0049505 0.09405941 0.77722772 0.11881188 0.0049505]
 [0. 0.02339181 0.12865497 0.75438596 0.09356725]
 [0. 0. 0. 0.09661836 0.90338164]]
[[0.33333333 0.66666667 0. 0. 0.]
 [0.0483871 0.77419355 0.16129032 0.01612903 0.]
 [0.01149425 0.16091954 0.74712644 0.08045977 0.]
 [0. 0.01036269 0.06217617 0.89637306 0.03108808]
 [0. 0. 0. 0.02352941 0.97647059]]

The probability of a poor state remaining poor is 0.963 if their
neighbors are in the 1st quintile and 0.798 if their neighbors are
in the 2nd quintile. The probability of a rich economy remaining
rich is 0.977 if their neighbors are in the 5th quintile, but if their
neighbors are in the 4th quintile this drops to 0.903.

We can also explore the different steady state distributions implied by
these different transition probabilities:

>>> sm.S
array([[0.43509425, 0.2635327 , 0.20363044, 0.06841983, 0.02932278],
 [0.13391287, 0.33993305, 0.25153036, 0.23343016, 0.04119356],
 [0.12124869, 0.21137444, 0.2635101 , 0.29013417, 0.1137326],
 [0.0776413 , 0.19748806, 0.25352636, 0.22480415, 0.24654013],
 [0.01776781, 0.19964349, 0.19009833, 0.25524697, 0.3372434]])

The long run distribution for states with poor (rich) neighbors has
0.435 (0.018) of the values in the first quintile, 0.263 (0.200) in
the second quintile, 0.204 (0.190) in the third, 0.0684 (0.255) in the
fourth and 0.029 (0.337) in the fifth quintile. And, finally the first mean
passage times:

>>> for f in sm.F:
... print f
...
[[2.29835259 28.95614035 46.14285714 80.80952381 279.42857143]
 [33.86549708 3.79459555 22.57142857 57.23809524 255.85714286]
 [43.60233918 9.73684211 4.91085714 34.66666667 233.28571429]
 [46.62865497 12.76315789 6.25714286 14.61564626 198.61904762]
 [52.62865497 18.76315789 12.25714286 6. 34.1031746]]
[[7.46754205 9.70574606 25.76785714 74.53116883 194.23446197]
 [27.76691978 2.94175577 24.97142857 73.73474026 193.4380334]
 [53.57477715 28.48447637 3.97566318 48.76331169 168.46660482]
 [72.03631562 46.94601483 18.46153846 4.28393653 119.70329314]
 [77.17917276 52.08887197 23.6043956 5.14285714 24.27564033]]
[[8.24751154 6.53333333 18.38765432 40.70864198 112.76732026]
 [47.35040872 4.73094099 11.85432099 34.17530864 106.23398693]
 [69.42288828 24.76666667 3.794921 22.32098765 94.37966594]
 [83.72288828 39.06666667 14.3 3.44668119 76.36702977]
 [93.52288828 48.86666667 24.1 9.8 8.79255406]]
[[12.87974382 13.34847151 19.83446328 28.47257282 55.82395142]
 [99.46114206 5.06359731 10.54545198 23.05133495 49.68944423]
 [117.76777159 23.03735526 3.94436301 15.0843986 43.57927247]
 [127.89752089 32.4393006 14.56853107 4.44831643 31.63099455]
 [138.24752089 42.7893006 24.91853107 10.35 4.05613474]]
[[56.2815534 1.5 10.57236842 27.02173913 110.54347826]
 [82.9223301 5.00892857 9.07236842 25.52173913 109.04347826]
 [97.17718447 19.53125 5.26043557 21.42391304 104.94565217]
 [127.1407767 48.74107143 33.29605263 3.91777427 83.52173913]
 [169.6407767 91.24107143 75.79605263 42.5 2.96521739]]

States with incomes in the first quintile with neighbors in the
first quintile return to the first quintile after 2.298 years, after
leaving the first quintile. They enter the fourth quintile
80.810 years after leaving the first quintile, on average.
Poor states within neighbors in the fourth quintile return to the
first quintile, on average, after 12.88 years, and would enter the
fourth quintile after 28.473 years.

LISA Markov

The Spatial Markov conditions the transitions on the value of the spatial
lag for an observation at the beginning of the transition period. An
alternative approach to spatial dynamics is to consider the joint
transitions of an observation and its spatial lag in the distribution.
By exploiting the form of the static LISA and embedding it
in a dynamic context we develop the LISA Markov in which the states of the
chain are defined as the four quadrants in the Moran scatter plot.
Continuing on with our US example:

>>> import numpy as np
>>> f = pysal.open("../pysal/examples/usjoin.csv")
>>> pci = np.array([f.by_col[str(y)] for y in range(1929, 2010)]).transpose()
>>> w = pysal.open("../pysal/examples/states48.gal").read()
>>> lm = pysal.LISA_Markov(pci, w)
>>> lm.classes
array([1, 2, 3, 4])

The LISA transitions are:

>>> lm.transitions
array([[1.08700000e+03, 4.40000000e+01, 4.00000000e+00,
 3.40000000e+01],
 [4.10000000e+01, 4.70000000e+02, 3.60000000e+01,
 1.00000000e+00],
 [5.00000000e+00, 3.40000000e+01, 1.42200000e+03,
 3.90000000e+01],
 [3.00000000e+01, 1.00000000e+00, 4.00000000e+01,
 5.52000000e+02]])

and the estimated transition probability matrix is:

>>> lm.p
matrix([[0.92985458, 0.03763901, 0.00342173, 0.02908469],
 [0.07481752, 0.85766423, 0.06569343, 0.00182482],
 [0.00333333, 0.02266667, 0.948 , 0.026],
 [0.04815409, 0.00160514, 0.06420546, 0.88603531]])

The diagonal elements indicate the staying probabilities and we see that
there is greater mobility for observations in quadrants 1 and 3 than 2 and
4.

The implied long run steady state distribution of the chain is

>>> lm.steady_state
matrix([[0.28561505],
 [0.14190226],
 [0.40493672],
 [0.16754598]])

again reflecting the dominance of quadrants 1 and 3 (positive
autocorrelation). [3] Finally the first mean passage time for the LISAs is:

>>> pysal.ergodic.fmpt(lm.p)
matrix([[3.50121609, 37.93025465, 40.55772829, 43.17412009],
 [31.72800152, 7.04710419, 28.68182751, 49.91485137],
 [52.44489385, 47.42097495, 2.46952168, 43.75609676],
 [38.76794022, 51.51755827, 26.31568558, 5.96851095]])

Rank Based Methods

The second set of spatial dynamic methods in PySAL are based on rank
correlations and spatial extensions of the classic rank statistics.

Spatial Rank Correlation

Kendall’s [image: \tau] is based on a comparison of the number of pairs of [image: n]
observations that have concordant ranks between two variables. For spatial
dynamics in PySAL, the two variables in question are the values of an attribute
measured at two points in time over [image: n] spatial units. This classic
measure of rank correlation indicates how much relative stability there
has been in the map pattern over the two periods.

The spatial [image: \tau] decomposes these pairs into those that are
spatial neighbors and those that are not, and examines whether the rank
correlation is different between the two sets. [4] To illustrate this we
turn to the case of regional incomes in Mexico over the 1940 to 2010
period:

>>> import pysal
>>> f = pysal.open("../pysal/examples/mexico.csv")
>>> vnames = ["pcgdp%d"%dec for dec in range(1940, 2010, 10)]
>>> y = np.transpose(np.array([f.by_col[v] for v in vnames]))

We also introduce the concept of regime weights that defines the neighbor
set as those spatial units belonging to the same region. In this example
the variable “esquivel99” represents a categorical classification of
Mexican states into regions:

>>> regime = np.array(f.by_col['esquivel99'])
>>> w = pysal.weights.block_weights(regime)
>>> np.random.seed(12345)

Now we will calculate the spatial tau for decade transitions from 1940 through
2000 and report the observed spatial tau against that expected if the rank
changes were randomly distributed in space by using 99 permutations:

>>> res=[pysal.SpatialTau(y[:,i],y[:,i+1],w,99) for i in range(6)]
>>> for r in res:
... ev = r.taus.mean()
... "%8.3f %8.3f %8.3f"%(r.tau_spatial, ev, r.tau_spatial_psim)
...
' 0.397 0.659 0.010'
' 0.492 0.706 0.010'
' 0.651 0.772 0.020'
' 0.714 0.752 0.210'
' 0.683 0.705 0.270'
' 0.810 0.819 0.280'

The observed level of spatial concordance during the 1940-50 transition was
0.397 which is significantly lower (p=0.010) than the average level of spatial
concordance (0.659) from randomly permuted incomes in Mexico. Similar patterns
are found for the next two transition periods as well. In other words the
amount of rank concordance is significantly distinct between pairs of
observations that are geographical neighbors and those that are not in these
first three transition periods. This reflects the greater degree of spatial
similarity within rather than between the regimes making the
discordant pairs dominated by neighboring pairs.

Rank Decomposition

For a sequence of time periods, [image: \theta] measures the extent to which rank
changes for a variable measured over [image: n] locations are in the same direction
within mutually exclusive and exhaustive partitions (regimes) of the
[image: n] locations.

Theta is defined as the sum of the absolute sum of rank changes within
the regimes over the sum of all absolute rank changes. [4]

>>> import pysal
>>> f = pysal.open("../pysal/examples/mexico.csv")
>>> vnames = ["pcgdp%d"%dec for dec in range(1940, 2010, 10)]
>>> y = np.transpose(np.array([f.by_col[v] for v in vnames]))
>>> regime = np.array(f.by_col['esquivel99'])
>>> np.random.seed(10)
>>> t = pysal.Theta(y, regime, 999)
>>> t.theta
array([[0.41538462, 0.28070175, 0.61363636, 0.62222222, 0.33333333,
 0.47222222]])
>>> t.pvalue_left
array([0.307, 0.077, 0.823, 0.552, 0.045, 0.735])

Space-Time Interaction Tests

The third set of spatial dynamic methods in PySAL are global tests of space-time interaction. The purpose of these tests is to detect clustering within space-time event patterns. These patterns are composed of unique events that are labeled with spatial and temporal coordinates. The tests are designed to detect clustering of events in both space and time beyond “any purely spatial or purely temporal clustering” [5], that is, to determine if the events are “interacting.” Essentially, the tests examine the dataset to determine if pairs of events closest to each other in space are also those closest to each other in time. The null hypothesis of these tests is that the examined events are distributed randomly in space and time, i.e. the distance between pairs of events in space is independent of the distance in time. Three tests are currently implemented in PySAL: the Knox test, the Mantel test and the Jacquez [image: k] Nearest Neighbors test. These tests have been widely applied in epidemiology, criminology and biology. A more in-depth technical review of these methods is available in [6].

Knox Test

The Knox test for space-time interaction employs user-defined critical thresholds in space and time to define proximity between events. All pairs of events are examined to determine if the distance between them in space and time is within the respective thresholds. The Knox statistic is calculated as the total number of event pairs where the spatial and temporal distances separating the pair are within the specified thresholds [7]. If interaction is present, the test statistic will be large. Significance is traditionally established using a Monte Carlo permuation method where event timestamps are permuted and the statistic is recalculated. This procedure is repeated to generate a distribution of statistics which is used to establish the pseudo-significance of the observed test statistic. This approach assumes a static underlying population from which events are drawn. If this is not the case the results may be biased [8].

Formally, the specification of the Knox test is given as:

[image: X=\sum_{i}^{n}\sum_{j}^{n}a_{ij}^{s}a_{ij}^{t}\\]

[image: \begin{align} \nonumber a_{ij}^{s} &= \begin{cases} 1, & \text{if $d^s_{ij}<\delta$}\\ 0, & \text{otherwise} \end{cases} \end{align}]

[image: \begin{align} \nonumber a_{ij}^{t} &= \begin{cases} 1, & \text{if $d^t_{ij}<\tau$}\\ 0, & \text{otherwise} \end{cases} \end{align}]

Where [image: n] = number of events, [image: a^{s}] = adjacency in space, [image: a^{t}] = adjacency in time, [image: d^{s}] = distance in space, and [image: d^{t}] = distance in time. Critical space and time distance thresholds are defined as [image: \delta] and [image: \tau], respectively.

We illustrate the use of the Knox test using data from a study of Burkitt’s Lymphoma in Uganda during the period 1961-75 [9]. We start by importing Numpy, PySAL and the interaction module:

>>> import numpy as np
>>> import pysal
>>> import pysal.spatial_dynamics.interaction as interaction
>>> np.random.seed(100)

The example data are then read in and used to create an instance of SpaceTimeEvents. This reformats the data so the test can be run by PySAL. This class requires the input of a point shapefile. The shapefile must contain a column that includes a timestamp for each point in the dataset. The class requires that the user input a path to an appropriate shapefile and the name of the column containing the timestamp. In this example, the appropriate column name is ‘T’.

>>> path = "../pysal/examples/burkitt"
>>> events = interaction.SpaceTimeEvents(path,'T')

Next, we run the Knox test with distance and time thresholds of 20 and 5,respectively. This counts the events that are closer than 20 units in space, and 5 units in time.

>>> result = interaction.knox(events.space, events.t ,delta=20,tau=5,permutations=99)

Finally we examine the results. We call the statistic from the results dictionary. This reports that there are 13 events close in both space and time, based on our threshold definitions.

>>> print(result['stat'])
13

Then we look at the pseudo-significance of this value, calculated by permuting the timestamps and rerunning the statistics. Here, 99 permutations were used, but an alternative number can be specified by the user. In this case, the results indicate that we fail to reject the null hypothesis of no space-time interaction using an alpha value of 0.05.

>>> print("%2.2f"%result['pvalue'])
0.17

Modified Knox Test

A modification to the Knox test was proposed by Baker [10]. Baker’s modification measures the difference between the original observed Knox statistic and its expected value. This difference serves as the test statistic. Again, the significance of this statistic is assessed using a Monte Carlo permutation procedure.

[image: T=\frac{1}{2}\bigg(\sum_{i=1}^{n}\sum_{j=1}^{n}f_{ij}g_{ij} - \frac{1}{n-1}\sum_{k=1}^{n}\sum_{l=1}^{n}\sum_{j=1}^{n}f_{kj}g_{lj}\bigg)\\]

Where [image: n] = number of events, [image: f] = adjacency in space, [image: g] = adjacency in time (calculated in a manner equivalent to [image: a^{s}] and [image: a^{t}] above in the Knox test). The first part of this statistic is equivalent to the original Knox test, while the second part is the expected value under spatio-temporal randomness.

Here we illustrate the use of the modified Knox test using the data on Burkitt’s Lymphoma cases in Uganda from above. We start by importing Numpy, PySAL and the interaction module. Next the example data are then read in and used to create an instance of SpaceTimeEvents.

>>> import numpy as np
>>> import pysal
>>> import pysal.spatial_dynamics.interaction as interaction
>>> np.random.seed(100)
>>> path = "../pysal/examples/burkitt"
>>> events = interaction.SpaceTimeEvents(path,'T')

Next, we run the modified Knox test with distance and time thresholds of 20 and 5,respectively. This counts the events that are closer than 20 units in space, and 5 units in time.

>>> result = interaction.modified_knox(events.space, events.t,delta=20,tau=5,permutations=99)

Finally we examine the results. We call the statistic from the results dictionary. This reports a statistic value of 2.810160.

>>> print("%2.8f"%result['stat'])
2.81016043

Next we look at the pseudo-significance of this value, calculated by permuting the timestamps and rerunning the statistics. Here, 99 permutations were used, but an alternative number can be specified by the user. In this case, the results indicate that we fail to reject the null hypothesis of no space-time interaction using an alpha value of 0.05.

>>> print("%2.2f"%result['pvalue'])
0.11

Mantel Test

Akin to the Knox test in its simplicity, the Mantel test keeps the distance information discarded by the Knox test. The unstandardized Mantel statistic is calculated by summing the product of the spatial and temporal distances between all event pairs [11]. To prevent multiplication by 0 in instances of colocated or simultaneous events, Mantel proposed adding a constant to the distance measurements. Additionally, he suggested a reciprocal transform of the resulting distance measurement to lessen the effect of the larger distances on the product sum. The test is defined formally below:

[image: Z=\sum_{i}^{n}\sum_{j}^{n}(d_{ij}^{s}+c)^{p}(d_{ij}^{t}+c)^{p}]

Where, again, [image: d^{s}] and [image: d^{t}] denote distance in space and time, respectively. The constant, [image: c], and the power, [image: p], are parameters set by the user. The default values are 0 and 1, respectively. A standardized version of the Mantel test is implemented here in PySAL, however. The standardized statistic ([image: r]) is a measure of correlation between the spatial and temporal distance matrices. This is expressed formally as:

[image: r=\frac{1}{n^2-n-1}\sum_{i}^{n}\sum_{j}^{n}\Bigg[\frac{d_{ij}^{s}-\bar{d^{s}}}{\sigma_{d^{s}}}\Bigg] \Bigg[\frac{d_{ij}^{t}-\bar{d^{t}}}{\sigma_{d^{t}}}\Bigg]]

Where [image: \bar{d^{s}}] refers to the average distance in space, and [image: \bar{d^{t}}] the average distance in time. For notational convenience [image: \sigma_{d^{t}}] and [image: \sigma_{d^{t}}] refer to the sample (not population) standard deviations, for distance in space and time, respectively. The same constant and power transformations may also be applied to the spatial and temporal distance matrices employed by the standardized Mantel. Significance is determined through a Monte Carlo permuation approach similar to that employed in the Knox test.

Again, we use the Burkitt’s Lymphoma data to illustrate the test. We start with the usual imports and read in the example data.

>>> import numpy as np
>>> import pysal
>>> import pysal.spatial_dynamics.interaction as interaction
>>> np.random.seed(100)
>>> path = "../pysal/examples/burkitt"
>>> events = interaction.SpaceTimeEvents(path,'T')

The following example runs the standardized Mantel test with constants of 0 and transformations of 1, meaning the distance matrices will remain unchanged; however, as recommended by Mantel, a small constant should be added and an inverse transformation (i.e. -1) specified.

>>> result = interaction.mantel(events.space, events.t,99,scon=0.0,spow=1.0,tcon=0.0,tpow=1.0)

Next, we examine the result of the test.

>>> print("%6.6f"%result['stat'])
0.014154

Finally, we look at the pseudo-significance of this value, calculated by permuting the timestamps and rerunning the statistic for each of the 99 permuatations. Again, note, the number of permutations can be changed by the user. According to these parameters, the results fail to reject the null hypothesis of no space-time interaction between the events.

>>> print("%2.2f"%result['pvalue'])
0.27

Jacquez Test

Instead of using a set distance in space and time to determine proximity (like the Knox test) the Jacquez test employs a nearest neighbor distance approach. This allows the test to account for changes in underlying population density. The statistic is calculated as the number of event pairs that are within the set of [image: k] nearest neighbors for each other in both space and time [12]. Significance of this count is established using a Monte Carlo permutation method. The test is expressed formally as:

[image: J_{k}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ijk}^{s}a_{ijk}^{t}\\]

[image: \begin{align} \nonumber a_{ijk}^{s} = \begin{cases} 1, & \text{if event \emph{j} is a \emph{k} nearest neighbor of event \emph{i} in space}\\ 0, & \text{otherwise} \end{cases} \end{align}]

[image: \begin{align} \nonumber a_{ijk}^{t} = \begin{cases} 1, & \text{if event \emph{j} is a \emph{k} nearest neighbor of event \emph{i} in time}\\ 0, & \text{otherwise} \end{cases} \end{align}]

Where [image: n] = number of cases; [image: a^{s}] = adjacency in space; [image: a^{t}] = adjacency in time. To illustrate the test, the Burkitt’s Lymphoma data are employed again. We start with the usual imports and read in the example data.

>>> import numpy as np
>>> import pysal
>>> import pysal.spatial_dynamics.interaction as interaction
>>> np.random.seed(100)
>>> path = "../pysal/examples/burkitt"
>>> events = interaction.SpaceTimeEvents(path,'T')

The following runs the Jacquez test on the example data for a value of [image: k] = 3 and reports the resulting statistic. In this case, there are 13 instances where events are nearest neighbors in both space and time. The significance of this can be assessed by calling the p-value from the results dictionary. Again, there is not enough evidence to reject the null hypothesis of no space-time interaction.

>>> result = interaction.jacquez(events.space, events.t ,k=3,permutations=99)
>>> print result['stat']
13
>>> print "%3.1f"%result['pvalue']
0.2

Spatial Dynamics API

For further details see the Spatial Dynamics API.

Footnotes

	[1]	Rey, S.J. 2001.
“Spatial empirics for economic growth and convergence [http://findarticles.com/p/articles/mi_hb4740/is_3_33/ai_n28858625/]”,
34 Geographical Analysis, 33, 195-214.

	[2]	The states are ordered alphabetically.

	[3]	The complex values of the steady state distribution arise from
complex eigenvalues in the transition probability matrix which may indicate
cyclicality in the chain.

	[4]	Rey, S.J. (2004) “Spatial dependence in the evolution of regional
income distributions [http://econpapers.repec.org/paper/wpawuwpur/0105001.htm],”
in A. Getis, J. Mur and H.Zoeller (eds). Spatial Econometrics and Spatial
Statistics. Palgrave, London, pp. 194-213.

	[5]	Kulldorff, M. (1998). Statistical methods for spatial epidemiology: tests
for randomness. In Gatrell, A. and Loytonen, M., editors, GIS and
Health, pages 49–62. Taylor & Francis, London.

	[6]	Tango, T. (2010). Statistical Methods for Disease Clustering. Springer,
New York.

	[7]	Knox, E. (1964). The detection of space-time interactions. Journal of the
Royal Statistical Society. Series C (Applied Statistics), 13(1):25–30.

	[8]	R.D. Baker. (2004). Identifying space-time disease clusters. Acta Tropica,
91(3):291-299.

	[9]	Kulldorff, M. and Hjalmars, U. (1999). The Knox method and other tests
for space- time interaction. Biometrics, 55(2):544–552.

	[10]	Williams, E., Smith, P., Day, N., Geser, A., Ellice, J., and Tukei, P.
(1978). Space-time clustering of Burkitt’s lymphoma in the West Nile
district of Uganda: 1961-1975. British Journal of Cancer, 37(1):109.

	[11]	Mantel, N. (1967). The detection of disease clustering and a generalized
regression approach. Cancer Research, 27(2):209–220.

	[12]	Jacquez, G. (1996). A k nearest neighbour test for space-time
interaction. Statistics in Medicine, 15(18):1935–1949.

 Using PySAL with Shapely for GIS Operations

Using PySAL with Shapely for GIS Operations

New in version 1.3.

Introduction

The Shapely [http://pypi.python.org/pypi/Shapely] project is a BSD-licensed
Python package for manipulation and analysis of planar geometric objects, and
depends on the widely used GEOS library.

PySAL supports interoperation with the Shapely library through Shapely’s Python
Geo Interface. All PySAL geometries provide a __geo_interface__ property which
models the geometries as a GeoJSON object. Shapely geometry objects also export
the __geo_interface__ property and can be adapted to PySAL geometries using
the pysal.cg.asShape function.

Additionally, PySAL provides an optional contrib module that handles the
conversion between pysal and shapely data strucutures for you. The module can
be found in at, pysal.contrib.shapely_ext.

Installation

Please refer to the Shapely [http://pypi.python.org/pypi/Shapely]
website for instructions on installing Shapely and its
dependencies, without which PySAL’s Shapely extension will not work.

Usage

Using the Python Geo Interface...

>>> import pysal
>>> import shapely.geometry
>>> # The get_path function returns the absolute system path to pysal's
>>> # included example files no matter where they are installed on the system.
>>> fpath = pysal.examples.get_path('stl_hom.shp')
>>> # Now, open the shapefile using pysal's FileIO
>>> shps = pysal.open(fpath , 'r')
>>> # We can read a polygon...
>>> polygon = shps.next()
>>> # To use this polygon with shapely we simply convert it with
>>> # Shapely's asShape method.
>>> polygon = shapely.geometry.asShape(polygon)
>>> # now we can operate on our polygons like normal shapely objects...
>>> print "%.4f"%polygon.area
0.1701
>>> # We can do things like buffering...
>>> eroded_polygon = polygon.buffer(-0.01)
>>> print "%.4f"%eroded_polygon.area
0.1533
>>> # and containment testing...
>>> polygon.contains(eroded_polygon)
True
>>> eroded_polygon.contains(polygon)
False
>>> # To go back to pysal shapes we call pysal.cg.asShape...
>>> eroded_polygon = pysal.cg.asShape(eroded_polygon)
>>> type(eroded_polygon)
<class 'pysal.cg.shapes.Polygon'>

Using The PySAL shapely_ext module...

>>> import pysal
>>> from pysal.contrib import shapely_ext
>>> fpath = pysal.examples.get_path('stl_hom.shp')
>>> shps = pysal.open(fpath , 'r')
>>> polygon = shps.next()
>>> eroded_polygon = shapely_ext.buffer(polygon, -0.01)
>>> print "%0.4f"%eroded_polygon.area
0.1533
>>> shapely_ext.contains(polygon,eroded_polygon)
True
>>> shapely_ext.contains(eroded_polygon,polygon)
False
>>> type(eroded_polygon)
<class 'pysal.cg.shapes.Polygon'>

 PySAL: Example Data Sets

PySAL: Example Data Sets

PySAL comes with a number of example data sets that are used in some of the
documentation strings in the source code. All the example data sets can be
found in the examples directory.

10740

Polygon shapefile for Albuquerque New Mexico.

	10740.dbf: attribute database file

	10740.shp: shapefile

	10740.shx: spatial index

	10740_queen.gal: queen contiguity GAL format

	10740_rook.gal: rook contiguity GAL format

book

Synthetic data to illustrate spatial weights. Source: Anselin, L. and S.J. Rey (in
progress) Spatial Econometrics: Foundations.

	book.gal: rook contiguity for regular lattice

	book.txt: attribute data for regular lattice

calempdensity

Employment density for California counties. Source: Anselin, L. and S.J. Rey (in
progress) Spatial Econometrics: Foundations.

	calempdensity.csv: data on employment and employment density in California
counties.

chicago77

Chicago Community Areas (n=77). Source: Anselin, L. and S.J. Rey (in
progress) Spatial Econometrics: Foundations.

	Chicago77.dbf: attribute data

	Chicago77.shp: shapefile

	Chicago77.shx: spatial index

desmith

Example data for autocorrelation analysis. Source: de Smith et al (2009)
Geospatial Analysis [http://www.spatialanalysisonline.com/output/html/MoranIandGearyC.html] (Used
with permission)

	desmith.txt: attribute data for 10 spatial units

	desmith.gal: spatial weights in GAL format

juvenile

Cardiff juvenile delinquent residences.

	juvenile.dbf: attribute data

	juvenile.html: documentation

	juvenile.shp: shapefile

	juvenile.shx: spatial index

	juvenile.gwt: spatial weights in GWT format

mexico

State regional income Mexican states 1940-2000. Source: Rey, S.J. and M.L.
Sastre Gutierrez. “Interregional inequality dynamics in Mexico.” Spatial
Economic Analysis. Forthcoming.

	mexico.csv: attribute data

	mexico.gal: spatial weights in GAL format

rook31

Small test shapefile

	rook31.dbf: attribute data

	rook31.gal: spatia weights in GAL format

	rook31.shp: shapefile

	rook31.shx: spatial index

sacramento2

1998 and 2001 Zip Code Business Patterns (Census Bureau) for Sacramento MSA

	sacramento2.dbf

	sacramento2.sbn

	sacramento2.sbx

	sacramento2.shp

	sacramento2.shx

shp_test

Sample Shapefiles used only for testing purposes. Each example include a ”.shp” Shapefile, ”.shx” Shapefile Index, ”.dbf” DBase file, and a ”.prj” ESRI Projection file.

Examples include:

	Point: Example of an ESRI Shapefile of Type 1 (Point).

	Line: Example of an ESRI Shapefile of Type 3 (Line).

	Polygon: Example of an ESRI Shapefile of Type 5 (Polygon).

sids2

North Carolina county SIDS death counts and rates

	sids2.dbf: attribute data

	sids2.html: documentation

	sids2.shp: shapefile

	sids2.shx: spatial index

	sids2.gal: GAL file for spatial weights

stl_hom

Homicides and selected socio-economic characteristics for counties surrounding St Louis, MO. Data aggregated for three time periods: 1979-84 (steady decline in homicides), 1984-88 (stable period), and 1988-93 (steady increase in homicides). Source: S. Messner, L. Anselin, D. Hawkins, G. Deane, S. Tolnay, R. Baller (2000). An Atlas of the Spatial Patterning of County-Level Homicide, 1960-1990. Pittsburgh, PA, National Consortium on Violence Research (NCOVR).

	stl_hom.html: Metadata

	stl_hom.txt: txt file with attribute data

	stl_hom.wkt: A Well-Known-Text representation of the geometry.

	stl_hom.csv: attribute data and WKT geometry.

	stl.hom.gal: GAL file for spatial weights

US Regional Incomes

Per capita income for the lower 48 US states, 1929-2010

	us48.shp: shapefile

	us48.dbf: dbf for shapefile

	us48.shx: index for shapefile

	usjoin.csv: attribute data (comma delimited file)

Virginia

Virginia Counties Shapefile.

	virginia.shp: Shapefile

	virginia.shx: shapefile index

	virginia.dbf: attributes

	virginia.prj: shapefile projection

 Next Steps with PySAL

Next Steps with PySAL

The tutorials you have (hopefully) just gone through should be enough to
get you going with PySAL. They covered some, but not all, of the
modules in PySAL, and at that, only a selection of the functionality of
particular classes that were included in the tutorials. To learn more about
PySAL you should consult the documentation.

PySAL is an open source, community-based project and we highly value contributions
from individuals to the project. There are many ways to contribute, from filing
bug reports, suggesting feature requests, helping with documentation, to
becoming a developer. Individuals interested in joining the team should send an
email to pysal-dev@googlegroups.com or contact one of the developers [https://github.com/pysal/pysal/graphs/contributors]
directly.

 Developer Guide

Developer Guide

Go to our issues queue on GitHub NOW! [http://github.com/pysal/pysal/issues?state=open]

	Guidelines

	PySAL Testing Procedures

	PySAL Enhancement Proposals (PEP)

	PySAL Documentation

	PySAL Release Management

	PySAL and Python3

	Projects Using PySAL

	Known Issues

 Guidelines

Guidelines

Contents

	Guidelines
	Open Source Development

	Source Code

	Development Mailing List

	Release Schedule

	Governance

	Voting and PEPs

PySAL is adopting many of the conventions in the larger scientific computing
in Python community and we ask that anyone interested in joining the project
please review the following documents:

	Documentation standards [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]

	Coding guidelines [http://www.python.org/dev/peps/pep-0008/]

	Testing guidelines

Open Source Development

PySAL is an open source project and we invite any interested user who wants to
contribute to the project to contact one of the
team members [https://github.com/pysal?tab=members]. For users who
are new to open source development you may want to consult the following
documents for background information:

	Contributing to Open Source Projects HOWTO [http://www.kegel.com/academy/opensource.html]

Source Code

PySAL uses git [http://git-scm.com/] and github for our code repository [https://github.com/pysal/pysal.git/].

Please see our procedures and policies for development on GitHub [https://github.com/pysal/pysal/wiki/GitHub-Standard-Operating-Procedures]
as well as how to configure your local git for development [https://github.com/pysal/pysal/wiki/Example-git-config].

You can setup PySAL for local development following the installation instructions.

Development Mailing List

Development discussions take place on pysal-dev [http://groups.google.com/group/pysal-dev]
and the gitter room [https://gitter.im/pysal/pysal].

Release Schedule

As of version 1.11, PySAL has moved to a rolling release model. Discussions
about releases are carried out during the monthly developer meetings and in
the gitter room [https://gitter.im/pysal/pysal].

Governance

PySAL is organized around the Benevolent Dictator for Life (BDFL) model of project management.
The BDFL is responsible for overall project management and direction. Developers have a critical role in shaping that
direction. Specific roles and rights are as follows:

	Title
	Role
	Rights

	BDFL
	Project Director
	Commit, Voting, Veto, Developer Approval/Management

	Developer
	Development
	Commit, Voting

Voting and PEPs

During the initial phase of a release cycle, new functionality for PySAL should be described in a PySAL Enhancment
Proposal (PEP). These should follow the
standard format [http://www.python.org/dev/peps/pep-0009/]
used by the Python project. For PySAL, the PEP process is as follows

	Developer prepares a plain text PEP following the guidelines

	Developer sends PEP to the BDFL

	Developer posts PEP to the PEP index

	All developers consider the PEP and vote

	PEPs receiving a majority approval become priorities for the release cycle

 PySAL Testing Procedures

PySAL Testing Procedures

Contents

	PySAL Testing Procedures
	Integration Testing

	Generating Unit Tests

	Docstrings and Doctests

	Tutorial Doctests

As of PySAL release 1.6, continuous integration testing was ported to the
Travis-CI hosted testing framework (http://travis-ci.org). There is integration within GitHub that
provides Travis-CI test results included in a pending Pull Request page, so
developers can know before merging a Pull Request that the changes will or will
not induce breakage.

Take a moment to read about the Pull Request development model on our wiki at
https://github.com/pysal/pysal/wiki/GitHub-Standard-Operating-Procedures

PySAL relies on two different modes of testing [1] integration (regression)
testing and [2] doctests. All developers responsible for given packages shall
utilize both modes.

Integration Testing

Each package shall have a directory tests in which unit test scripts for
each module in the package directory are required.
For example, in the directory pysal/esda the module moran.py requires a
unittest script named test_moran.py. This path for this script needs to be
pysal/esda/tests/test_moran.py.

To ensure that any changes made to one package/module do not introduce breakage in the wider project,
developers should run the package wide test suite using nose before making any
commits. As of release version 1.5, all tests must pass using a 64-bit
version of Python.
To run the new test suite, install nose, nose-progressive, and nose-exclude into your
working python installation. If you’re using EPD, nose is already available:

pip install -U nose
pip install nose-progressive
pip install nose-exclude

Then:

cd trunk/
nosetests pysal/

You can also run the test suite from within a Python session. At the
conclusion of the test, Python will, however, exit:

import pysal
import nose
nose.runmodule('pysal')

The file setup.cfg (added in revision 1050) in trunk holds nose configuration variables. When nosetests
is run from trunk, nose reads those configuration parameters into its operation,
so developers do not need to specify the optional flags on the command line as
shown below.

To specify running just a subset of the tests, you can also run:

nosetests pysal/esda/

or any other directory, for instance, to run just those tests.
To run the entire unittest test suite plus all of the doctests, run:

nosetests --with-doctest pysal/

To exclude a specific directory or directories, install nose-exclude from PyPi
(pip install nose-exclude). Then run it like this:

nosetests -v --exclude-dir=pysal/contrib --with-doctest pysal/

Note that you’ll probably run into an IOError complaining about too many open
files. To fix that, pass this via the command line:

ulimit -S -n 1024

That changes the machine’s open file limit for just the current terminal
session.

The trunk should most always be in a state where all tests are passed.

Generating Unit Tests

A useful development companion is the package pythoscope [http://pythoscope.org]. It scans
package folders and produces test script stubs for your modules that fail until
you write the tests – a pesky but useful trait. Using pythoscope in the most
basic way requires just two simple command line calls:

pythoscope --init

pythoscope <my_module>.py

One caveat: pythoscope does not name your test classes in a PySAL-friendly way
so you’ll have to rename each test class after the test scripts are generated.
Nose finds tests!

Docstrings and Doctests

All public classes and functions should include examples in their docstrings. Those examples serve two purposes:

	Documentation for users

	Tests to ensure code behavior is aligned with the documentation

Doctests will be executed when building PySAL documentation with Sphinx.

Developers should run tests manually before committing any changes that
may potentially effect usability. Developers can run doctests (docstring
tests) manually from the command line using nosetests

nosetests --with-doctest pysal/

Tutorial Doctests

All of the tutorials are tested along with the overall test suite. Developers
can test their changes against the tutorial docstrings by cd’ing into
/doc/ and running:

make doctest

 PySAL Enhancement Proposals (PEP)

PySAL Enhancement Proposals (PEP)

	PEP 0001 Spatial Dynamics Module

	PEP 0002 Residential Segregation Module

	PEP 0003 Spatial Smoothing Module

	PEP 0004 Geographically Nested Inequality based on the Geary Statistic

	PEP 0005 Space Time Event Clustering Module

	PEP 0006 Kernel Density Estimation

	PEP 0007 Spatial Econometrics

	PEP 0008 Spatial Database Module

	PEP 0009 Add Python 3.x Support

	PEP 0010 Add pure Python rtree

	PEP 0011 Move from Google Code to Github

 PEP 0001 Spatial Dynamics Module

PEP 0001 Spatial Dynamics Module

	Author
	Serge Rey <sjsrey@gmail.com>,
Xinyue Ye <xinyue.ye@gmail.com>

	Status
	Approved 1.0

	Created
	18-Jan-2010

	Updated
	09-Feb-2010

Abstract

With the increasing availability of spatial longitudinal data sets there
is an growing demand for exploratory methods that integrate both the
spatial and temporal dimensions of the data. The spatial dynamics
module combines a number of previously developed and to-be-developed
classes for the analysis of spatial dynamics. It will include classes
for the following statistics for spatial dynamics, Markov, spatial
Markov, rank mobility, spatial rank mobility, space-time LISA.

Motivation

Rather than having each of the spatial dynamics as separate modules in
PySAL, it makes sense to move them all within the same module. This would
facilitate common signatures for constructors and similar forms of data
structures for space-time analysis (and generation of results).

The module would implement some of the ideas for extending LISA statistics
to a dynamic context ([Anselin2000] [ReyJanikas2006]),
and recent work developing empirics and summary
measures for comparative space time analysis ([ReyYe2010]).

Reference Implementation

We suggest adding the module pysal.spatialdynamics which in turn would
encompass the following modules:

	rank mobility
rank concordance (relative mobility or internal mixing)
Kendall’s index

	spatial rank mobility
add a spatial dimension into rank mobility investigate the extent to
which the relative mobility is spatially dependent
use various types of spatial weight matrix

	Markov
empirical transition probability matrix (mobility across class)
Shorrock’s index

	Spatial Markov
adds a spatial dimension (regional conditioning) into classic Markov models
a trace statistic from a modified Markov transition matrix
investigate the extent to which the inter-class mobility are spatially dependent

	Space-Time LISA
extends LISA measures to integrate the time dimension
combined with cg (computational geometry) module to develop comparative measurements

References

	[Anselin2000]	Anselin, Luc (2000) Computing environments for spatial data analysis. Journal of Geographical Systems 2: 201-220

	[ReyJanikas2006]	Rey, S.J. and M.V. Janikas (2006) STARS: Space-Time Analysis of Regional Systems, Geographical Analysis 38: 67-86.

	[ReyYe2010]	Rey, S.J. and X. Ye (2010) Comparative spatial dyanmics of regional systems. In Paez, A. et al. (eds) Progress in Spatial Analysis: Methods and Applications. Springer: Berlin, 441-463.

 PEP 0002 Residential Segregation Module

PEP 0002 Residential Segregation Module

	Author
	David C. Folch <david.folch@asu.edu>
Serge Rey <srey@asu.edu>

	Status
	Draft

	Created
	10-Feb-2010

	Updated
	

Abstract

The segregation module combines a number of previously developed and
to-be-developed measures for the analysis of residential segregation. It will
include classes for two-group and multi-group aspatial (classic) segregation
indices along with their spatialized counterparts. Local segregation indices
will also be included.

Motivation

The study of residential segregation continues to be a popular field in
empirical social science and public policy development. While some of the
classic measures are relatively simple to implement, the spatial versions are
not nearly as straightforward for the average user. Furthermore, there does
not appear to be a Python implementation of residential segregation measures
currently available. There is a standalone C#.Net GUI implementation
(http://www.ucs.inrs.ca/inc/Groupes/LASER/Segregation.zip) containing many of
the measures to be implanted via this PEP but this is Windows only and I could
not get it to run easily (it is not open source but the author sent me the
code).

It has been noted that there is no one-size-fits-all segregation index;
however, some are clearly more popular than others. This module would bring
together a wide variety of measures to allow users to easily compare the
results from different indices.

Reference Implementation

We suggest adding the module pysal.segregation which in turn would
encompass the following modules:

	globalSeg

	localSeg

References

 PEP 0003 Spatial Smoothing Module

PEP 0003 Spatial Smoothing Module

	Author
	Myunghwa Hwang <mhwang4@gmail.com>
Luc Anselin <luc.anselin@asu.edu>
Serge Rey <srey@asu.edu>

	Status
	Approved 1.0

	Created
	11-Feb-2010

	Updated
	

Abstract

Spatial smoothing techniques aim to adjust problems with applying simple
normalization to rate computation. Geographic studies of disease widely
adopt these techniques to better summarize spatial patterns of disease occurrences.
The smoothing module combines a number of previously developed and to-be-developed
classes for carrying out spatial smoothing. It will include classes for
the following techniques: mean and median based smoothing, nonparametric smoothing,
and empirical Bayes smoothing.

Motivation

Despite wide usage of spatial smoothing techniques in epidemiology,
there are only few software libraries that include a range of different smoothing
techniques at one place.
Since spatial smoothing is a subtype of exploratory data analysis method,
PySAL is the best place that host multiple smoothing techniques.

The smoothing module will mainly implement the techniques reported in [Anselin2006].

Reference Implementation

We suggest adding the module pysal.esda.smoothing which in turn would
encompass the following modules:

	locally weighted averages, locally weighted median, headbanging

	spatial rate smoothing

	excess risk, empricial Bayes smoothing, spatial empirical Bayes smoothing

	headbanging

References

[Anselin2006] Anselin, L., N. Lozano, and J. Koschinsky (2006) Rate Transformations and Smoothing, GeoDa Center Research Report.

 PEP 0004 Geographically Nested Inequality based on the Geary Statistic

PEP 0004 Geographically Nested Inequality based on the Geary Statistic

	Author
	Boris Dev <boris.dev@gmail.com>
Charles Schmidt <schmidtc@gmail.com>

	Status
	Draft

	Created
	9-Aug-2010

	Updated
	

Abstract

I propose to extend the Geary statistic to describe inequality
patterns between people in the same geographic zones. Geographically nested
associations can be represented with a spatial weights matrix defined jointly
using both geographic and social positions. The key class in the proposed
geographically nested inequality module would sub-class from class
pysal.esda.geary with 2 extensions: 1) as an additional argument, an array
of regimes to represent social space; and 2) for the output, spatially nested
randomizations will be performed for pseudo-significance tests.

Motivation

Geographically nested measures may reveal inequality patterns that are masked
by conventional aggregate approaches. Aggregate human inequality statistics
summarize the size of the gaps in variables such as mortality rate or income
level between different different groups of people. A geographically nested
measure is computed using only a pairwise subset of the values defined by
common location in the same geographic zone. For example, this type of
measure was proposed in my dissertation to assess changes in income inequality
between nearby blocks of different school attendance zones or different racial
neighborhoods within the same cities. Since there are no standard statistical
packages to do this sort of analysis, currently such a pairwise approach to
inequality analysis across many geographic zones is tedious for researchers
who are non-hackers. Since it will take advantage of the currently existing
pysal.esda.geary and pysal.weights.regime_weights(), the proposed
module should be readable for hackers.

Reference Implementation

I suggest adding the module pysal.inequality.nested.

References

[Dev2010] Dev, B. (2010) “Assessing Inequality using Geographic Income Distributions: Spatial Data Analysis of States,
Neighborhoods, and School Attendance Zones” http://dl.dropbox.com/u/408103/dissertation.pdf.

 PEP 0005 Space Time Event Clustering Module

PEP 0005 Space Time Event Clustering Module

	Author
	Nicholas Malizia <nmalizia@gmail.com>,
Serge Rey <sjsrey@gmail.com>

	Status
	Approved 1.1

	Created
	13-Jul-2010

	Updated
	06-Oct-2010

Abstract

The space-time event clustering module will be an addition (in the form of a sub-module) to the spatial dynamics module. The purpose of this module will be to house all methods concerned with identifying clusters within spatio-temporal event data. The module will include classes for the major methods for spatio-temporal event clustering, including: the Knox, Mantel, Jacquez k Nearest Neighbors, and the Space-Time K Function. Although these methods are tests of global spatio-temporal clustering, it is our aim to eventually extend this module to include to-be-developed methods for local spatio-temporal clustering.

Motivation

While the methods of the parent module are concerned with the dynamics of aggregate lattice-based data, the methods encompassed in this sub-module will focus on exploring the dynamics of individual events. The methods suggested here have historically been utilized by researchers looking for clusters of events in the fields of epidemiology and criminology. Currently, the methods presented here are not widely implemented in an open source context. Although the Knox, Mantel, and Jacquez methods are available in the commercial, GUI-based software ClusterSeer, they do not appear to be implemented in an open-source context. Also, as they are implemented in ClusterSeer, the methods are not scriptable [1]. The Space-Time K function, however, is available in an open-source context in the splancs package for R [2]. The combination of these methods in this module would be a unique, scriptable, open-source resource for researchers interested in spatio-temporal interaction of event-based data.

Reference Implementation

We suggest adding the module pysal.spatialdynamics.events which in turn would encompass the following modules:

	Knox

	The Knox test for space-time interaction sets critical distances in space and time; if the data are clustered, numerous pairs of events will be located within both of these critical distances and the test statistic will be large [3]. Significance will be established using a Monte Carlo method. This means that either the time stamp or location of the events is scrambled and the statistic is calculated again. This procedure is permuted to generate a distribution of statistics (for the null hypothesis of spatio-temporal randomness) which is used to establish the pseudo-significance of the observed test statistic. Options will be given to specify a range of critical distances for the space and time scales.

	Mantel

	Akin to the Knox test in its simplicity, the Mantel test keeps the distance information discarded by the Knox test. The Mantel statistic is calculated by summing the product of the distances between all the pairs of events [4]. Again, significance will be determined through a Monte Carlo approach.

	Jacquez

	This test tallies the number of event pairs that are within k-nearest neighbors of each other in both space and time. Significance of this count is established using a Monte Carlo permutation method [5]. Again, the permutation is done by randomizing either the time or location of the events and then running the statistic again. The test should be implemented with the additional descriptives as suggested by [6].

	SpaceTimeK

	The space-time K function takes the K function which has been used to detect clustering in spatial point patterns and expands it to the realm of spatio-temporal data. Essentially, the method calculates K functions in space and time independently and then compares the product of these functions with a K function which takes both dimensions of space and time into account from the start [7]. Significance is established through Monte Carlo methods and the construction of confidence envelopes.

References

	[1]	
	Jacquez, D. Greiling, H. Durbeck, L. Estberg, E. Do, A. Long, and B. Rommel. ClusterSeer User Guide 2: Software for Identifying Disease Clusters. Ann Arbor, MI: TerraSeer Press, 2002.

	[2]	
	Rowlingson and P. Diggle. splancs: Spatial and Space-Time Point Pattern Analysis. R Package. Version 2.01-25, 2009.

	[3]	
	Knox. The detection of space-time interactions. Journal of the Royal Statistical Society. Series C (Applied Statistics), 13(1):25–30, 1964.

	[4]	
	Mantel. The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2):209–220, 1967.

	[5]	
	Jacquez. A k nearest neighbour test for space-time interaction. Statistics in Medicine, 15(18):1935– 1949, 1996.

	[6]	
	Mack and N. Malizia. Enhancing the results of the Jacquez k Nearest Neighbor test for space-time interaction. In Preparation

	[7]	
	Diggle, A. Chetwynd, R. Haggkvist, and S. Morris. Second-order analysis of space-time clustering. Statistical Methods in Medical Research, 4(2):124, 1995.

 PEP 0006 Kernel Density Estimation

PEP 0006 Kernel Density Estimation

	Author
	Serge Rey <sjsrey@gmail.com>
Charles Schmidt <schmidtc@gmail.com>

	Status
	Draft

	Created
	11-Oct-2010

	Updated
	11-Oct-2010

Abstract

The kernel density estimation module will provide a uniform interface to a set
of kernel density estimation (KDE) methods. Currently KDE is used in various places
within PySAL
(e.g., Kernel,
Kernel_Smoother) as well as in STARS and
various projects within the GeoDA Center, but these implementations were done
separately. This module would centralize KDE within PySAL as well as extend
the suite of KDE methods and related measures available in PySAL.

Motivation

KDE is widely used throughout spatial analysis, from estimation of process
intensity in point pattern analysis, deriving spatial weights, geographically
weighted regression, rate smoothing, to hot spot detection, among others.

Reference Implementation

Since KDE would be used throughout existing (and likely future) modules in
PySAL, it makes sense to implement it as a top level module in PySAL.

Core KDE methods that would be implemented include:

	triangular

	uniform

	quadratic

	quartic

	gaussian

Additional classes and methods to deal with KDE on restricted spaces would
also be implemented.

A unified KDE api would be developed for use of the module.

Computational optimization would form a significant component of the effort
for this PEP.

References

in progress

 PEP 0007 Spatial Econometrics

PEP 0007 Spatial Econometrics

	Author
	Luc Anselin <luc.anselin@asu.edu>
Serge Rey <sjsrey@gmail.com>,David Folch <dfolch@asu.edu>,Daniel Arribas-Bel <daniel.arribas.bel@gmail.com>,Pedro Amaral <pvmda2@cam.ac.uk>,Nicholas Malizia <nmalizia@gmail.com>,Ran Wei <rwei5@asu.edu>,Jing Yao <jyao13@asu.edu>,Elizabeth Mack <Elizabeth.A.Mack@asu.edu>

	Status
	Approved 1.1

	Created
	12-Oct-2010

	Updated
	12-Oct-2010

Abstract

The spatial econometrics module will provide a uniform interface to the
spatial econometric functionality contained in the former PySpace and
current GeoDaSpace efforts. This module would centralize all specification,
estimation, diagnostic testing and prediction/simulation for spatial
econometric models.

Motivation

Spatial econometric methodology is at the core of GeoDa and
GeoDaSpace. This module would allow access to state of the art
methods at the source code level.

Reference Implementation

We suggest adding the module pysal.spreg. As development
progresses, there may be a need for submodules dealing with
pure cross sectional regression, spatial panel models and spatial probit.

Core methods to be implemented include:

	OLS estimation with diagnostics for spatial effects

	2SLS estimation with diagnostics for spatial effects

	spatial 2SLS for spatial lag model (with endogeneity)

	GM and GMM estimation for spatial error model

	GMM spatial error with heteroskedasticity

	spatial HAC estimation

A significant component of the effort for this PEP would consist of
implementing methods with good performance on very large data
sets, exploiting sparse matrix operations in scipy.

References

[1] Anselin, L. (1988). Spatial Econometrics, Methods and Models. Kluwer, Dordrecht.

	[2] Anselin, L. (2006). Spatial econometrics. In Mills, T. and Patterson, K., editors,

	Palgrave Handbook of Econometrics, Volume I, Econometric Theory, pp. 901-969.
Palgrave Macmillan, Basingstoke.

	[3] Arraiz, I., Drukker, D., Kelejian H.H., and Prucha, I.R. (2010). A spatial Cliff-Ord-type

	model with heteroskedastic innovations: small and large sample results.
Journal of Regional Science 50: 592-614.

	[4] Kelejian, H.H. and Prucha, I.R. (1998). A generalized spatial two stage least squares

	procedure for estimationg a spatial autoregressive model with autoregressive
disturbances. Journal of Real Estate Finance and Economics 17: 99-121.

	[5] Kelejian, H.H. and Prucha, I.R. (1999). A generalized moments estimator for the

	autoregressive parameter in a spatial model. International Economic Review 40: 509-533.

	[6] Kelejian, H.H. and Prucha, I.R. (2007). HAC estimation in a spatial framework.

	Journal of Econometrics 140: 131-154.

	[7] Kelejian, H.H. and Prucha, I.R. (2010). Specification and estimation of spatial autoregressive

	models with autoregressive and heteroskedastic disturbances. Journal of Econometrics
(forthcoming).

 PEP 0008 Spatial Database Module

PEP 0008 Spatial Database Module

	Author
	Phil Stephens <phil.stphns@gmail.com>,
Serge Rey <sjsrey@gmail.com>

	Status
	Draft

	Created
	09-Sep-2010

	Updated
	31-Aug-2012

Abstract

A spatial database module will extend PySAL file I/O capabilities to spatial
database software, allowing PySAL
users to connect to and perform geographic lookups and queries on spatial
databases.

Motivation

PySAL currently reads and writes geometry in only the Shapefile data
structure.
Spatially-indexed databases permit queries on the
geometric relations between objects [1].

Reference Implementation

We propose to add the module pysal.contrib.spatialdb, hereafter
referred to simply as spatialdb.
spatialdb will leverage the Python Object Relational Mapper (ORM) libraries SQLAlchemy [2] and GeoAlchemy [3], MIT-licensed software that
provides a database-agnostic SQL layer for several different databases and
spatial database extensions
including PostgreSQL/PostGIS, Oracle Spatial, Spatialite, MS SQL Server, MySQL Spatial, and others.
These lightweight libraries manage database connections, transactions, and SQL expression translation.

Another option to research is the GeoDjango package. It provides a large
number of spatial lookups [5] and geo queries for PostGIS databases, and a
smaller set of lookups / queries for Oracle, MySQL, and SpatiaLite.

References

	[1]	OpenGeo (2010) Spatial Database Tips and Tricks [http://workshops.opengeo.org/postgis-spatialdbtips/introduction.html]. Accessed September 9, 2010.

	[2]	SQLAlchemy (2010) SQLAlchemy 0.6.5 Documentation [http://www.sqlalchemy.org/docs/orm/index.html]. Accessed October 4, 2010.

	[3]	GeoAlchemy (2010) GeoAlchemy 0.4.1 Documentation [http://geoalchemy.org/index.html]. Accessed October 4, 2010.

	[4]	GeoAlchemy (2012) GeoAlchemy on GitHub [http://https://github.com/geoalchemy/geoalchemy]. Accessed August 9, 2012.

	[5]	GeoDjango (2012) GeoDjango Compatibility Tables [http://docs.djangoproject.com/en/dev/ref/contrib/gis/db-api]. Accessed August 31, 2012.

 PEP 0009 Add Python 3.x Support

PEP 0009 Add Python 3.x Support

	Author
	Charles Schmidt <schmidtc@gmail.com>

	Status
	Approved 1.2

	Created
	02-Feb-2011

	Updated
	02-Feb-2011

Abstract

Python 2.x is being phased out in favor of the backwards incompatible Python 3
line. In order to stay relevant to the python community as a whole PySAL needs
to support the latest production releases of Python. With the release of Numpy
1.5 and the pending release of SciPy 0.9, all PySAL dependencies support Python
3. This PEP proposes porting the code base to support both the 2.x and 3.x lines
of Python.

Motivation

Python 2.7 is the final major release in the 2.x line. The Python 2.x line will
continue to receive bug fixes, however only the 3.x line will receive new
features ([Python271]). Python 3.x introduces many backward incompatible
changes to Python ([PythonNewIn3]). Numpy added support for Python 3.0 in
version 1.5 ([NumpyANN150]). Scipy 0.9.0 is currently in the release candidate
stage and supports Python 3.0 ([SciPyRoadmap], [SciPyANN090rc2]). Many of the
new features in Python 2.7 were back ported from 3.0, allowing us to start using
some of the new feature of the language without abandoning our 2.x users.

Reference Implementation

Since python 2.6 the interpreter has included a ‘-3’ command line switch to
“warn about Python 3.x incompatibilities that 2to3 cannot trivially fix”
([Python2to3]). Running PySAL tests with this switch produces no warnings
internal to PySAL. This suggests porting to 3.x will require only trivial
changes to the code. A porting strategy is provided by [PythonNewIn3].

References

	[Python271]	http://www.python.org/download/releases/2.7.1/

	[PythonNewIn3]	(1, 2) http://docs.python.org/release/3.0.1/whatsnew/3.0.html

	[Python2to3]	http://docs.python.org/release/3.0.1/library/2to3.html#to3-reference

	[NumpyANN150]	http://mail.scipy.org/pipermail/numpy-discussion/2010-August/052522.html

	[SciPyRoadmap]	http://projects.scipy.org/scipy/roadmap#python-3

	[SciPyANN090rc2]	http://mail.scipy.org/pipermail/scipy-dev/2011-January/015927.html

 PEP 0010 Add pure Python rtree

PEP 0010 Add pure Python rtree

	Author
	Serge Rey <sjsrey@gmail.com>

	Status
	Approved 1.2

	Created
	12-Feb-2011

	Updated
	12-Feb-2011

Abstract

A pure Python implementation of an Rtree will be developed for use in the
construction of spatial weights matrices based on contiguity relations in
shapefiles as well as supporting a spatial index that can be used by GUI based
applications built with PySAL requiring brushing and linking.

Motivation

As of 1.1 PySAL checks if the external library ([Rtree]) is installed. If it
is not, then an internal binning algorithm is used to determine contiguity
relations in shapefiles for the construction of certain spatial weights. A
pure Python implementation of Rtrees may provide for improved cross-platform
efficiency when the external Rtree library is not present. At the same time,
such an implementation can be relied on by application developers using PySAL
who wish to build visualization applications supporting brushing, linking and
other interactions requiring spatial indices for object selection.

Reference Implementation

A pure Python implementation of Rtrees has recently been implemented ([pyrtree]) and
is undergoing testing for possible inclusion in PySAL. It appears that this
module can be integrated into PySAL with modest effort.

References

	[Rtree]	http://pypi.python.org/pypi/Rtree/

	[pyrtree]	http://code.google.com/p/pyrtree/

 PEP 0011 Move from Google Code to Github

PEP 0011 Move from Google Code to Github

	Author
	Serge Rey <sjsrey@gmail.com>

	Status
	Draft

	Created
	04-Aug-2012

	Updated
	04-Aug-2012

Abstract

This proposal is to move the PySAL code repository from Google Code to Github.

Motivation

Git [http://git-scm.com] is a decentralized version control system that
brings a number of benefits:

	distributed development

	off-line development

	elegant and lightweight branching

	fast operations

	flexible workflows

among many others. [http://www.youtube.com/watch?v=4XpnKHJAok8]

The two main PySAL dependencies, SciPy and NumPy, made the switch to GitHub
roughly two years ago. In discussions with members of those development teams
and related projects (pandas, statsmodels) it is clear that git is gaining
widespread adoption in the Python scientific computing community. By moving to
git and GitHub, PySAL would benefit by facilitating interaction with developers in this
community. Discussions with developers at SciPy 2012 indicated that all
projects experienced significant growth in community involvement after the
move to Github. Other projects considering such a move have been discussing [http://groups.google.com/group/networkx-devel/browse_thread/thread/6b82286cdd5e434a] similar issues.

Moving to GitHub would also streamline the administration of project updates,
documentation and related tasks. The Google Code infrastructure requires
updates in multiple locations which results in either additional work, or
neglected changes during releases. GitHub understands markdown and reStructured
text formats, the latter is heavily used in PySAL documentation and the former
is clearly preferred to wiki markup on Google Code.

Although there is a learning curve to Git, it is relatively minor for
developers familiar with Subversion, as all PySAL developers are. Moreover,
several of the developers have been using Git and GitHub for other projects
and have expressed interest in such a move. There are excellent on-line
resources for learning more about git, such as this
book. [http://git-scm.com/book]

Reference Implementation

Moving code and history

There are utilities, such as
svn2git [https://help.GitHub.com/articles/importing-from-subversion]
that can be used to convert an SVN repo to a git repo.

The converted git repo would then be pushed to a GitHub [https://GitHub.com] account.

Setting up post-(commit|push|pull) hooks

Migration of the current integration testing will be required. Github has
support for Post-Receive Hooks [https://help.GitHub.com/articles/post-receive-hooks/]
that can be used for this aspect of the migration.

Moving issues tracking over

A decision about whether to move the issue tracking over to Github will have
to be considered. This has been handled in different ways:

	keep using Google Code for issue tracking

	move all issues (even closed ones) over to Github

	freeze tickets at Google Code and have a breadcrumb for active tickets
pointing to issue tracker at Github

If we decide to move the issues over we may look at
tratihubus [https://GitHub.com/roskakori/tratihubis]
as well as other possibilities.

Continuous integration with travis-ci

Travis-CI [http://travis-ci.org/] is a hosted Continuous Integration (CI) service that is integrated
with GitHub. This sponsored service provides:

	testing with multiple versions of Python

	testing with multiple versions of project dependencies (numpy and scipy)

	build history [http://travis-ci.org/#!/zendframework/zf2]

	integrated GitHub commit hooks

	testing against multiple database services [http://about.travis-ci.org/docs/user/database-setup/]

Configuration is achieved with a single YAML file, reducing development
overhead, maintenance, and monitoring.

Code Sprint for GitHub migration

The proposal is to organize a future sprint to focus on this migration.

 PySAL Documentation

PySAL Documentation

Contents

	PySAL Documentation
	Writing Documentation

	Compiling Documentation
	Note

	Lightweight Editing with rst2html.py

	Things to watch out for

	Adding a new package and modules

	Adding a new tutorial: spreg
	Requirements

	Where to add the tutorial content

	Proper Reference Formatting

Writing Documentation

The PySAL project contains two distinct forms of documentation: inline and
non-inline. Inline docs are contained in the source
code itself, in what are known as docstrings. Non-inline documentation is in the
doc folder in the trunk.

Inline documentation is processed with an extension to Sphinx called napoleon.
We have adopted the community standard outlined here [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt].

PySAL makes use of the built-in Sphinx extension viewcode, which allows the
reader to quicky toggle between docs and source code. To use it,
the source code module requires at least one properly formatted docstring.

Non-inline documentation editors can opt to strike-through older documentation rather than
delete it with the custom “role” directive as
follows. Near the top of the document, add the role directive. Then, to strike through old text, add the :strike:
directive and offset the text with back-ticks. This strikethrough is produced
like this:

.. role:: strike

...
...

This :strike:`strikethrough` is produced like this:

Compiling Documentation

PySAL documentation is built using Sphinx [http://pypi.python.org/pypi/Sphinx/] and the Sphinx extension napoleon [http://sphinxcontrib-napoleon.readthedocs.org/en/latest/sphinxcontrib.napoleon.html], which formats PySAL’s docstrings.

Note

If you’re using Sphinx version 1.3 or newer, napoleon is included and should be called in the main conf.py as sphinx.ext.napoleon rather than installing it as we show below.

If you’re using a version of Sphinx that does not ship with napoleon (Sphinx < 1.3), you’ll need napoleon version 0.2.4 or later and Sphinx version 1.0 or later to compile the documentation.
Both modules are available at the Python Package Index, and can be downloaded and installed
from the command line using pip or easy_install:

$ easy_install sphinx
$ easy_install sphinxcontrib-napoleon

or:

$ pip sphinx
$ pip sphinxcontrib-napoleon

If you get a permission error, trying using ‘sudo’.

The source for the docs is in doc. Building the documentation is
done as follows (assuming sphinx and napoleon are already installed):

$ cd doc; ls
build Makefile source

$ make clean
$ make html

To see the results in a browser open build/html/index.html. To make
changes, edit (or add) the relevant files in source and rebuild the
docs using the ‘make html’ (or ‘make clean’ if you’re adding new documents) command.
Consult the Sphinx markup guide [http://sphinx.pocoo.org/contents.html] for details on the syntax and structure of the files in source.

Once you’re happy with your changes, check-in the source files. Do not
add or check-in files under build since they are dynamically built.

Changes checked in to Github [http://github.com/pysal] will be propogated to readthedocs [http://pysal.readthedocs.org/en/latest] within a few minutes.

Lightweight Editing with rst2html.py

Because the doc build process can sometimes be lengthy, you may want to avoid
having to do a full build until after you are done with your major edits on
one particular document. As part of the
docutils [http://docutils.sourceforge.net/docs/user/tools.html] package,
the file rs2html.py can take an rst document and generate the html file.
This will get most of the work done that you need to get a sense if your edits
are good, without having to rebuild all the PySAL docs. As of version 0.8 it
also understands LaTeX. It will cough on some sphinx directives, but those can
be dealt with in the final build.

To use this download the doctutils tarball and put rst2html.py somewhere in
your path. In vim (on Mac OS X) you can then add something like:

map ;r ^[:!rst2html.py % > ~/tmp/tmp.html; open ~/tmp/tmp.html^M^M

which will render the html in your default browser.

Things to watch out for

If you encounter a failing tutorial doctest that does not seem to be in error, it could be
a difference in whitespace between the expected and received output. In that case, add an
‘options’ line as follows:

.. doctest::
 :options: +NORMALIZE_WHITESPACE

 >>> print 'a b c'
 abc

Adding a new package and modules

To include the docstrings of a new module in the API docs the following steps are required:

	In the directory /doc/source/library add a directory with the name of
the new package. You can skip to step 3 if the package exists and you are
just adding new modules to this package.

	Within /doc/source/library/packageName add a file index.rst

	For each new module in this package, add a file moduleName.rst and
update the index.rst file to include modulename.

Adding a new tutorial: spreg

While the API docs are automatically generated when
compiling with Sphinx, tutorials that demonstrate use cases for new modules
need to be crafted by the developer. Below we use the case of one particular
module that currently does not have a tutorial as a guide for how to add
tutorials for new modules.

As of PySAL 1.3 there are API docs for
spreg
but no tutorial currently exists for this module.

We will fix this and add a tutorial for
spreg.

Requirements

	sphinx

	napoleon

	pysal sources

You can install sphinx or napoleon using easy_install as described
above in Writing Documentation.

Where to add the tutorial content

Within the PySAL source the docs live in:

pysal/doc/source

This directory has the source reStructuredText [http://sphinx.pocoo.org/rest.html] files used to render the html
pages. The tutorial pages live under:

pysal/doc/source/users/tutorials

As of PySAL 1.3, the content of this directory is:

autocorrelation.rst fileio.rst next.rst smoothing.rst
dynamics.rst index.rst region.rst weights.rst
examples.rst intro.rst shapely.rst

The body of the index.rst file lists the sections for the tutorials:

Introduction to the Tutorials <intro>
File Input and Output <fileio>
Spatial Weights <weights>
Spatial Autocorrelation <autocorrelation>
Spatial Smoothing <smoothing>
Regionalization <region>
Spatial Dynamics <dynamics>
Shapely Extension <shapely>
Next Steps <next>
Sample Datasets <examples>

In order to add a tutorial for spreg we need the to change this to read:

Introduction to the Tutorials <intro>
File Input and Output <fileio>
Spatial Weights <weights>
Spatial Autocorrelation <autocorrelation>
Spatial Smoothing <smoothing>
Spatial Regression <spreg>
Regionalization <region>
Spatial Dynamics <dynamics>
Shapely Extension <shapely>
Next Steps <next>
Sample Datasets <examples>

So we are adding a new section that will show up as Spatial Regression and
its contents will be found in the file spreg.rst. To create the latter
file simpy copy say dynamics.rst to spreg.rst and then modify spreg.rst
to have the correct content.

Once this is done, move back up to the top level doc directory:

pysal/doc

Then:

$ make clean
$ make html

Point your browser to pysal/doc/build/html/index.html

and check your work. You can then make changes to the spreg.rst file and
recompile until you are set with the content.

Proper Reference Formatting

For proper hypertext linking of reference material, each unique reference in a
single python module can only be explicitly named once. Take the following example for
instance:

References

.. [1] Kelejian, H.R., Prucha, I.R. (1998) "A generalized spatial
two-stage least squares procedure for estimating a spatial autoregressive
model with autoregressive disturbances". The Journal of Real State
Finance and Economics, 17, 1.

It is “named” as “1”. Any other references (even the same paper) with the same “name” will cause a
Duplicate Reference error when Sphinx compiles the document. Several
work-arounds are available but no concensus has emerged.

One possible solution is to use an anonymous reference on any subsequent
duplicates, signified by a single underscore with no brackets. Another solution
is to put all document references together at the bottom of the document, rather
than listing them at the bottom of each class, as has been done in some modules.

 PySAL Release Management

PySAL Release Management

Contents

	PySAL Release Management
	Prepare the release

	Tag

	Make docs

	Make and Upload and Test Distributions

	Announce

	Put master back to dev

Prepare the release

	Create a branch [https://github.com/pysal/pysal/wiki/GitHub-Standard-Operating-Procedures] out of the dev branch

	Check all tests pass. See PySAL Testing Procedures.

	Update CHANGELOG:

$ python tools/github_stats.py days >> chglog

	where days is the number of days to start the logs at

	Prepend chglog to CHANGELOG and edit

	Edit THANKS and README and README.md if needed.

	Edit the file version.py to update MAJOR, MINOR, MICRO

	Bump:

$ cd tools; python bump.py

	Commit all changes.

	Push [https://github.com/pysal/pysal/wiki/GitHub-Standard-Operating-Procedures] your branch up to your GitHub repos

	On github issue a pull request, with a target of upstream master.
Add a comment that this is for release.

Tag

With version 1.10 we changed the way the tags are created to reflect our
policy [https://github.com/pysal/pysal/wiki/Example-git-config] of not pushing directly to upstream.

After you have issued a pull request, the project maintainer can create the release [https://help.github.com/articles/creating-releases/] on GitHub.

Make docs

As of version 1.6, docs are automatically compiled and hosted [http://pysal.readthedocs.org].

Make and Upload and Test Distributions

On each build machine, clone and checkout the newly created tag (assuming that
is v1.10 in what follows):

$ git clone http://github.com/pysal/pysal.git
$ cd pysal
$ git fetch --tags
$ git checkout v1.10

	Make and upload [http://docs.python.org/2.7/distutils/uploading.html] to the Testing Python Package Index:

$ python setup.py sdist upload -r https://testpypi.python.org/pypi

	Test that your package can install correctly:

$ pip install --extra-index-url https://testpypi.python.org/pypi pysal

If all is good, proceed, otherwise fix, and repeat.

	Make and upload [http://docs.python.org/2.7/distutils/uploading.html] to the Python Package Index in one shot!:

$ python setup.py sdist (to test it)
$ python setup.py sdist upload

	
	if not registered [http://docs.python.org/2.7/distutils/packageindex.html], do so. Follow the prompts. You can save the

	login credentials in a dot-file, .pypirc

	Make and upload the Windows installer to SourceForge.
- On a Windows box, build the installer as so:

$ python setup.py bdist_wininst

Announce

	Draft and distribute press release on geodacenter.asu.edu, openspace-list, and pysal.org

	On GeoDa center website, do this:

	Login and expand the wrench icon to reveal the Admin menu

	Click “Administer”, “Content Management”, “Content”

	Next, click “List”, filter by type, and select “Featured Project”.

	Click “Filter”

Now you will see the list of Featured Projects. Find “PySAL”.

	Choose to ‘edit’ PySAL and modify the short text there. This changes the text users see on the homepage slider.

	Clicking on the name “PySAL” allows you to edit the content of the PySAL project page, which is also the “About PySAL” page linked to from the homepage slider.

Put master back to dev

	Change MAJOR, MINOR version in setup script.

	Change pysal/version.py to dev number

	Change the docs version from X.x to X.xdev by editing doc/source/conf.py in two places.

	Update the release schedule in doc/source/developers/guidelines.rst

Update the github.io news page [https://github.com/pysal/pysal.github.io/blob/master/_includes/news.md]
to announce the release.

 PySAL and Python3

PySAL and Python3

Contents

	PySAL and Python3

Starting with version 1.11, PySAL supports both the Python 2.x series
(version 2.6 and 2.7) as well as Python 3.4 and newer.

 Projects Using PySAL

Projects Using PySAL

This page lists other software projects making use of PySAL. If your project is
not listed here, contact one of the team members [http://code.google.com/p/pysal/people/list] and we’ll add it.

GeoDa Center Projects

	GeoDaNet [http://geodacenter.asu.edu/software]

	GeoDaSpace [http://geodacenter.asu.edu/software]

	GeoDaWeights [http://geodacenter.asu.edu/software]

	STARS [http://geodacenter.asu.edu/software]

Related Projects

	Anaconda [http://continuum.io/downloads]

	StatsModels [http://statsmodels.sourceforge.net/related.html#related]

	PythonAnywhere [http://pythonanywhere.com] includes latest PySAL release

	CartoDB [http://cartodb.com] includes PySAL through a custom PostgreSQL extension [https://github.com/CartoDB/crankshaft]

 Known Issues

Known Issues

1.5 install fails with scipy 11.0 on Mac OS X

Running python setup.py install results in:

from _cephes import *
ImportError:
dlopen(/Users/serge/Documents/p/pysal/virtualenvs/python1.5/lib/python2.7/site-packages/scipy/special/_cephes.so,
2): Symbol not found: _aswfa_
 Referenced from:
 /Users/serge/Documents/p/pysal/virtualenvs/python1.5/lib/python2.7/site-packages/scipy/special/_cephes.so
 Expected in: dynamic lookup

This occurs when your scipy on Mac OS X was complied with gnu95 and not
gfortran. See this thread [http://mail.scipy.org/pipermail/scipy-user/2010-November/027548.html] for possible solutions.

weights.DistanceBand failing

This occurs due to a bug in scipy.sparse prior to version 0.8. If you are running such a version see Issue 73 [http://code.google.com/p/pysal/issues/detail?id=73&sort=milestone] for a fix.

doc tests and unit tests under Linux

Some Linux machines return different results for the unit and doc tests. We suspect this has to do with the way random seeds are set. See Issue 52 [http://code.google.com/p/pysal/issues/detail?id=52&sort=milestone]

LISA Markov missing a transpose

In versions of PySAL < 1.1 there is a bug in the LISA Markov, resulting in
incorrect values. For a fix and more details see Issue 115 [http://code.google.com/p/pysal/issues/detail?id=115].

PIP Install Fails

Having numpy and scipy specified in pip requiretments.txt causes PIP install of pysal to fail. For discussion and suggested fixes see Issue 207 [http://code.google.com/p/pysal/issues/detail?id=207&sort=milestone].

 Library Reference

Library Reference

	Release:	1.14.1

	Date:	Sep 01, 2017

Python Spatial Analysis Library

The Python Spatial Analysis Library consists of several sub-packages each addressing a different area of spatial analysis. In addition to these sub-packages PySAL includes some general utilities used across all modules.

Sub-packages

	pysal.cg – Computational Geometry

	pysal.core — Core Data Structures and IO

	pysal.esda — Exploratory Spatial Data Analysis

	pysal.inequality — Spatial Inequality Analysis

	pysal.region — Spatially Constrained Clustering

	pysal.spatial_dynamics — Spatial Dynamics

	pysal.spreg — Regression and Diagnostics

	pysal.weights — Spatial Weights

	pysal.network — Network Constrained Analysis

	pysal.contrib – Contributed Modules

 pysal.cg – Computational Geometry

pysal.cg – Computational Geometry

	cg.locators — Locators

	cg.shapes — Shapes

	cg.standalone — Standalone

	cg.rtree — rtree

	cg.kdtree — KDTree

	cg.sphere — Sphere

 cg.locators — Locators

cg.locators — Locators

The cg.locators module provides

New in version 1.0.

Computational geometry code for PySAL: Python Spatial Analysis Library.

	
class pysal.cg.locators.IntervalTree(intervals)

	Representation of an interval tree. An interval tree is a data structure which is used to
quickly determine which intervals in a set contain a value or overlap with
a query interval. [DeBerg2008]

	
query(q)

	Returns the intervals intersected by a value or interval.

query((number, number) or number) -> x list

	Parameters:	q (a value or interval to find intervals intersecting) –

Examples

>>> intervals = [(-1, 2, 'A'), (5, 9, 'B'), (3, 6, 'C')]
>>> it = IntervalTree(intervals)
>>> it.query((7, 14))
['B']
>>> it.query(1)
['A']

	
class pysal.cg.locators.Grid(bounds, resolution)

	Representation of a binning data structure.

	
add(item, pt)

	Adds an item to the grid at a specified location.

add(x, Point) -> x

	Parameters:	
	item (the item to insert into the grid) –

	pt (the location to insert the item at) –

Examples

>>> g = Grid(Rectangle(0, 0, 10, 10), 1)
>>> g.add('A', Point((4.2, 8.7)))
'A'

	
bounds(bounds)

	Returns a list of items found in the grid within the bounds specified.

bounds(Rectangle) -> x list

	Parameters:	
	item (the item to remove from the grid) –

	pt (the location the item was added at) –

Examples

>>> g = Grid(Rectangle(0, 0, 10, 10), 1)
>>> g.add('A', Point((1.0, 1.0)))
'A'
>>> g.add('B', Point((4.0, 4.0)))
'B'
>>> g.bounds(Rectangle(0, 0, 3, 3))
['A']
>>> g.bounds(Rectangle(2, 2, 5, 5))
['B']
>>> sorted(g.bounds(Rectangle(0, 0, 5, 5)))
['A', 'B']

	
in_grid(loc)

	Returns whether a 2-tuple location _loc_ lies inside the grid bounds.

Test tag: <tc>#is#Grid.in_grid</tc>

	
nearest(pt)

	Returns the nearest item to a point.

nearest(Point) -> x

	Parameters:	pt (the location to search near) –

Examples

>>> g = Grid(Rectangle(0, 0, 10, 10), 1)
>>> g.add('A', Point((1.0, 1.0)))
'A'
>>> g.add('B', Point((4.0, 4.0)))
'B'
>>> g.nearest(Point((2.0, 1.0)))
'A'
>>> g.nearest(Point((7.0, 5.0)))
'B'

	
proximity(pt, r)

	Returns a list of items found in the grid within a specified distance of a point.

proximity(Point, number) -> x list

	Parameters:	
	pt (the location to search around) –

	r (the distance to search around the point) –

Examples

>>> g = Grid(Rectangle(0, 0, 10, 10), 1)
>>> g.add('A', Point((1.0, 1.0)))
'A'
>>> g.add('B', Point((4.0, 4.0)))
'B'
>>> g.proximity(Point((2.0, 1.0)), 2)
['A']
>>> g.proximity(Point((6.0, 5.0)), 3.0)
['B']
>>> sorted(g.proximity(Point((4.0, 1.0)), 4.0))
['A', 'B']

	
remove(item, pt)

	Removes an item from the grid at a specified location.

remove(x, Point) -> x

	Parameters:	
	item (the item to remove from the grid) –

	pt (the location the item was added at) –

Examples

>>> g = Grid(Rectangle(0, 0, 10, 10), 1)
>>> g.add('A', Point((4.2, 8.7)))
'A'
>>> g.remove('A', Point((4.2, 8.7)))
'A'

	
class pysal.cg.locators.BruteForcePointLocator(points)

	A class which does naive linear search on a set of Point objects.

	
nearest(query_point)

	Returns the nearest point indexed to a query point.

nearest(Point) -> Point

	Parameters:	query_point (a point to find the nearest indexed point to) –

Examples

>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = BruteForcePointLocator(points)
>>> n = pl.nearest(Point((1, 1)))
>>> str(n)
'(0.0, 0.0)'

	
proximity(origin, r)

	Returns the indexed points located within some distance of an origin point.

proximity(Point, number) -> Point list

	Parameters:	
	origin (the point to find indexed points near) –

	r (the maximum distance to find indexed point from the origin point) –

Examples

>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = BruteForcePointLocator(points)
>>> neighs = pl.proximity(Point((1, 0)), 2)
>>> len(neighs)
1
>>> p = neighs[0]
>>> isinstance(p, Point)
True
>>> str(p)
'(0.0, 0.0)'

	
region(region_rect)

	Returns the indexed points located inside a rectangular query region.

region(Rectangle) -> Point list

	Parameters:	region_rect (the rectangular range to find indexed points in) –

Examples

>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = BruteForcePointLocator(points)
>>> pts = pl.region(Rectangle(-1, -1, 10, 10))
>>> len(pts)
3

	
class pysal.cg.locators.PointLocator(points)

	An abstract representation of a point indexing data structure.

	
nearest(query_point)

	Returns the nearest point indexed to a query point.

nearest(Point) -> Point

	Parameters:	query_point (a point to find the nearest indexed point to) –

Examples

>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = PointLocator(points)
>>> n = pl.nearest(Point((1, 1)))
>>> str(n)
'(0.0, 0.0)'

	
overlapping(region_rect)

	Returns the indexed points located inside a rectangular query region.

region(Rectangle) -> Point list

	Parameters:	region_rect (the rectangular range to find indexed points in) –

Examples

>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = PointLocator(points)
>>> pts = pl.region(Rectangle(-1, -1, 10, 10))
>>> len(pts)
3

	
polygon(polygon)

	Returns the indexed points located inside a polygon

	
proximity(origin, r)

	Returns the indexed points located within some distance of an origin point.

proximity(Point, number) -> Point list

	Parameters:	
	origin (the point to find indexed points near) –

	r (the maximum distance to find indexed point from the origin point) –

Examples

>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = PointLocator(points)
>>> len(pl.proximity(Point((1, 0)), 2))
1

	
region(region_rect)

	Returns the indexed points located inside a rectangular query region.

region(Rectangle) -> Point list

	Parameters:	region_rect (the rectangular range to find indexed points in) –

Examples

>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = PointLocator(points)
>>> pts = pl.region(Rectangle(-1, -1, 10, 10))
>>> len(pts)
3

	
class pysal.cg.locators.PolygonLocator(polygons)

	An abstract representation of a polygon indexing data structure.

	
contains_point(point)

	Returns polygons that contain point

	Parameters:	point (point (x,y)) –

	Returns:	

	Return type:	list of polygons containing point

Examples

>>> p1 = Polygon([Point((0,0)), Point((6,0)), Point((4,4))])
>>> p2 = Polygon([Point((1,2)), Point((4,0)), Point((4,4))])
>>> p1.contains_point((2,2))
1
>>> p2.contains_point((2,2))
1
>>> pl = PolygonLocator([p1, p2])
>>> len(pl.contains_point((2,2)))
2
>>> p2.contains_point((1,1))
0
>>> p1.contains_point((1,1))
1
>>> len(pl.contains_point((1,1)))
1
>>> p1.centroid
(3.3333333333333335, 1.3333333333333333)
>>> pl.contains_point((1,1))[0].centroid
(3.3333333333333335, 1.3333333333333333)

	
inside(query_rectangle)

	Returns polygons that are inside query_rectangle

Examples

>>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))])
>>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))])
>>> p3 = Polygon([Point((7, 1)), Point((8, 7)), Point((9, 1))])
>>> pl = PolygonLocator([p1, p2, p3])
>>> qr = Rectangle(0, 0, 5, 5)
>>> res = pl.inside(qr)
>>> len(res)
1
>>> qr = Rectangle(3, 7, 5, 8)
>>> res = pl.inside(qr)
>>> len(res)
0
>>> qr = Rectangle(10, 10, 12, 12)
>>> res = pl.inside(qr)
>>> len(res)
0
>>> qr = Rectangle(0, 0, 12, 12)
>>> res = pl.inside(qr)
>>> len(res)
3

Notes

inside means the intersection of the query rectangle and a
polygon is not empty and is equal to the area of the polygon

	
nearest(query_point, rule='vertex')

	Returns the nearest polygon indexed to a query point based on
various rules.

nearest(Polygon) -> Polygon

	Parameters:	
	query_point (a point to find the nearest indexed polygon to) –

	rule (representative point for polygon in nearest query.) – vertex – measures distance between vertices and query_point
centroid – measures distance between centroid and
query_point
edge – measures the distance between edges and query_point

Examples

>>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))])
>>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))])
>>> pl = PolygonLocator([p1, p2])
>>> try: n = pl.nearest(Point((-1, 1)))
... except NotImplementedError: print "future test: str(min(n.vertices())) == (0.0, 1.0)"
future test: str(min(n.vertices())) == (0.0, 1.0)

	
overlapping(query_rectangle)

	Returns list of polygons that overlap query_rectangle

Examples

>>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))])
>>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))])
>>> p3 = Polygon([Point((7, 1)), Point((8, 7)), Point((9, 1))])
>>> pl = PolygonLocator([p1, p2, p3])
>>> qr = Rectangle(0, 0, 5, 5)
>>> res = pl.overlapping(qr)
>>> len(res)
2
>>> qr = Rectangle(3, 7, 5, 8)
>>> res = pl.overlapping(qr)
>>> len(res)
1
>>> qr = Rectangle(10, 10, 12, 12)
>>> res = pl.overlapping(qr)
>>> len(res)
0
>>> qr = Rectangle(0, 0, 12, 12)
>>> res = pl.overlapping(qr)
>>> len(res)
3
>>> qr = Rectangle(8, 3, 9, 4)
>>> p1 = Polygon([Point((2, 1)), Point((2, 3)), Point((4, 3)), Point((4,1))])
>>> p2 = Polygon([Point((7, 1)), Point((7, 5)), Point((10, 5)), Point((10, 1))])
>>> pl = PolygonLocator([p1, p2])
>>> res = pl.overlapping(qr)
>>> len(res)
1

Notes

overlapping means the intersection of the query rectangle and a
polygon is not empty and is no larger than the area of the polygon

	
proximity(origin, r, rule='vertex')

	Returns the indexed polygons located within some distance of an
origin point based on various rules.

proximity(Polygon, number) -> Polygon list

	Parameters:	
	origin (the point to find indexed polygons near) –

	r (the maximum distance to find indexed polygon from the origin point) –

	rule (representative point for polygon in nearest query.) – vertex – measures distance between vertices and query_point
centroid – measures distance between centroid and
query_point
edge – measures the distance between edges and query_point

Examples

>>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))])
>>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))])
>>> pl = PolygonLocator([p1, p2])
>>> try:
... len(pl.proximity(Point((0, 0)), 2))
... except NotImplementedError:
... print "future test: len(pl.proximity(Point((0, 0)), 2)) == 2"
future test: len(pl.proximity(Point((0, 0)), 2)) == 2

	
region(region_rect)

	Returns the indexed polygons located inside a rectangular query region.

region(Rectangle) -> Polygon list

	Parameters:	region_rect (the rectangular range to find indexed polygons in) –

Examples

>>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))])
>>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))])
>>> pl = PolygonLocator([p1, p2])
>>> n = pl.region(Rectangle(0, 0, 4, 10))
>>> len(n)
2

 cg.shapes — Shapes

cg.shapes — Shapes

The cg.shapes module provides basic data structures.

New in version 1.0.

Computational geometry code for PySAL: Python Spatial Analysis Library.

	
class pysal.cg.shapes.Point(loc)

	Geometric class for point objects.

	
None

	

	
class pysal.cg.shapes.LineSegment(start_pt, end_pt)

	Geometric representation of line segment objects.

	Parameters:	
	start_pt (Point) – Point where segment begins

	end_pt (Point) – Point where segment ends

	
p1

	Point – Starting point

	
p2

	Point – Ending point

	
bounding_box

	tuple – The bounding box of the segment (number 4-tuple)

	
len

	float – The length of the segment

	
line

	Line – The line on which the segment lies

	
bounding_box

	Returns the minimum bounding box of a LineSegment object.

Test tag: <tc>#is#LineSegment.bounding_box</tc>
Test tag: <tc>#tests#LineSegment.bounding_box</tc>

bounding_box -> Rectangle

Examples

>>> ls = LineSegment(Point((1, 2)), Point((5, 6)))
>>> ls.bounding_box.left
1.0
>>> ls.bounding_box.lower
2.0
>>> ls.bounding_box.right
5.0
>>> ls.bounding_box.upper
6.0

	
get_swap()

	Returns a LineSegment object which has its endpoints swapped.

get_swap() -> LineSegment

Test tag: <tc>#is#LineSegment.get_swap</tc>
Test tag: <tc>#tests#LineSegment.get_swap</tc>

Examples

>>> ls = LineSegment(Point((1, 2)), Point((5, 6)))
>>> swap = ls.get_swap()
>>> swap.p1[0]
5.0
>>> swap.p1[1]
6.0
>>> swap.p2[0]
1.0
>>> swap.p2[1]
2.0

	
intersect(other)

	Test whether segment intersects with other segment

Handles endpoints of segments being on other segment

Examples

>>> ls = LineSegment(Point((5,0)), Point((10,0)))
>>> ls1 = LineSegment(Point((5,0)), Point((10,1)))
>>> ls.intersect(ls1)
True
>>> ls2 = LineSegment(Point((5,1)), Point((10,1)))
>>> ls.intersect(ls2)
False
>>> ls2 = LineSegment(Point((7,-1)), Point((7,2)))
>>> ls.intersect(ls2)
True
>>>

	
is_ccw(pt)

	Returns whether a point is counterclockwise of the segment. Exclusive.

is_ccw(Point) -> bool

Test tag: <tc>#is#LineSegment.is_ccw</tc>
Test tag: <tc>#tests#LineSegment.is_ccw</tc>

	Parameters:	pt (point lying ccw or cw of a segment) –

Examples

>>> ls = LineSegment(Point((0, 0)), Point((5, 0)))
>>> ls.is_ccw(Point((2, 2)))
True
>>> ls.is_ccw(Point((2, -2)))
False

	
is_cw(pt)

	Returns whether a point is clockwise of the segment. Exclusive.

is_cw(Point) -> bool

Test tag: <tc>#is#LineSegment.is_cw</tc>
Test tag: <tc>#tests#LineSegment.is_cw</tc>

	Parameters:	pt (point lying ccw or cw of a segment) –

Examples

>>> ls = LineSegment(Point((0, 0)), Point((5, 0)))
>>> ls.is_cw(Point((2, 2)))
False
>>> ls.is_cw(Point((2, -2)))
True

	
len

	Returns the length of a LineSegment object.

Test tag: <tc>#is#LineSegment.len</tc>
Test tag: <tc>#tests#LineSegment.len</tc>

len() -> number

Examples

>>> ls = LineSegment(Point((2, 2)), Point((5, 2)))
>>> ls.len
3.0

	
line

	Returns a Line object of the line which the segment lies on.

Test tag: <tc>#is#LineSegment.line</tc>
Test tag: <tc>#tests#LineSegment.line</tc>

line() -> Line

Examples

>>> ls = LineSegment(Point((2, 2)), Point((3, 3)))
>>> l = ls.line
>>> l.m
1.0
>>> l.b
0.0

	
p1

	HELPER METHOD. DO NOT CALL.

Returns the p1 attribute of the line segment.

_get_p1() -> Point

Examples

>>> ls = LineSegment(Point((1, 2)), Point((5, 6)))
>>> r = ls._get_p1()
>>> r == Point((1, 2))
True

	
p2

	HELPER METHOD. DO NOT CALL.

Returns the p2 attribute of the line segment.

_get_p2() -> Point

Examples

>>> ls = LineSegment(Point((1, 2)), Point((5, 6)))
>>> r = ls._get_p2()
>>> r == Point((5, 6))
True

	
sw_ccw(pt)

	Sedgewick test for pt being ccw of segment

	Returns:	
	1 if turn from self.p1 to self.p2 to pt is ccw

	-1 if turn from self.p1 to self.p2 to pt is cw

	-1 if the points are collinear and self.p1 is in the middle

	1 if the points are collinear and self.p2 is in the middle

	0 if the points are collinear and pt is in the middle

	
class pysal.cg.shapes.Line(m, b)

	Geometric representation of line objects.

	
m

	float – slope

	
b

	float – y-intercept

	
x(y)

	Returns the x-value of the line at a particular y-value.

x(number) -> number

	Parameters:	y (the y-value to compute x at) –

Examples

>>> l = Line(0.5, 0)
>>> l.x(0.25)
0.5

	
y(x)

	Returns the y-value of the line at a particular x-value.

y(number) -> number

	Parameters:	x (the x-value to compute y at) –

Examples

>>> l = Line(1, 0)
>>> l.y(1)
1.0

	
class pysal.cg.shapes.Ray(origin, second_p)

	Geometric representation of ray objects.

	
o

	Point – Origin (point where ray originates)

	
p

	Point – Second point on the ray (not point where ray originates)

	
class pysal.cg.shapes.Chain(vertices)

	Geometric representation of a chain, also known as a polyline.

	
vertices

	list – List of Points of the vertices of the chain in order.

	
len

	float – The geometric length of the chain.

	
arclen

	Returns the geometric length of the chain computed using arcdistance (meters).

len -> number

Examples

	
bounding_box

	Returns the bounding box of the chain.

bounding_box -> Rectangle

Examples

>>> c = Chain([Point((0, 0)), Point((2, 0)), Point((2, 1)), Point((0, 1))])
>>> c.bounding_box.left
0.0
>>> c.bounding_box.lower
0.0
>>> c.bounding_box.right
2.0
>>> c.bounding_box.upper
1.0

	
len

	Returns the geometric length of the chain.

len -> number

Examples

>>> c = Chain([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((2, 1))])
>>> c.len
3.0
>>> c = Chain([[Point((0, 0)), Point((1, 0)), Point((1, 1))],[Point((10,10)),Point((11,10)),Point((11,11))]])
>>> c.len
4.0

	
parts

	Returns the parts of the chain.

parts -> Point list

Examples

>>> c = Chain([[Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))],[Point((2,1)),Point((2,2)),Point((1,2)),Point((1,1))]])
>>> len(c.parts)
2

	
segments

	Returns the segments that compose the Chain

	
vertices

	Returns the vertices of the chain in clockwise order.

vertices -> Point list

Examples

>>> c = Chain([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((2, 1))])
>>> verts = c.vertices
>>> len(verts)
4

	
class pysal.cg.shapes.Polygon(vertices, holes=None)

	Geometric representation of polygon objects.

	
vertices

	list – List of Points with the vertices of the Polygon in
clockwise order

	
len

	int – Number of vertices including holes

	
perimeter

	float – Geometric length of the perimeter of the Polygon

	
bounding_box

	Rectangle – Bounding box of the polygon

	
bbox

	List – [left, lower, right, upper]

	
area

	float – Area enclosed by the polygon

	
centroid

	tuple – The ‘center of gravity’, i.e. the mean point of the polygon.

	
area

	Returns the area of the polygon.

area -> number

Examples

>>> p = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))])
>>> p.area
1.0
>>> p = Polygon([Point((0, 0)), Point((10, 0)), Point((10, 10)), Point((0, 10))],[Point((2,1)),Point((2,2)),Point((1,2)),Point((1,1))])
>>> p.area
99.0

	
bbox

	Returns the bounding box of the polygon as a list

See also bounding_box

	
bounding_box

	Returns the bounding box of the polygon.

bounding_box -> Rectangle

Examples

>>> p = Polygon([Point((0, 0)), Point((2, 0)), Point((2, 1)), Point((0, 1))])
>>> p.bounding_box.left
0.0
>>> p.bounding_box.lower
0.0
>>> p.bounding_box.right
2.0
>>> p.bounding_box.upper
1.0

	
centroid

	Returns the centroid of the polygon

centroid -> Point

Notes

The centroid returned by this method is the geometric centroid and respects multipart polygons with holes.
Also known as the ‘center of gravity’ or ‘center of mass’.

Examples

>>> p = Polygon([Point((0, 0)), Point((10, 0)), Point((10, 10)), Point((0, 10))], [Point((1, 1)), Point((1, 2)), Point((2, 2)), Point((2, 1))])
>>> p.centroid
(5.0353535353535355, 5.0353535353535355)

	
contains_point(point)

	Test if polygon contains point

Examples

>>> p = Polygon([Point((0,0)), Point((4,0)), Point((4,5)), Point((2,3)), Point((0,5))])
>>> p.contains_point((3,3))
1
>>> p.contains_point((0,6))
0
>>> p.contains_point((2,2.9))
1
>>> p.contains_point((4,5))
0
>>> p.contains_point((4,0))
0
>>>

Handles holes

>>> p = Polygon([Point((0, 0)), Point((0, 10)), Point((10, 10)), Point((10, 0))], [Point((2, 2)), Point((4, 2)), Point((4, 4)), Point((2, 4))])
>>> p.contains_point((3.0,3.0))
False
>>> p.contains_point((1.0,1.0))
True
>>>

Notes

Points falling exactly on polygon edges may yield unpredictable
results

	
holes

	Returns the holes of the polygon in clockwise order.

holes -> Point list

Examples

>>> p = Polygon([Point((0, 0)), Point((10, 0)), Point((10, 10)), Point((0, 10))], [Point((1, 2)), Point((2, 2)), Point((2, 1)), Point((1, 1))])
>>> len(p.holes)
1

	
len

	Returns the number of vertices in the polygon.

len -> int

Examples

>>> p1 = Polygon([Point((0, 0)), Point((0, 1)), Point((1, 1)), Point((1, 0))])
>>> p1.len
4
>>> len(p1)
4

	
parts

	Returns the parts of the polygon in clockwise order.

parts -> Point list

Examples

>>> p = Polygon([[Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))], [Point((2,1)),Point((2,2)),Point((1,2)),Point((1,1))]])
>>> len(p.parts)
2

	
perimeter

	Returns the perimeter of the polygon.

perimeter() -> number

Examples

>>> p = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))])
>>> p.perimeter
4.0

	
vertices

	Returns the vertices of the polygon in clockwise order.

vertices -> Point list

Examples

>>> p1 = Polygon([Point((0, 0)), Point((0, 1)), Point((1, 1)), Point((1, 0))])
>>> len(p1.vertices)
4

	
class pysal.cg.shapes.Rectangle(left, lower, right, upper)

	Geometric representation of rectangle objects.

	
left

	float – Minimum x-value of the rectangle

	
lower

	float – Minimum y-value of the rectangle

	
right

	float – Maximum x-value of the rectangle

	
upper

	float – Maximum y-value of the rectangle

	
area

	Returns the area of the Rectangle.

area -> number

Examples

>>> r = Rectangle(0, 0, 4, 4)
>>> r.area
16.0

	
height

	Returns the height of the Rectangle.

height -> number

Examples

>>> r = Rectangle(0, 0, 4, 4)
>>> r.height
4.0

	
set_centroid(new_center)

	Moves the rectangle center to a new specified point.

set_centroid(Point) -> Point

	Parameters:	new_center (the new location of the centroid of the polygon) –

Examples

>>> r = Rectangle(0, 0, 4, 4)
>>> r.set_centroid(Point((4, 4)))
>>> r.left
2.0
>>> r.right
6.0
>>> r.lower
2.0
>>> r.upper
6.0

	
set_scale(scale)

	Rescales the rectangle around its center.

set_scale(number) -> number

	Parameters:	scale (the ratio of the new scale to the old scale (e.g. 1.0 is current size)) –

Examples

>>> r = Rectangle(0, 0, 4, 4)
>>> r.set_scale(2)
>>> r.left
-2.0
>>> r.right
6.0
>>> r.lower
-2.0
>>> r.upper
6.0

	
width

	Returns the width of the Rectangle.

width -> number

Examples

>>> r = Rectangle(0, 0, 4, 4)
>>> r.width
4.0

	
pysal.cg.shapes.asShape(obj)

	Returns a pysal shape object from obj.
obj must support the __geo_interface__.

 cg.standalone — Standalone

cg.standalone — Standalone

The cg.standalone module provides ...

New in version 1.0.

Helper functions for computational geometry in PySAL

	
pysal.cg.standalone.bbcommon(bb, bbother)

	Old Stars method for bounding box overlap testing
Also defined in pysal.weights._cont_binning

Examples

>>> b0 = [0,0,10,10]
>>> b1 = [10,0,20,10]
>>> bbcommon(b0,b1)
1

	
pysal.cg.standalone.get_bounding_box(items)

	Examples

>>> bb = get_bounding_box([Point((-1, 5)), Rectangle(0, 6, 11, 12)])
>>> bb.left
-1.0
>>> bb.lower
5.0
>>> bb.right
11.0
>>> bb.upper
12.0

	
pysal.cg.standalone.get_angle_between(ray1, ray2)

	Returns the angle formed between a pair of rays which share an origin
get_angle_between(Ray, Ray) -> number

	Parameters:	
	ray1 (a ray forming the beginning of the angle measured) –

	ray2 (a ray forming the end of the angle measured) –

Examples

>>> get_angle_between(Ray(Point((0, 0)), Point((1, 0))), Ray(Point((0, 0)), Point((1, 0))))
0.0

	
pysal.cg.standalone.is_collinear(p1, p2, p3)

	Returns whether a triplet of points is collinear.

is_collinear(Point, Point, Point) -> bool

	Parameters:	
	p1 (a point (Point)) –

	p2 (another point (Point)) –

	p3 (yet another point (Point)) –

Examples

>>> is_collinear(Point((0, 0)), Point((1, 1)), Point((5, 5)))
True
>>> is_collinear(Point((0, 0)), Point((1, 1)), Point((5, 0)))
False

	
pysal.cg.standalone.get_segments_intersect(seg1, seg2)

	Returns the intersection of two segments.

get_segments_intersect(LineSegment, LineSegment) -> Point or LineSegment

	Parameters:	
	seg1 (a segment to check intersection for) –

	seg2 (a segment to check intersection for) –

Examples

>>> seg1 = LineSegment(Point((0, 0)), Point((0, 10)))
>>> seg2 = LineSegment(Point((-5, 5)), Point((5, 5)))
>>> i = get_segments_intersect(seg1, seg2)
>>> isinstance(i, Point)
True
>>> str(i)
'(0.0, 5.0)'
>>> seg3 = LineSegment(Point((100, 100)), Point((100, 101)))
>>> i = get_segments_intersect(seg2, seg3)

	
pysal.cg.standalone.get_segment_point_intersect(seg, pt)

	Returns the intersection of a segment and point.

get_segment_point_intersect(LineSegment, Point) -> Point

	Parameters:	
	seg (a segment to check intersection for) –

	pt (a point to check intersection for) –

Examples

>>> seg = LineSegment(Point((0, 0)), Point((0, 10)))
>>> pt = Point((0, 5))
>>> i = get_segment_point_intersect(seg, pt)
>>> str(i)
'(0.0, 5.0)'
>>> pt2 = Point((5, 5))
>>> get_segment_point_intersect(seg, pt2)

	
pysal.cg.standalone.get_polygon_point_intersect(poly, pt)

	Returns the intersection of a polygon and point.

get_polygon_point_intersect(Polygon, Point) -> Point

	Parameters:	
	poly (a polygon to check intersection for) –

	pt (a point to check intersection for) –

Examples

>>> poly = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))])
>>> pt = Point((0.5, 0.5))
>>> i = get_polygon_point_intersect(poly, pt)
>>> str(i)
'(0.5, 0.5)'
>>> pt2 = Point((2, 2))
>>> get_polygon_point_intersect(poly, pt2)

	
pysal.cg.standalone.get_rectangle_point_intersect(rect, pt)

	Returns the intersection of a rectangle and point.

get_rectangle_point_intersect(Rectangle, Point) -> Point

	Parameters:	
	rect (a rectangle to check intersection for) –

	pt (a point to check intersection for) –

Examples

>>> rect = Rectangle(0, 0, 5, 5)
>>> pt = Point((1, 1))
>>> i = get_rectangle_point_intersect(rect, pt)
>>> str(i)
'(1.0, 1.0)'
>>> pt2 = Point((10, 10))
>>> get_rectangle_point_intersect(rect, pt2)

	
pysal.cg.standalone.get_ray_segment_intersect(ray, seg)

	Returns the intersection of a ray and line segment.

get_ray_segment_intersect(Ray, Point) -> Point or LineSegment

	Parameters:	
	ray (a ray to check intersection for) –

	seg (a line segment to check intersection for) –

Examples

>>> ray = Ray(Point((0, 0)), Point((0, 1)))
>>> seg = LineSegment(Point((-1, 10)), Point((1, 10)))
>>> i = get_ray_segment_intersect(ray, seg)
>>> isinstance(i, Point)
True
>>> str(i)
'(0.0, 10.0)'
>>> seg2 = LineSegment(Point((10, 10)), Point((10, 11)))
>>> get_ray_segment_intersect(ray, seg2)

	
pysal.cg.standalone.get_rectangle_rectangle_intersection(r0, r1, checkOverlap=True)

	Returns the intersection between two rectangles.

	Note: Algorithm assumes the rectangles overlap.

	checkOverlap=False should be used with extreme caution.

get_rectangle_rectangle_intersection(r0, r1) -> Rectangle, Segment, Point or None

	Parameters:	
	r0 (a Rectangle) –

	r1 (a Rectangle) –

Examples

>>> r0 = Rectangle(0,4,6,9)
>>> r1 = Rectangle(4,0,9,7)
>>> ri = get_rectangle_rectangle_intersection(r0,r1)
>>> ri[:]
[4.0, 4.0, 6.0, 7.0]
>>> r0 = Rectangle(0,0,4,4)
>>> r1 = Rectangle(2,1,6,3)
>>> ri = get_rectangle_rectangle_intersection(r0,r1)
>>> ri[:]
[2.0, 1.0, 4.0, 3.0]
>>> r0 = Rectangle(0,0,4,4)
>>> r1 = Rectangle(2,1,3,2)
>>> ri = get_rectangle_rectangle_intersection(r0,r1)
>>> ri[:] == r1[:]
True

	
pysal.cg.standalone.get_polygon_point_dist(poly, pt)

	Returns the distance between a polygon and point.

get_polygon_point_dist(Polygon, Point) -> number

	Parameters:	
	poly (a polygon to compute distance from) –

	pt (a point to compute distance from) –

Examples

>>> poly = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))])
>>> pt = Point((2, 0.5))
>>> get_polygon_point_dist(poly, pt)
1.0
>>> pt2 = Point((0.5, 0.5))
>>> get_polygon_point_dist(poly, pt2)
0.0

	
pysal.cg.standalone.get_points_dist(pt1, pt2)

	Returns the distance between a pair of points.

get_points_dist(Point, Point) -> number

	Parameters:	
	pt1 (a point) –

	pt2 (the other point) –

Examples

>>> get_points_dist(Point((4, 4)), Point((4, 8)))
4.0
>>> get_points_dist(Point((0, 0)), Point((0, 0)))
0.0

	
pysal.cg.standalone.get_segment_point_dist(seg, pt)

	Returns the distance between a line segment and point and distance along the segment of the closest
point on the segment to the point as a ratio of the length of the segment.

get_segment_point_dist(LineSegment, Point) -> (number, number)

	Parameters:	
	seg (a line segment to compute distance from) –

	pt (a point to compute distance from) –

Examples

>>> seg = LineSegment(Point((0, 0)), Point((10, 0)))
>>> pt = Point((5, 5))
>>> get_segment_point_dist(seg, pt)
(5.0, 0.5)
>>> pt2 = Point((0, 0))
>>> get_segment_point_dist(seg, pt2)
(0.0, 0.0)

	
pysal.cg.standalone.get_point_at_angle_and_dist(ray, angle, dist)

	Returns the point at a distance and angle relative to the origin of a ray.

get_point_at_angle_and_dist(Ray, number, number) -> Point

	Parameters:	
	ray (the ray which the angle and distance are relative to) –

	angle (the angle relative to the ray at which the point is located) –

	dist (the distance from the ray origin at which the point is located) –

Examples

>>> ray = Ray(Point((0, 0)), Point((1, 0)))
>>> pt = get_point_at_angle_and_dist(ray, math.pi, 1.0)
>>> isinstance(pt, Point)
True
>>> round(pt[0], 8)
-1.0
>>> round(pt[1], 8)
0.0

	
pysal.cg.standalone.convex_hull(points)

	Returns the convex hull of a set of points.

convex_hull(Point list) -> Polygon

	Parameters:	points (a list of points to compute the convex hull for) –

Examples

>>> points = [Point((0, 0)), Point((4, 4)), Point((4, 0)), Point((3, 1))]
>>> convex_hull(points)
[(0.0, 0.0), (4.0, 0.0), (4.0, 4.0)]

	
pysal.cg.standalone.is_clockwise(vertices)

	Returns whether a list of points describing a polygon are clockwise or counterclockwise.

is_clockwise(Point list) -> bool

	Parameters:	vertices (a list of points that form a single ring) –

Examples

>>> is_clockwise([Point((0, 0)), Point((10, 0)), Point((0, 10))])
False
>>> is_clockwise([Point((0, 0)), Point((0, 10)), Point((10, 0))])
True
>>> v = [(-106.57798, 35.174143999999998), (-106.583412, 35.174141999999996), (-106.58417999999999, 35.174143000000001), (-106.58377999999999, 35.175542999999998), (-106.58287999999999, 35.180543), (-106.58263099999999, 35.181455), (-106.58257999999999, 35.181643000000001), (-106.58198299999999, 35.184615000000001), (-106.58148, 35.187242999999995), (-106.58127999999999, 35.188243), (-106.58138, 35.188243), (-106.58108, 35.189442999999997), (-106.58104, 35.189644000000001), (-106.58028, 35.193442999999995), (-106.580029, 35.194541000000001), (-106.57974399999999, 35.195785999999998), (-106.579475, 35.196961999999999), (-106.57922699999999, 35.198042999999998), (-106.578397, 35.201665999999996), (-106.57827999999999, 35.201642999999997), (-106.57737999999999, 35.201642999999997), (-106.57697999999999, 35.201543000000001), (-106.56436599999999, 35.200311999999997), (-106.56058, 35.199942999999998), (-106.56048, 35.197342999999996), (-106.56048, 35.195842999999996), (-106.56048, 35.194342999999996), (-106.56048, 35.193142999999999), (-106.56048, 35.191873999999999), (-106.56048, 35.191742999999995), (-106.56048, 35.190242999999995), (-106.56037999999999, 35.188642999999999), (-106.56037999999999, 35.187242999999995), (-106.56037999999999, 35.186842999999996), (-106.56037999999999, 35.186552999999996), (-106.56037999999999, 35.185842999999998), (-106.56037999999999, 35.184443000000002), (-106.56037999999999, 35.182943000000002), (-106.56037999999999, 35.181342999999998), (-106.56037999999999, 35.180433000000001), (-106.56037999999999, 35.179943000000002), (-106.56037999999999, 35.178542999999998), (-106.56037999999999, 35.177790999999999), (-106.56037999999999, 35.177143999999998), (-106.56037999999999, 35.175643999999998), (-106.56037999999999, 35.174444000000001), (-106.56037999999999, 35.174043999999995), (-106.560526, 35.174043999999995), (-106.56478, 35.174043999999995), (-106.56627999999999, 35.174143999999998), (-106.566541, 35.174144999999996), (-106.569023, 35.174157000000001), (-106.56917199999999, 35.174157999999998), (-106.56938, 35.174143999999998), (-106.57061499999999, 35.174143999999998), (-106.57097999999999, 35.174143999999998), (-106.57679999999999, 35.174143999999998), (-106.57798, 35.174143999999998)]
>>> is_clockwise(v)
True

	
pysal.cg.standalone.point_touches_rectangle(point, rect)

	Returns True if the point is in the rectangle or touches it’s boundary.

point_touches_rectangle(point, rect) -> bool

	Parameters:	
	point (Point or Tuple) –

	rect (Rectangle) –

Examples

>>> rect = Rectangle(0,0,10,10)
>>> a = Point((5,5))
>>> b = Point((10,5))
>>> c = Point((11,11))
>>> point_touches_rectangle(a,rect)
1
>>> point_touches_rectangle(b,rect)
1
>>> point_touches_rectangle(c,rect)
0

	
pysal.cg.standalone.get_shared_segments(poly1, poly2, bool_ret=False)

	Returns the line segments in common to both polygons.

get_shared_segments(poly1, poly2) -> list

	Parameters:	
	poly1 (a Polygon) –

	poly2 (a Polygon) –

Examples

>>> x = [0, 0, 1, 1]
>>> y = [0, 1, 1, 0]
>>> poly1 = Polygon(map(Point,zip(x,y)))
>>> x = [a+1 for a in x]
>>> poly2 = Polygon(map(Point,zip(x,y)))
>>> get_shared_segments(poly1, poly2, bool_ret=True)
True

	
pysal.cg.standalone.distance_matrix(X, p=2.0, threshold=50000000.0)

	Distance Matrices

XXX Needs optimization/integration with other weights in pysal

	Parameters:	
	X (An, n by k numpy.ndarray) – Where n is number of observations
k is number of dimmensions (2 for x,y)

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance

	threshold (positive integer) – If (n**2)*32 > threshold use scipy.spatial.distance_matrix instead
of working in ram, this is roughly the ammount of ram (in bytes) that will be used.

Examples

>>> x,y=[r.flatten() for r in np.indices((3,3))]
>>> data = np.array([x,y]).T
>>> d=distance_matrix(data)
>>> np.array(d)
array([[0. , 1. , 2. , 1. , 1.41421356,
 2.23606798, 2. , 2.23606798, 2.82842712],
 [1. , 0. , 1. , 1.41421356, 1. ,
 1.41421356, 2.23606798, 2. , 2.23606798],
 [2. , 1. , 0. , 2.23606798, 1.41421356,
 1. , 2.82842712, 2.23606798, 2.],
 [1. , 1.41421356, 2.23606798, 0. , 1. ,
 2. , 1. , 1.41421356, 2.23606798],
 [1.41421356, 1. , 1.41421356, 1. , 0. ,
 1. , 1.41421356, 1. , 1.41421356],
 [2.23606798, 1.41421356, 1. , 2. , 1. ,
 0. , 2.23606798, 1.41421356, 1.],
 [2. , 2.23606798, 2.82842712, 1. , 1.41421356,
 2.23606798, 0. , 1. , 2.],
 [2.23606798, 2. , 2.23606798, 1.41421356, 1. ,
 1.41421356, 1. , 0. , 1.],
 [2.82842712, 2.23606798, 2. , 2.23606798, 1.41421356,
 1. , 2. , 1. , 0.]])
>>>

 cg.rtree — rtree

cg.rtree — rtree

The cg.rtree module provides a pure python rtree.

New in version 1.2.

Pure Python implementation of RTree spatial index

Adaptation of
http://code.google.com/p/pyrtree/

R-tree.
see doc/ref/r-tree-clustering-split-algo.pdf

	
class pysal.cg.rtree.Rect(minx, miny, maxx, maxy)

	
	A rectangle class that stores: an axis aligned rectangle, and: two

	flags (swapped_x and swapped_y). (The flags are stored
implicitly via swaps in the order of minx/y and maxx/y.)

 cg.kdtree — KDTree

cg.kdtree — KDTree

The cg.kdtree module provides kdtree data structures for PySAL.

New in version 1.3.

KDTree for PySAL: Python Spatial Analysis Library.

Adds support for Arc Distance to scipy.spatial.KDTree.

	
pysal.cg.kdtree.KDTree(data, leafsize=10, distance_metric='Euclidean', radius=6371.0)

	kd-tree built on top of kd-tree functionality in scipy. If using scipy 0.12
or greater uses the scipy.spatial.cKDTree, otherwise uses
scipy.spatial.KDTree. Offers both Arc distance and Euclidean distance.
Note that Arc distance is only appropriate when points in latitude and
longitude, and the radius set to meaningful value (see docs below).

	Parameters:	
	data (array [https://docs.python.org/2/library/array.html#module-array]) – The data points to be indexed. This array is not copied,
and so modifying this data will result in bogus results.
Typically nx2.

	leafsize (int [https://docs.python.org/2/library/functions.html#int]) – The number of points at which the algorithm switches over
to brute-force. Has to be positive. Optional, default is 10.

	distance_metric (string [https://docs.python.org/2/library/string.html#module-string]) – Options: “Euclidean” (default) and “Arc”.

	radius (float [https://docs.python.org/2/library/functions.html#float]) – Radius of the sphere on which to compute distances.
Assumes data in latitude and longitude. Ignored if
distance_metric=”Euclidean”. Typical values:
pysal.cg.RADIUS_EARTH_KM (default)
pysal.cg.RADIUS_EARTH_MILES

 cg.sphere — Sphere

cg.sphere — Sphere

The cg.sphere module provides tools for working with spherical distances.

New in version 1.3.

sphere: Tools for working with spherical geometry.

	Author(s):

	Charles R Schmidt schmidtc@gmail.com
Luc Anselin luc.anselin@asu.edu
Xun Li xun.li@asu.edu

	
pysal.cg.sphere.arcdist(pt0, pt1, radius=6371.0)

	

	Parameters:	
	pt0 (point) – assumed to be in form (lng,lat)

	pt1 (point) – assumed to be in form (lng,lat)

	radius (radius of the sphere) – defaults to Earth’s radius

Source: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

	Returns:	

	Return type:	The arc distance between pt0 and pt1 using supplied radius

Examples

>>> pt0 = (0,0)
>>> pt1 = (180,0)
>>> d = arcdist(pt0,pt1,RADIUS_EARTH_MILES)
>>> d == math.pi*RADIUS_EARTH_MILES
True

	
pysal.cg.sphere.arcdist2linear(arc_dist, radius=6371.0)

	Convert an arc distance (spherical earth) to a linear distance (R3) in the unit sphere.

Examples

>>> pt0 = (0,0)
>>> pt1 = (180,0)
>>> d = arcdist(pt0,pt1,RADIUS_EARTH_MILES)
>>> d == math.pi*RADIUS_EARTH_MILES
True
>>> arcdist2linear(d,RADIUS_EARTH_MILES)
2.0

	
pysal.cg.sphere.brute_knn(pts, k, mode='arc')

	valid modes are [‘arc’,’xrz’]

	
pysal.cg.sphere.fast_knn(pts, k, return_dist=False)

	Computes k nearest neighbors on a sphere.

	Parameters:	
	pts (list of x,y pairs) –

	k (int [https://docs.python.org/2/library/functions.html#int]) – Number of points to query

	return_dist (bool [https://docs.python.org/2/library/functions.html#bool]) – Return distances in the ‘wd’ container object

	Returns:	
	wn (list) – list of neighbors

	wd (list) – list of neighbor distances (optional)

	
pysal.cg.sphere.linear2arcdist(linear_dist, radius=6371.0)

	Convert a linear distance in the unit sphere (R3) to an arc distance based on supplied radius

Examples

>>> pt0 = (0,0)
>>> pt1 = (180,0)
>>> d = arcdist(pt0,pt1,RADIUS_EARTH_MILES)
>>> d == linear2arcdist(2.0, radius = RADIUS_EARTH_MILES)
True

	
pysal.cg.sphere.toXYZ(pt)

	

	Parameters:	
	pt0 (point) – assumed to be in form (lng,lat)

	pt1 (point) – assumed to be in form (lng,lat)

	Returns:	

	Return type:	x, y, z

	
pysal.cg.sphere.lonlat(pointslist)

	Converts point order from lat-lon tuples to lon-lat (x,y) tuples

	Parameters:	pointslist (list of lat-lon tuples (Note, has to be a list, even for one point)) –

	Returns:	newpts

	Return type:	list with tuples of points in lon-lat order

Example

>>> points = [(41.981417, -87.893517), (41.980396, -87.776787), (41.980906, -87.696450)]
>>> newpoints = lonlat(points)
>>> newpoints
[(-87.893517, 41.981417), (-87.776787, 41.980396), (-87.69645, 41.980906)]

	
pysal.cg.sphere.harcdist(p0, p1, lonx=True, radius=6371.0)

	Alternative arc distance function, uses haversine formula

	Parameters:	
	p0 (first point as a tuple in decimal degrees) –

	p1 (second point as a tuple in decimal degrees) –

	lonx (boolean to assess the order of the coordinates,) – for lon,lat (default) = True, for lat,lon = False

	radius (radius of the earth at the equator as a sphere) – default: RADIUS_EARTH_KM (6371.0 km)
options: RADIUS_EARTH_MILES (3959.0 miles)

None (for result in radians)

	Returns:	d

	Return type:	distance in units specified, km, miles or radians (for None)

Example

>>> p0 = (-87.893517, 41.981417)
>>> p1 = (-87.519295, 41.657498)
>>> harcdist(p0,p1)
47.52873002976876
>>> harcdist(p0,p1,radius=None)
0.007460167953189258

Note

Uses radangle function to compute radian angle

	
pysal.cg.sphere.geointerpolate(p0, p1, t, lonx=True)

	Finds a point on a sphere along the great circle distance between two points
on a sphere
also known as a way point in great circle navigation

	Parameters:	
	p0 (first point as a tuple in decimal degrees) –

	p1 (second point as a tuple in decimal degrees) –

	t (proportion along great circle distance between p0 and p1) – e.g., t=0.5 would find the mid-point

	lonx (boolean to assess the order of the coordinates,) – for lon,lat (default) = True, for lat,lon = False

	Returns:	x,y – depending on setting of lonx; in other words, the same
order is used as for the input

	Return type:	tuple in decimal degrees of lon-lat (default) or lat-lon,

Example

>>> p0 = (-87.893517, 41.981417)
>>> p1 = (-87.519295, 41.657498)
>>> geointerpolate(p0,p1,0.1) # using lon-lat
(-87.85592403438788, 41.949079912574796)
>>> p3 = (41.981417, -87.893517)
>>> p4 = (41.657498, -87.519295)
>>> geointerpolate(p3,p4,0.1,lonx=False) # using lat-lon
(41.949079912574796, -87.85592403438788)

	
pysal.cg.sphere.geogrid(pup, pdown, k, lonx=True)

	Computes a k+1 by k+1 set of grid points for a bounding box in lat-lon
uses geointerpolate

	Parameters:	
	pup (tuple with lat-lon or lon-lat for upper left corner of bounding box) –

	pdown (tuple with lat-lon or lon-lat for lower right corner of bounding box) –

	k (number of grid cells (grid points will be one more)) –

	lonx (boolean to assess the order of the coordinates,) – for lon,lat (default) = True, for lat,lon = False

	Returns:	grid – starting with the top row and moving to the bottom; coordinate tuples
are returned in same order as input

	Return type:	list of tuples with lat-lon or lon-lat for grid points, row by row,

Example

>>> pup = (42.023768,-87.946389) # Arlington Heights IL
>>> pdown = (41.644415,-87.524102) # Hammond, IN
>>> geogrid(pup,pdown,3,lonx=False)
[(42.023768, -87.946389), (42.02393997819538, -87.80562679358316), (42.02393997819538, -87.66486420641684), (42.023768, -87.524102), (41.897317, -87.94638900000001), (41.8974888973743, -87.80562679296166), (41.8974888973743, -87.66486420703835), (41.897317, -87.524102), (41.770866000000005, -87.94638900000001), (41.77103781320412, -87.80562679234043), (41.77103781320412, -87.66486420765956), (41.770866000000005, -87.524102), (41.644415, -87.946389), (41.64458672568646, -87.80562679171955), (41.64458672568646, -87.66486420828045), (41.644415, -87.524102)]

 pysal.core — Core Data Structures and IO

pysal.core — Core Data Structures and IO

	Tables – DataTable Extension

	FileIO – File Input/Output System

	pysal.core.IOHandlers — Input Output Handlers
	IOHandlers.arcgis_dbf – ArcGIS DBF plugin

	IOHandlers.arcgis_swm — ArcGIS SWM plugin

	IOHandlers.arcgis_txt – ArcGIS ASCII plugin

	IOHandlers.csvWrapper — CSV plugin

	IOHandlers.dat — DAT plugin

	IOHandlers.gal — GAL plugin

	IOHandlers.geobugs_txt — GeoBUGS plugin

	IOHandlers.geoda_txt – Geoda text plugin

	IOHandlers.gwt — GWT plugin

	IOHandlers.mat — MATLAB Level 4-5 plugin

	IOHandlers.mtx — Matrix Market MTX plugin

	IOHandlers.pyDbfIO – PySAL DBF plugin

	IOHandlers.pyShpIO – Shapefile plugin

	IOHandlers.stata_txt — STATA plugin

	IOHandlers.wk1 — Lotus WK1 plugin

	IOHandlers.wkt – Well Known Text (geometry) plugin

 Tables – DataTable Extension

Tables – DataTable Extension

New in version 1.0.

	
class pysal.core.Tables.DataTable(*args, **kwargs)

	DataTable provides additional functionality to FileIO for data table file tables
FileIO Handlers that provide data tables should subclass this instead of FileIO

	
by_col

	

	
by_col_array(*args)

	Return columns of table as a numpy array.

	Parameters:	*args (any number of strings of length k) – names of variables to extract

	Returns:	implicit

	Return type:	numpy array of shape (n,k)

Notes

If the variables are not all of the same data type, then numpy rules
for casting will result in a uniform type applied to all variables.

If only strings are passed to the function, then an array with those
columns will be constructed.

If only one list of strings is passed, the output is identical to those
strings being passed.

If at least one list is passed and other strings or lists are passed,
this returns a tuple containing arrays constructed from each positional
argument.

Examples

>>> import pysal as ps
>>> dbf = ps.open(ps.examples.get_path('NAT.dbf'))
>>> hr = dbf.by_col_array('HR70', 'HR80')
>>> hr[0:5]
array([[0. , 8.85582713],
 [0. , 17.20874204],
 [1.91515848, 3.4507747],
 [1.28864319, 3.26381409],
 [0. , 7.77000777]])
>>> hr = dbf.by_col_array(['HR80', 'HR70'])
>>> hr[0:5]
array([[8.85582713, 0.],
 [17.20874204, 0.],
 [3.4507747 , 1.91515848],
 [3.26381409, 1.28864319],
 [7.77000777, 0.]])
>>> hr = dbf.by_col_array(['HR80'])
>>> hr[0:5]
array([[8.85582713],
 [17.20874204],
 [3.4507747],
 [3.26381409],
 [7.77000777]])

Numpy only supports homogeneous arrays. See Notes above.

>>> hr = dbf.by_col_array('STATE_NAME', 'HR80')
>>> hr[0:5]
array([['Minnesota', '8.8558271343'],
 ['Washington', '17.208742041'],
 ['Washington', '3.4507746989'],
 ['Washington', '3.2638140931'],
 ['Washington', '7.77000777']],
 dtype='|S20')

>>> y, X = dbf.by_col_array('STATE_NAME', ['HR80', 'HR70'])
>>> y[0:5]
array([['Minnesota'],
 ['Washington'],
 ['Washington'],
 ['Washington'],
 ['Washington']],
 dtype='|S20')
>>> X[0:5]
array([[8.85582713, 0.],
 [17.20874204, 0.],
 [3.4507747 , 1.91515848],
 [3.26381409, 1.28864319],
 [7.77000777, 0.]])

	
to_df(n=-1, read_shp=None, **df_kws)

	

 FileIO – File Input/Output System

FileIO – File Input/Output System

New in version 1.0.

FileIO: Module for reading and writing various file types in a Pythonic way.
This module should not be used directly, instead...
import pysal.core.FileIO as FileIO
Readers and Writers will mimic python file objects.
.seek(n) seeks to the n’th object
.read(n) reads n objects, default == all
.next() reads the next object

	
class pysal.core.FileIO.FileIO(dataPath='', mode='r', dataFormat=None)

	How this works:
FileIO.open(*args) == FileIO(*args)
When creating a new instance of FileIO the .__new__ method intercepts
.__new__ parses the filename to determine the fileType
next, .__registry and checked for that type.
Each type supports one or more modes [‘r’,’w’,’a’,etc]
If we support the type and mode, an instance of the appropriate handler
is created and returned.
All handlers must inherit from this class, and by doing so are automatically
added to the .__registry and are forced to conform to the prescribed API.
The metaclass takes cares of the registration by parsing the class definition.
It doesn’t make much sense to treat weights in the same way as shapefiles and dbfs,
....for now we’ll just return an instance of W on mode=’r’
.... on mode=’w’, .write will expect an instance of W

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
classmethod check()

	Prints the contents of the registry

	
close()

	subclasses should clean themselves up and then call this method

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
static getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
classmethod open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	Read at most n objects, less if read hits EOF
if size is negative or omitted read all objects until EOF
returns None if EOF is reached before any objects.

	
seek(n)

	Seek the FileObj to the beginning of the n’th record,
if ids are set, seeks to the beginning of the record at id, n

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
write(obj)

	Must be implemented by subclasses that support ‘w’
subclasses should increment .pos
subclasses should also check if obj is an instance of type(list)
and redefine this doc string

 pysal.core.IOHandlers — Input Output Handlers

pysal.core.IOHandlers — Input Output Handlers

	IOHandlers.arcgis_dbf – ArcGIS DBF plugin

	IOHandlers.arcgis_swm — ArcGIS SWM plugin

	IOHandlers.arcgis_txt – ArcGIS ASCII plugin

	IOHandlers.csvWrapper — CSV plugin

	IOHandlers.dat — DAT plugin

	IOHandlers.gal — GAL plugin

	IOHandlers.geobugs_txt — GeoBUGS plugin

	IOHandlers.geoda_txt – Geoda text plugin

	IOHandlers.gwt — GWT plugin

	IOHandlers.mat — MATLAB Level 4-5 plugin

	IOHandlers.mtx — Matrix Market MTX plugin

	IOHandlers.pyDbfIO – PySAL DBF plugin

	IOHandlers.pyShpIO – Shapefile plugin

	IOHandlers.stata_txt — STATA plugin

	IOHandlers.wk1 — Lotus WK1 plugin

	IOHandlers.wkt – Well Known Text (geometry) plugin

 IOHandlers.arcgis_dbf – ArcGIS DBF plugin

IOHandlers.arcgis_dbf – ArcGIS DBF plugin

New in version 1.2.

	
class pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO(*args, **kwargs)

	Opens, reads, and writes weights file objects in ArcGIS dbf format.

Spatial weights objects in the ArcGIS dbf format are used in
ArcGIS Spatial Statistics tools.
This format is the same as the general dbf format,
but the structure of the weights dbf file is fixed unlike other dbf files.
This dbf format can be used with the “Generate Spatial Weights Matrix” tool,
but not with the tools under the “Mapping Clusters” category.

The ArcGIS dbf file is assumed to have three or four data columns.
When the file has four columns,
the first column is meaningless and will be ignored in PySAL
during both file reading and file writing.
The next three columns hold origin IDs, destinations IDs, and weight values.
When the file has three columns,
it is assumed that only these data columns exist in the stated order.
The name for the orgin IDs column should be the name of
ID variable in the original source data table.
The names for the destination IDs and weight values columns are NID
and WEIGHT, respectively.
ArcGIS Spatial Statistics tools support only unique integer IDs.
Therefore, the values for origin and destination ID columns should
be integer.
For the case where the IDs of a weights object are not integers,
ArcGISDbfIO allows users to use internal id values corresponding to
record numbers, instead of original ids.

An exemplary structure of an ArcGIS dbf file is as follows:
[Line 1] Field1 RECORD_ID NID WEIGHT
[Line 2] 0 72 76 1
[Line 3] 0 72 79 1
[Line 4] 0 72 78 1
...

Unlike the ArcGIS text format, this format does not seem to include self-neighbors.

References

http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Convert_Spatial_Weights_Matrix_to_Table_(Spatial_Statistics)

	
FORMATS = ['arcgis_dbf']

	

	
MODES = ['r', 'w']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	

	
seek(pos)

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
varName

	

	
write(obj, useIdIndex=False)

	

	Parameters:	
	write(weightsObject) –

	a weights object (accepts) –

	Returns:	
	an ArcGIS dbf file

	write a weights object to the opened dbf file.

Examples

>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('arcgis_ohio.dbf'),'r','arcgis_dbf')
>>> w = testfile.read()

Create a temporary file for this example

>>> f = tempfile.NamedTemporaryFile(suffix='.dbf')

Reassign to new var

>>> fname = f.name

Close the temporary named file

>>> f.close()

Open the new file in write mode

>>> o = pysal.open(fname,'w','arcgis_dbf')

Write the Weights object into the open file

>>> o.write(w)
>>> o.close()

Read in the newly created text file

>>> wnew = pysal.open(fname,'r','arcgis_dbf').read()

Compare values from old to new

>>> wnew.pct_nonzero == w.pct_nonzero
True

Clean up temporary file created for this example

>>> os.remove(fname)

 IOHandlers.arcgis_swm — ArcGIS SWM plugin

IOHandlers.arcgis_swm — ArcGIS SWM plugin

New in version 1.2.

	
class pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO(*args, **kwargs)

	
Opens, reads, and writes weights file objects in ArcGIS swm format.

Spatial weights objects in the ArcGIS swm format are used in
ArcGIS Spatial Statistics tools.
Particularly, this format can be directly used with the tools under
the category of Mapping Clusters.

The values for [ORG_i] and [DST_i] should be integers,
as ArcGIS Spatial Statistics tools support only unique integer IDs.
For the case where a weights object uses non-integer IDs,
ArcGISSwmIO allows users to use internal ids corresponding to record numbers,
instead of original ids.

The specifics of each part of the above structure is as follows.

	
FORMATS = ['swm']

	

	
MODES = ['r', 'w']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	

	
read_new_version(header_line)

	Read the new version of ArcGIS(<10.1) swm file, which contains more parameters
and records weights in two ways: fixed or variable
:param header_line: str, the firs line of the swm file, which contains a lot of parameters.

The parameters are divided by ”;” and the key-value of each parameter is divided by “@”

	Returns:	

	
read_old_version(header)

	Read the old version of ArcGIS(<10.1) swm file
:param header:
:return:

	
seek(pos)

	

	
srs

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
varName

	

	
write(obj, useIdIndex=False)

	Writes a spatial weights matrix data file in swm format.

	Parameters:	
	write(weightsObject) –

	a weights object (accepts) –

	Returns:	
	an ArcGIS swm file

	write a weights object to the opened swm file.

Examples

>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('ohio.swm'),'r')
>>> w = testfile.read()

Create a temporary file for this example

>>> f = tempfile.NamedTemporaryFile(suffix='.swm')

Reassign to new var

>>> fname = f.name

Close the temporary named file

>>> f.close()

Open the new file in write mode

>>> o = pysal.open(fname,'w')

Add properities to the file to write

>>> o.varName = testfile.varName
>>> o.srs = testfile.srs

Write the Weights object into the open file

>>> o.write(w)
>>> o.close()

Read in the newly created text file

>>> wnew = pysal.open(fname,'r').read()

Compare values from old to new

>>> wnew.pct_nonzero == w.pct_nonzero
True

Clean up temporary file created for this example

>>> os.remove(fname)

 IOHandlers.arcgis_txt – ArcGIS ASCII plugin

IOHandlers.arcgis_txt – ArcGIS ASCII plugin

New in version 1.2.

	
class pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO(*args, **kwargs)

	Opens, reads, and writes weights file objects in ArcGIS ASCII text format.

Spatial weights objects in the ArcGIS text format are used in
ArcGIS Spatial Statistics tools.
This format is a simple text file with ASCII encoding.
This format can be directly used with the tools under
the category of “Mapping Clusters.” But, it cannot be used with
the “Generate Spatial Weights Matrix” tool.

The first line of the ArcGIS text file is a header including the name of
a data column that holded the ID variable in the original source data table.
After this header line, it includes three data columns
for origin id, destination id, and weight values.
ArcGIS Spatial Statistics tools support only unique integer ids.
Thus, the values in the first two columns should be integers.
For the case where a weights object uses non-integer IDs,
ArcGISTextIO allows users to use internal ids corresponding to record numbers,
instead of original ids.

An exemplary structure of an ArcGIS text file is as follows:
[Line 1] StationID
[Line 2] 1 1 0.0
[Line 3] 1 2 0.1
[Line 4] 1 3 0.14286
[Line 5] 2 1 0.1
[Line 6] 2 3 0.05
[Line 7] 3 1 0.16667
[Line 8] 3 2 0.06667
[Line 9] 3 3 0.0
...

As shown in the above example, this file format allows explicit specification
of weights for self-neighbors.
When no entry is available for self-neighbors,
ArcGIS spatial statistics tools consider they have zero weights.
PySAL ArcGISTextIO class ignores self-neighbors if their weights are zero.

References

http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Modeling_spatial_relationships

Notes

When there are an dbf file whose name is identical to the name of the source text file,
ArcGISTextIO checks the data type of the ID data column and uses it for reading and
writing the text file. Otherwise, it considers IDs are strings.

	
FORMATS = ['arcgis_text']

	

	
MODES = ['r', 'w']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	

	
seek(pos)

	

	
shpName

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
varName

	

	
write(obj, useIdIndex=False)

	

	Parameters:	
	write(weightsObject) –

	a weights object (accepts) –

	Returns:	
	an ArcGIS text file

	write a weights object to the opened text file.

Examples

>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('arcgis_txt.txt'),'r','arcgis_text')
>>> w = testfile.read()

Create a temporary file for this example

>>> f = tempfile.NamedTemporaryFile(suffix='.txt')

Reassign to new var

>>> fname = f.name

Close the temporary named file

>>> f.close()

Open the new file in write mode

>>> o = pysal.open(fname,'w','arcgis_text')

Write the Weights object into the open file

>>> o.write(w)
>>> o.close()

Read in the newly created text file

>>> wnew = pysal.open(fname,'r','arcgis_text').read()

Compare values from old to new

>>> wnew.pct_nonzero == w.pct_nonzero
True

Clean up temporary file created for this example

>>> os.remove(fname)

 IOHandlers.csvWrapper — CSV plugin

IOHandlers.csvWrapper — CSV plugin

New in version 1.0.

	
class pysal.core.IOHandlers.csvWrapper.csvWrapper(*args, **kwargs)

	DataTable provides additional functionality to FileIO for data table file tables
FileIO Handlers that provide data tables should subclass this instead of FileIO

	
FORMATS = ['csv']

	

	
MODES = ['r', 'Ur', 'rU', 'U']

	

	
READ_MODES = ['r', 'Ur', 'rU', 'U']

	

	
by_col

	

	
by_col_array(*args)

	Return columns of table as a numpy array.

	Parameters:	*args (any number of strings of length k) – names of variables to extract

	Returns:	implicit

	Return type:	numpy array of shape (n,k)

Notes

If the variables are not all of the same data type, then numpy rules
for casting will result in a uniform type applied to all variables.

If only strings are passed to the function, then an array with those
columns will be constructed.

If only one list of strings is passed, the output is identical to those
strings being passed.

If at least one list is passed and other strings or lists are passed,
this returns a tuple containing arrays constructed from each positional
argument.

Examples

>>> import pysal as ps
>>> dbf = ps.open(ps.examples.get_path('NAT.dbf'))
>>> hr = dbf.by_col_array('HR70', 'HR80')
>>> hr[0:5]
array([[0. , 8.85582713],
 [0. , 17.20874204],
 [1.91515848, 3.4507747],
 [1.28864319, 3.26381409],
 [0. , 7.77000777]])
>>> hr = dbf.by_col_array(['HR80', 'HR70'])
>>> hr[0:5]
array([[8.85582713, 0.],
 [17.20874204, 0.],
 [3.4507747 , 1.91515848],
 [3.26381409, 1.28864319],
 [7.77000777, 0.]])
>>> hr = dbf.by_col_array(['HR80'])
>>> hr[0:5]
array([[8.85582713],
 [17.20874204],
 [3.4507747],
 [3.26381409],
 [7.77000777]])

Numpy only supports homogeneous arrays. See Notes above.

>>> hr = dbf.by_col_array('STATE_NAME', 'HR80')
>>> hr[0:5]
array([['Minnesota', '8.8558271343'],
 ['Washington', '17.208742041'],
 ['Washington', '3.4507746989'],
 ['Washington', '3.2638140931'],
 ['Washington', '7.77000777']],
 dtype='|S20')

>>> y, X = dbf.by_col_array('STATE_NAME', ['HR80', 'HR70'])
>>> y[0:5]
array([['Minnesota'],
 ['Washington'],
 ['Washington'],
 ['Washington'],
 ['Washington']],
 dtype='|S20')
>>> X[0:5]
array([[8.85582713, 0.],
 [17.20874204, 0.],
 [3.4507747 , 1.91515848],
 [3.26381409, 1.28864319],
 [7.77000777, 0.]])

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	subclasses should clean themselves up and then call this method

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	Read at most n objects, less if read hits EOF
if size is negative or omitted read all objects until EOF
returns None if EOF is reached before any objects.

	
seek(n)

	Seek the FileObj to the beginning of the n’th record,
if ids are set, seeks to the beginning of the record at id, n

	
tell()

	Return id (or offset) of next object

	
to_df(n=-1, read_shp=None, **df_kws)

	

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
write(obj)

	Must be implemented by subclasses that support ‘w’
subclasses should increment .pos
subclasses should also check if obj is an instance of type(list)
and redefine this doc string

 IOHandlers.dat — DAT plugin

IOHandlers.dat — DAT plugin

New in version 1.2.

	
class pysal.core.IOHandlers.dat.DatIO(*args, **kwargs)

	Opens, reads, and writes file objects in DAT format.

Spatial weights objects in DAT format are used in
Dr. LeSage’s MatLab Econ library.
This DAT format is a simple text file with DAT or dat extension.
Without header line, it includes three data columns
for origin id, destination id, and weight values as follows:

[Line 1] 2 1 0.25
[Line 2] 5 1 0.50
...

Origin/destination IDs in this file format are simply record
numbers starting with 1. IDs are not necessarily integers.
Data values for all columns should be numeric.

	
FORMATS = ['dat']

	

	
MODES = ['r', 'w']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	

	
seek(pos)

	

	
shpName

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
varName

	

	
write(obj)

	

	Parameters:	
	write(weightsObject) –

	a weights object (accepts) –

	Returns:	
	a DAT file

	write a weights object to the opened DAT file.

Examples

>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('wmat.dat'),'r')
>>> w = testfile.read()

Create a temporary file for this example

>>> f = tempfile.NamedTemporaryFile(suffix='.dat')

Reassign to new var

>>> fname = f.name

Close the temporary named file

>>> f.close()

Open the new file in write mode

>>> o = pysal.open(fname,'w')

Write the Weights object into the open file

>>> o.write(w)
>>> o.close()

Read in the newly created dat file

>>> wnew = pysal.open(fname,'r').read()

Compare values from old to new

>>> wnew.pct_nonzero == w.pct_nonzero
True

Clean up temporary file created for this example

>>> os.remove(fname)

 IOHandlers.gal — GAL plugin

IOHandlers.gal — GAL plugin

New in version 1.0.

	
class pysal.core.IOHandlers.gal.GalIO(*args, **kwargs)

	Opens, reads, and writes file objects in GAL format.

	
FORMATS = ['gal']

	

	
MODES = ['r', 'w']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
data_type

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1, sparse=False)

	
	sparse: boolean

	If true return scipy sparse object
If false return pysal w object

	
seek(pos)

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
write(obj)

	

	Parameters:	
	write(weightsObject) –

	a weights object (accepts) –

	Returns:	
	a GAL file

	write a weights object to the opened GAL file.

Examples

>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('sids2.gal'),'r')
>>> w = testfile.read()

Create a temporary file for this example

>>> f = tempfile.NamedTemporaryFile(suffix='.gal')

Reassign to new var

>>> fname = f.name

Close the temporary named file

>>> f.close()

Open the new file in write mode

>>> o = pysal.open(fname,'w')

Write the Weights object into the open file

>>> o.write(w)
>>> o.close()

Read in the newly created gal file

>>> wnew = pysal.open(fname,'r').read()

Compare values from old to new

>>> wnew.pct_nonzero == w.pct_nonzero
True

Clean up temporary file created for this example

>>> os.remove(fname)

 IOHandlers.geobugs_txt — GeoBUGS plugin

IOHandlers.geobugs_txt — GeoBUGS plugin

New in version 1.2.

	
class pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO(*args, **kwargs)

	Opens, reads, and writes weights file objects in the text format
used in GeoBUGS. GeoBUGS generates a spatial weights matrix
as an R object and writes it out as an ASCII text representation of
the R object.

An exemplary GeoBUGS text file is as follows.
list([CARD],[ADJ],[WGT],[SUMNUMNEIGH])
where [CARD] and [ADJ] are required but the others are optional.
PySAL assumes [CARD] and [ADJ] always exist in an input text file.
It can read a GeoBUGS text file, even when its content is not written
in the order of [CARD], [ADJ], [WGT], and [SUMNUMNEIGH].
It always writes all of [CARD], [ADJ], [WGT], and [SUMNUMNEIGH].
PySAL does not apply text wrapping during file writing.

In the above example,

	[CARD]:

	num=c([a list of comma-splitted neighbor cardinalities])

	[ADJ]:

	adj=c([a list of comma-splitted neighbor IDs])
if caridnality is zero, neighbor IDs are skipped.
The ordering of observations is the same in both [CARD] and
[ADJ].
Neighbor IDs are record numbers starting from one.

	[WGT]:

	weights=c([a list of comma-splitted weights])
The restrictions for [ADJ] also apply to [WGT].

	[SUMNUMNEIGH]:

	sumNumNeigh=[The total number of neighbor pairs]
the total number of neighbor pairs is an integer
value and the same as the sum of neighbor cardinalities.

Notes

For the files generated from R spdep nb2WB and dput function,
it is assumed that the value for the control parameter of dput function
is NULL. Please refer to R spdep nb2WB function help file.

References

Thomas, A., Best, N., Lunn, D., Arnold, R., and Spiegelhalter, D.

	GeoBUGS User Manual.

R spdep nb2WB function help file.

	
FORMATS = ['geobugs_text']

	

	
MODES = ['r', 'w']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	Reads GeoBUGS text file

	Returns:	

	Return type:	a pysal.weights.weights.W object

Examples

Type ‘dir(w)’ at the interpreter to see what methods are supported.
Open a GeoBUGS text file and read it into a pysal weights object

>>> w = pysal.open(pysal.examples.get_path('geobugs_scot'),'r','geobugs_text').read()
WARNING: there are 3 disconnected observations
Island ids: [6, 8, 11]

Get the number of observations from the header

>>> w.n
56

Get the mean number of neighbors

>>> w.mean_neighbors
4.1785714285714288

Get neighbor distances for a single observation

>>> w[1]
{9: 1.0, 19: 1.0, 5: 1.0}

	
seek(pos)

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
write(obj)

	Writes a weights object to the opened text file.

	Parameters:	
	write(weightsObject) –

	a weights object (accepts) –

	Returns:	

	Return type:	a GeoBUGS text file

Examples

>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('geobugs_scot'),'r','geobugs_text')
>>> w = testfile.read()
WARNING: there are 3 disconnected observations
Island ids: [6, 8, 11]

Create a temporary file for this example

>>> f = tempfile.NamedTemporaryFile(suffix='')

Reassign to new var

>>> fname = f.name

Close the temporary named file

>>> f.close()

Open the new file in write mode

>>> o = pysal.open(fname,'w','geobugs_text')

Write the Weights object into the open file

>>> o.write(w)
>>> o.close()

Read in the newly created text file

>>> wnew = pysal.open(fname,'r','geobugs_text').read()
WARNING: there are 3 disconnected observations
Island ids: [6, 8, 11]

Compare values from old to new

>>> wnew.pct_nonzero == w.pct_nonzero
True

Clean up temporary file created for this example

>>> os.remove(fname)

 IOHandlers.geoda_txt – Geoda text plugin

IOHandlers.geoda_txt – Geoda text plugin

New in version 1.0.

	
class pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader(*args, **kwargs)

	DataTable provides additional functionality to FileIO for data table file tables
FileIO Handlers that provide data tables should subclass this instead of FileIO

	
FORMATS = ['geoda_txt']

	

	
MODES = ['r']

	

	
by_col

	

	
by_col_array(*args)

	Return columns of table as a numpy array.

	Parameters:	*args (any number of strings of length k) – names of variables to extract

	Returns:	implicit

	Return type:	numpy array of shape (n,k)

Notes

If the variables are not all of the same data type, then numpy rules
for casting will result in a uniform type applied to all variables.

If only strings are passed to the function, then an array with those
columns will be constructed.

If only one list of strings is passed, the output is identical to those
strings being passed.

If at least one list is passed and other strings or lists are passed,
this returns a tuple containing arrays constructed from each positional
argument.

Examples

>>> import pysal as ps
>>> dbf = ps.open(ps.examples.get_path('NAT.dbf'))
>>> hr = dbf.by_col_array('HR70', 'HR80')
>>> hr[0:5]
array([[0. , 8.85582713],
 [0. , 17.20874204],
 [1.91515848, 3.4507747],
 [1.28864319, 3.26381409],
 [0. , 7.77000777]])
>>> hr = dbf.by_col_array(['HR80', 'HR70'])
>>> hr[0:5]
array([[8.85582713, 0.],
 [17.20874204, 0.],
 [3.4507747 , 1.91515848],
 [3.26381409, 1.28864319],
 [7.77000777, 0.]])
>>> hr = dbf.by_col_array(['HR80'])
>>> hr[0:5]
array([[8.85582713],
 [17.20874204],
 [3.4507747],
 [3.26381409],
 [7.77000777]])

Numpy only supports homogeneous arrays. See Notes above.

>>> hr = dbf.by_col_array('STATE_NAME', 'HR80')
>>> hr[0:5]
array([['Minnesota', '8.8558271343'],
 ['Washington', '17.208742041'],
 ['Washington', '3.4507746989'],
 ['Washington', '3.2638140931'],
 ['Washington', '7.77000777']],
 dtype='|S20')

>>> y, X = dbf.by_col_array('STATE_NAME', ['HR80', 'HR70'])
>>> y[0:5]
array([['Minnesota'],
 ['Washington'],
 ['Washington'],
 ['Washington'],
 ['Washington']],
 dtype='|S20')
>>> X[0:5]
array([[8.85582713, 0.],
 [17.20874204, 0.],
 [3.4507747 , 1.91515848],
 [3.26381409, 1.28864319],
 [7.77000777, 0.]])

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	Read at most n objects, less if read hits EOF
if size is negative or omitted read all objects until EOF
returns None if EOF is reached before any objects.

	
seek(n)

	Seek the FileObj to the beginning of the n’th record,
if ids are set, seeks to the beginning of the record at id, n

	
tell()

	Return id (or offset) of next object

	
to_df(n=-1, read_shp=None, **df_kws)

	

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
write(obj)

	Must be implemented by subclasses that support ‘w’
subclasses should increment .pos
subclasses should also check if obj is an instance of type(list)
and redefine this doc string

 IOHandlers.gwt — GWT plugin

IOHandlers.gwt — GWT plugin

New in version 1.0.

	
class pysal.core.IOHandlers.gwt.GwtIO(*args, **kwargs)

	
	
FORMATS = ['kwt', 'gwt']

	

	
MODES = ['r', 'w']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	

	
seek(pos)

	

	
shpName

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
varName

	

	
write(obj)

	

	Parameters:	
	write(weightsObject) –

	a weights object (accepts) –

	Returns:	
	a GWT file

	write a weights object to the opened GWT file.

Examples

>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('juvenile.gwt'),'r')
>>> w = testfile.read()

Create a temporary file for this example

>>> f = tempfile.NamedTemporaryFile(suffix='.gwt')

Reassign to new var

>>> fname = f.name

Close the temporary named file

>>> f.close()

Open the new file in write mode

>>> o = pysal.open(fname,'w')

Write the Weights object into the open file

>>> o.write(w)
>>> o.close()

Read in the newly created gwt file

>>> wnew = pysal.open(fname,'r').read()

Compare values from old to new

>>> wnew.pct_nonzero == w.pct_nonzero
True

Clean up temporary file created for this example

>>> os.remove(fname)

 IOHandlers.mat — MATLAB Level 4-5 plugin

IOHandlers.mat — MATLAB Level 4-5 plugin

New in version 1.2.

	
class pysal.core.IOHandlers.mat.MatIO(*args, **kwargs)

	Opens, reads, and writes weights file objects in MATLAB Level 4-5 MAT format.

MAT files are used in Dr. LeSage’s MATLAB Econometrics library.
The MAT file format can handle both full and sparse matrices,
and it allows for a matrix dimension greater than 256.
In PySAL, row and column headers of a MATLAB array are ignored.

PySAL uses matlab io tools in scipy.
Thus, it is subject to all limits that loadmat and savemat in scipy have.

Notes

If a given weights object contains too many observations to
write it out as a full matrix,
PySAL writes out the object as a sparse matrix.

References

MathWorks (2011) “MATLAB 7 MAT-File Format” at
http://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf.

scipy matlab io
http://docs.scipy.org/doc/scipy/reference/tutorial/io.html

	
FORMATS = ['mat']

	

	
MODES = ['r', 'w']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	

	
seek(pos)

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
varName

	

	
write(obj)

	

	Parameters:	
	write(weightsObject) –

	a weights object (accepts) –

	Returns:	
	a MATLAB mat file

	write a weights object to the opened mat file.

Examples

>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('spat-sym-us.mat'),'r')
>>> w = testfile.read()

Create a temporary file for this example

>>> f = tempfile.NamedTemporaryFile(suffix='.mat')

Reassign to new var

>>> fname = f.name

Close the temporary named file

>>> f.close()

Open the new file in write mode

>>> o = pysal.open(fname,'w')

Write the Weights object into the open file

>>> o.write(w)
>>> o.close()

Read in the newly created mat file

>>> wnew = pysal.open(fname,'r').read()

Compare values from old to new

>>> wnew.pct_nonzero == w.pct_nonzero
True

Clean up temporary file created for this example

>>> os.remove(fname)

 IOHandlers.mtx — Matrix Market MTX plugin

IOHandlers.mtx — Matrix Market MTX plugin

New in version 1.2.

	
class pysal.core.IOHandlers.mtx.MtxIO(*args, **kwargs)

	Opens, reads, and writes weights file objects in Matrix Market MTX format.

The Matrix Market MTX format is used to facilitate the exchange of matrix data.
In PySAL, it is being tested as a new file format for delivering
the weights information of a spatial weights matrix.
Although the MTX format supports both full and sparse matrices with different
data types, it is assumed that spatial weights files in the mtx format always
use the sparse (or coordinate) format with real data values.
For now, no additional assumption (e.g., symmetry) is made of the structure
of a weights matrix.

With the above assumptions,
the structure of a MTX file containing a spatial weights matrix
can be defined as follows:
%%MatrixMarket matrix coordinate real general <— header 1 (constant)
% Comments starts <—
% | 0 or more comment lines
% Comments ends <—
M N L <— header 2, rows, columns, entries
I1 J1 A(I1,J1) <—
... | L entry lines
IL JL A(IL,JL) <—

In the MTX foramt, the index for rows or columns starts with 1.

PySAL uses mtx io tools in scipy.
Thus, it is subject to all limits that scipy currently has.
Reengineering might be required, since scipy currently reads in
the entire entry into memory.

References

MTX format specification
http://math.nist.gov/MatrixMarket/formats.html

scipy matlab io
http://docs.scipy.org/doc/scipy/reference/tutorial/io.html

	
FORMATS = ['mtx']

	

	
MODES = ['r', 'w']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1, sparse=False)

	
	sparse: boolean

	if true, return pysal WSP object
if false, return pysal W object

	
seek(pos)

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
write(obj)

	

	Parameters:	
	write(weightsObject) –

	a weights object (accepts) –

	Returns:	
	a MatrixMarket mtx file

	write a weights object to the opened mtx file.

Examples

>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('wmat.mtx'),'r')
>>> w = testfile.read()

Create a temporary file for this example

>>> f = tempfile.NamedTemporaryFile(suffix='.mtx')

Reassign to new var

>>> fname = f.name

Close the temporary named file

>>> f.close()

Open the new file in write mode

>>> o = pysal.open(fname,'w')

Write the Weights object into the open file

>>> o.write(w)
>>> o.close()

Read in the newly created mtx file

>>> wnew = pysal.open(fname,'r').read()

Compare values from old to new

>>> wnew.pct_nonzero == w.pct_nonzero
True

Clean up temporary file created for this example

>>> os.remove(fname)

Go to the beginning of the test file

>>> testfile.seek(0)

Create a sparse weights instance from the test file

>>> wsp = testfile.read(sparse=True)

Open the new file in write mode

>>> o = pysal.open(fname,'w')

Write the sparse weights object into the open file

>>> o.write(wsp)
>>> o.close()

Read in the newly created mtx file

>>> wsp_new = pysal.open(fname,'r').read(sparse=True)

Compare values from old to new

>>> wsp_new.s0 == wsp.s0
True

Clean up temporary file created for this example

>>> os.remove(fname)

 IOHandlers.pyDbfIO – PySAL DBF plugin

IOHandlers.pyDbfIO – PySAL DBF plugin

New in version 1.0.

	
class pysal.core.IOHandlers.pyDbfIO.DBF(*args, **kwargs)

	PySAL DBF Reader/Writer

This DBF handler implements the PySAL DataTable interface.

	
header

	list – A list of field names. The header is a python list of
strings. Each string is a field name and field name must
not be longer than 10 characters.

	
field_spec

	list – A list describing the data types of each field. It is
comprised of a list of tuples, each tuple describing a
field. The format for the tuples is (“Type”,len,precision).
Valid Types are ‘C’ for characters, ‘L’ for bool, ‘D’ for
data, ‘N’ or ‘F’ for number.

Examples

>>> import pysal
>>> dbf = pysal.open(pysal.examples.get_path('juvenile.dbf'), 'r')
>>> dbf.header
['ID', 'X', 'Y']
>>> dbf.field_spec
[('N', 9, 0), ('N', 9, 0), ('N', 9, 0)]

	
FORMATS = ['dbf']

	

	
MODES = ['r', 'w']

	

	
by_col

	

	
by_col_array(*args)

	Return columns of table as a numpy array.

	Parameters:	*args (any number of strings of length k) – names of variables to extract

	Returns:	implicit

	Return type:	numpy array of shape (n,k)

Notes

If the variables are not all of the same data type, then numpy rules
for casting will result in a uniform type applied to all variables.

If only strings are passed to the function, then an array with those
columns will be constructed.

If only one list of strings is passed, the output is identical to those
strings being passed.

If at least one list is passed and other strings or lists are passed,
this returns a tuple containing arrays constructed from each positional
argument.

Examples

>>> import pysal as ps
>>> dbf = ps.open(ps.examples.get_path('NAT.dbf'))
>>> hr = dbf.by_col_array('HR70', 'HR80')
>>> hr[0:5]
array([[0. , 8.85582713],
 [0. , 17.20874204],
 [1.91515848, 3.4507747],
 [1.28864319, 3.26381409],
 [0. , 7.77000777]])
>>> hr = dbf.by_col_array(['HR80', 'HR70'])
>>> hr[0:5]
array([[8.85582713, 0.],
 [17.20874204, 0.],
 [3.4507747 , 1.91515848],
 [3.26381409, 1.28864319],
 [7.77000777, 0.]])
>>> hr = dbf.by_col_array(['HR80'])
>>> hr[0:5]
array([[8.85582713],
 [17.20874204],
 [3.4507747],
 [3.26381409],
 [7.77000777]])

Numpy only supports homogeneous arrays. See Notes above.

>>> hr = dbf.by_col_array('STATE_NAME', 'HR80')
>>> hr[0:5]
array([['Minnesota', '8.8558271343'],
 ['Washington', '17.208742041'],
 ['Washington', '3.4507746989'],
 ['Washington', '3.2638140931'],
 ['Washington', '7.77000777']],
 dtype='|S20')

>>> y, X = dbf.by_col_array('STATE_NAME', ['HR80', 'HR70'])
>>> y[0:5]
array([['Minnesota'],
 ['Washington'],
 ['Washington'],
 ['Washington'],
 ['Washington']],
 dtype='|S20')
>>> X[0:5]
array([[8.85582713, 0.],
 [17.20874204, 0.],
 [3.4507747 , 1.91515848],
 [3.26381409, 1.28864319],
 [7.77000777, 0.]])

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	Read at most n objects, less if read hits EOF
if size is negative or omitted read all objects until EOF
returns None if EOF is reached before any objects.

	
read_record(i)

	

	
seek(i)

	

	
tell()

	Return id (or offset) of next object

	
to_df(n=-1, read_shp=None, **df_kws)

	

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
write(obj)

	

 IOHandlers.pyShpIO – Shapefile plugin

IOHandlers.pyShpIO – Shapefile plugin

The IOHandlers.pyShpIO Shapefile Plugin for PySAL’s FileIO System

New in version 1.0.

PySAL ShapeFile Reader and Writer based on pure python shapefile module.

	
class pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper(*args, **kwargs)

	FileIO handler for ESRI ShapeFiles.

Notes

This class wraps _pyShpIO’s shp_file class with the PySAL FileIO API.
shp_file can be used without PySAL.

	
Formats

	list – A list of support file extensions

	
Modes

	list – A list of support file modes

Examples

>>> import tempfile
>>> f = tempfile.NamedTemporaryFile(suffix='.shp'); fname = f.name; f.close()
>>> import pysal
>>> i = pysal.open(pysal.examples.get_path('10740.shp'),'r')
>>> o = pysal.open(fname,'w')
>>> for shp in i:
... o.write(shp)
>>> o.close()
>>> open(pysal.examples.get_path('10740.shp'),'rb').read() == open(fname,'rb').read()
True
>>> open(pysal.examples.get_path('10740.shx'),'rb').read() == open(fname[:-1]+'x','rb').read()
True
>>> import os
>>> os.remove(fname); os.remove(fname.replace('.shp','.shx'))

	
FORMATS = ['shp', 'shx']

	

	
MODES = ['w', 'r', 'wb', 'rb']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	Read at most n objects, less if read hits EOF
if size is negative or omitted read all objects until EOF
returns None if EOF is reached before any objects.

	
seek(n)

	Seek the FileObj to the beginning of the n’th record,
if ids are set, seeks to the beginning of the record at id, n

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
write(obj)

	Must be implemented by subclasses that support ‘w’
subclasses should increment .pos
subclasses should also check if obj is an instance of type(list)
and redefine this doc string

 IOHandlers.stata_txt — STATA plugin

IOHandlers.stata_txt — STATA plugin

New in version 1.2.

	
class pysal.core.IOHandlers.stata_txt.StataTextIO(*args, **kwargs)

	Opens, reads, and writes weights file objects in STATA text format.

Spatial weights objects in the STATA text format are used in
STATA sppack library through the spmat command.
This format is a simple text file delimited by a whitespace.
The spmat command does not specify which file extension to use.
But, txt seems the default file extension, which is assumed in PySAL.

The first line of the STATA text file is
a header including the number of observations.
After this header line, it includes at least one data column that contains
unique ids or record numbers of observations.
When an id variable is not specified for the original spatial weights
matrix in STATA, record numbers are used to identify individual observations,
and the record numbers start with one.
The spmat command seems to allow only integer IDs,
which is also assumed in PySAL.

A STATA text file can have one of the following structures according to
its export options in STATA.

Structure 1: encoding using the list of neighbor ids
[Line 1] [Number_of_Observations]
[Line 2] [ID_of_Obs_1] [ID_of_Neighbor_1_of_Obs_1] [ID_of_Neighbor_2_of_Obs_1] [ID_of_Neighbor_m_of_Obs_1]
[Line 3] [ID_of_Obs_2]
[Line 4] [ID_of_Obs_3] [ID_of_Neighbor_1_of_Obs_3] [ID_of_Neighbor_2_of_Obs_3]
...
Note that for island observations their IDs are still recorded.

Structure 2: encoding using a full matrix format
[Line 1] [Number_of_Observations]
[Line 2] [ID_of_Obs_1] [w_11] [w_12] ... [w_1n]
[Line 3] [ID_of_Obs_2] [w_21] [w_22] ... [w_2n]
[Line 4] [ID_of_Obs_3] [w_31] [w_32] ... [w_3n]
...
[Line n+1] [ID_of_Obs_n] [w_n1] [w_n2] ... [w_nn]
where w_ij can be a form of general weight.
That is, w_ij can be both a binary value or a general numeric value.
If an observation is an island, all of its w columns contains 0.

References

Drukker D.M., Peng H., Prucha I.R., and Raciborski R. (2011)
“Creating and managing spatial-weighting matrices using the spmat command”

Notes

The spmat command allows users to add any note to a spatial weights matrix object in STATA.
However, all those notes are lost when the matrix is exported.
PySAL also does not take care of those notes.

	
FORMATS = ['stata_text']

	

	
MODES = ['r', 'w']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	

	
seek(pos)

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
write(obj, matrix_form=False)

	

	Parameters:	
	write(weightsObject) –

	a weights object (accepts) –

	Returns:	
	a STATA text file

	write a weights object to the opened text file.

Examples

>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('stata_sparse.txt'),'r','stata_text')
>>> w = testfile.read()
WARNING: there are 7 disconnected observations
Island ids: [5, 9, 10, 11, 12, 14, 15]

Create a temporary file for this example

>>> f = tempfile.NamedTemporaryFile(suffix='.txt')

Reassign to new var

>>> fname = f.name

Close the temporary named file

>>> f.close()

Open the new file in write mode

>>> o = pysal.open(fname,'w','stata_text')

Write the Weights object into the open file

>>> o.write(w)
>>> o.close()

Read in the newly created text file

>>> wnew = pysal.open(fname,'r','stata_text').read()
WARNING: there are 7 disconnected observations
Island ids: [5, 9, 10, 11, 12, 14, 15]

Compare values from old to new

>>> wnew.pct_nonzero == w.pct_nonzero
True

Clean up temporary file created for this example

>>> os.remove(fname)

 IOHandlers.wk1 — Lotus WK1 plugin

IOHandlers.wk1 — Lotus WK1 plugin

New in version 1.2.

	
class pysal.core.IOHandlers.wk1.Wk1IO(*args, **kwargs)

	
MATLAB wk1read.m and wk1write.m that were written by Brian M. Bourgault in 10/22/93

Opens, reads, and writes weights file objects in Lotus Wk1 format.

Lotus Wk1 file is used in Dr. LeSage’s MATLAB Econometrics library.

A Wk1 file holds a spatial weights object in a full matrix form
without any row and column headers.
The maximum number of columns supported in a Wk1 file is 256.
Wk1 starts the row (column) number from 0 and
uses little endian binary endcoding.
In PySAL, when the number of observations is n,
it is assumed that each cell of a n*n(=m) matrix either is a blank or
have a number.

The internal structure of a Wk1 file written by PySAL is as follows:
[BOF][DIM][CPI][CAL][CMODE][CORD][SPLIT][SYNC][CURS][WIN]
[HCOL][MRG][LBL][CELL_1]...[CELL_m][EOF]
where [CELL_k] equals to [DTYPE][DLEN][DFORMAT][CINDEX][CVALUE].
The parts between [BOF] and [CELL_1] are variable according to the software
program used to write a wk1 file. While reading a wk1 file,
PySAL ignores them.
Each part of this structure is detailed below.

Lotus WK1 fields

	Part
	Description
	Data Type
	Length
	Value

	[BOF]
	Begining of field
	unsigned character
	6
	0,0,2,0,6,4

	[DIM]
	Matrix dimension

	[DIMDTYPE]
[DIMLEN]
[DIMVAL]
	Type of dim. rec
Length of dim. rec
Value of dim. rec
	unsigned short
unsigned short
unsigned short
	2
2
8
	6
8
0,0,n,n

	[CPI]
	CPI

	[CPITYPE]
[CPILEN]
[CPIVAL]
	Type of cpi rec
Length of cpi rec
Value of cpi rec
	unsigned short
unsigned short
unsigned char
	2
2
6
	150
6
0,0,0,0,0,0

	[CAL]
	calcount

	[CALTYPE]
[CALLEN]
[CALVAL]
	Type of calcount rec
Length calcount rec
Value of calcount rec
	unsigned short
unsigned short
unsigned char
	2
2
1
	47
1
0

	[CMODE]
	calmode

	[CMODETYP]
[CMODELEN]
[CMODEVAL]
	Type of calmode rec
Length of calmode rec
Value of calmode rec
	unsigned short
unsigned short
signed char
	2
2
1
	2
1
0

	[CORD]
	calorder

	[CORDTYPE]
[CORDLEN]
[CORDVAL]
	Type of calorder rec
Length calorder rec
Value of calorder rec
	unsigned short
unsigned short
signed char
	2
2
1
	3
1
0

	[SPLIT]
	split

	[SPLTYPE]
[SPLLEN]
[SPLVAL]
	Type of split rec
Length of split rec
Value of split rec
	unsigned short
unsigned short
signed char
	2
2
1
	4
1
0

	[SYNC]
	sync

	[SYNCTYP]
[SYNCLEN]
[SYNCVAL]
	Type of sync rec
Length of sync rec
Value of sync rec
	unsigned short
unsigned short
singed char
	2
2
1
	5
1
0

	[CURS]
	cursor

	[CURSTYP]
[CURSLEN]
[CURSVAL]
	Type of cursor rec
Length of cursor rec
Value of cursor rec
	unsigned short
unsigned short
signed char
	2
2
1
	49
1
1

	[WIN]
	window

	[WINTYPE]
[WINLEN]
[WINVAL1]
[WINVAL2]
[WINVAL3]
	Type of window rec
Length of window rec
Value 1 of window rec
Value 2 of window rec
Value 3 of window rec
	unsigned short
unsigned short
unsigned short
signed char
unsigned short
	2
2
4
2
26
	7
32
0,0
113,0
10,n,n,0,0,0,0,0,0,0,0,72,0

	[HCOL]
	hidcol

	[HCOLTYP]
[HCOLLEN]
[HCOLVAL]
	Type of hidcol rec
Length of hidcol rec
Value of hidcol rec
	unsigned short
unsigned short
signed char
	2
2
32
	100
32
0*32

	[MRG]
	margins

	[MRGTYPE]
[MRGLEN]
[MRGVAL]
	Type of margins rec
Length of margins rec
Value of margins rec
	unsigned short
unsigned short
unsigned short
	2
2
10
	40
10
4,76,66,2,2

	[LBL]
	labels

	[LBLTYPE]
[LBLLEN]
[LBLVAL]
	Type of labels rec
Length of labels rec
Value of labels rec
	unsigned short
unsigned short
char
	2
2
1
	41
1
‘

	[CELL_k]

	[DTYPE]

[DLEN]
[DFORMAT]
[CINDEX]
[CVALUE]

[EOF]

	Type of cell data

Length of cell data
Format of cell data
Row, column of cell
Value of cell

End of file

	unsigned short

unsigned short
not sure
unsigned short
double, [DTYPE][0]==14
formula,[DTYPE][0]==16
integer,[DTYPE][0]==13
nrange, [DTYPE][0]==11
else, [DTYPE][0]==else
unsigned short

	2

2
1
4
8
8 +
2
24

4

	
	[DTYPE][0]==0: end of file

	==14: number
==16: formula
==13: integer
==11: nrange
==else: unknown

[DTYPE][1] - 13

[DTYPE][1]
1,0,0,0

	
FORMATS = ['wk1']

	

	
MODES = ['r', 'w']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open(*args, **kwargs)

	Alias for FileIO()

	
rIds

	

	
read(n=-1)

	

	
seek(pos)

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
varName

	

	
write(obj)

	

	Parameters:	
	write(weightsObject) –

	a weights object (accepts) –

	Returns:	
	a Lotus wk1 file

	write a weights object to the opened wk1 file.

Examples

>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('spat-sym-us.wk1'),'r')
>>> w = testfile.read()

Create a temporary file for this example

>>> f = tempfile.NamedTemporaryFile(suffix='.wk1')

Reassign to new var

>>> fname = f.name

Close the temporary named file

>>> f.close()

Open the new file in write mode

>>> o = pysal.open(fname,'w')

Write the Weights object into the open file

>>> o.write(w)
>>> o.close()

Read in the newly created text file

>>> wnew = pysal.open(fname,'r').read()

Compare values from old to new

>>> wnew.pct_nonzero == w.pct_nonzero
True

Clean up temporary file created for this example

>>> os.remove(fname)

 IOHandlers.wkt – Well Known Text (geometry) plugin

IOHandlers.wkt – Well Known Text (geometry) plugin

New in version 1.0.

PySAL plugin for Well Known Text (geometry)

	
class pysal.core.IOHandlers.wkt.WKTReader(*args, **kwargs)

	

	Parameters:	
	Well-Known Text (Reads) –

	a list of PySAL Polygon objects (Returns) –

Examples

Read in WKT-formatted file

>>> import pysal
>>> f = pysal.open(pysal.examples.get_path('stl_hom.wkt'), 'r')

Convert wkt to pysal polygons

>>> polys = f.read()

Check length

>>> len(polys)
78

Return centroid of polygon at index 1

>>> polys[1].centroid
(-91.19578469430738, 39.990883050220845)

Type dir(polys[1]) at the python interpreter to get a list of supported methods

	
FORMATS = ['wkt']

	

	
MODES = ['r']

	

	
by_row

	

	
cast(key, typ)

	cast key as typ

	
check()

	Prints the contents of the registry

	
close()

	

	
flush()

	

	
get(n)

	Seeks the file to n and returns n
If .ids is set n should be an id,
else, n should be an offset

	
getType(dataPath, mode, dataFormat=None)

	Parse the dataPath and return the data type

	
ids

	

	
next()

	A FileIO object is its own iterator, see StringIO

	
open()

	

	
rIds

	

	
read(n=-1)

	Read at most n objects, less if read hits EOF
if size is negative or omitted read all objects until EOF
returns None if EOF is reached before any objects.

	
seek(n)

	

	
tell()

	Return id (or offset) of next object

	
truncate(size=None)

	Should be implemented by subclasses
and redefine this doc string

	
write(obj)

	Must be implemented by subclasses that support ‘w’
subclasses should increment .pos
subclasses should also check if obj is an instance of type(list)
and redefine this doc string

 pysal.esda — Exploratory Spatial Data Analysis

pysal.esda — Exploratory Spatial Data Analysis

	esda.gamma — Gamma statistics for spatial autocorrelation

	esda.geary — Geary’s C statistics for spatial autocorrelation

	esda.getisord — Getis-Ord statistics for spatial association

	esda.join_counts — Spatial autocorrelation statistics for binary attributes

	esda.mapclassify — Choropleth map classification

	esda.moran — Moran’s I measures of spatial autocorrelation

	esda.smoothing — Smoothing of spatial rates

 esda.gamma — Gamma statistics for spatial autocorrelation

esda.gamma — Gamma statistics for spatial autocorrelation

New in version 1.4.

Gamma index for spatial autocorrelation

	
class pysal.esda.gamma.Gamma(y, w, operation='c', standardize='no', permutations=999)

	Gamma index for spatial autocorrelation

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – variable measured across n spatial units

	w (W) – spatial weights instance
can be binary or row-standardized

	operation ({'c', 's', 'a'}) – attribute similarity function where,
‘c’ cross product
‘s’ squared difference
‘a’ absolute difference

	standardize ({'no', 'yes'}) – standardize variables first
‘no’ keep as is
‘yes’ or ‘y’ standardize to mean zero and variance one

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of random permutations for calculation of pseudo-p_values

	
y

	array – original variable

	
w

	W – original w object

	
op

	{‘c’, ‘s’, ‘a’} – attribute similarity function, as per parameters
attribute similarity function

	
stand

	{‘no’, ‘yes’} – standardization

	
permutations

	int – number of permutations

	
gamma

	float – value of Gamma index

	
sim_g

	array – (if permutations>0)
vector of Gamma index values for permuted samples

	
p_sim_g

	array – (if permutations>0)
p-value based on permutations (one-sided)
null: spatial randomness
alternative: the observed Gamma is more extreme than under randomness
implemented as a two-sided test

	
mean_g

	float – average of permuted Gamma values

	
min_g

	float – minimum of permuted Gamma values

	
max_g

	float – maximum of permuted Gamma values

Examples

use same example as for join counts to show similarity

>>> import pysal, numpy as np
>>> w=pysal.lat2W(4,4)
>>> y=np.ones(16)
>>> y[0:8]=0
>>> np.random.seed(12345)
>>> g = pysal.Gamma(y,w)
>>> g.g
20.0
>>> round(g.g_z, 3)
3.188
>>> g.p_sim_g
0.0030000000000000001
>>> g.min_g
0.0
>>> g.max_g
20.0
>>> g.mean_g
11.093093093093094
>>> np.random.seed(12345)
>>> g1 = pysal.Gamma(y,w,operation='s')
>>> g1.g
8.0
>>> round(g1.g_z, 3)
-3.706
>>> g1.p_sim_g
0.001
>>> g1.min_g
14.0
>>> g1.max_g
48.0
>>> g1.mean_g
25.623623623623622
>>> np.random.seed(12345)
>>> g2 = pysal.Gamma(y,w,operation='a')
>>> g2.g
8.0
>>> round(g2.g_z, 3)
-3.706
>>> g2.p_sim_g
0.001
>>> g2.min_g
14.0
>>> g2.max_g
48.0
>>> g2.mean_g
25.623623623623622
>>> np.random.seed(12345)
>>> g3 = pysal.Gamma(y,w,standardize='y')
>>> g3.g
32.0
>>> round(g3.g_z, 3)
3.706
>>> g3.p_sim_g
0.001
>>> g3.min_g
-48.0
>>> g3.max_g
20.0
>>> g3.mean_g
-3.2472472472472473
>>> np.random.seed(12345)
>>> def func(z,i,j):
... q = z[i]*z[j]
... return q
...
>>> g4 = pysal.Gamma(y,w,operation=func)
>>> g4.g
20.0
>>> round(g4.g_z, 3)
3.188
>>> g4.p_sim_g
0.0030000000000000001

	
p_sim

	new name to fit with Moran module

 esda.geary — Geary’s C statistics for spatial autocorrelation

esda.geary — Geary’s C statistics for spatial autocorrelation

New in version 1.0.

Geary’s C statistic for spatial autocorrelation

	
class pysal.esda.geary.Geary(y, w, transformation='r', permutations=999)

	Global Geary C Autocorrelation statistic

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 1) attribute vector

	w (W) – spatial weights

	transformation ({'B', 'R', 'D', 'U', 'V'}) – weights transformation, default is binary.
Other options include “R”: row-standardized, “D”:
doubly-standardized, “U”: untransformed (general
weights), “V”: variance-stabilizing.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of random permutations for calculation of
pseudo-p_values

	
y

	array – original variable

	
w

	W – spatial weights

	
permutations

	int – number of permutations

	
C

	float – value of statistic

	
EC

	float – expected value

	
VC

	float – variance of G under normality assumption

	
z_norm

	float – z-statistic for C under normality assumption

	
z_rand

	float – z-statistic for C under randomization assumption

	
p_norm

	float – p-value under normality assumption (one-tailed)

	
p_rand

	float – p-value under randomization assumption (one-tailed)

	
sim

	array – (if permutations!=0)
vector of I values for permutated samples

	
p_sim

	float – (if permutations!=0)
p-value based on permutations (one-tailed)
null: sptial randomness
alternative: the observed C is extreme
it is either extremely high or extremely low

	
EC_sim

	float – (if permutations!=0)
average value of C from permutations

	
VC_sim

	float – (if permutations!=0)
variance of C from permutations

	
seC_sim

	float – (if permutations!=0)
standard deviation of C under permutations.

	
z_sim

	float – (if permutations!=0)
standardized C based on permutations

	
p_z_sim

	float – (if permutations!=0)
p-value based on standard normal approximation from
permutations (one-tailed)

Examples

>>> import pysal
>>> w = pysal.open(pysal.examples.get_path("book.gal")).read()
>>> f = pysal.open(pysal.examples.get_path("book.txt"))
>>> y = np.array(f.by_col['y'])
>>> c = Geary(y,w,permutations=0)
>>> print round(c.C,7)
0.3330108
>>> print round(c.p_norm,7)
9.2e-05
>>>

	
classmethod by_col(df, cols, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws)

	Function to compute a Geary statistic on a dataframe

	Parameters:	
	df (pandas.DataFrame) – a pandas dataframe with a geometry column

	cols (string [https://docs.python.org/2/library/string.html#module-string] or list of string) – name or list of names of columns to use to compute the statistic

	w (pysal weights object) – a weights object aligned with the dataframe. If not provided, this
is searched for in the dataframe’s metadata

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean denoting whether to operate on the dataframe inplace or to
return a series contaning the results of the computation. If
operating inplace, with default configurations,
the derived columns will be named like ‘column_geary’ and ‘column_p_sim’

	pvalue (string [https://docs.python.org/2/library/string.html#module-string]) – a string denoting which pvalue should be returned. Refer to the
the Geary statistic’s documentation for available p-values

	outvals (list of strings) – list of arbitrary attributes to return as columns from the
Geary statistic

	**stat_kws (keyword arguments) – options to pass to the underlying statistic. For this, see the
documentation for the Geary statistic.

	Returns:	
	If inplace, None, and operation is conducted on dataframe in memory. Otherwise,

	returns a copy of the dataframe with the relevant columns attached.

See also

For, refer

 esda.getisord — Getis-Ord statistics for spatial association

esda.getisord — Getis-Ord statistics for spatial association

New in version 1.0.

Getis and Ord G statistic for spatial autocorrelation

	
class pysal.esda.getisord.G(y, w, permutations=999)

	Global G Autocorrelation Statistic

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array] (n,1)) – Attribute values

	w (W) – DistanceBand W spatial weights based on distance band

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – the number of random permutations for calculating pseudo p_values

	
y

	array – original variable

	
w

	W – DistanceBand W spatial weights based on distance band

	
permutation

	int – the number of permutations

	
G

	float – the value of statistic

	
EG

	float – the expected value of statistic

	
VG

	float – the variance of G under normality assumption

	
z_norm

	float – standard normal test statistic

	
p_norm

	float – p-value under normality assumption (one-sided)

	
sim

	array – (if permutations > 0)
vector of G values for permutated samples

	
p_sim

	float – p-value based on permutations (one-sided)
null: spatial randomness
alternative: the observed G is extreme it is either extremely high or extremely low

	
EG_sim

	float – average value of G from permutations

	
VG_sim

	float – variance of G from permutations

	
seG_sim

	float – standard deviation of G under permutations.

	
z_sim

	float – standardized G based on permutations

	
p_z_sim

	float – p-value based on standard normal approximation from
permutations (one-sided)

Notes

Moments are based on normality assumption.

Examples

>>> from pysal.weights.Distance import DistanceBand
>>> import numpy
>>> numpy.random.seed(10)

Preparing a point data set
>>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]

Creating a weights object from points
>>> w = DistanceBand(points,threshold=15)
>>> w.transform = “B”

Preparing a variable
>>> y = numpy.array([2, 3, 3.2, 5, 8, 7])

Applying Getis and Ord G test
>>> g = G(y,w)

Examining the results
>>> print “%.8f” % g.G
0.55709779

>>> print "%.4f" % g.p_norm
0.1729

	
classmethod by_col(df, cols, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws)

	Function to compute a G statistic on a dataframe

	Parameters:	
	df (pandas.DataFrame) – a pandas dataframe with a geometry column

	cols (string [https://docs.python.org/2/library/string.html#module-string] or list of string) – name or list of names of columns to use to compute the statistic

	w (pysal weights object) – a weights object aligned with the dataframe. If not provided, this
is searched for in the dataframe’s metadata

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean denoting whether to operate on the dataframe inplace or to
return a series contaning the results of the computation. If
operating inplace, the derived columns will be named ‘column_g’

	pvalue (string [https://docs.python.org/2/library/string.html#module-string]) – a string denoting which pvalue should be returned. Refer to the
the G statistic’s documentation for available p-values

	outvals (list of strings) – list of arbitrary attributes to return as columns from the
G statistic

	**stat_kws (keyword arguments) – options to pass to the underlying statistic. For this, see the
documentation for the G statistic.

	Returns:	
	If inplace, None, and operation is conducted on dataframe in memory. Otherwise,

	returns a copy of the dataframe with the relevant columns attached.

See also

For, refer

	
class pysal.esda.getisord.G_Local(y, w, transform='R', permutations=999, star=False)

	Generalized Local G Autocorrelation
Statistic [Getis1992], [Ord1995], [Getis1996] .

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – variable

	w (W) – DistanceBand, weights instance that is based on threshold distance
and is assumed to be aligned with y

	transform ({'R', 'B'}) – the type of w, either ‘B’ (binary) or ‘R’ (row-standardized)

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – the number of random permutations for calculating
pseudo p values

	star (boolean) – whether or not to include focal observation in sums (default: False)

	
y

	array – original variable

	
w

	DistanceBand W – original weights object

	
permutations

	int – the number of permutations

	
Gs

	array – of floats, the value of the orginal G statistic in Getis & Ord (1992)

	
EGs

	float – expected value of Gs under normality assumption
the values is scalar, since the expectation is identical
across all observations

	
VGs

	array – of floats, variance values of Gs under normality assumption

	
Zs

	array – of floats, standardized Gs

	
p_norm

	array – of floats, p-value under normality assumption (one-sided)
for two-sided tests, this value should be multiplied by 2

	
sim

	array – of arrays of floats (if permutations>0), vector of I values
for permutated samples

	
p_sim

	array – of floats, p-value based on permutations (one-sided)
null - spatial randomness
alternative - the observed G is extreme it is either extremely high or extremely low

	
EG_sim

	array – of floats, average value of G from permutations

	
VG_sim

	array – of floats, variance of G from permutations

	
seG_sim

	array – of floats, standard deviation of G under permutations.

	
z_sim

	array – of floats, standardized G based on permutations

	
p_z_sim

	array – of floats, p-value based on standard normal approximation from
permutations (one-sided)

Notes

To compute moments of Gs under normality assumption,
PySAL considers w is either binary or row-standardized.
For binary weights object, the weight value for self is 1
For row-standardized weights object, the weight value for self is
1/(the number of its neighbors + 1).

Examples

>>> from pysal.weights.Distance import DistanceBand
>>> import numpy
>>> numpy.random.seed(10)

Preparing a point data set

>>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]

Creating a weights object from points

>>> w = DistanceBand(points,threshold=15)

Prepareing a variable

>>> y = numpy.array([2, 3, 3.2, 5, 8, 7])

Applying Getis and Ord local G test using a binary weights object
>>> lg = G_Local(y,w,transform=’B’)

Examining the results
>>> lg.Zs
array([-1.0136729 , -0.04361589, 1.31558703, -0.31412676, 1.15373986,

1.77833941])

>>> lg.p_sim[0]
0.10100000000000001

>>> numpy.random.seed(10)

Applying Getis and Ord local G* test using a binary weights object
>>> lg_star = G_Local(y,w,transform=’B’,star=True)

Examining the results
>>> lg_star.Zs
array([-1.39727626, -0.28917762, 0.65064964, -0.28917762, 1.23452088,

2.02424331])

>>> lg_star.p_sim[0]
0.10100000000000001

>>> numpy.random.seed(10)

Applying Getis and Ord local G test using a row-standardized weights object
>>> lg = G_Local(y,w,transform=’R’)

Examining the results
>>> lg.Zs
array([-0.62074534, -0.01780611, 1.31558703, -0.12824171, 0.28843496,

1.77833941])

>>> lg.p_sim[0]
0.10100000000000001

>>> numpy.random.seed(10)

Applying Getis and Ord local G* test using a row-standardized weights object
>>> lg_star = G_Local(y,w,transform=’R’,star=True)

Examining the results
>>> lg_star.Zs
array([-0.62488094, -0.09144599, 0.41150696, -0.09144599, 0.24690418,

1.28024388])

>>> lg_star.p_sim[0]
0.10100000000000001

	
classmethod by_col(df, cols, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws)

	Function to compute a G_Local statistic on a dataframe

	Parameters:	
	df (pandas.DataFrame) – a pandas dataframe with a geometry column

	cols (string [https://docs.python.org/2/library/string.html#module-string] or list of string) – name or list of names of columns to use to compute the statistic

	w (pysal weights object) – a weights object aligned with the dataframe. If not provided, this
is searched for in the dataframe’s metadata

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean denoting whether to operate on the dataframe inplace or to
return a series contaning the results of the computation. If
operating inplace, the derived columns will be named ‘column_g_local’

	pvalue (string [https://docs.python.org/2/library/string.html#module-string]) – a string denoting which pvalue should be returned. Refer to the
the G_Local statistic’s documentation for available p-values

	outvals (list of strings) – list of arbitrary attributes to return as columns from the
G_Local statistic

	**stat_kws (keyword arguments) – options to pass to the underlying statistic. For this, see the
documentation for the G_Local statistic.

	Returns:	
	If inplace, None, and operation is conducted on dataframe in memory. Otherwise,

	returns a copy of the dataframe with the relevant columns attached.

See also

For, refer

 esda.join_counts — Spatial autocorrelation statistics for binary attributes

esda.join_counts — Spatial autocorrelation statistics for binary attributes

New in version 1.0.

Spatial autocorrelation for binary attributes

	
class pysal.esda.join_counts.Join_Counts(y, w, permutations=999)

	Binary Join Counts

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – binary variable measured across n spatial units

	w (W) – spatial weights instance

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of random permutations for calculation of pseudo-p_values

	
y

	array – original variable

	
w

	W – original w object

	
permutations

	int – number of permutations

	
bb

	float – number of black-black joins

	
ww

	float – number of white-white joins

	
bw

	float – number of black-white joins

	
J

	float – number of joins

	
sim_bb

	array – (if permutations>0)
vector of bb values for permuted samples

	
p_sim_bb

	array –

	(if permutations>0)

	p-value based on permutations (one-sided)
null: spatial randomness
alternative: the observed bb is greater than under randomness

	
mean_bb

	float – average of permuted bb values

	
min_bb

	float – minimum of permuted bb values

	
max_bb

	float – maximum of permuted bb values

	
sim_bw

	array – (if permutations>0)
vector of bw values for permuted samples

	
p_sim_bw

	array – (if permutations>0)
p-value based on permutations (one-sided)
null: spatial randomness
alternative: the observed bw is greater than under randomness

	
mean_bw

	float – average of permuted bw values

	
min_bw

	float – minimum of permuted bw values

	
max_bw

	float – maximum of permuted bw values

Examples

Replicate example from anselin and rey

>>> import numpy as np
>>> w = pysal.lat2W(4, 4)
>>> y = np.ones(16)
>>> y[0:8] = 0
>>> np.random.seed(12345)
>>> jc = pysal.Join_Counts(y, w)
>>> jc.bb
10.0
>>> jc.bw
4.0
>>> jc.ww
10.0
>>> jc.J
24.0
>>> len(jc.sim_bb)
999
>>> jc.p_sim_bb
0.0030000000000000001
>>> np.mean(jc.sim_bb)
5.5465465465465469
>>> np.max(jc.sim_bb)
10.0
>>> np.min(jc.sim_bb)
0.0
>>> len(jc.sim_bw)
999
>>> jc.p_sim_bw
1.0
>>> np.mean(jc.sim_bw)
12.811811811811811
>>> np.max(jc.sim_bw)
24.0
>>> np.min(jc.sim_bw)
7.0
>>>

	
classmethod by_col(df, cols, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws)

	Function to compute a Join_Count statistic on a dataframe

	Parameters:	
	df (pandas.DataFrame) – a pandas dataframe with a geometry column

	cols (string [https://docs.python.org/2/library/string.html#module-string] or list of string) – name or list of names of columns to use to compute the statistic

	w (pysal weights object) – a weights object aligned with the dataframe. If not provided, this
is searched for in the dataframe’s metadata

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean denoting whether to operate on the dataframe inplace or to
return a series contaning the results of the computation. If
operating inplace, the derived columns will be named
‘column_join_count’

	pvalue (string [https://docs.python.org/2/library/string.html#module-string]) – a string denoting which pvalue should be returned. Refer to the
the Join_Count statistic’s documentation for available p-values

	outvals (list of strings) – list of arbitrary attributes to return as columns from the
Join_Count statistic

	**stat_kws (keyword arguments) – options to pass to the underlying statistic. For this, see the
documentation for the Join_Count statistic.

	Returns:	
	If inplace, None, and operation is conducted on dataframe in memory. Otherwise,

	returns a copy of the dataframe with the relevant columns attached.

See also

For, refer

 esda.mapclassify — Choropleth map classification

esda.mapclassify — Choropleth map classification

New in version 1.0.

A module of classification schemes for choropleth mapping.

	
class pysal.esda.mapclassify.Map_Classifier(y)

	Abstract class for all map classifications [Slocum2008]

For an array [image: y] of [image: n] values, a map classifier places each
value [image: y_i] into one of [image: k] mutually exclusive and exhaustive
classes. Each classifer defines the classes based on different criteria,
but in all cases the following hold for the classifiers in PySAL:

[image: C_j^l < y_i \le C_j^u \ \ \forall i \in C_j]

	where [image: C_j] denotes class [image: j] which has lower bound

	[image: C_j^l] and upper bound [image: C_j^u].

Map Classifiers Supported

	Box_Plot

	Equal_Interval

	Fisher_Jenks

	Fisher_Jenks_Sampled

	HeadTail_Breaks

	Jenks_Caspall

	Jenks_Caspall_Forced

	Jenks_Caspall_Sampled

	Max_P_Classifier

	Maximum_Breaks

	Natural_Breaks

	Quantiles

	Percentiles

	Std_Mean

	User_Defined

Utilities:

In addition to the classifiers, there are several utility functions that
can be used to evaluate the properties of a specific classifier for
different parameter values, or for automatic selection of a classifier and
number of classes.

	gadf

	K_classifiers

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
classmethod make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
pysal.esda.mapclassify.quantile(y, k=4)

	Calculates the quantiles for an array

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of quantiles

	Returns:	implicit – (n,1), quantile values

	Return type:	array [https://docs.python.org/2/library/array.html#module-array]

Examples

>>> x = np.arange(1000)
>>> quantile(x)
array([249.75, 499.5 , 749.25, 999.])
>>> quantile(x, k = 3)
array([333., 666., 999.])
>>>

Note that if there are enough ties that the quantile values repeat, we
collapse to pseudo quantiles in which case the number of classes will be
less than k

>>> x = [1.0] * 100
>>> x.extend([3.0] * 40)
>>> len(x)
140
>>> y = np.array(x)
>>> quantile(y)
array([1., 3.])

	
class pysal.esda.mapclassify.Box_Plot(y, hinge=1.5)

	Box_Plot Map Classification

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – attribute to classify

	hinge (float [https://docs.python.org/2/library/functions.html#float]) – multiplier for IQR

	
yb

	array – (n,1), bin ids for observations

	
bins

	array – (n,1), the upper bounds of each class (monotonic)

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

	
low_outlier_ids

	array – indices of observations that are low outliers

	
high_outlier_ids

	array – indices of observations that are high outliers

Notes

The bins are set as follows:

bins[0] = q[0]-hinge*IQR
bins[1] = q[0]
bins[2] = q[1]
bins[3] = q[2]
bins[4] = q[2]+hinge*IQR
bins[5] = inf (see Notes)

where q is an array of the first three quartiles of y and
IQR=q[2]-q[0]

If q[2]+hinge*IQR > max(y) there will only be 5 classes and no high
outliers, otherwise, there will be 6 classes and at least one high
outlier.

Examples

>>> cal = load_example()
>>> bp = Box_Plot(cal)
>>> bp.bins
array([-5.28762500e+01, 2.56750000e+00, 9.36500000e+00,
 3.95300000e+01, 9.49737500e+01, 4.11145000e+03])
>>> bp.counts
array([0, 15, 14, 14, 6, 9])
>>> bp.high_outlier_ids
array([0, 6, 18, 29, 33, 36, 37, 40, 42])
>>> cal[bp.high_outlier_ids]
array([329.92, 181.27, 370.5 , 722.85, 192.05, 110.74,
 4111.45, 317.11, 264.93])
>>> bx = Box_Plot(np.arange(100))
>>> bx.bins
array([-49.5 , 24.75, 49.5 , 74.25, 148.5])

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Equal_Interval(y, k=5)

	Equal Interval Classification

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of classes required

	
yb

	array – (n,1), bin ids for observations,
each value is the id of the class the observation belongs to
yb[i] = j for j>=1 if bins[j-1] < y[i] <= bins[j], yb[i] = 0
otherwise

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

>>> cal = load_example()
>>> ei = Equal_Interval(cal, k = 5)
>>> ei.k
5
>>> ei.counts
array([57, 0, 0, 0, 1])
>>> ei.bins
array([822.394, 1644.658, 2466.922, 3289.186, 4111.45])
>>>

Notes

Intervals defined to have equal width:

[image: bins_j = min(y)+w*(j+1)]

with [image: w=\frac{max(y)-min(j)}{k}]

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Fisher_Jenks(y, k=5)

	Fisher Jenks optimal classifier - mean based

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of classes required

	
yb

	array – (n,1), bin ids for observations

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

>>> cal = load_example()
>>> fj = Fisher_Jenks(cal)
>>> fj.adcm
799.24000000000001
>>> fj.bins
array([75.29, 192.05, 370.5 , 722.85, 4111.45])
>>> fj.counts
array([49, 3, 4, 1, 1])
>>>

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Fisher_Jenks_Sampled(y, k=5, pct=0.1, truncate=True)

	Fisher Jenks optimal classifier - mean based using random sample

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of classes required

	pct (float [https://docs.python.org/2/library/functions.html#float]) – The percentage of n that should form the sample
If pct is specified such that n*pct > 1000, then
pct = 1000./n, unless truncate is False

	truncate (boolean) – truncate pct in cases where pct * n > 1000., (Default True)

	
yb

	array – (n,1), bin ids for observations

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

(Turned off due to timing being different across hardware)

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Jenks_Caspall(y, k=5)

	Jenks Caspall Map Classification

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of classes required

	
yb

	array – (n,1), bin ids for observations,

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

>>> cal = load_example()
>>> jc = Jenks_Caspall(cal, k = 5)
>>> jc.bins
array([1.81000000e+00, 7.60000000e+00, 2.98200000e+01,
 1.81270000e+02, 4.11145000e+03])
>>> jc.counts
array([14, 13, 14, 10, 7])

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Jenks_Caspall_Forced(y, k=5)

	Jenks Caspall Map Classification with forced movements

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of classes required

	
yb

	array – (n,1), bin ids for observations

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

>>> cal = load_example()
>>> jcf = Jenks_Caspall_Forced(cal, k = 5)
>>> jcf.k
5
>>> jcf.bins
array([[1.34000000e+00],
 [5.90000000e+00],
 [1.67000000e+01],
 [5.06500000e+01],
 [4.11145000e+03]])
>>> jcf.counts
array([12, 12, 13, 9, 12])
>>> jcf4 = Jenks_Caspall_Forced(cal, k = 4)
>>> jcf4.k
4
>>> jcf4.bins
array([[2.51000000e+00],
 [8.70000000e+00],
 [3.66800000e+01],
 [4.11145000e+03]])
>>> jcf4.counts
array([15, 14, 14, 15])
>>>

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Jenks_Caspall_Sampled(y, k=5, pct=0.1)

	Jenks Caspall Map Classification using a random sample

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of classes required

	pct (float [https://docs.python.org/2/library/functions.html#float]) – The percentage of n that should form the sample
If pct is specified such that n*pct > 1000, then pct = 1000./n

	
yb

	array – (n,1), bin ids for observations,

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

>>> cal = load_example()
>>> x = np.random.random(100000)
>>> jc = Jenks_Caspall(x)
>>> jcs = Jenks_Caspall_Sampled(x)
>>> jc.bins
array([0.19770952, 0.39695769, 0.59588617, 0.79716865, 0.99999425])
>>> jcs.bins
array([0.18877882, 0.39341638, 0.6028286 , 0.80070925, 0.99999425])
>>> jc.counts
array([19804, 20005, 19925, 20178, 20088])
>>> jcs.counts
array([18922, 20521, 20980, 19826, 19751])
>>>

not for testing since we get different times on different hardware
just included for documentation of likely speed gains
#>>> t1 = time.time(); jc = Jenks_Caspall(x); t2 = time.time()
#>>> t1s = time.time(); jcs = Jenks_Caspall_Sampled(x); t2s = time.time()
#>>> t2 - t1; t2s - t1s
#1.8292930126190186
#0.061631917953491211

Notes

This is intended for large n problems. The logic is to apply
Jenks_Caspall to a random subset of the y space and then bin the
complete vector y on the bins obtained from the subset. This would
trade off some “accuracy” for a gain in speed.

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Max_P_Classifier(y, k=5, initial=1000)

	Max_P Map Classification

Based on Max_p regionalization algorithm

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of classes required

	initial (int [https://docs.python.org/2/library/functions.html#int]) – number of initial solutions to use prior to swapping

	
yb

	array – (n,1), bin ids for observations,

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

>>> import pysal
>>> cal = pysal.esda.mapclassify.load_example()
>>> mp = pysal.Max_P_Classifier(cal)
>>> mp.bins
array([8.7 , 16.7 , 20.47, 66.26, 4111.45])
>>> mp.counts
array([29, 8, 1, 10, 10])

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Maximum_Breaks(y, k=5, mindiff=0)

	Maximum Breaks Map Classification

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 1), values to classify

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of classes required

	mindiff (float [https://docs.python.org/2/library/functions.html#float]) – The minimum difference between class breaks

	
yb

	array – (n, 1), bin ids for observations

	
bins

	array – (k, 1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k, 1), the number of observations falling in each class (numpy
array k x 1)

Examples

>>> cal = load_example()
>>> mb = Maximum_Breaks(cal, k = 5)
>>> mb.k
5
>>> mb.bins
array([146.005, 228.49 , 546.675, 2417.15 , 4111.45])
>>> mb.counts
array([50, 2, 4, 1, 1])
>>>

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Natural_Breaks(y, k=5, initial=100)

	Natural Breaks Map Classification

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of classes required

	initial (int [https://docs.python.org/2/library/functions.html#int]) – number of initial solutions to generate, (default=100)

	
yb

	array – (n,1), bin ids for observations,

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

>>> import numpy
>>> import pysal
>>> numpy.random.seed(123456)
>>> cal = pysal.esda.mapclassify.load_example()
>>> nb = pysal.Natural_Breaks(cal, k=5)
>>> nb.k
5
>>> nb.counts
array([41, 9, 6, 1, 1])
>>> nb.bins
array([29.82, 110.74, 370.5 , 722.85, 4111.45])
>>> x = numpy.array([1] * 50)
>>> x[-1] = 20
>>> nb = pysal.Natural_Breaks(x, k = 5, initial = 0)
Warning: Not enough unique values in array to form k classes
Warning: setting k to 2
>>> nb.bins
array([1, 20])
>>> nb.counts
array([49, 1])

Notes

There is a tradeoff here between speed and consistency of the
classification If you want more speed, set initial to a smaller value (0
would result in the best speed, if you want more consistent classes in
multiple runs of Natural_Breaks on the same data, set initial to a higher
value.

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Quantiles(y, k=5)

	Quantile Map Classification

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of classes required

	
yb

	array – (n,1), bin ids for observations,
each value is the id of the class the observation belongs to
yb[i] = j for j>=1 if bins[j-1] < y[i] <= bins[j], yb[i] = 0
otherwise

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

>>> cal = load_example()
>>> q = Quantiles(cal, k = 5)
>>> q.bins
array([1.46400000e+00, 5.79800000e+00, 1.32780000e+01,
 5.46160000e+01, 4.11145000e+03])
>>> q.counts
array([12, 11, 12, 11, 12])
>>>

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Percentiles(y, pct=[1, 10, 50, 90, 99, 100])

	Percentiles Map Classification

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – attribute to classify

	pct (array [https://docs.python.org/2/library/array.html#module-array]) – percentiles default=[1,10,50,90,99,100]

	
yb

	array – bin ids for observations (numpy array n x 1)

	
bins

	array – the upper bounds of each class (numpy array k x 1)

	
k

	int – the number of classes

	
counts

	int – the number of observations falling in each class
(numpy array k x 1)

Examples

>>> cal = load_example()
>>> p = Percentiles(cal)
>>> p.bins
array([1.35700000e-01, 5.53000000e-01, 9.36500000e+00,
 2.13914000e+02, 2.17994800e+03, 4.11145000e+03])
>>> p.counts
array([1, 5, 23, 23, 5, 1])
>>> p2 = Percentiles(cal, pct = [50, 100])
>>> p2.bins
array([9.365, 4111.45])
>>> p2.counts
array([29, 29])
>>> p2.k
2

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.Std_Mean(y, multiples=[-2, -1, 1, 2])

	Standard Deviation and Mean Map Classification

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	multiples (array [https://docs.python.org/2/library/array.html#module-array]) – the multiples of the standard deviation to add/subtract from
the sample mean to define the bins, default=[-2,-1,1,2]

	
yb

	array – (n,1), bin ids for observations,

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

>>> cal = load_example()
>>> st = Std_Mean(cal)
>>> st.k
5
>>> st.bins
array([-967.36235382, -420.71712519, 672.57333208, 1219.21856072,
 4111.45])
>>> st.counts
array([0, 0, 56, 1, 1])
>>>
>>> st3 = Std_Mean(cal, multiples = [-3, -1.5, 1.5, 3])
>>> st3.bins
array([-1514.00758246, -694.03973951, 945.8959464 , 1765.86378936,
 4111.45])
>>> st3.counts
array([0, 0, 57, 0, 1])
>>>

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
class pysal.esda.mapclassify.User_Defined(y, bins)

	User Specified Binning

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	bins (array [https://docs.python.org/2/library/array.html#module-array]) – (k,1), upper bounds of classes (have to be monotically increasing)

	
yb

	array – (n,1), bin ids for observations,

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

>>> cal = load_example()
>>> bins = [20, max(cal)]
>>> bins
[20, 4111.4499999999998]
>>> ud = User_Defined(cal, bins)
>>> ud.bins
array([20. , 4111.45])
>>> ud.counts
array([37, 21])
>>> bins = [20, 30]
>>> ud = User_Defined(cal, bins)
>>> ud.bins
array([20. , 30. , 4111.45])
>>> ud.counts
array([37, 4, 17])
>>>

Notes

If upper bound of user bins does not exceed max(y) we append an
additional bin.

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

	
pysal.esda.mapclassify.gadf(y, method='Quantiles', maxk=15, pct=0.8)

	Evaluate the Goodness of Absolute Deviation Fit of a Classifier
Finds the minimum value of k for which gadf>pct

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 1) values to be classified

	method ({'Quantiles, 'Fisher_Jenks', 'Maximum_Breaks', 'Natrual_Breaks'}) –

	maxk (int [https://docs.python.org/2/library/functions.html#int]) – maximum value of k to evaluate

	pct (float [https://docs.python.org/2/library/functions.html#float]) – The percentage of GADF to exceed

	Returns:	
	k (int) – number of classes

	cl (object) – instance of the classifier at k

	gadf (float) – goodness of absolute deviation fit

Examples

>>> cal = load_example()
>>> qgadf = gadf(cal)
>>> qgadf[0]
15
>>> qgadf[-1]
0.37402575909092828

Quantiles fail to exceed 0.80 before 15 classes. If we lower the bar to
0.2 we see quintiles as a result

>>> qgadf2 = gadf(cal, pct = 0.2)
>>> qgadf2[0]
5
>>> qgadf2[-1]
0.21710231966462412
>>>

Notes

The GADF is defined as:

[image: GADF = 1 - \sum_c \sum_{i \in c} |y_i - y_{c,med}| / \sum_i |y_i - y_{med}|]

where [image: y_{med}] is the global median and [image: y_{c,med}] is
the median for class [image: c].

See also

K_classifiers

	
class pysal.esda.mapclassify.K_classifiers(y, pct=0.8)

	Evaluate all k-classifers and pick optimal based on k and GADF

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to be classified

	pct (float [https://docs.python.org/2/library/functions.html#float]) – The percentage of GADF to exceed

	
best

	object – instance of the optimal Map_Classifier

	
results

	dictionary – keys are classifier names, values are the Map_Classifier
instances with the best pct for each classifer

Examples

>>> cal = load_example()
>>> ks = K_classifiers(cal)
>>> ks.best.name
'Fisher_Jenks'
>>> ks.best.k
4
>>> ks.best.gadf
0.84810327199081048
>>>

Notes

This can be used to suggest a classification scheme.

See also

gadf

	
class pysal.esda.mapclassify.HeadTail_Breaks(y)

	Head/tail Breaks Map Classification for Heavy-tailed Distributions

	Parameters:	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), values to classify

	
yb

	array – (n,1), bin ids for observations,

	
bins

	array – (k,1), the upper bounds of each class

	
k

	int – the number of classes

	
counts

	array – (k,1), the number of observations falling in each class

Examples

>>> import numpy as np
>>> np.random.seed(10)
>>> cal = load_example()
>>> htb = HeadTail_Breaks(cal)
>>> htb.k
3
>>> htb.counts
array([50, 7, 1])
>>> htb.bins
array([125.92810345, 811.26 , 4111.45])
>>> np.random.seed(123456)
>>> x = np.random.lognormal(3, 1, 1000)
>>> htb = HeadTail_Breaks(x)
>>> htb.bins
array([32.26204423, 72.50205622, 128.07150107, 190.2899093 ,
 264.82847377, 457.88157946, 576.76046949])
>>> htb.counts
array([695, 209, 62, 22, 10, 1, 1])

Notes

Head/tail Breaks is a relatively new classification method developed
and introduced by [Jiang2013] for data with a heavy-tailed distribution.

Based on contributions by Alessandra Sozzi <alessandra.sozzi@gmail.com>.

	
find_bin(x)

	Sort input or inputs according to the current bin estimate

	Parameters:	x (array [https://docs.python.org/2/library/array.html#module-array] or numeric) – a value or array of values to fit within the estimated
bins

	Returns:	
	a bin index or array of bin indices that classify the input into one of

	the classifiers’ bins

	
get_adcm()

	Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class
median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

	
get_gadf()

	Goodness of absolute deviation of fit

	
get_tss()

	Total sum of squares around class means

Returns sum of squares over all class means

	
make(*args, **kwargs)

	Configure and create a classifier that will consume data and produce
classifications, given the configuration options specified by this
function.

Note that this like a partial application of the relevant class
constructor. make creates a function that returns classifications; it
does not actually do the classification.

If you want to classify data directly, use the appropriate class
constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into,
use find_bin.

	Parameters:	
	*args (required positional arguments) – all positional arguments required by the classifier,
excluding the input data.

	rolling (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to use
a rolling classifier rather than a new classifier
for each input. If rolling, this adds the current data
to all of the previous data in the classifier, and
rebalances the bins, like a running median
computation.

	return_object (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the classifier object or not

	return_bins (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the bins/breaks or not

	return_counts (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean configuring the outputted classifier to
return the histogram of objects falling into each bin
or not

	Returns:	
	A function that consumes data and returns their bins (and object,

	bins/breaks, or counts, if requested).

Note

This is most useful when you want to run a classifier many times
with a given configuration, such as when classifying many columns of an
array or dataframe using the same configuration.

Examples

>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.make(k=9))
>>> classifications.head()
 HOVAL CRIME INC
0 8 0 7
1 7 1 8
2 2 3 5
3 4 4 0
4 1 6 3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
 0 1 2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
 0 1 3
0 0 4 0
1 0 4 0
2 1 4 0
3 1 3 0
4 2 2 1
5 2 1 2
6 3 0 4
7 3 0 4
8 4 0 4
9 4 0 4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
 ...
 2, 2, 2, 2])]

	
update(y=None, inplace=False, **kwargs)

	Add data or change classification parameters.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1) array of data to classify

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – whether to conduct the update in place or to return a copy
estimated from the additional specifications.

	parameters provided in **kwargs are passed to the init (Additional) –

	of the class. For documentation, check the class constructor. (function) –

 esda.moran — Moran’s I measures of spatial autocorrelation

esda.moran — Moran’s I measures of spatial autocorrelation

New in version 1.0.

Moran’s I global and local measures of spatial autocorrelation

Moran’s I Spatial Autocorrelation Statistics

	
class pysal.esda.moran.Moran(y, w, transformation='r', permutations=999, two_tailed=True)

	Moran’s I Global Autocorrelation Statistic

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – variable measured across n spatial units

	w (W) – spatial weights instance

	transformation (string [https://docs.python.org/2/library/string.html#module-string]) – weights transformation, default is row-standardized “r”.
Other options include “B”: binary, “D”:
doubly-standardized, “U”: untransformed
(general weights), “V”: variance-stabilizing.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of random permutations for calculation of
pseudo-p_values

	two_tailed (boolean) – If True (default) analytical p-values for Moran are two
tailed, otherwise if False, they are one-tailed.

	
y

	array – original variable

	
w

	W – original w object

	
permutations

	int – number of permutations

	
I

	float – value of Moran’s I

	
EI

	float – expected value under normality assumption

	
VI_norm

	float – variance of I under normality assumption

	
seI_norm

	float – standard deviation of I under normality assumption

	
z_norm

	float – z-value of I under normality assumption

	
p_norm

	float – p-value of I under normality assumption

	
VI_rand

	float – variance of I under randomization assumption

	
seI_rand

	float – standard deviation of I under randomization assumption

	
z_rand

	float – z-value of I under randomization assumption

	
p_rand

	float – p-value of I under randomization assumption

	
two_tailed

	boolean – If True p_norm and p_rand are two-tailed, otherwise they
are one-tailed.

	
sim

	array – (if permutations>0)
vector of I values for permuted samples

	
p_sim

	array – (if permutations>0)
p-value based on permutations (one-tailed)
null: spatial randomness
alternative: the observed I is extreme if
it is either extremely greater or extremely lower
than the values obtained based on permutations

	
EI_sim

	float – (if permutations>0)
average value of I from permutations

	
VI_sim

	float – (if permutations>0)
variance of I from permutations

	
seI_sim

	float – (if permutations>0)
standard deviation of I under permutations.

	
z_sim

	float – (if permutations>0)
standardized I based on permutations

	
p_z_sim

	float – (if permutations>0)
p-value based on standard normal approximation from
permutations

Examples

>>> import pysal
>>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()
>>> f = pysal.open(pysal.examples.get_path("stl_hom.txt"))
>>> y = np.array(f.by_col['HR8893'])
>>> mi = Moran(y, w)
>>> "%7.5f" % mi.I
'0.24366'
>>> mi.EI
-0.012987012987012988
>>> mi.p_norm
0.00027147862770937614

SIDS example replicating OpenGeoda

>>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()
>>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))
>>> SIDR = np.array(f.by_col("SIDR74"))
>>> mi = pysal.Moran(SIDR, w)
>>> "%6.4f" % mi.I
'0.2477'
>>> mi.p_norm
0.0001158330781489969

One-tailed

>>> mi_1 = pysal.Moran(SIDR, w, two_tailed=False)
>>> "%6.4f" % mi_1.I
'0.2477'
>>> mi_1.p_norm
5.7916539074498452e-05

	
classmethod by_col(df, cols, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws)

	Function to compute a Moran statistic on a dataframe

	Parameters:	
	df (pandas.DataFrame) – a pandas dataframe with a geometry column

	cols (string [https://docs.python.org/2/library/string.html#module-string] or list of string) – name or list of names of columns to use to compute the statistic

	w (pysal weights object) – a weights object aligned with the dataframe. If not provided, this
is searched for in the dataframe’s metadata

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean denoting whether to operate on the dataframe inplace or to
return a series contaning the results of the computation. If
operating inplace, the derived columns will be named
‘column_moran’

	pvalue (string [https://docs.python.org/2/library/string.html#module-string]) – a string denoting which pvalue should be returned. Refer to the
the Moran statistic’s documentation for available p-values

	outvals (list of strings) – list of arbitrary attributes to return as columns from the
Moran statistic

	**stat_kws (keyword arguments) – options to pass to the underlying statistic. For this, see the
documentation for the Moran statistic.

	Returns:	
	If inplace, None, and operation is conducted on dataframe in memory. Otherwise,

	returns a copy of the dataframe with the relevant columns attached.

See also

For, refer

	
class pysal.esda.moran.Moran_Local(y, w, transformation='r', permutations=999, geoda_quads=False)

	Local Moran Statistics

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), attribute array

	w (W) – weight instance assumed to be aligned with y

	transformation ({'R', 'B', 'D', 'U', 'V'}) – weights transformation, default is row-standardized “r”.
Other options include
“B”: binary,
“D”: doubly-standardized,
“U”: untransformed (general weights),
“V”: variance-stabilizing.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of random permutations for calculation of pseudo
p_values

	geoda_quads (boolean) – (default=False)
If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4
If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4

	
y

	array – original variable

	
w

	W – original w object

	
permutations

	int – number of random permutations for calculation of pseudo
p_values

	
Is

	array – local Moran’s I values

	
q

	array – (if permutations>0)
values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL

	
sim

	array (permutations by n) – (if permutations>0)
I values for permuted samples

	
p_sim

	array – (if permutations>0)
p-values based on permutations (one-sided)
null: spatial randomness
alternative: the observed Ii is further away or extreme
from the median of simulated values. It is either extremelyi
high or extremely low in the distribution of simulated Is.

	
EI_sim

	array – (if permutations>0)
average values of local Is from permutations

	
VI_sim

	array – (if permutations>0)
variance of Is from permutations

	
seI_sim

	array – (if permutations>0)
standard deviations of Is under permutations.

	
z_sim

	arrray – (if permutations>0)
standardized Is based on permutations

	
p_z_sim

	array – (if permutations>0)
p-values based on standard normal approximation from
permutations (one-sided)
for two-sided tests, these values should be multiplied by 2

Examples

>>> import pysal as ps
>>> import numpy as np
>>> np.random.seed(10)
>>> w = ps.open(ps.examples.get_path("desmith.gal")).read()
>>> f = ps.open(ps.examples.get_path("desmith.txt"))
>>> y = np.array(f.by_col['z'])
>>> lm = ps.Moran_Local(y, w, transformation = "r", permutations = 99)
>>> lm.q
array([4, 4, 4, 2, 3, 3, 1, 4, 3, 3])
>>> lm.p_z_sim[0]
0.24669152541631179
>>> lm = ps.Moran_Local(y, w, transformation = "r", permutations = 99, geoda_quads=True)
>>> lm.q
array([4, 4, 4, 3, 2, 2, 1, 4, 2, 2])

Note random components result is slightly different values across
architectures so the results have been removed from doctests and will be
moved into unittests that are conditional on architectures

	
classmethod by_col(df, cols, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws)

	Function to compute a Moran_Local statistic on a dataframe

	Parameters:	
	df (pandas.DataFrame) – a pandas dataframe with a geometry column

	cols (string [https://docs.python.org/2/library/string.html#module-string] or list of string) – name or list of names of columns to use to compute the statistic

	w (pysal weights object) – a weights object aligned with the dataframe. If not provided, this
is searched for in the dataframe’s metadata

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean denoting whether to operate on the dataframe inplace or to
return a series contaning the results of the computation. If
operating inplace, the derived columns will be named
‘column_moran_local’

	pvalue (string [https://docs.python.org/2/library/string.html#module-string]) – a string denoting which pvalue should be returned. Refer to the
the Moran_Local statistic’s documentation for available p-values

	outvals (list of strings) – list of arbitrary attributes to return as columns from the
Moran_Local statistic

	**stat_kws (keyword arguments) – options to pass to the underlying statistic. For this, see the
documentation for the Moran_Local statistic.

	Returns:	
	If inplace, None, and operation is conducted on dataframe in memory. Otherwise,

	returns a copy of the dataframe with the relevant columns attached.

See also

For, refer

	
class pysal.esda.moran.Moran_BV(x, y, w, transformation='r', permutations=999)

	Bivariate Moran’s I

	Parameters:	
	x (array [https://docs.python.org/2/library/array.html#module-array]) – x-axis variable

	y (array [https://docs.python.org/2/library/array.html#module-array]) – wy will be on y axis

	w (W) – weight instance assumed to be aligned with y

	transformation ({'R', 'B', 'D', 'U', 'V'}) – weights transformation, default is row-standardized “r”.
Other options include
“B”: binary,
“D”: doubly-standardized,
“U”: untransformed (general weights),
“V”: variance-stabilizing.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of random permutations for calculation of pseudo
p_values

	
zx

	array – original x variable standardized by mean and std

	
zy

	array – original y variable standardized by mean and std

	
w

	W – original w object

	
permutation

	int – number of permutations

	
I

	float – value of bivariate Moran’s I

	
sim

	array – (if permutations>0)
vector of I values for permuted samples

	
p_sim

	float – (if permutations>0)
p-value based on permutations (one-sided)
null: spatial randomness
alternative: the observed I is extreme
it is either extremely high or extremely low

	
EI_sim

	array – (if permutations>0)
average value of I from permutations

	
VI_sim

	array – (if permutations>0)
variance of I from permutations

	
seI_sim

	array – (if permutations>0)
standard deviation of I under permutations.

	
z_sim

	array – (if permutations>0)
standardized I based on permutations

	
p_z_sim

	float – (if permutations>0)
p-value based on standard normal approximation from
permutations

Notes

Inference is only based on permutations as analytical results are none too
reliable.

Examples

>>> import pysal
>>> import numpy as np

Set random number generator seed so we can replicate the example

>>> np.random.seed(10)

Open the sudden infant death dbf file and read in rates for 74 and 79
converting each to a numpy array

>>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))
>>> SIDR74 = np.array(f.by_col['SIDR74'])
>>> SIDR79 = np.array(f.by_col['SIDR79'])

Read a GAL file and construct our spatial weights object

>>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()

Create an instance of Moran_BV

>>> mbi = Moran_BV(SIDR79, SIDR74, w)

What is the bivariate Moran’s I value

>>> print mbi.I
0.156131961696

Based on 999 permutations, what is the p-value of our statistic

>>> mbi.p_z_sim
0.0014186617421765302

	
classmethod by_col(df, x, y=None, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws)

	Function to compute a Moran_BV statistic on a dataframe

	Parameters:	
	df (pandas.DataFrame) – a pandas dataframe with a geometry column

	X (list of strings) – column name or list of column names to use as X values to compute
the bivariate statistic. If no Y is provided, pairwise comparisons
among these variates are used instead.

	Y (list of strings) – column name or list of column names to use as Y values to compute
the bivariate statistic. if no Y is provided, pariwise comparisons
among the X variates are used instead.

	w (pysal weights object) – a weights object aligned with the dataframe. If not provided, this
is searched for in the dataframe’s metadata

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean denoting whether to operate on the dataframe inplace or to
return a series contaning the results of the computation. If
operating inplace, the derived columns will be named
‘column_moran_local’

	pvalue (string [https://docs.python.org/2/library/string.html#module-string]) – a string denoting which pvalue should be returned. Refer to the
the Moran_BV statistic’s documentation for available p-values

	outvals (list of strings) – list of arbitrary attributes to return as columns from the
Moran_BV statistic

	**stat_kws (keyword arguments) – options to pass to the underlying statistic. For this, see the
documentation for the Moran_BV statistic.

	Returns:	
	If inplace, None, and operation is conducted on dataframe in memory. Otherwise,

	returns a copy of the dataframe with the relevant columns attached.

See also

For, refer

	
pysal.esda.moran.Moran_BV_matrix(variables, w, permutations=0, varnames=None)

	Bivariate Moran Matrix

Calculates bivariate Moran between all pairs of a set of variables.

	Parameters:	
	variables (list) – sequence of variables

	w (W) – a spatial weights object

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of permutations

	varnames (list) – strings for variable names. If specified runtime summary is
printed

	Returns:	results – (i, j) is the key for the pair of variables, values are
the Moran_BV objects.

	Return type:	dictionary

Examples

>>> import pysal

open dbf

>>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))

pull of selected variables from dbf and create numpy arrays for each

>>> varnames = ['SIDR74', 'SIDR79', 'NWR74', 'NWR79']
>>> vars = [np.array(f.by_col[var]) for var in varnames]

create a contiguity matrix from an external gal file

>>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()

create an instance of Moran_BV_matrix

>>> res = Moran_BV_matrix(vars, w, varnames = varnames)

check values

>>> print round(res[(0, 1)].I,7)
0.1936261
>>> print round(res[(3, 0)].I,7)
0.3770138

	
class pysal.esda.moran.Moran_Local_BV(x, y, w, transformation='r', permutations=999, geoda_quads=False)

	Bivariate Local Moran Statistics

	Parameters:	
	x (array [https://docs.python.org/2/library/array.html#module-array]) – x-axis variable

	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), wy will be on y axis

	w (W) – weight instance assumed to be aligned with y

	transformation ({'R', 'B', 'D', 'U', 'V'}) – weights transformation, default is row-standardized “r”.
Other options include
“B”: binary,
“D”: doubly-standardized,
“U”: untransformed (general weights),
“V”: variance-stabilizing.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of random permutations for calculation of pseudo
p_values

	geoda_quads (boolean) – (default=False)
If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4
If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4

	
zx

	array – original x variable standardized by mean and std

	
zy

	array – original y variable standardized by mean and std

	
w

	W – original w object

	
permutations

	int – number of random permutations for calculation of pseudo
p_values

	
Is

	float – value of Moran’s I

	
q

	array – (if permutations>0)
values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL

	
sim

	array – (if permutations>0)
vector of I values for permuted samples

	
p_sim

	array – (if permutations>0)
p-value based on permutations (one-sided)
null: spatial randomness
alternative: the observed Ii is further away or extreme
from the median of simulated values. It is either extremelyi
high or extremely low in the distribution of simulated Is.

	
EI_sim

	array – (if permutations>0)
average values of local Is from permutations

	
VI_sim

	array – (if permutations>0)
variance of Is from permutations

	
seI_sim

	array – (if permutations>0)
standard deviations of Is under permutations.

	
z_sim

	arrray – (if permutations>0)
standardized Is based on permutations

	
p_z_sim

	array – (if permutations>0)
p-values based on standard normal approximation from
permutations (one-sided)
for two-sided tests, these values should be multiplied by 2

Examples

>>> import pysal as ps
>>> import numpy as np
>>> np.random.seed(10)
>>> w = ps.open(ps.examples.get_path("sids2.gal")).read()
>>> f = ps.open(ps.examples.get_path("sids2.dbf"))
>>> x = np.array(f.by_col['SIDR79'])
>>> y = np.array(f.by_col['SIDR74'])
>>> lm = ps.Moran_Local_BV(x, y, w, transformation = "r", permutations = 99)
>>> lm.q[:10]
array([3, 4, 3, 4, 2, 1, 4, 4, 2, 4])
>>> lm.p_z_sim[0]
0.0017240031348827456
>>> lm = ps.Moran_Local_BV(x, y, w, transformation = "r", permutations = 99, geoda_quads=True)
>>> lm.q[:10]
array([2, 4, 2, 4, 3, 1, 4, 4, 3, 4])

Note random components result is slightly different values across
architectures so the results have been removed from doctests and will be
moved into unittests that are conditional on architectures

	
classmethod by_col(df, x, y=None, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws)

	Function to compute a Moran_Local_BV statistic on a dataframe

	Parameters:	
	df (pandas.DataFrame) – a pandas dataframe with a geometry column

	X (list of strings) – column name or list of column names to use as X values to compute
the bivariate statistic. If no Y is provided, pairwise comparisons
among these variates are used instead.

	Y (list of strings) – column name or list of column names to use as Y values to compute
the bivariate statistic. if no Y is provided, pariwise comparisons
among the X variates are used instead.

	w (pysal weights object) – a weights object aligned with the dataframe. If not provided, this
is searched for in the dataframe’s metadata

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean denoting whether to operate on the dataframe inplace or to
return a series contaning the results of the computation. If
operating inplace, the derived columns will be named
‘column_moran_local_bv’

	pvalue (string [https://docs.python.org/2/library/string.html#module-string]) – a string denoting which pvalue should be returned. Refer to the
the Moran_Local_BV statistic’s documentation for available p-values

	outvals (list of strings) – list of arbitrary attributes to return as columns from the
Moran_Local_BV statistic

	**stat_kws (keyword arguments) – options to pass to the underlying statistic. For this, see the
documentation for the Moran_Local_BV statistic.

	Returns:	
	If inplace, None, and operation is conducted on dataframe in memory. Otherwise,

	returns a copy of the dataframe with the relevant columns attached.

See also

For, refer

	
class pysal.esda.moran.Moran_Rate(e, b, w, adjusted=True, transformation='r', permutations=999, two_tailed=True)

	Adjusted Moran’s I Global Autocorrelation Statistic for Rate
Variables [Assuncao1999]

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array]) – an event variable measured across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array]) – a population-at-risk variable measured across n spatial
units

	w (W) – spatial weights instance

	adjusted (boolean) – whether or not Moran’s I needs to be adjusted for rate
variable

	transformation ({'R', 'B', 'D', 'U', 'V'}) – weights transformation, default is row-standardized “r”.
Other options include
“B”: binary,
“D”: doubly-standardized,
“U”: untransformed (general weights),
“V”: variance-stabilizing.

	two_tailed (boolean) – If True (default), analytical p-values for Moran’s I are
two-tailed, otherwise they are one tailed.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of random permutations for calculation of pseudo
p_values

	
y

	array – rate variable computed from parameters e and b
if adjusted is True, y is standardized rates
otherwise, y is raw rates

	
w

	W – original w object

	
permutations

	int – number of permutations

	
I

	float – value of Moran’s I

	
EI

	float – expected value under normality assumption

	
VI_norm

	float – variance of I under normality assumption

	
seI_norm

	float – standard deviation of I under normality assumption

	
z_norm

	float – z-value of I under normality assumption

	
p_norm

	float – p-value of I under normality assumption

	
VI_rand

	float – variance of I under randomization assumption

	
seI_rand

	float – standard deviation of I under randomization assumption

	
z_rand

	float – z-value of I under randomization assumption

	
p_rand

	float – p-value of I under randomization assumption

	
two_tailed

	boolean – If True, p_norm and p_rand are two-tailed p-values,
otherwise they are one-tailed.

	
sim

	array – (if permutations>0)
vector of I values for permuted samples

	
p_sim

	array – (if permutations>0)
p-value based on permutations (one-sided)
null: spatial randomness
alternative: the observed I is extreme if it is
either extremely greater or extremely lower than the values
obtained from permutaitons

	
EI_sim

	float – (if permutations>0)
average value of I from permutations

	
VI_sim

	float – (if permutations>0)
variance of I from permutations

	
seI_sim

	float – (if permutations>0)
standard deviation of I under permutations.

	
z_sim

	float – (if permutations>0)
standardized I based on permutations

	
p_z_sim

	float – (if permutations>0)
p-value based on standard normal approximation from

Examples

>>> import pysal
>>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()
>>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))
>>> e = np.array(f.by_col('SID79'))
>>> b = np.array(f.by_col('BIR79'))
>>> mi = pysal.esda.moran.Moran_Rate(e, b, w, two_tailed=False)
>>> "%6.4f" % mi.I
'0.1662'
>>> "%6.4f" % mi.p_norm
'0.0042'

	
classmethod by_col(df, events, populations, w=None, inplace=False, pvalue='sim', outvals=None, swapname='', **stat_kws)

	Function to compute a Moran_Rate statistic on a dataframe

	Parameters:	
	df (pandas.DataFrame) – a pandas dataframe with a geometry column

	events (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – one or more names where events are stored

	populations (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – one or more names where the populations corresponding to the
events are stored. If one population column is provided, it is
used for all event columns. If more than one population column
is provided but there is not a population for every event
column, an exception will be raised.

	w (pysal weights object) – a weights object aligned with the dataframe. If not provided, this
is searched for in the dataframe’s metadata

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean denoting whether to operate on the dataframe inplace or to
return a series contaning the results of the computation. If
operating inplace, the derived columns will be named
‘column_moran_rate’

	pvalue (string [https://docs.python.org/2/library/string.html#module-string]) – a string denoting which pvalue should be returned. Refer to the
the Moran_Rate statistic’s documentation for available p-values

	outvals (list of strings) – list of arbitrary attributes to return as columns from the
Moran_Rate statistic

	**stat_kws (keyword arguments) – options to pass to the underlying statistic. For this, see the
documentation for the Moran_Rate statistic.

	Returns:	
	If inplace, None, and operation is conducted on dataframe in memory. Otherwise,

	returns a copy of the dataframe with the relevant columns attached.

See also

For, refer

	
class pysal.esda.moran.Moran_Local_Rate(e, b, w, adjusted=True, transformation='r', permutations=999, geoda_quads=False)

	Adjusted Local Moran Statistics for Rate Variables [Assuncao1999]

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), an event variable across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array]) – (n,1), a population-at-risk variable across n spatial units

	w (W) – weight instance assumed to be aligned with y

	adjusted (boolean) – whether or not local Moran statistics need to be adjusted for
rate variable

	transformation ({'R', 'B', 'D', 'U', 'V'}) – weights transformation, default is row-standardized “r”.
Other options include
“B”: binary,
“D”: doubly-standardized,
“U”: untransformed (general weights),
“V”: variance-stabilizing.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of random permutations for calculation of pseudo
p_values

	geoda_quads (boolean) – (default=False)
If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4
If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4

	
y

	array – rate variables computed from parameters e and b
if adjusted is True, y is standardized rates
otherwise, y is raw rates

	
w

	W – original w object

	
permutations

	int – number of random permutations for calculation of pseudo
p_values

	
I

	float – value of Moran’s I

	
q

	array – (if permutations>0)
values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL

	
sim

	array – (if permutations>0)
vector of I values for permuted samples

	
p_sim

	array – (if permutations>0)
p-value based on permutations (one-sided)
null: spatial randomness
alternative: the observed Ii is further away or extreme
from the median of simulated Iis. It is either extremely
high or extremely low in the distribution of simulated Is

	
EI_sim

	float – (if permutations>0)
average value of I from permutations

	
VI_sim

	float – (if permutations>0)
variance of I from permutations

	
seI_sim

	float – (if permutations>0)
standard deviation of I under permutations.

	
z_sim

	float – (if permutations>0)
standardized I based on permutations

	
p_z_sim

	float – (if permutations>0)
p-value based on standard normal approximation from
permutations (one-sided)
for two-sided tests, these values should be multiplied by 2

Examples

>>> import pysal as ps
>>> import numpy as np
>>> np.random.seed(10)
>>> w = ps.open(ps.examples.get_path("sids2.gal")).read()
>>> f = ps.open(ps.examples.get_path("sids2.dbf"))
>>> e = np.array(f.by_col('SID79'))
>>> b = np.array(f.by_col('BIR79'))
>>> lm = ps.esda.moran.Moran_Local_Rate(e, b, w, transformation = "r", permutations = 99)
>>> lm.q[:10]
array([2, 4, 3, 1, 2, 1, 1, 4, 2, 4])
>>> lm.p_z_sim[0]
0.39319552026912641
>>> lm = ps.esda.moran.Moran_Local_Rate(e, b, w, transformation = "r", permutations = 99, geoda_quads=True)
>>> lm.q[:10]
array([3, 4, 2, 1, 3, 1, 1, 4, 3, 4])

Note random components result is slightly different values across
architectures so the results have been removed from doctests and will be
moved into unittests that are conditional on architectures

	
classmethod by_col(df, events, populations, w=None, inplace=False, pvalue='sim', outvals=None, swapname='', **stat_kws)

	Function to compute a Moran_Local_Rate statistic on a dataframe

	Parameters:	
	df (pandas.DataFrame) – a pandas dataframe with a geometry column

	events (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – one or more names where events are stored

	populations (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – one or more names where the populations corresponding to the
events are stored. If one population column is provided, it is
used for all event columns. If more than one population column
is provided but there is not a population for every event
column, an exception will be raised.

	w (pysal weights object) – a weights object aligned with the dataframe. If not provided, this
is searched for in the dataframe’s metadata

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a boolean denoting whether to operate on the dataframe inplace or to
return a series contaning the results of the computation. If
operating inplace, the derived columns will be named ‘column_moran_local_rate’

	pvalue (string [https://docs.python.org/2/library/string.html#module-string]) – a string denoting which pvalue should be returned. Refer to the
the Moran_Local_Rate statistic’s documentation for available p-values

	outvals (list of strings) – list of arbitrary attributes to return as columns from the
Moran_Local_Rate statistic

	**stat_kws (keyword arguments) – options to pass to the underlying statistic. For this, see the
documentation for the Moran_Local_Rate statistic.

	Returns:	
	If inplace, None, and operation is conducted on dataframe in memory. Otherwise,

	returns a copy of the dataframe with the relevant columns attached.

See also

For, refer

 esda.smoothing — Smoothing of spatial rates

esda.smoothing — Smoothing of spatial rates

New in version 1.0.

	
class pysal.esda.smoothing.Excess_Risk(e, b)

	Excess Risk

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – event variable measured across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – population at risk variable measured across n spatial units

	
r

	array (n, 1) – execess risk values

Examples

Reading data in stl_hom.csv into stl to extract values
for event and population-at-risk variables

>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population.
Creating two arrays from these columns.

>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])

Creating an instance of Excess_Risk class using stl_e and stl_b

>>> er = Excess_Risk(stl_e, stl_b)

Extracting the excess risk values through the property r of the Excess_Risk instance, er

>>> er.r[:10]
array([0.20665681, 0.43613787, 0.42078261, 0.22066928, 0.57981596,
 0.35301709, 0.56407549, 0.17020994, 0.3052372 , 0.25821905])

	
class pysal.esda.smoothing.Empirical_Bayes(e, b)

	Aspatial Empirical Bayes Smoothing

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – event variable measured across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – population at risk variable measured across n spatial units

	
r

	array (n, 1) – rate values from Empirical Bayes Smoothing

Examples

Reading data in stl_hom.csv into stl to extract values
for event and population-at-risk variables

>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population.
Creating two arrays from these columns.

>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])

Creating an instance of Empirical_Bayes class using stl_e and stl_b

>>> eb = Empirical_Bayes(stl_e, stl_b)

Extracting the risk values through the property r of the Empirical_Bayes instance, eb

>>> eb.r[:10]
array([2.36718950e-05, 4.54539167e-05, 4.78114019e-05,
 2.76907146e-05, 6.58989323e-05, 3.66494122e-05,
 5.79952721e-05, 2.03064590e-05, 3.31152999e-05,
 3.02748380e-05])

	
class pysal.esda.smoothing.Spatial_Empirical_Bayes(e, b, w)

	Spatial Empirical Bayes Smoothing

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – event variable measured across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – population at risk variable measured across n spatial units

	w (spatial weights instance) –

	
r

	array (n, 1) – rate values from Empirical Bayes Smoothing

Examples

Reading data in stl_hom.csv into stl to extract values
for event and population-at-risk variables

>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population.
Creating two arrays from these columns.

>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])

Creating a spatial weights instance by reading in stl.gal file.

>>> stl_w = pysal.open(pysal.examples.get_path('stl.gal'), 'r').read()

Ensuring that the elements in the spatial weights instance are ordered
by the given sequential numbers from 1 to the number of observations in stl_hom.csv

>>> if not stl_w.id_order_set: stl_w.id_order = range(1,len(stl) + 1)

Creating an instance of Spatial_Empirical_Bayes class using stl_e, stl_b, and stl_w

>>> s_eb = Spatial_Empirical_Bayes(stl_e, stl_b, stl_w)

Extracting the risk values through the property r of s_eb

>>> s_eb.r[:10]
array([4.01485749e-05, 3.62437513e-05, 4.93034844e-05,
 5.09387329e-05, 3.72735210e-05, 3.69333797e-05,
 5.40245456e-05, 2.99806055e-05, 3.73034109e-05,
 3.47270722e-05])

	
class pysal.esda.smoothing.Spatial_Rate(e, b, w)

	Spatial Rate Smoothing

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – event variable measured across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – population at risk variable measured across n spatial units

	w (spatial weights instance) –

	
r

	array (n, 1) – rate values from spatial rate smoothing

Examples

Reading data in stl_hom.csv into stl to extract values
for event and population-at-risk variables

>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population.
Creating two arrays from these columns.

>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])

Creating a spatial weights instance by reading in stl.gal file.

>>> stl_w = pysal.open(pysal.examples.get_path('stl.gal'), 'r').read()

Ensuring that the elements in the spatial weights instance are ordered
by the given sequential numbers from 1 to the number of observations in stl_hom.csv

>>> if not stl_w.id_order_set: stl_w.id_order = range(1,len(stl) + 1)

Creating an instance of Spatial_Rate class using stl_e, stl_b, and stl_w

>>> sr = Spatial_Rate(stl_e,stl_b,stl_w)

Extracting the risk values through the property r of sr

>>> sr.r[:10]
array([4.59326407e-05, 3.62437513e-05, 4.98677081e-05,
 5.09387329e-05, 3.72735210e-05, 4.01073093e-05,
 3.79372794e-05, 3.27019246e-05, 4.26204928e-05,
 3.47270722e-05])

	
class pysal.esda.smoothing.Kernel_Smoother(e, b, w)

	Kernal smoothing

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – event variable measured across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – population at risk variable measured across n spatial units

	w (Kernel weights instance) –

	
r

	array (n, 1) – rate values from spatial rate smoothing

Examples

Creating an array including event values for 6 regions

>>> e = np.array([10, 1, 3, 4, 2, 5])

Creating another array including population-at-risk values for the 6 regions

>>> b = np.array([100, 15, 20, 20, 80, 90])

Creating a list containing geographic coordinates of the 6 regions’ centroids

>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]

Creating a kernel-based spatial weights instance by using the above points

>>> kw=Kernel(points)

Ensuring that the elements in the kernel-based weights are ordered
by the given sequential numbers from 0 to 5

>>> if not kw.id_order_set: kw.id_order = range(0,len(points))

Applying kernel smoothing to e and b

>>> kr = Kernel_Smoother(e, b, kw)

Extracting the smoothed rates through the property r of the Kernel_Smoother instance

>>> kr.r
array([0.10543301, 0.0858573 , 0.08256196, 0.09884584, 0.04756872,
 0.04845298])

	
class pysal.esda.smoothing.Age_Adjusted_Smoother(e, b, w, s, alpha=0.05)

	Age-adjusted rate smoothing

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array] (n*h, 1)) – event variable measured for each age group across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array] (n*h, 1)) – population at risk variable measured for each age group across n spatial units

	w (spatial weights instance) –

	s (array [https://docs.python.org/2/library/array.html#module-array] (n*h, 1)) – standard population for each age group across n spatial units

	
r

	array (n, 1) – rate values from spatial rate smoothing

Notes

Weights used to smooth age-specific events and populations are simple binary weights

Examples

Creating an array including 12 values for the 6 regions with 2 age groups

>>> e = np.array([10, 8, 1, 4, 3, 5, 4, 3, 2, 1, 5, 3])

Creating another array including 12 population-at-risk values for the 6 regions

>>> b = np.array([100, 90, 15, 30, 25, 20, 30, 20, 80, 80, 90, 60])

For age adjustment, we need another array of values containing standard population
s includes standard population data for the 6 regions

>>> s = np.array([98, 88, 15, 29, 20, 23, 33, 25, 76, 80, 89, 66])

Creating a list containing geographic coordinates of the 6 regions’ centroids

>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]

Creating a kernel-based spatial weights instance by using the above points

>>> kw=Kernel(points)

Ensuring that the elements in the kernel-based weights are ordered
by the given sequential numbers from 0 to 5

>>> if not kw.id_order_set: kw.id_order = range(0,len(points))

Applying age-adjusted smoothing to e and b

>>> ar = Age_Adjusted_Smoother(e, b, kw, s)

Extracting the smoothed rates through the property r of the Age_Adjusted_Smoother instance

>>> ar.r
array([0.10519625, 0.08494318, 0.06440072, 0.06898604, 0.06952076,
 0.05020968])

	
classmethod by_col(df, e, b, w=None, s=None, **kwargs)

	Compute smoothing by columns in a dataframe.

	Parameters:	
	df (pandas.DataFrame) – a dataframe containing the data to be smoothed

	e (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – the name or names of columns containing event variables to be
smoothed

	b (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – the name or names of columns containing the population
variables to be smoothed

	w (pysal.weights.W or list of pysal.weights.W) – the spatial weights object or objects to use with the
event-population pairs. If not provided and a weights object
is in the dataframe’s metadata, that weights object will be
used.

	s (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – the name or names of columns to use as a standard population
variable for the events e and at-risk populations b.

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a flag denoting whether to output a copy of df with the
relevant smoothed columns appended, or to append the columns
directly to df itself.

	**kwargs (optional keyword arguments) – optional keyword options that are passed directly to the
smoother.

	Returns:	
	a copy of df containing the columns. Or, if inplace, this returns

	None, but implicitly adds columns to df.

	
class pysal.esda.smoothing.Disk_Smoother(e, b, w)

	Locally weighted averages or disk smoothing

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – event variable measured across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – population at risk variable measured across n spatial units

	w (spatial weights matrix) –

	
r

	array (n, 1) – rate values from disk smoothing

Examples

Reading data in stl_hom.csv into stl to extract values
for event and population-at-risk variables

>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population.
Creating two arrays from these columns.

>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])

Creating a spatial weights instance by reading in stl.gal file.

>>> stl_w = pysal.open(pysal.examples.get_path('stl.gal'), 'r').read()

Ensuring that the elements in the spatial weights instance are ordered
by the given sequential numbers from 1 to the number of observations in stl_hom.csv

>>> if not stl_w.id_order_set: stl_w.id_order = range(1,len(stl) + 1)

Applying disk smoothing to stl_e and stl_b

>>> sr = Disk_Smoother(stl_e,stl_b,stl_w)

Extracting the risk values through the property r of s_eb

>>> sr.r[:10]
array([4.56502262e-05, 3.44027685e-05, 3.38280487e-05,
 4.78530468e-05, 3.12278573e-05, 2.22596997e-05,
 2.67074856e-05, 2.36924573e-05, 3.48801587e-05,
 3.09511832e-05])

	
class pysal.esda.smoothing.Spatial_Median_Rate(e, b, w, aw=None, iteration=1)

	Spatial Median Rate Smoothing

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – event variable measured across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – population at risk variable measured across n spatial units

	w (spatial weights instance) –

	aw (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – auxiliary weight variable measured across n spatial units

	iteration (integer) – the number of interations

	
r

	array (n, 1) – rate values from spatial median rate smoothing

	
w

	spatial weights instance

	
aw

	array (n, 1) – auxiliary weight variable measured across n spatial units

Examples

Reading data in stl_hom.csv into stl to extract values
for event and population-at-risk variables

>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population.
Creating two arrays from these columns.

>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])

Creating a spatial weights instance by reading in stl.gal file.

>>> stl_w = pysal.open(pysal.examples.get_path('stl.gal'), 'r').read()

Ensuring that the elements in the spatial weights instance are ordered
by the given sequential numbers from 1 to the number of observations in stl_hom.csv

>>> if not stl_w.id_order_set: stl_w.id_order = range(1,len(stl) + 1)

Computing spatial median rates without iteration

>>> smr0 = Spatial_Median_Rate(stl_e,stl_b,stl_w)

Extracting the computed rates through the property r of the Spatial_Median_Rate instance

>>> smr0.r[:10]
array([3.96047383e-05, 3.55386859e-05, 3.28308921e-05,
 4.30731238e-05, 3.12453969e-05, 1.97300409e-05,
 3.10159267e-05, 2.19279204e-05, 2.93763432e-05,
 2.93763432e-05])

Recomputing spatial median rates with 5 iterations

>>> smr1 = Spatial_Median_Rate(stl_e,stl_b,stl_w,iteration=5)

Extracting the computed rates through the property r of the Spatial_Median_Rate instance

>>> smr1.r[:10]
array([3.11293620e-05, 2.95956330e-05, 3.11293620e-05,
 3.10159267e-05, 2.98436066e-05, 2.76406686e-05,
 3.10159267e-05, 2.94788171e-05, 2.99460806e-05,
 2.96981070e-05])

Computing spatial median rates by using the base variable as auxilliary weights
without iteration

>>> smr2 = Spatial_Median_Rate(stl_e,stl_b,stl_w,aw=stl_b)

Extracting the computed rates through the property r of the Spatial_Median_Rate instance

>>> smr2.r[:10]
array([5.77412020e-05, 4.46449551e-05, 5.77412020e-05,
 5.77412020e-05, 4.46449551e-05, 3.61363528e-05,
 3.61363528e-05, 4.46449551e-05, 5.77412020e-05,
 4.03987355e-05])

Recomputing spatial median rates by using the base variable as auxilliary weights
with 5 iterations

>>> smr3 = Spatial_Median_Rate(stl_e,stl_b,stl_w,aw=stl_b,iteration=5)

Extracting the computed rates through the property r of the Spatial_Median_Rate instance

>>> smr3.r[:10]
array([3.61363528e-05, 4.46449551e-05, 3.61363528e-05,
 3.61363528e-05, 4.46449551e-05, 3.61363528e-05,
 3.61363528e-05, 4.46449551e-05, 3.61363528e-05,
 4.46449551e-05])
>>>

	
class pysal.esda.smoothing.Spatial_Filtering(bbox, data, e, b, x_grid, y_grid, r=None, pop=None)

	Spatial Filtering

	Parameters:	
	bbox (a list of two lists where each list is a pair of coordinates) – a bounding box for the entire n spatial units

	data (array [https://docs.python.org/2/library/array.html#module-array] (n, 2)) – x, y coordinates

	e (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – event variable measured across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – population at risk variable measured across n spatial units

	x_grid (integer) – the number of cells on x axis

	y_grid (integer) – the number of cells on y axis

	r (float [https://docs.python.org/2/library/functions.html#float]) – fixed radius of a moving window

	pop (integer) – population threshold to create adaptive moving windows

	
grid

	array (x_grid*y_grid, 2) – x, y coordinates for grid points

	
r

	array (x_grid*y_grid, 1) – rate values for grid points

Notes

No tool is provided to find an optimal value for r or pop.

Examples

Reading data in stl_hom.csv into stl to extract values
for event and population-at-risk variables

>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')

Reading the stl data in the WKT format so that
we can easily extract polygon centroids

>>> fromWKT = pysal.core.util.WKTParser()
>>> stl.cast('WKT',fromWKT)

Extracting polygon centroids through iteration

>>> d = np.array([i.centroid for i in stl[:,0]])

Specifying the bounding box for the stl_hom data.
The bbox should includes two points for the left-bottom and the right-top corners

>>> bbox = [[-92.700676, 36.881809], [-87.916573, 40.3295669]]

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population.
Creating two arrays from these columns.

>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])

Applying spatial filtering by using a 10*10 mesh grid and a moving window
with 2 radius

>>> sf_0 = Spatial_Filtering(bbox,d,stl_e,stl_b,10,10,r=2)

Extracting the resulting rates through the property r of the Spatial_Filtering instance

>>> sf_0.r[:10]
array([4.23561763e-05, 4.45290850e-05, 4.56456221e-05,
 4.49133384e-05, 4.39671835e-05, 4.44903042e-05,
 4.19845497e-05, 4.11936548e-05, 3.93463504e-05,
 4.04376345e-05])

Applying another spatial filtering by allowing the moving window to grow until
600000 people are found in the window

>>> sf = Spatial_Filtering(bbox,d,stl_e,stl_b,10,10,pop=600000)

Checking the size of the reulting array including the rates

>>> sf.r.shape
(100,)

Extracting the resulting rates through the property r of the Spatial_Filtering instance

>>> sf.r[:10]
array([3.73728738e-05, 4.04456300e-05, 4.04456300e-05,
 3.81035327e-05, 4.54831940e-05, 4.54831940e-05,
 3.75658628e-05, 3.75658628e-05, 3.75658628e-05,
 3.75658628e-05])

	
classmethod by_col(df, e, b, x_grid, y_grid, geom_col='geometry', **kwargs)

	Compute smoothing by columns in a dataframe. The bounding box and point
information is computed from the geometry column.

	Parameters:	
	df (pandas.DataFrame) – a dataframe containing the data to be smoothed

	e (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – the name or names of columns containing event variables to be
smoothed

	b (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – the name or names of columns containing the population
variables to be smoothed

	x_grid (integer) – number of grid cells to use along the x-axis

	y_grid (integer) – number of grid cells to use along the y-axis

	geom_col (string [https://docs.python.org/2/library/string.html#module-string]) – the name of the column in the dataframe containing the
geometry information.

	**kwargs (optional keyword arguments) – optional keyword options that are passed directly to the
smoother.

	Returns:	
	a new dataframe of dimension (x_grid*y_grid, 3), containing the

	coordinates of the grid cells and the rates associated with those grid

	cells.

	
class pysal.esda.smoothing.Headbanging_Triples(data, w, k=5, t=3, angle=135.0, edgecor=False)

	Generate a pseudo spatial weights instance that contains headbanging triples

	Parameters:	
	data (array [https://docs.python.org/2/library/array.html#module-array] (n, 2)) – numpy array of x, y coordinates

	w (spatial weights instance) –

	k (integer number of nearest neighbors) –

	t (integer) – the number of triples

	angle (integer between 0 and 180) – the angle criterium for a set of triples

	edgecorr (boolean) – whether or not correction for edge points is made

	
triples

	dictionary – key is observation record id, value is a list of lists of triple ids

	
extra

	dictionary – key is observation record id, value is a list of the following:
tuple of original triple observations
distance between original triple observations
distance between an original triple observation and its extrapolated point

Examples

importing k-nearest neighbor weights creator

>>> from pysal import knnW_from_array

Reading data in stl_hom.csv into stl_db to extract values
for event and population-at-risk variables

>>> stl_db = pysal.open(pysal.examples.get_path('stl_hom.csv'),'r')

Reading the stl data in the WKT format so that
we can easily extract polygon centroids

>>> fromWKT = pysal.core.util.WKTParser()
>>> stl_db.cast('WKT',fromWKT)

Extracting polygon centroids through iteration

>>> d = np.array([i.centroid for i in stl_db[:,0]])

Using the centroids, we create a 5-nearst neighbor weights

>>> w = knnW_from_array(d,k=5)

Ensuring that the elements in the spatial weights instance are ordered
by the order of stl_db’s IDs

>>> if not w.id_order_set: w.id_order = w.id_order

Finding headbaning triples by using 5 nearest neighbors

>>> ht = Headbanging_Triples(d,w,k=5)

Checking the members of triples

>>> for k, item in ht.triples.items()[:5]: print k, item
0 [(5, 6), (10, 6)]
1 [(4, 7), (4, 14), (9, 7)]
2 [(0, 8), (10, 3), (0, 6)]
3 [(4, 2), (2, 12), (8, 4)]
4 [(8, 1), (12, 1), (8, 9)]

Opening sids2.shp file

>>> sids = pysal.open(pysal.examples.get_path('sids2.shp'),'r')

Extracting the centroids of polygons in the sids data

>>> sids_d = np.array([i.centroid for i in sids])

Creating a 5-nearest neighbors weights from the sids centroids

>>> sids_w = knnW_from_array(sids_d,k=5)

Ensuring that the members in sids_w are ordered by
the order of sids_d’s ID

>>> if not sids_w.id_order_set: sids_w.id_order = sids_w.id_order

Finding headbaning triples by using 5 nearest neighbors

>>> s_ht = Headbanging_Triples(sids_d,sids_w,k=5)

Checking the members of the found triples

>>> for k, item in s_ht.triples.items()[:5]: print k, item
0 [(1, 18), (1, 21), (1, 33)]
1 [(2, 40), (2, 22), (22, 40)]
2 [(39, 22), (1, 9), (39, 17)]
3 [(16, 6), (19, 6), (20, 6)]
4 [(5, 15), (27, 15), (35, 15)]

Finding headbanging triples by using 5 nearest neighbors with edge correction

>>> s_ht2 = Headbanging_Triples(sids_d,sids_w,k=5,edgecor=True)

Checking the members of the found triples

>>> for k, item in s_ht2.triples.items()[:5]: print k, item
0 [(1, 18), (1, 21), (1, 33)]
1 [(2, 40), (2, 22), (22, 40)]
2 [(39, 22), (1, 9), (39, 17)]
3 [(16, 6), (19, 6), (20, 6)]
4 [(5, 15), (27, 15), (35, 15)]

Checking the extrapolated point that is introduced into the triples
during edge correction

>>> extrapolated = s_ht2.extra[72]

Checking the observation IDs constituting the extrapolated triple

>>> extrapolated[0]
(89, 77)

Checking the distances between the extraploated point and the observation 89 and 77

>>> round(extrapolated[1],5), round(extrapolated[2],6)
(0.33753, 0.302707)

	
class pysal.esda.smoothing.Headbanging_Median_Rate(e, b, t, aw=None, iteration=1)

	Headbaning Median Rate Smoothing

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – event variable measured across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – population at risk variable measured across n spatial units

	t (Headbanging_Triples instance) –

	aw (array [https://docs.python.org/2/library/array.html#module-array] (n, 1)) – auxilliary weight variable measured across n spatial units

	iteration (integer) – the number of iterations

	
r

	array (n, 1) – rate values from headbanging median smoothing

Examples

importing k-nearest neighbor weights creator

>>> from pysal import knnW_from_array

opening the sids2 shapefile

>>> sids = pysal.open(pysal.examples.get_path('sids2.shp'), 'r')

extracting the centroids of polygons in the sids2 data

>>> sids_d = np.array([i.centroid for i in sids])

creating a 5-nearest neighbors weights from the centroids

>>> sids_w = knnW_from_array(sids_d,k=5)

ensuring that the members in sids_w are ordered

>>> if not sids_w.id_order_set: sids_w.id_order = sids_w.id_order

	finding headbanging triples by using 5 neighbors

	return outdf

>>> s_ht = Headbanging_Triples(sids_d,sids_w,k=5)

reading in the sids2 data table

>>> sids_db = pysal.open(pysal.examples.get_path('sids2.dbf'), 'r')

extracting the 10th and 9th columns in the sids2.dbf and
using data values as event and population-at-risk variables

>>> s_e, s_b = np.array(sids_db[:,9]), np.array(sids_db[:,8])

computing headbanging median rates from s_e, s_b, and s_ht

>>> sids_hb_r = Headbanging_Median_Rate(s_e,s_b,s_ht)

extracting the computed rates through the property r of the Headbanging_Median_Rate instance

>>> sids_hb_r.r[:5]
array([0.00075586, 0. , 0.0008285 , 0.0018315 , 0.00498891])

recomputing headbanging median rates with 5 iterations

>>> sids_hb_r2 = Headbanging_Median_Rate(s_e,s_b,s_ht,iteration=5)

extracting the computed rates through the property r of the Headbanging_Median_Rate instance

>>> sids_hb_r2.r[:5]
array([0.0008285 , 0.00084331, 0.00086896, 0.0018315 , 0.00498891])

recomputing headbanging median rates by considring a set of auxilliary weights

>>> sids_hb_r3 = Headbanging_Median_Rate(s_e,s_b,s_ht,aw=s_b)

extracting the computed rates through the property r of the Headbanging_Median_Rate instance

>>> sids_hb_r3.r[:5]
array([0.00091659, 0. , 0.00156838, 0.0018315 , 0.00498891])

	
classmethod by_col(df, e, b, t=None, geom_col='geometry', inplace=False, **kwargs)

	Compute smoothing by columns in a dataframe. The bounding box and point
information is computed from the geometry column.

	Parameters:	
	df (pandas.DataFrame) – a dataframe containing the data to be smoothed

	e (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – the name or names of columns containing event variables to be
smoothed

	b (string [https://docs.python.org/2/library/string.html#module-string] or list of strings) – the name or names of columns containing the population
variables to be smoothed

	t (Headbanging_Triples instance or list of Headbanging_Triples) – list of headbanging triples instances. If not provided, this
is computed from the geometry column of the dataframe.

	geom_col (string [https://docs.python.org/2/library/string.html#module-string]) – the name of the column in the dataframe containing the
geometry information.

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a flag denoting whether to output a copy of df with the
relevant smoothed columns appended, or to append the columns
directly to df itself.

	**kwargs (optional keyword arguments) – optional keyword options that are passed directly to the
smoother.

	Returns:	
	a new dataframe containing the smoothed Headbanging Median Rates for the

	event/population pairs. If done inplace, there is no return value and

	df is modified in place.

	
pysal.esda.smoothing.flatten(l, unique=True)

	flatten a list of lists

	Parameters:	
	l (list) – of lists

	unique (boolean) – whether or not only unique items are wanted (default=True)

	Returns:	of single items

	Return type:	list

Examples

Creating a sample list whose elements are lists of integers

>>> l = [[1, 2], [3, 4,], [5, 6]]

Applying flatten function

>>> flatten(l)
[1, 2, 3, 4, 5, 6]

	
pysal.esda.smoothing.weighted_median(d, w)

	A utility function to find a median of d based on w

	Parameters:	
	d (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 1), variable for which median will be found

	w (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 1), variable on which d’s median will be decided

Notes

d and w are arranged in the same order

	Returns:	median of d

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

Examples

Creating an array including five integers.
We will get the median of these integers.

>>> d = np.array([5,4,3,1,2])

Creating another array including weight values for the above integers.
The median of d will be decided with a consideration to these weight
values.

>>> w = np.array([10, 22, 9, 2, 5])

Applying weighted_median function

>>> weighted_median(d, w)
4

	
pysal.esda.smoothing.sum_by_n(d, w, n)

	
	A utility function to summarize a data array into n values

	after weighting the array with another weight array w

	Parameters:	
	d (array [https://docs.python.org/2/library/array.html#module-array]) – (t, 1), numerical values

	w (array [https://docs.python.org/2/library/array.html#module-array]) – (t, 1), numerical values for weighting

	n (integer) – the number of groups
t = c*n (c is a constant)

	Returns:	(n, 1), an array with summarized values

	Return type:	array [https://docs.python.org/2/library/array.html#module-array]

Examples

Creating an array including four integers.
We will compute weighted means for every two elements.

>>> d = np.array([10, 9, 20, 30])

Here is another array with the weight values for d’s elements.

>>> w = np.array([0.5, 0.1, 0.3, 0.8])

We specify the number of groups for which the weighted mean is computed.

>>> n = 2

Applying sum_by_n function

>>> sum_by_n(d, w, n)
array([5.9, 30.])

	
pysal.esda.smoothing.crude_age_standardization(e, b, n)

	A utility function to compute rate through crude age standardization

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), event variable measured for each age group across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), population at risk variable measured for each age group across n spatial units

	n (integer) – the number of spatial units

Notes

e and b are arranged in the same order

	Returns:	(n, 1), age standardized rate

	Return type:	array [https://docs.python.org/2/library/array.html#module-array]

Examples

Creating an array of an event variable (e.g., the number of cancer patients)
for 2 regions in each of which 4 age groups are available.
The first 4 values are event values for 4 age groups in the region 1,
and the next 4 values are for 4 age groups in the region 2.

>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])

Creating another array of a population-at-risk variable (e.g., total population)
for the same two regions.
The order for entering values is the same as the case of e.

>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])

Specifying the number of regions.

>>> n = 2

Applying crude_age_standardization function to e and b

>>> crude_age_standardization(e, b, n)
array([0.2375 , 0.26666667])

	
pysal.esda.smoothing.direct_age_standardization(e, b, s, n, alpha=0.05)

	A utility function to compute rate through direct age standardization

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), event variable measured for each age group across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), population at risk variable measured for each age group across n spatial units

	s (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), standard population for each age group across n spatial units

	n (integer) – the number of spatial units

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – significance level for confidence interval

Notes

e, b, and s are arranged in the same order

	Returns:	a list of n tuples; a tuple has a rate and its lower and upper limits
age standardized rates and confidence intervals

	Return type:	list

Examples

Creating an array of an event variable (e.g., the number of cancer patients)
for 2 regions in each of which 4 age groups are available.
The first 4 values are event values for 4 age groups in the region 1,
and the next 4 values are for 4 age groups in the region 2.

>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])

Creating another array of a population-at-risk variable (e.g., total population)
for the same two regions.
The order for entering values is the same as the case of e.

>>> b = np.array([1000, 1000, 1100, 900, 1000, 900, 1100, 900])

For direct age standardization, we also need the data for standard population.
Standard population is a reference population-at-risk (e.g., population distribution for the U.S.)
whose age distribution can be used as a benchmarking point for comparing age distributions
across regions (e.g., population distribution for Arizona and California).
Another array including standard population is created.

>>> s = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900])

Specifying the number of regions.

>>> n = 2

Applying direct_age_standardization function to e and b

>>> [i[0] for i in direct_age_standardization(e, b, s, n)]
[0.023744019138755977, 0.026650717703349279]

	
pysal.esda.smoothing.indirect_age_standardization(e, b, s_e, s_b, n, alpha=0.05)

	A utility function to compute rate through indirect age standardization

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), event variable measured for each age group across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), population at risk variable measured for each age group across n spatial units

	s_e (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), event variable measured for each age group across n spatial units in a standard population

	s_b (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), population variable measured for each age group across n spatial units in a standard population

	n (integer) – the number of spatial units

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – significance level for confidence interval

Notes

e, b, s_e, and s_b are arranged in the same order

	Returns:	a list of n tuples; a tuple has a rate and its lower and upper limits
age standardized rate

	Return type:	list

Examples

Creating an array of an event variable (e.g., the number of cancer patients)
for 2 regions in each of which 4 age groups are available.
The first 4 values are event values for 4 age groups in the region 1,
and the next 4 values are for 4 age groups in the region 2.

>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])

Creating another array of a population-at-risk variable (e.g., total population)
for the same two regions.
The order for entering values is the same as the case of e.

>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])

For indirect age standardization, we also need the data for standard population and event.
Standard population is a reference population-at-risk (e.g., population distribution for the U.S.)
whose age distribution can be used as a benchmarking point for comparing age distributions
across regions (e.g., popoulation distribution for Arizona and California).
When the same concept is applied to the event variable,
we call it standard event (e.g., the number of cancer patients in the U.S.).
Two additional arrays including standard population and event are created.

>>> s_e = np.array([100, 45, 120, 100, 50, 30, 200, 80])
>>> s_b = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900])

Specifying the number of regions.

>>> n = 2

Applying indirect_age_standardization function to e and b

>>> [i[0] for i in indirect_age_standardization(e, b, s_e, s_b, n)]
[0.23723821989528798, 0.2610803324099723]

	
pysal.esda.smoothing.standardized_mortality_ratio(e, b, s_e, s_b, n)

	A utility function to compute standardized mortality ratio (SMR).

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), event variable measured for each age group across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), population at risk variable measured for each age group across n spatial units

	s_e (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), event variable measured for each age group across n spatial units in a standard population

	s_b (array [https://docs.python.org/2/library/array.html#module-array]) – (n*h, 1), population variable measured for each age group across n spatial units in a standard population

	n (integer) – the number of spatial units

Notes

e, b, s_e, and s_b are arranged in the same order

	Returns:	(nx1)

	Return type:	array [https://docs.python.org/2/library/array.html#module-array]

Examples

Creating an array of an event variable (e.g., the number of cancer patients)
for 2 regions in each of which 4 age groups are available.
The first 4 values are event values for 4 age groups in the region 1,
and the next 4 values are for 4 age groups in the region 2.

>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])

Creating another array of a population-at-risk variable (e.g., total population)
for the same two regions.
The order for entering values is the same as the case of e.

>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])

To compute standardized mortality ratio (SMR),
we need two additional arrays for standard population and event.
Creating s_e and s_b for standard event and population, respectively.

>>> s_e = np.array([100, 45, 120, 100, 50, 30, 200, 80])
>>> s_b = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900])

Specifying the number of regions.

>>> n = 2

Applying indirect_age_standardization function to e and b

>>> standardized_mortality_ratio(e, b, s_e, s_b, n)
array([2.48691099, 2.73684211])

	
pysal.esda.smoothing.choynowski(e, b, n, threshold=None)

	Choynowski map probabilities [Choynowski1959] .

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array](n*h, 1)) – event variable measured for each age group across n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array](n*h, 1)) – population at risk variable measured for each age group across n spatial units

	n (integer) – the number of spatial units

	threshold (float [https://docs.python.org/2/library/functions.html#float]) – Returns zero for any p-value greater than threshold

Notes

e and b are arranged in the same order

	Returns:	

	Return type:	array [https://docs.python.org/2/library/array.html#module-array] (nx1)

Examples

Creating an array of an event variable (e.g., the number of cancer patients)
for 2 regions in each of which 4 age groups are available.
The first 4 values are event values for 4 age groups in the region 1,
and the next 4 values are for 4 age groups in the region 2.

>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])

Creating another array of a population-at-risk variable (e.g., total population)
for the same two regions.
The order for entering values is the same as the case of e.

>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])

Specifying the number of regions.

>>> n = 2

Applying indirect_age_standardization function to e and b

>>> print choynowski(e, b, n)
[0.30437751 0.29367033]

	
pysal.esda.smoothing.assuncao_rate(e, b)

	The standardized rates where the mean and stadard deviation used for
the standardization are those of Empirical Bayes rate estimates
The standardized rates resulting from this function are used to compute
Moran’s I corrected for rate variables [Choynowski1959] .

	Parameters:	
	e (array [https://docs.python.org/2/library/array.html#module-array](n, 1)) – event variable measured at n spatial units

	b (array [https://docs.python.org/2/library/array.html#module-array](n, 1)) – population at risk variable measured at n spatial units

Notes

e and b are arranged in the same order

	Returns:	

	Return type:	array [https://docs.python.org/2/library/array.html#module-array] (nx1)

Examples

Creating an array of an event variable (e.g., the number of cancer patients)
for 8 regions.

>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])

Creating another array of a population-at-risk variable (e.g., total population)
for the same 8 regions.
The order for entering values is the same as the case of e.

>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])

Computing the rates

>>> print assuncao_rate(e, b)[:4]
[1.04319254 -0.04117865 -0.56539054 -1.73762547]

 pysal.inequality — Spatial Inequality Analysis

pysal.inequality — Spatial Inequality Analysis

	inequality.gini – Gini inequality and decomposition measures

	inequality.theil – Theil inequality and decomposition measures

 inequality.gini – Gini inequality and decomposition measures

inequality.gini – Gini inequality and decomposition measures

The inequality.gini module provides Gini inequality based measures

New in version 1.6.

Gini based Inequality Metrics

	
class pysal.inequality.gini.Gini(x)

	Classic Gini coefficient in absolute deviation form

	Parameters:	y (array [https://docs.python.org/2/library/array.html#module-array] (n,1)) – attribute

	
g

	float – Gini coefficient

	
class pysal.inequality.gini.Gini_Spatial(x, w, permutations=99)

	Spatial Gini coefficient

Provides for computationally based inference regarding the contribution of
spatial neighbor pairs to overall inequality across a set of regions. [Rey2013]

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array] (n,1)) – attribute

	w (binary spatial weights object) –

	permutations (int [https://docs.python.org/2/library/functions.html#int] (default = 99)) – number of permutations for inference

	
g

	float – Gini coefficient

	
wg

	float – Neighbor inequality component (geographic inequality)

	
wcg

	float – Non-neighbor inequality component (geographic complement inequality)

	
wcg_share

	float – Share of inequality in non-neighbor component

	
If Permuations > 0

	

	
p_sim

	float – pseudo p-value for spatial gini

	
e_wcg

	float – expected value of non-neighbor inequality component (level) from permutations

	
s_wcg

	float – standard deviation non-neighbor inequality component (level) from permutations

	
z_wcg

	float – z-value non-neighbor inequality component (level) from permutations

	
p_z_sim

	float – pseudo p-value based on standard normal approximation of permutation based values

Examples

>>> import pysal
>>> import numpy as np

Use data from the 32 Mexican States, Decade frequency 1940-2010

>>> f=pysal.open(pysal.examples.get_path("mexico.csv"))
>>> vnames=["pcgdp%d"%dec for dec in range(1940,2010,10)]
>>> y=np.transpose(np.array([f.by_col[v] for v in vnames]))

Define regime neighbors

>>> regimes=np.array(f.by_col('hanson98'))
>>> w = pysal.block_weights(regimes)
>>> np.random.seed(12345)
>>> gs = pysal.inequality.gini.Gini_Spatial(y[:,0],w)
>>> gs.p_sim
0.040000000000000001
>>> gs.wcg
4353856.0
>>> gs.e_wcg
4170356.7474747472

Thus, the amount of inequality between pairs of states that are not in the
same regime (neighbors) is significantly higher than what is expected
under the null of random spatial inequality.

 inequality.theil – Theil inequality and decomposition measures

inequality.theil – Theil inequality and decomposition measures

The inequality.theil module provides Theil inequality based measures

New in version 1.0.

Theil Inequality metrics

	
class pysal.inequality.theil.Theil(y)

	Classic Theil measure of inequality

[image: T = \sum_{i=1}^n \left(\frac{y_i}{\sum_{i=1}^n y_i} \ln \left[N \frac{y_i}{\sum_{i=1}^n y_i}\right] \right)]

	Parameters:	y (array [https://docs.python.org/2/library/array.html#module-array] (n,t) or (n,)) – with n taken as the observations across which inequality is
calculated. If y is (n,) then a scalar inequality value is
determined. If y is (n,t) then an array of inequality values are
determined, one value for each column in y.

	
T

	array (t,) or (1,) – Theil’s T for each column of y

Notes

This computation involves natural logs. To prevent ln[0] from occurring, a
small value is added to each element of y before beginning the computation.

Examples

>>> import pysal
>>> f=pysal.open(pysal.examples.get_path("mexico.csv"))
>>> vnames=["pcgdp%d"%dec for dec in range(1940,2010,10)]
>>> y=np.transpose(np.array([f.by_col[v] for v in vnames]))
>>> theil_y=Theil(y)
>>> theil_y.T
array([0.20894344, 0.15222451, 0.10472941, 0.10194725, 0.09560113,
 0.10511256, 0.10660832])

	
class pysal.inequality.theil.TheilD(y, partition)

	Decomposition of Theil’s T based on partitioning of
observations into exhaustive and mutually exclusive groups

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array] (n,t) or (n,)) – with n taken as the observations across which inequality is
calculated If y is (n,) then a scalar inequality value is
determined. If y is (n,t) then an array of inequality values are
determined, one value for each column in y.

	partition (array [https://docs.python.org/2/library/array.html#module-array] (n,)) – elements indicating which partition each observation belongs
to. These are assumed to be exhaustive.

	
T

	array (n,t) or (n,) – global inequality T

	
bg

	array (n,t) or (n,) – between group inequality

	
wg

	array (n,t) or (n,) – within group inequality

Examples

>>> import pysal
>>> f=pysal.open(pysal.examples.get_path("mexico.csv"))
>>> vnames=["pcgdp%d"%dec for dec in range(1940,2010,10)]
>>> y=np.transpose(np.array([f.by_col[v] for v in vnames]))
>>> regimes=np.array(f.by_col('hanson98'))
>>> theil_d=TheilD(y,regimes)
>>> theil_d.bg
array([0.0345889 , 0.02816853, 0.05260921, 0.05931219, 0.03205257,
 0.02963731, 0.03635872])
>>> theil_d.wg
array([0.17435454, 0.12405598, 0.0521202 , 0.04263506, 0.06354856,
 0.07547525, 0.0702496])

	
class pysal.inequality.theil.TheilDSim(y, partition, permutations=99)

	Random permutation based inference on Theil’s inequality decomposition.

Provides for computationally based inference regarding the inequality
decomposition using random spatial permutations. [Rey2004b]

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array] (n,t) or (n,)) – with n taken as the observations across which inequality is
calculated If y is (n,) then a scalar inequality value is
determined. If y is (n,t) then an array of inequality values are
determined, one value for each column in y.

	partition (array [https://docs.python.org/2/library/array.html#module-array] (n,)) – elements indicating which partition each observation belongs
to. These are assumed to be exhaustive.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – Number of random spatial permutations for computationally
based inference on the decomposition.

	
observed

	array (n,t) or (n,) – TheilD instance for the observed data.

	
bg

	array (permutations+1,t) – between group inequality

	
bg_pvalue

	array (t,1) – p-value for the between group measure. Measures the
percentage of the realized values that were greater than
or equal to the observed bg value. Includes the observed
value.

	
wg

	array (size=permutations+1) – within group inequality Depending on the shape of y, 1 or 2-dimensional

Examples

>>> import pysal
>>> f=pysal.open(pysal.examples.get_path("mexico.csv"))
>>> vnames=["pcgdp%d"%dec for dec in range(1940,2010,10)]
>>> y=np.transpose(np.array([f.by_col[v] for v in vnames]))
>>> regimes=np.array(f.by_col('hanson98'))
>>> np.random.seed(10)
>>> theil_ds=TheilDSim(y,regimes,999)
>>> theil_ds.bg_pvalue
array([0.4 , 0.344, 0.001, 0.001, 0.034, 0.072, 0.032])

 pysal.region — Spatially Constrained Clustering

pysal.region — Spatially Constrained Clustering

	region.maxp – maxp regionalization

	region.randomregion – Random region creation

 region.maxp – maxp regionalization

region.maxp – maxp regionalization

New in version 1.0.

Max p regionalization

Heuristically form the maximum number (p) of regions given a set of n
areas and a floor constraint.

	
class pysal.region.maxp.Maxp(w, z, floor, floor_variable, verbose=False, initial=100, seeds=[])

	Try to find the maximum number of regions for a set of areas such that
each region combines contiguous areas that satisfy a given threshold
constraint.

	Parameters:	
	w (W) – spatial weights object

	z (array [https://docs.python.org/2/library/array.html#module-array]) – n*m array of observations on m attributes across n
areas. This is used to calculate intra-regional
homogeneity

	floor (int [https://docs.python.org/2/library/functions.html#int]) – a minimum bound for a variable that has to be
obtained in each region

	floor_variable (array [https://docs.python.org/2/library/array.html#module-array]) – n*1 vector of observations on variable for the floor

	initial (int [https://docs.python.org/2/library/functions.html#int]) – number of initial solutions to generate

	verbose (binary) – if true debugging information is printed

	seeds (list) – ids of observations to form initial seeds. If
len(ids) is less than the number of observations, the
complementary ids are added to the end of seeds. Thus
the specified seeds get priority in the solution

	
area2region

	dict – mapping of areas to region. key is area id, value is
region id

	
regions

	list – list of lists of regions (each list has the ids of areas
in that region)

	
p

	int – number of regions

	
swap_iterations

	int – number of swap iterations

	
total_moves

	int – number of moves into internal regions

Examples

Setup imports and set seeds for random number generators to insure the
results are identical for each run.

>>> import numpy as np
>>> import pysal
>>> np.random.seed(100)

Setup a spatial weights matrix describing the connectivity of a square
community with 100 areas. Generate two random data attributes for each
area in the community (a 100x2 array) called z. p is the data vector used to
compute the floor for a region, and floor is the floor value; in this case
p is simply a vector of ones and the floor is set to three. This means
that each region will contain at least three areas. In other cases the
floor may be computed based on a minimum population count for example.

>>> import numpy as np
>>> import pysal
>>> np.random.seed(100)
>>> w = pysal.lat2W(10,10)
>>> z = np.random.random_sample((w.n,2))
>>> p = np.ones((w.n,1), float)
>>> floor = 3
>>> solution = pysal.region.Maxp(w, z, floor, floor_variable=p, initial=100)
>>> solution.p
29
>>> min([len(region) for region in solution.regions])
3
>>> solution.regions[0]
[76, 66, 56]
>>>

	
cinference(nperm=99, maxiter=1000)

	Compare the within sum of squares for the solution against
conditional simulated solutions where areas are randomly assigned to
regions that maintain the cardinality of the original solution and
respect contiguity relationships.

	Parameters:	
	nperm (int [https://docs.python.org/2/library/functions.html#int]) – number of random permutations for calculation of
pseudo-p_values

	maxiter (int [https://docs.python.org/2/library/functions.html#int]) – maximum number of attempts to find each permutation

	
pvalue

	float – pseudo p_value

	
feas_sols

	int – number of feasible solutions found

Notes

it is possible for the number of feasible solutions (feas_sols) to be
less than the number of permutations requested (nperm); an exception
is raised if this occurs.

Examples

Setup is the same as shown above except using a 5x5 community.

>>> import numpy as np
>>> import pysal
>>> np.random.seed(100)
>>> w=pysal.weights.lat2W(5,5)
>>> z=np.random.random_sample((w.n,2))
>>> p=np.ones((w.n,1),float)
>>> floor=3
>>> solution=pysal.region.Maxp(w,z,floor,floor_variable=p,initial=100)

Set nperm to 9 meaning that 9 random regions are computed and used for
the computation of a pseudo-p-value for the actual Max-p solution. In
empirical work this would typically be set much higher, e.g. 999 or
9999.

>>> solution.cinference(nperm=9, maxiter=100)
>>> solution.cpvalue
0.1

	
inference(nperm=99)

	Compare the within sum of squares for the solution against
simulated solutions where areas are randomly assigned to regions that
maintain the cardinality of the original solution.

	Parameters:	nperm (int [https://docs.python.org/2/library/functions.html#int]) – number of random permutations for calculation of
pseudo-p_values

	
pvalue

	float – pseudo p_value

Examples

Setup is the same as shown above except using a 5x5 community.

>>> import numpy as np
>>> import pysal
>>> np.random.seed(100)
>>> w=pysal.weights.lat2W(5,5)
>>> z=np.random.random_sample((w.n,2))
>>> p=np.ones((w.n,1),float)
>>> floor=3
>>> solution=pysal.region.Maxp(w,z,floor,floor_variable=p,initial=100)

Set nperm to 9 meaning that 9 random regions are computed and used for
the computation of a pseudo-p-value for the actual Max-p solution. In
empirical work this would typically be set much higher, e.g. 999 or
9999.

>>> solution.inference(nperm=9)
>>> solution.pvalue
0.1

	
class pysal.region.maxp.Maxp_LISA(w, z, y, floor, floor_variable, initial=100)

	Max-p regionalization using LISA seeds

	Parameters:	
	w (W) – spatial weights object

	z (array [https://docs.python.org/2/library/array.html#module-array]) – nxk array of n observations on k variables used to
measure similarity between areas within the regions.

	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array used to calculate the LISA statistics and
to set the intial seed order

	floor (float [https://docs.python.org/2/library/functions.html#float]) – value that each region must obtain on floor_variable

	floor_variable (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array of values for regional floor threshold

	initial (int [https://docs.python.org/2/library/functions.html#int]) – number of initial feasible solutions to generate
prior to swapping

	
area2region

	dict – mapping of areas to region. key is area id, value is
region id

	
regions

	list – list of lists of regions (each list has the ids of areas
in that region)

	
swap_iterations

	int – number of swap iterations

	
total_moves

	int – number of moves into internal regions

Notes

We sort the observations based on the value of the LISAs. This
ordering then gives the priority for seeds forming the p regions. The
initial priority seeds are not guaranteed to be separated in the final
solution.

Examples

Setup imports and set seeds for random number generators to insure the
results are identical for each run.

>>> import numpy as np
>>> import pysal
>>> np.random.seed(100)

Setup a spatial weights matrix describing the connectivity of a square
community with 100 areas. Generate two random data attributes for each area
in the community (a 100x2 array) called z. p is the data vector used to
compute the floor for a region, and floor is the floor value; in this case
p is simply a vector of ones and the floor is set to three. This means
that each region will contain at least three areas. In other cases the
floor may be computed based on a minimum population count for example.

>>> w=pysal.lat2W(10,10)
>>> z=np.random.random_sample((w.n,2))
>>> p=np.ones(w.n)
>>> mpl=pysal.region.Maxp_LISA(w,z,p,floor=3,floor_variable=p)
>>> mpl.p
30
>>> mpl.regions[0]
[99, 98, 89]

 region.randomregion – Random region creation

region.randomregion – Random region creation

New in version 1.0.

Generate random regions

Randomly form regions given various types of constraints on cardinality and
composition.

	
class pysal.region.randomregion.Random_Regions(area_ids, num_regions=None, cardinality=None, contiguity=None, maxiter=100, compact=False, max_swaps=1000000, permutations=99)

	Generate a list of Random_Region instances.

	Parameters:	
	area_ids (list) – IDs indexing the areas to be grouped into regions (must
be in the same order as spatial weights matrix if this
is provided)

	num_regions (integer) – number of regions to generate (if None then this is
chosen randomly from 2 to n where n is the number of
areas)

	cardinality (list) – list containing the number of areas to assign to regions
(if num_regions is also provided then len(cardinality)
must equal num_regions; if cardinality=None then a list
of length num_regions will be generated randomly)

	contiguity (W) – spatial weights object (if None then contiguity will be
ignored)

	maxiter (int [https://docs.python.org/2/library/functions.html#int]) – maximum number attempts (for each permutation) at finding
a feasible solution (only affects contiguity constrained
regions)

	compact (boolean) – attempt to build compact regions, note (only affects
contiguity constrained regions)

	max_swaps (int [https://docs.python.org/2/library/functions.html#int]) – maximum number of swaps to find a feasible solution
(only affects contiguity constrained regions)

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of Random_Region instances to generate

	
solutions

	list – list of length permutations containing all Random_Region instances generated

	
solutions_feas

	list – list of the Random_Region instances that resulted in feasible solutions

Examples

Setup the data

>>> import random
>>> import numpy as np
>>> import pysal
>>> nregs = 13
>>> cards = range(2,14) + [10]
>>> w = pysal.lat2W(10,10,rook=True)
>>> ids = w.id_order

Unconstrained

>>> random.seed(10)
>>> np.random.seed(10)
>>> t0 = pysal.region.Random_Regions(ids, permutations=2)
>>> t0.solutions[0].regions[0]
[19, 14, 43, 37, 66, 3, 79, 41, 38, 68, 2, 1, 60]

Cardinality and contiguity constrained (num_regions implied)

>>> random.seed(60)
>>> np.random.seed(60)
>>> t1 = pysal.region.Random_Regions(ids, num_regions=nregs, cardinality=cards, contiguity=w, permutations=2)
>>> t1.solutions[0].regions[0]
[62, 61, 81, 71, 64, 90, 72, 51, 80, 63, 50, 73, 52]

Cardinality constrained (num_regions implied)

>>> random.seed(100)
>>> np.random.seed(100)
>>> t2 = pysal.region.Random_Regions(ids, num_regions=nregs, cardinality=cards, permutations=2)
>>> t2.solutions[0].regions[0]
[37, 62]

Number of regions and contiguity constrained

>>> random.seed(100)
>>> np.random.seed(100)
>>> t3 = pysal.region.Random_Regions(ids, num_regions=nregs, contiguity=w, permutations=2)
>>> t3.solutions[0].regions[1]
[62, 52, 51, 63, 61, 73, 41, 53, 60, 83, 42, 31, 32]

Cardinality and contiguity constrained

>>> random.seed(60)
>>> np.random.seed(60)
>>> t4 = pysal.region.Random_Regions(ids, cardinality=cards, contiguity=w, permutations=2)
>>> t4.solutions[0].regions[0]
[62, 61, 81, 71, 64, 90, 72, 51, 80, 63, 50, 73, 52]

Number of regions constrained

>>> random.seed(100)
>>> np.random.seed(100)
>>> t5 = pysal.region.Random_Regions(ids, num_regions=nregs, permutations=2)
>>> t5.solutions[0].regions[0]
[37, 62, 26, 41, 35, 25, 36]

Cardinality constrained

>>> random.seed(100)
>>> np.random.seed(100)
>>> t6 = pysal.region.Random_Regions(ids, cardinality=cards, permutations=2)
>>> t6.solutions[0].regions[0]
[37, 62]

Contiguity constrained

>>> random.seed(100)
>>> np.random.seed(100)
>>> t7 = pysal.region.Random_Regions(ids, contiguity=w, permutations=2)
>>> t7.solutions[0].regions[1]
[62, 61, 71, 63]

	
class pysal.region.randomregion.Random_Region(area_ids, num_regions=None, cardinality=None, contiguity=None, maxiter=1000, compact=False, max_swaps=1000000)

	Randomly combine a given set of areas into two or more regions based
on various constraints.

	Parameters:	
	area_ids (list) – IDs indexing the areas to be grouped into regions (must
be in the same order as spatial weights matrix if this
is provided)

	num_regions (integer) – number of regions to generate (if None then this is
chosen randomly from 2 to n where n is the number of
areas)

	cardinality (list) – list containing the number of areas to assign to regions
(if num_regions is also provided then len(cardinality)
must equal num_regions; if cardinality=None then a list
of length num_regions will be generated randomly)

	contiguity (W) – spatial weights object (if None then contiguity will be
ignored)

	maxiter (int [https://docs.python.org/2/library/functions.html#int]) – maximum number attempts at finding a feasible solution
(only affects contiguity constrained regions)

	compact (boolean) – attempt to build compact regions (only affects
contiguity constrained regions)

	max_swaps (int [https://docs.python.org/2/library/functions.html#int]) – maximum number of swaps to find a feasible solution
(only affects contiguity constrained regions)

	
feasible

	boolean – if True then solution was found

	
regions

	list – list of lists of regions (each list has the ids of areas
in that region)

Examples

Setup the data

>>> import random
>>> import numpy as np
>>> import pysal
>>> nregs = 13
>>> cards = range(2,14) + [10]
>>> w = pysal.weights.lat2W(10,10,rook=True)
>>> ids = w.id_order

Unconstrained

>>> random.seed(10)
>>> np.random.seed(10)
>>> t0 = pysal.region.Random_Region(ids)
>>> t0.regions[0]
[19, 14, 43, 37, 66, 3, 79, 41, 38, 68, 2, 1, 60]

Cardinality and contiguity constrained (num_regions implied)

>>> random.seed(60)
>>> np.random.seed(60)
>>> t1 = pysal.region.Random_Region(ids, num_regions=nregs, cardinality=cards, contiguity=w)
>>> t1.regions[0]
[62, 61, 81, 71, 64, 90, 72, 51, 80, 63, 50, 73, 52]

Cardinality constrained (num_regions implied)

>>> random.seed(100)
>>> np.random.seed(100)
>>> t2 = pysal.region.Random_Region(ids, num_regions=nregs, cardinality=cards)
>>> t2.regions[0]
[37, 62]

Number of regions and contiguity constrained

>>> random.seed(100)
>>> np.random.seed(100)
>>> t3 = pysal.region.Random_Region(ids, num_regions=nregs, contiguity=w)
>>> t3.regions[1]
[62, 52, 51, 63, 61, 73, 41, 53, 60, 83, 42, 31, 32]

Cardinality and contiguity constrained

>>> random.seed(60)
>>> np.random.seed(60)
>>> t4 = pysal.region.Random_Region(ids, cardinality=cards, contiguity=w)
>>> t4.regions[0]
[62, 61, 81, 71, 64, 90, 72, 51, 80, 63, 50, 73, 52]

Number of regions constrained

>>> random.seed(100)
>>> np.random.seed(100)
>>> t5 = pysal.region.Random_Region(ids, num_regions=nregs)
>>> t5.regions[0]
[37, 62, 26, 41, 35, 25, 36]

Cardinality constrained

>>> random.seed(100)
>>> np.random.seed(100)
>>> t6 = pysal.region.Random_Region(ids, cardinality=cards)
>>> t6.regions[0]
[37, 62]

Contiguity constrained

>>> random.seed(100)
>>> np.random.seed(100)
>>> t7 = pysal.region.Random_Region(ids, contiguity=w)
>>> t7.regions[0]
[37, 36, 38, 39]

 pysal.spatial_dynamics — Spatial Dynamics

pysal.spatial_dynamics — Spatial Dynamics

	spatial_dynamics.directional – Directional LISA Analytics

	spatial_dynamics.ergodic – Summary measures for ergodic Markov chains

	spatial_dynamics.interaction – Space-time interaction tests

	spatial_dynamics.markov – Markov based methods

	spatial_dynamics.rank – Rank and spatial rank mobility measures

 spatial_dynamics.directional – Directional LISA Analytics

spatial_dynamics.directional – Directional LISA Analytics

New in version 1.0.

Directional Analysis of Dynamic LISAs

	
pysal.spatial_dynamics.directional.rose(Y, w, k=8, permutations=0)

	Calculation of rose diagram for local indicators of spatial association.

	Parameters:	
	Y (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 2), variable observed on n spatial units over 2 time.
periods

	w (W) – spatial weights object.

	k (int [https://docs.python.org/2/library/functions.html#int], optional) – number of circular sectors in rose diagram (the default is
8).

	permutations (int [https://docs.python.org/2/library/functions.html#int], optional) – number of random spatial permutations for calculation of
pseudo p-values (the default is 0).

	Returns:	
	results (dictionary) – (keys defined below)

	counts (array) – (k, 1), number of vectors with angular movement falling in
each sector.

	cuts (array) – (k, 1), intervals defining circular sectors (in radians).

	random_counts (array) – (permutations, k), counts from random permutations.

	pvalues (array) – (k, 1), one sided (upper tail) pvalues for observed counts.

Notes

Based on [Rey2011] .

Examples

Constructing data for illustration of directional LISA analytics.
Data is for the 48 lower US states over the period 1969-2009 and
includes per capita income normalized to the national average.

Load comma delimited data file in and convert to a numpy array

>>> f=open(pysal.examples.get_path("spi_download.csv"),'r')
>>> lines=f.readlines()
>>> f.close()
>>> lines=[line.strip().split(",") for line in lines]
>>> names=[line[2] for line in lines[1:-5]]
>>> data=np.array([map(int,line[3:]) for line in lines[1:-5]])

Bottom of the file has regional data which we don’t need for this example
so we will subset only those records that match a state name

>>> sids=range(60)
>>> out=['"United States 3/"',
... '"Alaska 3/"',
... '"District of Columbia"',
... '"Hawaii 3/"',
... '"New England"',
... '"Mideast"',
... '"Great Lakes"',
... '"Plains"',
... '"Southeast"',
... '"Southwest"',
... '"Rocky Mountain"',
... '"Far West 3/"']
>>> snames=[name for name in names if name not in out]
>>> sids=[names.index(name) for name in snames]
>>> states=data[sids,:]
>>> us=data[0]
>>> years=np.arange(1969,2009)

Now we convert state incomes to express them relative to the national
average

>>> rel=states/(us*1.)

Create our contiguity matrix from an external GAL file and row standardize
the resulting weights

>>> gal=pysal.open(pysal.examples.get_path('states48.gal'))
>>> w=gal.read()
>>> w.transform='r'

Take the first and last year of our income data as the interval to do the
directional directional analysis

>>> Y=rel[:,[0,-1]]

Set the random seed generator which is used in the permutation based
inference for the rose diagram so that we can replicate our example
results

>>> np.random.seed(100)

Call the rose function to construct the directional histogram for the
dynamic LISA statistics. We will use four circular sectors for our
histogram

>>> r4=rose(Y,w,k=4,permutations=999)

What are the cut-offs for our histogram - in radians

>>> r4['cuts']
array([0. , 1.57079633, 3.14159265, 4.71238898, 6.28318531])

How many vectors fell in each sector

>>> r4['counts']
array([32, 5, 9, 2])

What are the pseudo-pvalues for these counts based on 999 random spatial
permutations of the state income data

>>> r4['pvalues']
array([0.02 , 0.001, 0.001, 0.001])

Repeat the exercise but now for 8 rather than 4 sectors

>>> r8=rose(Y,w,permutations=999)
>>> r8['counts']
array([19, 13, 3, 2, 7, 2, 1, 1])
>>> r8['pvalues']
array([0.445, 0.042, 0.079, 0.003, 0.005, 0.1 , 0.269, 0.002])

 spatial_dynamics.ergodic – Summary measures for ergodic Markov chains

spatial_dynamics.ergodic – Summary measures for ergodic Markov chains

New in version 1.0.

Summary measures for ergodic Markov chains

	
pysal.spatial_dynamics.ergodic.steady_state(P)

	Calculates the steady state probability vector for a regular Markov
transition matrix P.

	Parameters:	P (matrix) – (k, k), an ergodic Markov transition probability matrix.

	Returns:	(k, 1), steady state distribution.

	Return type:	matrix

Examples

Taken from Kemeny and Snell. Land of Oz example where the states are
Rain, Nice and Snow, so there is 25 percent chance that if it
rained in Oz today, it will snow tomorrow, while if it snowed today in
Oz there is a 50 percent chance of snow again tomorrow and a 25
percent chance of a nice day (nice, like when the witch with the monkeys
is melting).

>>> import numpy as np
>>> p=np.matrix([[.5, .25, .25],[.5,0,.5],[.25,.25,.5]])
>>> steady_state(p)
matrix([[0.4],
 [0.2],
 [0.4]])

Thus, the long run distribution for Oz is to have 40 percent of the
days classified as Rain, 20 percent as Nice, and 40 percent as Snow
(states are mutually exclusive).

	
pysal.spatial_dynamics.ergodic.fmpt(P)

	Calculates the matrix of first mean passage times for an ergodic transition
probability matrix.

	Parameters:	P (matrix) – (k, k), an ergodic Markov transition probability matrix.

	Returns:	M – (k, k), elements are the expected value for the number of intervals
required for a chain starting in state i to first enter state j.
If i=j then this is the recurrence time.

	Return type:	matrix

Examples

>>> import numpy as np
>>> p=np.matrix([[.5, .25, .25],[.5,0,.5],[.25,.25,.5]])
>>> fm=fmpt(p)
>>> fm
matrix([[2.5 , 4. , 3.33333333],
 [2.66666667, 5. , 2.66666667],
 [3.33333333, 4. , 2.5]])

Thus, if it is raining today in Oz we can expect a nice day to come
along in another 4 days, on average, and snow to hit in 3.33 days. We can
expect another rainy day in 2.5 days. If it is nice today in Oz, we would
experience a change in the weather (either rain or snow) in 2.67 days from
today. (That wicked witch can only die once so I reckon that is the
ultimate absorbing state).

Notes

Uses formulation (and examples on p. 218) in [Kemeny1967].

	
pysal.spatial_dynamics.ergodic.var_fmpt(P)

	Variances of first mean passage times for an ergodic transition
probability matrix.

	Parameters:	P (matrix) – (k, k), an ergodic Markov transition probability matrix.

	Returns:	(k, k), elements are the variances for the number of intervals
required for a chain starting in state i to first enter state j.

	Return type:	matrix

Examples

>>> import numpy as np
>>> p=np.matrix([[.5, .25, .25],[.5,0,.5],[.25,.25,.5]])
>>> vfm=var_fmpt(p)
>>> vfm
matrix([[5.58333333, 12. , 6.88888889],
 [6.22222222, 12. , 6.22222222],
 [6.88888889, 12. , 5.58333333]])

Notes

Uses formulation (and examples on p. 83) in [Kemeny1967].

 spatial_dynamics.interaction – Space-time interaction tests

spatial_dynamics.interaction – Space-time interaction tests

New in version 1.1.

Methods for identifying space-time interaction in spatio-temporal event
data.

	
class pysal.spatial_dynamics.interaction.SpaceTimeEvents(path, time_col, infer_timestamp=False)

	Method for reformatting event data stored in a shapefile for use in
calculating metrics of spatio-temporal interaction.

	Parameters:	
	path (string [https://docs.python.org/2/library/string.html#module-string]) – the path to the appropriate shapefile, including the
file name and extension

	time (string [https://docs.python.org/2/library/string.html#module-string]) – column header in the DBF file indicating the column
containing the time stamp.

	infer_timestamp (bool [https://docs.python.org/2/library/functions.html#bool], optional) – if the column containing the timestamp is formatted as
calendar dates, try to coerce them into Python datetime
objects (the default is False).

	
n

	int – number of events.

	
x

	array – (n, 1), array of the x coordinates for the events.

	
y

	array – (n, 1), array of the y coordinates for the events.

	
t

	array – (n, 1), array of the temporal coordinates for the events.

	
space

	array – (n, 2), array of the spatial coordinates (x,y) for the
events.

	
time

	array – (n, 2), array of the temporal coordinates (t,1) for the
events, the second column is a vector of ones.

Examples

Read in the example shapefile data, ensuring to omit the file
extension. In order to successfully create the event data the .dbf file
associated with the shapefile should have a column of values that are a
timestamp for the events. This timestamp may be a numerical value
or a date. Date inference was added in version 1.6.

>>> path = pysal.examples.get_path("burkitt.shp")

Create an instance of SpaceTimeEvents from a shapefile, where the
temporal information is stored in a column named “T”.

>>> events = SpaceTimeEvents(path,'T')

See how many events are in the instance.

>>> events.n
188

Check the spatial coordinates of the first event.

>>> events.space[0]
array([300., 302.])

Check the time of the first event.

>>> events.t[0]
array([413.])

Calculate the time difference between the first two events.

>>> events.t[1] - events.t[0]
array([59.])

New, in 1.6, date support:

Now, create an instance of SpaceTimeEvents from a shapefile, where the
temporal information is stored in a column named “DATE”.

>>> events = SpaceTimeEvents(path,'DATE')

See how many events are in the instance.

>>> events.n
188

Check the spatial coordinates of the first event.

>>> events.space[0]
array([300., 302.])

Check the time of the first event. Note that this value is equivalent to
413 days after January 1, 1900.

>>> events.t[0][0]
datetime.date(1901, 2, 16)

Calculate the time difference between the first two events.

>>> (events.t[1][0] - events.t[0][0]).days
59

	
pysal.spatial_dynamics.interaction.knox(s_coords, t_coords, delta, tau, permutations=99, debug=False)

	Knox test for spatio-temporal interaction. [Knox1964]

	Parameters:	
	s_coords (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 2), spatial coordinates.

	t_coords (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 1), temporal coordinates.

	delta (float [https://docs.python.org/2/library/functions.html#float]) – threshold for proximity in space.

	tau (float [https://docs.python.org/2/library/functions.html#float]) – threshold for proximity in time.

	permutations (int [https://docs.python.org/2/library/functions.html#int], optional) – the number of permutations used to establish pseudo-
significance (the default is 99).

	debug (bool [https://docs.python.org/2/library/functions.html#bool], optional) – if true, debugging information is printed (the default is
False).

	Returns:	
	knox_result (dictionary) – contains the statistic (stat) for the test and the
associated p-value (pvalue).

	stat (float) – value of the knox test for the dataset.

	pvalue (float) – pseudo p-value associated with the statistic.

	counts (int) – count of space time neighbors.

Examples

>>> import numpy as np
>>> import pysal

Read in the example data and create an instance of SpaceTimeEvents.

>>> path = pysal.examples.get_path("burkitt.shp")
>>> events = SpaceTimeEvents(path,'T')

Set the random seed generator. This is used by the permutation based
inference to replicate the pseudo-significance of our example results -
the end-user will normally omit this step.

>>> np.random.seed(100)

Run the Knox test with distance and time thresholds of 20 and 5,
respectively. This counts the events that are closer than 20 units in
space, and 5 units in time.

>>> result = knox(events.space, events.t, delta=20, tau=5, permutations=99)

Next, we examine the results. First, we call the statistic from the
results dictionary. This reports that there are 13 events close
in both space and time, according to our threshold definitions.

>>> result['stat'] == 13
True

Next, we look at the pseudo-significance of this value, calculated by
permuting the timestamps and rerunning the statistics. In this case,
the results indicate there is likely no space-time interaction between
the events.

>>> print("%2.2f"%result['pvalue'])
0.17

	
pysal.spatial_dynamics.interaction.mantel(s_coords, t_coords, permutations=99, scon=1.0, spow=-1.0, tcon=1.0, tpow=-1.0)

	Standardized Mantel test for spatio-temporal interaction. [Mantel1967]

	Parameters:	
	s_coords (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 2), spatial coordinates.

	t_coords (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 1), temporal coordinates.

	permutations (int [https://docs.python.org/2/library/functions.html#int], optional) – the number of permutations used to establish pseudo-
significance (the default is 99).

	scon (float [https://docs.python.org/2/library/functions.html#float], optional) – constant added to spatial distances (the default is 1.0).

	spow (float [https://docs.python.org/2/library/functions.html#float], optional) – value for power transformation for spatial distances
(the default is -1.0).

	tcon (float [https://docs.python.org/2/library/functions.html#float], optional) – constant added to temporal distances (the default is 1.0).

	tpow (float [https://docs.python.org/2/library/functions.html#float], optional) – value for power transformation for temporal distances
(the default is -1.0).

	Returns:	
	mantel_result (dictionary) – contains the statistic (stat) for the test and the
associated p-value (pvalue).

	stat (float) – value of the knox test for the dataset.

	pvalue (float) – pseudo p-value associated with the statistic.

Examples

>>> import numpy as np
>>> import pysal

Read in the example data and create an instance of SpaceTimeEvents.

>>> path = pysal.examples.get_path("burkitt.shp")
>>> events = SpaceTimeEvents(path,'T')

Set the random seed generator. This is used by the permutation based
inference to replicate the pseudo-significance of our example results -
the end-user will normally omit this step.

>>> np.random.seed(100)

The standardized Mantel test is a measure of matrix correlation between
the spatial and temporal distance matrices of the event dataset. The
following example runs the standardized Mantel test without a constant
or transformation; however, as recommended by Mantel (1967) [2]_, these
should be added by the user. This can be done by adjusting the constant
and power parameters.

>>> result = mantel(events.space, events.t, 99, scon=1.0, spow=-1.0, tcon=1.0, tpow=-1.0)

Next, we examine the result of the test.

>>> print("%6.6f"%result['stat'])
0.048368

Finally, we look at the pseudo-significance of this value, calculated by
permuting the timestamps and rerunning the statistic for each of the 99
permutations. According to these parameters, the results indicate
space-time interaction between the events.

>>> print("%2.2f"%result['pvalue'])
0.01

	
pysal.spatial_dynamics.interaction.jacquez(s_coords, t_coords, k, permutations=99)

	Jacquez k nearest neighbors test for spatio-temporal interaction.
[Jacquez1996]

	Parameters:	
	s_coords (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 2), spatial coordinates.

	t_coords (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 1), temporal coordinates.

	k (int [https://docs.python.org/2/library/functions.html#int]) – the number of nearest neighbors to be searched.

	permutations (int [https://docs.python.org/2/library/functions.html#int], optional) – the number of permutations used to establish pseudo-
significance (the default is 99).

	Returns:	
	jacquez_result (dictionary) – contains the statistic (stat) for the test and the
associated p-value (pvalue).

	stat (float) – value of the Jacquez k nearest neighbors test for the
dataset.

	pvalue (float) – p-value associated with the statistic (normally
distributed with k-1 df).

Examples

>>> import numpy as np
>>> import pysal

Read in the example data and create an instance of SpaceTimeEvents.

>>> path = pysal.examples.get_path("burkitt.shp")
>>> events = SpaceTimeEvents(path,'T')

The Jacquez test counts the number of events that are k nearest
neighbors in both time and space. The following runs the Jacquez test
on the example data and reports the resulting statistic. In this case,
there are 13 instances where events are nearest neighbors in both space
and time.

turning off as kdtree changes from scipy < 0.12 return 13
#>>> np.random.seed(100)
#>>> result = jacquez(events.space, events.t ,k=3,permutations=99)
#>>> print result[‘stat’]
#12

The significance of this can be assessed by calling the p-
value from the results dictionary, as shown below. Again, no
space-time interaction is observed.

#>>> result[‘pvalue’] < 0.01
#False

	
pysal.spatial_dynamics.interaction.modified_knox(s_coords, t_coords, delta, tau, permutations=99)

	Baker’s modified Knox test for spatio-temporal interaction. [Baker2004]

	Parameters:	
	s_coords (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 2), spatial coordinates.

	t_coords (array [https://docs.python.org/2/library/array.html#module-array]) – (n, 1), temporal coordinates.

	delta (float [https://docs.python.org/2/library/functions.html#float]) – threshold for proximity in space.

	tau (float [https://docs.python.org/2/library/functions.html#float]) – threshold for proximity in time.

	permutations (int [https://docs.python.org/2/library/functions.html#int], optional) – the number of permutations used to establish pseudo-
significance (the default is 99).

	Returns:	
	modknox_result (dictionary) – contains the statistic (stat) for the test and the
associated p-value (pvalue).

	stat (float) – value of the modified knox test for the dataset.

	pvalue (float) – pseudo p-value associated with the statistic.

Examples

>>> import numpy as np
>>> import pysal

Read in the example data and create an instance of SpaceTimeEvents.

>>> path = pysal.examples.get_path("burkitt.shp")
>>> events = SpaceTimeEvents(path, 'T')

Set the random seed generator. This is used by the permutation based
inference to replicate the pseudo-significance of our example results -
the end-user will normally omit this step.

>>> np.random.seed(100)

Run the modified Knox test with distance and time thresholds of 20 and 5,
respectively. This counts the events that are closer than 20 units in
space, and 5 units in time.

>>> result = modified_knox(events.space, events.t, delta=20, tau=5, permutations=99)

Next, we examine the results. First, we call the statistic from the
results dictionary. This reports the difference between the observed
and expected Knox statistic.

>>> print("%2.8f" % result['stat'])
2.81016043

Next, we look at the pseudo-significance of this value, calculated by
permuting the timestamps and rerunning the statistics. In this case,
the results indicate there is likely no space-time interaction.

>>> print("%2.2f" % result['pvalue'])
0.11

 spatial_dynamics.markov – Markov based methods

spatial_dynamics.markov – Markov based methods

New in version 1.0.

	
class pysal.spatial_dynamics.markov.Markov(class_ids, classes=None)

	Classic Markov transition matrices.

	Parameters:	
	class_ids (array [https://docs.python.org/2/library/array.html#module-array]) – (n, t), one row per observation, one column recording the
state of each observation, with as many columns as time
periods.

	classes (array [https://docs.python.org/2/library/array.html#module-array]) – (k, 1), all different classes (bins) of the matrix.

	
p

	matrix – (k, k), transition probability matrix.

	
steady_state

	matrix – (k, 1), ergodic distribution.

	
transitions

	matrix – (k, k), count of transitions between each state i and j.

Examples

>>> c = [['b','a','c'],['c','c','a'],['c','b','c']]
>>> c.extend([['a','a','b'], ['a','b','c']])
>>> c = np.array(c)
>>> m = Markov(c)
>>> m.classes.tolist()
['a', 'b', 'c']
>>> m.p
matrix([[0.25 , 0.5 , 0.25],
 [0.33333333, 0. , 0.66666667],
 [0.33333333, 0.33333333, 0.33333333]])
>>> m.steady_state
matrix([[0.30769231],
 [0.28846154],
 [0.40384615]])

US nominal per capita income 48 states 81 years 1929-2009

>>> import pysal
>>> f = pysal.open(pysal.examples.get_path("usjoin.csv"))
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])

set classes to quintiles for each year

>>> q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
>>> m = Markov(q5)
>>> m.transitions
array([[729., 71., 1., 0., 0.],
 [72., 567., 80., 3., 0.],
 [0., 81., 631., 86., 2.],
 [0., 3., 86., 573., 56.],
 [0., 0., 1., 57., 741.]])
>>> m.p
matrix([[0.91011236, 0.0886392 , 0.00124844, 0. , 0.],
 [0.09972299, 0.78531856, 0.11080332, 0.00415512, 0.],
 [0. , 0.10125 , 0.78875 , 0.1075 , 0.0025],
 [0. , 0.00417827, 0.11977716, 0.79805014, 0.07799443],
 [0. , 0. , 0.00125156, 0.07133917, 0.92740926]])
>>> m.steady_state
matrix([[0.20774716],
 [0.18725774],
 [0.20740537],
 [0.18821787],
 [0.20937187]])

Relative incomes

>>> pci = pci.transpose()
>>> rpci = pci/(pci.mean(axis=0))
>>> rq = pysal.Quantiles(rpci.flatten()).yb
>>> rq.shape = (48,81)
>>> mq = Markov(rq)
>>> mq.transitions
array([[707., 58., 7., 1., 0.],
 [50., 629., 80., 1., 1.],
 [4., 79., 610., 73., 2.],
 [0., 7., 72., 650., 37.],
 [0., 0., 0., 48., 724.]])
>>> mq.steady_state
matrix([[0.17957376],
 [0.21631443],
 [0.21499942],
 [0.21134662],
 [0.17776576]])

	
class pysal.spatial_dynamics.markov.LISA_Markov(y, w, permutations=0, significance_level=0.05, geoda_quads=False)

	Markov for Local Indicators of Spatial Association

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n, t), n cross-sectional units observed over t time
periods.

	w (W) – spatial weights object.

	permutations (int [https://docs.python.org/2/library/functions.html#int], optional) – number of permutations used to determine LISA
significance (the default is 0).

	significance_level (float [https://docs.python.org/2/library/functions.html#float], optional) – significance level (two-sided) for filtering
significant LISA endpoints in a transition (the
default is 0.05).

	geoda_quads (bool [https://docs.python.org/2/library/functions.html#bool]) – If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4.
If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4.
(the default is False).

	
chi_2

	tuple – (3 elements)
(chi square test statistic, p-value, degrees of freedom) for
test that dynamics of y are independent of dynamics of wy.

	
classes

	array – (4, 1)
1=HH, 2=LH, 3=LL, 4=HL (own, lag)
1=HH, 2=LL, 3=LH, 4=HL (own, lag) (if geoda_quads=True)

	
expected_t

	array – (4, 4), expected number of transitions under the null that
dynamics of y are independent of dynamics of wy.

	
move_types

	matrix – (n, t-1), integer values indicating which type of LISA
transition occurred (q1 is quadrant in period 1, q2 is
quadrant in period 2).

	
.. Table:: Move Types

	

	q1
	q2
	move_type

	1
	1
	1

	1
	2
	2

	1
	3
	3

	1
	4
	4

	2
	1
	5

	2
	2
	6

	2
	3
	7

	2
	4
	8

	3
	1
	9

	3
	2
	10

	3
	3
	11

	3
	4
	12

	4
	1
	13

	4
	2
	14

	4
	3
	15

	4
	4
	16

	
p

	matrix – (k, k), transition probability matrix.

	
p_values

	matrix – (n, t), LISA p-values for each end point (if permutations >
0).

	
significant_moves

	matrix – (n, t-1), integer values indicating the type and
significance of a LISA transition. st = 1 if
significant in period t, else st=0 (if permutations >
0).

	
.. Table:: Significant Moves

	

	(s1,s2)
	move_type

	(1,1)
	[1, 16]

	(1,0)
	[17, 32]

	(0,1)
	[33, 48]

	(0,0)
	[49, 64]

	q1
	q2
	s1
	s2
	move_type

	1
	1
	1
	1
	1

	1
	2
	1
	1
	2

	1
	3
	1
	1
	3

	1
	4
	1
	1
	4

	2
	1
	1
	1
	5

	2
	2
	1
	1
	6

	2
	3
	1
	1
	7

	2
	4
	1
	1
	8

	3
	1
	1
	1
	9

	3
	2
	1
	1
	10

	3
	3
	1
	1
	11

	3
	4
	1
	1
	12

	4
	1
	1
	1
	13

	4
	2
	1
	1
	14

	4
	3
	1
	1
	15

	4
	4
	1
	1
	16

	1
	1
	1
	0
	17

	1
	2
	1
	0
	18

	.
	.
	.
	.
	.

	.
	.
	.
	.
	.

	4
	3
	1
	0
	31

	4
	4
	1
	0
	32

	1
	1
	0
	1
	33

	1
	2
	0
	1
	34

	.
	.
	.
	.
	.

	.
	.
	.
	.
	.

	4
	3
	0
	1
	47

	4
	4
	0
	1
	48

	1
	1
	0
	0
	49

	1
	2
	0
	0
	50

	.
	.
	.
	.
	.

	.
	.
	.
	.
	.

	4
	3
	0
	0
	63

	4
	4
	0
	0
	64

	steady_state : matrix

	(k, 1), ergodic distribution.

	transitions : matrix

	(4, 4), count of transitions between each state i and j.

	spillover : array

	(n, 1) binary array, locations that were not part of a
cluster in period 1 but joined a prexisting cluster in
period 2.

Examples

>>> import pysal as ps
>>> import numpy as np
>>> f = ps.open(ps.examples.get_path("usjoin.csv"))
>>> years = range(1929, 2010)
>>> pci = np.array([f.by_col[str(y)] for y in years]).transpose()
>>> w = ps.open(ps.examples.get_path("states48.gal")).read()
>>> lm = ps.LISA_Markov(pci,w)
>>> lm.classes
array([1, 2, 3, 4])
>>> lm.steady_state
matrix([[0.28561505],
 [0.14190226],
 [0.40493672],
 [0.16754598]])
>>> lm.transitions
array([[1.08700000e+03, 4.40000000e+01, 4.00000000e+00,
 3.40000000e+01],
 [4.10000000e+01, 4.70000000e+02, 3.60000000e+01,
 1.00000000e+00],
 [5.00000000e+00, 3.40000000e+01, 1.42200000e+03,
 3.90000000e+01],
 [3.00000000e+01, 1.00000000e+00, 4.00000000e+01,
 5.52000000e+02]])
>>> lm.p
matrix([[0.92985458, 0.03763901, 0.00342173, 0.02908469],
 [0.07481752, 0.85766423, 0.06569343, 0.00182482],
 [0.00333333, 0.02266667, 0.948 , 0.026],
 [0.04815409, 0.00160514, 0.06420546, 0.88603531]])
>>> lm.move_types[0,:3]
array([11, 11, 11])
>>> lm.move_types[0,-3:]
array([11, 11, 11])

Now consider only moves with one, or both, of the LISA end points being
significant

>>> np.random.seed(10)
>>> lm_random = pysal.LISA_Markov(pci, w, permutations=99)
>>> lm_random.significant_moves[0, :3]
array([11, 11, 11])
>>> lm_random.significant_moves[0,-3:]
array([59, 43, 27])

Any value less than 49 indicates at least one of the LISA end points was
significant. So for example, the first spatial unit experienced a
transition of type 11 (LL, LL) during the first three and last tree
intervals (according to lm.move_types), however, the last three of these
transitions involved insignificant LISAS in both the start and ending year
of each transition.

Test whether the moves of y are independent of the moves of wy

>>> "Chi2: %8.3f, p: %5.2f, dof: %d" % lm.chi_2
'Chi2: 1058.208, p: 0.00, dof: 9'

Actual transitions of LISAs

>>> lm.transitions
array([[1.08700000e+03, 4.40000000e+01, 4.00000000e+00,
 3.40000000e+01],
 [4.10000000e+01, 4.70000000e+02, 3.60000000e+01,
 1.00000000e+00],
 [5.00000000e+00, 3.40000000e+01, 1.42200000e+03,
 3.90000000e+01],
 [3.00000000e+01, 1.00000000e+00, 4.00000000e+01,
 5.52000000e+02]])

Expected transitions of LISAs under the null y and wy are moving
independently of one another

>>> lm.expected_t
array([[1.12328098e+03, 1.15377356e+01, 3.47522158e-01,
 3.38337644e+01],
 [3.50272664e+00, 5.28473882e+02, 1.59178880e+01,
 1.05503814e-01],
 [1.53878082e-01, 2.32163556e+01, 1.46690710e+03,
 9.72266513e+00],
 [9.60775143e+00, 9.86856346e-02, 6.23537392e+00,
 6.07058189e+02]])

If the LISA classes are to be defined according to GeoDa, the geoda_quad
option has to be set to true

>>> lm.q[0:5,0]
array([3, 2, 3, 1, 4])
>>> lm = ps.LISA_Markov(pci,w, geoda_quads=True)
>>> lm.q[0:5,0]
array([2, 3, 2, 1, 4])

	
spillover(quadrant=1, neighbors_on=False)

	Detect spillover locations for diffusion in LISA Markov.

	Parameters:	
	quadrant (int [https://docs.python.org/2/library/functions.html#int]) – which quadrant in the scatterplot should form the core
of a cluster.

	neighbors_on (binary) – If false, then only the 1st order neighbors of a core
location are included in the cluster.
If true, neighbors of cluster core 1st order neighbors
are included in the cluster.

	Returns:	results – two keys - values pairs:
‘components’ - array (n, t)
values are integer ids (starting at 1) indicating which
component/cluster observation i in period t belonged to.
‘spillover’ - array (n, t-1)
binary values indicating if the location was a
spill-over location that became a new member of a
previously existing cluster.

	Return type:	dictionary

Examples

>>> f = pysal.open(pysal.examples.get_path("usjoin.csv"))
>>> years = range(1929, 2010)
>>> pci = np.array([f.by_col[str(y)] for y in years]).transpose()
>>> w = pysal.open(pysal.examples.get_path("states48.gal")).read()
>>> np.random.seed(10)
>>> lm_random = pysal.LISA_Markov(pci, w, permutations=99)
>>> r = lm_random.spillover()
>>> r['components'][:,12]
array([0., 0., 0., 2., 0., 1., 1., 0., 0., 2., 0., 0., 0.,
 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 2.,
 1., 1., 0., 1., 0., 0., 1., 0., 2., 1., 1., 0., 0.,
 0., 0., 0., 1., 0., 2., 1., 0., 0.])
>>> r['components'][:,14]
array([0., 2., 0., 2., 0., 1., 1., 0., 0., 2., 0., 0., 0.,
 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 2.,
 0., 1., 0., 1., 0., 0., 1., 0., 2., 1., 1., 0., 0.,
 0., 0., 0., 1., 0., 2., 1., 0., 0.])
>>> r['spill_over'][:,12]
array([0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 1., 0., 0., 0., 0., 0., 1.])

Including neighbors of core neighbors

>>> rn = lm_random.spillover(neighbors_on=True)
>>> rn['components'][:,12]
array([0., 2., 0., 2., 0., 1., 1., 0., 0., 2., 0., 1., 0.,
 0., 1., 0., 1., 1., 1., 1., 0., 0., 0., 2., 0., 2.,
 1., 1., 0., 1., 0., 0., 1., 0., 2., 1., 1., 0., 0.,
 0., 0., 2., 1., 1., 2., 1., 0., 2.])
>>> rn["components"][:,13]
array([0., 2., 0., 2., 2., 1., 1., 0., 0., 2., 0., 1., 0.,
 2., 1., 0., 1., 1., 1., 1., 0., 0., 0., 2., 2., 2.,
 1., 1., 2., 1., 0., 2., 1., 2., 2., 1., 1., 0., 2.,
 0., 2., 2., 1., 1., 2., 1., 0., 2.])
>>> rn["spill_over"][:,12]
array([0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
 0., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 1.,
 0., 1., 0., 0., 0., 0., 0., 0., 0.])

	
class pysal.spatial_dynamics.markov.Spatial_Markov(y, w, k=4, permutations=0, fixed=False, variable_name=None)

	Markov transitions conditioned on the value of the spatial lag.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,t), one row per observation, one column per state of
each observation, with as many columns as time periods.

	w (W) – spatial weights object.

	k (integer) – number of classes (quantiles).

	permutations (int [https://docs.python.org/2/library/functions.html#int], optional) – number of permutations for use in randomization based
inference (the default is 0).

	fixed (bool [https://docs.python.org/2/library/functions.html#bool]) – If true, quantiles are taken over the entire n*t
pooled series. If false, quantiles are taken each
time period over n.

	variable_name (string [https://docs.python.org/2/library/string.html#module-string]) – name of variable.

	
p

	matrix – (k, k), transition probability matrix for a-spatial
Markov.

	
s

	matrix – (k, 1), ergodic distribution for a-spatial Markov.

	
transitions

	matrix – (k, k), counts of transitions between each state i and j
for a-spatial Markov.

	
T

	matrix – (k, k, k), counts of transitions for each conditional
Markov. T[0] is the matrix of transitions for
observations with lags in the 0th quantile; T[k-1] is the
transitions for the observations with lags in the k-1th.

	
P

	matrix – (k, k, k), transition probability matrix for spatial
Markov first dimension is the conditioned on the lag.

	
S

	matrix – (k, k), steady state distributions for spatial Markov.
Each row is a conditional steady_state.

	
F

	matrix – (k, k, k),first mean passage times.
First dimension is conditioned on the lag.

	
shtest

	list – (k elements), each element of the list is a tuple for a
multinomial difference test between the steady state
distribution from a conditional distribution versus the
overall steady state distribution: first element of the
tuple is the chi2 value, second its p-value and the third
the degrees of freedom.

	
chi2

	list – (k elements), each element of the list is a tuple for a
chi-squared test of the difference between the
conditional transition matrix against the overall
transition matrix: first element of the tuple is the chi2
value, second its p-value and the third the degrees of
freedom.

	
x2

	float – sum of the chi2 values for each of the conditional tests.
Has an asymptotic chi2 distribution with k(k-1)(k-1)
degrees of freedom. Under the null that transition
probabilities are spatially homogeneous.
(see chi2 above)

	
x2_dof

	int – degrees of freedom for homogeneity test.

	
x2_pvalue

	float – pvalue for homogeneity test based on analytic.
distribution

	
x2_rpvalue

	float – (if permutations>0)
pseudo p-value for x2 based on random spatial
permutations of the rows of the original transitions.

	
x2_realizations

	array – (permutations,1), the values of x2 for the random
permutations.

	
Q

	float – Chi-square test of homogeneity across lag classes based
on Bickenbach and Bode (2003) [Bickenbach2003].

	
Q_p_value

	float – p-value for Q.

	
LR

	float – Likelihood ratio statistic for homogeneity across lag
classes based on Bickenback and Bode (2003)
[Bickenbach2003].

	
LR_p_value

	float – p-value for LR.

	
dof_hom

	int – degrees of freedom for LR and Q, corrected for 0 cells.

Notes

Based on Rey (2001) [Rey2001].

The shtest and chi2 tests should be used with caution as they are based on
classic theory assuming random transitions. The x2 based test is
preferable since it simulates the randomness under the null. It is an
experimental test requiring further analysis.

This is new

Examples

>>> import pysal as ps
>>> f = ps.open(ps.examples.get_path("usjoin.csv"))
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
>>> pci = pci.transpose()
>>> rpci = pci/(pci.mean(axis=0))
>>> w = ps.open(ps.examples.get_path("states48.gal")).read()
>>> w.transform = 'r'
>>> sm = ps.Spatial_Markov(rpci, w, fixed=True, k=5, variable_name='rpci')
>>> for p in sm.P:
... print(p)
...
[[0.96341463 0.0304878 0.00609756 0. 0.]
 [0.06040268 0.83221477 0.10738255 0. 0.]
 [0. 0.14 0.74 0.12 0.]
 [0. 0.03571429 0.32142857 0.57142857 0.07142857]
 [0. 0. 0. 0.16666667 0.83333333]]
[[0.79831933 0.16806723 0.03361345 0. 0.]
 [0.0754717 0.88207547 0.04245283 0. 0.]
 [0.00537634 0.06989247 0.8655914 0.05913978 0.]
 [0. 0. 0.06372549 0.90196078 0.03431373]
 [0. 0. 0. 0.19444444 0.80555556]]
[[0.84693878 0.15306122 0. 0. 0.]
 [0.08133971 0.78947368 0.1291866 0. 0.]
 [0.00518135 0.0984456 0.79274611 0.0984456 0.00518135]
 [0. 0. 0.09411765 0.87058824 0.03529412]
 [0. 0. 0. 0.10204082 0.89795918]]
[[0.8852459 0.09836066 0. 0.01639344 0.]
 [0.03875969 0.81395349 0.13953488 0. 0.00775194]
 [0.0049505 0.09405941 0.77722772 0.11881188 0.0049505]
 [0. 0.02339181 0.12865497 0.75438596 0.09356725]
 [0. 0. 0. 0.09661836 0.90338164]]
[[0.33333333 0.66666667 0. 0. 0.]
 [0.0483871 0.77419355 0.16129032 0.01612903 0.]
 [0.01149425 0.16091954 0.74712644 0.08045977 0.]
 [0. 0.01036269 0.06217617 0.89637306 0.03108808]
 [0. 0. 0. 0.02352941 0.97647059]]

The probability of a poor state remaining poor is 0.963 if their
neighbors are in the 1st quintile and 0.798 if their neighbors are
in the 2nd quintile. The probability of a rich economy remaining
rich is 0.976 if their neighbors are in the 5th quintile, but if their
neighbors are in the 4th quintile this drops to 0.903.

The Q and likelihood ratio statistics are both significant indicating
the dynamics are not homogeneous across the lag classes:

>>> "%.3f"%sm.LR
'170.659'
>>> "%.3f"%sm.Q
'200.624'
>>> "%.3f"%sm.LR_p_value
'0.000'
>>> "%.3f"%sm.Q_p_value
'0.000'
>>> sm.dof_hom
60

The long run distribution for states with poor (rich) neighbors has
0.435 (0.018) of the values in the first quintile, 0.263 (0.200) in
the second quintile, 0.204 (0.190) in the third, 0.0684 (0.255) in the
fourth and 0.029 (0.337) in the fifth quintile.

>>> sm.S
array([[0.43509425, 0.2635327 , 0.20363044, 0.06841983, 0.02932278],
 [0.13391287, 0.33993305, 0.25153036, 0.23343016, 0.04119356],
 [0.12124869, 0.21137444, 0.2635101 , 0.29013417, 0.1137326],
 [0.0776413 , 0.19748806, 0.25352636, 0.22480415, 0.24654013],
 [0.01776781, 0.19964349, 0.19009833, 0.25524697, 0.3372434]])

States with incomes in the first quintile with neighbors in the
first quintile return to the first quartile after 2.298 years, after
leaving the first quintile. They enter the fourth quintile after
80.810 years after leaving the first quintile, on average.
Poor states within neighbors in the fourth quintile return to the
first quintile, on average, after 12.88 years, and would enter the
fourth quintile after 28.473 years.

>>> for f in sm.F:
... print(f)
...
[[2.29835259 28.95614035 46.14285714 80.80952381 279.42857143]
 [33.86549708 3.79459555 22.57142857 57.23809524 255.85714286]
 [43.60233918 9.73684211 4.91085714 34.66666667 233.28571429]
 [46.62865497 12.76315789 6.25714286 14.61564626 198.61904762]
 [52.62865497 18.76315789 12.25714286 6. 34.1031746]]
[[7.46754205 9.70574606 25.76785714 74.53116883 194.23446197]
 [27.76691978 2.94175577 24.97142857 73.73474026 193.4380334]
 [53.57477715 28.48447637 3.97566318 48.76331169 168.46660482]
 [72.03631562 46.94601483 18.46153846 4.28393653 119.70329314]
 [77.17917276 52.08887197 23.6043956 5.14285714 24.27564033]]
[[8.24751154 6.53333333 18.38765432 40.70864198 112.76732026]
 [47.35040872 4.73094099 11.85432099 34.17530864 106.23398693]
 [69.42288828 24.76666667 3.794921 22.32098765 94.37966594]
 [83.72288828 39.06666667 14.3 3.44668119 76.36702977]
 [93.52288828 48.86666667 24.1 9.8 8.79255406]]
[[12.87974382 13.34847151 19.83446328 28.47257282 55.82395142]
 [99.46114206 5.06359731 10.54545198 23.05133495 49.68944423]
 [117.76777159 23.03735526 3.94436301 15.0843986 43.57927247]
 [127.89752089 32.4393006 14.56853107 4.44831643 31.63099455]
 [138.24752089 42.7893006 24.91853107 10.35 4.05613474]]
[[56.2815534 1.5 10.57236842 27.02173913 110.54347826]
 [82.9223301 5.00892857 9.07236842 25.52173913 109.04347826]
 [97.17718447 19.53125 5.26043557 21.42391304 104.94565217]
 [127.1407767 48.74107143 33.29605263 3.91777427 83.52173913]
 [169.6407767 91.24107143 75.79605263 42.5 2.96521739]]

	
pysal.spatial_dynamics.markov.kullback(F)

	Kullback information based test of Markov Homogeneity.

	Parameters:	F (array [https://docs.python.org/2/library/array.html#module-array]) – (s, r, r), values are transitions (not probabilities) for
s strata, r initial states, r terminal states.

	Returns:	Results – (key - value)Conditional homogeneity - (float) test statistic for homogeneity
of transition probabilities across strata.

Conditional homogeneity pvalue - (float) p-value for test
statistic.

Conditional homogeneity dof - (int) degrees of freedom =
r(s-1)(r-1).

	Return type:	dictionary

Notes

Based on Kullback, Kupperman and Ku (1962) [Kullback1962].
Example below is taken from Table 9.2 .

Examples

>>> s1 = np.array([
... [22, 11, 24, 2, 2, 7],
... [5, 23, 15, 3, 42, 6],
... [4, 21, 190, 25, 20, 34],
... [0, 2, 14, 56, 14, 28],
... [32, 15, 20, 10, 56, 14],
... [5, 22, 31, 18, 13, 134]
...])
>>> s2 = np.array([
... [3, 6, 9, 3, 0, 8],
... [1, 9, 3, 12, 27, 5],
... [2, 9, 208, 32, 5, 18],
... [0, 14, 32, 108, 40, 40],
... [22, 14, 9, 26, 224, 14],
... [1, 5, 13, 53, 13, 116]
...])
>>>
>>> F = np.array([s1, s2])
>>> res = kullback(F)
>>> "%8.3f"%res['Conditional homogeneity']
' 160.961'
>>> "%d"%res['Conditional homogeneity dof']
'30'
>>> "%3.1f"%res['Conditional homogeneity pvalue']
'0.0'

	
pysal.spatial_dynamics.markov.prais(pmat)

	Prais conditional mobility measure.

	Parameters:	pmat (matrix) – (k, k), Markov probability transition matrix.

	Returns:	pr – (1, k), conditional mobility measures for each of the k classes.

	Return type:	matrix

Notes

Prais’ conditional mobility measure for a class is defined as:

[image: pr_i = 1 - p_{i,i}]

Examples

>>> import numpy as np
>>> import pysal
>>> f = pysal.open(pysal.examples.get_path("usjoin.csv"))
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
>>> q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
>>> m = pysal.Markov(q5)
>>> m.transitions
array([[729., 71., 1., 0., 0.],
 [72., 567., 80., 3., 0.],
 [0., 81., 631., 86., 2.],
 [0., 3., 86., 573., 56.],
 [0., 0., 1., 57., 741.]])
>>> m.p
matrix([[0.91011236, 0.0886392 , 0.00124844, 0. , 0.],
 [0.09972299, 0.78531856, 0.11080332, 0.00415512, 0.],
 [0. , 0.10125 , 0.78875 , 0.1075 , 0.0025],
 [0. , 0.00417827, 0.11977716, 0.79805014, 0.07799443],
 [0. , 0. , 0.00125156, 0.07133917, 0.92740926]])
>>> pysal.spatial_dynamics.markov.prais(m.p)
matrix([[0.08988764, 0.21468144, 0.21125 , 0.20194986, 0.07259074]])

	
pysal.spatial_dynamics.markov.shorrock(pmat)

	Shorrock’s mobility measure.

	Parameters:	pmat (matrix) – (k, k), Markov probability transition matrix.

	Returns:	sh – Shorrock mobility measure.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

Notes

Shorock’s mobility measure is defined as

[image: sh = (k - \sum_{j=1}^{k} p_{j,j})/(k - 1)]

Examples

>>> import numpy as np
>>> import pysal
>>> f = pysal.open(pysal.examples.get_path("usjoin.csv"))
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
>>> q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
>>> m = pysal.Markov(q5)
>>> m.transitions
array([[729., 71., 1., 0., 0.],
 [72., 567., 80., 3., 0.],
 [0., 81., 631., 86., 2.],
 [0., 3., 86., 573., 56.],
 [0., 0., 1., 57., 741.]])
>>> m.p
matrix([[0.91011236, 0.0886392 , 0.00124844, 0. , 0.],
 [0.09972299, 0.78531856, 0.11080332, 0.00415512, 0.],
 [0. , 0.10125 , 0.78875 , 0.1075 , 0.0025],
 [0. , 0.00417827, 0.11977716, 0.79805014, 0.07799443],
 [0. , 0. , 0.00125156, 0.07133917, 0.92740926]])
>>> pysal.spatial_dynamics.markov.shorrock(m.p)
0.19758992000997844

	
pysal.spatial_dynamics.markov.homogeneity(transition_matrices, regime_names=[], class_names=[], title='Markov Homogeneity Test')

	Test for homogeneity of Markov transition probabilities across regimes.

	Parameters:	
	transition_matrices (list) – of transition matrices for regimes, all matrices must
have same size (r, c). r is the number of rows in the
transition matrix and c is the number of columns in
the transition matrix.

	regime_names (sequence) – Labels for the regimes.

	class_names (sequence) – Labels for the classes/states of the Markov chain.

	title (string [https://docs.python.org/2/library/string.html#module-string]) – name of test.

	Returns:	an instance of Homogeneity_Results.

	Return type:	implicit

 spatial_dynamics.rank – Rank and spatial rank mobility measures

spatial_dynamics.rank – Rank and spatial rank mobility measures

New in version 1.0.

Rank and spatial rank mobility measures.

	
class pysal.spatial_dynamics.rank.SpatialTau(x, y, w, permutations=0)

	Spatial version of Kendall’s rank correlation statistic.

Kendall’s Tau is based on a comparison of the number of pairs of n
observations that have concordant ranks between two variables. The spatial
Tau decomposes these pairs into those that are spatial neighbors and those
that are not, and examines whether the rank correlation is different
between the two sets relative to what would be expected under spatial randomness.

	Parameters:	
	x (array [https://docs.python.org/2/library/array.html#module-array]) – (n,), first variable.

	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,), second variable.

	w (W) – spatial weights object.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of random spatial permutations for computationally
based inference.

	
tau

	float – The classic Tau statistic.

	
tau_spatial

	float – Value of Tau for pairs that are spatial neighbors.

	
taus

	array – (permtuations, 1), values of simulated tau_spatial values
under random spatial permutations in both periods. (Same
permutation used for start and ending period).

	
pairs_spatial

	int – Number of spatial pairs.

	
concordant

	float – Number of concordant pairs.

	
concordant_spatial

	float – Number of concordant pairs that are spatial neighbors.

	
extraX

	float – Number of extra X pairs.

	
extraY

	float – Number of extra Y pairs.

	
discordant

	float – Number of discordant pairs.

	
discordant_spatial

	float – Number of discordant pairs that are spatial neighbors.

	
taus

	float – spatial tau values for permuted samples (if permutations>0).

	
tau_spatial_psim

	float – pseudo p-value for observed tau_spatial under the null
of spatial randomness (if permutations>0).

Notes

Algorithm has two stages. The first calculates classic Tau using a list
based implementation of the algorithm from Christensen
(2005) [Christensen2005]. Second
stage calculates concordance measures for neighboring pairs of locations
using a modification of the algorithm from Press et al (2007) [Press2007]. See Rey
(2014) [Rey2014] for details.

Examples

>>> import pysal
>>> import numpy as np
>>> f=pysal.open(pysal.examples.get_path("mexico.csv"))
>>> vnames=["pcgdp%d"%dec for dec in range(1940,2010,10)]
>>> y=np.transpose(np.array([f.by_col[v] for v in vnames]))
>>> regime=np.array(f.by_col['esquivel99'])
>>> w=pysal.weights.block_weights(regime)
>>> np.random.seed(12345)
>>> res=[pysal.SpatialTau(y[:,i],y[:,i+1],w,99) for i in range(6)]
>>> for r in res:
... ev = r.taus.mean()
... "%8.3f %8.3f %8.3f"%(r.tau_spatial, ev, r.tau_spatial_psim)
...
' 0.397 0.659 0.010'
' 0.492 0.706 0.010'
' 0.651 0.772 0.020'
' 0.714 0.752 0.210'
' 0.683 0.705 0.270'
' 0.810 0.819 0.280'

	
class pysal.spatial_dynamics.rank.Tau(x, y)

	Kendall’s Tau is based on a comparison of the number of pairs of n
observations that have concordant ranks between two variables.

	Parameters:	
	x (array [https://docs.python.org/2/library/array.html#module-array]) – (n,), first variable.

	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n,), second variable.

	
tau

	float – The classic Tau statistic.

	
tau_p

	float – asymptotic p-value.

Notes

Modification of algorithm suggested by Christensen (2005). [Christensen2005]
PySAL implementation uses a list based representation of a binary tree for
the accumulation of the concordance measures. Ties are handled by this
implementation (in other words, if there are ties in either x, or y, or
both, the calculation returns Tau_b, if no ties classic Tau is returned.)

Examples

from scipy example

>>> from scipy.stats import kendalltau
>>> x1 = [12, 2, 1, 12, 2]
>>> x2 = [1, 4, 7, 1, 0]
>>> kt = Tau(x1,x2)
>>> kt.tau
-0.47140452079103173
>>> kt.tau_p
0.24821309157521476
>>> skt = kendalltau(x1,x2)
>>> skt
(-0.47140452079103173, 0.24821309157521476)

	
class pysal.spatial_dynamics.rank.Theta(y, regime, permutations=999)

	Regime mobility measure. [Rey2004a]

For sequence of time periods Theta measures the extent to which rank
changes for a variable measured over n locations are in the same direction
within mutually exclusive and exhaustive partitions (regimes) of the n locations.

Theta is defined as the sum of the absolute sum of rank changes within
the regimes over the sum of all absolute rank changes.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – (n, k) with k>=2, successive columns of y are later moments
in time (years, months, etc).

	regime (array [https://docs.python.org/2/library/array.html#module-array]) – (n,), values corresponding to which regime each observation
belongs to.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – number of random spatial permutations to generate for
computationally based inference.

	
ranks

	array – ranks of the original y array (by columns).

	
regimes

	array – the original regimes array.

	
total

	array – (k-1,), the total number of rank changes for each of the
k periods.

	
max_total

	int – the theoretical maximum number of rank changes for n
observations.

	
theta

	array – (k-1,), the theta statistic for each of the k-1 intervals.

	
permutations

	int – the number of permutations.

	
pvalue_left

	float – p-value for test that observed theta is significantly lower
than its expectation under complete spatial randomness.

	
pvalue_right

	float – p-value for test that observed theta is significantly
greater than its expectation under complete spatial randomness.

Examples

>>> import pysal
>>> f=pysal.open(pysal.examples.get_path("mexico.csv"))
>>> vnames=["pcgdp%d"%dec for dec in range(1940,2010,10)]
>>> y=np.transpose(np.array([f.by_col[v] for v in vnames]))
>>> regime=np.array(f.by_col['esquivel99'])
>>> np.random.seed(10)
>>> t=Theta(y,regime,999)
>>> t.theta
array([[0.41538462, 0.28070175, 0.61363636, 0.62222222, 0.33333333,
 0.47222222]])
>>> t.pvalue_left
array([0.307, 0.077, 0.823, 0.552, 0.045, 0.735])
>>> t.total
array([130., 114., 88., 90., 90., 72.])
>>> t.max_total
512

 pysal.spreg — Regression and Diagnostics

pysal.spreg — Regression and Diagnostics

	spreg.ols — Ordinary Least Squares

	spreg.ols_regimes — Ordinary Least Squares with Regimes

	spreg.probit — Probit

	spreg.twosls — Two Stage Least Squares

	spreg.twosls_regimes — Two Stage Least Squares with Regimes

	spreg.twosls_sp — Spatial Two Stage Least Squares

	spreg.twosls_sp_regimes — Spatial Two Stage Least Squares with Regimes

	spreg.diagnostics- Diagnostics

	spreg.diagnostics_sp — Spatial Diagnostics

	spreg.diagnostics_tsls — Diagnostics for 2SLS

	spreg.error_sp — GM/GMM Estimation of Spatial Error and Spatial Combo Models

	spreg.error_sp_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Regimes

	spreg.error_sp_het — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Heteroskedasticity

	spreg.error_sp_het_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Heteroskedasticity with Regimes

	spreg.error_sp_hom — GM/GMM Estimation of Spatial Error and Spatial Combo Models

	spreg.error_sp_hom_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Regimes

	spreg.regimes — Spatial Regimes

	spreg.ml_error — ML Estimation of Spatial Error Model

	spreg.ml_error_regimes — ML Estimation of Spatial Error Model with Regimes

	spreg.ml_lag — ML Estimation of Spatial Lag Model

	spreg.ml_lag_regimes — ML Estimation of Spatial Lag Model with Regimes

	spreg.sur — Seeming Unrelated Regression

	spreg.sur_error — Spatial Error Seeming Unrelated Regression

	spreg.sur_lag — Spatial Lag Seeming Unrelated Regression

 spreg.ols — Ordinary Least Squares

spreg.ols — Ordinary Least Squares

The spreg.ols module provides OLS regression estimation.

New in version 1.1.

Ordinary Least Squares regression classes.

	
class pysal.spreg.ols.OLS(y, x, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, name_y=None, name_x=None, name_w=None, name_gwk=None, name_ds=None)

	Ordinary least squares with results and diagnostics.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	w (pysal W object) – Spatial weights object (required if running spatial
diagnostics)

	robust (string [https://docs.python.org/2/library/string.html#module-string]) – If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given. If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.

	gwk (pysal W object) – Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.

	sig2n_k (boolean) – If True, then use n-k to estimate sigma^2. If False, use n.

	nonspat_diag (boolean) – If True, then compute non-spatial diagnostics on
the regression.

	spat_diag (boolean) – If True, then compute Lagrange multiplier tests (requires
w). Note: see moran for further tests.

	moran (boolean) – If True, compute Moran’s I on the residuals. Note:
requires spat_diag=True.

	white_test (boolean) – If True, compute White’s specification robust test.
(requires nonspat_diag=True)

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_gwk (string [https://docs.python.org/2/library/string.html#module-string]) – Name of kernel weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
robust

	string – Adjustment for robust standard errors

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
r2

	float – R squared

	
ar2

	float – Adjusted R squared

	
utu

	float – Sum of squared residuals

	
sig2

	float – Sigma squared used in computations

	
sig2ML

	float – Sigma squared (maximum likelihood)

	
f_stat

	tuple – Statistic (float), p-value (float)

	
logll

	float – Log likelihood

	
aic

	float – Akaike information criterion

	
schwarz

	float – Schwarz information criterion

	
std_err

	array – 1xk array of standard errors of the betas

	
t_stat

	list of tuples – t statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
mulColli

	float – Multicollinearity condition number

	
jarque_bera

	dictionary – ‘jb’: Jarque-Bera statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)

	
breusch_pagan

	dictionary – ‘bp’: Breusch-Pagan statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)

	
koenker_bassett

	dictionary – ‘kb’: Koenker-Bassett statistic (float); ‘pvalue’:
p-value (float); ‘df’: degrees of freedom (int)

	
white

	dictionary – ‘wh’: White statistic (float); ‘pvalue’: p-value (float);
‘df’: degrees of freedom (int)

	
lm_error

	tuple – Lagrange multiplier test for spatial error model; tuple
contains the pair (statistic, p-value), where each is a
float

	
lm_lag

	tuple – Lagrange multiplier test for spatial lag model; tuple
contains the pair (statistic, p-value), where each is a
float

	
rlm_error

	tuple – Robust lagrange multiplier test for spatial error model;
tuple contains the pair (statistic, p-value), where each
is a float

	
rlm_lag

	tuple – Robust lagrange multiplier test for spatial lag model;
tuple contains the pair (statistic, p-value), where each
is a float

	
lm_sarma

	tuple – Lagrange multiplier test for spatial SARMA model; tuple
contains the pair (statistic, p-value), where each is a
float

	
moran_res

	tuple – Moran’s I for the residuals; tuple containing the triple
(Moran’s I, standardized Moran’s I, p-value)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_gwk

	string – Name of kernel weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

	
sig2n

	float – Sigma squared (computed with n in the denominator)

	
sig2n_k

	float – Sigma squared (computed with n-k in the denominator)

	
xtx

	float – X’X

	
xtxi

	float – (X’X)^-1

Examples

>>> import numpy as np
>>> import pysal

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; also, the actual OLS class
requires data to be passed in as numpy arrays so the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an nx1 numpy array.

>>> hoval = db.by_col("HOVAL")
>>> y = np.array(hoval)
>>> y.shape = (len(hoval), 1)

Extract CRIME (crime) and INC (income) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). pysal.spreg.OLS adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T

The minimum parameters needed to run an ordinary least squares regression
are the two numpy arrays containing the independent variable and dependent
variables respectively. To make the printed results more meaningful, the
user can pass in explicit names for the variables used; this is optional.

>>> ols = OLS(y, X, name_y='home value', name_x=['income','crime'], name_ds='columbus', white_test=True)

pysal.spreg.OLS computes the regression coefficients and their standard
errors, t-stats and p-values. It also computes a large battery of
diagnostics on the regression. In this example we compute the white test
which by default isn’t (‘white_test=True’). All of these results can be independently
accessed as attributes of the regression object created by running
pysal.spreg.OLS. They can also be accessed at one time by printing the
summary attribute of the regression object. In the example below, the
parameter on crime is -0.4849, with a t-statistic of -2.6544 and p-value
of 0.01087.

>>> ols.betas
array([[46.42818268],
 [0.62898397],
 [-0.48488854]])
>>> print round(ols.t_stat[2][0],3)
-2.654
>>> print round(ols.t_stat[2][1],3)
0.011
>>> print round(ols.r2,3)
0.35

Or we can easily obtain a full summary of all the results nicely formatted and
ready to be printed:

>>> print ols.summary
REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES

Data set : columbus
Dependent Variable : home value Number of Observations: 49
Mean dependent var : 38.4362 Number of Variables : 3
S.D. dependent var : 18.4661 Degrees of Freedom : 46
R-squared : 0.3495
Adjusted R-squared : 0.3212
Sum squared residual: 10647.015 F-statistic : 12.3582
Sigma-square : 231.457 Prob(F-statistic) : 5.064e-05
S.E. of regression : 15.214 Log likelihood : -201.368
Sigma-square ML : 217.286 Akaike info criterion : 408.735
S.E of regression ML: 14.7406 Schwarz criterion : 414.411

--
 Variable Coefficient Std.Error t-Statistic Probability
--
 CONSTANT 46.4281827 13.1917570 3.5194844 0.0009867
 crime -0.4848885 0.1826729 -2.6544086 0.0108745
 income 0.6289840 0.5359104 1.1736736 0.2465669
--

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 12.538

TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 39.706 0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 2 5.767 0.0559
Koenker-Bassett test 2 2.270 0.3214

SPECIFICATION ROBUST TEST
TEST DF VALUE PROB
White 5 2.906 0.7145
================================ END OF REPORT =====================================

If the optional parameters w and spat_diag are passed to pysal.spreg.OLS,
spatial diagnostics will also be computed for the regression. These
include Lagrange multiplier tests and Moran’s I of the residuals. The w
parameter is a PySAL spatial weights matrix. In this example, w is built
directly from the shapefile columbus.shp, but w can also be read in from a
GAL or GWT file. In this case a rook contiguity weights matrix is built,
but PySAL also offers queen contiguity, distance weights and k nearest
neighbor weights among others. In the example, the Moran’s I of the
residuals is 0.204 with a standardized value of 2.592 and a p-value of
0.0095.

>>> w = pysal.weights.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
>>> ols = OLS(y, X, w, spat_diag=True, moran=True, name_y='home value', name_x=['income','crime'], name_ds='columbus')
>>> ols.betas
array([[46.42818268],
 [0.62898397],
 [-0.48488854]])
>>> print round(ols.moran_res[0],3)
0.204
>>> print round(ols.moran_res[1],3)
2.592
>>> print round(ols.moran_res[2],4)
0.0095

 spreg.ols_regimes — Ordinary Least Squares with Regimes

spreg.ols_regimes — Ordinary Least Squares with Regimes

The spreg.ols_regimes module provides OLS with regimes regression estimation.

New in version 1.5.

Ordinary Least Squares regression with regimes.

	
class pysal.spreg.ols_regimes.OLS_Regimes(y, x, regimes, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=False, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

	Ordinary least squares with results and diagnostics.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	w (pysal W object) – Spatial weights object (required if running spatial
diagnostics)

	robust (string [https://docs.python.org/2/library/string.html#module-string]) – If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given. If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.

	gwk (pysal W object) – Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.

	sig2n_k (boolean) – If True, then use n-k to estimate sigma^2. If False, use n.

	nonspat_diag (boolean) – If True, then compute non-spatial diagnostics on
the regression.

	spat_diag (boolean) – If True, then compute Lagrange multiplier tests (requires
w). Note: see moran for further tests.

	moran (boolean) – If True, compute Moran’s I on the residuals. Note:
requires spat_diag=True.

	white_test (boolean) – If True, compute White’s specification robust test.
(requires nonspat_diag=True)

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_gwk (string [https://docs.python.org/2/library/string.html#module-string]) – Name of kernel weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regime variable for use in the output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
robust

	string – Adjustment for robust standard errors
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
r2

	float – R squared
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
ar2

	float – Adjusted R squared
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
utu

	float – Sum of squared residuals

	
sig2

	float – Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
sig2ML

	float – Sigma squared (maximum likelihood)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
f_stat

	tuple – Statistic (float), p-value (float)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
logll

	float – Log likelihood
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
aic

	float – Akaike information criterion
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
schwarz

	float – Schwarz information criterion
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
t_stat

	list of tuples – t statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mulColli

	float – Multicollinearity condition number
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
jarque_bera

	dictionary – ‘jb’: Jarque-Bera statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
breusch_pagan

	dictionary – ‘bp’: Breusch-Pagan statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
koenker_bassett

	dictionary – ‘kb’: Koenker-Bassett statistic (float); ‘pvalue’:
p-value (float); ‘df’: degrees of freedom (int)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
white

	dictionary – ‘wh’: White statistic (float); ‘pvalue’: p-value (float);
‘df’: degrees of freedom (int)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
lm_error

	
	tuple – Lagrange multiplier test for spatial error model; tuple

	contains the pair (statistic, p-value), where each is a
float

Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
lm_lag

	
	tuple – Lagrange multiplier test for spatial lag model; tuple

	contains the pair (statistic, p-value), where each is a
float

Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
rlm_error

	
	tuple – Robust lagrange multiplier test for spatial error model;

	tuple contains the pair (statistic, p-value), where each
is a float

Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
rlm_lag

	
	tuple – Robust lagrange multiplier test for spatial lag model;

	tuple contains the pair (statistic, p-value), where each
is a float

Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
lm_sarma

	
	tuple – Lagrange multiplier test for spatial SARMA model; tuple

	contains the pair (statistic, p-value), where each is a
float

Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
moran_res

	tuple – Moran’s I for the residuals; tuple containing the triple
(Moran’s I, standardized Moran’s I, p-value)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_gwk

	string – Name of kernel weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regime variable for use in the output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
sig2n

	float – Sigma squared (computed with n in the denominator)

	
sig2n_k

	float – Sigma squared (computed with n-k in the denominator)

	
xtx

	float – X’X
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
xtxi

	float – (X’X)^-1
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

>>> import numpy as np
>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it
the dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = db.by_col(y_var)
>>> y = np.array(y).reshape(len(y), 1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

We can now run the regression and then have a summary of the output
by typing: olsr.summary
Alternatively, we can just check the betas and standard errors of the
parameters:

>>> olsr = OLS_Regimes(y, x, regimes, nonspat_diag=False, name_y=y_var, name_x=['PS90','UE90'], name_regimes=r_var, name_ds='NAT')
>>> olsr.betas
array([[0.39642899],
 [0.65583299],
 [0.48703937],
 [5.59835],
 [1.16210453],
 [0.53163886]])
>>> np.sqrt(olsr.vm.diagonal())
array([0.24816345, 0.09662678, 0.03628629, 0.46894564, 0.21667395,
 0.05945651])
>>> olsr.cols2regi
'all'

 spreg.probit — Probit

spreg.probit — Probit

The spreg.probit module provides probit regression estimation.

New in version 1.4.

Probit regression class and diagnostics.

	
class pysal.spreg.probit.Probit(y, x, w=None, optim='newton', scalem='phimean', maxiter=100, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, spat_diag=False)

	Classic non-spatial Probit and spatial diagnostics. The class includes a
printout that formats all the results and tests in a nice format.

The diagnostics for spatial dependence currently implemented are:

	Pinkse Error [Pinkse2004]

	Kelejian and Prucha Moran’s I [Kelejian2001]

	Pinkse & Slade Error [Pinkse1998]

	Parameters:	
	x (array [https://docs.python.org/2/library/array.html#module-array]) – nxk array of independent variables (assumed to be aligned with y)

	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array of dependent binary variable

	w (W) – PySAL weights instance aligned with y

	optim (string [https://docs.python.org/2/library/string.html#module-string]) – Optimization method.
Default: ‘newton’ (Newton-Raphson).
Alternatives: ‘ncg’ (Newton-CG), ‘bfgs’ (BFGS algorithm)

	scalem (string [https://docs.python.org/2/library/string.html#module-string]) – Method to calculate the scale of the marginal effects.
Default: ‘phimean’ (Mean of individual marginal effects)
Alternative: ‘xmean’ (Marginal effects at variables mean)

	maxiter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations until optimizer stops

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
y

	array – nx1 array of dependent variable

	
betas

	array – kx1 array with estimated coefficients

	
predy

	array – nx1 array of predicted y values

	
n

	int – Number of observations

	
k

	int – Number of variables

	
vm

	array – Variance-covariance matrix (kxk)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
xmean

	array – Mean of the independent variables (kx1)

	
predpc

	float – Percent of y correctly predicted

	
logl

	float – Log-Likelihhod of the estimation

	
scalem

	string – Method to calculate the scale of the marginal effects.

	
scale

	float – Scale of the marginal effects.

	
slopes

	array – Marginal effects of the independent variables (k-1x1)

	
slopes_vm

	array – Variance-covariance matrix of the slopes (k-1xk-1)

	
LR

	tuple – Likelihood Ratio test of all coefficients = 0
(test statistics, p-value)

	
Pinkse_error

	float – Lagrange Multiplier test against spatial error correlation.
Implemented as presented in [Pinkse2004]

	
KP_error

	float – Moran’s I type test against spatial error correlation.
Implemented as presented in [Kelejian2001]

	
PS_error

	float – Lagrange Multiplier test against spatial error correlation.
Implemented as presented in [Pinkse1998]

	
warning

	boolean – if True Maximum number of iterations exceeded or gradient
and/or function calls not changing.

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> dbf = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')

Extract the CRIME column (crime) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept. Since we want to run a probit model and for this
example we use the Columbus data, we also need to transform the continuous
CRIME variable into a binary variable. As in [McMillen1992], we define
y = 1 if CRIME > 40.

>>> y = np.array([dbf.by_col('CRIME')]).T
>>> y = (y>40).astype(float)

Extract HOVAL (home values) and INC (income) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> names_to_extract = ['INC', 'HOVAL']
>>> x = np.array([dbf.by_col(name) for name in names_to_extract]).T

Since we want to the test the probit model for spatial dependence, we need to
specify the spatial weights matrix that includes the spatial configuration of
the observations into the error component of the model. To do that, we can open
an already existing gal file or create a new one. In this case, we will use
columbus.gal, which contains contiguity relationships between the
observations in the Columbus dataset we are using throughout this example.
Note that, in order to read the file, not only to open it, we need to
append ‘.read()’ at the end of the command.

>>> w = pysal.open(pysal.examples.get_path("columbus.gal"), 'r').read()

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. In PySAL, this
can be easily performed in the following way:

>>> w.transform='r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = Probit(y, x, w=w, name_y='crime', name_x=['income','home value'], name_ds='columbus', name_w='columbus.gal')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them.

>>> np.around(model.betas, decimals=6)
array([[3.353811],
 [-0.199653],
 [-0.029514]])

>>> np.around(model.vm, decimals=6)
array([[0.852814, -0.043627, -0.008052],
 [-0.043627, 0.004114, -0.000193],
 [-0.008052, -0.000193, 0.00031]])

Since we have provided a spatial weigths matrix, the diagnostics for
spatial dependence have also been computed. We can access them and their
p-values individually:

>>> tests = np.array([['Pinkse_error','KP_error','PS_error']])
>>> stats = np.array([[model.Pinkse_error[0],model.KP_error[0],model.PS_error[0]]])
>>> pvalue = np.array([[model.Pinkse_error[1],model.KP_error[1],model.PS_error[1]]])
>>> print np.hstack((tests.T,np.around(np.hstack((stats.T,pvalue.T)),6)))
[['Pinkse_error' '3.131719' '0.076783']
 ['KP_error' '1.721312' '0.085194']
 ['PS_error' '2.558166' '0.109726']]

Or we can easily obtain a full summary of all the results nicely formatted and
ready to be printed simply by typing ‘print model.summary’

 spreg.twosls — Two Stage Least Squares

spreg.twosls — Two Stage Least Squares

The spreg.twosls module provides 2SLS regression estimation.

New in version 1.3.

	
class pysal.spreg.twosls.TSLS(y, x, yend, q, w=None, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None)

	Two stage least squares with results and diagnostics.

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	w (pysal W object) – Spatial weights object (required if running spatial
diagnostics)

	robust (string [https://docs.python.org/2/library/string.html#module-string]) – If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given. If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.

	gwk (pysal W object) – Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.

	sig2n_k (boolean) – If True, then use n-k to estimate sigma^2. If False, use n.

	spat_diag (boolean) – If True, then compute Anselin-Kelejian test (requires w)

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_gwk (string [https://docs.python.org/2/library/string.html#module-string]) – Name of kernel weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
kstar

	integer – Number of endogenous variables.

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	
z

	array – nxk array of variables (combination of x and yend)

	
h

	array – nxl array of instruments (combination of x and q)

	
robust

	string – Adjustment for robust standard errors

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
utu

	float – Sum of squared residuals

	
sig2

	float – Sigma squared used in computations

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
ak_test

	tuple – Anselin-Kelejian test; tuple contains the pair (statistic,
p-value)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_gwk

	string – Name of kernel weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

	
sig2n

	float – Sigma squared (computed with n in the denominator)

	
sig2n_k

	float – Sigma squared (computed with n-k in the denominator)

	
hth

	float – H’H

	
hthi

	float – (H’H)^-1

	
varb

	array – (Z’H (H’H)^-1 H’Z)^-1

	
zthhthi

	array – Z’H(H’H)^-1

	
pfora1a2

	array – n(zthhthi)’varb

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')

Extract the CRIME column (crime rates) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

In this case we consider HOVAL (home value) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T

Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for HOVAL. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous) and the
instruments. If we want to have the names of the variables printed in the
output summary, we will have to pass them in as well, although this is optional.

>>> reg = TSLS(y, X, yd, q, name_x=['inc'], name_y='crime', name_yend=['hoval'], name_q=['discbd'], name_ds='columbus')
>>> print reg.betas
[[88.46579584]
 [0.5200379]
 [-1.58216593]]

 spreg.twosls_regimes — Two Stage Least Squares with Regimes

spreg.twosls_regimes — Two Stage Least Squares with Regimes

The spreg.twosls_regimes module provides 2SLS with regimes regression estimation.

New in version 1.5.

	
class pysal.spreg.twosls_regimes.TSLS_Regimes(y, x, yend, q, regimes, w=None, robust=None, gwk=None, sig2n_k=True, spat_diag=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, name_y=None, name_x=None, cores=False, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None, summ=True)

	Two stage least squares (2SLS) with regimes

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	robust (string [https://docs.python.org/2/library/string.html#module-string]) – If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given.
If ‘hac’, then a HAC consistent estimator of the
variance-covariance matrix is given.
If ‘ogmm’, then Optimal GMM is used to estimate
betas and the variance-covariance matrix.
Default set to None.

	gwk (pysal W object) – Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.

	sig2n_k (boolean) – If True, then use n-k to estimate sigma^2. If False, use n.

	vm (boolean) – If True, include variance-covariance matrix in summary

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regimes variable for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_gwk (string [https://docs.python.org/2/library/string.html#module-string]) – Name of kernel weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
vm

	array – Variance covariance matrix (kxk)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[False, ‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_q

	list of strings – Names of instruments for use in output

	
name_regimes

	string – Name of regimes variable for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_gwk

	string – Name of kernel weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

In this case we consider RD90 (resource deprivation) as an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T

Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for RD90. We use FP89 (families below poverty)
for this and hence put it in the instruments parameter, ‘q’.

>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to perform tests for spatial dependence, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations into the error component of the model. To do that, we can open
an already existing gal file or create a new one. In this case, we will
create one from NAT.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We can now run the regression and then have a summary of the output
by typing: model.summary
Alternatively, we can just check the betas and standard errors of the
parameters:

>>> tslsr = TSLS_Regimes(y, x, yd, q, regimes, w=w, constant_regi='many', spat_diag=False, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT', name_w='NAT.shp')

>>> tslsr.betas
array([[3.66973562],
 [1.06950466],
 [0.14680946],
 [2.45864196],
 [9.55873243],
 [1.94666348],
 [-0.30810214],
 [3.68718119]])

>>> np.sqrt(tslsr.vm.diagonal())
array([0.38389901, 0.09963973, 0.04672091, 0.22725012, 0.49181223,
 0.19630774, 0.07784587, 0.25529011])

 spreg.twosls_sp — Spatial Two Stage Least Squares

spreg.twosls_sp — Spatial Two Stage Least Squares

The spreg.twosls_sp module provides S2SLS regression estimation.

New in version 1.3.

Spatial Two Stages Least Squares

	
class pysal.spreg.twosls_sp.GM_Lag(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None)

	Spatial two stage least squares (S2SLS) with results and diagnostics;
Anselin (1988) [Anselin1988]

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x); cannot be
used in combination with h

	w (pysal W object) – Spatial weights object

	w_lags (integer) – Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_q (boolean) – If True, then include spatial lags of the additional
instruments (q).

	robust (string [https://docs.python.org/2/library/string.html#module-string]) – If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given. If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.

	gwk (pysal W object) – Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.

	sig2n_k (boolean) – If True, then use n-k to estimate sigma^2. If False, use n.

	spat_diag (boolean) – If True, then compute Anselin-Kelejian test

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_gwk (string [https://docs.python.org/2/library/string.html#module-string]) – Name of kernel weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_pred

	array – nx1 array of residuals (using reduced form)

	
predy

	array – nx1 array of predicted y values

	
predy_e

	array – nx1 array of predicted y values (using reduced form)

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
kstar

	integer – Number of endogenous variables.

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	
z

	array – nxk array of variables (combination of x and yend)

	
h

	array – nxl array of instruments (combination of x and q)

	
robust

	string – Adjustment for robust standard errors

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
pr2_e

	float – Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))

	
utu

	float – Sum of squared residuals

	
sig2

	float – Sigma squared used in computations

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
ak_test

	tuple – Anselin-Kelejian test; tuple contains the pair (statistic,
p-value)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_gwk

	string – Name of kernel weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

	
sig2n

	float – Sigma squared (computed with n in the denominator)

	
sig2n_k

	float – Sigma squared (computed with n-k in the denominator)

	
hth

	float – H’H

	
hthi

	float – (H’H)^-1

	
varb

	array – (Z’H (H’H)^-1 H’Z)^-1

	
zthhthi

	array – Z’H(H’H)^-1

	
pfora1a2

	array – n(zthhthi)’varb

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis. Since we will need some tests for our
model, we also import the diagnostics module.

>>> import numpy as np
>>> import pysal
>>> import pysal.spreg.diagnostics as D

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')

Extract the HOVAL column (home value) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) and CRIME (crime rates) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

This class runs a lag model, which means that includes the spatial lag of
the dependent variable on the right-hand side of the equation. If we want
to have the names of the variables printed in the
output summary, we will have to pass them in as well, although this is
optional. The default most basic model to be run would be:

>>> reg=GM_Lag(y, X, w=w, w_lags=2, name_x=['inc', 'crime'], name_y='hoval', name_ds='columbus')
>>> reg.betas
array([[45.30170561],
 [0.62088862],
 [-0.48072345],
 [0.02836221]])

Once the model is run, we can obtain the standard error of the coefficient
estimates by calling the diagnostics module:

>>> D.se_betas(reg)
array([17.91278862, 0.52486082, 0.1822815 , 0.31740089])

But we can also run models that incorporates corrected standard errors
following the White procedure. For that, we will have to include the
optional parameter robust='white':

>>> reg=GM_Lag(y, X, w=w, w_lags=2, robust='white', name_x=['inc', 'crime'], name_y='hoval', name_ds='columbus')
>>> reg.betas
array([[45.30170561],
 [0.62088862],
 [-0.48072345],
 [0.02836221]])

And we can access the standard errors from the model object:

>>> reg.std_err
array([20.47077481, 0.50613931, 0.20138425, 0.38028295])

The class is flexible enough to accomodate a spatial lag model that,
besides the spatial lag of the dependent variable, includes other
non-spatial endogenous regressors. As an example, we will assume that
CRIME is actually endogenous and we decide to instrument for it with
DISCBD (distance to the CBD). We reload the X including INC only and
define CRIME as endogenous and DISCBD as instrument:

>>> X = np.array(db.by_col("INC"))
>>> X = np.reshape(X, (49,1))
>>> yd = np.array(db.by_col("CRIME"))
>>> yd = np.reshape(yd, (49,1))
>>> q = np.array(db.by_col("DISCBD"))
>>> q = np.reshape(q, (49,1))

And we can run the model again:

>>> reg=GM_Lag(y, X, w=w, yend=yd, q=q, w_lags=2, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')
>>> reg.betas
array([[100.79359082],
 [-0.50215501],
 [-1.14881711],
 [-0.38235022]])

Once the model is run, we can obtain the standard error of the coefficient
estimates by calling the diagnostics module:

>>> D.se_betas(reg)
array([53.0829123 , 1.02511494, 0.57589064, 0.59891744])

 spreg.twosls_sp_regimes — Spatial Two Stage Least Squares with Regimes

spreg.twosls_sp_regimes — Spatial Two Stage Least Squares with Regimes

The spreg.twosls_sp_regimes module provides S2SLS with regimes regression estimation.

New in version 1.5.

Spatial Two Stages Least Squares with Regimes

	
class pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, constant_regi='many', cols2regi='all', regime_lag_sep=False, regime_err_sep=True, cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

	Spatial two stage least squares (S2SLS) with regimes;
Anselin (1988) [Anselin1988]

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x); cannot be
used in combination with h

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	w (pysal W object) – Spatial weights object

	w_lags (integer) – Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_q (boolean) – If True, then include spatial lags of the additional
instruments (q).

	regime_lag_sep (boolean) – If True (default), the spatial parameter for spatial lag is also
computed according to different regimes. If False,
the spatial parameter is fixed accross regimes.
Option valid only when regime_err_sep=True

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	robust (string [https://docs.python.org/2/library/string.html#module-string]) – If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given.
If ‘hac’, then a HAC consistent estimator of the
variance-covariance matrix is given.
If ‘ogmm’, then Optimal GMM is used to estimate
betas and the variance-covariance matrix.
Default set to None.

	gwk (pysal W object) – Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.

	sig2n_k (boolean) – If True, then use n-k to estimate sigma^2. If False, use n.

	spat_diag (boolean) – If True, then compute Anselin-Kelejian test

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_gwk (string [https://docs.python.org/2/library/string.html#module-string]) – Name of kernel weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regimes variable for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_pred

	array – nx1 array of residuals (using reduced form)

	
predy

	array – nx1 array of predicted y values

	
predy_e

	array – nx1 array of predicted y values (using reduced form)

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
kstar

	integer – Number of endogenous variables.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z

	array – nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
h

	array – nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
robust

	string – Adjustment for robust standard errors
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
pr2_e

	float – Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
utu

	float – Sum of squared residuals

	
sig2

	float – Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
ak_test

	tuple – Anselin-Kelejian test; tuple contains the pair (statistic,
p-value)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_gwk

	string – Name of kernel weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regimes variable for use in output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
sig2n

	float – Sigma squared (computed with n in the denominator)

	
sig2n_k

	float – Sigma squared (computed with n-k in the denominator)

	
hth

	float – H’H
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
hthi

	float – (H’H)^-1
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
varb

	array – (Z’H (H’H)^-1 H’Z)^-1
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
zthhthi

	array – Z’H(H’H)^-1
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
pfora1a2

	array – n(zthhthi)’varb
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_lag_sep

	boolean – If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial lag model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

This class runs a lag model, which means that includes the spatial lag of
the dependent variable on the right-hand side of the equation. If we want
to have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model=GM_Lag_Regimes(y, x, regimes, w=w, regime_lag_sep=False, regime_err_sep=False, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT', name_w='NAT.shp')
>>> model.betas
array([[1.28897623],
 [0.79777722],
 [0.56366891],
 [8.73327838],
 [1.30433406],
 [0.62418643],
 [-0.39993716]])

Once the model is run, we can have a summary of the output by typing:
model.summary . Alternatively, we can obtain the standard error of
the coefficient estimates by calling:

>>> model.std_err
array([0.44682888, 0.14358192, 0.05655124, 1.06044865, 0.20184548,
 0.06118262, 0.12387232])

In the example above, all coefficients but the spatial lag vary
according to the regime. It is also possible to have the spatial lag
varying according to the regime, which effective will result in an
independent spatial lag model estimated for each regime. To run these
models, the argument regime_lag_sep must be set to True:

>>> model=GM_Lag_Regimes(y, x, regimes, w=w, regime_lag_sep=True, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT', name_w='NAT.shp')
>>> print np.hstack((np.array(model.name_z).reshape(8,1),model.betas,np.sqrt(model.vm.diagonal().reshape(8,1))))
[['0_CONSTANT' '1.36584769' '0.39854720']
 ['0_PS90' '0.80875730' '0.11324884']
 ['0_UE90' '0.56946813' '0.04625087']
 ['0_W_HR90' '-0.4342438' '0.13350159']
 ['1_CONSTANT' '7.90731073' '1.63601874']
 ['1_PS90' '1.27465703' '0.24709870']
 ['1_UE90' '0.60167693' '0.07993322']
 ['1_W_HR90' '-0.2960338' '0.19934459']]

Alternatively, we can type: ‘model.summary’ to see the organized results output.
The class is flexible enough to accomodate a spatial lag model that,
besides the spatial lag of the dependent variable, includes other
non-spatial endogenous regressors. As an example, we will add the endogenous
variable RD90 (resource deprivation) and we decide to instrument for it with
FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

And we can run the model again:

>>> model = GM_Lag_Regimes(y, x, regimes, yend=yd, q=q, w=w, regime_lag_sep=False, regime_err_sep=False, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT', name_w='NAT.shp')
>>> model.betas
array([[3.42195202],
 [1.03311878],
 [0.14308741],
 [8.99740066],
 [1.91877758],
 [-0.32084816],
 [2.38918212],
 [3.67243761],
 [0.06959139]])

Once the model is run, we can obtain the standard error of the coefficient
estimates. Alternatively, we can have a summary of the output by typing:
model.summary

>>> model.std_err
array([0.49163311, 0.12237382, 0.05633464, 0.72555909, 0.17250521,
 0.06749131, 0.27370369, 0.25106224, 0.05804213])

 spreg.diagnostics- Diagnostics

spreg.diagnostics- Diagnostics

The spreg.diagnostics module provides a set of standard non-spatial diagnostic tests.

New in version 1.1.

Diagnostics for regression estimations.

	
pysal.spreg.diagnostics.f_stat(reg)

	Calculates the f-statistic and associated p-value of the
regression. [Greene2003]
(For two stage least squares see f_stat_tsls)

	Parameters:	reg (regression object) – output instance from a regression model

	Returns:	fs_result – includes value of F statistic and associated p-value

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple]

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the F-statistic for the regression.

>>> testresult = diagnostics.f_stat(reg)

Print the results tuple, including the statistic and its significance.

>>> print("%12.12f"%testresult[0],"%12.12f"%testresult[1])
('28.385629224695', '0.000000009341')

	
pysal.spreg.diagnostics.t_stat(reg, z_stat=False)

	Calculates the t-statistics (or z-statistics) and associated
p-values. [Greene2003]

	Parameters:	
	reg (regression object) – output instance from a regression model

	z_stat (boolean) – If True run z-stat instead of t-stat

	Returns:	ts_result – each tuple includes value of t statistic (or z
statistic) and associated p-value

	Return type:	list of tuples

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate t-statistics for the regression coefficients.

>>> testresult = diagnostics.t_stat(reg)

Print the tuples that contain the t-statistics and their significances.

>>> print("%12.12f"%testresult[0][0], "%12.12f"%testresult[0][1], "%12.12f"%testresult[1][0], "%12.12f"%testresult[1][1], "%12.12f"%testresult[2][0], "%12.12f"%testresult[2][1])
('14.490373143689', '0.000000000000', '-4.780496191297', '0.000018289595', '-2.654408642718', '0.010874504910')

	
pysal.spreg.diagnostics.r2(reg)

	Calculates the R^2 value for the regression. [Greene2003]

	Parameters:	reg (regression object) – output instance from a regression model

	Returns:	r2_result – value of the coefficient of determination for the
regression

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the R^2 value for the regression.

>>> testresult = diagnostics.r2(reg)

Print the result.

>>> print("%1.8f"%testresult)
0.55240404

	
pysal.spreg.diagnostics.ar2(reg)

	Calculates the adjusted R^2 value for the regression. [Greene2003]

	Parameters:	reg (regression object) – output instance from a regression model

	Returns:	ar2_result – value of R^2 adjusted for the number of explanatory
variables.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the adjusted R^2 value for the regression.
>>> testresult = diagnostics.ar2(reg)

Print the result.

>>> print("%1.8f"%testresult)
0.53294335

	
pysal.spreg.diagnostics.se_betas(reg)

	Calculates the standard error of the regression coefficients. [Greene2003]

	Parameters:	reg (regression object) – output instance from a regression model

	Returns:	se_result – includes standard errors of each coefficient (1 x k)

	Return type:	array [https://docs.python.org/2/library/array.html#module-array]

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the standard errors of the regression coefficients.

>>> testresult = diagnostics.se_betas(reg)

Print the vector of standard errors.

>>> testresult
array([4.73548613, 0.33413076, 0.10319868])

	
pysal.spreg.diagnostics.log_likelihood(reg)

	Calculates the log-likelihood value for the regression. [Greene2003]

	Parameters:	reg (regression object) – output instance from a regression model

	Returns:	ll_result – value for the log-likelihood of the regression.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the log-likelihood for the regression.

>>> testresult = diagnostics.log_likelihood(reg)

Print the result.

>>> testresult
-187.3772388121491

	
pysal.spreg.diagnostics.akaike(reg)

	Calculates the Akaike Information Criterion. [Akaike1974]

	Parameters:	reg (regression object) – output instance from a regression model

	Returns:	aic_result – value for Akaike Information Criterion of the
regression.

	Return type:	scalar

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Akaike Information Criterion (AIC).

>>> testresult = diagnostics.akaike(reg)

Print the result.

>>> testresult
380.7544776242982

	
pysal.spreg.diagnostics.schwarz(reg)

	Calculates the Schwarz Information Criterion. [Schwarz1978]

	Parameters:	reg (regression object) – output instance from a regression model

	Returns:	bic_result – value for Schwarz (Bayesian) Information Criterion of
the regression.

	Return type:	scalar

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Schwarz Information Criterion.

>>> testresult = diagnostics.schwarz(reg)

Print the results.

>>> testresult
386.42993851863008

	
pysal.spreg.diagnostics.condition_index(reg)

	Calculates the multicollinearity condition index according to Belsey,
Kuh and Welsh (1980) [Belsley1980].

	Parameters:	reg (regression object) – output instance from a regression model

	Returns:	ci_result – scalar value for the multicollinearity condition
index.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the condition index to check for multicollinearity.

>>> testresult = diagnostics.condition_index(reg)

Print the result.

>>> print("%1.3f"%testresult)
6.542

	
pysal.spreg.diagnostics.jarque_bera(reg)

	Jarque-Bera test for normality in the residuals. [Jarque1980]

	Parameters:	reg (regression object) – output instance from a regression model

	Returns:	
	jb_result (dictionary) – contains the statistic (jb) for the Jarque-Bera test
and the associated p-value (p-value)

	df (integer) – degrees of freedom for the test (always 2)

	jb (float) – value of the test statistic

	pvalue (float) – p-value associated with the statistic (chi^2
distributed with 2 df)

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"), "r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Jarque-Bera test for normality of residuals.

>>> testresult = diagnostics.jarque_bera(reg)

Print the degrees of freedom for the test.

>>> testresult['df']
2

Print the test statistic.

>>> print("%1.3f"%testresult['jb'])
1.836

Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.3994

	
pysal.spreg.diagnostics.breusch_pagan(reg, z=None)

	Calculates the Breusch-Pagan test statistic to check for
heteroscedasticity. [Breusch1979]

	Parameters:	
	reg (regression object) – output instance from a regression model

	z (array [https://docs.python.org/2/library/array.html#module-array]) – optional input for specifying an alternative set of
variables (Z) to explain the observed variance. By
default this is a matrix of the squared explanatory
variables (X**2) with a constant added to the first
column if not already present. In the default case,
the explanatory variables are squared to eliminate
negative values.

	Returns:	
	bp_result (dictionary) – contains the statistic (bp) for the test and the
associated p-value (p-value)

	bp (float) – scalar value for the Breusch-Pagan test statistic

	df (integer) – degrees of freedom associated with the test (k)

	pvalue (float) – p-value associated with the statistic (chi^2
distributed with k df)

Notes

x attribute in the reg object must have a constant term included. This is
standard for spreg.OLS so no testing done to confirm constant.

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"), "r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Breusch-Pagan test for heteroscedasticity.

>>> testresult = diagnostics.breusch_pagan(reg)

Print the degrees of freedom for the test.

>>> testresult['df']
2

Print the test statistic.

>>> print("%1.3f"%testresult['bp'])
7.900

Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.0193

	
pysal.spreg.diagnostics.white(reg)

	Calculates the White test to check for heteroscedasticity. [White1980]

	Parameters:	reg (regression object) – output instance from a regression model

	Returns:	
	white_result (dictionary) – contains the statistic (white), degrees of freedom
(df) and the associated p-value (pvalue) for the
White test.

	white (float) – scalar value for the White test statistic.

	df (integer) – degrees of freedom associated with the test

	pvalue (float) – p-value associated with the statistic (chi^2
distributed with k df)

Notes

x attribute in the reg object must have a constant term included. This is
standard for spreg.OLS so no testing done to confirm constant.

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the White test for heteroscedasticity.

>>> testresult = diagnostics.white(reg)

Print the degrees of freedom for the test.

>>> print testresult['df']
5

Print the test statistic.

>>> print("%1.3f"%testresult['wh'])
19.946

Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.0013

	
pysal.spreg.diagnostics.koenker_bassett(reg, z=None)

	Calculates the Koenker-Bassett test statistic to check for
heteroscedasticity. [Koenker1982] [Greene2003]

	Parameters:	
	reg (regression output) – output from an instance of a regression class

	z (array [https://docs.python.org/2/library/array.html#module-array]) – optional input for specifying an alternative set of
variables (Z) to explain the observed variance. By
default this is a matrix of the squared explanatory
variables (X**2) with a constant added to the first
column if not already present. In the default case,
the explanatory variables are squared to eliminate
negative values.

	Returns:	
	kb_result (dictionary) – contains the statistic (kb), degrees of freedom (df)
and the associated p-value (pvalue) for the test.

	kb (float) – scalar value for the Koenker-Bassett test statistic.

	df (integer) – degrees of freedom associated with the test

	pvalue (float) – p-value associated with the statistic (chi^2
distributed)

Notes

x attribute in the reg object must have a constant term included. This is
standard for spreg.OLS so no testing done to confirm constant.

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Koenker-Bassett test for heteroscedasticity.

>>> testresult = diagnostics.koenker_bassett(reg)

Print the degrees of freedom for the test.

>>> testresult['df']
2

Print the test statistic.

>>> print("%1.3f"%testresult['kb'])
5.694

Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.0580

	
pysal.spreg.diagnostics.vif(reg)

	Calculates the variance inflation factor for each independent variable.
For the ease of indexing the results, the constant is currently
included. This should be omitted when reporting the results to the
output text. [Greene2003]

	Parameters:	reg (regression object) – output instance from a regression model

	Returns:	vif_result – each tuple includes the vif and the tolerance, the
order of the variables corresponds to their order in
the reg.x matrix

	Return type:	list of tuples

Examples

>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the variance inflation factor (VIF).
>>> testresult = diagnostics.vif(reg)

Select the tuple for the income variable.

>>> incvif = testresult[1]

Print the VIF for income.

>>> print("%12.12f"%incvif[0])
1.333117497189

Print the tolerance for income.

>>> print("%12.12f"%incvif[1])
0.750121427487

Repeat for the home value variable.

>>> hovalvif = testresult[2]
>>> print("%12.12f"%hovalvif[0])
1.333117497189
>>> print("%12.12f"%hovalvif[1])
0.750121427487

	
pysal.spreg.diagnostics.likratiotest(reg0, reg1)

	Likelihood ratio test statistic [Greene2003]

	Parameters:	
	reg0 (regression object for constrained model (H0)) –

	reg1 (regression object for unconstrained model (H1)) –

	Returns:	
	likratio (dictionary) – contains the statistic (likr), the degrees of
freedom (df) and the p-value (pvalue)

	likr (float) – likelihood ratio statistic

	df (integer) – degrees of freedom

	p-value (float) – p-value

Examples

>>> import numpy as np
>>> import pysal as ps
>>> import scipy.stats as stats
>>> import pysal.spreg.ml_lag as lag

Use the baltim sample data set

>>> db = ps.open(ps.examples.get_path("baltim.dbf"),'r')
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","NBATH","PATIO","FIREPL","AC","GAR","AGE","LOTSZ","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w.transform = 'r'

OLS regression

>>> ols1 = ps.spreg.OLS(y,x)

ML Lag regression

>>> mllag1 = lag.ML_Lag(y,x,w)

>>> lr = likratiotest(ols1,mllag1)

>>> print "Likelihood Ratio Test: {0:.4f} df: {1} p-value: {2:.4f}".format(lr["likr"],lr["df"],lr["p-value"])
Likelihood Ratio Test: 44.5721 df: 1 p-value: 0.0000

 spreg.diagnostics_sp — Spatial Diagnostics

spreg.diagnostics_sp — Spatial Diagnostics

The spreg.diagnostics_sp module provides spatial diagnostic tests.

New in version 1.1.

Spatial diagnostics module

	
class pysal.spreg.diagnostics_sp.LMtests(ols, w, tests=['all'])

	Lagrange Multiplier tests. Implemented as presented in Anselin et al.
(1996) [Anselin1996a]

...

	
ols

	OLS – OLS regression object

	
w

	W – Spatial weights instance

	
tests

	list – Lists of strings with the tests desired to be performed.
Values may be:

	‘all’: runs all the options (default)

	‘lme’: LM error test

	‘rlme’: Robust LM error test

	‘lml’ : LM lag test

	‘rlml’: Robust LM lag test

	Parameters:	
	lme (tuple [https://docs.python.org/2/library/functions.html#tuple]) – (Only if ‘lme’ or ‘all’ was in tests). Pair of statistic and
p-value for the LM error test.

	lml (tuple [https://docs.python.org/2/library/functions.html#tuple]) – (Only if ‘lml’ or ‘all’ was in tests). Pair of statistic and
p-value for the LM lag test.

	rlme (tuple [https://docs.python.org/2/library/functions.html#tuple]) – (Only if ‘rlme’ or ‘all’ was in tests). Pair of statistic
and p-value for the Robust LM error test.

	rlml (tuple [https://docs.python.org/2/library/functions.html#tuple]) – (Only if ‘rlml’ or ‘all’ was in tests). Pair of statistic
and p-value for the Robust LM lag test.

	sarma (tuple [https://docs.python.org/2/library/functions.html#tuple]) – (Only if ‘rlml’ or ‘all’ was in tests). Pair of statistic
and p-value for the SARMA test.

Examples

>>> import numpy as np
>>> import pysal
>>> from ols import OLS

Open the csv file to access the data for analysis

>>> csv = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')

Pull out from the csv the files we need (‘HOVAL’ as dependent as well as
‘INC’ and ‘CRIME’ as independent) and directly transform them into nx1 and
nx2 arrays, respectively

>>> y = np.array([csv.by_col('HOVAL')]).T
>>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T

Create the weights object from existing .gal file

>>> w = pysal.open(pysal.examples.get_path('columbus.gal'), 'r').read()

Row-standardize the weight object (not required although desirable in some
cases)

>>> w.transform='r'

Run an OLS regression

>>> ols = OLS(y, x)

Run all the LM tests in the residuals. These diagnostics test for the
presence of remaining spatial autocorrelation in the residuals of an OLS
model and give indication about the type of spatial model. There are five
types: presence of a spatial lag model (simple and robust version),
presence of a spatial error model (simple and robust version) and joint presence
of both a spatial lag as well as a spatial error model.

>>> lms = pysal.spreg.diagnostics_sp.LMtests(ols, w)

LM error test:

>>> print round(lms.lme[0],4), round(lms.lme[1],4)
3.0971 0.0784

LM lag test:

>>> print round(lms.lml[0],4), round(lms.lml[1],4)
0.9816 0.3218

Robust LM error test:

>>> print round(lms.rlme[0],4), round(lms.rlme[1],4)
3.2092 0.0732

Robust LM lag test:

>>> print round(lms.rlml[0],4), round(lms.rlml[1],4)
1.0936 0.2957

LM SARMA test:

>>> print round(lms.sarma[0],4), round(lms.sarma[1],4)
4.1907 0.123

	
class pysal.spreg.diagnostics_sp.MoranRes(ols, w, z=False)

	Moran’s I for spatial autocorrelation in residuals from OLS regression

...

	Parameters:	
	ols (OLS) – OLS regression object

	w (W) – Spatial weights instance

	z (boolean) – If set to True computes attributes eI, vI and zI. Due to computational burden of vI, defaults to False.

	
I

	float – Moran’s I statistic

	
eI

	float – Moran’s I expectation

	
vI

	float – Moran’s I variance

	
zI

	float – Moran’s I standardized value

Examples

>>> import numpy as np
>>> import pysal
>>> from ols import OLS

Open the csv file to access the data for analysis

>>> csv = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')

Pull out from the csv the files we need (‘HOVAL’ as dependent as well as
‘INC’ and ‘CRIME’ as independent) and directly transform them into nx1 and
nx2 arrays, respectively

>>> y = np.array([csv.by_col('HOVAL')]).T
>>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T

Create the weights object from existing .gal file

>>> w = pysal.open(pysal.examples.get_path('columbus.gal'), 'r').read()

Row-standardize the weight object (not required although desirable in some
cases)

>>> w.transform='r'

Run an OLS regression

>>> ols = OLS(y, x)

Run Moran’s I test for residual spatial autocorrelation in an OLS model.
This computes the traditional statistic applying a correction in the
expectation and variance to account for the fact it comes from residuals
instead of an independent variable

>>> m = pysal.spreg.diagnostics_sp.MoranRes(ols, w, z=True)

Value of the Moran’s I statistic:

>>> print round(m.I,4)
0.1713

Value of the Moran’s I expectation:

>>> print round(m.eI,4)
-0.0345

Value of the Moran’s I variance:

>>> print round(m.vI,4)
0.0081

Value of the Moran’s I standardized value. This is
distributed as a standard Normal(0, 1)

>>> print round(m.zI,4)
2.2827

P-value of the standardized Moran’s I value (z):

>>> print round(m.p_norm,4)
0.0224

	
class pysal.spreg.diagnostics_sp.AKtest(iv, w, case='nosp')

	Moran’s I test of spatial autocorrelation for IV estimation.
Implemented following the original reference Anselin and Kelejian
(1997) [Anselin1997]
...

	Parameters:	
	iv (TSLS) – Regression object from TSLS class

	w (W) – Spatial weights instance

	case (string [https://docs.python.org/2/library/string.html#module-string]) – Flag for special cases (default to ‘nosp’):

	‘nosp’: Only NO spatial end. reg.

	‘gen’: General case (spatial lag + end. reg.)

	
mi

	float – Moran’s I statistic for IV residuals

	
ak

	float –

Square of corrected Moran’s I for residuals:

.. math::

 ak = \dfrac{N imes I^*}{\phi^2}

Note: if case='nosp' then it simplifies to the LMerror

	
p

	float – P-value of the test

Examples

We first need to import the needed modules. Numpy is needed to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis. The TSLS is required to run the model on
which we will perform the tests.

>>> import numpy as np
>>> import pysal
>>> from twosls import TSLS
>>> from twosls_sp import GM_Lag

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')

Before being able to apply the diagnostics, we have to run a model and,
for that, we need the input variables. Extract the CRIME column (crime
rates) from the DBF file and make it the dependent variable for the
regression. Note that PySAL requires this to be an numpy array of shape
(n, 1) as opposed to the also common shape of (n,) that other packages
accept.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

In this case, we consider HOVAL (home value) as an endogenous regressor,
so we acknowledge that by reading it in a different category.

>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T

In order to properly account for the endogeneity, we have to pass in the
instruments. Let us consider DISCBD (distance to the CBD) is a good one:

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

Now we are good to run the model. It is an easy one line task.

>>> reg = TSLS(y, X, yd, q=q)

Now we are concerned with whether our non-spatial model presents spatial
autocorrelation in the residuals. To assess this possibility, we can run
the Anselin-Kelejian test, which is a version of the classical LM error
test adapted for the case of residuals from an instrumental variables (IV)
regression. First we need an extra object, the weights matrix, which
includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are good to run the test. It is a very simple task:

>>> ak = AKtest(reg, w)

And explore the information obtained:

>>> print('AK test: %f P-value: %f'%(ak.ak, ak.p))
AK test: 4.642895 P-value: 0.031182

The test also accomodates the case when the residuals come from an IV
regression that includes a spatial lag of the dependent variable. The only
requirement needed is to modify the case parameter when we call
AKtest. First, let us run a spatial lag model:

>>> reg_lag = GM_Lag(y, X, yd, q=q, w=w)

And now we can run the AK test and obtain similar information as in the
non-spatial model.

>>> ak_sp = AKtest(reg, w, case='gen')
>>> print('AK test: %f P-value: %f'%(ak_sp.ak, ak_sp.p))
AK test: 1.157593 P-value: 0.281965

 spreg.diagnostics_tsls — Diagnostics for 2SLS

spreg.diagnostics_tsls — Diagnostics for 2SLS

The spreg.diagnostics_tsls module provides diagnostic tests for two stage least squares based models.

New in version 1.3.

Diagnostics for two stage least squares regression estimations.

	
pysal.spreg.diagnostics_tsls.t_stat(reg, z_stat=False)

	Calculates the t-statistics (or z-statistics) and associated p-values.
[Greene2003]

	Parameters:	
	reg (regression object) – output instance from a regression model

	z_stat (boolean) – If True run z-stat instead of t-stat

	Returns:	ts_result – each tuple includes value of t statistic (or z
statistic) and associated p-value

	Return type:	list of tuples

Examples

We first need to import the needed modules. Numpy is needed to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis. The diagnostics module is used for the tests
we will show here and the OLS and TSLS are required to run the models on
which we will perform the tests.

>>> import numpy as np
>>> import pysal
>>> import pysal.spreg.diagnostics as diagnostics
>>> from pysal.spreg.ols import OLS
>>> from twosls import TSLS

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')

Before being able to apply the diagnostics, we have to run a model and,
for that, we need the input variables. Extract the CRIME column (crime
rates) from the DBF file and make it the dependent variable for the
regression. Note that PySAL requires this to be an numpy array of shape
(n, 1) as opposed to the also common shape of (n,) that other packages
accept.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) and HOVAL (home value) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression. Since it is a non-spatial model, all we need is the
dependent and the independent variable.

>>> reg = OLS(y,X)

Now we can perform a t-statistic on the model:

>>> testresult = diagnostics.t_stat(reg)
>>> print("%12.12f"%testresult[0][0], "%12.12f"%testresult[0][1], "%12.12f"%testresult[1][0], "%12.12f"%testresult[1][1], "%12.12f"%testresult[2][0], "%12.12f"%testresult[2][1])
('14.490373143689', '0.000000000000', '-4.780496191297', '0.000018289595', '-2.654408642718', '0.010874504910')

We can also use the z-stat. For that, we re-build the model so we consider
HOVAL as endogenous, instrument for it using DISCBD and carry out two
stage least squares (TSLS) estimation.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

Once the variables are read as different objects, we are good to run the
model.

>>> reg = TSLS(y, X, yd, q)

With the output of the TSLS regression, we can perform a z-statistic:

>>> testresult = diagnostics.t_stat(reg, z_stat=True)
>>> print("%12.10f"%testresult[0][0], "%12.10f"%testresult[0][1], "%12.10f"%testresult[1][0], "%12.10f"%testresult[1][1], "%12.10f"%testresult[2][0], "%12.10f"%testresult[2][1])
('5.8452644705', '0.0000000051', '0.3676015668', '0.7131703463', '-1.9946891308', '0.0460767956')

	
pysal.spreg.diagnostics_tsls.pr2_aspatial(tslsreg)

	Calculates the pseudo r^2 for the two stage least squares regression.

	Parameters:	tslsreg (two stage least squares regression object) – output instance from a two stage least squares
regression model

	Returns:	pr2_result – value of the squared pearson correlation between
the y and tsls-predicted y vectors

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

Examples

We first need to import the needed modules. Numpy is needed to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis. The TSLS is required to run the model on
which we will perform the tests.

>>> import numpy as np
>>> import pysal
>>> from twosls import TSLS

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')

Before being able to apply the diagnostics, we have to run a model and,
for that, we need the input variables. Extract the CRIME column (crime
rates) from the DBF file and make it the dependent variable for the
regression. Note that PySAL requires this to be an numpy array of shape
(n, 1) as opposed to the also common shape of (n,) that other packages
accept.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

In this case, we consider HOVAL (home value) as an endogenous regressor,
so we acknowledge that by reading it in a different category.

>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T

In order to properly account for the endogeneity, we have to pass in the
instruments. Let us consider DISCBD (distance to the CBD) is a good one:

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

Now we are good to run the model. It is an easy one line task.

>>> reg = TSLS(y, X, yd, q=q)

In order to perform the pseudo R^2, we pass the regression object to the
function and we are done!

>>> result = pr2_aspatial(reg)
>>> print("%1.6f"%result)
0.279361

	
pysal.spreg.diagnostics_tsls.pr2_spatial(tslsreg)

	Calculates the pseudo r^2 for the spatial two stage least squares
regression.

	Parameters:	stslsreg (spatial two stage least squares regression object) – output instance from a spatial two stage least
squares regression model

	Returns:	pr2_result – value of the squared pearson correlation between
the y and stsls-predicted y vectors

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

Examples

We first need to import the needed modules. Numpy is needed to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis. The GM_Lag is required to run the model on
which we will perform the tests and the pysal.spreg.diagnostics module
contains the function with the test.

>>> import numpy as np
>>> import pysal
>>> import pysal.spreg.diagnostics as D
>>> from twosls_sp import GM_Lag

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')

Extract the HOVAL column (home value) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = np.array(db.by_col("INC"))
>>> X = np.reshape(X, (49,1))

In this case, we consider CRIME (crime rates) as an endogenous regressor,
so we acknowledge that by reading it in a different category.

>>> yd = np.array(db.by_col("CRIME"))
>>> yd = np.reshape(yd, (49,1))

In order to properly account for the endogeneity, we have to pass in the
instruments. Let us consider DISCBD (distance to the CBD) is a good one:

>>> q = np.array(db.by_col("DISCBD"))
>>> q = np.reshape(q, (49,1))

Since this test has a spatial component, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

Now we are good to run the spatial lag model. Make sure you pass all the
parameters correctly and, if desired, pass the names of the variables as
well so when you print the summary (reg.summary) they are included:

>>> reg = GM_Lag(y, X, w=w, yend=yd, q=q, w_lags=2, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')

Once we have a regression object, we can perform the spatial version of
the pesudo R^2. It is as simple as one line!

>>> result = pr2_spatial(reg)
>>> print("%1.6f"%result)
0.299649

 spreg.error_sp — GM/GMM Estimation of Spatial Error and Spatial Combo Models

spreg.error_sp — GM/GMM Estimation of Spatial Error and Spatial Combo Models

The spreg.error_sp module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with and without endogenous variables; based on Kelejian and Prucha (1998 and 1999).

New in version 1.3.

Spatial Error Models module

	
class pysal.spreg.error_sp.GM_Error(y, x, w, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	GMM method for a spatial error model, with results and diagnostics; based
on Kelejian and Prucha (1998, 1999) [Kelejian1998] [Kelejian1999].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	w (pysal W object) – Spatial weights object (always needed)

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
vm

	array – Variance covariance matrix (kxk)

	
sig2

	float – Sigma squared used in computations

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import pysal
>>> import numpy as np

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> dbf = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array([dbf.by_col('HOVAL')]).T

Extract CRIME (crime) and INC (income) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> names_to_extract = ['INC', 'CRIME']
>>> x = np.array([dbf.by_col(name) for name in names_to_extract]).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will use
columbus.gal, which contains contiguity relationships between the
observations in the Columbus dataset we are using throughout this example.
Note that, in order to read the file, not only to open it, we need to
append ‘.read()’ at the end of the command.

>>> w = pysal.open(pysal.examples.get_path("columbus.gal"), 'r').read()

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform='r'

We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Error(y, x, w=w, name_y='hoval', name_x=['income', 'crime'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas).

>>> print model.name_x
['CONSTANT', 'income', 'crime', 'lambda']
>>> np.around(model.betas, decimals=4)
array([[47.6946],
 [0.7105],
 [-0.5505],
 [0.3257]])
>>> np.around(model.std_err, decimals=4)
array([12.412 , 0.5044, 0.1785])
>>> np.around(model.z_stat, decimals=6)
array([[3.84261100e+00, 1.22000000e-04],
 [1.40839200e+00, 1.59015000e-01],
 [-3.08424700e+00, 2.04100000e-03]])
>>> round(model.sig2,4)
198.5596

	
class pysal.spreg.error_sp.GM_Endog_Error(y, x, yend, q, w, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with endogenous variables, with
results and diagnostics; based on Kelejian and Prucha (1998,
1999) [Kelejian1998] [Kelejian1999].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	w (pysal W object) – Spatial weights object (always needed)

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable

	
z

	array – nxk array of variables (combination of x and yend)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
sig2

	float – Sigma squared used in computations

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import pysal
>>> import numpy as np

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> dbf = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')

Extract the CRIME column (crime rates) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array([dbf.by_col('CRIME')]).T

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in.

>>> x = np.array([dbf.by_col('INC')]).T

In this case we consider HOVAL (home value) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yend = np.array([dbf.by_col('HOVAL')]).T

Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for HOVAL. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = np.array([dbf.by_col('DISCBD')]).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will use
columbus.gal, which contains contiguity relationships between the
observations in the Columbus dataset we are using throughout this example.
Note that, in order to read the file, not only to open it, we need to
append ‘.read()’ at the end of the command.

>>> w = pysal.open(pysal.examples.get_path("columbus.gal"), 'r').read()

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform='r'

We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Endog_Error(y, x, yend, q, w=w, name_x=['inc'], name_y='crime', name_yend=['hoval'], name_q=['discbd'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
endogenous variables included.

>>> print model.name_z
['CONSTANT', 'inc', 'hoval', 'lambda']
>>> np.around(model.betas, decimals=4)
array([[82.573],
 [0.581],
 [-1.4481],
 [0.3499]])
>>> np.around(model.std_err, decimals=4)
array([16.1381, 1.3545, 0.7862])

	
class pysal.spreg.error_sp.GM_Combo(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial lag and error model with endogenous variables,
with results and diagnostics; based on Kelejian and Prucha (1998,
1999) [Kelejian1998] [Kelejian1999].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	w (pysal W object) – Spatial weights object (always needed)

	w_lags (integer) – Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_q (boolean) – If True, then include spatial lags of the additional
instruments (q).

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
e_pred

	array – nx1 array of residuals (using reduced form)

	
predy

	array – nx1 array of predicted y values

	
predy_e

	array – nx1 array of predicted y values (using reduced form)

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable

	
z

	array – nxk array of variables (combination of x and yend)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
pr2_e

	float – Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))

	
sig2

	float – Sigma squared used in computations (based on filtered
residuals)

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')

Extract the CRIME column (crime rates) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Combo(y, X, w=w, name_y='crime', name_x=['income'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
spatial lag of the dependent variable. We can check the betas:

>>> print reg.name_z
['CONSTANT', 'income', 'W_crime', 'lambda']
>>> print np.around(np.hstack((reg.betas[:-1],np.sqrt(reg.vm.diagonal()).reshape(3,1))),3)
[[39.059 11.86]
 [-1.404 0.391]
 [0.467 0.2]]

And lambda:

>>> print 'lambda: ', np.around(reg.betas[-1], 3)
lambda: [-0.048]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. As an example, we will include HOVAL (home value) as
endogenous and will instrument with DISCBD (distance to the CSB). We first
need to read in the variables:

>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo(y, X, yd, q, w=w, name_x=['inc'], name_y='crime', name_yend=['hoval'], name_q=['discbd'], name_ds='columbus')
>>> print reg.name_z
['CONSTANT', 'inc', 'hoval', 'W_crime', 'lambda']
>>> names = np.array(reg.name_z).reshape(5,1)
>>> print np.hstack((names[0:4,:], np.around(np.hstack((reg.betas[:-1], np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)))
[['CONSTANT' '50.0944' '14.3593']
 ['inc' '-0.2552' '0.5667']
 ['hoval' '-0.6885' '0.3029']
 ['W_crime' '0.4375' '0.2314']]

>>> print 'lambda: ', np.around(reg.betas[-1], 3)
lambda: [0.254]

 spreg.error_sp_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Regimes

spreg.error_sp_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Regimes

The spreg.error_sp_regimes module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with regimes and with and without endogenous variables; based on Kelejian and Prucha (1998 and 1999).

New in version 1.5.

Spatial Error Models with regimes module

	
class pysal.spreg.error_sp_regimes.GM_Combo_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial lag and error model with regimes and endogenous
variables, with results and diagnostics; based on Kelejian and Prucha (1998,
1999) [Kelejian1998] [Kelejian1999].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	w (pysal W object) – Spatial weights object (always needed)

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	regime_lag_sep (boolean) – If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	w_lags (integer) – Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_q (boolean) – If True, then include spatial lags of the additional
instruments (q).

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regime variable for use in the output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
e_pred

	array – nx1 array of residuals (using reduced form)

	
predy

	array – nx1 array of predicted y values

	
predy_e

	array – nx1 array of predicted y values (using reduced form)

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z

	array – nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
pr2_e

	float – Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
sig2

	float – Sigma squared used in computations (based on filtered
residuals)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regimes variable for use in output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
regime_lag_sep

	boolean – If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial lag model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Combo_Regimes(y, x, regimes, w=w, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
spatial lag of the dependent variable. We can have a summary of the
output by typing: model.summary
Alternatively, we can check the betas:

>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '_Global_W_HR90', 'lambda']
>>> print np.around(model.betas,4)
[[1.4607]
 [0.958]
 [0.5658]
 [9.113]
 [1.1338]
 [0.6517]
 [-0.4583]
 [0.6136]]

And lambda:

>>> print 'lambda: ', np.around(model.betas[-1], 4)
lambda: [0.6136]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. In this case we consider RD90 (resource deprivation)
as an endogenous regressor. We use FP89 (families below poverty)
for this and hence put it in the instruments parameter, ‘q’.

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

And then we can run and explore the model analogously to the previous combo:

>>> model = GM_Combo_Regimes(y, x, regimes, yd, q, w=w, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT')
>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', '_Global_W_HR90', 'lambda']
>>> print model.betas
[[3.41963782]
 [1.04065841]
 [0.16634393]
 [8.86544628]
 [1.85120528]
 [-0.24908469]
 [2.43014046]
 [3.61645481]
 [0.03308671]
 [0.18684992]]
>>> print np.sqrt(model.vm.diagonal())
[0.53067577 0.13271426 0.06058025 0.76406411 0.17969783 0.07167421
 0.28943121 0.25308326 0.06126529]
>>> print 'lambda: ', np.around(model.betas[-1], 4)
lambda: [0.1868]

	
class pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes(y, x, yend, q, regimes, w, cores=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	GMM method for a spatial error model with regimes and endogenous variables, with
results and diagnostics; based on Kelejian and Prucha (1998,
1999) [Kelejian1998] [Kelejian1999].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	w (pysal W object) – Spatial weights object

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	regime_lag_sep (boolean) – Always False, kept for consistency, ignored.

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regime variable for use in the output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z

	array – nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
sig2

	float – Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)
Sigma squared used in computations

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regimes variable for use in output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import pysal
>>> import numpy as np

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

For the endogenous models, we add the endogenous variable RD90 (resource deprivation)
and we decide to instrument for it with FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from NAT.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Endog_Error_Regimes(y, x, yend, q, regimes, w=w, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT.dbf')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
endogenous variables included. Alternatively, we can have a summary of the
output by typing: model.summary

>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', 'lambda']
>>> np.around(model.betas, decimals=5)
array([[3.59718],
 [1.0652],
 [0.15822],
 [9.19754],
 [1.88082],
 [-0.24878],
 [2.46161],
 [3.57943],
 [0.25564]])
>>> np.around(model.std_err, decimals=6)
array([0.522633, 0.137555, 0.063054, 0.473654, 0.18335 , 0.072786,
 0.300711, 0.240413])

	
class pysal.spreg.error_sp_regimes.GM_Error_Regimes(y, x, regimes, w, vm=False, name_y=None, name_x=None, name_w=None, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, cores=False, name_ds=None, name_regimes=None)

	GMM method for a spatial error model with regimes, with results and diagnostics;
based on Kelejian and Prucha (1998, 1999) [Kelejian1998] [Kelejian1999].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	w (pysal W object) – Spatial weights object

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	regime_lag_sep (boolean) – Always False, kept for consistency, ignored.

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regime variable for use in the output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
vm

	array – Variance covariance matrix (kxk)

	
sig2

	float – Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regime variable for use in the output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import pysal
>>> import numpy as np

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial error model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Error_Regimes(y, x, regimes, w=w, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT.dbf')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Alternatively, we can have a summary of the
output by typing: model.summary

>>> print model.name_x
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', 'lambda']
>>> np.around(model.betas, decimals=6)
array([[0.074807],
 [0.786107],
 [0.538849],
 [5.103756],
 [1.196009],
 [0.600533],
 [0.364103]])
>>> np.around(model.std_err, decimals=6)
array([0.379864, 0.152316, 0.051942, 0.471285, 0.19867 , 0.057252])
>>> np.around(model.z_stat, decimals=6)
array([[0.196932, 0.843881],
 [5.161042, 0.],
 [10.37397 , 0.],
 [10.829455, 0.],
 [6.02007 , 0.],
 [10.489215, 0.]])
>>> np.around(model.sig2, decimals=6)
28.172732

 spreg.error_sp_het — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Heteroskedasticity

spreg.error_sp_het — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Heteroskedasticity

The spreg.error_sp_het module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with and without endogenous variables, and allowing for heteroskedasticity; based on Arraiz et al (2010) and Anselin (2011).

New in version 1.3.

Spatial Error with Heteroskedasticity family of models

	
class pysal.spreg.error_sp_het.GM_Error_Het(y, x, w, max_iter=1, epsilon=1e-05, step1c=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with heteroskedasticity, with results
and diagnostics; based on Arraiz et al [Arraiz2010], following Anselin
[Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	w (pysal W object) – Spatial weights object

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	step1c (boolean) – If True, then include Step 1c from Arraiz et al.

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
vm

	array – Variance covariance matrix (kxk)

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
xtx

	float – X’X

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) and CRIME (crime) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Het(y, X, w=w, step1c=True, name_y='home value', name_x=['income', 'crime'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
pysal.spreg.error_sp, it allows for inference on the spatial
parameter.

>>> print reg.name_x
['CONSTANT', 'income', 'crime', 'lambda']

Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[47.9963 11.479]
 [0.7105 0.3681]
 [-0.5588 0.1616]
 [0.4118 0.168]]

	
class pysal.spreg.error_sp_het.GM_Endog_Error_Het(y, x, yend, q, w, max_iter=1, epsilon=1e-05, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with heteroskedasticity and
endogenous variables, with results and diagnostics; based on Arraiz et al
[Arraiz2010], following Anselin [Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	w (pysal W object) – Spatial weights object

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	step1c (boolean) – If True, then include Step 1c from Arraiz et al.

	inv_method (string [https://docs.python.org/2/library/string.html#module-string]) – If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	
z

	array – nxk array of variables (combination of x and yend)

	
h

	array – nxl array of instruments (combination of x and q)

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

	
hth

	float – H’H

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

In this case we consider CRIME (crime rates) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T

Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for CRIME. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Het(y, X, yd, q, w=w, step1c=True, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
pysal.spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print reg.name_z
['CONSTANT', 'inc', 'crime', 'lambda']
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[55.3971 28.8901]
 [0.4656 0.7731]
 [-0.6704 0.468]
 [0.4114 0.1777]]

	
class pysal.spreg.error_sp_het.GM_Combo_Het(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial lag and error model with heteroskedasticity and
endogenous variables, with results and diagnostics; based on Arraiz et al
[Arraiz2010], following Anselin [Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	w (pysal W object) – Spatial weights object (always needed)

	w_lags (integer) – Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_q (boolean) – If True, then include spatial lags of the additional
instruments (q).

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	step1c (boolean) – If True, then include Step 1c from Arraiz et al.

	inv_method (string [https://docs.python.org/2/library/string.html#module-string]) – If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
e_pred

	array – nx1 array of residuals (using reduced form)

	
predy

	array – nx1 array of predicted y values

	
predy_e

	array – nx1 array of predicted y values (using reduced form)

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	
z

	array – nxk array of variables (combination of x and yend)

	
h

	array – nxl array of instruments (combination of x and q)

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
pr2_e

	float – Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

	
hth

	float – H’H

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Combo_Het(y, X, w=w, step1c=True, name_y='hoval', name_x=['income'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
pysal.spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print reg.name_z
['CONSTANT', 'income', 'W_hoval', 'lambda']
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[9.9753 14.1435]
 [1.5742 0.374]
 [0.1535 0.3978]
 [0.2103 0.3924]]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. As an example, we will include CRIME (crime rates) as
endogenous and will instrument with DISCBD (distance to the CSB). We first
need to read in the variables:

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Het(y, X, yd, q, w=w, step1c=True, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')
>>> print reg.name_z
['CONSTANT', 'inc', 'crime', 'W_hoval', 'lambda']
>>> print np.round(reg.betas,4)
[[113.9129]
 [-0.3482]
 [-1.3566]
 [-0.5766]
 [0.6561]]

 spreg.error_sp_het_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Heteroskedasticity with Regimes

spreg.error_sp_het_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Heteroskedasticity with Regimes

The spreg.error_sp_het_regimes module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with regimes and with and without endogenous variables, and allowing for heteroskedasticity; based on Arraiz et al (2010) and Anselin (2011).

New in version 1.5.

Spatial Error with Heteroskedasticity and Regimes family of models

	
class pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, cores=False, inv_method='power_exp', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial lag and error model with heteroskedasticity,
regimes and endogenous variables, with results and diagnostics;
based on Arraiz et al [Arraiz2010], following Anselin [Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	w (pysal W object) – Spatial weights object (always needed)

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	regime_lag_sep (boolean) – If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	w_lags (integer) – Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_q (boolean) – If True, then include spatial lags of the additional
instruments (q).

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	step1c (boolean) – If True, then include Step 1c from Arraiz et al.

	inv_method (string [https://docs.python.org/2/library/string.html#module-string]) – If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regime variable for use in the output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
e_pred

	array – nx1 array of residuals (using reduced form)

	
predy

	array – nx1 array of predicted y values

	
predy_e

	array – nx1 array of predicted y values (using reduced form)

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z

	array – nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
h

	array – nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
pr2_e

	float – Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regimes variable for use in output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
regime_lag_sep

	boolean – If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial combo model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional. We can have a
summary of the output by typing: model.summary
Alternatively, we can check the betas:

>>> reg = GM_Combo_Het_Regimes(y, x, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '_Global_W_HR90', 'lambda']
>>> print np.around(reg.betas,4)
[[1.4613]
 [0.9587]
 [0.5658]
 [9.1157]
 [1.1324]
 [0.6518]
 [-0.4587]
 [0.7174]]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. In this case we consider RD90 (resource deprivation)
as an endogenous regressor. We use FP89 (families below poverty)
for this and hence put it in the instruments parameter, ‘q’.

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Het_Regimes(y, x, regimes, yd, q, w=w, step1c=True, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', '_Global_W_HR90', 'lambda']
>>> print reg.betas
[[3.41936197]
 [1.04071048]
 [0.16747219]
 [8.85820215]
 [1.847382]
 [-0.24545394]
 [2.43189808]
 [3.61328423]
 [0.03132164]
 [0.29544224]]
>>> print np.sqrt(reg.vm.diagonal())
[0.53103804 0.20835827 0.05755679 1.00496234 0.34332131 0.10259525
 0.3454436 0.37932794 0.07611667 0.07067059]
>>> print 'lambda: ', np.around(reg.betas[-1], 4)
lambda: [0.2954]

	
class pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes(y, x, yend, q, regimes, w, max_iter=1, epsilon=1e-05, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, inv_method='power_exp', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	GMM method for a spatial error model with heteroskedasticity, regimes and
endogenous variables, with results and diagnostics; based on Arraiz et al
[Arraiz2010], following Anselin [Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	w (pysal W object) – Spatial weights object

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	regime_lag_sep (boolean) – Always False, kept for consistency, ignored.

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	step1c (boolean) – If True, then include Step 1c from Arraiz et al.

	inv_method (string [https://docs.python.org/2/library/string.html#module-string]) – If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regime variable for use in the output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z

	array – nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
h

	array – nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regimes variable for use in output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

For the endogenous models, we add the endogenous variable RD90 (resource deprivation)
and we decide to instrument for it with FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from NAT.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Het_Regimes(y, x, yend, q, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT.dbf')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
pysal.spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix Alternatively, we can have a summary of the
output by typing: model.summary

>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', 'lambda']

>>> print np.around(reg.betas,4)
[[3.5944]
 [1.065]
 [0.1587]
 [9.184]
 [1.8784]
 [-0.2466]
 [2.4617]
 [3.5756]
 [0.2908]]

>>> print np.around(np.sqrt(reg.vm.diagonal()),4)
[0.5043 0.2132 0.0581 0.6681 0.3504 0.0999 0.3686 0.3402 0.028]

	
class pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes(y, x, regimes, w, max_iter=1, epsilon=1e-05, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, cores=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial error model with heteroskedasticity and regimes;
based on Arraiz et al [Arraiz2010], following Anselin [Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	w (pysal W object) – Spatial weights object

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	regime_lag_sep (boolean) – Always False, kept for consistency, ignored.

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	step1c (boolean) – If True, then include Step 1c from Arraiz et al.

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regime variable for use in the output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
vm

	array – Variance covariance matrix (kxk)

	
sig2

	float – Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regime variable for use in the output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial error model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Het_Regimes(y, x, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT.dbf')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
pysal.spreg.error_sp, it allows for inference on the spatial
parameter. Alternatively, we can have a summary of the
output by typing: model.summary

>>> print reg.name_x
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', 'lambda']
>>> np.around(reg.betas, decimals=6)
array([[0.009121],
 [0.812973],
 [0.549355],
 [5.00279],
 [1.200929],
 [0.614681],
 [0.429277]])
>>> np.around(reg.std_err, decimals=6)
array([0.355844, 0.221743, 0.059276, 0.686764, 0.35843 , 0.092788,
 0.02524])

 spreg.error_sp_hom — GM/GMM Estimation of Spatial Error and Spatial Combo Models

spreg.error_sp_hom — GM/GMM Estimation of Spatial Error and Spatial Combo Models

The spreg.error_sp_hom module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with and without endogenous variables, and includes inference on the spatial error parameter (lambda); based on Drukker et al. (2010) and Anselin (2011).

New in version 1.3.

Hom family of models based on: [Drukker2013]
Following: [Anselin2011]

	
class pysal.spreg.error_sp_hom.GM_Error_Hom(y, x, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with homoskedasticity, with results
and diagnostics; based on Drukker et al. (2013) [Drukker2013], following Anselin
(2011) [Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	w (pysal W object) – Spatial weights object

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	A1 (string [https://docs.python.org/2/library/string.html#module-string]) – If A1=’het’, then the matrix A1 is defined as in Arraiz et
al. If A1=’hom’, then as in Anselin (2011). If
A1=’hom_sc’ (default), then as in Drukker, Egger and Prucha (2010)
and Drukker, Prucha and Raciborski (2010).

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
vm

	array – Variance covariance matrix (kxk)

	
sig2

	float – Sigma squared used in computations

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
xtx

	float – X’X

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) and CRIME (crime) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Hom(y, X, w=w, A1='hom_sc', name_y='home value', name_x=['income', 'crime'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
pysal.spreg.error_sp, it allows for inference on the spatial
parameter. This is why you obtain as many coefficient estimates as
standard errors, which you calculate taking the square root of the
diagonal of the variance-covariance matrix of the parameters:

>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[47.9479 12.3021]
 [0.7063 0.4967]
 [-0.556 0.179]
 [0.4129 0.1835]]

	
class pysal.spreg.error_sp_hom.GM_Endog_Error_Hom(y, x, yend, q, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with homoskedasticity and endogenous
variables, with results and diagnostics; based on Drukker et al. (2013)
[Drukker2013], following Anselin (2011) [Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	w (pysal W object) – Spatial weights object

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	A1 (string [https://docs.python.org/2/library/string.html#module-string]) – If A1=’het’, then the matrix A1 is defined as in Arraiz et
al. If A1=’hom’, then as in Anselin (2011). If
A1=’hom_sc’ (default), then as in Drukker, Egger and Prucha (2010)
and Drukker, Prucha and Raciborski (2010).

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	
z

	array – nxk array of variables (combination of x and yend)

	
h

	array – nxl array of instruments (combination of x and q)

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
sig2

	float – Sigma squared used in computations

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

	
hth

	float – H’H

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

In this case we consider CRIME (crime rates) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T

Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for CRIME. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Hom(y, X, yd, q, w=w, A1='hom_sc', name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
pysal.spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print reg.name_z
['CONSTANT', 'inc', 'crime', 'lambda']
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[55.3658 23.496]
 [0.4643 0.7382]
 [-0.669 0.3943]
 [0.4321 0.1927]]

	
class pysal.spreg.error_sp_hom.GM_Combo_Hom(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial lag and error model with homoskedasticity and
endogenous variables, with results and diagnostics; based on Drukker et
al. (2013) [Drukker2013], following Anselin (2011) [Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	w (pysal W object) – Spatial weights object (always necessary)

	w_lags (integer) – Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_q (boolean) – If True, then include spatial lags of the additional
instruments (q).

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	A1 (string [https://docs.python.org/2/library/string.html#module-string]) – If A1=’het’, then the matrix A1 is defined as in Arraiz et
al. If A1=’hom’, then as in Anselin (2011). If
A1=’hom_sc’ (default), then as in Drukker, Egger and Prucha (2010)
and Drukker, Prucha and Raciborski (2010).

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
e_pred

	array – nx1 array of residuals (using reduced form)

	
predy

	array – nx1 array of predicted y values

	
predy_e

	array – nx1 array of predicted y values (using reduced form)

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	
z

	array – nxk array of variables (combination of x and yend)

	
h

	array – nxl array of instruments (combination of x and q)

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
pr2_e

	float – Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))

	
sig2

	float – Sigma squared used in computations (based on filtered
residuals)

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

	
hth

	float – H’H

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on Columbus neighborhood crime (49 areas) using pysal.open().
This is the DBF associated with the Columbus shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Combo_Hom(y, X, w=w, A1='hom_sc', name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[10.1254 15.2871]
 [1.5683 0.4407]
 [0.1513 0.4048]
 [0.2103 0.4226]]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. As an example, we will include CRIME (crime rates) as
endogenous and will instrument with DISCBD (distance to the CSB). We first
need to read in the variables:

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Hom(y, X, yd, q, w=w, A1='hom_sc', name_ds='columbus')
>>> betas = np.array([['CONSTANT'],['inc'],['crime'],['W_hoval'],['lambda']])
>>> print np.hstack((betas, np.around(np.hstack((reg.betas, np.sqrt(reg.vm.diagonal()).reshape(5,1))),5)))
[['CONSTANT' '111.7705' '67.75191']
 ['inc' '-0.30974' '1.16656']
 ['crime' '-1.36043' '0.6841']
 ['W_hoval' '-0.52908' '0.84428']
 ['lambda' '0.60116' '0.18605']]

 spreg.error_sp_hom_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Regimes

spreg.error_sp_hom_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Regimes

The spreg.error_sp_hom_regimes module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with regimes and with and without endogenous variables, and includes inference on the spatial error parameter (lambda); based on Drukker et al. (2010) and Anselin (2011).

New in version 1.5.

Hom family of models with regimes.

	
class pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, cores=False, max_iter=1, epsilon=1e-05, A1='het', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial lag and error model with homoskedasticity,
regimes and endogenous variables, with results and diagnostics;
based on Drukker et al. (2013) [Drukker2013], following Anselin (2011)
[Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	w (pysal W object) – Spatial weights object (always needed)

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	regime_lag_sep (boolean) – If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	w_lags (integer) – Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_q (boolean) – If True, then include spatial lags of the additional
instruments (q).

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	A1 (string [https://docs.python.org/2/library/string.html#module-string]) – If A1=’het’, then the matrix A1 is defined as in Arraiz et
al. If A1=’hom’, then as in Anselin (2011). If
A1=’hom_sc’, then as in Drukker, Egger and Prucha (2010)
and Drukker, Prucha and Raciborski (2010).

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regime variable for use in the output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
e_pred

	array – nx1 array of residuals (using reduced form)

	
predy

	array – nx1 array of predicted y values

	
predy_e

	array – nx1 array of predicted y values (using reduced form)

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z

	array – nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
h

	array – nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
pr2_e

	float – Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
sig2

	float – Sigma squared used in computations (based on filtered
residuals)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regimes variable for use in output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
regime_lag_sep

	boolean – If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial combo model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional. We can have a
summary of the output by typing: model.summary
Alternatively, we can check the betas:

>>> reg = GM_Combo_Hom_Regimes(y, x, regimes, w=w, A1='hom_sc', name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '_Global_W_HR90', 'lambda']
>>> print np.around(reg.betas,4)
[[1.4607]
 [0.9579]
 [0.5658]
 [9.1129]
 [1.1339]
 [0.6517]
 [-0.4583]
 [0.6634]]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. In this case we consider RD90 (resource deprivation)
as an endogenous regressor. We use FP89 (families below poverty)
for this and hence put it in the instruments parameter, ‘q’.

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Hom_Regimes(y, x, regimes, yd, q, w=w, A1='hom_sc', name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', '_Global_W_HR90', 'lambda']
>>> print reg.betas
[[3.4196478]
 [1.04065595]
 [0.16630304]
 [8.86570777]
 [1.85134286]
 [-0.24921597]
 [2.43007651]
 [3.61656899]
 [0.03315061]
 [0.22636055]]
>>> print np.sqrt(reg.vm.diagonal())
[0.53989913 0.13506086 0.06143434 0.77049956 0.18089997 0.07246848
 0.29218837 0.25378655 0.06184801 0.06323236]
>>> print 'lambda: ', np.around(reg.betas[-1], 4)
lambda: [0.2264]

	
class pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes(y, x, yend, q, regimes, w, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, max_iter=1, epsilon=1e-05, A1='het', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	GMM method for a spatial error model with homoskedasticity, regimes and
endogenous variables.
Based on Drukker et al. (2013) [Drukker2013], following Anselin (2011)
[Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yend (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
endogenous variable

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	w (pysal W object) – Spatial weights object

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	regime_lag_sep (boolean) – Always False, kept for consistency, ignored.

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	A1 (string [https://docs.python.org/2/library/string.html#module-string]) – If A1=’het’, then the matrix A1 is defined as in Arraiz et
al. If A1=’hom’, then as in Anselin (2011). If
A1=’hom_sc’, then as in Drukker, Egger and Prucha (2010)
and Drukker, Prucha and Raciborski (2010).

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_yend (list of strings) – Names of endogenous variables for use in output

	name_q (list of strings) – Names of instruments for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regime variable for use in the output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
yend

	array – Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
q

	array – Two dimensional array with n rows and one column for each
external exogenous variable used as instruments
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z

	array – nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
h

	array – nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (kxk)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
sig2

	float – Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
hth

	float – H’H
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_yend

	list of strings – Names of endogenous variables for use in output

	
name_z

	list of strings – Names of exogenous and endogenous variables for use in
output

	
name_q

	list of strings – Names of external instruments

	
name_h

	list of strings – Names of all instruments used in ouput

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regimes variable for use in output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

For the endogenous models, we add the endogenous variable RD90 (resource deprivation)
and we decide to instrument for it with FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from NAT.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Hom_Regimes(y, x, yend, q, regimes, w=w, A1='hom_sc', name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT.dbf')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
pysal.spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix. Alternatively, we can have a summary of the
output by typing: model.summary

>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', 'lambda']

>>> print np.around(reg.betas,4)
[[3.5973]
 [1.0652]
 [0.1582]
 [9.198]
 [1.8809]
 [-0.2489]
 [2.4616]
 [3.5796]
 [0.2541]]

>>> print np.around(np.sqrt(reg.vm.diagonal()),4)
[0.5204 0.1371 0.0629 0.4721 0.1824 0.0725 0.2992 0.2395 0.024]

	
class pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes(y, x, regimes, w, max_iter=1, epsilon=1e-05, A1='het', cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial error model with homoskedasticity, with regimes,
results and diagnostics; based on Drukker et al. (2013) [Drukker2013], following
Anselin (2011) [Anselin2011].

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	w (pysal W object) – Spatial weights object

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	regime_lag_sep (boolean) – Always False, kept for consistency, ignored.

	max_iter (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	A1 (string [https://docs.python.org/2/library/string.html#module-string]) – If A1=’het’, then the matrix A1 is defined as in Arraiz et
al. If A1=’hom’, then as in Anselin (2011). If
A1=’hom_sc’, then as in Drukker, Egger and Prucha (2010)
and Drukker, Prucha and Raciborski (2010).

	vm (boolean) – If True, include variance-covariance matrix in summary
results

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regime variable for use in the output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – kx1 array of estimated coefficients

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iter_stop

	string – Stop criterion reached during iteration of steps 2a and 2b
from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
iteration

	integer – Number of iterations of steps 2a and 2b from Arraiz et al.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
vm

	array – Variance covariance matrix (kxk)

	
sig2

	float – Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
xtx

	float – X’X
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regime variable for use in the output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_err_sep

	boolean – If True, a separate regression is run for each regime.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that
pysal.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’...]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial lag model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Hom_Regimes(y, x, regimes, w=w, name_y=y_var, name_x=x_var, name_ds='NAT')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
pysal.spreg.error_sp, it allows for inference on the spatial
parameter. This is why you obtain as many coefficient estimates as
standard errors, which you calculate taking the square root of the
diagonal of the variance-covariance matrix of the parameters. Alternatively,
we can have a summary of the output by typing: model.summary
>>> print reg.name_x
[‘0_CONSTANT’, ‘0_PS90’, ‘0_UE90’, ‘1_CONSTANT’, ‘1_PS90’, ‘1_UE90’, ‘lambda’]

>>> print np.around(reg.betas,4)
[[0.069]
 [0.7885]
 [0.5398]
 [5.0948]
 [1.1965]
 [0.6018]
 [0.4104]]

>>> print np.sqrt(reg.vm.diagonal())
[0.39105854 0.15664624 0.05254328 0.48379958 0.20018799 0.05834139
 0.01882401]

 spreg.regimes — Spatial Regimes

spreg.regimes — Spatial Regimes

The spreg.regimes module provides different spatial regime estimation procedures.

New in version 1.5.

	
class pysal.spreg.regimes.Chow(reg)

	Chow test of coefficient stability across regimes. The test is a
particular case of the Wald statistic in which the constraint are setup
according to the spatial or other type of regime structure

...

	Parameters:	reg (regression object) – Regression object from PySAL.spreg which is assumed to have the
following attributes:

	betas : coefficient estimates

	vm : variance covariance matrix of betas

	kr : Number of variables varying across regimes

	kryd : Number of endogenous variables varying across regimes

	kf : Number of variables fixed (global) across regimes

	nr : Number of regimes

	
joint

	tuple – Pair of Wald statistic and p-value for the setup of global
regime stability, that is all betas are the same across
regimes.

	
regi

	array – kr x 2 array with Wald statistic (col 0) and its p-value (col 1)
for each beta that varies across regimes. The restrictions
are setup to test for the global stability (all regimes have the
same parameter) of the beta.

Examples

>>> import numpy as np
>>> import pysal
>>> from ols_regimes import OLS_Regimes
>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
>>> y_var = 'CRIME'
>>> y = np.array([db.by_col(y_var)]).reshape(49,1)
>>> x_var = ['INC','HOVAL']
>>> x = np.array([db.by_col(name) for name in x_var]).T
>>> r_var = 'NSA'
>>> regimes = db.by_col(r_var)
>>> olsr = OLS_Regimes(y, x, regimes, constant_regi='many', nonspat_diag=False, spat_diag=False, name_y=y_var, name_x=x_var, name_ds='columbus', name_regimes=r_var, regime_err_sep=False)
>>> print olsr.name_x_r #x_var
['CONSTANT', 'INC', 'HOVAL']
>>> print olsr.chow.regi
[[0.01020844 0.91952121]
 [0.46024939 0.49750745]
 [0.55477371 0.45637369]]
>>> print 'Joint test:'
Joint test:
>>> print olsr.chow.joint
(0.6339319928978806, 0.8886223520178802)

	
class pysal.spreg.regimes.Regimes_Frame(x, regimes, constant_regi, cols2regi, names=None, yend=False)

	
	Setup framework to work with regimes. Basically it involves:

	
	Dealing with the constant in a regimes world

	Creating a sparse representation of X

	Generating a list of names of X taking into account regimes

...

	Parameters:	
	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi ([False [https://docs.python.org/2/library/constants.html#False], 'one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	False: no constant term is appended in any way

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	names (None, list of strings) – Names of independent variables for use in output

	Returns:	
	x (csr sparse matrix) – Sparse matrix containing X variables properly aligned for
regimes regression. ‘xsp’ is of dimension (n, k*r) where ‘r’
is the number of different regimes
The structure of the alignent is X1r1 X2r1 ... X1r2 X2r2 ...

	names (None, list of strings) – Names of independent variables for use in output
conveniently arranged by regimes. The structure of the name
is “regimeName_-_varName”

	kr (int) – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kf (int) – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nr (int) – Number of different regimes in the ‘regimes’ list

	
class pysal.spreg.regimes.Wald(reg, r, q=None)

	Chi sq. Wald statistic to test for restriction of coefficients.
Implementation following Greene [Greene2003] eq. (17-24), p. 488

...

	Parameters:	
	reg (regression object) – Regression object from PySAL.spreg

	r (array [https://docs.python.org/2/library/array.html#module-array]) – Array of dimension Rxk (R being number of restrictions) with constrain setup.

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Rx1 array with constants in the constraint setup. See Greene
[1]_ for reference.

	
w

	float – Wald statistic

	
pvalue

	float – P value for Wald statistic calculated as a Chi sq. distribution
with R degrees of freedom

	
pysal.spreg.regimes.buildR(kr, kf, nr)

	Build R matrix to globally test for spatial heterogeneity across regimes.
The constraint setup reflects the null every beta is the same
across regimes

Note: needs a placeholder for kryd in builR1var, set to 0

...

	Parameters:	
	kr (int [https://docs.python.org/2/library/functions.html#int]) – Number of variables that vary across regimes (“regimized”)

	kf (int [https://docs.python.org/2/library/functions.html#int]) – Number of variables that do not vary across regimes (“fixed” or
global)

	nr (int [https://docs.python.org/2/library/functions.html#int]) – Number of regimes

	Returns:	R – Array with constrain setup to test stability across regimes of
one variable

	Return type:	array [https://docs.python.org/2/library/array.html#module-array]

	
pysal.spreg.regimes.buildR1var(vari, kr, kf, kryd, nr)

	Build R matrix to test for spatial heterogeneity across regimes in one
variable. The constraint setup reflects the null betas for variable ‘vari’
are the same across regimes

...

	Parameters:	
	vari (int [https://docs.python.org/2/library/functions.html#int]) – Position of the variable to be tested (order in the sequence of
variables per regime)

	kr (int [https://docs.python.org/2/library/functions.html#int]) – Number of variables that vary across regimes (“regimized”)

	kf (int [https://docs.python.org/2/library/functions.html#int]) – Number of variables that do not vary across regimes (“fixed” or
global)

	kryd (Number of endogenous variables varying across regimes) –

	nr (int [https://docs.python.org/2/library/functions.html#int]) – Number of regimes

	Returns:	R – Array with constrain setup to test stability across regimes of
one variable

	Return type:	array [https://docs.python.org/2/library/array.html#module-array]

	
pysal.spreg.regimes.check_cols2regi(constant_regi, cols2regi, x, yend=None, add_cons=True)

	Checks if dimensions of list cols2regi match number of variables.

	
pysal.spreg.regimes.regimeX_setup(x, regimes, cols2regi, regimes_set, constant=False)

	Flexible full setup of a regime structure

NOTE: constant term, if desired in the model, should be included in the x
already

...

	Parameters:	
	x (np.array) – Dense array of dimension (n, k) with values for all observations
IMPORTANT: constant term (if desired in the model) should be
included

	regimes (list) – list of n values with the mapping of each observation to a
regime. Assumed to be aligned with ‘x’.

	cols2regi (list) – List of k booleans indicating whether each column should be
considered as different per regime (True) or held constant
across regimes (False)

	regimes_set (list) – List of ordered regimes tags

	constant ([False [https://docs.python.org/2/library/constants.html#False], 'one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	False: no constant term is appended in any way

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	Returns:	xsp – Sparse matrix containing the full setup for a regimes model
as specified in the arguments passed
NOTE: columns are reordered so first are all the regime
columns then all the global columns (this makes it much more
efficient)
Structure of the output matrix (assuming X1, X2 to vary
across regimes and constant term, X3 and X4 to be global):

X1r1, X2r1, ... , X1r2, X2r2, ... , constant, X3, X4

	Return type:	csr sparse matrix

	
pysal.spreg.regimes.set_name_x_regimes(name_x, regimes, constant_regi, cols2regi, regimes_set)

	Generate the set of variable names in a regimes setup, according to the
order of the betas

NOTE: constant term, if desired in the model, should be included in the x
already

...

	Parameters:	
	name_x (list/None) – If passed, list of strings with the names of the
variables aligned with the original dense array x
IMPORTANT: constant term (if desired in the model) should be
included

	regimes (list) – list of n values with the mapping of each observation to a
regime. Assumed to be aligned with ‘x’.

	constant_regi ([False [https://docs.python.org/2/library/constants.html#False], 'one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	False: no constant term is appended in any way

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	cols2regi (list) – List of k booleans indicating whether each column should be
considered as different per regime (True) or held constant
across regimes (False)

	regimes_set (list) – List of ordered regimes tags

	Returns:	

	Return type:	name_x_regi

	
pysal.spreg.regimes.w_regime(w, regi_ids, regi_i, transform=True, min_n=None)

	Returns the subset of W matrix according to a given regime ID

...

	
pysal.spreg.regimes.w

	pysal W object – Spatial weights object

	
pysal.spreg.regimes.regi_ids

	list – Contains the location of observations in y that are assigned to regime regi_i

	
pysal.spreg.regimes.regi_i

	string or float – The regime for which W will be subset

	Returns:	w_regi_i – Subset of W for regime regi_i

	Return type:	pysal W object

	
pysal.spreg.regimes.w_regimes(w, regimes, regimes_set, transform=True, get_ids=None, min_n=None)

	######### DEPRECATED ##########
Subsets W matrix according to regimes

...

	
pysal.spreg.regimes.w

	pysal W object – Spatial weights object

	
pysal.spreg.regimes.regimes

	list – list of n values with the mapping of each observation to a
regime. Assumed to be aligned with ‘x’.

	
pysal.spreg.regimes.regimes_set

	list – List of ordered regimes tags

	Returns:	w_regi – Dictionary containing the subsets of W according to regimes: [r1:w1, r2:w2, ..., rR:wR]

	Return type:	dictionary

	
pysal.spreg.regimes.w_regimes_union(w, w_regi_i, regimes_set)

	Combines the subsets of the W matrix according to regimes

...

	
pysal.spreg.regimes.w

	pysal W object – Spatial weights object

	
pysal.spreg.regimes.w_regi_i

	dictionary – Dictionary containing the subsets of W according to regimes: [r1:w1, r2:w2, ..., rR:wR]

	
pysal.spreg.regimes.regimes_set

	list – List of ordered regimes tags

	Returns:	w_regi – Spatial weights object containing the union of the subsets of W

	Return type:	pysal W object

	
pysal.spreg.regimes.wald_test(betas, r, q, vm)

	Chi sq. Wald statistic to test for restriction of coefficients.
Implementation following Greene [Greene2003] eq. (17-24), p. 488

...

	Parameters:	
	betas (array [https://docs.python.org/2/library/array.html#module-array]) – kx1 array with coefficient estimates

	r (array [https://docs.python.org/2/library/array.html#module-array]) – Array of dimension Rxk (R being number of restrictions) with constrain setup.

	q (array [https://docs.python.org/2/library/array.html#module-array]) – Rx1 array with constants in the constraint setup. See Greene
[1]_ for reference.

	vm (array [https://docs.python.org/2/library/array.html#module-array]) – kxk variance-covariance matrix of coefficient estimates

	Returns:	
	w (float) – Wald statistic

	pvalue (float) – P value for Wald statistic calculated as a Chi sq. distribution
with R degrees of freedom

	
pysal.spreg.regimes.x2xsp(x, regimes, regimes_set)

	Convert X matrix with regimes into a sparse X matrix that accounts for the
regimes

...

	
pysal.spreg.regimes.x

	np.array – Dense array of dimension (n, k) with values for all observations

	
pysal.spreg.regimes.regimes

	list – list of n values with the mapping of each observation to a
regime. Assumed to be aligned with ‘x’.

	
pysal.spreg.regimes.regimes_set

	list – List of ordered regimes tags

	Returns:	xsp – Sparse matrix containing X variables properly aligned for
regimes regression. ‘xsp’ is of dimension (n, k*r) where ‘r’
is the number of different regimes
The structure of the alignent is X1r1 X2r1 ... X1r2 X2r2 ...

	Return type:	csr sparse matrix

 spreg.ml_error — ML Estimation of Spatial Error Model

spreg.ml_error — ML Estimation of Spatial Error Model

The spreg.ml_error module provides spatial error model estimation with maximum likelihood following Anselin (1988).

New in version 1.7.

ML Estimation of Spatial Error Model

	
class pysal.spreg.ml_error.ML_Error(y, x, w, method='full', epsilon=1e-07, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	ML estimation of the spatial lag model with all results and diagnostics;
Anselin (1988) [Anselin1988]

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	w (Sparse matrix) – Spatial weights sparse matrix

	method (string [https://docs.python.org/2/library/string.html#module-string]) – if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue method
if ‘LU’, LU sparse matrix decomposition

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – tolerance criterion in mimimize_scalar function and inverse_product

	spat_diag (boolean) – if True, include spatial diagnostics

	vm (boolean) – if True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
betas

	array – (k+1)x1 array of estimated coefficients (rho first)

	
lam

	float – estimate of spatial autoregressive coefficient

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant, excluding lambda)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
method

	string – log Jacobian method
if ‘full’: brute force (full matrix computations)

	
epsilon

	float – tolerance criterion used in minimize_scalar function and inverse_product

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
varb

	array – Variance covariance matrix (k+1 x k+1) - includes var(lambda)

	
vm1

	array – variance covariance matrix for lambda, sigma (2 x 2)

	
sig2

	float – Sigma squared used in computations

	
logll

	float – maximized log-likelihood (including constant terms)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
utu

	float – Sum of squared residuals

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

Examples

>>> import numpy as np
>>> import pysal as ps
>>> np.set_printoptions(suppress=True) #prevent scientific format
>>> db = ps.open(ps.examples.get_path("south.dbf"),'r')
>>> ds_name = "south.dbf"
>>> y_name = "HR90"
>>> y = np.array(db.by_col(y_name))
>>> y.shape = (len(y),1)
>>> x_names = ["RD90","PS90","UE90","DV90"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("south_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "south_q.gal"
>>> w.transform = 'r'
>>> mlerr = ML_Error(y,x,w,name_y=y_name,name_x=x_names, name_w=w_name,name_ds=ds_name)
>>> np.around(mlerr.betas, decimals=4)
array([[6.1492],
 [4.4024],
 [1.7784],
 [-0.3781],
 [0.4858],
 [0.2991]])
>>> "{0:.4f}".format(mlerr.lam)
'0.2991'
>>> "{0:.4f}".format(mlerr.mean_y)
'9.5493'
>>> "{0:.4f}".format(mlerr.std_y)
'7.0389'
>>> np.around(np.diag(mlerr.vm), decimals=4)
array([1.0648, 0.0555, 0.0454, 0.0061, 0.0148, 0.0014])
>>> np.around(mlerr.sig2, decimals=4)
array([[32.4069]])
>>> "{0:.4f}".format(mlerr.logll)
'-4471.4071'
>>> "{0:.4f}".format(mlerr.aic)
'8952.8141'
>>> "{0:.4f}".format(mlerr.schwarz)
'8979.0779'
>>> "{0:.4f}".format(mlerr.pr2)
'0.3058'
>>> "{0:.4f}".format(mlerr.utu)
'48534.9148'
>>> np.around(mlerr.std_err, decimals=4)
array([1.0319, 0.2355, 0.2132, 0.0784, 0.1217, 0.0378])
>>> np.around(mlerr.z_stat, decimals=4)
array([[5.9593, 0.],
 [18.6902, 0.],
 [8.3422, 0.],
 [-4.8233, 0.],
 [3.9913, 0.0001],
 [7.9089, 0.]])
>>> mlerr.name_y
'HR90'
>>> mlerr.name_x
['CONSTANT', 'RD90', 'PS90', 'UE90', 'DV90', 'lambda']
>>> mlerr.name_w
'south_q.gal'
>>> mlerr.name_ds
'south.dbf'
>>> mlerr.title
'MAXIMUM LIKELIHOOD SPATIAL ERROR (METHOD = FULL)'

 spreg.ml_error_regimes — ML Estimation of Spatial Error Model with Regimes

spreg.ml_error_regimes — ML Estimation of Spatial Error Model with Regimes

The spreg.ml_error_regimes module provides spatial error model with regimes estimation with maximum likelihood following Anselin (1988).

New in version 1.7.

ML Estimation of Spatial Error Model

	
class pysal.spreg.ml_error_regimes.ML_Error_Regimes(y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_err_sep=False, regime_lag_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	ML estimation of the spatial error model with regimes (note no consistency
checks, diagnostics or constants added); Anselin (1988) [Anselin1988]

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	w (Sparse matrix) – Spatial weights sparse matrix

	method (string [https://docs.python.org/2/library/string.html#module-string]) – if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue computation
if ‘LU’, LU sparse matrix decomposition

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – tolerance criterion in mimimize_scalar function and inverse_product

	regime_err_sep (boolean) – If True, a separate regression is run for each regime.

	regime_lag_sep (boolean) – Always False, kept for consistency in function call, ignored.

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	spat_diag (boolean) – if True, include spatial diagnostics

	vm (boolean) – if True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regimes variable for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – (k+1)x1 array of estimated coefficients (lambda last)

	
lam

	float – estimate of spatial autoregressive coefficient
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
u

	array – nx1 array of residuals

	
e_filtered

	array – nx1 array of spatially filtered residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant, excluding the rho)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
method

	string – log Jacobian method
if ‘full’: brute force (full matrix computations)
if ‘ord’, Ord eigenvalue computation
if ‘LU’, LU sparse matrix decomposition

	
epsilon

	float – tolerance criterion used in minimize_scalar function and inverse_product

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (k+1 x k+1), all coefficients

	
vm1

	array – variance covariance matrix for lambda, sigma (2 x 2)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
sig2

	float – Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
logll

	float – maximized log-likelihood (including constant terms)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regimes variable for use in output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_lag_sep

	boolean – If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

Open data baltim.dbf using pysal and create the variables matrices and weights matrix.

>>> import numpy as np
>>> import pysal as ps
>>> db = ps.open(ps.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","AGE","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'

Since in this example we are interested in checking whether the results vary
by regimes, we use CITCOU to define whether the location is in the city or
outside the city (in the county):

>>> regimes = db.by_col("CITCOU")

Now we can run the regression with all parameters:

>>> mlerr = ML_Error_Regimes(y,x,regimes,w=w,name_y=y_name,name_x=x_names, name_w=w_name,name_ds=ds_name,name_regimes="CITCOU")
>>> np.around(mlerr.betas, decimals=4)
array([[-2.3949],
 [4.8738],
 [-0.0291],
 [0.3328],
 [31.7962],
 [2.981],
 [-0.2371],
 [0.8058],
 [0.6177]])
>>> "{0:.6f}".format(mlerr.lam)
'0.617707'
>>> "{0:.6f}".format(mlerr.mean_y)
'44.307180'
>>> "{0:.6f}".format(mlerr.std_y)
'23.606077'
>>> np.around(mlerr.vm1, decimals=4)
array([[0.005 , -0.3535],
 [-0.3535, 441.3039]])
>>> np.around(np.diag(mlerr.vm), decimals=4)
array([58.5055, 2.4295, 0.0072, 0.0639, 80.5925, 3.161 ,
 0.012 , 0.0499, 0.005])
>>> np.around(mlerr.sig2, decimals=4)
array([[209.6064]])
>>> "{0:.6f}".format(mlerr.logll)
'-870.333106'
>>> "{0:.6f}".format(mlerr.aic)
'1756.666212'
>>> "{0:.6f}".format(mlerr.schwarz)
'1783.481077'
>>> mlerr.title
'MAXIMUM LIKELIHOOD SPATIAL ERROR - REGIMES (METHOD = full)'

 spreg.ml_lag — ML Estimation of Spatial Lag Model

spreg.ml_lag — ML Estimation of Spatial Lag Model

The spreg.ml_lag module provides spatial lag model estimation with maximum likelihood following Anselin (1988).

New in version 1.7.

ML Estimation of Spatial Lag Model

	
class pysal.spreg.ml_lag.ML_Lag(y, x, w, method='full', epsilon=1e-07, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	ML estimation of the spatial lag model with all results and diagnostics;
Anselin (1988) [Anselin1988]

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	w (pysal W object) – Spatial weights object

	method (string [https://docs.python.org/2/library/string.html#module-string]) – if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue method

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – tolerance criterion in mimimize_scalar function and inverse_product

	spat_diag (boolean) – if True, include spatial diagnostics

	vm (boolean) – if True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	
betas

	array – (k+1)x1 array of estimated coefficients (rho first)

	
rho

	float – estimate of spatial autoregressive coefficient

	
u

	array – nx1 array of residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant, excluding the rho)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	
method

	string – log Jacobian method
if ‘full’: brute force (full matrix computations)

	
epsilon

	float – tolerance criterion used in minimize_scalar function and inverse_product

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (k+1 x k+1), all coefficients

	
vm1

	array – Variance covariance matrix (k+2 x k+2), includes sig2

	
sig2

	float – Sigma squared used in computations

	
logll

	float – maximized log-likelihood (including constant terms)

	
aic

	float – Akaike information criterion

	
schwarz

	float – Schwarz criterion

	
predy_e

	array – predicted values from reduced form

	
e_pred

	array – prediction errors using reduced form predicted values

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)

	
pr2_e

	float – Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))

	
utu

	float – Sum of squared residuals

	
std_err

	array – 1xk array of standard errors of the betas

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
title

	string – Name of the regression method used

Examples

>>> import numpy as np
>>> import pysal as ps
>>> db = ps.open(ps.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","NBATH","PATIO","FIREPL","AC","GAR","AGE","LOTSZ","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'
>>> mllag = ML_Lag(y,x,w,name_y=y_name,name_x=x_names, name_w=w_name,name_ds=ds_name)
>>> np.around(mllag.betas, decimals=4)
array([[4.3675],
 [0.7502],
 [5.6116],
 [7.0497],
 [7.7246],
 [6.1231],
 [4.6375],
 [-0.1107],
 [0.0679],
 [0.0794],
 [0.4259]])
>>> "{0:.6f}".format(mllag.rho)
'0.425885'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vm1), decimals=4)
array([23.8716, 1.1222, 3.0593, 7.3416, 5.6695, 5.4698,
 2.8684, 0.0026, 0.0002, 0.0266, 0.0032, 220.1292])
>>> np.around(np.diag(mllag.vm), decimals=4)
array([23.8716, 1.1222, 3.0593, 7.3416, 5.6695, 5.4698,
 2.8684, 0.0026, 0.0002, 0.0266, 0.0032])
>>> "{0:.6f}".format(mllag.sig2)
'151.458698'
>>> "{0:.6f}".format(mllag.logll)
'-832.937174'
>>> "{0:.6f}".format(mllag.aic)
'1687.874348'
>>> "{0:.6f}".format(mllag.schwarz)
'1724.744787'
>>> "{0:.6f}".format(mllag.pr2)
'0.727081'
>>> "{0:.4f}".format(mllag.pr2_e)
'0.7062'
>>> "{0:.4f}".format(mllag.utu)
'31957.7853'
>>> np.around(mllag.std_err, decimals=4)
array([4.8859, 1.0593, 1.7491, 2.7095, 2.3811, 2.3388, 1.6936,
 0.0508, 0.0146, 0.1631, 0.057])
>>> np.around(mllag.z_stat, decimals=4)
array([[0.8939, 0.3714],
 [0.7082, 0.4788],
 [3.2083, 0.0013],
 [2.6018, 0.0093],
 [3.2442, 0.0012],
 [2.6181, 0.0088],
 [2.7382, 0.0062],
 [-2.178 , 0.0294],
 [4.6487, 0.],
 [0.4866, 0.6266],
 [7.4775, 0.]])
>>> mllag.name_y
'PRICE'
>>> mllag.name_x
['CONSTANT', 'NROOM', 'NBATH', 'PATIO', 'FIREPL', 'AC', 'GAR', 'AGE', 'LOTSZ', 'SQFT', 'W_PRICE']
>>> mllag.name_w
'baltim_q.gal'
>>> mllag.name_ds
'baltim.dbf'
>>> mllag.title
'MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = FULL)'
>>> mllag = ML_Lag(y,x,w,method='ord',name_y=y_name,name_x=x_names, name_w=w_name,name_ds=ds_name)
>>> np.around(mllag.betas, decimals=4)
array([[4.3675],
 [0.7502],
 [5.6116],
 [7.0497],
 [7.7246],
 [6.1231],
 [4.6375],
 [-0.1107],
 [0.0679],
 [0.0794],
 [0.4259]])
>>> "{0:.6f}".format(mllag.rho)
'0.425885'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vm1), decimals=4)
array([23.8716, 1.1222, 3.0593, 7.3416, 5.6695, 5.4698,
 2.8684, 0.0026, 0.0002, 0.0266, 0.0032, 220.1292])
>>> np.around(np.diag(mllag.vm), decimals=4)
array([23.8716, 1.1222, 3.0593, 7.3416, 5.6695, 5.4698,
 2.8684, 0.0026, 0.0002, 0.0266, 0.0032])
>>> "{0:.6f}".format(mllag.sig2)
'151.458698'
>>> "{0:.6f}".format(mllag.logll)
'-832.937174'
>>> "{0:.6f}".format(mllag.aic)
'1687.874348'
>>> "{0:.6f}".format(mllag.schwarz)
'1724.744787'
>>> "{0:.6f}".format(mllag.pr2)
'0.727081'
>>> "{0:.6f}".format(mllag.pr2_e)
'0.706198'
>>> "{0:.4f}".format(mllag.utu)
'31957.7853'
>>> np.around(mllag.std_err, decimals=4)
array([4.8859, 1.0593, 1.7491, 2.7095, 2.3811, 2.3388, 1.6936,
 0.0508, 0.0146, 0.1631, 0.057])
>>> np.around(mllag.z_stat, decimals=4)
array([[0.8939, 0.3714],
 [0.7082, 0.4788],
 [3.2083, 0.0013],
 [2.6018, 0.0093],
 [3.2442, 0.0012],
 [2.6181, 0.0088],
 [2.7382, 0.0062],
 [-2.178 , 0.0294],
 [4.6487, 0.],
 [0.4866, 0.6266],
 [7.4775, 0.]])
>>> mllag.name_y
'PRICE'
>>> mllag.name_x
['CONSTANT', 'NROOM', 'NBATH', 'PATIO', 'FIREPL', 'AC', 'GAR', 'AGE', 'LOTSZ', 'SQFT', 'W_PRICE']
>>> mllag.name_w
'baltim_q.gal'
>>> mllag.name_ds
'baltim.dbf'
>>> mllag.title
'MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = ORD)'

 spreg.ml_lag_regimes — ML Estimation of Spatial Lag Model with Regimes

spreg.ml_lag_regimes — ML Estimation of Spatial Lag Model with Regimes

The spreg.ml_lag_regimes module provides spatial lag model with regimes estimation with maximum likelihood following Anselin (1988).

New in version 1.7.

ML Estimation of Spatial Lag Model with Regimes

	
class pysal.spreg.ml_lag_regimes.ML_Lag_Regimes(y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_lag_sep=False, regime_err_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	ML estimation of the spatial lag model with regimes (note no consistency
checks, diagnostics or constants added); Anselin (1988) [Anselin1988]

	Parameters:	
	y (array [https://docs.python.org/2/library/array.html#module-array]) – nx1 array for dependent variable

	x (array [https://docs.python.org/2/library/array.html#module-array]) – Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimes (list) – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi (['one', 'many']) – Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime (default)

	cols2regi (list, 'all') – Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	w (Sparse matrix) – Spatial weights sparse matrix

	method (string [https://docs.python.org/2/library/string.html#module-string]) – if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue method
if ‘LU’, LU sparse matrix decomposition

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – tolerance criterion in mimimize_scalar function and inverse_product

	regime_lag_sep (boolean) – If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	cores (boolean) – Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	spat_diag (boolean) – if True, include spatial diagnostics

	vm (boolean) – if True, include variance-covariance matrix in summary
results

	name_y (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dependent variable for use in output

	name_x (list of strings) – Names of independent variables for use in output

	name_w (string [https://docs.python.org/2/library/string.html#module-string]) – Name of weights matrix for use in output

	name_ds (string [https://docs.python.org/2/library/string.html#module-string]) – Name of dataset for use in output

	name_regimes (string [https://docs.python.org/2/library/string.html#module-string]) – Name of regimes variable for use in output

	
summary

	string – Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	
betas

	array – (k+1)x1 array of estimated coefficients (rho first)

	
rho

	float – estimate of spatial autoregressive coefficient
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
u

	array – nx1 array of residuals

	
predy

	array – nx1 array of predicted y values

	
n

	integer – Number of observations

	
k

	integer – Number of variables for which coefficients are estimated
(including the constant, excluding the rho)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
y

	array – nx1 array for dependent variable

	
x

	array – Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
method

	string – log Jacobian method
if ‘full’: brute force (full matrix computations)
if ‘ord’, Ord eigenvalue method
if ‘LU’, LU sparse matrix decomposition

	
epsilon

	float – tolerance criterion used in minimize_scalar function and inverse_product

	
mean_y

	float – Mean of dependent variable

	
std_y

	float – Standard deviation of dependent variable

	
vm

	array – Variance covariance matrix (k+1 x k+1), all coefficients

	
vm1

	array – Variance covariance matrix (k+2 x k+2), includes sig2
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
sig2

	float – Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
logll

	float – maximized log-likelihood (including constant terms)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
aic

	float – Akaike information criterion
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
schwarz

	float – Schwarz criterion
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
predy_e

	array – predicted values from reduced form

	
e_pred

	array – prediction errors using reduced form predicted values

	
pr2

	float – Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
pr2_e

	float – Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
std_err

	array – 1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
z_stat

	list of tuples – z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
name_y

	string – Name of dependent variable for use in output

	
name_x

	list of strings – Names of independent variables for use in output

	
name_w

	string – Name of weights matrix for use in output

	
name_ds

	string – Name of dataset for use in output

	
name_regimes

	string – Name of regimes variable for use in output

	
title

	string – Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	
regimes

	list – List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	
constant_regi

	[‘one’, ‘many’] – Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	
	‘one’: a vector of ones is appended to x and held

	constant across regimes

	
	‘many’: a vector of ones is appended to x and considered

	different per regime

	
cols2regi

	list, ‘all’ – Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	
regime_lag_sep

	boolean – If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	
regime_err_sep

	boolean – always set to False - kept for compatibility with other
regime models

	
kr

	int – Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	
kf

	int – Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	
nr

	int – Number of different regimes in the ‘regimes’ list

	
multi

	dictionary – Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Examples

Open data baltim.dbf using pysal and create the variables matrices and weights matrix.

>>> import numpy as np
>>> import pysal as ps
>>> db = ps.open(ps.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","AGE","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'

Since in this example we are interested in checking whether the results vary
by regimes, we use CITCOU to define whether the location is in the city or
outside the city (in the county):

>>> regimes = db.by_col("CITCOU")

Now we can run the regression with all parameters:

>>> mllag = ML_Lag_Regimes(y,x,regimes,w=w,name_y=y_name,name_x=x_names, name_w=w_name,name_ds=ds_name,name_regimes="CITCOU")
>>> np.around(mllag.betas, decimals=4)
array([[-15.0059],
 [4.496],
 [-0.0318],
 [0.35],
 [-4.5404],
 [3.9219],
 [-0.1702],
 [0.8194],
 [0.5385]])
>>> "{0:.6f}".format(mllag.rho)
'0.538503'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vm1), decimals=4)
array([47.42 , 2.3953, 0.0051, 0.0648, 69.6765, 3.2066,
 0.0116, 0.0486, 0.004 , 390.7274])
>>> np.around(np.diag(mllag.vm), decimals=4)
array([47.42 , 2.3953, 0.0051, 0.0648, 69.6765, 3.2066,
 0.0116, 0.0486, 0.004])
>>> "{0:.6f}".format(mllag.sig2)
'200.044334'
>>> "{0:.6f}".format(mllag.logll)
'-864.985056'
>>> "{0:.6f}".format(mllag.aic)
'1747.970112'
>>> "{0:.6f}".format(mllag.schwarz)
'1778.136835'
>>> mllag.title
'MAXIMUM LIKELIHOOD SPATIAL LAG - REGIMES (METHOD = full)'

 spreg.sur — Seeming Unrelated Regression

spreg.sur — Seeming Unrelated Regression

The spreg.sur module provides SUR estimation.

New in version 1.11.

SUR and 3SLS estimation

	
class pysal.spreg.sur.SUR(bigy, bigX, w=None, nonspat_diag=True, spat_diag=False, vm=False, iter=False, maxiter=5, epsilon=1e-05, verbose=False, name_bigy=None, name_bigX=None, name_ds=None, name_w=None)

	User class for SUR estimation, both two step as well as iterated

	Parameters:	
	bigy (dictionary with vector for dependent variable by equation) –

	bigX (dictionary with matrix of explanatory variables by equation) – (note, already includes constant term)

	w (spatial weights object, default = None) –

	nonspat_diag (boolean; flag for non-spatial diagnostics, default = True) –

	spat_diag (boolean; flag for spatial diagnostics, default = False) –

	iter (boolean; whether or not to use iterated estimation) – default = False

	maxiter (integer; maximum iterations; default = 5) –

	epsilon (float; precision criterion to end iterations) – default = 0.00001

	verbose (boolean; flag to print out iteration number and value) – of log det(sig) at the beginning and the end of the iteration

	name_bigy (dictionary with name of dependent variable for each equation) – default = None, but should be specified
is done when sur_stackxy is used

	name_bigX (dictionary with names of explanatory variables for each) – equation
default = None, but should be specified
is done when sur_stackxy is used

	name_ds (string; name for the data set) –

	name_w (string; name for the weights file) –

	
bigy

	dictionary with y values

	
bigX

	dictionary with X values

	
bigXX

	dictionary with X_t’X_r cross-products

	
bigXy

	dictionary with X_t’y_r cross-products

	
n_eq

	number of equations

	
n

	number of observations in each cross-section

	
bigK

	vector with number of explanatory variables (including constant) – for each equation

	
bOLS

	dictionary with OLS regression coefficients for each equation

	
olsE

	N x n_eq array with OLS residuals for each equation

	
bSUR

	dictionary with SUR regression coefficients for each equation

	
varb

	variance-covariance matrix

	
sig

	Sigma matrix of inter-equation error covariances

	
ldetS1

	log det(Sigma) for SUR model

	
bigE

	n by n_eq array of residuals

	
sig_ols

	Sigma matrix for OLS residuals (diagonal)

	
ldetS0

	log det(Sigma) for null model (OLS by equation)

	
niter

	number of iterations (=0 for iter=False)

	
corr

	inter-equation error correlation matrix

	
llik

	log-likelihood (including the constant pi)

	
sur_inf

	dictionary with standard error, asymptotic t and p-value, – one for each equation

	
lrtest

	Likelihood Ratio test on off-diagonal elements of sigma – (tuple with test,df,p-value)

	
lmtest

	Lagrange Multipler test on off-diagonal elements of sigma – (tuple with test,df,p-value)

	
lmEtest

	Lagrange Multiplier test on error spatial autocorrelation in SUR – (tuple with test, df, p-value)

	
surchow

	list with tuples for Chow test on regression coefficients – each tuple contains test value, degrees of freedom, p-value

	
name_bigy

	dictionary with name of dependent variable for each equation

	
name_bigX

	dictionary with names of explanatory variables for each – equation

	
name_ds

	string; name for the data set

	
name_w

	string; name for the weights file

Examples

First import pysal to load the spatial analysis tools.

>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that pysal.open()
also reads data in CSV format.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. In this example, equation 1
has HR80 as dependent variable and PS80 and UE80 as exogenous regressors.
For equation 2, HR90 is the dependent variable, and PS90 and UE90 the
exogenous regressors.

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]

Although not required for this method, we can load a weights matrix file
to allow for spatial diagnostics.

>>> w = pysal.queen_from_shapefile(pysal.examples.get_path("NAT.shp"))
>>> w.transform='r'

The SUR method requires data to be provided as dictionaries. PySAL
provides the tool sur_dictxy to create these dictionaries from the
list of variables. The line below will create four dictionaries
containing respectively the dependent variables (bigy), the regressors
(bigX), the dependent variables’ names (bigyvars) and regressors’ names
(bigXvars). All these will be created from th database (db) and lists
of variables (y_var and x_var) created above.

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)

We can now run the regression and then have a summary of the output by typing:
‘print(reg.summary)’

>>> reg = SUR(bigy,bigX,w=w,name_bigy=bigyvars,name_bigX=bigXvars,spat_diag=True,name_ds="nat")
>>> print(reg.summary)
REGRESSION

SUMMARY OF OUTPUT: SEEMINGLY UNRELATED REGRESSIONS (SUR)
--
Data set : nat
Weights matrix : unknown
Number of Equations : 2 Number of Observations: 3085
Log likelihood (SUR): -19902.966 Number of Iterations : 1

SUMMARY OF EQUATION 1

Dependent Variable : HR80 Number of Variables : 3
Mean dependent var : 6.9276 Degrees of Freedom : 3082
S.D. dependent var : 6.8251

--
 Variable Coefficient Std.Error z-Statistic Probability
--
 Constant_1 5.1390718 0.2624673 19.5798587 0.0000000
 PS80 0.6776481 0.1219578 5.5564132 0.0000000
 UE80 0.2637240 0.0343184 7.6846277 0.0000000
--

SUMMARY OF EQUATION 2

Dependent Variable : HR90 Number of Variables : 3
Mean dependent var : 6.1829 Degrees of Freedom : 3082
S.D. dependent var : 6.6403

--
 Variable Coefficient Std.Error z-Statistic Probability
--
 Constant_2 3.6139403 0.2534996 14.2561949 0.0000000
 PS90 1.0260715 0.1121662 9.1477755 0.0000000
 UE90 0.3865499 0.0341996 11.3027760 0.0000000
--

REGRESSION DIAGNOSTICS
 TEST DF VALUE PROB
 LM test on Sigma 1 680.168 0.0000
 LR test on Sigma 1 768.385 0.0000

OTHER DIAGNOSTICS - CHOW TEST
 VARIABLES DF VALUE PROB
 Constant_1, Constant_2 1 26.729 0.0000
 PS80, PS90 1 8.241 0.0041
 UE80, UE90 1 9.384 0.0022

DIAGNOSTICS FOR SPATIAL DEPENDENCE
TEST DF VALUE PROB
Lagrange Multiplier (error) 2 1333.625 0.0000

ERROR CORRELATION MATRIX
 EQUATION 1 EQUATION 2
 1.000000 0.469548
 0.469548 1.000000
================================ END OF REPORT =====================================

	
class pysal.spreg.sur.ThreeSLS(bigy, bigX, bigyend, bigq, nonspat_diag=True, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None)

	User class for 3SLS estimation

	Parameters:	
	bigy (dictionary with vector for dependent variable by equation) –

	bigX (dictionary with matrix of explanatory variables by equation) – (note, already includes constant term)

	bigyend (dictionary with matrix of endogenous variables by equation) –

	bigq (dictionary with matrix of instruments by equation) –

	nonspat_diag (boolean; flag for non-spatial diagnostics, default = True) –

	name_bigy (dictionary with name of dependent variable for each equation) – default = None, but should be specified
is done when sur_stackxy is used

	name_bigX (dictionary with names of explanatory variables for each) – equation
default = None, but should be specified
is done when sur_stackxy is used

	name_bigyend (dictionary with names of endogenous variables for each) – equation
default = None, but should be specified
is done when sur_stackZ is used

	name_bigq (dictionary with names of instrumental variables for each) – equations
default = None, but should be specified
is done when sur_stackZ is used

	name_ds (string; name for the data set) –

	
bigy

	dictionary with y values

	
bigZ

	dictionary with matrix of exogenous and endogenous variables – for each equation

	
bigZHZH

	dictionary with matrix of cross products Zhat_r’Zhat_s

	
bigZHy

	dictionary with matrix of cross products Zhat_r’y_end_s

	
n_eq

	number of equations

	
n

	number of observations in each cross-section

	
bigK

	vector with number of explanatory variables (including constant, – exogenous and endogenous) for each equation

	
b2SLS

	dictionary with 2SLS regression coefficients for each equation

	
tslsE

	N x n_eq array with OLS residuals for each equation

	
b3SLS

	dictionary with 3SLS regression coefficients for each equation

	
varb

	variance-covariance matrix

	
sig

	Sigma matrix of inter-equation error covariances

	
bigE

	n by n_eq array of residuals

	
corr

	inter-equation 3SLS error correlation matrix

	
tsls_inf

	dictionary with standard error, asymptotic t and p-value, – one for each equation

	
surchow

	list with tuples for Chow test on regression coefficients – each tuple contains test value, degrees of freedom, p-value

	
name_ds

	string; name for the data set

	
name_bigy

	dictionary with name of dependent variable for each equation

	
name_bigX

	dictionary with names of explanatory variables for each – equation

	
name_bigyend

	dictionary with names of endogenous variables for each – equation

	
name_bigq

	dictionary with names of instrumental variables for each – equations

Examples

First import pysal to load the spatial analysis tools.

>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that pysal.open()
also reads data in CSV format.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. In this example, equation 1
has HR80 as dependent variable, PS80 and UE80 as exogenous regressors,
RD80 as endogenous regressor and FP79 as additional instrument.
For equation 2, HR90 is the dependent variable, PS90 and UE90 the
exogenous regressors, RD90 as endogenous regressor and FP99 as
additional instrument

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]

The SUR method requires data to be provided as dictionaries. PySAL
provides two tools to create these dictionaries from the list of variables:
sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the
dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and
additional instruments (q).

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)

We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t
and p-value of the parameters:

>>> reg = ThreeSLS(bigy,bigX,bigyend,bigq,name_bigy=bigyvars,name_bigX=bigXvars,name_bigyend=bigyendvars,name_bigq=bigqvars,name_ds="NAT")
>>> reg.b3SLS
{0: array([[6.92426353],
 [1.42921826],
 [0.00049435],
 [3.5829275]]), 1: array([[7.62385875],
 [1.65031181],
 [-0.21682974],
 [3.91250428]])}

>>> reg.tsls_inf
{0: array([[0.23220853, 29.81916157, 0.],
 [0.10373417, 13.77770036, 0.],
 [0.03086193, 0.01601807, 0.98721998],
 [0.11131999, 32.18584124, 0.]]), 1: array([[0.28739415, 26.52753638, 0.],
 [0.09597031, 17.19606554, 0.],
 [0.04089547, -5.30204786, 0.00000011],
 [0.13586789, 28.79638723, 0.]])}

 spreg.sur_error — Spatial Error Seeming Unrelated Regression

spreg.sur_error — Spatial Error Seeming Unrelated Regression

The spreg.sur_error module provides SUR estimation for spatial error model

New in version 1.11.

Spatial Error SUR estimation

	
class pysal.spreg.sur_error.BaseSURerrorML(bigy, bigX, w, epsilon=1e-07)

	Base class for SUR Error estimation by Maximum Likelihood

	requires: scipy.optimize.minimize_scalar and

	scipy.optimize.minimize

	Parameters:	
	bigy (dictionary with vectors of dependent variable, one for) – each equation

	bigX (dictionary with matrices of explanatory variables,) – one for each equation

	w (spatial weights object) –

	epsilon (convergence criterion for ML iterations) – default 0.0000001

	
n

	number of observations in each cross-section

	
n2

	n/2

	
n_eq

	number of equations

	
bigy

	dictionary with vectors of dependent variable, one for – each equation

	
bigX

	dictionary with matrices of explanatory variables, – one for each equation

	
bigK

	n_eq x 1 array with number of explanatory variables – by equation

	
bigylag

	spatially lagged dependent variable

	
bigXlag

	spatially lagged explanatory variable

	
lamols

	spatial autoregressive coefficients from equation by – equation ML-Error estimation

	
clikerr

	concentrated log-likelihood from equation by equation – ML-Error estimation (no constant)

	
bSUR0

	SUR estimation for betas without spatial autocorrelation

	
llik

	log-likelihood for classic SUR estimation (includes constant)

	
lamsur

	spatial autoregressive coefficient in ML SUR Error

	
bSUR

	beta coefficients in ML SUR Error

	
varb

	variance of beta coefficients in ML SUR Error

	
sig

	error variance-covariance matrix in ML SUR Error

	
corr

	error correlation matrix

	
bigE

	n by n_eq matrix of vectors of residuals for each equation

	
cliksurerr

	concentrated log-likelihood from ML SUR Error (no constant)

	
class pysal.spreg.sur_error.SURerrorML(bigy, bigX, w, nonspat_diag=True, spat_diag=False, vm=False, epsilon=1e-07, name_bigy=None, name_bigX=None, name_ds=None, name_w=None)

	User class for SUR Error estimation by Maximum Likelihood

	Parameters:	
	bigy (dictionary with vectors of dependent variable, one for) – each equation

	bigX (dictionary with matrices of explanatory variables,) – one for each equation

	w (spatial weights object) –

	epsilon (convergence criterion for ML iterations) – default 0.0000001

	nonspat_diag (boolean; flag for non-spatial diagnostics, default = True) –

	spat_diag (boolean; flag for spatial diagnostics, default = False) –

	vm (boolean; flag for asymptotic variance for lambda and Sigma,) – default = False

	name_bigy (dictionary with name of dependent variable for each equation) – default = None, but should be specified
is done when sur_stackxy is used

	name_bigX (dictionary with names of explanatory variables for each) – equation
default = None, but should be specified
is done when sur_stackxy is used

	name_ds (string; name for the data set) –

	name_w (string; name for the weights file) –

	
n

	number of observations in each cross-section

	
n2

	n/2

	
n_eq

	number of equations

	
bigy

	dictionary with vectors of dependent variable, one for – each equation

	
bigX

	dictionary with matrices of explanatory variables, – one for each equation

	
bigK

	n_eq x 1 array with number of explanatory variables – by equation

	
bigylag

	spatially lagged dependent variable

	
bigXlag

	spatially lagged explanatory variable

	
lamols

	spatial autoregressive coefficients from equation by – equation ML-Error estimation

	
clikerr

	concentrated log-likelihood from equation by equation – ML-Error estimation (no constant)

	
bSUR0

	SUR estimation for betas without spatial autocorrelation

	
llik

	log-likelihood for classic SUR estimation (includes constant)

	
lamsur

	spatial autoregressive coefficient in ML SUR Error

	
bSUR

	beta coefficients in ML SUR Error

	
varb

	variance of beta coefficients in ML SUR Error

	
sig

	error variance-covariance matrix in ML SUR Error

	
bigE

	n by n_eq matrix of vectors of residuals for each equation

	
cliksurerr

	concentrated log-likelihood from ML SUR Error (no constant)

	
sur_inf

	inference for regression coefficients, stand. error, t, p

	
errllik

	log-likelihood for error model without SUR (with constant)

	
surerrllik

	log-likelihood for SUR error model (with constant)

	
lrtest

	likelihood ratio test for off-diagonal Sigma elements

	
likrlambda

	likelihood ratio test on spatial autoregressive coefficients

	
vm

	asymptotic variance matrix for lambda and Sigma (only for vm=True)

	
lamsetp

	inference for lambda, stand. error, t, p (only for vm=True)

	
lamtest

	tuple with test for constancy of lambda across equations – (test value, degrees of freedom, p-value)

	
joinlam

	tuple with test for joint significance of lambda across – equations (test value, degrees of freedom, p-value)

	
surchow

	list with tuples for Chow test on regression coefficients – each tuple contains test value, degrees of freedom, p-value

	
name_bigy

	dictionary with name of dependent variable for each equation

	
name_bigX

	dictionary with names of explanatory variables for each – equation

	
name_ds

	string; name for the data set

	
name_w

	string; name for the weights file

Examples

First import pysal to load the spatial analysis tools.

>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that pysal.open()
also reads data in CSV format.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. Equation 1 has HR80 as dependent
variable, and PS80 and UE80 as exogenous regressors.
For equation 2, HR90 is the dependent variable, and PS90 and UE90 the
exogenous regressors.

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]

The SUR method requires data to be provided as dictionaries. PySAL
provides the tool sur_dictxy to create these dictionaries from the
list of variables. The line below will create four dictionaries
containing respectively the dependent variables (bigy), the regressors
(bigX), the dependent variables’ names (bigyvars) and regressors’ names
(bigXvars). All these will be created from th database (db) and lists
of variables (y_var and x_var) created above.

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)

To run a spatial error model, we need to specify the spatial weights matrix.
To do that, we can open an already existing gal file or create a new one.
In this example, we will create a new one from NAT.shp and transform it to
row-standardized.

>>> w = pysal.queen_from_shapefile(pysal.examples.get_path("NAT.shp"))
>>> w.transform='r'

We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t
and p-value of the parameters:

>>> reg = SURerrorML(bigy,bigX,w=w,name_bigy=bigyvars,name_bigX=bigXvars,name_ds="NAT",name_w="nat_queen")
>>> reg.bSUR
{0: array([[4.0222855],
 [0.88489646],
 [0.42402853]]), 1: array([[3.04923009],
 [1.10972634],
 [0.47075682]])}

>>> reg.sur_inf
{0: array([[0.36692181, 10.96224141, 0.],
 [0.14129077, 6.26294579, 0.],
 [0.04267954, 9.93517021, 0.]]), 1: array([[0.33139969, 9.20106497, 0.],
 [0.13352591, 8.31094371, 0.],
 [0.04004097, 11.756878 , 0.]])}

 spreg.sur_lag — Spatial Lag Seeming Unrelated Regression

spreg.sur_lag — Spatial Lag Seeming Unrelated Regression

The spreg.sur_lag module provides SUR estimation for spatial lag model

New in version 1.11.

Spatial Lag SUR estimation

	
class pysal.spreg.sur_lag.SURlagIV(bigy, bigX, bigyend=None, bigq=None, w=None, vm=False, w_lags=1, lag_q=True, nonspat_diag=True, spat_diag=False, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_w=None)

	User class for spatial lag estimation using IV

	Parameters:	
	bigy (dictionary with vector for dependent variable by equation) –

	bigX (dictionary with matrix of explanatory variables by equation) – (note, already includes constant term)

	bigyend (dictionary with matrix of endogenous variables by equation) – (optional)

	bigq (dictionary with matrix of instruments by equation) – (optional)

	w (spatial weights object, required) –

	vm (boolean) – listing of full variance-covariance matrix, default = False

	w_lags (integer) – order of spatial lags for WX instruments, default = 1

	lag_q (boolean) – flag to apply spatial lag to other instruments,
default = True

	nonspat_diag (boolean; flag for non-spatial diagnostics, default = True) –

	spat_diag (boolean; flag for spatial diagnostics, default = False) –

	name_bigy (dictionary with name of dependent variable for each equation) – default = None, but should be specified
is done when sur_stackxy is used

	name_bigX (dictionary with names of explanatory variables for each) – equation
default = None, but should be specified
is done when sur_stackxy is used

	name_bigyend (dictionary with names of endogenous variables for each) – equation
default = None, but should be spedified
is done when sur_stackZ is used

	name_bigq (dictionary with names of instrumental variables for each) – equations
default = None, but should be specified
is done when sur_stackZ is used

	name_ds (string; name for the data set) –

	name_w (string; name for the spatial weights) –

	
w

	spatial weights object

	
bigy

	dictionary with y values

	
bigZ

	dictionary with matrix of exogenous and endogenous variables – for each equation

	
bigyend

	dictionary with matrix of endogenous variables for each – equation; contains Wy only if no other endogenous specified

	
bigq

	dictionary with matrix of instrumental variables for each – equation; contains WX only if no other endogenous specified

	
bigZHZH

	dictionary with matrix of cross products Zhat_r’Zhat_s

	
bigZHy

	dictionary with matrix of cross products Zhat_r’y_end_s

	
n_eq

	number of equations

	
n

	number of observations in each cross-section

	
bigK

	vector with number of explanatory variables (including constant, – exogenous and endogenous) for each equation

	
b2SLS

	dictionary with 2SLS regression coefficients for each equation

	
tslsE

	N x n_eq array with OLS residuals for each equation

	
b3SLS

	dictionary with 3SLS regression coefficients for each equation

	
varb

	variance-covariance matrix

	
sig

	Sigma matrix of inter-equation error covariances

	
resids

	n by n_eq array of residuals

	
corr

	inter-equation 3SLS error correlation matrix

	
tsls_inf

	dictionary with standard error, asymptotic t and p-value, – one for each equation

	
joinrho

	test on joint significance of spatial autoregressive coefficient – tuple with test statistic, degrees of freedom, p-value

	
surchow

	list with tuples for Chow test on regression coefficients – each tuple contains test value, degrees of freedom, p-value

	
name_w

	string; name for the spatial weights

	
name_ds

	string; name for the data set

	
name_bigy

	dictionary with name of dependent variable for each equation

	
name_bigX

	dictionary with names of explanatory variables for each – equation

	
name_bigyend

	dictionary with names of endogenous variables for each – equation

	
name_bigq

	dictionary with names of instrumental variables for each – equations

Examples

First import pysal to load the spatial analysis tools.

>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that pysal.open()
also reads data in CSV format.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. Although not required,
in this example we will specify additional endogenous regressors.
Equation 1 has HR80 as dependent variable, PS80 and UE80 as exogenous regressors,
RD80 as endogenous regressor and FP79 as additional instrument.
For equation 2, HR90 is the dependent variable, PS90 and UE90 the
exogenous regressors, RD90 as endogenous regressor and FP99 as
additional instrument

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]

The SUR method requires data to be provided as dictionaries. PySAL
provides two tools to create these dictionaries from the list of variables:
sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the
dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and
additional instruments (q).

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)

To run a spatial lag model, we need to specify the spatial weights matrix.
To do that, we can open an already existing gal file or create a new one.
In this example, we will create a new one from NAT.shp and transform it to
row-standardized.

>>> w = pysal.queen_from_shapefile(pysal.examples.get_path("NAT.shp"))
>>> w.transform='r'

We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t
and p-value of the parameters:

>>> reg = SURlagIV(bigy,bigX,bigyend,bigq,w=w,name_bigy=bigyvars,name_bigX=bigXvars,name_bigyend=bigyendvars,name_bigq=bigqvars,name_ds="NAT",name_w="nat_queen")
>>> reg.b3SLS
{0: array([[6.95472387],
 [1.44044301],
 [-0.00771893],
 [3.65051153],
 [0.00362663]]), 1: array([[5.61101925],
 [1.38716801],
 [-0.15512029],
 [3.1884457],
 [0.25832185]])}

>>> reg.tsls_inf
{0: array([[0.49128435, 14.15620899, 0.],
 [0.11516292, 12.50787151, 0.],
 [0.03204088, -0.2409087 , 0.80962588],
 [0.1876025 , 19.45875745, 0.],
 [0.05450628, 0.06653605, 0.94695106]]), 1: array([[0.44969956, 12.47726211, 0.],
 [0.10440241, 13.28674277, 0.],
 [0.04150243, -3.73761961, 0.00018577],
 [0.19133145, 16.66451427, 0.],
 [0.04394024, 5.87893596, 0.]])}

 pysal.weights — Spatial Weights

pysal.weights — Spatial Weights

	pysal.weights — Spatial weights matrices

	weights.util — Utility functions on spatial weights

	weights.user — Convenience functions for spatial weights

	weights.Contiguity — Contiguity based spatial weights

	weights.Distance — Distance based spatial weights

	weights.Wsets — Set operations on spatial weights

	weights.spatial_lag — Spatial lag operators

 pysal.weights — Spatial weights matrices

pysal.weights — Spatial weights matrices

The weights Spatial weights for PySAL

New in version 1.0.

Weights.

	
class pysal.weights.weights.W(neighbors, weights=None, id_order=None, silent_island_warning=False, ids=None)

	Spatial weights.

	Parameters:	
	neighbors (dictionary) – key is region ID, value is a list of neighbor IDS
Example: {‘a’:[‘b’],’b’:[‘a’,’c’],’c’:[‘b’]}

	weights (dictionary) – key is region ID, value is a list of edge weights
If not supplied all edge weights are assumed to have a weight of 1.
Example: {‘a’:[0.5],’b’:[0.5,1.5],’c’:[1.5]}

	id_order (list) – An ordered list of ids, defines the order of
observations when iterating over W if not set,
lexicographical ordering is used to iterate and the
id_order_set property will return False. This can be
set after creation by setting the ‘id_order’ property.

	silent_island_warning (boolean) – By default PySAL will print a warning if the
dataset contains any disconnected observations or
islands. To silence this warning set this
parameter to True.

	ids (list) – values to use for keys of the neighbors and weights dicts

	
asymmetries

	list – of

	
cardinalities

	dictionary – of

	
diagW2

	array – of

	
diagWtW

	array – of

	
diagWtW_WW

	array – of

	
histogram

	dictionary – of

	
id2i

	dictionary – of

	
id_order

	list – of

	
id_order_set

	boolean – True if

	
islands

	list – of

	
max_neighbors

	int – maximum number of neighbors

	
mean_neighbors

	int – mean number of neighbors

	
min_neighbors

	int – minimum neighbor count

	
n

	int – of

	
neighbor_offsets

	list – ids of neighbors to a region in id_order

	
nonzero

	int – Number of non-zero entries

	
pct_nonzero

	float – Percentage of nonzero neighbor counts

	
s0

	float – of

	
s1

	float – of

	
s2

	float – of

	
s2array

	array – of

	
sd

	float – of

	
sparse

	sparse_matrix – SciPy sparse matrix instance

	
trcW2

	float – of

	
trcWtW

	float – of

	
trcWtW_WW

	float – of

	
transform

	string – of

Examples

>>> from pysal import W, lat2W
>>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5], 3: [0, 6, 4], 4: [1, 3, 7, 5], 5: [2, 4, 8], 6: [3, 7], 7: [4, 6, 8], 8: [5, 7]}
>>> weights = {0: [1, 1], 1: [1, 1, 1], 2: [1, 1], 3: [1, 1, 1], 4: [1, 1, 1, 1], 5: [1, 1, 1], 6: [1, 1], 7: [1, 1, 1], 8: [1, 1]}
>>> w = W(neighbors, weights)
>>> "%.3f"%w.pct_nonzero
'29.630'

Read from external gal file

>>> import pysal
>>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()
>>> w.n
78
>>> "%.3f"%w.pct_nonzero
'6.542'

Set weights implicitly

>>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5], 3: [0, 6, 4], 4: [1, 3, 7, 5], 5: [2, 4, 8], 6: [3, 7], 7: [4, 6, 8], 8: [5, 7]}
>>> w = W(neighbors)
>>> round(w.pct_nonzero,3)
29.63
>>> w = lat2W(100, 100)
>>> w.trcW2
39600.0
>>> w.trcWtW
39600.0
>>> w.transform='r'
>>> round(w.trcW2, 3)
2530.722
>>> round(w.trcWtW, 3)
2533.667

Cardinality Histogram

>>> w=pysal.rook_from_shapefile(pysal.examples.get_path("sacramentot2.shp"))
>>> w.histogram
[(1, 1), (2, 6), (3, 33), (4, 103), (5, 114), (6, 73), (7, 35), (8, 17), (9, 9), (10, 4), (11, 4), (12, 3), (13, 0), (14, 1)]

Disconnected observations (islands)

>>> w = pysal.W({1:[0],0:[1],2:[], 3:[]})
WARNING: there are 2 disconnected observations
Island ids: [2, 3]

	
asymmetries

	List of id pairs with asymmetric weights.

	
asymmetry(intrinsic=True)

	Asymmetry check.

	Parameters:	intrinsic (boolean) – default=True

	intrinsic symmetry:

	[image: w_{i,j} == w_{j,i}]

	if intrisic is False:

	symmetry is defined as [image: i \in N_j \ AND \ j \in N_i] where
[image: N_j] is the set of neighbors for j.

	Returns:	asymmetries – empty if no asymmetries are found
if asymmetries, then a list of (i,j) tuples is returned

	Return type:	list

Examples

>>> from pysal import lat2W
>>> w=lat2W(3,3)
>>> w.asymmetry()
[]
>>> w.transform='r'
>>> w.asymmetry()
[(0, 1), (0, 3), (1, 0), (1, 2), (1, 4), (2, 1), (2, 5), (3, 0), (3, 4), (3, 6), (4, 1), (4, 3), (4, 5), (4, 7), (5, 2), (5, 4), (5, 8), (6, 3), (6, 7), (7, 4), (7, 6), (7, 8), (8, 5), (8, 7)]
>>> result = w.asymmetry(intrinsic=False)
>>> result
[]
>>> neighbors={0:[1,2,3], 1:[1,2,3], 2:[0,1], 3:[0,1]}
>>> weights={0:[1,1,1], 1:[1,1,1], 2:[1,1], 3:[1,1]}
>>> w=W(neighbors,weights)
>>> w.asymmetry()
[(0, 1), (1, 0)]

	
cardinalities

	Number of neighbors for each observation.

	
diagW2

	Diagonal of [image: WW].

See also

trcW2

	
diagWtW

	Diagonal of [image: W^{'}W].

See also

trcWtW

	
diagWtW_WW

	Diagonal of [image: W^{'}W + WW].

	
full()

	Generate a full numpy array.

	Returns:	implicit – first element being the full numpy array and second element
keys being the ids associated with each row in the array.

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple]

Examples

>>> from pysal import W
>>> neighbors={'first':['second'],'second':['first','third'],'third':['second']}
>>> weights={'first':[1],'second':[1,1],'third':[1]}
>>> w=W(neighbors,weights)
>>> wf,ids=w.full()
>>> wf
array([[0., 1., 0.],
 [1., 0., 1.],
 [0., 1., 0.]])
>>> ids
['first', 'second', 'third']

See also

full

	
get_transform()

	Getter for transform property.

	Returns:	transformation

	Return type:	string [https://docs.python.org/2/library/string.html#module-string] (or none)

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>

	
histogram

	Cardinality histogram as a dictionary where key is the id and
value is the number of neighbors for that unit.

	
id2i

	Dictionary where the key is an ID and the value is that ID’s
index in W.id_order.

	
id_order

	Returns the ids for the observations in the order in which they
would be encountered if iterating over the weights.

	
id_order_set

	Returns True if user has set id_order, False if not.

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.id_order_set
True

	
islands

	List of ids without any neighbors.

	
max_neighbors

	Largest number of neighbors.

	
mean_neighbors

	Average number of neighbors.

	
min_neighbors

	Minimum number of neighbors.

	
n

	Number of units.

	
neighbor_offsets

	Given the current id_order, neighbor_offsets[id] is the offsets of the
id’s neighbors in id_order.

	Returns:	offsets of the id’s neighbors in id_order

	Return type:	list

Examples

>>> from pysal import W
>>> neighbors={'c': ['b'], 'b': ['c', 'a'], 'a': ['b']}
>>> weights ={'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
>>> w=W(neighbors,weights)
>>> w.id_order = ['a','b','c']
>>> w.neighbor_offsets['b']
[2, 0]
>>> w.id_order = ['b','a','c']
>>> w.neighbor_offsets['b']
[2, 1]

	
nonzero

	Number of nonzero weights.

	
pct_nonzero

	Percentage of nonzero weights.

	
remap_ids(new_ids)

	In place modification throughout W of id values from w.id_order to
new_ids in all

...

	Parameters:	new_ids (list) – /ndarray
Aligned list of new ids to be inserted. Note that first
element of new_ids will replace first element of
w.id_order, second element of new_ids replaces second
element of w.id_order and so on.

Example

>>> import pysal as ps
>>> w = ps.lat2W(3, 3)
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> w.neighbors[0]
[3, 1]
>>> new_ids = ['id%i'%id for id in w.id_order]
>>> _ = w.remap_ids(new_ids)
>>> w.id_order
['id0', 'id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7', 'id8']
>>> w.neighbors['id0']
['id3', 'id1']

	
s0

	s0 is defined as

[image: s0=\sum_i \sum_j w_{i,j}]

	
s1

	s1 is defined as

[image: s1=1/2 \sum_i \sum_j (w_{i,j} + w_{j,i})^2]

	
s2

	s2 is defined as

[image: s2=\sum_j (\sum_i w_{i,j} + \sum_i w_{j,i})^2]

	
s2array

	Individual elements comprising s2.

See also

s2

	
sd

	Standard deviation of number of neighbors.

	
set_shapefile(shapefile, idVariable=None, full=False)

	Adding meta data for writing headers of gal and gwt files.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile name used to construct weights

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of attribute in shapefile to associate with ids in the weights

	full (boolean) – True - write out entire path for shapefile, False
(default) only base of shapefile without extension

	
set_transform(value='B')

	Transformations of weights.

Notes

Transformations are applied only to the value of the weights at
instantiation. Chaining of transformations cannot be done on a W
instance.

	Parameters:	transform (string [https://docs.python.org/2/library/string.html#module-string]) – not case sensitive)

:param .. table::: :widths: auto

	transform string
	value

	B
	Binary

	R
	Row-standardization (global sum=n)

	D
	Double-standardization (global sum=1)

	V
	Variance stabilizing

	O
	Restore original transformation (from instantiation)

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>

	
sparse

	Sparse matrix object.

For any matrix manipulations required for w, w.sparse should be
used. This is based on scipy.sparse.

	
to_WSP()

	Generate a WSP object.

	Returns:	implicit – Thin W class

	Return type:	pysal.WSP

Examples

>>> import pysal as ps
>>> from pysal import W
>>> neighbors={'first':['second'],'second':['first','third'],'third':['second']}
>>> weights={'first':[1],'second':[1,1],'third':[1]}
>>> w=W(neighbors,weights)
>>> wsp=w.towsp()
>>> isinstance(wsp, ps.weights.weights.WSP)
True
>>> wsp.n
3
>>> wsp.s0
4

See also

WSP

	
towsp()

	Generate a WSP object.

	Returns:	implicit – Thin W class

	Return type:	pysal.WSP

Examples

>>> import pysal as ps
>>> from pysal import W
>>> neighbors={'first':['second'],'second':['first','third'],'third':['second']}
>>> weights={'first':[1],'second':[1,1],'third':[1]}
>>> w=W(neighbors,weights)
>>> wsp=w.towsp()
>>> isinstance(wsp, ps.weights.weights.WSP)
True
>>> wsp.n
3
>>> wsp.s0
4

See also

WSP

	
transform

	Getter for transform property.

	Returns:	transformation

	Return type:	string [https://docs.python.org/2/library/string.html#module-string] (or none)

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>

	
trcW2

	Trace of [image: WW].

See also

diagW2

	
trcWtW

	Trace of [image: W^{'}W].

See also

diagWtW

	
trcWtW_WW

	Trace of [image: W^{'}W + WW].

	
class pysal.weights.weights.WSP(sparse, id_order=None)

	Thin W class for spreg.

	Parameters:	
	sparse (sparse_matrix) – NxN object from scipy.sparse

	id_order (list) – An ordered list of ids, assumed to match the ordering in
sparse.

	
n

	int – description

	
s0

	float – description

	
trcWtW_WW

	float – description

Examples

From GAL information

>>> import scipy.sparse
>>> import pysal
>>> rows = [0, 1, 1, 2, 2, 3]
>>> cols = [1, 0, 2, 1, 3, 3]
>>> weights = [1, 0.75, 0.25, 0.9, 0.1, 1]
>>> sparse = scipy.sparse.csr_matrix((weights, (rows, cols)), shape=(4,4))
>>> w = pysal.weights.WSP(sparse)
>>> w.s0
4.0
>>> w.trcWtW_WW
6.3949999999999996
>>> w.n
4

	
diagWtW_WW

	Diagonal of [image: W^{'}W + WW].

	
classmethod from_W(W)

	Constructs a WSP object from the W’s sparse matrix

	Parameters:	W (pysal.weights.W) – a pysal weights object with a sparse form and ids

	Returns:	

	Return type:	a WSP instance

	
s0

	s0 is defined as –

[image: s0=\sum_i \sum_j w_{i,j}]

	
to_W(silent_island_warning=True)

	Construct a W object from the WSP’s sparse matrix

	Parameters:	silence_island_warning (bool [https://docs.python.org/2/library/functions.html#bool]) – a flag governing whether to state when
islands are encountered.

	
trcWtW_WW

	Trace of [image: W^{'}W + WW].

 weights.util — Utility functions on spatial weights

weights.util — Utility functions on spatial weights

The weights.util module provides utility functions on spatial weights
.. versionadded:: 1.0

	
pysal.weights.util.lat2W(nrows=5, ncols=5, rook=True, id_type='int')

	Create a W object for a regular lattice.

	Parameters:	
	nrows (int [https://docs.python.org/2/library/functions.html#int]) – number of rows

	ncols (int [https://docs.python.org/2/library/functions.html#int]) – number of columns

	rook (boolean) – type of contiguity. Default is rook. For queen, rook =False

	id_type (string [https://docs.python.org/2/library/string.html#module-string]) – string defining the type of IDs to use in the final W object;
options are ‘int’ (0, 1, 2 ...; default), ‘float’ (0.0,
1.0, 2.0, ...) and ‘string’ (‘id0’, ‘id1’, ‘id2’, ...)

	Returns:	w – instance of spatial weights class W

	Return type:	W

Notes

Observations are row ordered: first k observations are in row 0, next k in row 1, and so on.

Examples

>>> from pysal import lat2W
>>> w9 = lat2W(3,3)
>>> "%.3f"%w9.pct_nonzero
'29.630'
>>> w9[0]
{1: 1.0, 3: 1.0}
>>> w9[3]
{0: 1.0, 4: 1.0, 6: 1.0}
>>>

	
pysal.weights.util.block_weights(regimes, ids=None, sparse=False)

	Construct spatial weights for regime neighbors.

Block contiguity structures are relevant when defining neighbor relations
based on membership in a regime. For example, all counties belonging to
the same state could be defined as neighbors, in an analysis of all
counties in the US.

	Parameters:	
	regimes (list, array [https://docs.python.org/2/library/array.html#module-array]) – ids of which regime an observation belongs to

	ids (list, array [https://docs.python.org/2/library/array.html#module-array]) – Ordered sequence of IDs for the observations

	sparse (boolean) – If True return WSP instance
If False return W instance

	Returns:	W

	Return type:	spatial weights instance

Examples

>>> from pysal import block_weights
>>> import numpy as np
>>> regimes = np.ones(25)
>>> regimes[range(10,20)] = 2
>>> regimes[range(21,25)] = 3
>>> regimes
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2.,
 2., 2., 2., 2., 2., 2., 2., 1., 3., 3., 3., 3.])
>>> w = block_weights(regimes)
>>> w.weights[0]
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
>>> w.neighbors[0]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 20]
>>> regimes = ['n','n','s','s','e','e','w','w','e']
>>> n = len(regimes)
>>> w = block_weights(regimes)
>>> w.neighbors
{0: [1], 1: [0], 2: [3], 3: [2], 4: [5, 8], 5: [4, 8], 6: [7], 7: [6], 8: [4, 5]}

	
pysal.weights.util.comb(items, n=None)

	Combinations of size n taken from items

	Parameters:	
	items (list) – items to be drawn from

	n (integer) – size of combinations to take from items

	Returns:	implicit – combinations of size n taken from items

	Return type:	generator

Examples

>>> x = range(4)
>>> for c in comb(x, 2):
... print c
...
[0, 1]
[0, 2]
[0, 3]
[1, 2]
[1, 3]
[2, 3]

	
pysal.weights.util.order(w, kmax=3)

	Determine the non-redundant order of contiguity up to a specific
order.

	Parameters:	
	w (W) – spatial weights object

	kmax (int [https://docs.python.org/2/library/functions.html#int]) – maximum order of contiguity

	Returns:	info – observation id is the key, value is a list of contiguity
orders with a negative 1 in the ith position

	Return type:	dictionary

Notes

Implements the algorithm in Anselin and Smirnov (1996) [Anselin1996b]

Examples

>>> from pysal import rook_from_shapefile as rfs
>>> w = rfs(pysal.examples.get_path('10740.shp'))
WARNING: there is one disconnected observation (no neighbors)
Island id: [163]
>>> w3 = order(w, kmax = 3)
>>> w3[1][0:5]
[1, -1, 1, 2, 1]

	
pysal.weights.util.higher_order(w, k=2)

	Contiguity weights object of order k.

	Parameters:	
	w (W) – spatial weights object

	k (int [https://docs.python.org/2/library/functions.html#int]) – order of contiguity

	Returns:	implicit – spatial weights object

	Return type:	W

Notes

Proper higher order neighbors are returned such that i and j are k-order
neighbors iff the shortest path from i-j is of length k.

Examples

>>> from pysal import lat2W, higher_order
>>> w10 = lat2W(10, 10)
>>> w10_2 = higher_order(w10, 2)
>>> w10_2[0]
{2: 1.0, 11: 1.0, 20: 1.0}
>>> w5 = lat2W()
>>> w5[0]
{1: 1.0, 5: 1.0}
>>> w5[1]
{0: 1.0, 2: 1.0, 6: 1.0}
>>> w5_2 = higher_order(w5,2)
>>> w5_2[0]
{10: 1.0, 2: 1.0, 6: 1.0}

	
pysal.weights.util.shimbel(w)

	Find the Shimbel matrix for first order contiguity matrix.

	Parameters:	w (W) – spatial weights object

	Returns:	info – list of lists; one list for each observation which stores
the shortest order between it and each of the the other observations.

	Return type:	list

Examples

>>> from pysal import lat2W, shimbel
>>> w5 = lat2W()
>>> w5_shimbel = shimbel(w5)
>>> w5_shimbel[0][24]
8
>>> w5_shimbel[0][0:4]
[-1, 1, 2, 3]
>>>

	
pysal.weights.util.remap_ids(w, old2new, id_order=[])

	Remaps the IDs in a spatial weights object.

	Parameters:	
	w (W) – Spatial weights object

	old2new (dictionary) – Dictionary where the keys are the IDs in w (i.e. “old IDs”) and
the values are the IDs to replace them (i.e. “new IDs”)

	id_order (list) – An ordered list of new IDs, which defines the order of observations when
iterating over W. If not set then the id_order in w will be
used.

	Returns:	implicit – Spatial weights object with new IDs

	Return type:	W

Examples

>>> from pysal import lat2W, remap_ids
>>> w = lat2W(3,2)
>>> w.id_order
[0, 1, 2, 3, 4, 5]
>>> w.neighbors[0]
[2, 1]
>>> old_to_new = {0:'a', 1:'b', 2:'c', 3:'d', 4:'e', 5:'f'}
>>> w_new = remap_ids(w, old_to_new)
>>> w_new.id_order
['a', 'b', 'c', 'd', 'e', 'f']
>>> w_new.neighbors['a']
['c', 'b']

	
pysal.weights.util.full2W(m, ids=None)

	Create a PySAL W object from a full array.

	Parameters:	
	m (array [https://docs.python.org/2/library/array.html#module-array]) – nxn array with the full weights matrix

	ids (list) – User ids assumed to be aligned with m

	Returns:	w – PySAL weights object

	Return type:	W

Examples

>>> import pysal as ps
>>> import numpy as np

Create an array of zeros

>>> a = np.zeros((4, 4))

For loop to fill it with random numbers

>>> for i in range(len(a)):
... for j in range(len(a[i])):
... if i!=j:
... a[i, j] = np.random.random(1)

Create W object

>>> w = ps.weights.util.full2W(a)
>>> w.full()[0] == a
array([[True, True, True, True],
 [True, True, True, True],
 [True, True, True, True],
 [True, True, True, True]], dtype=bool)

Create list of user ids

>>> ids = ['myID0', 'myID1', 'myID2', 'myID3']
>>> w = ps.weights.util.full2W(a, ids=ids)
>>> w.full()[0] == a
array([[True, True, True, True],
 [True, True, True, True],
 [True, True, True, True],
 [True, True, True, True]], dtype=bool)

	
pysal.weights.util.full(w)

	Generate a full numpy array.

	Parameters:	w (W) – spatial weights object

	Returns:	(fullw, keys) – first element being the full numpy array and second element
keys being the ids associated with each row in the array.

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple]

Examples

>>> from pysal import W, full
>>> neighbors = {'first':['second'],'second':['first','third'],'third':['second']}
>>> weights = {'first':[1],'second':[1,1],'third':[1]}
>>> w = W(neighbors, weights)
>>> wf, ids = full(w)
>>> wf
array([[0., 1., 0.],
 [1., 0., 1.],
 [0., 1., 0.]])
>>> ids
['first', 'second', 'third']

	
pysal.weights.util.WSP2W(wsp, silent_island_warning=False)

	Convert a pysal WSP object (thin weights matrix) to a pysal W object.

	Parameters:	
	wsp (WSP) – PySAL sparse weights object

	silent_island_warning (boolean) – Switch to turn off (default on) print statements
for every observation with islands

	Returns:	w – PySAL weights object

	Return type:	W

Examples

>>> import pysal

Build a 10x10 scipy.sparse matrix for a rectangular 2x5 region of cells
(rook contiguity), then construct a PySAL sparse weights object (wsp).

>>> sp = pysal.weights.lat2SW(2, 5)
>>> wsp = pysal.weights.WSP(sp)
>>> wsp.n
10
>>> print wsp.sparse[0].todense()
[[0 1 0 0 0 1 0 0 0 0]]

Convert this sparse weights object to a standard PySAL weights object.

>>> w = pysal.weights.WSP2W(wsp)
>>> w.n
10
>>> print w.full()[0][0]
[0. 1. 0. 0. 0. 1. 0. 0. 0. 0.]

	
pysal.weights.util.get_ids(shapefile, idVariable)

	Gets the IDs from the DBF file that moves with a given shape file.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – name of a shape file including suffix

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of a column in the shapefile’s DBF to use for ids

	Returns:	ids – a list of IDs

	Return type:	list

Examples

>>> from pysal.weights.util import get_ids
>>> polyids = get_ids(pysal.examples.get_path("columbus.shp"), "POLYID")
>>> polyids[:5]
[1, 2, 3, 4, 5]

	
pysal.weights.util.get_points_array_from_shapefile(shapefile)

	Gets a data array of x and y coordinates from a given shapefile.

	Parameters:	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – name of a shape file including suffix

	Returns:	points – (n, 2)
a data array of x and y coordinates

	Return type:	array [https://docs.python.org/2/library/array.html#module-array]

Notes

If the given shape file includes polygons,
this function returns x and y coordinates of the polygons’ centroids

Examples

Point shapefile

>>> from pysal.weights.util import get_points_array_from_shapefile
>>> xy = get_points_array_from_shapefile(pysal.examples.get_path('juvenile.shp'))
>>> xy[:3]
array([[94., 93.],
 [80., 95.],
 [79., 90.]])

Polygon shapefile

>>> xy = get_points_array_from_shapefile(pysal.examples.get_path('columbus.shp'))
>>> xy[:3]
array([[8.82721847, 14.36907602],
 [8.33265837, 14.03162401],
 [9.01226541, 13.81971908]])

	
pysal.weights.util.min_threshold_distance(data, p=2)

	Get the maximum nearest neighbor distance.

	Parameters:	
	data (array [https://docs.python.org/2/library/array.html#module-array]) – (n,k) or KDTree where KDtree.data is array (n,k)
n observations on k attributes

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance

	Returns:	nnd – maximum nearest neighbor distance between the n observations

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> from pysal.weights.util import min_threshold_distance
>>> import numpy as np
>>> x, y = np.indices((5, 5))
>>> x.shape = (25, 1)
>>> y.shape = (25, 1)
>>> data = np.hstack([x, y])
>>> min_threshold_distance(data)
1.0

	
pysal.weights.util.lat2SW(nrows=3, ncols=5, criterion='rook', row_st=False)

	Create a sparse W matrix for a regular lattice.

	Parameters:	
	nrows (int [https://docs.python.org/2/library/functions.html#int]) – number of rows

	ncols (int [https://docs.python.org/2/library/functions.html#int]) – number of columns

	rook ({"rook", "queen", "bishop"}) – type of contiguity. Default is rook.

	row_st (boolean) – If True, the created sparse W object is row-standardized so
every row sums up to one. Defaults to False.

	Returns:	w – instance of a scipy sparse matrix

	Return type:	scipy.sparse.dia_matrix

Notes

Observations are row ordered: first k observations are in row 0, next k in row 1, and so on.
This method directly creates the W matrix using the strucuture of the contiguity type.

Examples

>>> from pysal import weights
>>> w9 = weights.lat2SW(3,3)
>>> w9[0,1]
1
>>> w9[3,6]
1
>>> w9r = weights.lat2SW(3,3, row_st=True)
>>> w9r[3,6]
0.33333333333333331

	
pysal.weights.util.w_local_cluster(w)

	Local clustering coefficients for each unit as a node in a graph. [ws]

	Parameters:	w (W) – spatial weights object

	Returns:	c – (w.n,1)
local clustering coefficients

	Return type:	array [https://docs.python.org/2/library/array.html#module-array]

Notes

The local clustering coefficient [image: c_i] quantifies how close the
neighbors of observation [image: i] are to being a clique:

[image: c_i = | \{w_{j,k}\} |/ (k_i(k_i - 1)): j,k \in N_i]

where [image: N_i] is the set of neighbors to [image: i], [image: k_i = |N_i|] and [image: \{w_{j,k}\}] is the set of non-zero elements of the
weights between pairs in [image: N_i]. [Watts1998]

Examples

>>> w = pysal.lat2W(3,3, rook=False)
>>> w_local_cluster(w)
array([[1.],
 [0.6],
 [1.],
 [0.6],
 [0.42857143],
 [0.6],
 [1.],
 [0.6],
 [1.]])

	
pysal.weights.util.higher_order_sp(w, k=2, shortest_path=True, diagonal=False)

	Contiguity weights for either a sparse W or pysal.weights.W for order k.

	Parameters:	
	w (W) – sparse_matrix, spatial weights object or scipy.sparse.csr.csr_instance

	k (int [https://docs.python.org/2/library/functions.html#int]) – Order of contiguity

	shortest_path (boolean) – True: i,j and k-order neighbors if the
shortest path for i,j is k
False: i,j are k-order neighbors if there
is a path from i,j of length k

	diagonal (boolean) – True: keep k-order (i,j) joins when i==j
False: remove k-order (i,j) joins when i==j

	Returns:	wk – WSP, type matches type of w argument

	Return type:	W

Notes

Lower order contiguities are removed.

Examples

>>> import pysal
>>> w25 = pysal.lat2W(5,5)
>>> w25.n
25
>>> w25[0]
{1: 1.0, 5: 1.0}
>>> w25_2 = pysal.weights.util.higher_order_sp(w25, 2)
>>> w25_2[0]
{10: 1.0, 2: 1.0, 6: 1.0}
>>> w25_2 = pysal.weights.util.higher_order_sp(w25, 2, diagonal=True)
>>> w25_2[0]
{0: 1.0, 10: 1.0, 2: 1.0, 6: 1.0}
>>> w25_3 = pysal.weights.util.higher_order_sp(w25, 3)
>>> w25_3[0]
{15: 1.0, 3: 1.0, 11: 1.0, 7: 1.0}
>>> w25_3 = pysal.weights.util.higher_order_sp(w25, 3, shortest_path=False)
>>> w25_3[0]
{1: 1.0, 3: 1.0, 5: 1.0, 7: 1.0, 11: 1.0, 15: 1.0}

	
pysal.weights.util.hexLat2W(nrows=5, ncols=5)

	Create a W object for a hexagonal lattice.

	Parameters:	
	nrows (int [https://docs.python.org/2/library/functions.html#int]) – number of rows

	ncols (int [https://docs.python.org/2/library/functions.html#int]) – number of columns

	Returns:	w – instance of spatial weights class W

	Return type:	W

Notes

Observations are row ordered: first k observations are in row 0, next k in row 1, and so on.

Construction is based on shifting every other column of a regular lattice
down 1/2 of a cell.

Examples

>>> import pysal as ps
>>> w = ps.lat2W()
>>> w.neighbors[1]
[0, 6, 2]
>>> w.neighbors[21]
[16, 20, 22]
>>> wh = ps.hexLat2W()
>>> wh.neighbors[1]
[0, 6, 2, 5, 7]
>>> wh.neighbors[21]
[16, 20, 22]
>>>

	
pysal.weights.util.regime_weights(regimes)

	Construct spatial weights for regime neighbors.

Block contiguity structures are relevant when defining neighbor relations
based on membership in a regime. For example, all counties belonging to
the same state could be defined as neighbors, in an analysis of all
counties in the US.

	Parameters:	regimes (array [https://docs.python.org/2/library/array.html#module-array], list) – ids of which regime an observation belongs to

	Returns:	W

	Return type:	spatial weights instance

Examples

>>> from pysal import regime_weights
>>> import numpy as np
>>> regimes = np.ones(25)
>>> regimes[range(10,20)] = 2
>>> regimes[range(21,25)] = 3
>>> regimes
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2.,
 2., 2., 2., 2., 2., 2., 2., 1., 3., 3., 3., 3.])
>>> w = regime_weights(regimes)
PendingDepricationWarning: regime_weights will be renamed to block_weights in PySAL 2.0
>>> w.weights[0]
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
>>> w.neighbors[0]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 20]
>>> regimes = ['n','n','s','s','e','e','w','w','e']
>>> n = len(regimes)
>>> w = regime_weights(regimes)
PendingDepricationWarning: regime_weights will be renamed to block_weights in PySAL 2.0
>>> w.neighbors
{0: [1], 1: [0], 2: [3], 3: [2], 4: [5, 8], 5: [4, 8], 6: [7], 7: [6], 8: [4, 5]}

Notes

regime_weights will be deprecated in PySAL 2.0 and renamed to block_weights.

 weights.user — Convenience functions for spatial weights

weights.user — Convenience functions for spatial weights

The weights.user module provides convenience functions for spatial weights
.. versionadded:: 1.0

Convenience functions for the construction of spatial weights based on
contiguity and distance criteria.

	
pysal.weights.user.queen_from_shapefile(shapefile, idVariable=None, sparse=False)

	Queen contiguity weights from a polygon shapefile.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – name of polygon shapefile including suffix.

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of a column in the shapefile’s DBF to use for ids.

	sparse (boolean) – If True return WSP instance
If False return W instance

	Returns:	w – instance of spatial weights

	Return type:	W

Examples

>>> wq=queen_from_shapefile(pysal.examples.get_path("columbus.shp"))
>>> "%.3f"%wq.pct_nonzero
'9.829'
>>> wq=queen_from_shapefile(pysal.examples.get_path("columbus.shp"),"POLYID")
>>> "%.3f"%wq.pct_nonzero
'9.829'
>>> wq=queen_from_shapefile(pysal.examples.get_path("columbus.shp"), sparse=True)
>>> pct_sp = wq.sparse.nnz *1. / wq.n**2
>>> "%.3f"%pct_sp
'0.098'

Notes

Queen contiguity defines as neighbors any pair of polygons that share at
least one vertex in their polygon definitions.

See also

pysal.weights.W

	
pysal.weights.user.rook_from_shapefile(shapefile, idVariable=None, sparse=False)

	Rook contiguity weights from a polygon shapefile.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – name of polygon shapefile including suffix.

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of a column in the shapefile’s DBF to use for ids

	sparse (boolean) – If True return WSP instance
If False return W instance

	Returns:	w – instance of spatial weights

	Return type:	W

Examples

>>> wr=rook_from_shapefile(pysal.examples.get_path("columbus.shp"), "POLYID")
>>> "%.3f"%wr.pct_nonzero
'8.330'
>>> wr=rook_from_shapefile(pysal.examples.get_path("columbus.shp"), sparse=True)
>>> pct_sp = wr.sparse.nnz *1. / wr.n**2
>>> "%.3f"%pct_sp
'0.083'

Notes

Rook contiguity defines as neighbors any pair of polygons that share a
common edge in their polygon definitions.

See also

pysal.weights.W

	
pysal.weights.user.knnW_from_array(array, k=2, p=2, ids=None, radius=None)

	Nearest neighbor weights from a numpy array.

	Parameters:	
	data (array [https://docs.python.org/2/library/array.html#module-array]) – (n,m)
attribute data, n observations on m attributes

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of nearest neighbors

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance

	ids (list) – identifiers to attach to each observation

	radius (float [https://docs.python.org/2/library/functions.html#float]) – If supplied arc_distances will be calculated
based on the given radius. p will be ignored.

	Returns:	w – instance; Weights object with binary weights.

	Return type:	W

Examples

>>> import numpy as np
>>> x,y=np.indices((5,5))
>>> x.shape=(25,1)
>>> y.shape=(25,1)
>>> data=np.hstack([x,y])
>>> wnn2=knnW_from_array(data,k=2)
>>> wnn4=knnW_from_array(data,k=4)
>>> set([1, 5, 6, 2]) == set(wnn4.neighbors[0])
True
>>> set([0, 1, 10, 6]) == set(wnn4.neighbors[5])
True
>>> set([1, 5]) == set(wnn2.neighbors[0])
True
>>> set([0,6]) == set(wnn2.neighbors[5])
True
>>> "%.2f"%wnn2.pct_nonzero
'8.00'
>>> wnn4.pct_nonzero
16.0
>>> wnn4=knnW_from_array(data,k=4)
>>> set([1,5,6,2]) == set(wnn4.neighbors[0])
True

Notes

Ties between neighbors of equal distance are arbitrarily broken.

See also

pysal.weights.W

	
pysal.weights.user.knnW_from_shapefile(shapefile, k=2, p=2, idVariable=None, radius=None)

	Nearest neighbor weights from a shapefile.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile name with shp suffix

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of nearest neighbors

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of a column in the shapefile’s DBF to use for ids

	radius (float [https://docs.python.org/2/library/functions.html#float]) – If supplied arc_distances will be calculated
based on the given radius. p will be ignored.

	Returns:	w – instance; Weights object with binary weights

	Return type:	W

Examples

Polygon shapefile

>>> wc=knnW_from_shapefile(pysal.examples.get_path("columbus.shp"))
>>> "%.4f"%wc.pct_nonzero
'4.0816'
>>> set([2,1]) == set(wc.neighbors[0])
True
>>> wc3=pysal.knnW_from_shapefile(pysal.examples.get_path("columbus.shp"),k=3)
>>> set(wc3.neighbors[0]) == set([2,1,3])
True
>>> set(wc3.neighbors[2]) == set([4,3,0])
True

1 offset rather than 0 offset

>>> wc3_1=knnW_from_shapefile(pysal.examples.get_path("columbus.shp"),k=3,idVariable="POLYID")
>>> set([4,3,2]) == set(wc3_1.neighbors[1])
True
>>> wc3_1.weights[2]
[1.0, 1.0, 1.0]
>>> set([4,1,8]) == set(wc3_1.neighbors[2])
True

Point shapefile

>>> w=knnW_from_shapefile(pysal.examples.get_path("juvenile.shp"))
>>> w.pct_nonzero
1.1904761904761905
>>> w1=knnW_from_shapefile(pysal.examples.get_path("juvenile.shp"),k=1)
>>> "%.3f"%w1.pct_nonzero
'0.595'
>>>

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is
based on polygon centroids. Distances are defined using coordinates in
shapefile which are assumed to be projected and not geographical
coordinates.

Ties between neighbors of equal distance are arbitrarily broken.

See also

pysal.weights.W

	
pysal.weights.user.threshold_binaryW_from_array(array, threshold, p=2, radius=None)

	Binary weights based on a distance threshold.

	Parameters:	
	array (array [https://docs.python.org/2/library/array.html#module-array]) – (n,m)
attribute data, n observations on m attributes

	threshold (float [https://docs.python.org/2/library/functions.html#float]) – distance band

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance

	radius (float [https://docs.python.org/2/library/functions.html#float]) – If supplied arc_distances will be calculated
based on the given radius. p will be ignored.

	Returns:	w – instance
Weights object with binary weights

	Return type:	W

Examples

>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> wcheck = pysal.W({0: [1, 3], 1: [0, 3,], 2: [], 3: [1, 0], 4: [5], 5: [4]})
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> w=threshold_binaryW_from_array(points,threshold=11.2)
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> pysal.weights.util.neighbor_equality(w, wcheck)
True

>>>

	
pysal.weights.user.threshold_binaryW_from_shapefile(shapefile, threshold, p=2, idVariable=None, radius=None)

	Threshold distance based binary weights from a shapefile.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile name with shp suffix

	threshold (float [https://docs.python.org/2/library/functions.html#float]) – distance band

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of a column in the shapefile’s DBF to use for ids

	radius (float [https://docs.python.org/2/library/functions.html#float]) – If supplied arc_distances will be calculated
based on the given radius. p will be ignored.

	Returns:	w – instance
Weights object with binary weights

	Return type:	W

Examples

>>> w = threshold_binaryW_from_shapefile(pysal.examples.get_path("columbus.shp"),0.62,idVariable="POLYID")
>>> w.weights[1]
[1, 1]

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is
based on polygon centroids. Distances are defined using coordinates in
shapefile which are assumed to be projected and not geographical
coordinates.

	
pysal.weights.user.threshold_continuousW_from_array(array, threshold, p=2, alpha=-1, radius=None)

	Continuous weights based on a distance threshold.

	Parameters:	
	array (array [https://docs.python.org/2/library/array.html#module-array]) – (n,m)
attribute data, n observations on m attributes

	threshold (float [https://docs.python.org/2/library/functions.html#float]) – distance band

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – distance decay parameter for weight (default -1.0)
if alpha is positive the weights will not decline with
distance.

	radius (If supplied arc_distances will be calculated) – based on the given radius. p will be ignored.

	Returns:	w – instance; Weights object with continuous weights.

	Return type:	W

Examples

inverse distance weights

>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> wid=threshold_continuousW_from_array(points,11.2)
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> wid.weights[0]
[0.10000000000000001, 0.089442719099991588]

gravity weights

>>> wid2=threshold_continuousW_from_array(points,11.2,alpha=-2.0)
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> wid2.weights[0]
[0.01, 0.0079999999999999984]

	
pysal.weights.user.threshold_continuousW_from_shapefile(shapefile, threshold, p=2, alpha=-1, idVariable=None, radius=None)

	Threshold distance based continuous weights from a shapefile.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile name with shp suffix

	threshold (float [https://docs.python.org/2/library/functions.html#float]) – distance band

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – distance decay parameter for weight (default -1.0)
if alpha is positive the weights will not decline with
distance.

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of a column in the shapefile’s DBF to use for ids

	radius (float [https://docs.python.org/2/library/functions.html#float]) – If supplied arc_distances will be calculated
based on the given radius. p will be ignored.

	Returns:	w – instance; Weights object with continuous weights.

	Return type:	W

Examples

>>> w = threshold_continuousW_from_shapefile(pysal.examples.get_path("columbus.shp"),0.62,idVariable="POLYID")
>>> w.weights[1]
[1.6702346893743334, 1.7250729841938093]

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is
based on polygon centroids. Distances are defined using coordinates in
shapefile which are assumed to be projected and not geographical
coordinates.

	
pysal.weights.user.kernelW(points, k=2, function='triangular', fixed=True, radius=None, diagonal=False)

	Kernel based weights.

	Parameters:	
	points (array [https://docs.python.org/2/library/array.html#module-array]) – (n,k)
n observations on k characteristics used to measure
distances between the n objects

	k (int [https://docs.python.org/2/library/functions.html#int]) – the number of nearest neighbors to use for determining
bandwidth. Bandwidth taken as [image: h_i=max(dknn) \forall i]
where [image: dknn] is a vector of k-nearest neighbor
distances (the distance to the kth nearest neighbor for each
observation).

	function ({'triangular','uniform','quadratic','epanechnikov','quartic','bisquare','gaussian'}) –
[image: z_{i,j} = d_{i,j}/h_i]

triangular

[image: K(z) = (1 - |z|) \ if |z| \le 1]

uniform

[image: K(z) = |z| \ if |z| \le 1]

quadratic

[image: K(z) = (3/4)(1-z^2) \ if |z| \le 1]

epanechnikov

[image: K(z) = (1-z^2) \ if |z| \le 1]

quartic

[image: K(z) = (15/16)(1-z^2)^2 \ if |z| \le 1]

bisquare

[image: K(z) = (1-z^2)^2 \ if |z| \le 1]

gaussian

[image: K(z) = (2\pi)^{(-1/2)} exp(-z^2 / 2)]

	fixed (boolean) – If true then [image: h_i=h \forall i]. If false then
bandwidth is adaptive across observations.

	radius (float [https://docs.python.org/2/library/functions.html#float]) – If supplied arc_distances will be calculated
based on the given radius. p will be ignored.

	diagonal (boolean) – If true, set diagonal weights = 1.0, if false (
default) diagonal weights are set to value
according to kernel function.

	Returns:	w – instance of spatial weights

	Return type:	W

Examples

>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> kw=kernelW(points)
>>> kw.weights[0]
[1.0, 0.500000049999995, 0.4409830615267465]
>>> kw.neighbors[0]
[0, 1, 3]
>>> kw.bandwidth
array([[20.000002],
 [20.000002],
 [20.000002],
 [20.000002],
 [20.000002],
 [20.000002]])

use different k

>>> kw=kernelW(points,k=3)
>>> kw.neighbors[0]
[0, 1, 3, 4]
>>> kw.bandwidth
array([[22.36068201],
 [22.36068201],
 [22.36068201],
 [22.36068201],
 [22.36068201],
 [22.36068201]])

Diagonals to 1.0

>>> kq = kernelW(points,function='gaussian')
>>> kq.weights
{0: [0.3989422804014327, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 0.3989422804014327, 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.2419707487162134, 0.3989422804014327, 0.31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 0.3989422804014327, 0.3011374490937829, 0.26575287272131043], 4: [0.31069657591175387, 0.31069657591175387, 0.3011374490937829, 0.3989422804014327, 0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 0.3989422804014327]}
>>> kqd = kernelW(points, function='gaussian', diagonal=True)
>>> kqd.weights
{0: [1.0, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 1.0, 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.2419707487162134, 1.0, 0.31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 1.0, 0.3011374490937829, 0.26575287272131043], 4: [0.31069657591175387, 0.31069657591175387, 0.3011374490937829, 1.0, 0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 1.0]}

	
pysal.weights.user.kernelW_from_shapefile(shapefile, k=2, function='triangular', idVariable=None, fixed=True, radius=None, diagonal=False)

	Kernel based weights.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile name with shp suffix

	k (int [https://docs.python.org/2/library/functions.html#int]) – the number of nearest neighbors to use for determining
bandwidth. Bandwidth taken as [image: h_i=max(dknn) \forall i]
where [image: dknn] is a vector of k-nearest neighbor
distances (the distance to the kth nearest neighbor for each
observation).

	function ({'triangular','uniform','quadratic','epanechnikov', 'quartic','bisquare','gaussian'}) –
[image: z_{i,j} = d_{i,j}/h_i]

triangular

[image: K(z) = (1 - |z|) \ if |z| \le 1]

uniform

[image: K(z) = |z| \ if |z| \le 1]

quadratic

[image: K(z) = (3/4)(1-z^2) \ if |z| \le 1]

epanechnikov

[image: K(z) = (1-z^2) \ if |z| \le 1]

quartic

[image: K(z) = (15/16)(1-z^2)^2 \ if |z| \le 1]

bisquare

[image: K(z) = (1-z^2)^2 \ if |z| \le 1]

gaussian

[image: K(z) = (2\pi)^{(-1/2)} exp(-z^2 / 2)]

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of a column in the shapefile’s DBF to use for ids

	fixed (binary) – If true then [image: h_i=h \forall i]. If false then
bandwidth is adaptive across observations.

	radius (float [https://docs.python.org/2/library/functions.html#float]) – If supplied arc_distances will be calculated
based on the given radius. p will be ignored.

	diagonal (boolean) – If true, set diagonal weights = 1.0, if false (
default) diagonal weights are set to value
according to kernel function.

	Returns:	w – instance of spatial weights

	Return type:	W

Examples

>>> kw = pysal.kernelW_from_shapefile(pysal.examples.get_path("columbus.shp"),idVariable='POLYID', function = 'gaussian')

>>> kwd = pysal.kernelW_from_shapefile(pysal.examples.get_path("columbus.shp"),idVariable='POLYID', function = 'gaussian', diagonal = True)
>>> set(kw.neighbors[1]) == set([4, 2, 3, 1])
True
>>> set(kwd.neighbors[1]) == set([4, 2, 3, 1])
True
>>>
>>> set(kw.weights[1]) == set([0.2436835517263174, 0.29090631630909874, 0.29671172124745776, 0.3989422804014327])
True
>>> set(kwd.weights[1]) == set([0.2436835517263174, 0.29090631630909874, 0.29671172124745776, 1.0])
True

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is
based on polygon centroids. Distances are defined using coordinates in
shapefile which are assumed to be projected and not geographical
coordinates.

	
pysal.weights.user.adaptive_kernelW(points, bandwidths=None, k=2, function='triangular', radius=None, diagonal=False)

	Kernel weights with adaptive bandwidths.

	Parameters:	
	points (array [https://docs.python.org/2/library/array.html#module-array]) – (n,k)
n observations on k characteristics used to measure
distances between the n objects

	bandwidths (float [https://docs.python.org/2/library/functions.html#float]) – or array-like (optional)
the bandwidth [image: h_i] for the kernel.
if no bandwidth is specified k is used to determine the
adaptive bandwidth

	k (int [https://docs.python.org/2/library/functions.html#int]) – the number of nearest neighbors to use for determining
bandwidth. For fixed bandwidth, [image: h_i=max(dknn) \forall i]
where [image: dknn] is a vector of k-nearest neighbor
distances (the distance to the kth nearest neighbor for each
observation). For adaptive bandwidths, [image: h_i=dknn_i]

	function ({'triangular','uniform','quadratic','quartic','gaussian'}) – kernel function defined as follows with

[image: z_{i,j} = d_{i,j}/h_i]

triangular

[image: K(z) = (1 - |z|) \ if |z| \le 1]

uniform

[image: K(z) = |z| \ if |z| \le 1]

quadratic

[image: K(z) = (3/4)(1-z^2) \ if |z| \le 1]

quartic

[image: K(z) = (15/16)(1-z^2)^2 \ if |z| \le 1]

gaussian

[image: K(z) = (2\pi)^{(-1/2)} exp(-z^2 / 2)]

	radius (float [https://docs.python.org/2/library/functions.html#float]) – If supplied arc_distances will be calculated
based on the given radius. p will be ignored.

	diagonal (boolean) – If true, set diagonal weights = 1.0, if false (
default) diagonal weights are set to value
according to kernel function.

	Returns:	w – instance of spatial weights

	Return type:	W

Examples

User specified bandwidths

>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> bw=[25.0,15.0,25.0,16.0,14.5,25.0]
>>> kwa=adaptive_kernelW(points,bandwidths=bw)
>>> kwa.weights[0]
[1.0, 0.6, 0.552786404500042, 0.10557280900008403]
>>> kwa.neighbors[0]
[0, 1, 3, 4]
>>> kwa.bandwidth
array([[25.],
 [15.],
 [25.],
 [16.],
 [14.5],
 [25.]])

Endogenous adaptive bandwidths

>>> kwea=adaptive_kernelW(points)
>>> kwea.weights[0]
[1.0, 0.10557289844279438, 9.99999900663795e-08]
>>> kwea.neighbors[0]
[0, 1, 3]
>>> kwea.bandwidth
array([[11.18034101],
 [11.18034101],
 [20.000002],
 [11.18034101],
 [14.14213704],
 [18.02775818]])

Endogenous adaptive bandwidths with Gaussian kernel

>>> kweag=adaptive_kernelW(points,function='gaussian')
>>> kweag.weights[0]
[0.3989422804014327, 0.2674190291577696, 0.2419707487162134]
>>> kweag.bandwidth
array([[11.18034101],
 [11.18034101],
 [20.000002],
 [11.18034101],
 [14.14213704],
 [18.02775818]])

with diagonal

>>> kweag = pysal.adaptive_kernelW(points, function='gaussian')
>>> kweagd = pysal.adaptive_kernelW(points, function='gaussian', diagonal=True)
>>> kweag.neighbors[0]
[0, 1, 3]
>>> kweagd.neighbors[0]
[0, 1, 3]
>>> kweag.weights[0]
[0.3989422804014327, 0.2674190291577696, 0.2419707487162134]
>>> kweagd.weights[0]
[1.0, 0.2674190291577696, 0.2419707487162134]

	
pysal.weights.user.adaptive_kernelW_from_shapefile(shapefile, bandwidths=None, k=2, function='triangular', idVariable=None, radius=None, diagonal=False)

	Kernel weights with adaptive bandwidths.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile name with shp suffix

	bandwidths (float [https://docs.python.org/2/library/functions.html#float]) – or array-like (optional)
the bandwidth [image: h_i] for the kernel.
if no bandwidth is specified k is used to determine the
adaptive bandwidth

	k (int [https://docs.python.org/2/library/functions.html#int]) – the number of nearest neighbors to use for determining
bandwidth. For fixed bandwidth, [image: h_i=max(dknn) \forall i]
where [image: dknn] is a vector of k-nearest neighbor
distances (the distance to the kth nearest neighbor for each
observation). For adaptive bandwidths, [image: h_i=dknn_i]

	function ({'triangular','uniform','quadratic','quartic','gaussian'}) – kernel function defined as follows with

[image: z_{i,j} = d_{i,j}/h_i]

triangular

[image: K(z) = (1 - |z|) \ if |z| \le 1]

uniform

[image: K(z) = |z| \ if |z| \le 1]

quadratic

[image: K(z) = (3/4)(1-z^2) \ if |z| \le 1]

quartic

[image: K(z) = (15/16)(1-z^2)^2 \ if |z| \le 1]

gaussian

[image: K(z) = (2\pi)^{(-1/2)} exp(-z^2 / 2)]

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of a column in the shapefile’s DBF to use for ids

	radius (float [https://docs.python.org/2/library/functions.html#float]) – If supplied arc_distances will be calculated
based on the given radius. p will be ignored.

	diagonal (boolean) – If true, set diagonal weights = 1.0, if false (
default) diagonal weights are set to value
according to kernel function.

	Returns:	w – instance of spatial weights

	Return type:	W

Examples

>>> kwa = pysal.adaptive_kernelW_from_shapefile(pysal.examples.get_path("columbus.shp"), function='gaussian')
>>> kwad = pysal.adaptive_kernelW_from_shapefile(pysal.examples.get_path("columbus.shp"), function='gaussian', diagonal=True)
>>> kwa.neighbors[0]
[0, 2, 1]
>>> kwad.neighbors[0]
[0, 2, 1]
>>> kwa.weights[0]
[0.3989422804014327, 0.24966013701844503, 0.2419707487162134]
>>> kwad.weights[0]
[1.0, 0.24966013701844503, 0.2419707487162134]

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is
based on polygon centroids. Distances are defined using coordinates in
shapefile which are assumed to be projected and not geographical
coordinates.

	
pysal.weights.user.min_threshold_dist_from_shapefile(shapefile, radius=None, p=2)

	Kernel weights with adaptive bandwidths.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile name with shp suffix.

	radius (float [https://docs.python.org/2/library/functions.html#float]) – If supplied arc_distances will be calculated
based on the given radius. p will be ignored.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance

	Returns:	d – Maximum nearest neighbor distance between the n
observations.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> md = min_threshold_dist_from_shapefile(pysal.examples.get_path("columbus.shp"))
>>> md
0.61886415807685413
>>> min_threshold_dist_from_shapefile(pysal.examples.get_path("stl_hom.shp"), pysal.cg.sphere.RADIUS_EARTH_MILES)
31.846942936393717

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is
based on polygon centroids. Distances are defined using coordinates in
shapefile which are assumed to be projected and not geographical
coordinates.

	
pysal.weights.user.build_lattice_shapefile(nrows, ncols, outFileName)

	Build a lattice shapefile with nrows rows and ncols cols.

	Parameters:	
	nrows (int [https://docs.python.org/2/library/functions.html#int]) – Number of rows

	ncols (int [https://docs.python.org/2/library/functions.html#int]) – Number of cols

	outFileName (str [https://docs.python.org/2/library/functions.html#str]) – shapefile name with shp suffix

	Returns:	

	Return type:	None

 weights.Contiguity — Contiguity based spatial weights

weights.Contiguity — Contiguity based spatial weights

The weights.Contiguity. module provides for the construction and manipulation of spatial weights matrices based on contiguity criteria.

New in version 1.0.

	
pysal.weights.Contiguity.buildContiguity(polygons, criterion='rook', ids=None)

	This is a deprecated function.

It builds a contiguity W from the polygons provided. As such, it is now
identical to calling the class constructors for Rook or Queen.

	
class pysal.weights.Contiguity.Queen(polygons, method='binning', **kw)

	
	
asymmetries

	List of id pairs with asymmetric weights.

	
asymmetry(intrinsic=True)

	Asymmetry check.

	Parameters:	intrinsic (boolean) – default=True

	intrinsic symmetry:

	[image: w_{i,j} == w_{j,i}]

	if intrisic is False:

	symmetry is defined as [image: i \in N_j \ AND \ j \in N_i] where
[image: N_j] is the set of neighbors for j.

	Returns:	asymmetries – empty if no asymmetries are found
if asymmetries, then a list of (i,j) tuples is returned

	Return type:	list

Examples

>>> from pysal import lat2W
>>> w=lat2W(3,3)
>>> w.asymmetry()
[]
>>> w.transform='r'
>>> w.asymmetry()
[(0, 1), (0, 3), (1, 0), (1, 2), (1, 4), (2, 1), (2, 5), (3, 0), (3, 4), (3, 6), (4, 1), (4, 3), (4, 5), (4, 7), (5, 2), (5, 4), (5, 8), (6, 3), (6, 7), (7, 4), (7, 6), (7, 8), (8, 5), (8, 7)]
>>> result = w.asymmetry(intrinsic=False)
>>> result
[]
>>> neighbors={0:[1,2,3], 1:[1,2,3], 2:[0,1], 3:[0,1]}
>>> weights={0:[1,1,1], 1:[1,1,1], 2:[1,1], 3:[1,1]}
>>> w=W(neighbors,weights)
>>> w.asymmetry()
[(0, 1), (1, 0)]

	
cardinalities

	Number of neighbors for each observation.

	
diagW2

	Diagonal of [image: WW].

See also

trcW2

	
diagWtW

	Diagonal of [image: W^{'}W].

See also

trcWtW

	
diagWtW_WW

	Diagonal of [image: W^{'}W + WW].

	
classmethod from_dataframe(df, geom_col='geometry', **kwargs)

	Construct a weights object from a pandas dataframe with a geometry
column. This will cast the polygons to PySAL polygons, then build the W
using ids from the dataframe.

	Parameters:	
	df (DataFrame) – a :class: pandas.DataFrame containing geometries to use
for spatial weights

	geom_col (string [https://docs.python.org/2/library/string.html#module-string]) – the name of the column in df that contains the
geometries. Defaults to geometry

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – the name of the column to use as IDs. If nothing is
provided, the dataframe index is used

	ids (list) – a list of ids to use to index the spatial weights object.
Order is not respected from this list.

	id_order (list) – an ordered list of ids to use to index the spatial weights
object. If used, the resulting weights object will iterate
over results in the order of the names provided in this
argument.

See also

pysal.weights.W, pysal.weights.Queen

	
classmethod from_iterable(iterable, sparse=False, **kwargs)

	Construct a weights object from a collection of arbitrary polygons. This
will cast the polygons to PySAL polygons, then build the W.

	Parameters:	
	iterable (iterable) – a collection of of shapes to be cast to PySAL shapes. Must
support iteration. Contents should at least implement a
__geo_interface__ attribute or be able to be coerced to
geometries using pysal.cg.asShape

	**kw (keyword arguments) – optional arguments for pysal.weights.W

See also

pysal.weights.W, pysal.weights.Queen

	
classmethod from_shapefile(filepath, idVariable=None, full=False, **kwargs)

	Queen contiguity weights from a polygon shapefile.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – name of polygon shapefile including suffix.

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of a column in the shapefile’s DBF to use for ids.

	sparse (boolean) – If True return WSP instance
If False return W instance

	Returns:	w – instance of spatial weights

	Return type:	W

Examples

>>> wq=Queen.from_shapefile(pysal.examples.get_path("columbus.shp"))
>>> "%.3f"%wq.pct_nonzero
'9.829'
>>> wq=Queen.from_shapefile(pysal.examples.get_path("columbus.shp"),"POLYID")
>>> "%.3f"%wq.pct_nonzero
'9.829'
>>> wq=Queen.from_shapefile(pysal.examples.get_path("columbus.shp"), sparse=True)
>>> pct_sp = wq.sparse.nnz *1. / wq.n**2
>>> "%.3f"%pct_sp
'0.098'

Notes

Queen contiguity defines as neighbors any pair of polygons that share at
least one vertex in their polygon definitions.

See also

pysal.weights.W, pysal.weights.Queen

	
full()

	Generate a full numpy array.

	Returns:	implicit – first element being the full numpy array and second element
keys being the ids associated with each row in the array.

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple]

Examples

>>> from pysal import W
>>> neighbors={'first':['second'],'second':['first','third'],'third':['second']}
>>> weights={'first':[1],'second':[1,1],'third':[1]}
>>> w=W(neighbors,weights)
>>> wf,ids=w.full()
>>> wf
array([[0., 1., 0.],
 [1., 0., 1.],
 [0., 1., 0.]])
>>> ids
['first', 'second', 'third']

See also

full

	
get_transform()

	Getter for transform property.

	Returns:	transformation

	Return type:	string [https://docs.python.org/2/library/string.html#module-string] (or none)

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>

	
histogram

	Cardinality histogram as a dictionary where key is the id and
value is the number of neighbors for that unit.

	
id2i

	Dictionary where the key is an ID and the value is that ID’s
index in W.id_order.

	
id_order

	Returns the ids for the observations in the order in which they
would be encountered if iterating over the weights.

	
id_order_set

	Returns True if user has set id_order, False if not.

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.id_order_set
True

	
islands

	List of ids without any neighbors.

	
max_neighbors

	Largest number of neighbors.

	
mean_neighbors

	Average number of neighbors.

	
min_neighbors

	Minimum number of neighbors.

	
n

	Number of units.

	
neighbor_offsets

	Given the current id_order, neighbor_offsets[id] is the offsets of the
id’s neighbors in id_order.

	Returns:	offsets of the id’s neighbors in id_order

	Return type:	list

Examples

>>> from pysal import W
>>> neighbors={'c': ['b'], 'b': ['c', 'a'], 'a': ['b']}
>>> weights ={'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
>>> w=W(neighbors,weights)
>>> w.id_order = ['a','b','c']
>>> w.neighbor_offsets['b']
[2, 0]
>>> w.id_order = ['b','a','c']
>>> w.neighbor_offsets['b']
[2, 1]

	
nonzero

	Number of nonzero weights.

	
pct_nonzero

	Percentage of nonzero weights.

	
remap_ids(new_ids)

	In place modification throughout W of id values from w.id_order to
new_ids in all

...

	Parameters:	new_ids (list) – /ndarray
Aligned list of new ids to be inserted. Note that first
element of new_ids will replace first element of
w.id_order, second element of new_ids replaces second
element of w.id_order and so on.

Example

>>> import pysal as ps
>>> w = ps.lat2W(3, 3)
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> w.neighbors[0]
[3, 1]
>>> new_ids = ['id%i'%id for id in w.id_order]
>>> _ = w.remap_ids(new_ids)
>>> w.id_order
['id0', 'id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7', 'id8']
>>> w.neighbors['id0']
['id3', 'id1']

	
s0

	s0 is defined as

[image: s0=\sum_i \sum_j w_{i,j}]

	
s1

	s1 is defined as

[image: s1=1/2 \sum_i \sum_j (w_{i,j} + w_{j,i})^2]

	
s2

	s2 is defined as

[image: s2=\sum_j (\sum_i w_{i,j} + \sum_i w_{j,i})^2]

	
s2array

	Individual elements comprising s2.

See also

s2

	
sd

	Standard deviation of number of neighbors.

	
set_shapefile(shapefile, idVariable=None, full=False)

	Adding meta data for writing headers of gal and gwt files.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile name used to construct weights

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of attribute in shapefile to associate with ids in the weights

	full (boolean) – True - write out entire path for shapefile, False
(default) only base of shapefile without extension

	
set_transform(value='B')

	Transformations of weights.

Notes

Transformations are applied only to the value of the weights at
instantiation. Chaining of transformations cannot be done on a W
instance.

	Parameters:	transform (string [https://docs.python.org/2/library/string.html#module-string]) – not case sensitive)

:param .. table::: :widths: auto

	transform string
	value

	B
	Binary

	R
	Row-standardization (global sum=n)

	D
	Double-standardization (global sum=1)

	V
	Variance stabilizing

	O
	Restore original transformation (from instantiation)

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>

	
sparse

	Sparse matrix object.

For any matrix manipulations required for w, w.sparse should be
used. This is based on scipy.sparse.

	
to_WSP()

	Generate a WSP object.

	Returns:	implicit – Thin W class

	Return type:	pysal.WSP

Examples

>>> import pysal as ps
>>> from pysal import W
>>> neighbors={'first':['second'],'second':['first','third'],'third':['second']}
>>> weights={'first':[1],'second':[1,1],'third':[1]}
>>> w=W(neighbors,weights)
>>> wsp=w.towsp()
>>> isinstance(wsp, ps.weights.weights.WSP)
True
>>> wsp.n
3
>>> wsp.s0
4

See also

WSP

	
towsp()

	Generate a WSP object.

	Returns:	implicit – Thin W class

	Return type:	pysal.WSP

Examples

>>> import pysal as ps
>>> from pysal import W
>>> neighbors={'first':['second'],'second':['first','third'],'third':['second']}
>>> weights={'first':[1],'second':[1,1],'third':[1]}
>>> w=W(neighbors,weights)
>>> wsp=w.towsp()
>>> isinstance(wsp, ps.weights.weights.WSP)
True
>>> wsp.n
3
>>> wsp.s0
4

See also

WSP

	
transform

	Getter for transform property.

	Returns:	transformation

	Return type:	string [https://docs.python.org/2/library/string.html#module-string] (or none)

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>

	
trcW2

	Trace of [image: WW].

See also

diagW2

	
trcWtW

	Trace of [image: W^{'}W].

See also

diagWtW

	
trcWtW_WW

	Trace of [image: W^{'}W + WW].

	
class pysal.weights.Contiguity.Rook(polygons, method='binning', **kw)

	
	
asymmetries

	List of id pairs with asymmetric weights.

	
asymmetry(intrinsic=True)

	Asymmetry check.

	Parameters:	intrinsic (boolean) – default=True

	intrinsic symmetry:

	[image: w_{i,j} == w_{j,i}]

	if intrisic is False:

	symmetry is defined as [image: i \in N_j \ AND \ j \in N_i] where
[image: N_j] is the set of neighbors for j.

	Returns:	asymmetries – empty if no asymmetries are found
if asymmetries, then a list of (i,j) tuples is returned

	Return type:	list

Examples

>>> from pysal import lat2W
>>> w=lat2W(3,3)
>>> w.asymmetry()
[]
>>> w.transform='r'
>>> w.asymmetry()
[(0, 1), (0, 3), (1, 0), (1, 2), (1, 4), (2, 1), (2, 5), (3, 0), (3, 4), (3, 6), (4, 1), (4, 3), (4, 5), (4, 7), (5, 2), (5, 4), (5, 8), (6, 3), (6, 7), (7, 4), (7, 6), (7, 8), (8, 5), (8, 7)]
>>> result = w.asymmetry(intrinsic=False)
>>> result
[]
>>> neighbors={0:[1,2,3], 1:[1,2,3], 2:[0,1], 3:[0,1]}
>>> weights={0:[1,1,1], 1:[1,1,1], 2:[1,1], 3:[1,1]}
>>> w=W(neighbors,weights)
>>> w.asymmetry()
[(0, 1), (1, 0)]

	
cardinalities

	Number of neighbors for each observation.

	
diagW2

	Diagonal of [image: WW].

See also

trcW2

	
diagWtW

	Diagonal of [image: W^{'}W].

See also

trcWtW

	
diagWtW_WW

	Diagonal of [image: W^{'}W + WW].

	
classmethod from_dataframe(df, geom_col='geometry', **kwargs)

	Construct a weights object from a pandas dataframe with a geometry
column. This will cast the polygons to PySAL polygons, then build the W
using ids from the dataframe.

	Parameters:	
	df (DataFrame) – a :class: pandas.DataFrame containing geometries to use
for spatial weights

	geom_col (string [https://docs.python.org/2/library/string.html#module-string]) – the name of the column in df that contains the
geometries. Defaults to geometry

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – the name of the column to use as IDs. If nothing is
provided, the dataframe index is used

	ids (list) – a list of ids to use to index the spatial weights object.
Order is not respected from this list.

	id_order (list) – an ordered list of ids to use to index the spatial weights
object. If used, the resulting weights object will iterate
over results in the order of the names provided in this
argument.

See also

pysal.weights.W, pysal.weights.Rook

	
classmethod from_iterable(iterable, sparse=False, **kwargs)

	Construct a weights object from a collection of arbitrary polygons. This
will cast the polygons to PySAL polygons, then build the W.

	Parameters:	
	iterable (iterable) – a collection of of shapes to be cast to PySAL shapes. Must
support iteration. Contents should at least implement a
__geo_interface__ attribute or be able to be coerced to
geometries using pysal.cg.asShape

	**kw (keyword arguments) – optional arguments for pysal.weights.W

See also

pysal.weights.W, pysal.weights.Rook

	
classmethod from_shapefile(filepath, idVariable=None, full=False, **kwargs)

	Rook contiguity weights from a polygon shapefile.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – name of polygon shapefile including suffix.

	sparse (boolean) – If True return WSP instance
If False return W instance

	Returns:	w – instance of spatial weights

	Return type:	W

Examples

>>> wr=rook_from_shapefile(pysal.examples.get_path("columbus.shp"), "POLYID")
>>> "%.3f"%wr.pct_nonzero
'8.330'
>>> wr=rook_from_shapefile(pysal.examples.get_path("columbus.shp"), sparse=True)
>>> pct_sp = wr.sparse.nnz *1. / wr.n**2
>>> "%.3f"%pct_sp
'0.083'

Notes

Rook contiguity defines as neighbors any pair of polygons that share a
common edge in their polygon definitions.

See also

pysal.weights.W, pysal.weights.Rook

	
full()

	Generate a full numpy array.

	Returns:	implicit – first element being the full numpy array and second element
keys being the ids associated with each row in the array.

	Return type:	tuple [https://docs.python.org/2/library/functions.html#tuple]

Examples

>>> from pysal import W
>>> neighbors={'first':['second'],'second':['first','third'],'third':['second']}
>>> weights={'first':[1],'second':[1,1],'third':[1]}
>>> w=W(neighbors,weights)
>>> wf,ids=w.full()
>>> wf
array([[0., 1., 0.],
 [1., 0., 1.],
 [0., 1., 0.]])
>>> ids
['first', 'second', 'third']

See also

full

	
get_transform()

	Getter for transform property.

	Returns:	transformation

	Return type:	string [https://docs.python.org/2/library/string.html#module-string] (or none)

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>

	
histogram

	Cardinality histogram as a dictionary where key is the id and
value is the number of neighbors for that unit.

	
id2i

	Dictionary where the key is an ID and the value is that ID’s
index in W.id_order.

	
id_order

	Returns the ids for the observations in the order in which they
would be encountered if iterating over the weights.

	
id_order_set

	Returns True if user has set id_order, False if not.

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.id_order_set
True

	
islands

	List of ids without any neighbors.

	
max_neighbors

	Largest number of neighbors.

	
mean_neighbors

	Average number of neighbors.

	
min_neighbors

	Minimum number of neighbors.

	
n

	Number of units.

	
neighbor_offsets

	Given the current id_order, neighbor_offsets[id] is the offsets of the
id’s neighbors in id_order.

	Returns:	offsets of the id’s neighbors in id_order

	Return type:	list

Examples

>>> from pysal import W
>>> neighbors={'c': ['b'], 'b': ['c', 'a'], 'a': ['b']}
>>> weights ={'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
>>> w=W(neighbors,weights)
>>> w.id_order = ['a','b','c']
>>> w.neighbor_offsets['b']
[2, 0]
>>> w.id_order = ['b','a','c']
>>> w.neighbor_offsets['b']
[2, 1]

	
nonzero

	Number of nonzero weights.

	
pct_nonzero

	Percentage of nonzero weights.

	
remap_ids(new_ids)

	In place modification throughout W of id values from w.id_order to
new_ids in all

...

	Parameters:	new_ids (list) – /ndarray
Aligned list of new ids to be inserted. Note that first
element of new_ids will replace first element of
w.id_order, second element of new_ids replaces second
element of w.id_order and so on.

Example

>>> import pysal as ps
>>> w = ps.lat2W(3, 3)
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> w.neighbors[0]
[3, 1]
>>> new_ids = ['id%i'%id for id in w.id_order]
>>> _ = w.remap_ids(new_ids)
>>> w.id_order
['id0', 'id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7', 'id8']
>>> w.neighbors['id0']
['id3', 'id1']

	
s0

	s0 is defined as

[image: s0=\sum_i \sum_j w_{i,j}]

	
s1

	s1 is defined as

[image: s1=1/2 \sum_i \sum_j (w_{i,j} + w_{j,i})^2]

	
s2

	s2 is defined as

[image: s2=\sum_j (\sum_i w_{i,j} + \sum_i w_{j,i})^2]

	
s2array

	Individual elements comprising s2.

See also

s2

	
sd

	Standard deviation of number of neighbors.

	
set_shapefile(shapefile, idVariable=None, full=False)

	Adding meta data for writing headers of gal and gwt files.

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile name used to construct weights

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of attribute in shapefile to associate with ids in the weights

	full (boolean) – True - write out entire path for shapefile, False
(default) only base of shapefile without extension

	
set_transform(value='B')

	Transformations of weights.

Notes

Transformations are applied only to the value of the weights at
instantiation. Chaining of transformations cannot be done on a W
instance.

	Parameters:	transform (string [https://docs.python.org/2/library/string.html#module-string]) – not case sensitive)

:param .. table::: :widths: auto

	transform string
	value

	B
	Binary

	R
	Row-standardization (global sum=n)

	D
	Double-standardization (global sum=1)

	V
	Variance stabilizing

	O
	Restore original transformation (from instantiation)

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>

	
sparse

	Sparse matrix object.

For any matrix manipulations required for w, w.sparse should be
used. This is based on scipy.sparse.

	
to_WSP()

	Generate a WSP object.

	Returns:	implicit – Thin W class

	Return type:	pysal.WSP

Examples

>>> import pysal as ps
>>> from pysal import W
>>> neighbors={'first':['second'],'second':['first','third'],'third':['second']}
>>> weights={'first':[1],'second':[1,1],'third':[1]}
>>> w=W(neighbors,weights)
>>> wsp=w.towsp()
>>> isinstance(wsp, ps.weights.weights.WSP)
True
>>> wsp.n
3
>>> wsp.s0
4

See also

WSP

	
towsp()

	Generate a WSP object.

	Returns:	implicit – Thin W class

	Return type:	pysal.WSP

Examples

>>> import pysal as ps
>>> from pysal import W
>>> neighbors={'first':['second'],'second':['first','third'],'third':['second']}
>>> weights={'first':[1],'second':[1,1],'third':[1]}
>>> w=W(neighbors,weights)
>>> wsp=w.towsp()
>>> isinstance(wsp, ps.weights.weights.WSP)
True
>>> wsp.n
3
>>> wsp.s0
4

See also

WSP

	
transform

	Getter for transform property.

	Returns:	transformation

	Return type:	string [https://docs.python.org/2/library/string.html#module-string] (or none)

Examples

>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>

	
trcW2

	Trace of [image: WW].

See also

diagW2

	
trcWtW

	Trace of [image: W^{'}W].

See also

diagWtW

	
trcWtW_WW

	Trace of [image: W^{'}W + WW].

 weights.Distance — Distance based spatial weights

weights.Distance — Distance based spatial weights

The weights.Distance module provides for spatial weights defined
on distance relationships.

New in version 1.0.

	
class pysal.weights.Distance.KNN(data, k=2, p=2, ids=None, radius=None, distance_metric='euclidean')

	Creates nearest neighbor weights matrix based on k nearest
neighbors.

	Parameters:	
	kdtree (object [https://docs.python.org/2/library/functions.html#object]) – PySAL KDTree or ArcKDTree where KDtree.data is array (n,k)
n observations on k characteristics used to measure
distances between the n objects

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of nearest neighbors

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance
Ignored if the KDTree is an ArcKDTree

	ids (list) – identifiers to attach to each observation

	Returns:	w – instance
Weights object with binary weights

	Return type:	W

Examples

>>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> kd = pysal.cg.kdtree.KDTree(np.array(points))
>>> wnn2 = pysal.KNN(kd, 2)
>>> [1,3] == wnn2.neighbors[0]
True

ids

>>> wnn2 = KNN(kd,2)
>>> wnn2[0]
{1: 1.0, 3: 1.0}
>>> wnn2[1]
{0: 1.0, 3: 1.0}

now with 1 rather than 0 offset

>>> wnn2 = KNN(kd, 2, ids=range(1,7))
>>> wnn2[1]
{2: 1.0, 4: 1.0}
>>> wnn2[2]
{1: 1.0, 4: 1.0}
>>> 0 in wnn2.neighbors
False

Notes

Ties between neighbors of equal distance are arbitrarily broken.

See also

pysal.weights.W

	
classmethod from_array(array, **kwargs)

	Creates nearest neighbor weights matrix based on k nearest
neighbors.

	Parameters:	
	array (np.ndarray) – (n, k) array representing n observations on
k characteristics used to measure distances
between the n objects

	**kwargs (keyword arguments, see Rook) –

	Returns:	w – instance
Weights object with binary weights

	Return type:	W

Examples

>>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> wnn2 = pysal.KNN.from_array(points, 2)
>>> [1,3] == wnn2.neighbors[0]
True

ids

>>> wnn2 = KNN.from_array(points,2)
>>> wnn2[0]
{1: 1.0, 3: 1.0}
>>> wnn2[1]
{0: 1.0, 3: 1.0}

now with 1 rather than 0 offset

>>> wnn2 = KNN.from_array(points, 2, ids=range(1,7))
>>> wnn2[1]
{2: 1.0, 4: 1.0}
>>> wnn2[2]
{1: 1.0, 4: 1.0}
>>> 0 in wnn2.neighbors
False

Notes

Ties between neighbors of equal distance are arbitrarily broken.

See also

	class:	pysal.weights.KNN

pysal.weights.W

	
classmethod from_dataframe(df, geom_col='geometry', ids=None, **kwargs)

	Make KNN weights from a dataframe.

	Parameters:	
	df (pandas.dataframe) – a dataframe with a geometry column that can be used to
construct a W object

	geom_col (string [https://docs.python.org/2/library/string.html#module-string]) – column name of the geometry stored in df

	ids (string [https://docs.python.org/2/library/string.html#module-string] or iterable) – if string, the column name of the indices from the dataframe
if iterable, a list of ids to use for the W
if None, df.index is used.

See also

	class:	pysal.weights.KNN

pysal.weights.W

	
classmethod from_shapefile(filepath, **kwargs)

	Nearest neighbor weights from a shapefile.

	Parameters:	
	data (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile containing attribute data.

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of nearest neighbors

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance

	ids (list) – identifiers to attach to each observation

	radius (float [https://docs.python.org/2/library/functions.html#float]) – If supplied arc_distances will be calculated
based on the given radius. p will be ignored.

	Returns:	w – instance; Weights object with binary weights.

	Return type:	KNN

Examples

Polygon shapefile

>>> wc=knnW_from_shapefile(pysal.examples.get_path("columbus.shp"))
>>> "%.4f"%wc.pct_nonzero
'4.0816'
>>> set([2,1]) == set(wc.neighbors[0])
True
>>> wc3=pysal.knnW_from_shapefile(pysal.examples.get_path("columbus.shp"),k=3)
>>> set(wc3.neighbors[0]) == set([2,1,3])
True
>>> set(wc3.neighbors[2]) == set([4,3,0])
True

1 offset rather than 0 offset

>>> wc3_1=knnW_from_shapefile(pysal.examples.get_path("columbus.shp"),k=3,idVariable="POLYID")
>>> set([4,3,2]) == set(wc3_1.neighbors[1])
True
>>> wc3_1.weights[2]
[1.0, 1.0, 1.0]
>>> set([4,1,8]) == set(wc3_1.neighbors[2])
True

Point shapefile

>>> w=knnW_from_shapefile(pysal.examples.get_path("juvenile.shp"))
>>> w.pct_nonzero
1.1904761904761905
>>> w1=knnW_from_shapefile(pysal.examples.get_path("juvenile.shp"),k=1)
>>> "%.3f"%w1.pct_nonzero

Notes

Ties between neighbors of equal distance are arbitrarily broken.

See also

pysal.weights.KNN, pysal.weights.W

	
reweight(k=None, p=None, new_data=None, new_ids=None, inplace=True)

	Redo K-Nearest Neighbor weights construction using given parameters

	Parameters:	
	new_data (np.ndarray) – an array containing additional data to use in the KNN
weight

	new_ids (list) – a list aligned with new_data that provides the ids for
each new observation

	inplace (bool [https://docs.python.org/2/library/functions.html#bool]) – a flag denoting whether to modify the KNN object
in place or to return a new KNN object

	k (int [https://docs.python.org/2/library/functions.html#int]) – number of nearest neighbors

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance
Ignored if the KDTree is an ArcKDTree

	Returns:	
	A copy of the object using the new parameterization, or None if the

	object is reweighted in place.

	
class pysal.weights.Distance.Kernel(data, bandwidth=None, fixed=True, k=2, function='triangular', eps=1.0000001, ids=None, diagonal=False)

	Spatial weights based on kernel functions.

	Parameters:	
	data (array [https://docs.python.org/2/library/array.html#module-array]) – (n,k) or KDTree where KDtree.data is array (n,k)
n observations on k characteristics used to measure
distances between the n objects

	bandwidth (float [https://docs.python.org/2/library/functions.html#float]) – or array-like (optional)
the bandwidth [image: h_i] for the kernel.

	fixed (binary) – If true then [image: h_i=h \forall i]. If false then
bandwidth is adaptive across observations.

	k (int [https://docs.python.org/2/library/functions.html#int]) – the number of nearest neighbors to use for determining
bandwidth. For fixed bandwidth, [image: h_i=max(dknn) \forall i]
where [image: dknn] is a vector of k-nearest neighbor
distances (the distance to the kth nearest neighbor for each
observation). For adaptive bandwidths, [image: h_i=dknn_i]

	diagonal (boolean) – If true, set diagonal weights = 1.0, if false (default),
diagonals weights are set to value according to kernel
function.

	function ({'triangular','uniform','quadratic','quartic','gaussian'}) – kernel function defined as follows with

[image: z_{i,j} = d_{i,j}/h_i]

triangular

[image: K(z) = (1 - |z|) \ if |z| \le 1]

uniform

[image: K(z) = 1/2 \ if |z| \le 1]

quadratic

[image: K(z) = (3/4)(1-z^2) \ if |z| \le 1]

quartic

[image: K(z) = (15/16)(1-z^2)^2 \ if |z| \le 1]

gaussian

[image: K(z) = (2\pi)^{(-1/2)} exp(-z^2 / 2)]

	eps (float [https://docs.python.org/2/library/functions.html#float]) – adjustment to ensure knn distance range is closed on the
knnth observations

	
weights

	dict – Dictionary keyed by id with a list of weights for each neighbor

	
neighbors

	dict – of lists of neighbors keyed by observation id

	
bandwidth

	array – array of bandwidths

Examples

>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> kw=Kernel(points)
>>> kw.weights[0]
[1.0, 0.500000049999995, 0.4409830615267465]
>>> kw.neighbors[0]
[0, 1, 3]
>>> kw.bandwidth
array([[20.000002],
 [20.000002],
 [20.000002],
 [20.000002],
 [20.000002],
 [20.000002]])
>>> kw15=Kernel(points,bandwidth=15.0)
>>> kw15[0]
{0: 1.0, 1: 0.33333333333333337, 3: 0.2546440075000701}
>>> kw15.neighbors[0]
[0, 1, 3]
>>> kw15.bandwidth
array([[15.],
 [15.],
 [15.],
 [15.],
 [15.],
 [15.]])

Adaptive bandwidths user specified

>>> bw=[25.0,15.0,25.0,16.0,14.5,25.0]
>>> kwa=Kernel(points,bandwidth=bw)
>>> kwa.weights[0]
[1.0, 0.6, 0.552786404500042, 0.10557280900008403]
>>> kwa.neighbors[0]
[0, 1, 3, 4]
>>> kwa.bandwidth
array([[25.],
 [15.],
 [25.],
 [16.],
 [14.5],
 [25.]])

Endogenous adaptive bandwidths

>>> kwea=Kernel(points,fixed=False)
>>> kwea.weights[0]
[1.0, 0.10557289844279438, 9.99999900663795e-08]
>>> kwea.neighbors[0]
[0, 1, 3]
>>> kwea.bandwidth
array([[11.18034101],
 [11.18034101],
 [20.000002],
 [11.18034101],
 [14.14213704],
 [18.02775818]])

Endogenous adaptive bandwidths with Gaussian kernel

>>> kweag=Kernel(points,fixed=False,function='gaussian')
>>> kweag.weights[0]
[0.3989422804014327, 0.2674190291577696, 0.2419707487162134]
>>> kweag.bandwidth
array([[11.18034101],
 [11.18034101],
 [20.000002],
 [11.18034101],
 [14.14213704],
 [18.02775818]])

Diagonals to 1.0

>>> kq = Kernel(points,function='gaussian')
>>> kq.weights
{0: [0.3989422804014327, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 0.3989422804014327, 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.2419707487162134, 0.3989422804014327, 0.31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 0.3989422804014327, 0.3011374490937829, 0.26575287272131043], 4: [0.31069657591175387, 0.31069657591175387, 0.3011374490937829, 0.3989422804014327, 0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 0.3989422804014327]}
>>> kqd = Kernel(points, function='gaussian', diagonal=True)
>>> kqd.weights
{0: [1.0, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 1.0, 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.2419707487162134, 1.0, 0.31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 1.0, 0.3011374490937829, 0.26575287272131043], 4: [0.31069657591175387, 0.31069657591175387, 0.3011374490937829, 1.0, 0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 1.0]}

	
classmethod from_array(array, **kwargs)

	Construct a Kernel weights from an array. Supports all the same options
as pysal.weights.Kernel

See also

pysal.weights.Kernel, pysal.weights.W

	
classmethod from_dataframe(df, geom_col='geometry', ids=None, **kwargs)

	Make Kernel weights from a dataframe.

	Parameters:	
	df (pandas.dataframe) – a dataframe with a geometry column that can be used to
construct a W object

	geom_col (string [https://docs.python.org/2/library/string.html#module-string]) – column name of the geometry stored in df

	ids (string [https://docs.python.org/2/library/string.html#module-string] or iterable) – if string, the column name of the indices from the dataframe
if iterable, a list of ids to use for the W
if None, df.index is used.

See also

pysal.weights.Kernel, pysal.weights.W

	
classmethod from_shapefile(filepath, idVariable=None, **kwargs)

	Kernel based weights from shapefile

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile name with shp suffix

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of column in shapefile’s DBF to use for ids

	Returns:	

	Return type:	Kernel Weights Object

See also

pysal.weights.Kernel, pysal.weights.W

	
class pysal.weights.Distance.DistanceBand(data, threshold, p=2, alpha=-1.0, binary=True, ids=None, build_sp=True, silent=False)

	Spatial weights based on distance band.

	Parameters:	
	data (array [https://docs.python.org/2/library/array.html#module-array]) – (n,k) or KDTree where KDtree.data is array (n,k)
n observations on k characteristics used to measure
distances between the n objects

	threshold (float [https://docs.python.org/2/library/functions.html#float]) – distance band

	p (float [https://docs.python.org/2/library/functions.html#float]) – Minkowski p-norm distance metric parameter:
1<=p<=infinity
2: Euclidean distance
1: Manhattan distance

	binary (boolean) – If true w_{ij}=1 if d_{i,j}<=threshold, otherwise w_{i,j}=0
If false wij=dij^{alpha}

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – distance decay parameter for weight (default -1.0)
if alpha is positive the weights will not decline with
distance. If binary is True, alpha is ignored

	ids (list) – values to use for keys of the neighbors and weights dicts

	build_sp (boolean) – True to build sparse distance matrix and false to build dense
distance matrix; significant speed gains may be obtained
dending on the sparsity of the of distance_matrix and
threshold that is applied

	silent (boolean) – By default PySAL will print a warning if the
dataset contains any disconnected observations or
islands. To silence this warning set this
parameter to True.

	
weights

	dict – of neighbor weights keyed by observation id

	
neighbors

	dict – of neighbors keyed by observation id

Examples

>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> wcheck = pysal.W({0: [1, 3], 1: [0, 3], 2: [], 3: [0, 1], 4: [5], 5: [4]})
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> w=DistanceBand(points,threshold=11.2)
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> pysal.weights.util.neighbor_equality(w, wcheck)
True
>>> w=DistanceBand(points,threshold=14.2)
>>> wcheck = pysal.W({0: [1, 3], 1: [0, 3, 4], 2: [4], 3: [1, 0], 4: [5, 2, 1], 5: [4]})
>>> pysal.weights.util.neighbor_equality(w, wcheck)
True

inverse distance weights

>>> w=DistanceBand(points,threshold=11.2,binary=False)
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> w.weights[0]
[0.10000000000000001, 0.089442719099991588]
>>> w.neighbors[0]
[1, 3]
>>>

gravity weights

>>> w=DistanceBand(points,threshold=11.2,binary=False,alpha=-2.)
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> w.weights[0]
[0.01, 0.0079999999999999984]

Notes

This was initially implemented running scipy 0.8.0dev (in epd 6.1).
earlier versions of scipy (0.7.0) have a logic bug in scipy/sparse/dok.py
so serge changed line 221 of that file on sal-dev to fix the logic bug.

	
classmethod from_array(array, threshold, **kwargs)

	Construct a DistanceBand weights from an array. Supports all the same options
as pysal.weights.DistanceBand

See also

pysal.weights.DistanceBand, pysal.weights.W

	
classmethod from_dataframe(df, threshold, geom_col='geometry', ids=None, **kwargs)

	Make DistanceBand weights from a dataframe.

	Parameters:	
	df (pandas.dataframe) – a dataframe with a geometry column that can be used to
construct a W object

	geom_col (string [https://docs.python.org/2/library/string.html#module-string]) – column name of the geometry stored in df

	ids (string [https://docs.python.org/2/library/string.html#module-string] or iterable) – if string, the column name of the indices from the dataframe
if iterable, a list of ids to use for the W
if None, df.index is used.

See also

pysal.weights.DistanceBand, pysal.weights.W

	
classmethod from_shapefile(filepath, threshold, idVariable=None, **kwargs)

	Distance-band based weights from shapefile

	Parameters:	
	shapefile (string [https://docs.python.org/2/library/string.html#module-string]) – shapefile name with shp suffix

	idVariable (string [https://docs.python.org/2/library/string.html#module-string]) – name of column in shapefile’s DBF to use for ids

	Returns:	

	Return type:	Kernel Weights Object

See also

	class:	pysal.weights.DistanceBand

	class:	pysal.weights.W

 weights.Wsets — Set operations on spatial weights

weights.Wsets — Set operations on spatial weights

The weights.user module provides for set operations on weights objects
.. versionadded:: 1.0

Set-like manipulation of weights matrices.

	
pysal.weights.Wsets.w_union(w1, w2, silent_island_warning=False)

	Returns a binary weights object, w, that includes all neighbor pairs that
exist in either w1 or w2.

	Parameters:	
	w1 (W) – object

	w2 (W) – object

	silent_island_warning (boolean) – Switch to turn off (default on) print statements
for every observation with islands

	Returns:	w – object

	Return type:	W

Notes

ID comparisons are performed using ==, therefore the integer ID 2 is
equivalent to the float ID 2.0. Returns a matrix with all the unique IDs
from w1 and w2.

Examples

Construct rook weights matrices for two regions, one is 4x4 (16 areas)
and the other is 6x4 (24 areas). A union of these two weights matrices
results in the new weights matrix matching the larger one.

>>> import pysal
>>> w1 = pysal.lat2W(4,4)
>>> w2 = pysal.lat2W(6,4)
>>> w = pysal.weights.w_union(w1, w2)
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14]
>>> w2.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[19, 11, 14]
>>>

	
pysal.weights.Wsets.w_intersection(w1, w2, w_shape='w1', silent_island_warning=False)

	Returns a binary weights object, w, that includes only
those neighbor pairs that exist in both w1 and w2.

	Parameters:	
	w1 (W) – object

	w2 (W) – object

	w_shape (string [https://docs.python.org/2/library/string.html#module-string]) – Defines the shape of the returned weights matrix. ‘w1’ returns a
matrix with the same IDs as w1; ‘all’ returns a matrix with all
the unique IDs from w1 and w2; and ‘min’ returns a matrix with
only the IDs occurring in both w1 and w2.

	silent_island_warning (boolean) – Switch to turn off (default on) print statements
for every observation with islands

	Returns:	w – object

	Return type:	W

Notes

ID comparisons are performed using ==, therefore the integer ID 2 is
equivalent to the float ID 2.0.

Examples

Construct rook weights matrices for two regions, one is 4x4 (16 areas)
and the other is 6x4 (24 areas). An intersection of these two weights
matrices results in the new weights matrix matching the smaller one.

>>> import pysal
>>> w1 = pysal.lat2W(4,4)
>>> w2 = pysal.lat2W(6,4)
>>> w = pysal.weights.w_intersection(w1, w2)
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14]
>>> w2.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[11, 14]
>>>

	
pysal.weights.Wsets.w_difference(w1, w2, w_shape='w1', constrained=True, silent_island_warning=False)

	Returns a binary weights object, w, that includes only neighbor pairs
in w1 that are not in w2. The w_shape and constrained parameters
determine which pairs in w1 that are not in w2 are returned.

	Parameters:	
	w1 (W) – object

	w2 (W) – object

	w_shape (string [https://docs.python.org/2/library/string.html#module-string]) – Defines the shape of the returned weights matrix. ‘w1’ returns a
matrix with the same IDs as w1; ‘all’ returns a matrix with all
the unique IDs from w1 and w2; and ‘min’ returns a matrix with
the IDs occurring in w1 and not in w2.

	constrained (boolean) – If False then the full set of neighbor pairs in w1 that are
not in w2 are returned. If True then those pairs that would
not be possible if w_shape=’min’ are dropped. Ignored if
w_shape is set to ‘min’.

	silent_island_warning (boolean) – Switch to turn off (default on) print statements
for every observation with islands

	Returns:	w – object

	Return type:	W

Notes

ID comparisons are performed using ==, therefore the integer ID 2 is
equivalent to the float ID 2.0.

Examples

Construct rook (w2) and queen (w1) weights matrices for two 4x4 regions
(16 areas). A queen matrix has all the joins a rook matrix does plus joins
between areas that share a corner. The new matrix formed by the difference
of rook from queen contains only join at corners (typically called a
bishop matrix). Note that the difference of queen from rook would result
in a weights matrix with no joins.

>>> import pysal
>>> w1 = pysal.lat2W(4,4,rook=False)
>>> w2 = pysal.lat2W(4,4,rook=True)
>>> w = pysal.weights.w_difference(w1, w2, constrained=False)
>>> w1[0] == w[0]
False
>>> w1.neighbors[15]
[10, 11, 14]
>>> w2.neighbors[15]
[11, 14]
>>> w.neighbors[15]
[10]
>>>

	
pysal.weights.Wsets.w_symmetric_difference(w1, w2, w_shape='all', constrained=True, silent_island_warning=False)

	Returns a binary weights object, w, that includes only neighbor pairs
that are not shared by w1 and w2. The w_shape and constrained parameters
determine which pairs that are not shared by w1 and w2 are returned.

	Parameters:	
	w1 (W) – object

	w2 (W) – object

	w_shape (string [https://docs.python.org/2/library/string.html#module-string]) – Defines the shape of the returned weights matrix. ‘all’ returns a
matrix with all the unique IDs from w1 and w2; and ‘min’ returns
a matrix with the IDs not shared by w1 and w2.

	constrained (boolean) – If False then the full set of neighbor pairs that are not
shared by w1 and w2 are returned. If True then those pairs
that would not be possible if w_shape=’min’ are dropped.
Ignored if w_shape is set to ‘min’.

	silent_island_warning (boolean) – Switch to turn off (default on) print statements
for every observation with islands

	Returns:	w – object

	Return type:	W

Notes

ID comparisons are performed using ==, therefore the integer ID 2 is
equivalent to the float ID 2.0.

Examples

Construct queen weights matrix for a 4x4 (16 areas) region (w1) and a rook
matrix for a 6x4 (24 areas) region (w2). The symmetric difference of these
two matrices (with w_shape set to ‘all’ and constrained set to False)
contains the corner joins in the overlap area, all the joins in the
non-overlap area.

>>> import pysal
>>> w1 = pysal.lat2W(4,4,rook=False)
>>> w2 = pysal.lat2W(6,4,rook=True)
>>> w = pysal.weights.w_symmetric_difference(w1, w2, constrained=False)
>>> w1[0] == w[0]
False
>>> w1.neighbors[15]
[10, 11, 14]
>>> w2.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[10, 19]
>>>

	
pysal.weights.Wsets.w_subset(w1, ids, silent_island_warning=False)

	Returns a binary weights object, w, that includes only those
observations in ids.

	Parameters:	
	w1 (W) – object

	ids (list) – A list containing the IDs to be include in the returned weights
object.

	silent_island_warning (boolean) – Switch to turn off (default on) print statements
for every observation with islands

	Returns:	w – object

	Return type:	W

Examples

Construct a rook weights matrix for a 6x4 region (24 areas). By default
PySAL assigns integer IDs to the areas in a region. By passing in a list
of integers from 0 to 15, the first 16 areas are extracted from the
previous weights matrix, and only those joins relevant to the new region
are retained.

>>> import pysal
>>> w1 = pysal.lat2W(6,4)
>>> ids = range(16)
>>> w = pysal.weights.w_subset(w1, ids)
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[11, 14]
>>>

	
pysal.weights.Wsets.w_clip(w1, w2, outSP=True, silent_island_warning=False)

	Clip a continuous W object (w1) with a different W object (w2) so only cells where
w2 has a non-zero value remain with non-zero values in w1.

Checks on w1 and w2 are performed to make sure they conform to the
appropriate format and, if not, they are converted.

	Parameters:	
	w1 (W) – pysal.W, scipy.sparse.csr.csr_matrix
Potentially continuous weights matrix to be clipped. The clipped
matrix wc will have at most the same elements as w1.

	w2 (W) – pysal.W, scipy.sparse.csr.csr_matrix
Weights matrix to use as shell to clip w1. Automatically
converted to binary format. Only non-zero elements in w2 will be
kept non-zero in wc. NOTE: assumed to be of the same shape as w1

	outSP (boolean) – If True (default) return sparse version of the clipped W, if
False, return pysal.W object of the clipped matrix

	silent_island_warning (boolean) – Switch to turn off (default on) print statements
for every observation with islands

	Returns:	wc – pysal.W, scipy.sparse.csr.csr_matrix
Clipped W object (sparse if outSP=Ture). It inherits
id_order from w1.

	Return type:	W

Examples

>>> import pysal as ps

First create a W object from a lattice using queen contiguity and
row-standardize it (note that these weights will stay when we clip the
object, but they will not neccesarily represent a row-standardization
anymore):

>>> w1 = ps.lat2W(3, 2, rook=False)
>>> w1.transform = 'R'

We will clip that geography assuming observations 0, 2, 3 and 4 belong to
one group and 1, 5 belong to another group and we don’t want both groups
to interact with each other in our weights (i.e. w_ij = 0 if i and j in
different groups). For that, we use the following method:

>>> w2 = ps.block_weights(['r1', 'r2', 'r1', 'r1', 'r1', 'r2'])

To illustrate that w2 will only be considered as binary even when the
object passed is not, we can row-standardize it

>>> w2.transform = 'R'

The clipped object wc will contain only the spatial queen
relationships that occur within one group (‘r1’ or ‘r2’) but will have
gotten rid of those that happen across groups

>>> wcs = ps.weights.Wsets.w_clip(w1, w2, outSP=True)

This will create a sparse object (recommended when n is large).

>>> wcs.sparse.toarray()
array([[0. , 0. , 0.33333333, 0.33333333, 0. ,
 0.],
 [0. , 0. , 0. , 0. , 0. ,
 0.],
 [0.2 , 0. , 0. , 0.2 , 0.2 ,
 0.],
 [0.2 , 0. , 0.2 , 0. , 0.2 ,
 0.],
 [0. , 0. , 0.33333333, 0.33333333, 0. ,
 0.],
 [0. , 0. , 0. , 0. , 0. ,
 0.]])

If we wanted an original W object, we can control that with the argument
outSP:

>>> wc = ps.weights.Wsets.w_clip(w1, w2, outSP=False)
WARNING: there are 2 disconnected observations
Island ids: [1, 5]
>>> wc.full()[0]
array([[0. , 0. , 0.33333333, 0.33333333, 0. ,
 0.],
 [0. , 0. , 0. , 0. , 0. ,
 0.],
 [0.2 , 0. , 0. , 0.2 , 0.2 ,
 0.],
 [0.2 , 0. , 0.2 , 0. , 0.2 ,
 0.],
 [0. , 0. , 0.33333333, 0.33333333, 0. ,
 0.],
 [0. , 0. , 0. , 0. , 0. ,
 0.]])

You can check they are actually the same:

>>> wcs.sparse.toarray() == wc.full()[0]
array([[True, True, True, True, True, True],
 [True, True, True, True, True, True],
 [True, True, True, True, True, True],
 [True, True, True, True, True, True],
 [True, True, True, True, True, True],
 [True, True, True, True, True, True]], dtype=bool)

 weights.spatial_lag — Spatial lag operators

weights.spatial_lag — Spatial lag operators

The weights.spatial_lag Spatial lag operators for PySAL

New in version 1.0.

Spatial lag operations.

	
pysal.weights.spatial_lag.lag_spatial(w, y)

	Spatial lag operator.

If w is row standardized, returns the average of each observation’s neighbors;
if not, returns the weighted sum of each observation’s neighbors.

	Parameters:	
	w (W) – PySAL spatial weightsobject

	y (array [https://docs.python.org/2/library/array.html#module-array]) – numpy array with dimensionality conforming to w (see examples)

	Returns:	wy – array of numeric values for the spatial lag

	Return type:	array [https://docs.python.org/2/library/array.html#module-array]

Examples

Setup a 9x9 binary spatial weights matrix and vector of data; compute the
spatial lag of the vector.

>>> import pysal
>>> import numpy as np
>>> w = pysal.lat2W(3, 3)
>>> y = np.arange(9)
>>> yl = pysal.lag_spatial(w, y)
>>> yl
array([4., 6., 6., 10., 16., 14., 10., 18., 12.])

Row standardize the weights matrix and recompute the spatial lag

>>> w.transform = 'r'
>>> yl = pysal.lag_spatial(w, y)
>>> yl
array([2. , 2. , 3. , 3.33333333, 4. ,
 4.66666667, 5. , 6. , 6.])

Explicitly define data vector as 9x1 and recompute the spatial lag

>>> y.shape = (9, 1)
>>> yl = pysal.lag_spatial(w, y)
>>> yl
array([[2.],
 [2.],
 [3.],
 [3.33333333],
 [4.],
 [4.66666667],
 [5.],
 [6.],
 [6.]])

Take the spatial lag of a 9x2 data matrix

>>> yr = np.arange(8, -1, -1)
>>> yr.shape = (9, 1)
>>> x = np.hstack((y, yr))
>>> yl = pysal.lag_spatial(w, x)
>>> yl
array([[2. , 6.],
 [2. , 6.],
 [3. , 5.],
 [3.33333333, 4.66666667],
 [4. , 4.],
 [4.66666667, 3.33333333],
 [5. , 3.],
 [6. , 2.],
 [6. , 2.]])

	
pysal.weights.spatial_lag.lag_categorical(w, y, ties='tryself')

	Spatial lag operator for categorical variables.

Constructs the most common categories of neighboring observations, weighted
by their weight strength.

	Parameters:	
	w (W) – PySAL spatial weightsobject

	y (iterable) – iterable collection of categories (either int or
string) with dimensionality conforming to w (see examples)

	ties (str [https://docs.python.org/2/library/functions.html#str]) – string describing the method to use when resolving
ties. By default, the option is “tryself”,
and the category of the focal observation
is included with its neighbors to try
and break a tie. If this does not resolve the tie,
a winner is chosen randomly. To just use random choice to
break ties, pass “random” instead.
Also supported are selecting the ``lowest’’ class in the
sorted list of ties or the ``highest’’ class.

	Returns:	

	Return type:	an (n x k) column vector containing the most common neighboring observation

Notes

This works on any array where the number of unique elements along the column
axis is less than the number of elements in the array, for any dtype.
That means the routine should work on any dtype that np.unique() can
compare.

Examples

Set up a 9x9 weights matrix describing a 3x3 regular lattice. Lag one list of
categorical variables with no ties.

>>> import pysal
>>> import numpy as np
>>> np.random.seed(12345)
>>> w = pysal.lat2W(3, 3)
>>> y = ['a','b','a','b','c','b','c','b','c']
>>> y_l = pysal.weights.spatial_lag.lag_categorical(w, y)
>>> np.array_equal(y_l, np.array(['b', 'a', 'b', 'c', 'b', 'c', 'b', 'c', 'b']))
True

Explicitly reshape y into a (9x1) array and calculate lag again

>>> yvect = np.array(y).reshape(9,1)
>>> yvect_l = pysal.weights.spatial_lag.lag_categorical(w,yvect)
>>> check = np.array([[i] for i in ['b', 'a', 'b', 'c', 'b', 'c', 'b', 'c', 'b']])
>>> np.array_equal(yvect_l, check)
True

compute the lag of a 9x2 matrix of categories

>>> y2 = ['a', 'c', 'c', 'd', 'b', 'a', 'd', 'd', 'c']
>>> ym = np.vstack((y,y2)).T
>>> ym_lag = pysal.weights.spatial_lag.lag_categorical(w,ym)
>>> check = np.array([['b', 'b'], ['a', 'c'], ['b', 'c'], ['c', 'd'], ['b', 'd'], ['c', 'c'], ['b', 'd'], ['c', 'd'], ['b', 'b']])
>>> np.array_equal(check, ym_lag)
True

 pysal.network — Network Constrained Analysis

pysal.network — Network Constrained Analysis

	pysal.network — Network Constrained Analysis

 pysal.network — Network Constrained Analysis

pysal.network — Network Constrained Analysis

The network Network Analysis for PySAL

New in version 1.9.

	
class pysal.network.network.Network(in_shp=None, node_sig=11, unique_segs=True)

	Spatially constrained network representation and analytical functionality.

	Parameters:	
	in_shp (str [https://docs.python.org/2/library/functions.html#str]) – The input shapefile. This must be in .shp format.

	node_sig (int [https://docs.python.org/2/library/functions.html#int]) – Round the x and y coordinates of all nodes to node_sig significant
digits (combined significant digits on the left and right
of the decimal place)
– Default is 11
– Set to None for no rounding

	unique_segs (bool [https://docs.python.org/2/library/functions.html#bool]) – If True (default), keep only unique segments (i.e., prune out any
duplicated segments).
If False keep all segments.

	
in_shp

	str – The input shapefile. This must be in .shp format.

	
adjacencylist

	list – List of lists storing node adjacency.

	
nodes

	dict – Keys are tuples of node coords and values are the node ID.

	
edge_lengths

	dict – Keys are tuples of sorted node IDs representing an edge and values are
the length.

	
pointpatterns

	dict – Keys are a string name of the pattern and values are point pattern
class instances.

	
node_coords

	dict – Keys are the node ID and values are the (x,y) coordinates inverse
to nodes.

	
edges

	list – List of edges, where each edge is a sorted tuple of node IDs.

	
node_list

	list – List of node IDs.

	
alldistances

	dict – Keys are the node IDs.
Values are tuples with two elements:

	A list of the shortest path distances

	A dict with the key being the id of the destination node and
the value being a list of the shortest path.

Examples

Instantiate an instance of a network.

>>> ntw = ps.Network(ps.examples.get_path('streets.shp'))

Snap point observations to the network with attribute information.

>>> ntw.snapobservations(ps.examples.get_path('crimes.shp'), 'crimes', attribute=True)

And without attribute information.

>>> ntw.snapobservations(ps.examples.get_path('schools.shp'), 'schools', attribute=False)

	
NetworkF(pointpattern, nsteps=10, permutations=99, threshold=0.2, distribution='uniform', lowerbound=None, upperbound=None)

	Computes a network constrained F-Function

	Parameters:	
	pointpattern (object [https://docs.python.org/2/library/functions.html#object]) – A PySAL point pattern object.

	nsteps (int [https://docs.python.org/2/library/functions.html#int]) – The number of steps at which the count of the nearest neighbors
is computed.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – The number of permutations to perform (default 99).

	threshold (float [https://docs.python.org/2/library/functions.html#float]) –
	The level at which significance is computed.

	– 0.5 would be 97.5% and 2.5%

	distribution (str [https://docs.python.org/2/library/functions.html#str]) –
	The distribution from which random points are sampled:

	– uniform or poisson

	lowerbound (float [https://docs.python.org/2/library/functions.html#float]) – The lower bound at which the F-function is computed. (Default 0)

	upperbound (float [https://docs.python.org/2/library/functions.html#float]) – The upper bound at which the F-function is computed.
Defaults to the maximum observed nearest neighbor distance.

	Returns:	NetworkF – A network F class instance.

	Return type:	object [https://docs.python.org/2/library/functions.html#object]

	
NetworkG(pointpattern, nsteps=10, permutations=99, threshold=0.5, distribution='uniform', lowerbound=None, upperbound=None)

	Computes a network constrained G-Function

	Parameters:	
	pointpattern (object [https://docs.python.org/2/library/functions.html#object]) – A PySAL point pattern object.

	nsteps (int [https://docs.python.org/2/library/functions.html#int]) – The number of steps at which the count of the nearest neighbors
is computed.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – The number of permutations to perform (default 99).

	threshold (float [https://docs.python.org/2/library/functions.html#float]) –
	The level at which significance is computed.

	– 0.5 would be 97.5% and 2.5%

	distribution (str [https://docs.python.org/2/library/functions.html#str]) –
	The distribution from which random points are sampled:

	– uniform or poisson

	lowerbound (float [https://docs.python.org/2/library/functions.html#float]) – The lower bound at which the G-function is computed. (Default 0)

	upperbound (float [https://docs.python.org/2/library/functions.html#float]) – The upper bound at which the G-function is computed.
Defaults to the maximum observed nearest neighbor distance.

	Returns:	NetworkG – A network G class instance.

	Return type:	object [https://docs.python.org/2/library/functions.html#object]

	
NetworkK(pointpattern, nsteps=10, permutations=99, threshold=0.5, distribution='uniform', lowerbound=None, upperbound=None)

	Computes a network constrained K-Function

	Parameters:	
	pointpattern (object [https://docs.python.org/2/library/functions.html#object]) – A PySAL point pattern object.

	nsteps (int [https://docs.python.org/2/library/functions.html#int]) – The number of steps at which the count of the nearest neighbors
is computed.

	permutations (int [https://docs.python.org/2/library/functions.html#int]) – The number of permutations to perform (default 99).

	threshold (float [https://docs.python.org/2/library/functions.html#float]) –
	The level at which significance is computed.

	– 0.5 would be 97.5% and 2.5%

	distribution (str [https://docs.python.org/2/library/functions.html#str]) –
	The distribution from which random points are sampled:

	– uniform or poisson

	lowerbound (float [https://docs.python.org/2/library/functions.html#float]) – The lower bound at which the K-function is computed. (Default 0)

	upperbound (float [https://docs.python.org/2/library/functions.html#float]) – The upper bound at which the K-function is computed.
Defaults to the maximum observed nearest neighbor distance.

	Returns:	NetworkK – A network K class instance.

	Return type:	object [https://docs.python.org/2/library/functions.html#object]

	
allneighbordistances(sourcepattern, destpattern=None, fill_diagonal=None, n_processes=None)

	Compute either all distances between i and j in a single point pattern or all
distances between each i from a source pattern and all j from a destination pattern.

	Parameters:	
	sourcepattern (str [https://docs.python.org/2/library/functions.html#str]) – The key of a point pattern snapped to the network.

	destpattern (str [https://docs.python.org/2/library/functions.html#str]) – (Optional) The key of a point pattern snapped to the network.

	fill_diagonal (float [https://docs.python.org/2/library/functions.html#float], int [https://docs.python.org/2/library/functions.html#int]) – (Optional) Fill the diagonal of the cost matrix.
Default in None and will populate the diagonal with numpy.nan
Do not declare a destpattern for a custom fill_diagonal.

	n_processes (int [https://docs.python.org/2/library/functions.html#int], str [https://docs.python.org/2/library/functions.html#str]) – (Optional) Specify the number of cores to utilize.
Default is 1 core. Use (int) to specify an exact number or cores.
Use (“all”) to request all available cores.

	Returns:	nearest – An array of shape (n,n) storing distances between all points.

	Return type:	array [https://docs.python.org/2/library/array.html#module-array] (n,n)

	
compute_distance_to_nodes(x, y, edge)

	Given an observation on a network edge, return the distance to the two nodes that
bound that end.

	Parameters:	
	x (float [https://docs.python.org/2/library/functions.html#float]) – x-coordinate of the snapped point.

	y (float [https://docs.python.org/2/library/functions.html#float]) – y-coordiante of the snapped point.

	edge (tuple [https://docs.python.org/2/library/functions.html#tuple]) – (node0, node1) representation of the network edge.

	Returns:	
	d1 (float) –

	The distance to node0.

	
	always the node with the lesser id

	d2 (float) –

	The distance to node1.

	
	always the node with the greater id

	
contiguityweights(graph=True, weightings=None)

	Create a contiguity based W object

	Parameters:	
	graph (bool [https://docs.python.org/2/library/functions.html#bool]) – {True, False} controls whether the W is generated using the spatial
representation or the graph representation.

	weightings (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Dict of lists of weightings for each edge.

	Returns:	W – A PySAL W Object representing the binary adjacency of the network.

	Return type:	object [https://docs.python.org/2/library/functions.html#object]

Examples

>>> ntw = ps.Network(ps.examples.get_path('streets.shp'))
>>> w = ntw.contiguityweights(graph=False)
>>> ntw.snapobservations(ps.examples.get_path('crimes.shp'), 'crimes', attribute=True)
>>> counts = ntw.count_per_edge(ntw.pointpatterns['crimes'].obs_to_edge, graph=False)

Using the W object, access to ESDA functionality is provided. First,
a vector of attributes is created for all edges with observations.

>>> w = ntw.contiguityweights(graph=False)
>>> edges = w.neighbors.keys()
>>> y = np.zeros(len(edges))
>>> for i, e in enumerate(edges):
... if e in counts.keys():
... y[i] = counts[e]

Next, a standard call ot Moran is made and the result placed into res

>>> res = ps.esda.moran.Moran(y, w, permutations=99)

	
count_per_edge(obs_on_network, graph=True)

	Compute the counts per edge.

	Parameters:	obs_on_network (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Dict of observations on the network.
{(edge):{pt_id:(coords)}} or {edge:[(coord),(coord),(coord)]}

	Returns:	counts – {(edge):count}

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Example

Note that this passes the obs_to_edge attribute of a point pattern snapped to the
network.

>>> ntw = ps.Network(ps.examples.get_path('streets.shp'))
>>> ntw.snapobservations(ps.examples.get_path('crimes.shp'), 'crimes', attribute=True)
>>> counts = ntw.count_per_edge(ntw.pointpatterns['crimes'].obs_to_edge,graph=False)
>>> s = sum([v for v in counts.itervalues()])
>>> s
287

	
distancebandweights(threshold, n_proccess=None)

	Create distance based weights

	Parameters:	
	threshold (float [https://docs.python.org/2/library/functions.html#float]) – Distance threshold value.

	n_processes (int [https://docs.python.org/2/library/functions.html#int], str [https://docs.python.org/2/library/functions.html#str]) – (Optional) Specify the number of cores to utilize.
Default is 1 core. Use (int) to specify an exact number or cores.
Use (“all”) to request all available cores.

	
enum_links_node(v0)

	Returns the edges (links) around node

	Parameters:	v0 (int [https://docs.python.org/2/library/functions.html#int]) – Node id

	Returns:	links – List of tuple edges adjacent to the node.

	Return type:	list

	
extractgraph()

	Using the existing network representation, create a graph based representation by
removing all nodes with a neighbor incidence of two. That is, we assume these
nodes are bridges between nodes with higher incidence.

	
nearestneighbordistances(sourcepattern, destpattern=None, n_processes=None)

	Compute the interpattern nearest neighbor distances or the intrapattern
nearest neighbor distances between a source pattern and a destination pattern.

	Parameters:	
	sourcepattern (str [https://docs.python.org/2/library/functions.html#str]) – The key of a point pattern snapped to the network.

	destpattern (str [https://docs.python.org/2/library/functions.html#str]) – (Optional) The key of a point pattern snapped to the network.

	n_processes (int [https://docs.python.org/2/library/functions.html#int], str [https://docs.python.org/2/library/functions.html#str]) – (Optional) Specify the number of cores to utilize.
Default is 1 core. Use (int) to specify an exact number or cores.
Use (“all”) to request all available cores.

	Returns:	nearest – With column[:,0] containing the id of the nearest neighbor and
column [:,1] containing the distance.

	Return type:	ndarray (n,2)

	
node_distance_matrix(n_processes)

	
	Called from: allneighbordistances()

	nearestneighbordistances()
distancebandweights()

	
savenetwork(filename)

	Save a network to disk as a binary file

	Parameters:	filename (str [https://docs.python.org/2/library/functions.html#str]) – The filename where the network should be saved. This should be a full
path or the file is saved whereever this method is called from.

Example

>>> ntw = ps.Network(ps.examples.get_path('streets.shp'))
>>> ntw.savenetwork('mynetwork.pkl')

	
segment_edges(distance)

	Segment all of the edges in the network at either a fixed distance or a fixed
number of segments.

	Parameters:	distance (float [https://docs.python.org/2/library/functions.html#float]) – The distance at which edges are split.

	Returns:	sn – PySAL Network Object.

	Return type:	object [https://docs.python.org/2/library/functions.html#object]

Example

>>> ntw = ps.Network(ps.examples.get_path('streets.shp'))
>>> n200 = ntw.segment_edges(200.0)
>>> len(n200.edges)
688

	
simulate_observations(count, distribution='uniform')

	Generate a simulated point pattern on the network.

	Parameters:	
	count (int [https://docs.python.org/2/library/functions.html#int]) – The number of points to create or mean of the distribution if not
‘uniform’.

	distribution (str [https://docs.python.org/2/library/functions.html#str]) – {‘uniform’, ‘poisson’} distribution of random points.

	Returns:	random_pts – Keys are the edge tuple.
Value are a list of new point coordinates.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Example

>>> ntw = ps.Network(ps.examples.get_path('streets.shp'))
>>> ntw.snapobservations(ps.examples.get_path('crimes.shp'), 'crimes', attribute=True)
>>> npts = ntw.pointpatterns['crimes'].npoints
>>> sim = ntw.simulate_observations(npts)
>>> isinstance(sim, ps.network.network.SimulatedPointPattern)
True

	
snapobservations(shapefile, name, idvariable=None, attribute=None)

	Snap a point pattern shapefile to this network object. The point pattern is
stored in the network.pointpattern[‘key’] attribute of the network object.

	Parameters:	
	shapefile (str [https://docs.python.org/2/library/functions.html#str]) – The path to the shapefile.

	name (str [https://docs.python.org/2/library/functions.html#str]) – Name to be assigned to the point dataset.

	idvariable (str [https://docs.python.org/2/library/functions.html#str]) – Column name to be used as ID variable.

	attribute (bool [https://docs.python.org/2/library/functions.html#bool]) –
	Defines whether attributes should be extracted.

	True for attribute extraction.
False for no attribute extraaction.

	
class pysal.network.network.PointPattern(shapefile, idvariable=None, attribute=False)

	A stub point pattern class used to store a point pattern. This class is monkey patched
with network specific attributes when the points are snapped to a network.

In the future this class may be replaced with a generic point
pattern class.

	Parameters:	
	shapefile (str [https://docs.python.org/2/library/functions.html#str]) – The input shapefile.

	idvariable (str [https://docs.python.org/2/library/functions.html#str]) – Field in the shapefile to use as an id variable.

	attribute (bool [https://docs.python.org/2/library/functions.html#bool]) – {False, True}
A flag to indicate whether all attributes are tagged to this class.

	
points

	dict – Keys are the point ids.
Values are the coordinates.

	
npoints

	int – The number of points.

	
class pysal.network.network.NetworkG(ntw, pointpattern, nsteps=10, permutations=99, threshold=0.5, distribution='poisson', lowerbound=None, upperbound=None)

	Compute a network constrained G statistic.

	
class pysal.network.network.NetworkK(ntw, pointpattern, nsteps=10, permutations=99, threshold=0.5, distribution='poisson', lowerbound=None, upperbound=None)

	Compute a network constrained K statistic.

	
class pysal.network.network.NetworkF(ntw, pointpattern, nsteps=10, permutations=99, threshold=0.5, distribution='poisson', lowerbound=None, upperbound=None)

	Compute a network constrained F statistic.

This requires the capability to compute a distance matrix between two
point patterns. In this case one will be observed and one will be simulated

 pysal.contrib – Contributed Modules

pysal.contrib – Contributed Modules

Intro

The PySAL Contrib library contains user contributions that enhance PySAL, but
are not fit for inclusion in the general library. The primary reason a
contribution would not be allowed in the general library is external
dependencies. PySAL has a strict no dependency policy (aside from Numpy/Scipy).
This helps ensure the library is easy to install and maintain.

However, this policy often limits our ability to make use of existing code or
exploit performance enhancements from C-extensions. This contrib module is
designed to alleviate this problem. There are no restrictions on external
dependencies in contrib.

Ground Rules

	Contribs must not be used within the general library.

	Explicit imports: each contrib must be imported manually.

	Documentation: each contrib must be documented, dependencies especially.

Contribs

Currently the following contribs are available:

	World To View Transform – A class for modeling viewing windows, used by Weights Viewer.

	
New in version 1.3.

	Path: pysal.contrib.weights_viewer.transforms

	Requires: None

	Weights Viewer – A Graphical tool for examining spatial weights.

	
New in version 1.3.

	Path: pysal.contrib.weights_viewer.weights_viewer

	Requires: wxPython [http://www.wxpython.org/]

	Shapely Extension – Exposes shapely methods as standalone functions

	
New in version 1.3.

	Path: pysal.contrib.shapely_ext

	Requires: shapely [https://pypi.python.org/pypi/Shapely]

	Shared Perimeter Weights – calculate shared perimeters weights.

	
New in version 1.3.

	Path: pysal.contrib.shared_perimeter_weights

	Requires: shapely [https://pypi.python.org/pypi/Shapely]

	Visualization – Lightweight visualization layer (Project page [https://github.com/pysal/pysal/wiki/PySAL-Visualization-Project]).

	
New in version 1.5.

	Path: pysal.contrib.viz

	Requires: matplotlib [http://matplotlib.org/]

	Clusterpy – Spatially constrained clustering.

	
New in version 1.8.

	Path: pysal.contrib.clusterpy

	Requires: clusterpy [https://pypi.python.org/pypi/clusterPy/0.9.9]

	Pandas utilities – Tools to work with spatial file formats using pandas.

	
New in version 1.8.

	Path: pysal.contrib.pdutilities

	Requires: `pandas`_

	Spatial Interaction – Tools for spatial interaction (SpInt) modeling.

	
New in version 1.10.

	Path: pysal.contrib.spint

	Requires: `pandas`_

	Githooks – Optional hooks for git to make development on PySAL easier

	
New in version 1.10.

	Path: pysal.contrib.githooks (Note: not importable)

	Requires: git

	Handler – A model ingester to standardize model extension

	
New in version 1.10.

	Path: pysal.contrib.handler

	Requires: None

	Optional: patsy [https://github.com/pydata/patsy]

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pysal	

 	
 	
 pysal.cg.kdtree	

 	
 	
 pysal.cg.locators	
 Computational geometry code for PySAL: Python Spatial Analysis Library

 	
 	
 pysal.cg.rtree	

 	
 	
 pysal.cg.shapes	

 	
 	
 pysal.cg.sphere	

 	
 	
 pysal.cg.standalone	
 Computational geometry code for PySAL: Python Spatial Analysis Library

 	
 	
 pysal.core.FileIO	
 File Input/Output System for PySAL

 	
 	
 pysal.core.IOHandlers.arcgis_dbf	
 ArcGIS DBF weights file plugin

 	
 	
 pysal.core.IOHandlers.arcgis_swm	
 ArcGIS SWM weights file plugin

 	
 	
 pysal.core.IOHandlers.arcgis_txt	
 ArcGIS ASCII text weights file plugin

 	
 	
 pysal.core.IOHandlers.csvWrapper	
 CSV Plugin

 	
 	
 pysal.core.IOHandlers.dat	
 DAT Plugin for PySAL FileIO System

 	
 	
 pysal.core.IOHandlers.gal	
 GAL Plugin for PySAL FileIO System

 	
 	
 pysal.core.IOHandlers.geobugs_txt	
 GeoBUGS Plugin for PySAL FileIO System

 	
 	
 pysal.core.IOHandlers.geoda_txt	
 Geoda_txt Plugin for PySAL FileIO System

 	
 	
 pysal.core.IOHandlers.gwt	
 GWT Plugin for PySAL FileIO System

 	
 	
 pysal.core.IOHandlers.mat	
 MATLAB Level 4-5 file plugin

 	
 	
 pysal.core.IOHandlers.mtx	
 Matrix Market MTX file plugin

 	
 	
 pysal.core.IOHandlers.pyDbfIO	
 DBF Plugin

 	
 	
 pysal.core.IOHandlers.pyShpIO	
 PySAL Shapefile Plugin

 	
 	
 pysal.core.IOHandlers.stata_txt	
 PySAL STATA spatial weights plugin

 	
 	
 pysal.core.IOHandlers.wk1	
 PySAL plugin for WK1 files

 	
 	
 pysal.core.IOHandlers.wkt	
 PySAL plugin for Well Known Text (geometry)

 	
 	
 pysal.core.Tables	
 DataTable Extension for PySAL FileIO System

 	
 	
 pysal.esda.gamma	
 Global measures of autocorrelation based on Gamma statistics

 	
 	
 pysal.esda.geary	
 Global measures of autocorrelation based on Geary's C

 	
 	
 pysal.esda.getisord	
 Getis-Ord global and local measures of spatial association

 	
 	
 pysal.esda.join_counts	
 Spatial autocorrelation statistics for binary attributes

 	
 	
 pysal.esda.mapclassify	
 Choropleth map classification

 	
 	
 pysal.esda.moran	
 Moran's I global and local measures of spatial autocorrelation

 	
 	
 pysal.esda.smoothing	
 Smoothing of spatial rates

 	
 	
 pysal.inequality.gini	
 Gini based inequality measures

 	
 	
 pysal.inequality.theil	
 Theil based inequality measures

 	
 	
 pysal.network.network	
 Network Analysis for PySAL

 	
 	
 pysal.region.maxp	
 Regionalization based on contiguity constraints and LISA seeds

 	
 	
 pysal.region.randomregion	
 Creation of random regions subject to various constraints

 	
 	
 pysal.spatial_dynamics.directional	

 	
 	
 pysal.spatial_dynamics.ergodic	
 summary measures for ergodic Markov chains

 	
 	
 pysal.spatial_dynamics.interaction	

 	
 	
 pysal.spatial_dynamics.markov	

 	
 	
 pysal.spatial_dynamics.rank	

 	
 	
 pysal.spreg.diagnostics	
 Code for spreg diagnostics

 	
 	
 pysal.spreg.diagnostics_sp	
 Code for spreg spatial diagnostics

 	
 	
 pysal.spreg.diagnostics_tsls	
 Code for spreg 2SLS diagnostics

 	
 	
 pysal.spreg.error_sp	
 Code for spreg spatial error and spatial combo regression

 	
 	
 pysal.spreg.error_sp_het	
 Code for spreg spatial error and spatial combo regression with heteroskedasticity

 	
 	
 pysal.spreg.error_sp_het_regimes	
 Code for spreg spatial error and spatial combo regression with heteroskedasticity with regimes

 	
 	
 pysal.spreg.error_sp_hom	
 Code for spreg spatial error and spatial combo regression with inference on lambda

 	
 	
 pysal.spreg.error_sp_hom_regimes	
 Code for spreg spatial error and spatial combo regression with inference on lambda and with regimes

 	
 	
 pysal.spreg.error_sp_regimes	
 Code for spreg spatial error and spatial combo with regimes regression

 	
 	
 pysal.spreg.ml_error	
 Code for spreg spatial error estimation via ML

 	
 	
 pysal.spreg.ml_error_regimes	
 Code for spreg spatial error model with regimes estimation via ML

 	
 	
 pysal.spreg.ml_lag	
 Code for spreg spatial lag estimation via ML

 	
 	
 pysal.spreg.ml_lag_regimes	
 Code for spreg spatial lag model with regimes estimation via ML

 	
 	
 pysal.spreg.ols	
 Code for spreg OLS regression

 	
 	
 pysal.spreg.ols_regimes	
 Code for spreg OLS with regimes regression

 	
 	
 pysal.spreg.probit	
 Code for spreg probit regression

 	
 	
 pysal.spreg.regimes	
 Code for spatial regimes

 	
 	
 pysal.spreg.sur	
 Code for spreg SUR

 	
 	
 pysal.spreg.sur_error	
 Code for spreg SUR error

 	
 	
 pysal.spreg.sur_lag	
 Code for spreg SUR lag

 	
 	
 pysal.spreg.twosls	
 Code for spreg 2SLS regression

 	
 	
 pysal.spreg.twosls_regimes	
 Code for spreg 2SLS with regimes regression

 	
 	
 pysal.spreg.twosls_sp	
 Code for spreg S2SLS regression

 	
 	
 pysal.spreg.twosls_sp_regimes	
 Code for spreg S2SLS with regimes regression

 	
 	
 pysal.weights.Contiguity	
 Spatial weights for PySAL: Python Spatial Analysis Library

 	
 	
 pysal.weights.Distance	

 	
 	
 pysal.weights.spatial_lag	
 Spatial lag operators for PySAL

 	
 	
 pysal.weights.user	

 	
 	
 pysal.weights.util	

 	
 	
 pysal.weights.weights	
 Spatial weights for PySAL

 	
 	
 pysal.weights.Wsets	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	adaptive_kernelW() (in module pysal.weights.user)

 	adaptive_kernelW_from_shapefile() (in module pysal.weights.user)

 	add() (pysal.cg.locators.Grid method)

 	adjacencylist (pysal.network.network.Network attribute)

 	Age_Adjusted_Smoother (class in pysal.esda.smoothing)

 	aic (pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	ak (pysal.spreg.diagnostics_sp.AKtest attribute)

 	ak_test (pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	akaike() (in module pysal.spreg.diagnostics)

 	AKtest (class in pysal.spreg.diagnostics_sp)

 	alldistances (pysal.network.network.Network attribute)

 	allneighbordistances() (pysal.network.network.Network method)

 	ar2 (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	
 	ar2() (in module pysal.spreg.diagnostics)

 	arcdist() (in module pysal.cg.sphere)

 	arcdist2linear() (in module pysal.cg.sphere)

 	ArcGISDbfIO (class in pysal.core.IOHandlers.arcgis_dbf)

 	ArcGISSwmIO (class in pysal.core.IOHandlers.arcgis_swm)

 	ArcGISTextIO (class in pysal.core.IOHandlers.arcgis_txt)

 	arclen (pysal.cg.shapes.Chain attribute)

 	area (pysal.cg.shapes.Polygon attribute), [1]

 	(pysal.cg.shapes.Rectangle attribute)

 	area2region (pysal.region.maxp.Maxp attribute)

 	(pysal.region.maxp.Maxp_LISA attribute)

 	asShape() (in module pysal.cg.shapes)

 	assuncao_rate() (in module pysal.esda.smoothing)

 	asymmetries (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	asymmetry() (pysal.weights.Contiguity.Queen method)

 	(pysal.weights.Contiguity.Rook method)

 	(pysal.weights.weights.W method)

 	aw (pysal.esda.smoothing.Spatial_Median_Rate attribute)

B

 	
 	b (pysal.cg.shapes.Line attribute)

 	b2SLS (pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	b3SLS (pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	bandwidth (pysal.weights.Distance.Kernel attribute)

 	BaseSURerrorML (class in pysal.spreg.sur_error)

 	bb (pysal.esda.join_counts.Join_Counts attribute)

 	bbcommon() (in module pysal.cg.standalone)

 	bbox (pysal.cg.shapes.Polygon attribute), [1]

 	best (pysal.esda.mapclassify.K_classifiers attribute)

 	betas (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	bg (pysal.inequality.theil.TheilD attribute)

 	(pysal.inequality.theil.TheilDSim attribute)

 	bg_pvalue (pysal.inequality.theil.TheilDSim attribute)

 	bigE (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	bigK (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	bigq (pysal.spreg.sur_lag.SURlagIV attribute)

 	bigX (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	bigXlag (pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	bigXX (pysal.spreg.sur.SUR attribute)

 	bigXy (pysal.spreg.sur.SUR attribute)

 	bigy (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	bigyend (pysal.spreg.sur_lag.SURlagIV attribute)

 	bigylag (pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	bigZ (pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	bigZHy (pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	bigZHZH (pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	
 	bins (pysal.esda.mapclassify.Box_Plot attribute)

 	(pysal.esda.mapclassify.Equal_Interval attribute)

 	(pysal.esda.mapclassify.Fisher_Jenks attribute)

 	(pysal.esda.mapclassify.Fisher_Jenks_Sampled attribute)

 	(pysal.esda.mapclassify.HeadTail_Breaks attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall_Forced attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall_Sampled attribute)

 	(pysal.esda.mapclassify.Max_P_Classifier attribute)

 	(pysal.esda.mapclassify.Maximum_Breaks attribute)

 	(pysal.esda.mapclassify.Natural_Breaks attribute)

 	(pysal.esda.mapclassify.Percentiles attribute)

 	(pysal.esda.mapclassify.Quantiles attribute)

 	(pysal.esda.mapclassify.Std_Mean attribute)

 	(pysal.esda.mapclassify.User_Defined attribute)

 	block_weights() (in module pysal.weights.util)

 	bOLS (pysal.spreg.sur.SUR attribute)

 	bounding_box (pysal.cg.shapes.Chain attribute)

 	(pysal.cg.shapes.LineSegment attribute), [1]

 	(pysal.cg.shapes.Polygon attribute), [1]

 	bounds() (pysal.cg.locators.Grid method)

 	Box_Plot (class in pysal.esda.mapclassify)

 	breusch_pagan (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	breusch_pagan() (in module pysal.spreg.diagnostics)

 	brute_knn() (in module pysal.cg.sphere)

 	BruteForcePointLocator (class in pysal.cg.locators)

 	bSUR (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	bSUR0 (pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	build_lattice_shapefile() (in module pysal.weights.user)

 	buildContiguity() (in module pysal.weights.Contiguity)

 	buildR() (in module pysal.spreg.regimes)

 	buildR1var() (in module pysal.spreg.regimes)

 	bw (pysal.esda.join_counts.Join_Counts attribute)

 	by_col (pysal.core.IOHandlers.csvWrapper.csvWrapper attribute)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader attribute)

 	(pysal.core.IOHandlers.pyDbfIO.DBF attribute)

 	(pysal.core.Tables.DataTable attribute)

 	by_col() (pysal.esda.geary.Geary class method)

 	(pysal.esda.getisord.G class method)

 	(pysal.esda.getisord.G_Local class method)

 	(pysal.esda.join_counts.Join_Counts class method)

 	(pysal.esda.moran.Moran class method)

 	(pysal.esda.moran.Moran_BV class method)

 	(pysal.esda.moran.Moran_Local class method)

 	(pysal.esda.moran.Moran_Local_BV class method)

 	(pysal.esda.moran.Moran_Local_Rate class method)

 	(pysal.esda.moran.Moran_Rate class method)

 	(pysal.esda.smoothing.Age_Adjusted_Smoother class method)

 	(pysal.esda.smoothing.Headbanging_Median_Rate class method)

 	(pysal.esda.smoothing.Spatial_Filtering class method)

 	by_col_array() (pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.Tables.DataTable method)

 	by_row (pysal.core.FileIO.FileIO attribute)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO attribute)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO attribute)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO attribute)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper attribute)

 	(pysal.core.IOHandlers.dat.DatIO attribute)

 	(pysal.core.IOHandlers.gal.GalIO attribute)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO attribute)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader attribute)

 	(pysal.core.IOHandlers.gwt.GwtIO attribute)

 	(pysal.core.IOHandlers.mat.MatIO attribute)

 	(pysal.core.IOHandlers.mtx.MtxIO attribute)

 	(pysal.core.IOHandlers.pyDbfIO.DBF attribute)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper attribute)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO attribute)

 	(pysal.core.IOHandlers.wk1.Wk1IO attribute)

 	(pysal.core.IOHandlers.wkt.WKTReader attribute)

C

 	
 	C (pysal.esda.geary.Geary attribute)

 	cardinalities (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	cast() (pysal.core.FileIO.FileIO method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	centroid (pysal.cg.shapes.Polygon attribute), [1]

 	Chain (class in pysal.cg.shapes)

 	check() (pysal.core.FileIO.FileIO class method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	check_cols2regi() (in module pysal.spreg.regimes)

 	chi2 (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	chi_2 (pysal.spatial_dynamics.markov.LISA_Markov attribute)

 	Chow (class in pysal.spreg.regimes)

 	choynowski() (in module pysal.esda.smoothing)

 	cinference() (pysal.region.maxp.Maxp method)

 	classes (pysal.spatial_dynamics.markov.LISA_Markov attribute)

 	clikerr (pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	cliksurerr (pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	close() (pysal.core.FileIO.FileIO method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	
 	cols2regi (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	comb() (in module pysal.weights.util)

 	compute_distance_to_nodes() (pysal.network.network.Network method)

 	concordant (pysal.spatial_dynamics.rank.SpatialTau attribute)

 	concordant_spatial (pysal.spatial_dynamics.rank.SpatialTau attribute)

 	condition_index() (in module pysal.spreg.diagnostics)

 	constant_regi (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	contains_point() (pysal.cg.locators.PolygonLocator method)

 	(pysal.cg.shapes.Polygon method)

 	contiguityweights() (pysal.network.network.Network method)

 	convex_hull() (in module pysal.cg.standalone)

 	corr (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	count_per_edge() (pysal.network.network.Network method)

 	counts (pysal.esda.mapclassify.Box_Plot attribute)

 	(pysal.esda.mapclassify.Equal_Interval attribute)

 	(pysal.esda.mapclassify.Fisher_Jenks attribute)

 	(pysal.esda.mapclassify.Fisher_Jenks_Sampled attribute)

 	(pysal.esda.mapclassify.HeadTail_Breaks attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall_Forced attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall_Sampled attribute)

 	(pysal.esda.mapclassify.Max_P_Classifier attribute)

 	(pysal.esda.mapclassify.Maximum_Breaks attribute)

 	(pysal.esda.mapclassify.Natural_Breaks attribute)

 	(pysal.esda.mapclassify.Percentiles attribute)

 	(pysal.esda.mapclassify.Quantiles attribute)

 	(pysal.esda.mapclassify.Std_Mean attribute)

 	(pysal.esda.mapclassify.User_Defined attribute)

 	crude_age_standardization() (in module pysal.esda.smoothing)

 	csvWrapper (class in pysal.core.IOHandlers.csvWrapper)

D

 	
 	data_type (pysal.core.IOHandlers.gal.GalIO attribute)

 	DataTable (class in pysal.core.Tables)

 	DatIO (class in pysal.core.IOHandlers.dat)

 	DBF (class in pysal.core.IOHandlers.pyDbfIO)

 	diagW2 (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	diagWtW (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	diagWtW_WW (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	(pysal.weights.weights.WSP attribute)

 	
 	direct_age_standardization() (in module pysal.esda.smoothing)

 	discordant (pysal.spatial_dynamics.rank.SpatialTau attribute)

 	discordant_spatial (pysal.spatial_dynamics.rank.SpatialTau attribute)

 	Disk_Smoother (class in pysal.esda.smoothing)

 	distance_matrix() (in module pysal.cg.standalone)

 	DistanceBand (class in pysal.weights.Distance)

 	distancebandweights() (pysal.network.network.Network method)

 	dof_hom (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

E

 	
 	e_filtered (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	e_pred (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	e_wcg (pysal.inequality.gini.Gini_Spatial attribute)

 	
 	EC (pysal.esda.geary.Geary attribute)

 	EC_sim (pysal.esda.geary.Geary attribute)

 	edge_lengths (pysal.network.network.Network attribute)

 	edges (pysal.network.network.Network attribute)

 	EG (pysal.esda.getisord.G attribute)

 	EG_sim (pysal.esda.getisord.G attribute)

 	(pysal.esda.getisord.G_Local attribute)

 	EGs (pysal.esda.getisord.G_Local attribute)

 	EI (pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	eI (pysal.spreg.diagnostics_sp.MoranRes attribute)

 	EI_sim (pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_BV attribute)

 	(pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	Empirical_Bayes (class in pysal.esda.smoothing)

 	enum_links_node() (pysal.network.network.Network method)

 	epsilon (pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	Equal_Interval (class in pysal.esda.mapclassify)

 	errllik (pysal.spreg.sur_error.SURerrorML attribute)

 	Excess_Risk (class in pysal.esda.smoothing)

 	expected_t (pysal.spatial_dynamics.markov.LISA_Markov attribute)

 	extra (pysal.esda.smoothing.Headbanging_Triples attribute)

 	extractgraph() (pysal.network.network.Network method)

 	extraX (pysal.spatial_dynamics.rank.SpatialTau attribute)

 	extraY (pysal.spatial_dynamics.rank.SpatialTau attribute)

F

 	
 	F (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	f_stat (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	f_stat() (in module pysal.spreg.diagnostics)

 	fast_knn() (in module pysal.cg.sphere)

 	feas_sols (pysal.region.maxp.Maxp attribute)

 	feasible (pysal.region.randomregion.Random_Region attribute)

 	field_spec (pysal.core.IOHandlers.pyDbfIO.DBF attribute)

 	FileIO (class in pysal.core.FileIO)

 	find_bin() (pysal.esda.mapclassify.Box_Plot method)

 	(pysal.esda.mapclassify.Equal_Interval method)

 	(pysal.esda.mapclassify.Fisher_Jenks method)

 	(pysal.esda.mapclassify.Fisher_Jenks_Sampled method)

 	(pysal.esda.mapclassify.HeadTail_Breaks method)

 	(pysal.esda.mapclassify.Jenks_Caspall method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Forced method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Sampled method)

 	(pysal.esda.mapclassify.Map_Classifier method)

 	(pysal.esda.mapclassify.Max_P_Classifier method)

 	(pysal.esda.mapclassify.Maximum_Breaks method)

 	(pysal.esda.mapclassify.Natural_Breaks method)

 	(pysal.esda.mapclassify.Percentiles method)

 	(pysal.esda.mapclassify.Quantiles method)

 	(pysal.esda.mapclassify.Std_Mean method)

 	(pysal.esda.mapclassify.User_Defined method)

 	Fisher_Jenks (class in pysal.esda.mapclassify)

 	Fisher_Jenks_Sampled (class in pysal.esda.mapclassify)

 	flatten() (in module pysal.esda.smoothing)

 	flush() (pysal.core.FileIO.FileIO method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	
 	fmpt() (in module pysal.spatial_dynamics.ergodic)

 	FORMATS (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO attribute)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO attribute)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO attribute)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper attribute)

 	(pysal.core.IOHandlers.dat.DatIO attribute)

 	(pysal.core.IOHandlers.gal.GalIO attribute)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO attribute)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader attribute)

 	(pysal.core.IOHandlers.gwt.GwtIO attribute)

 	(pysal.core.IOHandlers.mat.MatIO attribute)

 	(pysal.core.IOHandlers.mtx.MtxIO attribute)

 	(pysal.core.IOHandlers.pyDbfIO.DBF attribute)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper attribute)

 	Formats (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper attribute)

 	FORMATS (pysal.core.IOHandlers.stata_txt.StataTextIO attribute)

 	(pysal.core.IOHandlers.wk1.Wk1IO attribute)

 	(pysal.core.IOHandlers.wkt.WKTReader attribute)

 	from_array() (pysal.weights.Distance.DistanceBand class method)

 	(pysal.weights.Distance.KNN class method)

 	(pysal.weights.Distance.Kernel class method)

 	from_dataframe() (pysal.weights.Contiguity.Queen class method)

 	(pysal.weights.Contiguity.Rook class method)

 	(pysal.weights.Distance.DistanceBand class method)

 	(pysal.weights.Distance.KNN class method)

 	(pysal.weights.Distance.Kernel class method)

 	from_iterable() (pysal.weights.Contiguity.Queen class method)

 	(pysal.weights.Contiguity.Rook class method)

 	from_shapefile() (pysal.weights.Contiguity.Queen class method)

 	(pysal.weights.Contiguity.Rook class method)

 	(pysal.weights.Distance.DistanceBand class method)

 	(pysal.weights.Distance.KNN class method)

 	(pysal.weights.Distance.Kernel class method)

 	from_W() (pysal.weights.weights.WSP class method)

 	full() (in module pysal.weights.util)

 	(pysal.weights.Contiguity.Queen method)

 	(pysal.weights.Contiguity.Rook method)

 	(pysal.weights.weights.W method)

 	full2W() (in module pysal.weights.util)

G

 	
 	G (class in pysal.esda.getisord)

 	(pysal.esda.getisord.G attribute)

 	g (pysal.inequality.gini.Gini attribute)

 	(pysal.inequality.gini.Gini_Spatial attribute)

 	G_Local (class in pysal.esda.getisord)

 	gadf() (in module pysal.esda.mapclassify)

 	GalIO (class in pysal.core.IOHandlers.gal)

 	Gamma (class in pysal.esda.gamma)

 	gamma (pysal.esda.gamma.Gamma attribute)

 	Geary (class in pysal.esda.geary)

 	GeoBUGSTextIO (class in pysal.core.IOHandlers.geobugs_txt)

 	GeoDaTxtReader (class in pysal.core.IOHandlers.geoda_txt)

 	geogrid() (in module pysal.cg.sphere)

 	geointerpolate() (in module pysal.cg.sphere)

 	get() (pysal.core.FileIO.FileIO method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	get_adcm() (pysal.esda.mapclassify.Box_Plot method)

 	(pysal.esda.mapclassify.Equal_Interval method)

 	(pysal.esda.mapclassify.Fisher_Jenks method)

 	(pysal.esda.mapclassify.Fisher_Jenks_Sampled method)

 	(pysal.esda.mapclassify.HeadTail_Breaks method)

 	(pysal.esda.mapclassify.Jenks_Caspall method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Forced method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Sampled method)

 	(pysal.esda.mapclassify.Map_Classifier method)

 	(pysal.esda.mapclassify.Max_P_Classifier method)

 	(pysal.esda.mapclassify.Maximum_Breaks method)

 	(pysal.esda.mapclassify.Natural_Breaks method)

 	(pysal.esda.mapclassify.Percentiles method)

 	(pysal.esda.mapclassify.Quantiles method)

 	(pysal.esda.mapclassify.Std_Mean method)

 	(pysal.esda.mapclassify.User_Defined method)

 	get_angle_between() (in module pysal.cg.standalone)

 	get_bounding_box() (in module pysal.cg.standalone)

 	get_gadf() (pysal.esda.mapclassify.Box_Plot method)

 	(pysal.esda.mapclassify.Equal_Interval method)

 	(pysal.esda.mapclassify.Fisher_Jenks method)

 	(pysal.esda.mapclassify.Fisher_Jenks_Sampled method)

 	(pysal.esda.mapclassify.HeadTail_Breaks method)

 	(pysal.esda.mapclassify.Jenks_Caspall method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Forced method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Sampled method)

 	(pysal.esda.mapclassify.Map_Classifier method)

 	(pysal.esda.mapclassify.Max_P_Classifier method)

 	(pysal.esda.mapclassify.Maximum_Breaks method)

 	(pysal.esda.mapclassify.Natural_Breaks method)

 	(pysal.esda.mapclassify.Percentiles method)

 	(pysal.esda.mapclassify.Quantiles method)

 	(pysal.esda.mapclassify.Std_Mean method)

 	(pysal.esda.mapclassify.User_Defined method)

 	get_ids() (in module pysal.weights.util)

 	get_point_at_angle_and_dist() (in module pysal.cg.standalone)

 	get_points_array_from_shapefile() (in module pysal.weights.util)

 	get_points_dist() (in module pysal.cg.standalone)

 	get_polygon_point_dist() (in module pysal.cg.standalone)

 	
 	get_polygon_point_intersect() (in module pysal.cg.standalone)

 	get_ray_segment_intersect() (in module pysal.cg.standalone)

 	get_rectangle_point_intersect() (in module pysal.cg.standalone)

 	get_rectangle_rectangle_intersection() (in module pysal.cg.standalone)

 	get_segment_point_dist() (in module pysal.cg.standalone)

 	get_segment_point_intersect() (in module pysal.cg.standalone)

 	get_segments_intersect() (in module pysal.cg.standalone)

 	get_shared_segments() (in module pysal.cg.standalone)

 	get_swap() (pysal.cg.shapes.LineSegment method)

 	get_transform() (pysal.weights.Contiguity.Queen method)

 	(pysal.weights.Contiguity.Rook method)

 	(pysal.weights.weights.W method)

 	get_tss() (pysal.esda.mapclassify.Box_Plot method)

 	(pysal.esda.mapclassify.Equal_Interval method)

 	(pysal.esda.mapclassify.Fisher_Jenks method)

 	(pysal.esda.mapclassify.Fisher_Jenks_Sampled method)

 	(pysal.esda.mapclassify.HeadTail_Breaks method)

 	(pysal.esda.mapclassify.Jenks_Caspall method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Forced method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Sampled method)

 	(pysal.esda.mapclassify.Map_Classifier method)

 	(pysal.esda.mapclassify.Max_P_Classifier method)

 	(pysal.esda.mapclassify.Maximum_Breaks method)

 	(pysal.esda.mapclassify.Natural_Breaks method)

 	(pysal.esda.mapclassify.Percentiles method)

 	(pysal.esda.mapclassify.Quantiles method)

 	(pysal.esda.mapclassify.Std_Mean method)

 	(pysal.esda.mapclassify.User_Defined method)

 	getType() (pysal.core.FileIO.FileIO static method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	Gini (class in pysal.inequality.gini)

 	Gini_Spatial (class in pysal.inequality.gini)

 	GM_Combo (class in pysal.spreg.error_sp)

 	GM_Combo_Het (class in pysal.spreg.error_sp_het)

 	GM_Combo_Het_Regimes (class in pysal.spreg.error_sp_het_regimes)

 	GM_Combo_Hom (class in pysal.spreg.error_sp_hom)

 	GM_Combo_Hom_Regimes (class in pysal.spreg.error_sp_hom_regimes)

 	GM_Combo_Regimes (class in pysal.spreg.error_sp_regimes)

 	GM_Endog_Error (class in pysal.spreg.error_sp)

 	GM_Endog_Error_Het (class in pysal.spreg.error_sp_het)

 	GM_Endog_Error_Het_Regimes (class in pysal.spreg.error_sp_het_regimes)

 	GM_Endog_Error_Hom (class in pysal.spreg.error_sp_hom)

 	GM_Endog_Error_Hom_Regimes (class in pysal.spreg.error_sp_hom_regimes)

 	GM_Endog_Error_Regimes (class in pysal.spreg.error_sp_regimes)

 	GM_Error (class in pysal.spreg.error_sp)

 	GM_Error_Het (class in pysal.spreg.error_sp_het)

 	GM_Error_Het_Regimes (class in pysal.spreg.error_sp_het_regimes)

 	GM_Error_Hom (class in pysal.spreg.error_sp_hom)

 	GM_Error_Hom_Regimes (class in pysal.spreg.error_sp_hom_regimes)

 	GM_Error_Regimes (class in pysal.spreg.error_sp_regimes)

 	GM_Lag (class in pysal.spreg.twosls_sp)

 	GM_Lag_Regimes (class in pysal.spreg.twosls_sp_regimes)

 	Grid (class in pysal.cg.locators)

 	grid (pysal.esda.smoothing.Spatial_Filtering attribute)

 	Gs (pysal.esda.getisord.G_Local attribute)

 	GwtIO (class in pysal.core.IOHandlers.gwt)

H

 	
 	h (pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	harcdist() (in module pysal.cg.sphere)

 	Headbanging_Median_Rate (class in pysal.esda.smoothing)

 	Headbanging_Triples (class in pysal.esda.smoothing)

 	header (pysal.core.IOHandlers.pyDbfIO.DBF attribute)

 	HeadTail_Breaks (class in pysal.esda.mapclassify)

 	height (pysal.cg.shapes.Rectangle attribute)

 	hexLat2W() (in module pysal.weights.util)

 	
 	high_outlier_ids (pysal.esda.mapclassify.Box_Plot attribute)

 	higher_order() (in module pysal.weights.util)

 	higher_order_sp() (in module pysal.weights.util)

 	histogram (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	holes (pysal.cg.shapes.Polygon attribute)

 	homogeneity() (in module pysal.spatial_dynamics.markov)

 	hth (pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	hthi (pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

I

 	
 	I (pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_BV attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	(pysal.spreg.diagnostics_sp.MoranRes attribute)

 	id2i (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	id_order (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	id_order_set (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	ids (pysal.core.FileIO.FileIO attribute)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO attribute)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO attribute)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO attribute)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper attribute)

 	(pysal.core.IOHandlers.dat.DatIO attribute)

 	(pysal.core.IOHandlers.gal.GalIO attribute)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO attribute)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader attribute)

 	(pysal.core.IOHandlers.gwt.GwtIO attribute)

 	(pysal.core.IOHandlers.mat.MatIO attribute)

 	(pysal.core.IOHandlers.mtx.MtxIO attribute)

 	(pysal.core.IOHandlers.pyDbfIO.DBF attribute)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper attribute)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO attribute)

 	(pysal.core.IOHandlers.wk1.Wk1IO attribute)

 	(pysal.core.IOHandlers.wkt.WKTReader attribute)

 	in_grid() (pysal.cg.locators.Grid method)

 	in_shp (pysal.network.network.Network attribute)

 	indirect_age_standardization() (in module pysal.esda.smoothing)

 	inference() (pysal.region.maxp.Maxp method)

 	
 	inside() (pysal.cg.locators.PolygonLocator method)

 	intersect() (pysal.cg.shapes.LineSegment method)

 	IntervalTree (class in pysal.cg.locators)

 	Is (pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	is_ccw() (pysal.cg.shapes.LineSegment method)

 	is_clockwise() (in module pysal.cg.standalone)

 	is_collinear() (in module pysal.cg.standalone)

 	is_cw() (pysal.cg.shapes.LineSegment method)

 	islands (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	iter_stop (pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	iteration (pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

J

 	
 	J (pysal.esda.join_counts.Join_Counts attribute)

 	jacquez() (in module pysal.spatial_dynamics.interaction)

 	jarque_bera (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	jarque_bera() (in module pysal.spreg.diagnostics)

 	Jenks_Caspall (class in pysal.esda.mapclassify)

 	
 	Jenks_Caspall_Forced (class in pysal.esda.mapclassify)

 	Jenks_Caspall_Sampled (class in pysal.esda.mapclassify)

 	Join_Counts (class in pysal.esda.join_counts)

 	joinlam (pysal.spreg.sur_error.SURerrorML attribute)

 	joinrho (pysal.spreg.sur_lag.SURlagIV attribute)

 	joint (pysal.spreg.regimes.Chow attribute)

K

 	
 	k (pysal.esda.mapclassify.Box_Plot attribute)

 	(pysal.esda.mapclassify.Equal_Interval attribute)

 	(pysal.esda.mapclassify.Fisher_Jenks attribute)

 	(pysal.esda.mapclassify.Fisher_Jenks_Sampled attribute)

 	(pysal.esda.mapclassify.HeadTail_Breaks attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall_Forced attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall_Sampled attribute)

 	(pysal.esda.mapclassify.Max_P_Classifier attribute)

 	(pysal.esda.mapclassify.Maximum_Breaks attribute)

 	(pysal.esda.mapclassify.Natural_Breaks attribute)

 	(pysal.esda.mapclassify.Percentiles attribute)

 	(pysal.esda.mapclassify.Quantiles attribute)

 	(pysal.esda.mapclassify.Std_Mean attribute)

 	(pysal.esda.mapclassify.User_Defined attribute)

 	(pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	K_classifiers (class in pysal.esda.mapclassify)

 	
 	KDTree() (in module pysal.cg.kdtree)

 	Kernel (class in pysal.weights.Distance)

 	Kernel_Smoother (class in pysal.esda.smoothing)

 	kernelW() (in module pysal.weights.user)

 	kernelW_from_shapefile() (in module pysal.weights.user)

 	kf (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	KNN (class in pysal.weights.Distance)

 	knnW_from_array() (in module pysal.weights.user)

 	knnW_from_shapefile() (in module pysal.weights.user)

 	knox() (in module pysal.spatial_dynamics.interaction)

 	koenker_bassett (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	koenker_bassett() (in module pysal.spreg.diagnostics)

 	KP_error (pysal.spreg.probit.Probit attribute)

 	kr (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	kstar (pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	kullback() (in module pysal.spatial_dynamics.markov)

L

 	
 	lag_categorical() (in module pysal.weights.spatial_lag)

 	lag_spatial() (in module pysal.weights.spatial_lag)

 	lam (pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	lamols (pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	lamsetp (pysal.spreg.sur_error.SURerrorML attribute)

 	lamsur (pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	lamtest (pysal.spreg.sur_error.SURerrorML attribute)

 	lat2SW() (in module pysal.weights.util)

 	lat2W() (in module pysal.weights.util)

 	ldetS0 (pysal.spreg.sur.SUR attribute)

 	ldetS1 (pysal.spreg.sur.SUR attribute)

 	left (pysal.cg.shapes.Rectangle attribute)

 	len (pysal.cg.shapes.Chain attribute), [1]

 	(pysal.cg.shapes.LineSegment attribute), [1]

 	(pysal.cg.shapes.Polygon attribute), [1]

 	likratiotest() (in module pysal.spreg.diagnostics)

 	likrlambda (pysal.spreg.sur_error.SURerrorML attribute)

 	Line (class in pysal.cg.shapes)

 	line (pysal.cg.shapes.LineSegment attribute), [1]

 	linear2arcdist() (in module pysal.cg.sphere)

 	LineSegment (class in pysal.cg.shapes)

 	LISA_Markov (class in pysal.spatial_dynamics.markov)

 	llik (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	
 	lm_error (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	lm_lag (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	lm_sarma (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	lmEtest (pysal.spreg.sur.SUR attribute)

 	lmtest (pysal.spreg.sur.SUR attribute)

 	LMtests (class in pysal.spreg.diagnostics_sp)

 	log_likelihood() (in module pysal.spreg.diagnostics)

 	logl (pysal.spreg.probit.Probit attribute)

 	logll (pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	lonlat() (in module pysal.cg.sphere)

 	low_outlier_ids (pysal.esda.mapclassify.Box_Plot attribute)

 	lower (pysal.cg.shapes.Rectangle attribute)

 	LR (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	(pysal.spreg.probit.Probit attribute)

 	LR_p_value (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	lrtest (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

M

 	
 	m (pysal.cg.shapes.Line attribute)

 	make() (pysal.esda.mapclassify.Box_Plot method)

 	(pysal.esda.mapclassify.Equal_Interval method)

 	(pysal.esda.mapclassify.Fisher_Jenks method)

 	(pysal.esda.mapclassify.Fisher_Jenks_Sampled method)

 	(pysal.esda.mapclassify.HeadTail_Breaks method)

 	(pysal.esda.mapclassify.Jenks_Caspall method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Forced method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Sampled method)

 	(pysal.esda.mapclassify.Map_Classifier class method)

 	(pysal.esda.mapclassify.Max_P_Classifier method)

 	(pysal.esda.mapclassify.Maximum_Breaks method)

 	(pysal.esda.mapclassify.Natural_Breaks method)

 	(pysal.esda.mapclassify.Percentiles method)

 	(pysal.esda.mapclassify.Quantiles method)

 	(pysal.esda.mapclassify.Std_Mean method)

 	(pysal.esda.mapclassify.User_Defined method)

 	mantel() (in module pysal.spatial_dynamics.interaction)

 	Map_Classifier (class in pysal.esda.mapclassify)

 	Markov (class in pysal.spatial_dynamics.markov)

 	MatIO (class in pysal.core.IOHandlers.mat)

 	max_bb (pysal.esda.join_counts.Join_Counts attribute)

 	max_bw (pysal.esda.join_counts.Join_Counts attribute)

 	max_g (pysal.esda.gamma.Gamma attribute)

 	max_neighbors (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	Max_P_Classifier (class in pysal.esda.mapclassify)

 	max_total (pysal.spatial_dynamics.rank.Theta attribute)

 	Maximum_Breaks (class in pysal.esda.mapclassify)

 	Maxp (class in pysal.region.maxp)

 	Maxp_LISA (class in pysal.region.maxp)

 	mean_bb (pysal.esda.join_counts.Join_Counts attribute)

 	mean_bw (pysal.esda.join_counts.Join_Counts attribute)

 	mean_g (pysal.esda.gamma.Gamma attribute)

 	mean_neighbors (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	mean_y (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	
 	method (pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	mi (pysal.spreg.diagnostics_sp.AKtest attribute)

 	min_bb (pysal.esda.join_counts.Join_Counts attribute)

 	min_bw (pysal.esda.join_counts.Join_Counts attribute)

 	min_g (pysal.esda.gamma.Gamma attribute)

 	min_neighbors (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	min_threshold_dist_from_shapefile() (in module pysal.weights.user)

 	min_threshold_distance() (in module pysal.weights.util)

 	ML_Error (class in pysal.spreg.ml_error)

 	ML_Error_Regimes (class in pysal.spreg.ml_error_regimes)

 	ML_Lag (class in pysal.spreg.ml_lag)

 	ML_Lag_Regimes (class in pysal.spreg.ml_lag_regimes)

 	MODES (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO attribute)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO attribute)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO attribute)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper attribute)

 	(pysal.core.IOHandlers.dat.DatIO attribute)

 	(pysal.core.IOHandlers.gal.GalIO attribute)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO attribute)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader attribute)

 	(pysal.core.IOHandlers.gwt.GwtIO attribute)

 	(pysal.core.IOHandlers.mat.MatIO attribute)

 	(pysal.core.IOHandlers.mtx.MtxIO attribute)

 	(pysal.core.IOHandlers.pyDbfIO.DBF attribute)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper attribute)

 	Modes (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper attribute)

 	MODES (pysal.core.IOHandlers.stata_txt.StataTextIO attribute)

 	(pysal.core.IOHandlers.wk1.Wk1IO attribute)

 	(pysal.core.IOHandlers.wkt.WKTReader attribute)

 	modified_knox() (in module pysal.spatial_dynamics.interaction)

 	Moran (class in pysal.esda.moran)

 	Moran_BV (class in pysal.esda.moran)

 	Moran_BV_matrix() (in module pysal.esda.moran)

 	Moran_Local (class in pysal.esda.moran)

 	Moran_Local_BV (class in pysal.esda.moran)

 	Moran_Local_Rate (class in pysal.esda.moran)

 	Moran_Rate (class in pysal.esda.moran)

 	moran_res (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	MoranRes (class in pysal.spreg.diagnostics_sp)

 	move_types (pysal.spatial_dynamics.markov.LISA_Markov attribute)

 	MtxIO (class in pysal.core.IOHandlers.mtx)

 	mulColli (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	multi (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

N

 	
 	n (pysal.spatial_dynamics.interaction.SpaceTimeEvents attribute)

 	(pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	(pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	(pysal.weights.weights.WSP attribute)

 	n2 (pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	n_eq (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	name_bigq (pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	name_bigX (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	name_bigy (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	name_bigyend (pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	name_ds (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	name_gwk (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	name_h (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	name_q (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	name_regimes (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	name_w (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	
 	name_x (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	name_y (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	name_yend (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	name_z (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	Natural_Breaks (class in pysal.esda.mapclassify)

 	nearest() (pysal.cg.locators.BruteForcePointLocator method)

 	(pysal.cg.locators.Grid method)

 	(pysal.cg.locators.PointLocator method)

 	(pysal.cg.locators.PolygonLocator method)

 	nearestneighbordistances() (pysal.network.network.Network method)

 	neighbor_offsets (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	neighbors (pysal.weights.Distance.DistanceBand attribute)

 	(pysal.weights.Distance.Kernel attribute)

 	Network (class in pysal.network.network)

 	NetworkF (class in pysal.network.network)

 	NetworkF() (pysal.network.network.Network method)

 	NetworkG (class in pysal.network.network)

 	NetworkG() (pysal.network.network.Network method)

 	NetworkK (class in pysal.network.network)

 	NetworkK() (pysal.network.network.Network method)

 	next() (pysal.core.FileIO.FileIO method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	niter (pysal.spreg.sur.SUR attribute)

 	node_coords (pysal.network.network.Network attribute)

 	node_distance_matrix() (pysal.network.network.Network method)

 	node_list (pysal.network.network.Network attribute)

 	nodes (pysal.network.network.Network attribute)

 	None (pysal.cg.shapes.Point attribute)

 	nonzero (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	npoints (pysal.network.network.PointPattern attribute)

 	nr (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

O

 	
 	o (pysal.cg.shapes.Ray attribute)

 	observed (pysal.inequality.theil.TheilDSim attribute)

 	OLS (class in pysal.spreg.ols)

 	ols (pysal.spreg.diagnostics_sp.LMtests attribute)

 	OLS_Regimes (class in pysal.spreg.ols_regimes)

 	olsE (pysal.spreg.sur.SUR attribute)

 	op (pysal.esda.gamma.Gamma attribute)

 	open() (pysal.core.FileIO.FileIO class method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	
 	order() (in module pysal.weights.util)

 	overlapping() (pysal.cg.locators.PointLocator method)

 	(pysal.cg.locators.PolygonLocator method)

P

 	
 	p (pysal.cg.shapes.Ray attribute)

 	(pysal.region.maxp.Maxp attribute)

 	(pysal.spatial_dynamics.markov.LISA_Markov attribute)

 	(pysal.spatial_dynamics.markov.Markov attribute)

 	P (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	p (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	(pysal.spreg.diagnostics_sp.AKtest attribute)

 	p1 (pysal.cg.shapes.LineSegment attribute), [1]

 	p2 (pysal.cg.shapes.LineSegment attribute), [1]

 	p_norm (pysal.esda.geary.Geary attribute)

 	(pysal.esda.getisord.G attribute)

 	(pysal.esda.getisord.G_Local attribute)

 	(pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	p_rand (pysal.esda.geary.Geary attribute)

 	(pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	p_sim (pysal.esda.gamma.Gamma attribute)

 	(pysal.esda.geary.Geary attribute)

 	(pysal.esda.getisord.G attribute)

 	(pysal.esda.getisord.G_Local attribute)

 	(pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_BV attribute)

 	(pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	(pysal.inequality.gini.Gini_Spatial attribute)

 	p_sim_bb (pysal.esda.join_counts.Join_Counts attribute)

 	p_sim_bw (pysal.esda.join_counts.Join_Counts attribute)

 	p_sim_g (pysal.esda.gamma.Gamma attribute)

 	p_values (pysal.spatial_dynamics.markov.LISA_Markov attribute)

 	p_z_sim (pysal.esda.geary.Geary attribute)

 	(pysal.esda.getisord.G attribute)

 	(pysal.esda.getisord.G_Local attribute)

 	(pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_BV attribute)

 	(pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	(pysal.inequality.gini.Gini_Spatial attribute)

 	pairs_spatial (pysal.spatial_dynamics.rank.SpatialTau attribute)

 	parts (pysal.cg.shapes.Chain attribute)

 	(pysal.cg.shapes.Polygon attribute)

 	pct_nonzero (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	Percentiles (class in pysal.esda.mapclassify)

 	perimeter (pysal.cg.shapes.Polygon attribute), [1]

 	permutation (pysal.esda.getisord.G attribute)

 	(pysal.esda.moran.Moran_BV attribute)

 	permutations (pysal.esda.gamma.Gamma attribute)

 	(pysal.esda.geary.Geary attribute)

 	(pysal.esda.getisord.G_Local attribute)

 	(pysal.esda.join_counts.Join_Counts attribute)

 	(pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	(pysal.spatial_dynamics.rank.Theta attribute)

 	pfora1a2 (pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	Pinkse_error (pysal.spreg.probit.Probit attribute)

 	Point (class in pysal.cg.shapes)

 	point_touches_rectangle() (in module pysal.cg.standalone)

 	PointLocator (class in pysal.cg.locators)

 	PointPattern (class in pysal.network.network)

 	pointpatterns (pysal.network.network.Network attribute)

 	points (pysal.network.network.PointPattern attribute)

 	Polygon (class in pysal.cg.shapes)

 	polygon() (pysal.cg.locators.PointLocator method)

 	PolygonLocator (class in pysal.cg.locators)

 	pr2 (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	pr2_aspatial() (in module pysal.spreg.diagnostics_tsls)

 	pr2_e (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	pr2_spatial() (in module pysal.spreg.diagnostics_tsls)

 	prais() (in module pysal.spatial_dynamics.markov)

 	predpc (pysal.spreg.probit.Probit attribute)

 	predy (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	
 	predy_e (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	Probit (class in pysal.spreg.probit)

 	proximity() (pysal.cg.locators.BruteForcePointLocator method)

 	(pysal.cg.locators.Grid method)

 	(pysal.cg.locators.PointLocator method)

 	(pysal.cg.locators.PolygonLocator method)

 	PS_error (pysal.spreg.probit.Probit attribute)

 	PurePyShpWrapper (class in pysal.core.IOHandlers.pyShpIO)

 	pvalue (pysal.region.maxp.Maxp attribute), [1]

 	(pysal.spreg.regimes.Wald attribute)

 	pvalue_left (pysal.spatial_dynamics.rank.Theta attribute)

 	pvalue_right (pysal.spatial_dynamics.rank.Theta attribute)

 	pysal.cg.kdtree (module)

 	pysal.cg.locators (module)

 	pysal.cg.rtree (module)

 	pysal.cg.shapes (module)

 	pysal.cg.sphere (module)

 	pysal.cg.standalone (module)

 	pysal.core.FileIO (module)

 	pysal.core.IOHandlers.arcgis_dbf (module)

 	pysal.core.IOHandlers.arcgis_swm (module)

 	pysal.core.IOHandlers.arcgis_txt (module)

 	pysal.core.IOHandlers.csvWrapper (module)

 	pysal.core.IOHandlers.dat (module)

 	pysal.core.IOHandlers.gal (module)

 	pysal.core.IOHandlers.geobugs_txt (module)

 	pysal.core.IOHandlers.geoda_txt (module)

 	pysal.core.IOHandlers.gwt (module)

 	pysal.core.IOHandlers.mat (module)

 	pysal.core.IOHandlers.mtx (module)

 	pysal.core.IOHandlers.pyDbfIO (module)

 	pysal.core.IOHandlers.pyShpIO (module)

 	pysal.core.IOHandlers.stata_txt (module)

 	pysal.core.IOHandlers.wk1 (module)

 	pysal.core.IOHandlers.wkt (module)

 	pysal.core.Tables (module)

 	pysal.esda.gamma (module)

 	pysal.esda.geary (module)

 	pysal.esda.getisord (module)

 	pysal.esda.join_counts (module)

 	pysal.esda.mapclassify (module)

 	pysal.esda.moran (module)

 	pysal.esda.smoothing (module)

 	pysal.inequality.gini (module)

 	pysal.inequality.theil (module)

 	pysal.network.network (module)

 	pysal.region.maxp (module)

 	pysal.region.randomregion (module)

 	pysal.spatial_dynamics.directional (module)

 	pysal.spatial_dynamics.ergodic (module)

 	pysal.spatial_dynamics.interaction (module)

 	pysal.spatial_dynamics.markov (module)

 	pysal.spatial_dynamics.rank (module)

 	pysal.spreg.diagnostics (module)

 	pysal.spreg.diagnostics_sp (module)

 	pysal.spreg.diagnostics_tsls (module)

 	pysal.spreg.error_sp (module)

 	pysal.spreg.error_sp_het (module)

 	pysal.spreg.error_sp_het_regimes (module)

 	pysal.spreg.error_sp_hom (module)

 	pysal.spreg.error_sp_hom_regimes (module)

 	pysal.spreg.error_sp_regimes (module)

 	pysal.spreg.ml_error (module)

 	pysal.spreg.ml_error_regimes (module)

 	pysal.spreg.ml_lag (module)

 	pysal.spreg.ml_lag_regimes (module)

 	pysal.spreg.ols (module)

 	pysal.spreg.ols_regimes (module)

 	pysal.spreg.probit (module)

 	pysal.spreg.regimes (module)

 	pysal.spreg.sur (module)

 	pysal.spreg.sur_error (module)

 	pysal.spreg.sur_lag (module)

 	pysal.spreg.twosls (module)

 	pysal.spreg.twosls_regimes (module)

 	pysal.spreg.twosls_sp (module)

 	pysal.spreg.twosls_sp_regimes (module)

 	pysal.weights.Contiguity (module)

 	pysal.weights.Distance (module)

 	pysal.weights.spatial_lag (module)

 	pysal.weights.user (module)

 	pysal.weights.util (module)

 	pysal.weights.weights (module)

 	pysal.weights.Wsets (module)

Q

 	
 	q (pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	Q (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	q (pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	
 	Q_p_value (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	quantile() (in module pysal.esda.mapclassify)

 	Quantiles (class in pysal.esda.mapclassify)

 	Queen (class in pysal.weights.Contiguity)

 	queen_from_shapefile() (in module pysal.weights.user)

 	query() (pysal.cg.locators.IntervalTree method)

R

 	
 	r (pysal.esda.smoothing.Age_Adjusted_Smoother attribute)

 	(pysal.esda.smoothing.Disk_Smoother attribute)

 	(pysal.esda.smoothing.Empirical_Bayes attribute)

 	(pysal.esda.smoothing.Excess_Risk attribute)

 	(pysal.esda.smoothing.Headbanging_Median_Rate attribute)

 	(pysal.esda.smoothing.Kernel_Smoother attribute)

 	(pysal.esda.smoothing.Spatial_Empirical_Bayes attribute)

 	(pysal.esda.smoothing.Spatial_Filtering attribute)

 	(pysal.esda.smoothing.Spatial_Median_Rate attribute)

 	(pysal.esda.smoothing.Spatial_Rate attribute)

 	r2 (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	r2() (in module pysal.spreg.diagnostics)

 	Random_Region (class in pysal.region.randomregion)

 	Random_Regions (class in pysal.region.randomregion)

 	ranks (pysal.spatial_dynamics.rank.Theta attribute)

 	Ray (class in pysal.cg.shapes)

 	read() (pysal.core.FileIO.FileIO method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	READ_MODES (pysal.core.IOHandlers.csvWrapper.csvWrapper attribute)

 	read_new_version() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	read_old_version() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	read_record() (pysal.core.IOHandlers.pyDbfIO.DBF method)

 	Rect (class in pysal.cg.rtree)

 	Rectangle (class in pysal.cg.shapes)

 	regi (pysal.spreg.regimes.Chow attribute)

 	regi_i (in module pysal.spreg.regimes)

 	regi_ids (in module pysal.spreg.regimes)

 	regime_err_sep (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	regime_lag_sep (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	regime_weights() (in module pysal.weights.util)

 	regimes (in module pysal.spreg.regimes), [1]

 	(pysal.spatial_dynamics.rank.Theta attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	
 	Regimes_Frame (class in pysal.spreg.regimes)

 	regimes_set (in module pysal.spreg.regimes), [1], [2]

 	regimeX_setup() (in module pysal.spreg.regimes)

 	region() (pysal.cg.locators.BruteForcePointLocator method)

 	(pysal.cg.locators.PointLocator method)

 	(pysal.cg.locators.PolygonLocator method)

 	regions (pysal.region.maxp.Maxp attribute)

 	(pysal.region.maxp.Maxp_LISA attribute)

 	(pysal.region.randomregion.Random_Region attribute)

 	remap_ids() (in module pysal.weights.util)

 	(pysal.weights.Contiguity.Queen method)

 	(pysal.weights.Contiguity.Rook method)

 	(pysal.weights.weights.W method)

 	remove() (pysal.cg.locators.Grid method)

 	resids (pysal.spreg.sur_lag.SURlagIV attribute)

 	results (pysal.esda.mapclassify.K_classifiers attribute)

 	reweight() (pysal.weights.Distance.KNN method)

 	rho (pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	rIds (pysal.core.FileIO.FileIO attribute)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO attribute)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO attribute)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO attribute)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper attribute)

 	(pysal.core.IOHandlers.dat.DatIO attribute)

 	(pysal.core.IOHandlers.gal.GalIO attribute)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO attribute)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader attribute)

 	(pysal.core.IOHandlers.gwt.GwtIO attribute)

 	(pysal.core.IOHandlers.mat.MatIO attribute)

 	(pysal.core.IOHandlers.mtx.MtxIO attribute)

 	(pysal.core.IOHandlers.pyDbfIO.DBF attribute)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper attribute)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO attribute)

 	(pysal.core.IOHandlers.wk1.Wk1IO attribute)

 	(pysal.core.IOHandlers.wkt.WKTReader attribute)

 	right (pysal.cg.shapes.Rectangle attribute)

 	rlm_error (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	rlm_lag (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	robust (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	Rook (class in pysal.weights.Contiguity)

 	rook_from_shapefile() (in module pysal.weights.user)

 	rose() (in module pysal.spatial_dynamics.directional)

S

 	
 	S (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	s (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	s0 (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	(pysal.weights.weights.WSP attribute), [1]

 	s1 (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	s2 (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	s2array (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	s_wcg (pysal.inequality.gini.Gini_Spatial attribute)

 	savenetwork() (pysal.network.network.Network method)

 	scale (pysal.spreg.probit.Probit attribute)

 	scalem (pysal.spreg.probit.Probit attribute)

 	schwarz (pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	schwarz() (in module pysal.spreg.diagnostics)

 	sd (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	se_betas() (in module pysal.spreg.diagnostics)

 	seC_sim (pysal.esda.geary.Geary attribute)

 	seek() (pysal.core.FileIO.FileIO method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	seG_sim (pysal.esda.getisord.G attribute)

 	(pysal.esda.getisord.G_Local attribute)

 	segment_edges() (pysal.network.network.Network method)

 	segments (pysal.cg.shapes.Chain attribute)

 	seI_norm (pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	seI_rand (pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	seI_sim (pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_BV attribute)

 	(pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	set_centroid() (pysal.cg.shapes.Rectangle method)

 	set_name_x_regimes() (in module pysal.spreg.regimes)

 	set_scale() (pysal.cg.shapes.Rectangle method)

 	set_shapefile() (pysal.weights.Contiguity.Queen method)

 	(pysal.weights.Contiguity.Rook method)

 	(pysal.weights.weights.W method)

 	set_transform() (pysal.weights.Contiguity.Queen method)

 	(pysal.weights.Contiguity.Rook method)

 	(pysal.weights.weights.W method)

 	shimbel() (in module pysal.weights.util)

 	shorrock() (in module pysal.spatial_dynamics.markov)

 	shpName (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO attribute)

 	(pysal.core.IOHandlers.dat.DatIO attribute)

 	(pysal.core.IOHandlers.gwt.GwtIO attribute)

 	shtest (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	sig (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	sig2 (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	sig2ML (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	sig2n (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	sig2n_k (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	sig_ols (pysal.spreg.sur.SUR attribute)

 	significant_moves (pysal.spatial_dynamics.markov.LISA_Markov attribute)

 	sim (pysal.esda.geary.Geary attribute)

 	(pysal.esda.getisord.G attribute)

 	(pysal.esda.getisord.G_Local attribute)

 	(pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_BV attribute)

 	(pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	
 	sim_bb (pysal.esda.join_counts.Join_Counts attribute)

 	sim_bw (pysal.esda.join_counts.Join_Counts attribute)

 	sim_g (pysal.esda.gamma.Gamma attribute)

 	simulate_observations() (pysal.network.network.Network method)

 	slopes (pysal.spreg.probit.Probit attribute)

 	slopes_vm (pysal.spreg.probit.Probit attribute)

 	snapobservations() (pysal.network.network.Network method)

 	solutions (pysal.region.randomregion.Random_Regions attribute)

 	solutions_feas (pysal.region.randomregion.Random_Regions attribute)

 	space (pysal.spatial_dynamics.interaction.SpaceTimeEvents attribute)

 	SpaceTimeEvents (class in pysal.spatial_dynamics.interaction)

 	sparse (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	Spatial_Empirical_Bayes (class in pysal.esda.smoothing)

 	Spatial_Filtering (class in pysal.esda.smoothing)

 	Spatial_Markov (class in pysal.spatial_dynamics.markov)

 	Spatial_Median_Rate (class in pysal.esda.smoothing)

 	Spatial_Rate (class in pysal.esda.smoothing)

 	SpatialTau (class in pysal.spatial_dynamics.rank)

 	spillover() (pysal.spatial_dynamics.markov.LISA_Markov method)

 	srs (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO attribute)

 	stand (pysal.esda.gamma.Gamma attribute)

 	standardized_mortality_ratio() (in module pysal.esda.smoothing)

 	StataTextIO (class in pysal.core.IOHandlers.stata_txt)

 	std_err (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	Std_Mean (class in pysal.esda.mapclassify)

 	std_y (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	steady_state (pysal.spatial_dynamics.markov.Markov attribute)

 	steady_state() (in module pysal.spatial_dynamics.ergodic)

 	sum_by_n() (in module pysal.esda.smoothing)

 	summary (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	SUR (class in pysal.spreg.sur)

 	sur_inf (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	surchow (pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	surerrllik (pysal.spreg.sur_error.SURerrorML attribute)

 	SURerrorML (class in pysal.spreg.sur_error)

 	SURlagIV (class in pysal.spreg.sur_lag)

 	sw_ccw() (pysal.cg.shapes.LineSegment method)

 	swap_iterations (pysal.region.maxp.Maxp attribute)

 	(pysal.region.maxp.Maxp_LISA attribute)

T

 	
 	T (pysal.inequality.theil.Theil attribute)

 	(pysal.inequality.theil.TheilD attribute)

 	t (pysal.spatial_dynamics.interaction.SpaceTimeEvents attribute)

 	T (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	t_stat (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	t_stat() (in module pysal.spreg.diagnostics)

 	(in module pysal.spreg.diagnostics_tsls)

 	Tau (class in pysal.spatial_dynamics.rank)

 	tau (pysal.spatial_dynamics.rank.SpatialTau attribute)

 	(pysal.spatial_dynamics.rank.Tau attribute)

 	tau_p (pysal.spatial_dynamics.rank.Tau attribute)

 	tau_spatial (pysal.spatial_dynamics.rank.SpatialTau attribute)

 	tau_spatial_psim (pysal.spatial_dynamics.rank.SpatialTau attribute)

 	taus (pysal.spatial_dynamics.rank.SpatialTau attribute), [1]

 	tell() (pysal.core.FileIO.FileIO method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	tests (pysal.spreg.diagnostics_sp.LMtests attribute)

 	Theil (class in pysal.inequality.theil)

 	TheilD (class in pysal.inequality.theil)

 	TheilDSim (class in pysal.inequality.theil)

 	Theta (class in pysal.spatial_dynamics.rank)

 	theta (pysal.spatial_dynamics.rank.Theta attribute)

 	ThreeSLS (class in pysal.spreg.sur)

 	threshold_binaryW_from_array() (in module pysal.weights.user)

 	threshold_binaryW_from_shapefile() (in module pysal.weights.user)

 	threshold_continuousW_from_array() (in module pysal.weights.user)

 	threshold_continuousW_from_shapefile() (in module pysal.weights.user)

 	time (pysal.spatial_dynamics.interaction.SpaceTimeEvents attribute)

 	title (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	
 	to_df() (pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.Tables.DataTable method)

 	to_W() (pysal.weights.weights.WSP method)

 	to_WSP() (pysal.weights.Contiguity.Queen method)

 	(pysal.weights.Contiguity.Rook method)

 	(pysal.weights.weights.W method)

 	total (pysal.spatial_dynamics.rank.Theta attribute)

 	total_moves (pysal.region.maxp.Maxp attribute)

 	(pysal.region.maxp.Maxp_LISA attribute)

 	towsp() (pysal.weights.Contiguity.Queen method)

 	(pysal.weights.Contiguity.Rook method)

 	(pysal.weights.weights.W method)

 	toXYZ() (in module pysal.cg.sphere)

 	transform (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	transitions (pysal.spatial_dynamics.markov.Markov attribute)

 	(pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	trcW2 (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	trcWtW (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	trcWtW_WW (pysal.weights.Contiguity.Queen attribute)

 	(pysal.weights.Contiguity.Rook attribute)

 	(pysal.weights.weights.W attribute), [1]

 	(pysal.weights.weights.WSP attribute), [1]

 	triples (pysal.esda.smoothing.Headbanging_Triples attribute)

 	truncate() (pysal.core.FileIO.FileIO method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	TSLS (class in pysal.spreg.twosls)

 	tsls_inf (pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	TSLS_Regimes (class in pysal.spreg.twosls_regimes)

 	tslsE (pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	two_tailed (pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

U

 	
 	u (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	
 	update() (pysal.esda.mapclassify.Box_Plot method)

 	(pysal.esda.mapclassify.Equal_Interval method)

 	(pysal.esda.mapclassify.Fisher_Jenks method)

 	(pysal.esda.mapclassify.Fisher_Jenks_Sampled method)

 	(pysal.esda.mapclassify.HeadTail_Breaks method)

 	(pysal.esda.mapclassify.Jenks_Caspall method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Forced method)

 	(pysal.esda.mapclassify.Jenks_Caspall_Sampled method)

 	(pysal.esda.mapclassify.Map_Classifier method)

 	(pysal.esda.mapclassify.Max_P_Classifier method)

 	(pysal.esda.mapclassify.Maximum_Breaks method)

 	(pysal.esda.mapclassify.Natural_Breaks method)

 	(pysal.esda.mapclassify.Percentiles method)

 	(pysal.esda.mapclassify.Quantiles method)

 	(pysal.esda.mapclassify.Std_Mean method)

 	(pysal.esda.mapclassify.User_Defined method)

 	upper (pysal.cg.shapes.Rectangle attribute)

 	User_Defined (class in pysal.esda.mapclassify)

 	utu (pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

V

 	
 	var_fmpt() (in module pysal.spatial_dynamics.ergodic)

 	varb (pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.sur.SUR attribute)

 	(pysal.spreg.sur.ThreeSLS attribute)

 	(pysal.spreg.sur_error.BaseSURerrorML attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	varName (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO attribute)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO attribute)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO attribute)

 	(pysal.core.IOHandlers.dat.DatIO attribute)

 	(pysal.core.IOHandlers.gwt.GwtIO attribute)

 	(pysal.core.IOHandlers.mat.MatIO attribute)

 	(pysal.core.IOHandlers.wk1.Wk1IO attribute)

 	VC (pysal.esda.geary.Geary attribute)

 	VC_sim (pysal.esda.geary.Geary attribute)

 	vertices (pysal.cg.shapes.Chain attribute), [1]

 	(pysal.cg.shapes.Polygon attribute), [1]

 	VG (pysal.esda.getisord.G attribute)

 	VG_sim (pysal.esda.getisord.G attribute)

 	(pysal.esda.getisord.G_Local attribute)

 	VGs (pysal.esda.getisord.G_Local attribute)

 	vI (pysal.spreg.diagnostics_sp.MoranRes attribute)

 	VI_norm (pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	VI_rand (pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	VI_sim (pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_BV attribute)

 	(pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	
 	vif() (in module pysal.spreg.diagnostics)

 	vm (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.sur_error.SURerrorML attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	vm1 (pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

W

 	
 	W (class in pysal.weights.weights)

 	w (in module pysal.spreg.regimes), [1], [2]

 	(pysal.esda.gamma.Gamma attribute)

 	(pysal.esda.geary.Geary attribute)

 	(pysal.esda.getisord.G attribute)

 	(pysal.esda.getisord.G_Local attribute)

 	(pysal.esda.join_counts.Join_Counts attribute)

 	(pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_BV attribute)

 	(pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	(pysal.esda.smoothing.Spatial_Median_Rate attribute)

 	(pysal.spreg.diagnostics_sp.LMtests attribute)

 	(pysal.spreg.regimes.Wald attribute)

 	(pysal.spreg.sur_lag.SURlagIV attribute)

 	w_clip() (in module pysal.weights.Wsets)

 	w_difference() (in module pysal.weights.Wsets)

 	w_intersection() (in module pysal.weights.Wsets)

 	w_local_cluster() (in module pysal.weights.util)

 	w_regi_i (in module pysal.spreg.regimes)

 	w_regime() (in module pysal.spreg.regimes)

 	w_regimes() (in module pysal.spreg.regimes)

 	w_regimes_union() (in module pysal.spreg.regimes)

 	w_subset() (in module pysal.weights.Wsets)

 	w_symmetric_difference() (in module pysal.weights.Wsets)

 	w_union() (in module pysal.weights.Wsets)

 	Wald (class in pysal.spreg.regimes)

 	wald_test() (in module pysal.spreg.regimes)

 	warning (pysal.spreg.probit.Probit attribute)

 	wcg (pysal.inequality.gini.Gini_Spatial attribute)

 	
 	wcg_share (pysal.inequality.gini.Gini_Spatial attribute)

 	weighted_median() (in module pysal.esda.smoothing)

 	weights (pysal.weights.Distance.DistanceBand attribute)

 	(pysal.weights.Distance.Kernel attribute)

 	wg (pysal.inequality.gini.Gini_Spatial attribute)

 	(pysal.inequality.theil.TheilD attribute)

 	(pysal.inequality.theil.TheilDSim attribute)

 	white (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	white() (in module pysal.spreg.diagnostics)

 	width (pysal.cg.shapes.Rectangle attribute)

 	Wk1IO (class in pysal.core.IOHandlers.wk1)

 	WKTReader (class in pysal.core.IOHandlers.wkt)

 	write() (pysal.core.FileIO.FileIO method)

 	(pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method)

 	(pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method)

 	(pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method)

 	(pysal.core.IOHandlers.csvWrapper.csvWrapper method)

 	(pysal.core.IOHandlers.dat.DatIO method)

 	(pysal.core.IOHandlers.gal.GalIO method)

 	(pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method)

 	(pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method)

 	(pysal.core.IOHandlers.gwt.GwtIO method)

 	(pysal.core.IOHandlers.mat.MatIO method)

 	(pysal.core.IOHandlers.mtx.MtxIO method)

 	(pysal.core.IOHandlers.pyDbfIO.DBF method)

 	(pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method)

 	(pysal.core.IOHandlers.stata_txt.StataTextIO method)

 	(pysal.core.IOHandlers.wk1.Wk1IO method)

 	(pysal.core.IOHandlers.wkt.WKTReader method)

 	WSP (class in pysal.weights.weights)

 	WSP2W() (in module pysal.weights.util)

 	ww (pysal.esda.join_counts.Join_Counts attribute)

X

 	
 	x (in module pysal.spreg.regimes)

 	(pysal.spatial_dynamics.interaction.SpaceTimeEvents attribute)

 	(pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	
 	x() (pysal.cg.shapes.Line method)

 	x2 (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	x2_dof (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	x2_pvalue (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	x2_realizations (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	x2_rpvalue (pysal.spatial_dynamics.markov.Spatial_Markov attribute)

 	x2xsp() (in module pysal.spreg.regimes)

 	xmean (pysal.spreg.probit.Probit attribute)

 	xtx (pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	xtxi (pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

Y

 	
 	y (pysal.esda.gamma.Gamma attribute)

 	(pysal.esda.geary.Geary attribute)

 	(pysal.esda.getisord.G attribute)

 	(pysal.esda.getisord.G_Local attribute)

 	(pysal.esda.join_counts.Join_Counts attribute)

 	(pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	(pysal.spatial_dynamics.interaction.SpaceTimeEvents attribute)

 	(pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.ols.OLS attribute)

 	(pysal.spreg.ols_regimes.OLS_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	
 	y() (pysal.cg.shapes.Line method)

 	yb (pysal.esda.mapclassify.Box_Plot attribute)

 	(pysal.esda.mapclassify.Equal_Interval attribute)

 	(pysal.esda.mapclassify.Fisher_Jenks attribute)

 	(pysal.esda.mapclassify.Fisher_Jenks_Sampled attribute)

 	(pysal.esda.mapclassify.HeadTail_Breaks attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall_Forced attribute)

 	(pysal.esda.mapclassify.Jenks_Caspall_Sampled attribute)

 	(pysal.esda.mapclassify.Max_P_Classifier attribute)

 	(pysal.esda.mapclassify.Maximum_Breaks attribute)

 	(pysal.esda.mapclassify.Natural_Breaks attribute)

 	(pysal.esda.mapclassify.Percentiles attribute)

 	(pysal.esda.mapclassify.Quantiles attribute)

 	(pysal.esda.mapclassify.Std_Mean attribute)

 	(pysal.esda.mapclassify.User_Defined attribute)

 	yend (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_regimes.TSLS_Regimes attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

Z

 	
 	z (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	z_norm (pysal.esda.geary.Geary attribute)

 	(pysal.esda.getisord.G attribute)

 	(pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	z_rand (pysal.esda.geary.Geary attribute)

 	(pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	z_sim (pysal.esda.geary.Geary attribute)

 	(pysal.esda.getisord.G attribute)

 	(pysal.esda.getisord.G_Local attribute)

 	(pysal.esda.moran.Moran attribute)

 	(pysal.esda.moran.Moran_BV attribute)

 	(pysal.esda.moran.Moran_Local attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	(pysal.esda.moran.Moran_Local_Rate attribute)

 	(pysal.esda.moran.Moran_Rate attribute)

 	z_stat (pysal.spreg.error_sp.GM_Combo attribute)

 	(pysal.spreg.error_sp.GM_Endog_Error attribute)

 	(pysal.spreg.error_sp.GM_Error attribute)

 	(pysal.spreg.error_sp_het.GM_Combo_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute)

 	(pysal.spreg.error_sp_het.GM_Error_Het attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute)

 	(pysal.spreg.error_sp_hom.GM_Combo_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom.GM_Error_Hom attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute)

 	(pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute)

 	(pysal.spreg.ml_error.ML_Error attribute)

 	(pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute)

 	(pysal.spreg.ml_lag.ML_Lag attribute)

 	(pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute)

 	(pysal.spreg.probit.Probit attribute)

 	(pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	
 	z_wcg (pysal.inequality.gini.Gini_Spatial attribute)

 	zI (pysal.spreg.diagnostics_sp.MoranRes attribute)

 	Zs (pysal.esda.getisord.G_Local attribute)

 	zthhthi (pysal.spreg.twosls.TSLS attribute)

 	(pysal.spreg.twosls_sp.GM_Lag attribute)

 	(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute)

 	zx (pysal.esda.moran.Moran_BV attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 	zy (pysal.esda.moran.Moran_BV attribute)

 	(pysal.esda.moran.Moran_Local_BV attribute)

 PySAL License

PySAL License

Copyright (c) 2007-2014, PySAL Developers

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the GeoDa Center for Geospatial Analysis and Computation
nor the names of PySAL contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

 Funding

Funding

National Science Foundation CyberGIS Software Integration for Sustained Geospatial Innovation [http://geodacenter.asu.edu/about/news/NSF_Cyber_Award]

National Institute of Justice Flexible Geospatial Visual Analytics and Simulation Technologies to Enhance Criminal Justice Decision Support Systems [http://geoplan.asu.edu/node/3855]

National Institutes of Health Geospatial Factors and Impacts: Measurement and Use (R01CA126858-02) [http://geodacenter.asu.edu/projects/rti/content/geospatial-fact]

National Science Foundation An Exploratory Space-Time Data Analysis Toolkit for Spatial Social Science Research (0433132) [http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0433132]

National Science Foundation Hedonic Models of Location Decisions with Applications to Geospatial Microdata (0852261) [http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0852261]

 Upcoming Events

Upcoming Events

2014-11-12: PySAL Workshop at the North American Meetings of the Regional Science Association Meetings, Bethesda [http://www.narsc.org/newsite/?page_id=67]

News

(2014-09-23) PySAL Tutorial at GIScience 2014,
Vienna [http://www.giscience.org/workshops_tutorials.html]

(2014-09-08) PySAL Workshop at FOSS4G 2014,
Portland [https://2014.foss4g.org/schedule/workshops/#wshop-content-568]

(2014-08-08) National Science Foundation Funding for New Approaches to Spatial Distribution Dynamics [https://geoplan.asu.edu/research-projects/new-approaches-spatial-distribution-dynamics]

(2014-07-25) PySAL 1.8.0 released [http://PySAL.readthedocs.org/en/v1.8/users/installation.html]

(2014-01-31) PySAL 1.7.0 released [https://github.com/pysal/pysal/wiki/PySAL-1.7-Release-(2014-01-31)]

(2013-11-13) PySAL Workshop at North American Regional Science Association Meetings, Atlanta, GA [http://www.narsc.org/newsite/?page_id=2547]

(2013-07-31) PySAL 1.6.0 released [https://github.com/pysal/pysal/wiki/PySAL-1.6-Released-(2013-07-31)]

(2013-01-30) PySAL 1.5.0 released [http://code.google.com/p/pysal/wiki/Announce1_5]

(2012-10-24) PySAL short course at OSGRS 2012 [https://twitter.com/OGRS2012/status/261106998861504512]

(2012-09-18) PySAL short course at GIScience 2012 [http://www.giscience.org/workshops.html]

(2012-07-31) PySAL 1.4.0 released [http://code.google.com/p/pysal/wiki/Announce1_4]

(2012-07-30) Short course on PySAL for Spatial Regression [https://www.geodapress.com/workshops/spatial-regression#description]

(2012-07-30) PySAL presentation at Joint Statistical Meetings [https://www.amstat.org/meetings/jsm/2012/onlineprogram/AbstractDetails.cfm?abstractid=303498]

(2012-07-18) PySAL at SciPy 2012 [http://conference.scipy.org/scipy2012/schedule/conf_schedule_1.php]

(2012-01-31) PySAL 1.3.0 released [http://code.google.com/p/pysal/wiki/Announce1_3]

(2011-07-31) PySAL 1.2.0 released [http://code.google.com/p/pysal/wiki/Announce1_2]

(2011-01-31) PySAL 1.1.0 released [http://code.google.com/p/pysal/wiki/Announce1_1]

(2010-07-31) PySAL 1.0.0 released [http://code.google.com/p/pysal/wiki/Announce1_0]

(2010-01-6) New Website for PySAL!

(2009-11-03) National Institute of Justice funding [http://geoplan.asu.edu/node/3855]

 References

References

	[Akaike1974]	Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19(6):716–723.

	[Anselin1988]	Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publishers. Dordrecht.

	[Anselin1996a]	Anselin, L., Bera, A., Florax, R. J. G. M., and Yoon, M. (1996). Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics, 26:77–104.

	[Anselin1996b]	Anselin, L. and Smirnov, O. (1996). Efficient algorithms for constructing proper higher order spatial lag operators*. Journal of Regional Science, 36(1):67–89.

	[Anselin1997]	Anselin, L. and Kelejian, H. H. (1997). Testing for spatial error autocorrelation in the presence of endogenous regressors. International Regional Science Review, 20(1-2):153–182.

	[Anselin2011]	Anselin, L. (2011). GMM Estimation of Spatial Error Autocorrelation with and without Heteroskedasticity.

	[Arraiz2010]	Arraiz, I., Drukker, D. M., Kelejian, H. H., and Prucha, I. R. (2010). A spatial Cliff-Ord-type model with heteroskedastic innovations: Small and large sample results. Journal of Regional Science, 50(2):592–614.

	[Assuncao1999]	Assuncao, R. M. and Reis, E. A. (1999). A new proposal to adjust moran’s i for population density. Statistics in medicine, 18(16):2147–2162.

	[Baker2004]	Baker, R. D. (2004). Identifying space–time disease clusters. Acta tropica, 91(3):291–299.

	[Belsley1980]	Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity, volume 1.

	[Bickenbach2003]	Bickenbach, F. and Bode, E. (2003). Evaluating the Markov property in studies of economic convergence. International Regional Science Review, 26(3):363–392.

	[Breusch1979]	Breusch, T. S. and Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica: Journal of the Econometric Society, pages 1287–1294.

	[Choynowski1959]	Choynowski, M. (1959). Maps based on probabilities. Journal of the American Statistical Association, 54(286):385–388.

	[Christensen2005]	Christensen, D. (2005). Fast algorithms for the calculation of kendalls τ. Computational Statistics, 20(1):51–62.

	[Cliff1981]	Cliff, A. D. and Ord, J. K. (1981). Spatial processes, models & applications. Pion, London.

	[DeBerg2008]	De Berg, M., Cheong, O., Van Kreveld, M., and Overmars, M. (2008). Computational geometry: algorithms and applications. Springer.

	[Drukker2011]	Drukker, D., Prucha, I., and Raciborski, R. (2011). A command for estimating spatial-autoregressive models with spatial-autoregressive disturbances and additional endogenous variables. Technical report, Technical report, Stata.

	[Drukker2013]	Drukker, D. M., Egger, P., and Prucha, I. R. (2013). On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. Econometric Reviews, 32(5-6):686–733.

	[Getis1992]	Getis, A. and Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3):189–206.

	[Getis1996]	Getis, A. and Ord, J. K. (1996). Local spatial statistics: an overview. Spatial Analysis: Modelling in a GIS Environment, 374.

	[Greene2003]	Greene, W. H. (2003). Econometric analysis. Pearson Education India.

	[Jacquez1996]	Jacquez, G. M. (1996). A k nearest neighbour test for space–time interaction. Statistics in medicine, 15(18):1935–1949.

	[Jarque1980]	Jarque, C. M. and Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics letters, 6(3):255–259.

	[Jiang2013]	Jian, B. (2013). Head/Tail breaks: A new classification scheme for data with a heavy-tailed distribution. The Professional Geographer, 65(3): 482-494.

	[Kelejian1998]	Kelejian, H. H. and Prucha, I. R. (1998). A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. The Journal of Real Estate Finance and Economics, 17(1):99–121.

	[Kelejian1999]	Kelejian, H. H. and Prucha, I. R. (1999). A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review, 40:509–534.

	[Kelejian2001]	Kelejian, H. H. and Prucha, I. R. (2001). On the asymptotic distribution of the Moran I test statistic with applications. Journal of Econometrics, 104(2):219–257.

	[Kelejian2004]	Kelejian, H. H., Prucha, I. R., and Yuzefovich, Y. (2004). Instrumental variable estimation of a spatial autoregressive model with autoregressive disturbances: Large and small sample results. Advances in Econometrics: Spatial and Spatio-Temporal econometrics, pages 163–198.

	[Kemeny1967]	Kemeny, J. G. and Snell, J. L. (1967). Finite markov chains. Van Nostrand.

	[Knox1964]	Knox, G. (1964). The detection of space-time interactions. Applied Statistics, 13:25–29.

	[Koenker1982]	Koenker, R. and Bassett Jr, G. (1982). Robust tests for heteroscedasticity based on regression quantiles. Econometrica: Journal of the Econometric Society, pages 43–61.

	[Kullback1962]	Kullback, S., Kupperman, M., and Ku, H. (1962). Tests for contingency tables and markov chains. Technometrics, 4(4):573–608.

	[Mantel1967]	Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer research, 27(2 Part 1):209–220.

	[McMillen1992]	McMillen, D. (1992) Probit with spatial autocorrelation. Journal of Regional Science 32(3):335-48.

	[Ord1995]	Ord, J. K. and Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27(4):286–306.

	[Pinkse1998]	Pinkse, J. and Slade, M. E. (1998). Contracting in space: An application of spatial statistics to discrete-choice models. Journal of Econometrics, 85(1):125–154.

	[Pinkse2004]	Pinske, J. (2004). Moran-flavored tests with nuisance parameters: Examples. In Anselin, L., Florax, R. J. G. M., and Rey, S. J., editors, Advances in Spatial Econometrics: Methodology, Tools and Applications, pages 67–77. Springer, Berlin.

	[Press2007]	Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (2007). Numerical recipes: the art of scientific computing. Cambridge Univ Pr, Cambridge, 3rd edition.

	[Rey2001]	Rey, S. J. (2001). Spatial empirics for economic growth and convergence. Geographical Analysis, 33(3):195–214.

	[Rey2004a]	Rey, S. J. (2004). Spatial dependence in the evolution of regional income distributions. In Getis, A., Múr, J., and Zoeller, H., editors, Spatial econometrics and spatial statistics, pages 193–213. Palgrave, Hampshire.

	[Rey2004b]	Rey, S. J. (2004). Spatial analysis of regional economic growth, inequality and change,in M.F. Goodchild and D.G. Jannelle (eds.) Spatially Integrated Social Science. Oxford University Press: Oxford. Pages 280-299.

	[Rey2011]	Rey, S. J., Murray, A. T., and Anselin, L. (2011). Visualizing regional income distribution dynamics. Letters in Spatial and Resource Sciences, 4(1):81–90.

	[Rey2013]	Rey, S. J. and Smith, R. J. (2013). A spatial decomposition of the Gini coefficient. Letters in Spatial and Resource Sciences, 6:55–70.

	[Rey2014]	Rey, S. J. (2014). Fast algorithms for a space-time concordance measure. Computational Statistics, 29(3-4):799–811.

	[Schwarz1978]	Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2):461–464.

	[Slocum2008]	Slocum, T., McMaster, R., Kessler, F., and Howard, H. (2008). Thematic cartography and geovisualization. Prentice Hall.

	[Watts1998]	Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684):440–442.

	[White1980]	White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society, pages 817–838.

_images/math/db82b96ef84c9f60a4c3dfc989c5ae09cb43fbc2.png
pri = 1 — pi;

_images/math/740471d776c9877ecc3bb16ae558b8483cee2074.png

_images/math/bba29abd2efa248e2bdbe46a98e7d4a7650e5cd9.png
Ye med

_images/math/d80b5d15d00e36ced380d47d778f9ef5139b3b68.png

_images/math/d3cbdd94feea717dbbb22fcbdb765e64e1950b67.png
K(z)=(1-2%if|z| <1

_images/math/1159f668a5717dce5dcd3a4b251a8f824b2593d0.png

_images/math/b9d10b54744d07746b97f53c55eb98046fd76c8c.png

_images/math/0b6213f8c3357adb2a78989702d58345b6bb0acd.png

_images/math/1049b1516d0ff77f895a5f7213b868ab984f7def.png
{lw;k}

_images/math/5496ce4d0c0cf489539f802476003a74007db730.png

_images/math/557d5fad862c9046d26e1a930f45a550c146d592.png

_images/math/838b34ee8845abed9d2c6f778df9387eecd350b4.png

_images/math/2abee6d88e60a6bf6ff09314f45770af3981bf3c.png
1, ifdj <7

0, otherwise

_images/math/df0deb143e5ac127f00bd248ee8001ecae572adc.png

_images/math/12af37d68fba1cca79e13f879df31f9e322c87f5.png
=5 w
= wi,

_images/math/c234d603d919021c25df22bb39079fa800cb1da4.png
Zij

=d; /Iy

_images/math/6df61e4d06d35bc8a04ea7bc6b1cd23505cfcdb8.png
Z =33 (dy + P(dl + o)

_images/math/13389b3fb5b42d326c1fe626a8f98cc23580d87d.png

_images/math/fece4a8c588292de518756420edb4807157c0af4.png
@)
2 /(n—2)H1/2)

2J

_images/math/33a4df61b0f6f9e3b6932cb7c92117e4680c7de6.png

_images/math/ff90a5f025d9fd305aac19c8dd64fa15f0c789a1.png

_images/math/595eb114bd693fcd2f2f4798760a2e4a46cabb1c.png

_images/math/1cfa503fe67c1ccac551e63dc832756f59fdccb1.png

_images/math/466f6c0aa4a6c5067300734ab3803ea9b31d9f25.png

_images/math/eaa6ad49a7f78fe5a13b486690163bf2dc7e3e60.png

_images/math/303b87ee422ad89ae88c8bd814b64adc4a17ee2a.png
min(y) +wx*(j+1)

_images/math/27d463da4622be5b3ef1d4176ced7d7a323c6425.png

_images/math/ccd8c1a53f337aec53d9a1b11566fa62479b3f63.png
t
d;

_images/math/66b36e2589e743ba44e43520f13b5152b1760bdf.png
Su =) wi;(j #1)

_images/math/2f6a88bec77e3c789f6464c6e145931af55130ae.png

_images/math/602dd6732e162dc5f139a798e6ebdeb5a87c431a.png

_images/math/0ab3bf2e268159a2c7aabf6533d7fba78f3a4759.png
. 1, if event j is a k nearest neighbor of event i in time
b=
K700, otherwise

_images/math/fbcdf81ecae64cc0a2a78e6498455339fcdbf643.png
I=n/S)) zwiz/) %
— n

_images/math/16c25beab38004a117e595ec8ab3b48fa78886f4.png
lyi — w3

_images/math/cc923c0bc2d82aabdd5b8752dcde645777a6a2bd.png

_images/math/2b1c0c73e9ebc0889c1a860ba0c4bc740bda7daa.png
"
&

_images/math/0b7c1e16a3a8a849bb8ffdcdbf86f65fd1f30438.png

_images/math/46832e8eff2171864496bed218daacc3b7ce0afa.png

_images/math/df510296974d3419e8a366b9dc40736cfaf1e114.png

_images/math/29dabbda0b5df15ccd41c6b743c78b600e572754.png
§

. wi

_images/math/f96540536da43434e71f290ed088a4b129fa9bc2.png

_images/math/d2ed2630e579be280a30b6646f4d706103c337ce.png

_images/math/cf511a659e0bfc5c5c520ef9138f07b886c90126.png

_images/math/3c87e04d75ed2764bf4b574b009b4a3fd92adb97.png
1, ifdj<s

0, otherwise

_images/math/62da6708b5a86390d25d99c23dc64cfaf0f7ce22.png

_images/math/12556b93b9c56ef6654644531029b3ad1cb53557.png
GADF=1-) » |yi—ye m\/z 1% = Ymed

= ice

_images/math/11bf12ddeed09f4909c0307f36145ffc14784e3b.png
ot

_images/math/fa3cc1c3c70f27ed31112d9f29c92db44288d85d.png

_images/math/e11f2701c4a39c7fe543a6c4150b421d50f1c159.png

_images/math/1a7e43ef0dc238d84ece48ea49c8e9b59adb26fb.png
2.1 2.5 Wi j(d)yy;

Gld) = =% > vy

_images/math/85b2fe2befba01fa3f32908f2f58035b012f7cf5.png
sh= (k= p, -
h=(k 2
>)/ (k= 1)

_images/math/395ea87d7a5de85f5f6f49a435bd2917f479ed0d.png

_images/math/fd864e6f6d241a3d0f98035819873b2aa6fb2f6c.png
Ymed

_static/comment.png

_static/minus.png

_images/math/3fb26513781565594bce0d493592e5fed404f7b1.png
. 1, if event j is a k nearest neighbor of event i in space
0ty =
700, otherwise

_static/file.png

_images/math/24da571cd2b7366083f4a72f7e7c342a9b5f79cb.png

_images/math/cfa2b8992a2e7e60fb7882caafc58a5314ed8627.png
p=m+1)/(n+1)

_static/ajax-loader.gif

_images/math/634a871eeb48561e27379237f9dbb92ad0a71a60.png
w =

_static/plus.png

_images/math/cadd21e7374f6a45046e4af6bd1f0bd995e60777.png

_static/favicon.png

_images/math/68cf1ed9325d5c031ee13927e48c99f10b20ff89.png
So =) ;2. Wij

_static/pysalgraph.png

_images/math/ae12a24f88803b5895632e4848d87d46483c492c.png

_static/comment-bright.png

_images/math/eed7e8356a2b7cff1ecdd78bb02faf8db755ef7f.png
K(z) = (2m)" Y exp(—22/2)

_images/math/719f297bc0abab8f461a5f5a820fdc5610fb468f.png
wi; #

_images/math/a702e781dfc76762a3a132c2031fba8898430925.png

_images/math/3be04d4207434584251f6921820c24ac9fa8c6f1.png

_images/math/b191732857a8186e80442b5922e564c9196f69bf.png

_images/math/74ee0de7f1833f4ce902d2b625b419160c9687e5.png
h; = mazx(dknn)Vi

_static/comment-close.png

_images/math/7d70baa9e9f8b65822da8b957204ca989cf063dc.png

_images/math/f663ed6847fe102214f6e808955553dabf158759.png
7 Jt

_static/images/feed-icon.png

_static/images/socal_2.jpg

_images/math/f06da32afedd2e3c81c051839ced49918455fc0d.png
Wiy

_images/math/295c85f91cd127260eb1febb3cdbc49b2f226d19.png

_images/math/e1fcb78553d9f351b1b50556cb96a3c68e7b0af8.png

_images/math/afce44aa7c55836ca9345404c22fc7b599d2ed84.png

_images/math/386142a991dcf481c32851841228cc01da1a181c.png
g; (21%:1 vi n {NZE] %D

_images/math/dac50d5f377317d5bd79c2e547785fc9165a190e.png

_images/math/5e3a49c6f776539ee49de3ecad46ac0cad3d9c4a.png

_static/images/yi_jing_01_chien.jpg

