

Welcome to PynamoDB’s documentation!

PynamoDB is a Pythonic interface to Amazon’s DynamoDB. By using simple, yet powerful abstractions
over the DynamoDB API, PynamoDB allows you to start developing immediately.

Features

	Python 3 support

	Python 2 support

	Support for Unicode, Binary, JSON, Number, Set, and UTC Datetime attributes

	Support for DynamoDB Local

	Support for all of the DynamoDB API

	Support for Global and Local Secondary Indexes

	Batch operations with automatic pagination

	Iterators for working with Query and Scan operations

	Fully tested [https://coveralls.io/r/pynamodb/PynamoDB]

Topics

	Usage
	Creating a model

	Changing items

	Querying

	Counting Items

	Batch Operations

	Basic Tutorial
	Why PynamoDB?

	Installation

	Getting Started

	Using the Model

	Index Queries
	Index Settings

	Global Secondary Indexes

	Local Secondary Indexes

	Querying an index

	Batch Operations
	Batch Writes

	Batch Gets

	Query Filters

	Scan Filters

	Limiting results

	Update Operations
	Update Expressions

	Conditional Operations
	Condition Expressions

	Conditional Model.save

	Conditional Model.update

	Conditional Model.delete

	Conditional Operation Failures

	Custom Attributes
	Attribute Methods

	Writing your own attribute

	Custom Attribute Example

	List Attributes

	Map Attributes

	Use PynamoDB Locally
	Running dynalite

	Running DynamoDB Local

	Table Backups
	Backing up a table

	Restoring from a backup

	Signals
	Subscribing to Signals

	PynamoDB Examples
	Install PynamoDB

	Getting the examples

	Running the examples

	Configuring the examples

	Running an example

	Settings
	Settings reference

	Overriding settings

	Low Level API
	Creating a connection

	Modifying tables

	Modifying items

	AWS Access

	Logging

	Contributing
	Testing

	Release Notes
	v3.3.0

	v3.2.1

	v3.2.0

	v3.2.0rc2

	v3.2.0rc1

	v3.1.0

	v3.0.1

	v2.2.0

	v2.1.6

	v2.1.5

	v2.1.4

	v2.0.3

	v2.0.2

	v2.0.1

	v2.0.0

	v1.6.0

	v1.5.4

	v1.5.3

	v1.5.2

	v1.5.1

	v1.5.0

	v1.4.4

	v1.4.3

	v1.4.2

	v1.4.1

	v1.4.0

	v1.3.7

	v1.3.6

	v1.3.5

	v1.3.4

	v1.3.3

	v1.3.2

	v1.3.1

	v1.3.0

	v1.2.2

	v1.2.1

	v1.2.0

	v1.1.0

	v1.0.0

	v0.1.13

	v0.1.12

	v0.1.11

	Versioning Scheme

API docs

	API
	High Level API

	Low Level API

	Exceptions

	Migration API

Indices and tables

	Index

	Module Index

	Search Page

Usage

PynamoDB was written from scratch to be Pythonic, and supports the entire DynamoDB API.

Creating a model

Let’s create a simple model to describe users.

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class UserModel(Model):
 """
 A DynamoDB User
 """
 class Meta:
 table_name = 'dynamodb-user'
 region = 'us-west-1'
 email = UnicodeAttribute(hash_key=True)
 first_name = UnicodeAttribute()
 last_name = UnicodeAttribute()

Models are backed by DynamoDB tables. In this example, the model has a hash key attribute
that stores the user’s email address. Any attribute can be set as a hash key by including the argument
hash_key=True. The region attribute is not required, and will default to us-east-1 if not provided.

PynamoDB allows you to create the table:

>>> UserModel.create_table(read_capacity_units=1, write_capacity_units=1)

Now you can create a user in local memory:

>>> user = UserModel('test@example.com', first_name='Samuel', last_name='Adams')
dynamodb-user<test@example.com>

To write the user to DynamoDB, just call save:

>>> user.save()

You can see that the table count has changed:

>>> UserModel.count()
1

Attributes can be accessed and set normally:

>>> user.email
'test@example.com'
>>> user.email = 'foo-bar'
>>> user.email
'foo-bar

Did another process update the user? We can refresh the user with data from DynamoDB:

>>> user.refresh()

Ready to delete the user?

>>> user.delete()

Changing items

Changing existing items in the database can be done using either
update() or save(). There are important differences between the
two.

Use of save() looks like this:

user = UserModel.get('test@example.com')
user.first_name = 'Robert'
user.save()

Use of update() (in its simplest form) looks like this:

user = UserModel.get('test@example.com')
user.update(
 actions=[
 UserModel.first_name.set('Robert')
]
)

save() will entirely replace an object (it internally uses PutItem [http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html]). As
a consequence, even if you modify only one attribute prior to calling
save(), the entire object is re-written. Any modifications done to
the same user by other processes will be lost, even if made to other
attributues that you did not change. To avoid this, use update() to
perform more fine grained updates or see the
Conditional Operations for how to avoid race conditions
entirely.

Additionally, PynamoDB ignores attributes it does not know about when
reading an object from the database. As a result, if the item in
DynamoDB contains attributes not declared in your model, save() will
cause those attributes to be deleted.

In particular, performing a rolling upgrade of your application after
having added an attribute is an example of such a situation. To avoid
data loss, either avoid using save() or perform a multi-step update
with the first step is to upgrade to a version that merely declares
the attribute on the model without ever setting it to any value.

Querying

PynamoDB provides an intuitive abstraction over the DynamoDB Query API.
All of the Query API comparison operators are supported.

Suppose you had a table with both a hash key that is the user’s last name
and a range key that is the user’s first name:

class UserModel(Model):
 """
 A DynamoDB User
 """
 class Meta:
 table_name = 'dynamodb-user'
 email = UnicodeAttribute()
 first_name = UnicodeAttribute(range_key=True)
 last_name = UnicodeAttribute(hash_key=True)

Now, suppose that you want to search the table for users with a last name
‘Smith’, and first name that begins with the letter ‘J’:

for user in UserModel.query('Smith', UserModel.first_name.startswith('J')):
 print(user.first_name)

You can combine query terms:

for user in UserModel.query('Smith', UserModel.first_name.startswith('J') | UserModel.email.contains('domain.com')):
 print(user)

Counting Items

You can retrieve the count for queries by using the count method:

print(UserModel.count('Smith', UserModel.first_name.startswith('J'))

Counts also work for indexes:

print(UserModel.custom_index.count('my_hash_key'))

Alternatively, you can retrieve the table item count by calling the count method without filters:

print(UserModel.count())

Note that the first positional argument to count() is a hash_key. Although
this argument can be None, filters must not be used when hash_key is None:

raises a ValueError
print(UserModel.count(UserModel.first_name == 'John'))

returns count of only the matching users
print(UserModel.count('my_hash_key', UserModel.first_name == 'John'))

Batch Operations

PynamoDB provides context managers for batch operations.

Note

DynamoDB limits batch write operations to 25 PutRequests and DeleteRequests combined. PynamoDB automatically groups your writes 25 at a time for you.

Let’s create a whole bunch of users:

with UserModel.batch_write() as batch:
 for i in range(100):
 batch.save(UserModel('user-{0}@example.com'.format(i), first_name='Samuel', last_name='Adams'))

Now, suppose you want to retrieve all those users:

user_keys = [('user-{0}@example.com'.format(i)) for i in range(100)]
for item in UserModel.batch_get(user_keys):
 print(item)

Perhaps you want to delete all these users:

with UserModel.batch_write() as batch:
 items = [UserModel('user-{0}@example.com'.format(x)) for x in range(100)]
 for item in items:
 batch.delete(item)

Basic Tutorial

PynamoDB is attempt to be a Pythonic interface to DynamoDB that supports all of DynamoDB’s
powerful features in both Python 3, and Python 2. This includes support for unicode and
binary attributes.

But why stop there? PynamoDB also supports:

	Sets for Binary, Number, and Unicode attributes

	Automatic pagination for bulk operations

	Global secondary indexes

	Local secondary indexes

	Complex queries

Why PynamoDB?

It all started when I needed to use Global Secondary Indexes, a new and powerful feature of
DynamoDB. I quickly realized that my go to library, dynamodb-mapper [https://dynamodb-mapper.readthedocs.io/en/latest/], didn’t support them.
In fact, it won’t be supporting them anytime soon because dynamodb-mapper relies on another
library, boto.dynamodb [http://docs.pythonboto.org/en/latest/migrations/dynamodb_v1_to_v2.html],
which itself won’t support them. In fact, boto doesn’t support
Python 3 either. If you want to know more, I blogged about it [http://jlafon.io/pynamodb.html].

Installation

$ pip install pynamodb

Don’t have pip? Here are instructions for installing pip. [https://pip.readthedocs.io/en/latest/installing.html].

Getting Started

PynamoDB provides three API levels, a Connection, a TableConnection, and a Model.
Each API is built on top of the previous, and adds higher level features. Each API level is
fully featured, and can be used directly. Before you begin, you should already have an
Amazon Web Services account [http://aws.amazon.com/], and have your
AWS credentials configured your boto [https://boto.readthedocs.io/en/latest/boto_config_tut.html].

Defining a Model

The most powerful feature of PynamoDB is the Model API. You start using it by defining a model
class that inherits from pynamodb.models.Model. Then, you add attributes to the model that
inherit from pynamodb.attributes.Attribute. The most common attributes have already been defined for you.

Here is an example, using the same table structure as shown in Amazon’s DynamoDB Thread example [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SampleTablesAndData.html].

Note

The table that your model represents must exist before you can use it. It can be created in this example
by calling Thread.create_table(…). Any other operation on a non existent table will cause a TableDoesNotExist
exception to be raised.

from pynamodb.models import Model
from pynamodb.attributes import (
 UnicodeAttribute, NumberAttribute, UnicodeSetAttribute, UTCDateTimeAttribute
)

class Thread(Model):
 class Meta:
 table_name = 'Thread'

 forum_name = UnicodeAttribute(hash_key=True)
 subject = UnicodeAttribute(range_key=True)
 views = NumberAttribute(default=0)
 replies = NumberAttribute(default=0)
 answered = NumberAttribute(default=0)
 tags = UnicodeSetAttribute()
 last_post_datetime = UTCDateTimeAttribute()

All DynamoDB tables have a hash key, and you must specify which attribute is the hash key for each Model you define.
The forum_name attribute in this example is specified as the hash key for this table with the hash_key argument;
similarly the subject attribute is specified as the range key with the range_key argument.

Model Settings

The Meta class is required with at least the table_name class attribute to tell the model which DynamoDB table to use -
Meta can be used to configure the model in other ways too. You can specify which DynamoDB region to use with the region,
and the URL endpoint for DynamoDB can be specified using the host attribute. You can also specify the table’s read and write
capacity by adding read_capacity_units and write_capacity_units attributes.

Here is an example that specifies both the host and the region to use:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread(Model):
 class Meta:
 table_name = 'Thread'
 # Specifies the region
 region = 'us-west-1'
 # Optional: Specify the hostname only if it needs to be changed from the default AWS setting
 host = 'http://localhost'
 # Specifies the write capacity
 write_capacity_units = 10
 # Specifies the read capacity
 read_capacity_units = 10
 forum_name = UnicodeAttribute(hash_key=True)

Defining Model Attributes

A Model has attributes, which are mapped to attributes in DynamoDB. Attributes are responsible for serializing/deserializing
values to a format that DynamoDB accepts, optionally specifying whether or not an attribute may be empty using the null argument,
and optionally specifying a default value with the default argument. You can specify a default value for any field, and default
can even be a function.

Note

DynamoDB will not store empty attributes [http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html].
By default, an Attribute cannot be None unless you specify null=True in the
attribute constructor.

DynamoDB attributes can’t be null and set attributes can’t be empty.
PynamoDB attempts to do the right thing by pruning null attributes when serializing an item to be put into DynamoDB.
By default, PynamoDB attributes can’t be null either - but you can easily override that by adding null=True to the constructor of the attribute.
When you make an attribute nullable, PynamoDB will omit that value if the value is None when saving to DynamoDB.
It is not recommended to give every attribute a value if those values can represent null, as those values representing null take up space - which literally costs you money
(DynamoDB pricing is based on reads and writes per second per KB).
Instead, treat the absence of a value as equivalent to being null (which is what PynamoDB does).
The only exception of course, are hash and range keys which must always have a value.

Here is an example of an attribute with a default value:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread(Model):
 class Meta:
 table_name = 'Thread'
 forum_name = UnicodeAttribute(hash_key=True, default='My Default Value')

Here is an example of an attribute with a default callable value:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

def my_default_value():
 return 'My default value'

class Thread(Model):
 class Meta:
 table_name = 'Thread'
 forum_name = UnicodeAttribute(hash_key=True, default=my_default_value)

Here is an example of an attribute that can be empty:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread(Model):
 class Meta:
 table_name = 'Thread'
 forum_name = UnicodeAttribute(hash_key=True)
 my_nullable_attribute = UnicodeAttribute(null=True)

By default, PynamoDB assumes that the attribute name used on a Model has the same
name in DynamoDB. For example, if you define a UnicodeAttribute called ‘username’ then
PynamoDB will use ‘username’ as the field name for that attribute when interacting with DynamoDB.
If you wish to have custom attribute names, they can be overidden. One such use case is the ability to
use human readable attribute names in PynamoDB that are stored in DynamoDB using shorter, terse attribute
to save space.

Here is an example of customizing an attribute name:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread(Model):
 class Meta:
 table_name = 'Thread'
 forum_name = UnicodeAttribute(hash_key=True)
 # This attribute will be called 'tn' in DynamoDB
 thread_name = UnicodeAttribute(null=True, attr_name='tn')

PynamoDB comes with several built in attribute types for convenience, which include the following:

	UnicodeAttribute

	UnicodeSetAttribute

	NumberAttribute

	NumberSetAttribute

	BinaryAttribute

	BinarySetAttribute

	UTCDateTimeAttribute

	BooleanAttribute

	JSONAttribute

	MapAttribute

All of these built in attributes handle serializing and deserializng themselves, in both Python 2 and Python 3.

Creating the table

If your table doesn’t already exist, you will have to create it. This can be done with easily:

>>> if not Thread.exists():
 Thread.create_table(read_capacity_units=1, write_capacity_units=1, wait=True)

The wait argument tells PynamoDB to wait until the table is ready for use before returning.

Deleting a table

Deleting is made quite simple when using a Model:

>>> Thread.delete_table()

Using the Model

Now that you’ve defined a model (referring to the example above), you can start interacting with
your DynamoDB table. You can create a new Thread item by calling the Thread constructor.

Creating Items

>>> thread_item = Thread('forum_name', 'forum_subject')

The first two arguments are automatically assigned to the item’s hash and range keys. You can
specify attributes during construction as well:

>>> thread_item = Thread('forum_name', 'forum_subject', replies=10)

The item won’t be added to your DynamoDB table until you call save:

>>> thread_item.save()

If you want to retrieve an item that already exists in your table, you can do that with get:

>>> thread_item = Thread.get('forum_name', 'forum_subject')

If the item doesn’t exist, Thread.DoesNotExist will be raised.

Updating Items

You can update an item with the latest data from your table:

>>> thread_item.refresh()

Updates to table items are supported too, even atomic updates. Here is an example of
atomically updating the view count of an item + updating the value of the last post.

>>> thread_item.update(actions=[
 Thread.views.set(Thread.views + 1),
 Thread.last_post_datetime.set(datetime.now()),
])

Update actions use the update expression syntax (see Update Expressions).

Deprecated since version 2.0: update_item() is replaced with update()

>>> thread_item.update_item('views', 1, action='add')

Index Queries

DynamoDB supports two types of indexes: global secondary indexes, and local secondary indexes.
Indexes can make accessing your data more efficient, and should be used when appropriate. See
the documentation for more information [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html].

Index Settings

The Meta class is required with at least the projection class attribute to specify the projection type. For Global secondary indexes,
the read_capacity_units and write_capacity_units also need to be provided. By default, PynamoDB will use the class attribute
name that you provide on the model as the index_name used when making requests to the DynamoDB API. You can override the default
name by providing the index_name class attribute in the Meta class of the index.

Global Secondary Indexes

Indexes are defined as classes, just like models. Here is a simple index class:

from pynamodb.indexes import GlobalSecondaryIndex, AllProjection
from pynamodb.attributes import NumberAttribute

class ViewIndex(GlobalSecondaryIndex):
 """
 This class represents a global secondary index
 """
 class Meta:
 # index_name is optional, but can be provided to override the default name
 index_name = 'foo-index'
 read_capacity_units = 2
 write_capacity_units = 1
 # All attributes are projected
 projection = AllProjection()

 # This attribute is the hash key for the index
 # Note that this attribute must also exist
 # in the model
 view = NumberAttribute(default=0, hash_key=True)

Global indexes require you to specify the read and write capacity, as we have done
in this example. Indexes are said to project attributes from the main table into the index.
As such, there are three styles of projection in DynamoDB, and PynamoDB provides three corresponding
projection classes.

	AllProjection: All attributes are projected.

	KeysOnlyProjection: Only the index and primary keys are projected.

	IncludeProjection(attributes): Only the specified attributes are projected.

We still need to attach the index to the model in order for us to use it. You define it as
a class attribute on the model, as in this example:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class TestModel(Model):
 """
 A test model that uses a global secondary index
 """
 class Meta:
 table_name = 'TestModel'
 forum = UnicodeAttribute(hash_key=True)
 thread = UnicodeAttribute(range_key=True)
 view_index = ViewIndex()
 view = NumberAttribute(default=0)

Local Secondary Indexes

Local secondary indexes are defined just like global ones, but they inherit from LocalSecondaryIndex instead:

from pynamodb.indexes import LocalSecondaryIndex, AllProjection
from pynamodb.attributes import NumberAttribute

class ViewIndex(LocalSecondaryIndex):
 """
 This class represents a local secondary index
 """
 class Meta:
 # All attributes are projected
 projection = AllProjection()
 forum = UnicodeAttribute(hash_key=True)
 view = NumberAttribute(range_key=True)

You must specify the same hash key on the local secondary index and the model. The range key can be any attribute.

Querying an index

Index queries use the same syntax as model queries. Continuing our example, we can query
the view_index global secondary index simply by calling query:

for item in TestModel.view_index.query(1):
 print("Item queried from index: {0}".format(item))

This example queries items from the table using the global secondary index, called view_index, using
a hash key value of 1 for the index. This would return all TestModel items that have a view attribute
of value 1.

Local secondary index queries have a similar syntax. They require a hash key, and can include conditions on the
range key of the index. Here is an example that queries the index for values of view greater than zero:

for item in TestModel.view_index.query('foo', TestModel.view > 0):
 print("Item queried from index: {0}".format(item.view))

Batch Operations

Batch operations are supported using context managers, and iterators. The DynamoDB API has limits for each batch operation
that it supports, but PynamoDB removes the need implement your own grouping or pagination. Instead, it handles
pagination for you automatically.

Note

DynamoDB limits batch write operations to 25 PutRequests and DeleteRequests combined. PynamoDB automatically
groups your writes 25 at a time for you.

Suppose that you have defined a Thread Model for the examples below.

from pynamodb.models import Model
from pynamodb.attributes import (
 UnicodeAttribute, NumberAttribute
)

class Thread(Model):
 class Meta:
 table_name = 'Thread'

 forum_name = UnicodeAttribute(hash_key=True)
 subject = UnicodeAttribute(range_key=True)
 views = NumberAttribute(default=0)

Batch Writes

Here is an example using a context manager for a bulk write operation:

with Thread.batch_write() as batch:
 items = [TestModel('forum-{0}'.format(x), 'thread-{0}'.format(x)) for x in range(1000)]
 for item in items:
 batch.save(item)

Batch Gets

Here is an example using an iterator for retrieving items in bulk:

item_keys = [('forum-{0}'.format(x), 'thread-{0}'.format(x)) for x in range(1000)]
for item in Thread.batch_get(item_keys):
 print(item)

Query Filters

You can query items from your table using a simple syntax:

for item in Thread.query('ForumName', Thread.subject.startswith('mygreatprefix')):
 print("Query returned item {0}".format(item))

Additionally, you can filter the results before they are returned using condition expressions:

for item in Thread.query('ForumName', Thread.subject == 'Subject', Thread.views > 0):
 print("Query returned item {0}".format(item))

Query filters use the condition expression syntax (see Condition Expressions).

Note

DynamoDB only allows the following conditions on range keys: ==, <, <=, >, >=, between, and startswith.
DynamoDB does not allow multiple conditions using range keys.

Scan Filters

Scan filters have the same syntax as Query filters, but support all condition expressions:

>>> for item in Thread.scan(Thread.forum_name.startswith('Prefix') & (Thread.views > 10)):
 print(item)

Limiting results

Both Scan and Query results can be limited to a maximum number of items using the limit argument.

for item in Thread.query('ForumName', Thread.subject.startswith('mygreatprefix'), limit=5):
 print("Query returned item {0}".format(item))

Update Operations

The UpdateItem DynamoDB operations allows you to create or modify attributes of an item using an update expression.
See the official documentation [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html]
for more details.

Suppose that you have defined a Thread Model for the examples below.

from pynamodb.models import Model
from pynamodb.attributes import (
 ListAttribute, UnicodeAttribute, UnicodeSetAttribute, NumberAttribute
)

class Thread(Model):
 class Meta:
 table_name = 'Thread'

 forum_name = UnicodeAttribute(hash_key=True)
 subjects = UnicodeSetAttribute(default={})
 views = NumberAttribute(default=0)
 notes = ListAttribute(default=[])

Update Expressions

PynamoDB supports creating update expressions from attributes using a mix of built-in operators and method calls.
Any value provided will be serialized using the serializer defined for that attribute.

	DynamoDB Action / Operator

	PynamoDB Syntax

	Example

	SET

	set(value)

	Thread.views.set(10)

	REMOVE

	remove()

	Thread.subjects.remove()

	ADD

	add(value)

	Thread.subjects.add({‘A New Subject’, ‘Another New Subject’})

	DELETE

	delete(value)

	Thread.subjects.delete({‘An Old Subject’})

	attr_or_value_1 + attr_or_value_2

	attr_or_value_1 + attr_or_value_2

	Thread.views + 5

	attr_or_value_1 - attr_or_value_2

	attr_or_value_1 - attr_or_value_2

	5 - Thread.views

	list_append(attr , value)

	append(value)

	Thread.notes.append([‘my last note’])

	list_append(value , attr)

	prepend(value)

	Thread.notes.prepend([‘my first note’])

	if_not_exists(attr, value)

	attr | value

	Thread.forum_name | ‘Default Forum Name’

Conditional Operations

Some DynamoDB operations (UpdateItem, PutItem, DeleteItem) support the inclusion of conditions. The user can supply a condition to be
evaluated by DynamoDB before the operation is performed. See the official documentation [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.ConditionalUpdate]
for more details.

Suppose that you have defined a Thread Model for the examples below.

from pynamodb.models import Model
from pynamodb.attributes import (
 UnicodeAttribute, NumberAttribute
)

class Thread(Model):
 class Meta:
 table_name = 'Thread'

 forum_name = UnicodeAttribute(hash_key=True)
 subject = UnicodeAttribute(range_key=True)
 views = NumberAttribute(default=0)

Condition Expressions

PynamoDB supports creating condition expressions from attributes using a mix of built-in operators and method calls.
Any value provided will be serialized using the serializer defined for that attribute.
See the comparison operator and function reference [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html]
for more details.

	DynamoDB Condition

	PynamoDB Syntax

	Example

	=

	==

	Thread.forum_name == ‘Some Forum’

	<>

	!=

	Thread.forum_name != ‘Some Forum’

	<

	<

	Thread.views < 10

	<=

	<=

	Thread.views <= 10

	>

	>

	Thread.views > 10

	>=

	>=

	Thread.views >= 10

	BETWEEN

	between(lower , upper)

	Thread.views.between(1, 5)

	IN

	is_in(*values)

	Thread.subject.is_in(‘Subject’, ‘Other Subject’)

	attribute_exists (path)

	exists()

	Thread.forum_name.exists()

	attribute_not_exists (path)

	does_not_exist()

	Thread.forum_name.does_not_exist()

	attribute_type (path , type)

	is_type()

	Thread.forum_name.is_type()

	begins_with (path , substr)

	startswith(prefix)

	Thread.subject.startswith(‘Example’)

	contains (path , operand)

	contains(item)

	Thread.subject.contains(‘foobar’)

	size (path)

	size(attribute)

	size(Thread.subject) == 10

	AND

	&

	(Thread.views > 1) & (Thread.views < 5)

	OR

	|

	(Thread.views < 1) | (Thread.views > 5)

	NOT

	~

	~Thread.subject.contains(‘foobar’)

Conditions expressions using nested list and map attributes can be created with Python’s item operator []:

from pynamodb.models import Model
from pynamodb.attributes import (
 ListAttribute, MapAttribute, UnicodeAttribute
)

class Container(Model):
 class Meta:
 table_name = 'Container'

 name = UnicodeAttribute(hash_key = True)
 my_map = MapAttribute()
 my_list = ListAttribute()

print(Container.my_map['foo'].exists() | Container.my_list[0].contains('bar'))

Conditional Model.save

This example saves a Thread item, only if the item exists.

thread_item = Thread('Existing Forum', 'Example Subject')

DynamoDB will only save the item if forum_name exists
print(thread_item.save(Thread.forum_name.exists())

You can specify multiple conditions
print(thread_item.save(Thread.forum_name.exists() & Thread.forum_subject.contains('foobar')))

Conditional Model.update

This example will update a Thread item, if the views attribute is less than 5 OR greater than 10:

thread_item.update(condition=(Thread.views < 5) | (Thread.views > 10))

Conditional Model.delete

This example will delete the item, only if its views attribute is equal to 0.

print(thread_item.delete(Thread.views == 0))

Conditional Operation Failures

You can check for conditional operation failures by inspecting the cause of the raised exception:

try:
 thread_item.save(Thread.forum_name.exists())
except PutError as e:
 if isinstance(e.cause, ClientError):
 code = e.cause.response['Error'].get('Code')
 print(code == "ConditionalCheckFailedException")

Custom Attributes

Attributes in PynamoDB are classes that are serialized to and from DynamoDB attributes. PynamoDB provides attribute classes
for all DynamoDB data types, as defined in the DynamoDB documentation [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html].
Higher level attribute types (internally stored as a DynamoDB data types) can be defined with PynamoDB. Two such types
are included with PynamoDB for convenience: JSONAttribute and UnicodeDatetimeAttribute.

Attribute Methods

All Attribute classes must define three methods, serialize, deserialize and get_value. The serialize method takes a Python
value and converts it into a format that can be stored into DynamoDB. The get_value method reads the serialized value out of the DynamoDB record.
This raw value is then passed to the deserialize method. The deserialize method then converts it back into its value in Python.
Additionally, a class attribute called attr_type is required for PynamoDB to know which DynamoDB data type the attribute is stored as.
The get_value method is provided to help when migrating from one attribute type to another, specifically with the BooleanAttribute type.
If you’re writing your own attribute and the attr_type has not changed you can simply use the base Attribute implementation of get_value.

Writing your own attribute

You can write your own attribute class which defines the necessary methods like this:

from pynamodb.attributes import Attribute
from pynamodb.constants import BINARY

class CustomAttribute(Attribute):
 """
 A custom model attribute
 """

 # This tells PynamoDB that the attribute is stored in DynamoDB as a binary
 # attribute
 attr_type = BINARY

 def serialize(self, value):
 # convert the value to binary and return it

 def deserialize(self, value):
 # convert the value from binary back into whatever type you require

Custom Attribute Example

The example below shows how to write a custom attribute that will pickle a customized class. The attribute itself is stored
in DynamoDB as a binary attribute. The pickle module is used to serialize and deserialize the attribute. In this example,
it is not necessary to define attr_type because the PickleAttribute class is inheriting from BinaryAttribute which has
already defined it.

import pickle
from pynamodb.attributes import BinaryAttribute, UnicodeAttribute
from pynamodb.models import Model

class Color(object):
 """
 This class is used to demonstrate the PickleAttribute below
 """
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return "<Color: {}>".format(self.name)

class PickleAttribute(BinaryAttribute):
 """
 This class will serializer/deserialize any picklable Python object.
 The value will be stored as a binary attribute in DynamoDB.
 """
 def serialize(self, value):
 """
 The super class takes the binary string returned from pickle.dumps
 and encodes it for storage in DynamoDB
 """
 return super(PickleAttribute, self).serialize(pickle.dumps(value))

 def deserialize(self, value):
 return pickle.loads(super(PickleAttribute, self).deserialize(value))

class CustomAttributeModel(Model):
 """
 A model with a custom attribute
 """
 class Meta:
 host = 'http://localhost:8000'
 table_name = 'custom_attr'
 read_capacity_units = 1
 write_capacity_units = 1

 id = UnicodeAttribute(hash_key=True)
 obj = PickleAttribute()

Now we can use our custom attribute to round trip any object that can be pickled.

>>>instance = CustomAttributeModel()
>>>instance.obj = Color('red')
>>>instance.id = 'red'
>>>instance.save()

>>>instance = CustomAttributeModel.get('red')
>>>print(instance.obj)
<Color: red>

List Attributes

DynamoDB list attributes are simply lists of other attributes. DynamoDB asserts no requirements about the types embedded within the list.
Creating an untyped list is done like so:

from pynamodb.attributes import ListAttribute, NumberAttribute, UnicodeAttribute

class GroceryList(Model):
 class Meta:
 table_name = 'GroceryListModel'

 store_name = UnicodeAttribute(hash_key=True)
 groceries = ListAttribute()

Example usage:

GroceryList(store_name='Haight Street Market',
 groceries=['bread', 1, 'butter', 6, 'milk', 1])

PynamoDB can provide type safety if it is required. Currently PynamoDB does not allow type checks on anything other than MapAttribute and subclasses of MapAttribute. We’re working on adding more generic type checking in a future version.
When defining your model use the of= kwarg and pass in a class. PynamoDB will check that all items in the list are of the type you require.

from pynamodb.attributes import ListAttribute, NumberAttribute

class OfficeEmployeeMap(MapAttribute):
 office_employee_id = NumberAttribute()
 person = UnicodeAttribute()

class Office(Model):
 class Meta:
 table_name = 'OfficeModel'
 office_id = NumberAttribute(hash_key=True)
 employees = ListAttribute(of=OfficeEmployeeMap)

Example usage:

emp1 = OfficeEmployeeMap(
 office_employee_id=123,
 person='justin'
)
emp2 = OfficeEmployeeMap(
 office_employee_id=125,
 person='lita'
)
emp4 = OfficeEmployeeMap(
 office_employee_id=126,
 person='garrett'
)

Office(
 office_id=3,
 employees=[emp1, emp2, emp3]
).save() # persists

Office(
 office_id=3,
 employees=['justin', 'lita', 'garrett']
).save() # raises ValueError

Map Attributes

DynamoDB map attributes are objects embedded inside of top level models. See the examples here [https://github.com/pynamodb/PynamoDB/tree/devel/examples/office_model.py].
When implementing your own MapAttribute you can simply extend MapAttribute and ignore writing serialization code.
These attributes can then be used inside of Model classes just like any other attribute.

from pynamodb.attributes import MapAttribute, UnicodeAttribute

class CarInfoMap(MapAttribute):
 make = UnicodeAttribute(null=False)
 model = UnicodeAttribute(null=True)

As with a model and its top-level attributes [https://github.com/pynamodb/PynamoDB/blob/master/docs/quickstart.rst#changing-items], a PynamoDB MapAttribute will ignore sub-attributes it does not know about during deserialization. As a result, if the item in DynamoDB contains sub-attributes not declared as properties of the corresponding MapAttribute, save() will cause those sub-attributes to be deleted.

Use PynamoDB Locally

Several DynamoDB compatible servers have been written for testing and debugging purposes. PynamoDB can be
used with any server that provides the same API as DynamoDB.

PynamoDB has been tested with two DynamoDB compatible servers, DynamoDB Local [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.DynamoDBLocal.html]
and dynalite [https://github.com/mhart/dynalite].

To use a local server, you need to set the host attribute on your Model’s Meta class to the hostname and port
that your server is listening on.

Note

If you are using DynamoDB Local and also use rate_limited_scan on your models, you must also
set allow_rate_limited_scan_without_consumed_capacity to True in Settings
(dynalite does not require this step because it implements returning of consumed capacity in
responses, which is used by rate_limited_scan).

Note

Local implementations of DynamoDB such as DynamoDB Local or dynalite may not be fully featured
(and I don’t maintain either of those packages), so you may encounter errors or bugs with a
local implementation that you would not encounter using DynamoDB.

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread(Model):
 class Meta:
 table_name = "Thread"
 host = "http://localhost:8000"
 forum_name = UnicodeAttribute(hash_key=True)

Running dynalite

Make sure you have the Node Package Manager installed, instructions here [https://www.npmjs.org/doc/README.html].

Install dynalite:

$ npm install -g dynalite

Run dynalite:

$ dynalite --port 8000

That’s it, you’ve got a DynamoDB compatible server running on port 8000.

Running DynamoDB Local

DynamoDB local is a tool provided by Amazon that mocks the DynamoDB API, and uses a local file to
store your data. You can use DynamoDB local with PynamoDB for testing, debugging, or offline development.
For more information, you can read Amazon’s Announcement [http://aws.amazon.com/about-aws/whats-new/2013/09/12/amazon-dynamodb-local/] and
Jeff Barr’s blog post [http://aws.typepad.com/aws/2013/09/dynamodb-local-for-desktop-development.html] about it.

	Download the latest version of DynamoDB local here [http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest].

	Unpack the contents of the archive into a directory of your choice.

DynamoDB local requires the Java Runtime Environment [http://java.com/en/] version 7. Make sure the JRE is installed before continuing.

From the directory where you unpacked DynamoDB local, you can launch it like this:

$ java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar

Once the server has started, you should see output:

$ java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar
2014-03-28 12:09:10.892:INFO:oejs.Server:jetty-8.1.12.v20130726
2014-03-28 12:09:10.943:INFO:oejs.AbstractConnector:Started SelectChannelConnector@0.0.0.0:8000

Now DynamoDB local is running locally, listening on port 8000 by default.

Table Backups

PynamoDB provides methods for backing up and restoring the items in your table. Items are serialized to and from JSON
encoded strings and files. Only serialized item data are stored in a backup, not any table metadata.

Backing up a table

To back up a table, you can simply use the provided dump method and write the contents to a file.

from pynamodb.models import Model
from pynamodb.attributes import (
 UnicodeAttribute, NumberAttribute
)

class Thread(Model):
 class Meta:
 table_name = 'Thread'

 forum_name = UnicodeAttribute(hash_key=True)
 subject = UnicodeAttribute(range_key=True)
 views = NumberAttribute(default=0)

Thread.dump("thread_backup.json")

Alternatively, you can write the contents to a string.

content = Thread.dumps()

Restoring from a backup

To restore items from a backup file, simply use the provided load method.

Warning

Items contained in a backup will overwrite any existing items in your table!

from pynamodb.models import Model
from pynamodb.attributes import (
 UnicodeAttribute, NumberAttribute
)

class Thread(Model):
 class Meta:
 table_name = 'Thread'

 forum_name = UnicodeAttribute(hash_key=True)
 subject = UnicodeAttribute(range_key=True)
 views = NumberAttribute(default=0)

Thread.load("thread_backup.json")

Alternatively, you can also load the contents from a string.

Thread.loads(content)

Signals

Starting with PynamoDB 3.1.0, there is support for signalling. This support is provided by the blinker [https://pypi.python.org/pypi/blinker] library, which is not installed by default. In order to ensure blinker is installed, specify your PynamoDB requirement like so:

pynamodb[signals]==<YOUR VERSION NUMBER>

Signals allow certain senders to notify subscribers that something happened. PynamoDB currently sends signals before and after every DynamoDB API call.

Note

It is recommended to avoid business logic in signal callbacks, as this can have performance implications. To reinforce this, only the operation name and table name are available in the signal callback.

Subscribing to Signals

PynamoDB fires two signal calls, pre_dynamodb_send before the network call and post_dynamodb_send after the network call to DynamoDB.

The callback must taking the following arguments:

	Arguments

	Description

	sender

	The object that fired that method.

	operation_name

	The string name of the `DynamoDB action`_

	table_name

	The name of the table the operation is called upon.

	req_uuid

	A unique identifer so subscribers can correlate the before and after events.

To subscribe to a signal, the user needs to import the signal object and connect your callback, like so.

from pynamodb.signals import pre_dynamodb_send, post_dynamodb_send

def record_pre_dynamodb_send(sender, operation_name, table_name, req_uuid):
 pre_recorded.append((operation_name, table_name, req_uuid))

def record_post_dynamodb_send(sender, operation_name, table_name, req_uuid):
 post_recorded.append((operation_name, table_name, req_uuid))

pre_dynamodb_send.connect(record_pre_dynamodb_send)
post_dynamodb_send.connect(record_post_dynamodb_send)

PynamoDB Examples

An directory of examples is available with the PynamoDB source on GitHub [https://github.com/pynamodb/PynamoDB/tree/devel/examples].
The examples are configured to use http://localhost:8000 as the DynamoDB endpoint. For information on how to run DynamoDB locally,
see : Use PynamoDB Locally.

Note

You should read the examples before executing them. They are configured to use http://localhost:8000 by default, so
that you can run them without actually consuming DynamoDB resources on AWS, and therefore not costing you any money.

Install PynamoDB

Although you can install & run PynamoDB from GitHub, it’s best to use a released version from PyPI:

$ pip install pynamodb

Getting the examples

You can clone the PynamoDB repository to get the examples:

$ git clone https://github.com/pynamodb/PynamoDB.git

Running the examples

Go into the examples directory:

$ cd pynamodb/examples

Configuring the examples

Each example is configured to use http://localhost:8000 as the DynamoDB endpoint. You’ll need
to edit an example and either remove the host setting (causing PynamoDB to use a default), or
specify your own.

Running an example

Each example file can be executed as a script by a Python interpreter:

$ python model.py

Settings

Settings reference

Here is a complete list of settings which control default PynamoDB behavior.

request_timeout_seconds

Default: 60

The default timeout for HTTP requests in seconds.

max_retry_attempts

Default: 3

The number of times to retry certain failed DynamoDB API calls. The most common cases eligible for
retries include ProvisionedThroughputExceededException and 5xx errors.

base_backoff_ms

Default: 25

The base number of milliseconds used for exponential backoff and jitter [https://www.awsarchitectureblog.com/2015/03/backoff.html] on retries.

region

Default: "us-east-1"

The default AWS region to connect to.

session_cls

Default: botocore.vendored.requests.Session

A class which implements the Session [http://docs.python-requests.org/en/master/api/#request-sessions] interface from requests, used for making API requests
to DynamoDB.

allow_rate_limited_scan_without_consumed_capacity

Default: False

If True, rate_limited_scan() will proceed silently (without
rate limiting) if the DynamoDB server does not return consumed
capacity information in responses. If False, scans will fail
should the server not return consumed capacity information in an
effort to prevent unintentional capacity usage..

Overriding settings

Default settings may be overridden by providing a Python module which exports the desired new values.
Set the PYNAMODB_CONFIG environment variable to an absolute path to this module or write it to
/etc/pynamodb/global_default_settings.py to have it automatically discovered.

See an example of specifying a custom session_cls to configure the connection pool below.

from botocore.vendored import requests
from botocore.vendored.requests import adapters

class CustomPynamoSession(requests.Session):
 super(CustomPynamoSession, self).__init__()
 self.mount('http://', adapters.HTTPAdapter(pool_maxsize=100))

session_cls = CustomPynamoSession

Low Level API

PynamoDB was designed with high level features in mind, but includes a fully featured low level API.
Any operation can be performed with the low level API, and the higher level PynamoDB features were all
written on top of it.

Creating a connection

Creating a connection is simple:

from pynamodb.connection import Connection

conn = Connection()

You can specify a different DynamoDB url:

conn = Connection(host='http://alternative-domain/')

By default, PynamoDB will connect to the us-east-1 region, but you can specify a different one.

conn = Connection(region='us-west-1')

Modifying tables

You can easily list tables:

>>> conn.list_tables()
{u'TableNames': [u'Thread']}

or delete a table:

>>> conn.delete_table('Thread')

If you want to change the capacity of a table, that can be done as well:

>>> conn.update_table('Thread', read_capacity_units=20, write_capacity_units=20)

You can create tables as well, although the syntax is verbose. You should really use the model API instead,
but here is a low level example to demonstrate the point:

kwargs = {
 'write_capacity_units': 1,
 'read_capacity_units': 1
 'attribute_definitions': [
 {
 'attribute_type': 'S',
 'attribute_name': 'key1'
 },
 {
 'attribute_type': 'S',
 'attribute_name': 'key2'
 }
],
 'key_schema': [
 {
 'key_type': 'HASH',
 'attribute_name': 'key1'
 },
 {
 'key_type': 'RANGE',
 'attribute_name': 'key2'
 }
]
}
conn.create_table('table_name', **kwargs)

You can also use update_table to change the Provisioned Throughput capacity of Global Secondary Indexes:

>>> kwargs = {
 'global_secondary_index_updates': [
 {
 'index_name': 'index_name',
 'read_capacity_units': 10,
 'write_capacity_units': 10
 }
]
}
>>> conn.update_table('table_name', **kwargs)

Modifying items

The low level API can perform item operationst too, such as getting an item:

conn.get_item('table_name', 'hash_key', 'range_key')

You can put items as well, specifying the keys and any other attributes:

conn.put_item('table_name', 'hash_key', 'range_key', attributes={'key': 'value'})

Deleting an item has similar syntax:

conn.delete_item('table_name', 'hash_key', 'range_key')

AWS Access

PynamoDB uses botocore to interact with the DynamoDB API. Thus, any method of configuration supported by botocore works with PynamoDB.
For local development the use of environment variables such as AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
is probably preferable. You can of course use IAM users, as recommended by AWS. In addition
EC2 roles [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html] will work as well and
would be recommended when running on EC2.

As for the permissions granted via IAM, many tasks can be carried out by PynamoDB. So you should construct your
policies as required, see the
DynamoDB [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html] docs for more
information.

If for some reason you can’t use conventional AWS configuration methods, you can set the credentials in the Model Meta class:

from pynamodb.models import Model

class MyModel(Model):
 class Meta:
 aws_access_key_id = 'my_access_key_id'
 aws_secret_access_key = 'my_secret_access_key'

Finally, see the AWS CLI documentation [http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-installing-credentials]
for more details on how to pass credentials to botocore.

Logging

Logging in PynamoDB uses the standard Python logging facilities. PynamoDB is built on top of botocore which also
uses standard Python logging facilities. Logging is quite verbose, so you may only wish to enable it for debugging purposes.

Here is an example showing how to enable logging for PynamoDB:

from __future__ import print_function
import logging
from pynamodb.models import Model
from pynamodb.attributes import (
 UnicodeAttribute, NumberAttribute
)

logging.basicConfig()
log = logging.getLogger("pynamodb")
log.setLevel(logging.DEBUG)
log.propagate = True

class Thread(Model):
 class Meta:
 table_name = 'Thread'

 forum_name = UnicodeAttribute(hash_key=True)
 subject = UnicodeAttribute(range_key=True)
 views = NumberAttribute(default=0)

Scan
for item in Thread.scan():
 print(item)

Scan
for item in Thread.rate_limited_scan():
 print(item)

Contributing

Pull requests are welcome, forking from the master branch. If you are new to GitHub, be sure and check out
GitHub’s Hello World [https://guides.github.com/activities/hello-world/] tutorial.

Make sure that your contribution meets the following requirements:
* Be thoroughly tested
* Works on all supported versions of Python
* Be in the same code style of the existing source code (mostly PEP8)

Testing

The PynamoDB source code is thoroughly tested, which helps ensure that with each change made to it, we aren’t breaking
someone’s code that relies on PynamoDB. It’s not easy, and it’s not optional. Changes without proper testing won’t be
accepted.

Please write tests to accompany your changes, and verify that the tests pass using all supported version of Python
by using tox:

$ tox

Once you’ve opened a pull request on GitHub, Travis-ci will run the test suite as well.

By default, certain tests that require a running instance of DynamoDB Local [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html] will
not be executed by tox. They will always be executed in Travis-ci. If you wish to run them locally,
edit tox.ini to not pass '-m ddblocal' to py.test.

Don’t forget to add yourself to AUTHORS.rst [https://github.com/pynamodb/PynamoDB/blob/devel/AUTHORS.rst].

Release Notes

v3.3.0

	date

	2018-05-09

This is a backwards compatible, major bug fix release.

New features in this release:

	Support scan operations on secondary indexes. (#141, #392)

	Support projections in model get function. (#337, #403)

	Handle values from keys when batch get returns unprocessed keys. (#252, #376)

	Externalizes AWS Credentials. (#426)

	Add migration support for LegacyBooleanAttribute. (#404, #405)

	Rate limited Page Iterator. (#481)

Fixes in this release:

	Thread-safe client creation in botocore. (#153, #393)

	Use attr.get_value(value) when deserialize. (#450)

	Skip null attributes post serialization for maps. (#455)

	Fix deserialization bug in BinaryAttribute and BinarySetAttribute. (#459, #480)

	Allow MapAttribute instances to be used as the RHS in expressions. (#488)

	Return the correct last_evaluated_key for limited queries/scans. (#406, #410)

	Fix exclusive_start_key getting lost in PageIterator. (#421)

	Add python 3.5 for Travis ci builds. (#437)

Contributors to this release:

	@jpinner-lyft

	@scode

	@behos

	@jmphilli

	@drewisme

	@nicysneiros

	@jcomo

	@kevgliss

	@asottile

	@harleyk

	@betamoo

v3.2.1

	date

	2017-10-25

This is a backwards compatible, minor bug fix release.

Removed features in this release:

	Remove experimental Throttle api. (#378)

Fixes in this release:

	Handle attributes that cannot be retrieved by getattr. Fixes #104 (#385)

	Model.refresh() should reset all model attribuets. Fixes #166 (#388)

	Model.loads() should deserialize using custom attribute names. Fixes #168 (#387)

	Deserialize hash key during table loads. Fixes #143 (#386)

	Support pagination in high-level api query and scan methods. Fixes #50, #118, #207, and #248 (#379)

	Don’t serialize null nested attributed. Fixes #240 and #309 (#375)

	Legacy update item subset removal using DELETE operator. Fixes #132 (#374)

Contributors to this release:

	@jpinner-lyft

v3.2.0

	date

	2017-10-13

This is a backwards compatible, minor release.

This release updates PynamoDB to interact with Dynamo via the current version of Dynamo’s API.
Condition and update expressions can now be created from attributes and used in model operations.
Legacy filter and attribute update keyword arguments have been deprecated. Using these arguments
will cause a warning to be logged.

New features in this release:

	Add support for current version of DynamoDB API [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Appendix.CurrentAPI.html]

	Improved MapAttribute item assignment and access.

Contributors to this release:

	@jpinner-lyft

v3.2.0rc2

	date

	2017-10-09

This is a backwards compatible, release candidate.

This release candidate allows dereferencing raw MapAttributes in condition expressions.
It also improves MapAttribute assignment and access.

Contributors to this release:

	@jpinner-lyft

v3.2.0rc1

	date

	2017-09-22

This is a backwards compatible, release candidate.

This release candidate updates PynamoDB to interact with Dynamo via the current version of Dynamo’s API.
It deprecates some internal methods that were used to interact with Dynamo that are no longer relevant.
If your project was calling those low level methods a warning will be logged.

New features in this release:

	Add support for current version of DynamoDB API [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Appendix.CurrentAPI.html]

Contributors to this release:

	@jpinner-lyft

v3.1.0

	date

	2017-07-07

This is a backwards compatible, minor release.

Note that we now require botocore>=1.2.0; this is required to support the
consistent_read parameter when scanning.

Calling Model.count() without a hash_key and with filters will
raise a ValueError, as it was previously returning incorrect results.

New features in this release:

	Add support for signals via blinker (#278)

Fixes in this release:

	Pass batch parameters down to boto/dynamo (#308)

	Raise a ValueError if count() is invoked with no hash key AND filters (#313)

	Add consistent_read parameter to Model.scan (#311)

Contributors to this release:

	@jmphilli

	@Lordnibbler

	@lita

v3.0.1

	date

	2017-06-09

This is a major release with breaking changes.

MapAttribute now allows pythonic access when recursively defined.
If you were not using the attr_name= kwarg then you should have no problems upgrading.
Previously defined non subclassed MapAttributes (raw MapAttributes) that were members of a subclassed MapAttribute (typed MapAttributes) would have to be accessed like a dictionary.
Now object access is possible and recommended. See [here](https://github.com/pynamodb/PynamoDB/blob/master/pynamodb/tests/test_attributes.py#L671) for a test example.
Access via the attr_name, also known as the DynamoDB name, will now throw an AttributeError.

UnicodeSetAttributes do not json serialize or deserialize anymore.
We deprecated the functionality of json serializing as of 1.6.0 but left the deserialization functionality in there so people could migrate away from the old functionality.
If you have any UnicodeSetAttributes that have not been persisted since version 1.6.0 you will need to migrate your data or manage the json encoding and decoding with a custom attribute in application.

	Performance enhancements for the UTCDateTimeAttribute deserialize method. (#277)

	There was a regression with attribute discovery. Fixes attribute discovery for model classes with inheritance (#280)

	Fix to ignore null checks for batch delete (#283)

	Fix for ListAttribute and MapAttribute serialize (#286)

	Fix for MapAttribute pythonic access (#292) This is a breaking change.

	Deprecated the json decode in UnicodeSetAttribute (#294) This is a breaking change.

	Raise TableDoesNotExist error instead of letting json decoding ValueErrors raise (#296)

Contributors to this release:

	@jcbertin

	@johnliu

	@scode

	@rowilla

	@lita

	@garretheel

	@jmphilli

v2.2.0

	date

	2017-10-25

This is a backwards compatible, minor release.

The purpose of this release is to prepare users to upgrade to v3.0.1+
(see issue #377 for details).

Pull request #294 removes the backwards compatible deserialization of
UnicodeSetAttributes introduced in #151.

This release introduces a migration function on the Model class to help
re-serialize any data that was written with v1.5.4 and below.

Temporary feature in this release:

	Model.fix_unicode_set_attributes() migration helper

Model.needs_unicode_set_fix() migration helper

v2.1.6

	date

	2017-05-10

This is a backwards compatible, minor release.

Fixes in this release:

	Replace Delorean with dateutil (#208)

	Fix a bug with count – consume all pages in paginated response (#256)

	Update mock lib (#262)

	Use pytest instead of nose (#263)

	Documentation changes (#269)

	Fix null deserialization in MapAttributes (#272)

Contributors to this release:

	@funkybob

	@garrettheel

	@lita

	@jmphilli

v2.1.5

	date

	2017-03-16

This is a backwards compatible, minor release.

Fixes in this release:

	Apply retry to ProvisionedThroughputExceeded (#222)

	rate_limited_scan fix to handle consumed capacity (#235)

	Fix for test when dict ordering differs (#237)

Contributors to this release:

	@anandswaminathan

	@jasonfriedland

	@JohnEmhoff

v2.1.4

	date

	2017-02-14

This is a minor release, with some changes to MapAttribute handling. Previously,
when accessing a MapAttribute via item.attr, the type of the object used during
instantiation would determine the return value. Model(attr={…}) would return
a dict on access. Model(attr=MapAttribute(…)) would return an instance of
MapAttribute. After #223, a MapAttribute will always be returned during
item access regardless of the type of the object used during instantiation. For
convenience, a dict version can be accessed using .as_dict() on the MapAttribute.

New features in this release:

	Support multiple attribute update (#194)

	Rate-limited scan (#205)

	Always create map attributes when setting a dict (#223)

Fixes in this release:

	Remove AttributeDict and require explicit attr names (#220)

	Add distinct DoesNotExist classes per model (#206)

	Ensure defaults are respected for MapAttribute (#221)

	Add docs for GSI throughput changes (#224)

Contributors to this release:

	@anandswaminathan

	@garrettheel

	@ikonst

	@jasonfriedland

	@yedpodtrzitko

v2.0.3

	date

	2016-11-18

This is a backwards compatible, minor release.

Fixes in this release:

	Allow longs as members of maps + lists in python 2 (#200)

	Allow raw map attributes in subclassed map attributes (#199)

Contributors to this release:

	@jmphilli

v2.0.2

	date

	2016-11-10

This is a backwards compatible, minor release.

Fixes in this release:

	add BOOL into SHORT_ATTR_TYPES (#190)

	deserialize map attributes correctly (#192)

	prepare request with requests session so session properties are applied (#197)

Contributors to this release:

	@anandswaminathan

	@jmphilli

	@yedpodtrzitko

v2.0.1

	date

	2016-11-04

This is a backwards compatible, minor release.

Fixes in this release:

	make “unprocessed keys for batch operation” log at info level (#180)

	fix RuntimeWarning during imp_load in custom settings file (#185)

	allow unstructured map attributes (#186)

Contributors to this release:

	@danielhochman

	@jmphilli

	@bedge

v2.0.0

	date

	2016-11-01

This is a major release, which introduces support for native DynamoDB maps and lists. There are no
changes which are expected to break backwards compatibility, but you should test extensively before
upgrading in production due to the volume of changes.

New features in this release:

	Add support for native map and list attributes (#175)

Contributors to this release:

	@jmphilli

	@berdim99

v1.6.0

	date

	2016-10-20

This is a minor release, with some changes to BinaryAttribute handling and new options for configuration.

BooleanAttribute now uses the native API type “B”. BooleanAttribute is also compatible with the legacy BooleanAttributes
on read. On save, they will be rewritten with the native type. If you wish to avoid this behavior, you can continue
to use LegacyBooleanAttribute. LegacyBooleanAttribute is also forward compatible with native boolean
attributes to allow for migration.

New features in this release:

	Add support for native boolean attributes (#149)

	Parse legacy and native bool in legacy bool (#158)

	Allow override of settings from global configuration file (#147)

Fixes in this release:

	Serialize UnicodeSetAttributes correctly (#151)

	Make update_item respect attr_name differences (#160)

Contributors to this release:

	@anandswaminathan

	@jmphilli

	@lita

v1.5.4

	date

	2017-10-25

This is a backwards compatible, minor bug fix release.

The purpose of this release is to prepare users to upgrade to v1.6.0+
(see issue #377 for details).

Pull request #151 introduces a backwards incompatible change to how
UnicodeSetAttributes are serialized. While the commit attempts to
provide compatibility by deserializing values written with v1.5.3 and
below, it prevents users from upgrading because it starts writing non
JSON-encoded values to dynamo.

Anyone using UnicodeSetAttribute must first deploy this version.

Fixes in this release:

	Backport UnicodeSetAttribute deserialization code from #151

v1.5.3

	date

	2016-08-08

This is a backwards compatible, minor release.

Fixes in this release:

	Introduce concept of page_size, separate from num items returned limit (#139)

Contributors to this release:

	@anandswaminathan

v1.5.2

	date

	2016-06-23

This is a backwards compatible, minor release.

Fixes in this release:

	Additional retry logic for HTTP Status Code 5xx, usually attributed to InternalServerError (#135)

Contributors to this release:

	@danielhochman

v1.5.1

	date

	2016-05-11

This is a backwards compatible, minor release.

Fixes in this release:

	Fix for binary attribute handling of unprocessed items data corruption affecting users of 1.5.0 (#126 fixes #125)

Contributors to this release:

	@danielhochman

v1.5.0

	date

	2016-05-09

This is a backwards compatible, minor release.

Please consider the fix for limits before upgrading. Correcting for off-by-one when querying is
no longer necessary.

Fixes in this release:

	Fix off-by-one error for limits when querying (#123 fixed #95)

	Retry on ConnectionErrors and other types of RequestExceptions (#121 fixes #98)

	More verbose logging when receiving errors e.g. InternalServerError from the DynamoDB API (#115)

	Prevent permanent poisoning of credential cache due to botocore bug (#113 fixes #99)

	Fix for UnprocessedItems serialization error (#114 fixes #103)

	Fix parsing issue with newer version of dateutil and UTCDateTimeAttributes (#110 fixes #109)

	Correctly handle expected value generation for set types (#107 fixes #102)

	Use HTTP proxies configured by botocore (#100 fixes #92)

New features in this release:

	Return the cause of connection exceptions to the caller (#108 documented by #112)

	Configurable session class for custom connection pool size, etc (#91)

	Add attributes_to_get and consistent_read to more of the API (#79)

Contributors to this release:

	@ab

	@danielhochman

	@jlafon

	@joshowen

	@jpinner-lyft

	@mxr

	@nickgravgaard

v1.4.4

	date

	2015-11-10

This is a backward compatible, minor release.

Changes in this release:

	Support for enabling table streams at table creation time (thanks to @brln)

	Fixed bug where a value was always required for update_item when action was ‘delete’ (#90)

v1.4.3

	date

	2015-10-12

This is a backward compatible, minor release. Included are bug fixes and performance improvements.

A huge thank you to all who contributed to this release:

	Daniel Hochman

	Josh Owen

	Keith Mitchell

	Kevin Wilson

Changes in this release:

	Fixed bug where models without a range key weren’t handled correctly

	Botocore is now only used for preparing requests (for performance reasons)

	Removed the dependency on OrderedDict

	Fixed bug for zope interface compatibility (#71)

	Fixed bug where the range key was handled incorrectly for integer values

v1.4.2

	date

	2015-06-26

This is a backward compatible, minor bug fix release.

Bugs fixed in this release:

	Fixed bug where botocore exceptions were not being reraised.

v1.4.1

	date

	2015-06-26

This is a backward compatible, minor bug fix release.

Bugs fixed in this release:

	Fixed bug where a local variable could be unbound (#67).

v1.4.0

	date

	2015-06-23

This is a minor release, with backward compatible bug fixes.

Bugs fixed in this release:

	Added support for botocore 1.0.0 (#63)

	Fixed bug where Model.get() could fail in certain cases (#64)

	Fixed bug where JSON strings weren’t being encoded properly (#61)

v1.3.7

	date

	2015-04-06

This is a backward compatible, minor bug fix release.

Bugs fixed in this release:

	Fixed bug where range keys were not included in update_item (#59)

	Fixed documentation bug (#58)

v1.3.6

	date

	2015-04-06

This is a backward compatible, minor bug fix release.

Bugs fixed in this release:

	Fixed bug where arguments were used incorrectly in update_item (#54)

	Fixed bug where falsy values were used incorrectly in model constructors (#57), thanks @pior

	Fixed bug where the limit argument for scan and query was not always honored.

New features:

	Table counts with optional filters can now be queried using Model.count(**filters)

v1.3.5

This is a backward compatible, minor bug fix release.

Bugs fixed in this release.

	Fixed bug where scan did not properly limit results (#45)

	Fixed bug where scan filters were not being preserved (#44)

	Fixed bug where items were mutated as an unexpected side effect (#47)

	Fixed bug where conditional operator wasn’t used in scan

v1.3.4

	date

	2014-10-06

This is a backward compatible, minor bug fix release.

Bugs fixed in this release.

	Fixed bug where attributes could not be used in multiple indexes when creating a table.

	Fixed bug where a dependency on mock was accidentally introduced.

v1.3.3

	date

	2014-9-18

This is a backward compatible, minor bug fix release, fixing the following issues

	Fixed bug with Python 2.6 compatibility (#28)

	Fixed bug where update_item was incorrectly checking attributes for null (#34)

Other minor improvements

	New API for backing up and restoring tables

	Better support for custom attributes (https://github.com/pynamodb/PynamoDB/commit/0c2ba5894a532ed14b6c14e5059e97dbb653ff12)

	Explicit Travis CI testing of Python 2.6, 2.7, 3.3, 3.4, and PyPy

	Tests added for round tripping unicode values

v1.3.2

	date

	2014-7-02

	This is a minor bug fix release, fixing a bug where query filters were incorrectly parsed (#26).

v1.3.1

	date

	2014-05-26

	This is a bug fix release, ensuring that KeyCondition and QueryFilter arguments are constructed correctly (#25).

	Added an example URL shortener to the examples.

	Minor documentation fixes.

v1.3.0

	date

	2014-05-20

	This is a minor release, with new backward compatible features and bug fixes.

	Fixed bug where NULL and NOT_NULL were not set properly in query and scan operations (#24)

	Support for specifying the index_name as a Index.Meta attribute (#23)

	Support for specifying read and write capacity in Model.Meta (#22)

v1.2.2

	date

	2014-05-14

	This is a minor bug fix release, resolving #21 (key_schema ordering for create_table).

v1.2.1

	date

	2014-05-07

	This is a minor bug fix release, resolving #20.

v1.2.0

	date

	2014-05-06

	Numerous documentation improvements

	Improved support for conditional operations

	Added support for filtering queries on non key attributes (http://aws.amazon.com/blogs/aws/improved-queries-and-updates-for-dynamodb/)

	Fixed issue with JSON loading where escaped characters caused an error (#17)

	Minor bug fixes

v1.1.0

	date

	2014-04-14

	PynamoDB now requires botocore version 0.42.0 or greater

	Improved documentation

	Minor bug fixes

	New API endpoint for deleting model tables

	Support for expected value conditions in item delete, update, and save

	Support for limit argument to queries

	Support for aliased attribute names

Example of using aliased attribute names:

class AliasedModel(Model):
 class Meta:
 table_name = "AliasedModel"
 forum_name = UnicodeAttribute(hash_key=True, attr_name='fn')
 subject = UnicodeAttribute(range_key=True, attr_name='s')

v1.0.0

	date

	2014-03-28

	Major update: New syntax for specifying models that is not backward compatible.

Important

The syntax for models has changed!

The old way:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread(Model):
 table_name = 'Thread'
 forum_name = UnicodeAttribute(hash_key=True)

The new way:

from pynamodb.models import Model
from pynamodb.attributes import UnicodeAttribute

class Thread(Model):
 class Meta:
 table_name = 'Thread'
 forum_name = UnicodeAttribute(hash_key=True)

Other, less important changes:

	Added explicit support for specifying the server hostname in models

	Added documentation for using DynamoDB Local and dynalite

	Made examples runnable with DynamoDB Local and dynalite by default

	Added documentation for the use of default and null on model attributes

	Improved testing for index queries

v0.1.13

	date

	2014-03-20

	Bug fix release. Proper handling of update_item attributes for atomic item updates, with tests. Fixes #7.

v0.1.12

	date

	2014-03-18

	Added a region attribute to model classes, allowing users to specify the AWS region, per model. Fixes #6.

v0.1.11

	date

	2014-02-26

	New exception behavior: Model.get and Model.refresh will now raise DoesNotExist if the item is not found in the table.

	Correctly deserialize complex key types. Fixes #3

	Correctly construct keys for tables that don’t have both a hash key and a range key in batch get operations. Fixes #5

	Better PEP8 Compliance

	More tests

	Removed session and endpoint caching to avoid using stale IAM role credentials

Versioning Scheme

PynamoDB conforms to PEP 440 [https://www.python.org/dev/peps/pep-0440].
Generally, PynamoDB uses Semantic Versioning [http://semver.org/], where the version number has
the format:

MAJOR . MINOR . PATCH

	The MAJOR version number changes when backward incompatible changes are introduced.

	The MINOR version number changes when new features are added, but are backward compatible.

	The PATCH version number changes when backward compatible bug fixes are added.

API

High Level API

DynamoDB Models for PynamoDB

	
class pynamodb.models.Model(hash_key=None, range_key=None, **attributes)

	Defines a PynamoDB Model

This model is backed by a table in DynamoDB.
You can create the table by with the create_table method.

	
exception DoesNotExist(msg=None, cause=None)

	Raised when an item queried does not exist

	
classmethod batch_get(items, consistent_read=None, attributes_to_get=None)

	BatchGetItem for this model

	Parameters

	items – Should be a list of hash keys to retrieve, or a list of
tuples if range keys are used.

	
classmethod batch_write(auto_commit=True)

	Returns a BatchWrite context manager for a batch operation.

	Parameters

	auto_commit – If true, the context manager will commit writes incrementally
as items are written to as necessary to honor item count limits
in the DynamoDB API (see BatchWrite). Regardless of the value
passed here, changes automatically commit on context exit
(whether successful or not).

	
classmethod count(hash_key=None, range_key_condition=None, filter_condition=None, consistent_read=False, index_name=None, limit=None, rate_limit=None, **filters)

	Provides a filtered count

	Parameters

	
	hash_key – The hash key to query. Can be None.

	range_key_condition – Condition for range key

	filter_condition – Condition used to restrict the query results

	consistent_read – If True, a consistent read is performed

	index_name – If set, then this index is used

	filters – A dictionary of filters to be used in the query. Requires a hash_key to be passed.

	
classmethod create_table(wait=False, read_capacity_units=None, write_capacity_units=None)

	Create the table for this model

	Parameters

	
	wait – If set, then this call will block until the table is ready for use

	read_capacity_units – Sets the read capacity units for this table

	write_capacity_units – Sets the write capacity units for this table

	
delete(condition=None, conditional_operator=None, **expected_values)

	Deletes this object from dynamodb

	
classmethod delete_table()

	Delete the table for this model

	
classmethod describe_table()

	Returns the result of a DescribeTable operation on this model’s table

	
classmethod dump(filename)

	Writes the contents of this model’s table as JSON to the given filename

	
classmethod dumps()

	Returns a JSON representation of this model’s table

	
classmethod exists()

	Returns True if this table exists, False otherwise

	
classmethod from_raw_data(data)

	Returns an instance of this class
from the raw data

	Parameters

	data – A serialized DynamoDB object

	
classmethod get(hash_key, range_key=None, consistent_read=False, attributes_to_get=None)

	Returns a single object using the provided keys

	Parameters

	
	hash_key – The hash key of the desired item

	range_key – The range key of the desired item, only used when appropriate.

	
classmethod query(hash_key, range_key_condition=None, filter_condition=None, consistent_read=False, index_name=None, scan_index_forward=None, conditional_operator=None, limit=None, last_evaluated_key=None, attributes_to_get=None, page_size=None, rate_limit=None, **filters)

	Provides a high level query API

	Parameters

	
	hash_key – The hash key to query

	range_key_condition – Condition for range key

	filter_condition – Condition used to restrict the query results

	consistent_read – If True, a consistent read is performed

	index_name – If set, then this index is used

	limit – Used to limit the number of results returned

	scan_index_forward – If set, then used to specify the same parameter to the DynamoDB API.
Controls descending or ascending results

	conditional_operator –

	last_evaluated_key – If set, provides the starting point for query.

	attributes_to_get – If set, only returns these elements

	page_size – Page size of the query to DynamoDB

	filters – A dictionary of filters to be used in the query

	
classmethod rate_limited_scan(filter_condition=None, attributes_to_get=None, segment=None, total_segments=None, limit=None, conditional_operator=None, last_evaluated_key=None, page_size=None, timeout_seconds=None, read_capacity_to_consume_per_second=10, allow_rate_limited_scan_without_consumed_capacity=None, max_sleep_between_retry=10, max_consecutive_exceptions=30, consistent_read=None, index_name=None, **filters)

	Scans the items in the table at a definite rate.
Invokes the low level rate_limited_scan API.

	Parameters

	
	filter_condition – Condition used to restrict the scan results

	attributes_to_get – A list of attributes to return.

	segment – If set, then scans the segment

	total_segments – If set, then specifies total segments

	limit – Used to limit the number of results returned

	conditional_operator –

	last_evaluated_key – If set, provides the starting point for scan.

	page_size – Page size of the scan to DynamoDB

	filters – A list of item filters

	timeout_seconds – Timeout value for the rate_limited_scan method, to prevent it from running
infinitely

	read_capacity_to_consume_per_second – Amount of read capacity to consume
every second

	allow_rate_limited_scan_without_consumed_capacity – If set, proceeds without rate limiting if
the server does not support returning consumed capacity in responses.

	max_sleep_between_retry – Max value for sleep in seconds in between scans during
throttling/rate limit scenarios

	max_consecutive_exceptions – Max number of consecutive provision throughput exceeded
exceptions for scan to exit

	consistent_read – If True, a consistent read is performed

	
refresh(consistent_read=False)

	Retrieves this object’s data from dynamodb and syncs this local object

	Parameters

	consistent_read – If True, then a consistent read is performed.

	
save(condition=None, conditional_operator=None, **expected_values)

	Save this object to dynamodb

	
classmethod scan(filter_condition=None, segment=None, total_segments=None, limit=None, conditional_operator=None, last_evaluated_key=None, page_size=None, consistent_read=None, index_name=None, rate_limit=None, **filters)

	Iterates through all items in the table

	Parameters

	
	filter_condition – Condition used to restrict the scan results

	segment – If set, then scans the segment

	total_segments – If set, then specifies total segments

	limit – Used to limit the number of results returned

	conditional_operator –

	last_evaluated_key – If set, provides the starting point for scan.

	page_size – Page size of the scan to DynamoDB

	filters – A list of item filters

	consistent_read – If True, a consistent read is performed

	
update(attributes=None, actions=None, condition=None, conditional_operator=None, **expected_values)

	Updates an item using the UpdateItem operation.

	Parameters

	attributes – A dictionary of attributes to update in the following format
{

attr_name: {‘value’: 10, ‘action’: ‘ADD’},
next_attr: {‘value’: True, ‘action’: ‘PUT’},

}

	
update_item(attribute, value=None, action=None, condition=None, conditional_operator=None, **expected_values)

	Updates an item using the UpdateItem operation.

This should be used for updating a single attribute of an item.

	Parameters

	
	attribute – The name of the attribute to be updated

	value – The new value for the attribute.

	action – The action to take if this item already exists.
See: http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#DDB-UpdateItem-request-AttributeUpdate

PynamoDB attributes

	
class pynamodb.attributes.Attribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	An attribute of a model

	
deserialize(value)

	Performs any needed deserialization on the value

	
serialize(value)

	This method should return a dynamodb compatible value

	
class pynamodb.attributes.BinaryAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	A binary attribute

	
deserialize(value)

	Returns a decoded string from base64

	
serialize(value)

	Returns a base64 encoded binary string

	
class pynamodb.attributes.BinarySetAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	A binary set

	
deserialize(value)

	Returns a decoded string from base64

	
serialize(value)

	Returns a base64 encoded binary string

	
class pynamodb.attributes.BooleanAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	A class for boolean attributes

	
deserialize(value)

	Performs any needed deserialization on the value

	
serialize(value)

	This method should return a dynamodb compatible value

	
class pynamodb.attributes.JSONAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	A JSON Attribute

Encodes JSON to unicode internally

	
deserialize(value)

	Deserializes JSON

	
serialize(value)

	Serializes JSON to unicode

	
class pynamodb.attributes.LegacyBooleanAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	A class for legacy boolean attributes

Previous versions of this library serialized bools as numbers.
This class allows you to continue to use that functionality.

	
deserialize(value)

	Performs any needed deserialization on the value

	
serialize(value)

	This method should return a dynamodb compatible value

	
class pynamodb.attributes.ListAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None, of=None)

	
	
deserialize(values)

	Decode from list of AttributeValue types.

	
serialize(values)

	Encode the given list of objects into a list of AttributeValue types.

	
class pynamodb.attributes.MapAttribute(**attributes)

	A Map Attribute

The MapAttribute class can be used to store a JSON document as “raw” name-value pairs, or
it can be subclassed and the document fields represented as class attributes using Attribute instances.

To support the ability to subclass MapAttribute and use it as an AttributeContainer, instances of
MapAttribute behave differently based both on where they are instantiated and on their type.
Because of this complicated behavior, a bit of an introduction is warranted.

Models that contain a MapAttribute define its properties using a class attribute on the model.
For example, below we define “MyModel” which contains a MapAttribute “my_map”:

	class MyModel(Model):

	my_map = MapAttribute(attr_name=”dynamo_name”, default={})

When instantiated in this manner (as a class attribute of an AttributeContainer class), the MapAttribute
class acts as an instance of the Attribute class. The instance stores data about the attribute (in this
example the dynamo name and default value), and acts as a data descriptor, storing any value bound to it
on the attribute_values dictionary of the containing instance (in this case an instance of MyModel).

Unlike other Attribute types, the value that gets bound to the containing instance is a new instance of
MapAttribute, not an instance of the primitive type. For example, a UnicodeAttribute stores strings in
the attribute_values of the containing instance; a MapAttribute does not store a dict but instead stores
a new instance of itself. This difference in behavior is necessary when subclassing MapAttribute in order
to access the Attribute data descriptors that represent the document fields.

For example, below we redefine “MyModel” to use a subclass of MapAttribute as “my_map”:

	class MyMapAttribute(MapAttribute):

	my_internal_map = MapAttribute()

	class MyModel(Model):

	my_map = MyMapAttribute(attr_name=”dynamo_name”, default = {})

In order to set the value of my_internal_map on an instance of MyModel we need the bound value for “my_map”
to be an instance of MapAttribute so that it acts as a data descriptor:

MyModel().my_map.my_internal_map = {‘foo’: ‘bar’}

That is the attribute access of “my_map” must return a MyMapAttribute instance and not a dict.

When an instance is used in this manner (bound to an instance of an AttributeContainer class),
the MapAttribute class acts as an AttributeContainer class itself. The instance does not store data
about the attribute, and does not act as a data descriptor. The instance stores name-value pairs in its
internal attribute_values dictionary.

Thus while MapAttribute multiply inherits from Attribute and AttributeContainer, a MapAttribute instance
does not behave as both an Attribute AND an AttributeContainer. Rather an instance of MapAttribute behaves
EITHER as an Attribute OR as an AttributeContainer, depending on where it was instantiated.

So, how do we create this dichotomous behavior? Using the AttributeContainerMeta metaclass.
All MapAttribute instances are initialized as AttributeContainers only. During construction of
AttributeContainer classes (subclasses of MapAttribute and Model), any instances that are class attributes
are transformed from AttributeContainers to Attributes (via the _make_attribute method call).

	
deserialize(values)

	Decode as a dict.

	
serialize(values)

	This method should return a dynamodb compatible value

	
class pynamodb.attributes.MapAttributeMeta(name, bases, attrs)

	This is only here for backwards compatibility: i.e. so type(MapAttribute) == MapAttributeMeta

	
class pynamodb.attributes.NullAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	
	
deserialize(value)

	Performs any needed deserialization on the value

	
serialize(value)

	This method should return a dynamodb compatible value

	
class pynamodb.attributes.NumberAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	A number attribute

	
deserialize(value)

	Decode numbers from JSON

	
serialize(value)

	Encode numbers as JSON

	
class pynamodb.attributes.NumberSetAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	A number set attribute

	
class pynamodb.attributes.SetMixin

	Adds (de)serialization methods for sets

	
deserialize(value)

	Deserializes a set

	
serialize(value)

	Serializes a set

Because dynamodb doesn’t store empty attributes,
empty sets return None

	
class pynamodb.attributes.UTCDateTimeAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	An attribute for storing a UTC Datetime

	
deserialize(value)

	Takes a UTC datetime string and returns a datetime object

	
serialize(value)

	Takes a datetime object and returns a string

	
class pynamodb.attributes.UnicodeAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	A unicode attribute

	
serialize(value)

	Returns a unicode string

	
class pynamodb.attributes.UnicodeSetAttribute(hash_key=False, range_key=False, null=None, default=None, attr_name=None)

	A unicode set

	
deserialize(value)

	Deserializes a set

	
element_serialize(value)

	This serializes unicode / strings out as unicode strings.
It does not touch the value if it is already a unicode str
:param value:
:return:

	
serialize(value)

	Serializes a set

Because dynamodb doesn’t store empty attributes,
empty sets return None

PynamoDB Indexes

	
class pynamodb.indexes.AllProjection

	An ALL projection

	
class pynamodb.indexes.GlobalSecondaryIndex

	A global secondary index

	
class pynamodb.indexes.IncludeProjection(non_attr_keys=None)

	An INCLUDE projection

	
class pynamodb.indexes.Index

	Base class for secondary indexes

	
classmethod count(hash_key, range_key_condition=None, filter_condition=None, consistent_read=False, **filters)

	Count on an index

	
classmethod query(hash_key, range_key_condition=None, filter_condition=None, scan_index_forward=None, consistent_read=False, limit=None, last_evaluated_key=None, attributes_to_get=None, **filters)

	Queries an index

	
classmethod scan(filter_condition=None, segment=None, total_segments=None, limit=None, conditional_operator=None, last_evaluated_key=None, page_size=None, consistent_read=None, **filters)

	Scans an index

	
class pynamodb.indexes.IndexMeta(name, bases, attrs)

	Index meta class

This class is here to allow for an index Meta class
that contains the index settings

	
class pynamodb.indexes.KeysOnlyProjection

	Keys only projection

	
class pynamodb.indexes.LocalSecondaryIndex

	A local secondary index

	
class pynamodb.indexes.Projection

	A class for presenting projections

Low Level API

PynamoDB lowest level connection

	
class pynamodb.connection.Connection(region=None, host=None, session_cls=None, request_timeout_seconds=None, max_retry_attempts=None, base_backoff_ms=None)

	A higher level abstraction over botocore

	
batch_get_item(table_name, keys, consistent_read=None, return_consumed_capacity=None, attributes_to_get=None)

	Performs the batch get item operation

	
batch_write_item(table_name, put_items=None, delete_items=None, return_consumed_capacity=None, return_item_collection_metrics=None)

	Performs the batch_write_item operation

	
client

	Returns a botocore dynamodb client

	
create_table(table_name, attribute_definitions=None, key_schema=None, read_capacity_units=None, write_capacity_units=None, global_secondary_indexes=None, local_secondary_indexes=None, stream_specification=None)

	Performs the CreateTable operation

	
delete_item(table_name, hash_key, range_key=None, condition=None, expected=None, conditional_operator=None, return_values=None, return_consumed_capacity=None, return_item_collection_metrics=None)

	Performs the DeleteItem operation and returns the result

	
delete_table(table_name)

	Performs the DeleteTable operation

	
describe_table(table_name)

	Performs the DescribeTable operation

	
dispatch(operation_name, operation_kwargs)

	Dispatches operation_name with arguments operation_kwargs

Raises TableDoesNotExist if the specified table does not exist

	
get_attribute_type(table_name, attribute_name, value=None)

	Returns the proper attribute type for a given attribute name
:param value: The attribute value an be supplied just in case the type is already included

	
get_conditional_operator(operator)

	Returns a dictionary containing the correct conditional operator,
validating it first.

	
get_consumed_capacity_map(return_consumed_capacity)

	Builds the consumed capacity map that is common to several operations

	
get_exclusive_start_key_map(table_name, exclusive_start_key)

	Builds the exclusive start key attribute map

	
get_expected_map(table_name, expected)

	Builds the expected map that is common to several operations

	
get_identifier_map(table_name, hash_key, range_key=None, key='Key')

	Builds the identifier map that is common to several operations

	
get_item(table_name, hash_key, range_key=None, consistent_read=False, attributes_to_get=None)

	Performs the GetItem operation and returns the result

	
get_item_attribute_map(table_name, attributes, item_key='Item', pythonic_key=True)

	Builds up a dynamodb compatible AttributeValue map

	
get_item_collection_map(return_item_collection_metrics)

	Builds the item collection map

	
get_meta_table(table_name, refresh=False)

	Returns a MetaTable

	
get_query_filter_map(table_name, query_filters)

	Builds the QueryFilter object needed for the Query operation

	
get_return_values_map(return_values)

	Builds the return values map that is common to several operations

	
list_tables(exclusive_start_table_name=None, limit=None)

	Performs the ListTables operation

	
parse_attribute(attribute, return_type=False)

	Returns the attribute value, where the attribute can be
a raw attribute value, or a dictionary containing the type:
{‘S’: ‘String value’}

	
put_item(table_name, hash_key, range_key=None, attributes=None, condition=None, expected=None, conditional_operator=None, return_values=None, return_consumed_capacity=None, return_item_collection_metrics=None)

	Performs the PutItem operation and returns the result

	
query(table_name, hash_key, range_key_condition=None, filter_condition=None, attributes_to_get=None, consistent_read=False, exclusive_start_key=None, index_name=None, key_conditions=None, query_filters=None, conditional_operator=None, limit=None, return_consumed_capacity=None, scan_index_forward=None, select=None)

	Performs the Query operation and returns the result

	
rate_limited_scan(table_name, filter_condition=None, attributes_to_get=None, page_size=None, limit=None, conditional_operator=None, scan_filter=None, exclusive_start_key=None, segment=None, total_segments=None, timeout_seconds=None, read_capacity_to_consume_per_second=10, allow_rate_limited_scan_without_consumed_capacity=None, max_sleep_between_retry=10, max_consecutive_exceptions=10, consistent_read=None, index_name=None)

	Performs a rate limited scan on the table. The API uses the scan API to fetch items from
DynamoDB. The rate_limited_scan uses the ‘ConsumedCapacity’ value returned from DynamoDB to
limit the rate of the scan. ‘ProvisionedThroughputExceededException’ is also handled and retried.

	Parameters

	
	table_name – Name of the table to perform scan on.

	filter_condition – Condition used to restrict the scan results

	attributes_to_get – A list of attributes to return.

	page_size – Page size of the scan to DynamoDB

	limit – Used to limit the number of results returned

	conditional_operator –

	scan_filter – A map indicating the condition that evaluates the scan results

	exclusive_start_key – If set, provides the starting point for scan.

	segment – If set, then scans the segment

	total_segments – If set, then specifies total segments

	timeout_seconds – Timeout value for the rate_limited_scan method, to prevent it from running
infinitely

	read_capacity_to_consume_per_second – Amount of read capacity to consume
every second

	allow_rate_limited_scan_without_consumed_capacity – If set, proceeds without rate limiting if
the server does not support returning consumed capacity in responses.

	max_sleep_between_retry – Max value for sleep in seconds in between scans during
throttling/rate limit scenarios

	max_consecutive_exceptions – Max number of consecutive ProvisionedThroughputExceededException
exception for scan to exit

	consistent_read – enable consistent read

	index_name – an index to perform the scan on

	
requests_session

	Return a requests session to execute prepared requests using the same pool

	
scan(table_name, filter_condition=None, attributes_to_get=None, limit=None, conditional_operator=None, scan_filter=None, return_consumed_capacity=None, exclusive_start_key=None, segment=None, total_segments=None, consistent_read=None, index_name=None)

	Performs the scan operation

	
session

	Returns a valid botocore session

	
update_item(table_name, hash_key, range_key=None, actions=None, attribute_updates=None, condition=None, expected=None, return_consumed_capacity=None, conditional_operator=None, return_item_collection_metrics=None, return_values=None)

	Performs the UpdateItem operation

	
update_table(table_name, read_capacity_units=None, write_capacity_units=None, global_secondary_index_updates=None)

	Performs the UpdateTable operation

	
class pynamodb.connection.TableConnection(table_name, region=None, host=None, session_cls=None, request_timeout_seconds=None, max_retry_attempts=None, base_backoff_ms=None, aws_access_key_id=None, aws_secret_access_key=None)

	A higher level abstraction over botocore

	
batch_get_item(keys, consistent_read=None, return_consumed_capacity=None, attributes_to_get=None)

	Performs the batch get item operation

	
batch_write_item(put_items=None, delete_items=None, return_consumed_capacity=None, return_item_collection_metrics=None)

	Performs the batch_write_item operation

	
create_table(attribute_definitions=None, key_schema=None, read_capacity_units=None, write_capacity_units=None, global_secondary_indexes=None, local_secondary_indexes=None, stream_specification=None)

	Performs the CreateTable operation and returns the result

	
delete_item(hash_key, range_key=None, condition=None, expected=None, conditional_operator=None, return_values=None, return_consumed_capacity=None, return_item_collection_metrics=None)

	Performs the DeleteItem operation and returns the result

	
delete_table()

	Performs the DeleteTable operation and returns the result

	
describe_table()

	Performs the DescribeTable operation and returns the result

	
get_item(hash_key, range_key=None, consistent_read=False, attributes_to_get=None)

	Performs the GetItem operation and returns the result

	
get_meta_table(refresh=False)

	Returns a MetaTable

	
put_item(hash_key, range_key=None, attributes=None, condition=None, expected=None, conditional_operator=None, return_values=None, return_consumed_capacity=None, return_item_collection_metrics=None)

	Performs the PutItem operation and returns the result

	
query(hash_key, range_key_condition=None, filter_condition=None, attributes_to_get=None, consistent_read=False, exclusive_start_key=None, index_name=None, key_conditions=None, query_filters=None, limit=None, return_consumed_capacity=None, scan_index_forward=None, conditional_operator=None, select=None)

	Performs the Query operation and returns the result

	
rate_limited_scan(filter_condition=None, attributes_to_get=None, page_size=None, limit=None, conditional_operator=None, scan_filter=None, segment=None, total_segments=None, exclusive_start_key=None, timeout_seconds=None, read_capacity_to_consume_per_second=None, allow_rate_limited_scan_without_consumed_capacity=None, max_sleep_between_retry=None, max_consecutive_exceptions=None, consistent_read=None, index_name=None)

	Performs the scan operation with rate limited

	
scan(filter_condition=None, attributes_to_get=None, limit=None, conditional_operator=None, scan_filter=None, return_consumed_capacity=None, segment=None, total_segments=None, exclusive_start_key=None, consistent_read=None, index_name=None)

	Performs the scan operation

	
update_item(hash_key, range_key=None, actions=None, attribute_updates=None, condition=None, expected=None, conditional_operator=None, return_consumed_capacity=None, return_item_collection_metrics=None, return_values=None)

	Performs the UpdateItem operation

	
update_table(read_capacity_units=None, write_capacity_units=None, global_secondary_index_updates=None)

	Performs the UpdateTable operation and returns the result

Exceptions

	
exception pynamodb.exceptions.PynamoDBConnectionError(msg=None, cause=None)

	A base class for connection errors

	
exception pynamodb.exceptions.DeleteError(msg=None, cause=None)

	Raised when an error occurs deleting an item

	
exception pynamodb.exceptions.QueryError(msg=None, cause=None)

	Raised when queries fail

	
exception pynamodb.exceptions.ScanError(msg=None, cause=None)

	Raised when a scan operation fails

	
exception pynamodb.exceptions.PutError(msg=None, cause=None)

	Raised when an item fails to be created

	
exception pynamodb.exceptions.UpdateError(msg=None, cause=None)

	Raised when an item fails to be updated

	
exception pynamodb.exceptions.GetError(msg=None, cause=None)

	Raised when an item fails to be retrieved

	
exception pynamodb.exceptions.TableError(msg=None, cause=None)

	An error involving a dynamodb table operation

	
exception pynamodb.exceptions.TableDoesNotExist(table_name)

	Raised when an operation is attempted on a table that doesn’t exist

	
exception pynamodb.exceptions.DoesNotExist(msg=None, cause=None)

	Raised when an item queried does not exist

Migration API

Contains helpers to assist in “migrations” from one version of
PynamoDB to the next, in cases where breaking changes have happened.

	
pynamodb.migration.migrate_boolean_attributes(model_class, attribute_names, read_capacity_to_consume_per_second=10, allow_rate_limited_scan_without_consumed_capacity=False, mock_conditional_update_failure=False, page_size=None, limit=None, number_of_secs_to_back_off=1)

	Migrates boolean attributes per GitHub issue 404 [https://github.com/pynamodb/PynamoDB/issues/404].

Will scan through all objects and perform a conditional update
against any items that store any of the given attribute names as
integers. Rate limiting is performed by passing an appropriate
value as read_capacity_to_consume_per_second (which defaults to
something extremely conservative and slow).

Note that updates require provisioned write capacity as
well. Please see the DynamoDB docs [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html]
for more information. Keep in mind that there is not a simple 1:1
mapping between provisioned read capacity and write capacity. Make
sure they are balanced. A conservative calculation would assume
that every object visted results in an update.

The function with log at level INFO the final outcome, and the
return values help identify how many items needed changing and how
many of them succeed. For example, if you had 10 items in the
table and every one of them had an attribute that needed
migration, and upon migration we had one item which failed the
migration due to a concurrent update by another writer, the return
value would be: (10, 1)

Suggesting that 9 were updated successfully.

It is suggested that the migration step be re-ran until the return
value is (0, 0).

	Parameters

	
	model_class – The Model class for which you are migrating. This should
be the up-to-date Model class using a BooleanAttribute for
the relevant attributes.

	attribute_names – List of strings that signifiy the names of attributes which
are potentially in need of migration.

	read_capacity_to_consume_per_second – Passed along to the underlying
rate_limited_scan and intended as
the mechanism to rate limit progress. Please
see notes below around write capacity.

	allow_rate_limited_scan_without_consumed_capacity – Passed along to rate_limited_scan; intended
to allow unit tests to pass against DynamoDB Local.

	mock_conditional_update_failure – Only used for unit testing. When True, the conditional update expression
used internally is updated such that it is guaranteed to fail. This is
meant to trigger the code path in boto, to allow us to unit test that
we are jumping through appropriate hoops handling the resulting
failure and distinguishing it from other failures.

	page_size – Passed along to the underlying ‘page_size’. Page size of the scan to DynamoDB.

	limit – Passed along to the underlying ‘limit’. Used to limit the number of results returned.

	number_of_secs_to_back_off – Number of seconds to sleep when exceeding capacity.

	Returns

	(number_of_items_in_need_of_update, number_of_them_that_failed_due_to_conditional_update)

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pynamodb	

 	
 	
 pynamodb.attributes	

 	
 	
 pynamodb.connection	

 	
 	
 pynamodb.indexes	

 	
 	
 pynamodb.migration	

 	
 	
 pynamodb.models	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U

A

 	
 	AllProjection (class in pynamodb.indexes)

 	
 	Attribute (class in pynamodb.attributes)

B

 	
 	batch_get() (pynamodb.models.Model class method)

 	batch_get_item() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	batch_write() (pynamodb.models.Model class method)

 	
 	batch_write_item() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	BinaryAttribute (class in pynamodb.attributes)

 	BinarySetAttribute (class in pynamodb.attributes)

 	BooleanAttribute (class in pynamodb.attributes)

C

 	
 	client (pynamodb.connection.Connection attribute)

 	Connection (class in pynamodb.connection)

 	count() (pynamodb.indexes.Index class method)

 	(pynamodb.models.Model class method)

 	
 	create_table() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	(pynamodb.models.Model class method)

D

 	
 	delete() (pynamodb.models.Model method)

 	delete_item() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	delete_table() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	(pynamodb.models.Model class method)

 	DeleteError

 	describe_table() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	(pynamodb.models.Model class method)

 	deserialize() (pynamodb.attributes.Attribute method)

 	(pynamodb.attributes.BinaryAttribute method)

 	(pynamodb.attributes.BinarySetAttribute method)

 	(pynamodb.attributes.BooleanAttribute method)

 	(pynamodb.attributes.JSONAttribute method)

 	(pynamodb.attributes.LegacyBooleanAttribute method)

 	(pynamodb.attributes.ListAttribute method)

 	(pynamodb.attributes.MapAttribute method)

 	(pynamodb.attributes.NullAttribute method)

 	(pynamodb.attributes.NumberAttribute method)

 	(pynamodb.attributes.SetMixin method)

 	(pynamodb.attributes.UTCDateTimeAttribute method)

 	(pynamodb.attributes.UnicodeSetAttribute method)

 	
 	dispatch() (pynamodb.connection.Connection method)

 	DoesNotExist

 	dump() (pynamodb.models.Model class method)

 	dumps() (pynamodb.models.Model class method)

E

 	
 	element_serialize() (pynamodb.attributes.UnicodeSetAttribute method)

 	
 	exists() (pynamodb.models.Model class method)

F

 	
 	from_raw_data() (pynamodb.models.Model class method)

G

 	
 	get() (pynamodb.models.Model class method)

 	get_attribute_type() (pynamodb.connection.Connection method)

 	get_conditional_operator() (pynamodb.connection.Connection method)

 	get_consumed_capacity_map() (pynamodb.connection.Connection method)

 	get_exclusive_start_key_map() (pynamodb.connection.Connection method)

 	get_expected_map() (pynamodb.connection.Connection method)

 	get_identifier_map() (pynamodb.connection.Connection method)

 	get_item() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	
 	get_item_attribute_map() (pynamodb.connection.Connection method)

 	get_item_collection_map() (pynamodb.connection.Connection method)

 	get_meta_table() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	get_query_filter_map() (pynamodb.connection.Connection method)

 	get_return_values_map() (pynamodb.connection.Connection method)

 	GetError

 	GlobalSecondaryIndex (class in pynamodb.indexes)

I

 	
 	IncludeProjection (class in pynamodb.indexes)

 	
 	Index (class in pynamodb.indexes)

 	IndexMeta (class in pynamodb.indexes)

J

 	
 	JSONAttribute (class in pynamodb.attributes)

K

 	
 	KeysOnlyProjection (class in pynamodb.indexes)

L

 	
 	LegacyBooleanAttribute (class in pynamodb.attributes)

 	list_tables() (pynamodb.connection.Connection method)

 	
 	ListAttribute (class in pynamodb.attributes)

 	LocalSecondaryIndex (class in pynamodb.indexes)

M

 	
 	MapAttribute (class in pynamodb.attributes)

 	MapAttributeMeta (class in pynamodb.attributes)

 	
 	migrate_boolean_attributes() (in module pynamodb.migration)

 	Model (class in pynamodb.models)

 	Model.DoesNotExist

N

 	
 	NullAttribute (class in pynamodb.attributes)

 	
 	NumberAttribute (class in pynamodb.attributes)

 	NumberSetAttribute (class in pynamodb.attributes)

P

 	
 	parse_attribute() (pynamodb.connection.Connection method)

 	Projection (class in pynamodb.indexes)

 	put_item() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	PutError

 	
 	pynamodb.attributes (module)

 	pynamodb.connection (module)

 	pynamodb.indexes (module)

 	pynamodb.migration (module)

 	pynamodb.models (module)

 	PynamoDBConnectionError

Q

 	
 	query() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	(pynamodb.indexes.Index class method)

 	(pynamodb.models.Model class method)

 	
 	QueryError

R

 	
 	rate_limited_scan() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	(pynamodb.models.Model class method)

 	
 	refresh() (pynamodb.models.Model method)

 	requests_session (pynamodb.connection.Connection attribute)

S

 	
 	save() (pynamodb.models.Model method)

 	scan() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	(pynamodb.indexes.Index class method)

 	(pynamodb.models.Model class method)

 	ScanError

 	serialize() (pynamodb.attributes.Attribute method)

 	(pynamodb.attributes.BinaryAttribute method)

 	(pynamodb.attributes.BinarySetAttribute method)

 	(pynamodb.attributes.BooleanAttribute method)

 	(pynamodb.attributes.JSONAttribute method)

 	(pynamodb.attributes.LegacyBooleanAttribute method)

 	(pynamodb.attributes.ListAttribute method)

 	(pynamodb.attributes.MapAttribute method)

 	(pynamodb.attributes.NullAttribute method)

 	(pynamodb.attributes.NumberAttribute method)

 	(pynamodb.attributes.SetMixin method)

 	(pynamodb.attributes.UTCDateTimeAttribute method)

 	(pynamodb.attributes.UnicodeAttribute method)

 	(pynamodb.attributes.UnicodeSetAttribute method)

 	
 	session (pynamodb.connection.Connection attribute)

 	SetMixin (class in pynamodb.attributes)

T

 	
 	TableConnection (class in pynamodb.connection)

 	
 	TableDoesNotExist

 	TableError

U

 	
 	UnicodeAttribute (class in pynamodb.attributes)

 	UnicodeSetAttribute (class in pynamodb.attributes)

 	update() (pynamodb.models.Model method)

 	update_item() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	(pynamodb.models.Model method)

 	
 	update_table() (pynamodb.connection.Connection method)

 	(pynamodb.connection.TableConnection method)

 	UpdateError

 	UTCDateTimeAttribute (class in pynamodb.attributes)

Rate-Limited Operation

Scan, Query and Count operations can be rate-limited based on the consumed capacities returned from DynamoDB.
Simply specify the rate_limit argument when calling these methods.

Note

Rate-limiting is only meant to slow operations down to conform to capacity limitations.
Rate-limiting can not be used to speed operations up. Specifying a higher rate-limit that exceeds the possible
writing speed allowed by the environment, will not have any effect.

Example Usage

Suppose that you have defined a User Model for the examples below.

from pynamodb.models import Model
from pynamodb.attributes import (
 UnicodeAttribute
)

class User(Model):
 class Meta:
 table_name = 'Users'

 id = UnicodeAttribute(hash_key=True)
 name = UnicodeAttribute(range_key=True)

Here is an example using rate-limit in while scaning the User model

Using only 5 RCU per second
for user in User.scan(rate_limit = 5):
 print("User id: {}, name: {}".format(user.id, user.name))

Query

You can use rate-limit when querying items from your table:

Using only 15 RCU per second
for user in User.query('id1', User.name.startswith('re'), rate_limit = 15):
 print("Query returned user {0}".format(user))

Count

You can use rate-limit when counting items in your table:

Using only 15 RCU per second
count = User.count(rate_limit = 15):
print("Count : {}".format(count))

 _static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to PynamoDB’s documentation!

 		
 Usage

 		
 Creating a model

 		
 Changing items

 		
 Querying

 		
 Counting Items

 		
 Batch Operations

 		
 Basic Tutorial

 		
 Why PynamoDB?

 		
 Installation

 		
 Getting Started

 		
 Defining a Model

 		
 Model Settings

 		
 Defining Model Attributes

 		
 Creating the table

 		
 Deleting a table

 		
 Using the Model

 		
 Creating Items

 		
 Updating Items

 		
 Index Queries

 		
 Index Settings

 		
 Global Secondary Indexes

 		
 Local Secondary Indexes

 		
 Querying an index

 		
 Batch Operations

 		
 Batch Writes

 		
 Batch Gets

 		
 Query Filters

 		
 Scan Filters

 		
 Limiting results

 		
 Update Operations

 		
 Update Expressions

 		
 Conditional Operations

 		
 Condition Expressions

 		
 Conditional Model.save

 		
 Conditional Model.update

 		
 Conditional Model.delete

 		
 Conditional Operation Failures

 		
 Custom Attributes

 		
 Attribute Methods

 		
 Writing your own attribute

 		
 Custom Attribute Example

 		
 List Attributes

 		
 Map Attributes

 		
 Use PynamoDB Locally

 		
 Running dynalite

 		
 Running DynamoDB Local

 		
 Table Backups

 		
 Backing up a table

 		
 Restoring from a backup

 		
 Signals

 		
 Subscribing to Signals

 		
 PynamoDB Examples

 		
 Install PynamoDB

 		
 Getting the examples

 		
 Running the examples

 		
 Configuring the examples

 		
 Running an example

 		
 Settings

 		
 Settings reference

 		
 request_timeout_seconds

 		
 max_retry_attempts

 		
 base_backoff_ms

 		
 region

 		
 session_cls

 		
 allow_rate_limited_scan_without_consumed_capacity

 		
 Overriding settings

 		
 Low Level API

 		
 Creating a connection

 		
 Modifying tables

 		
 Modifying items

 		
 AWS Access

 		
 Logging

 		
 Contributing

 		
 Testing

 		
 Release Notes

 		
 v3.3.0

 		
 v3.2.1

 		
 v3.2.0

 		
 v3.2.0rc2

 		
 v3.2.0rc1

 		
 v3.1.0

 		
 v3.0.1

 		
 v2.2.0

 		
 v2.1.6

 		
 v2.1.5

 		
 v2.1.4

 		
 v2.0.3

 		
 v2.0.2

 		
 v2.0.1

 		
 v2.0.0

 		
 v1.6.0

 		
 v1.5.4

 		
 v1.5.3

 		
 v1.5.2

 		
 v1.5.1

 		
 v1.5.0

 		
 v1.4.4

 		
 v1.4.3

 		
 v1.4.2

 		
 v1.4.1

 		
 v1.4.0

 		
 v1.3.7

 		
 v1.3.6

 		
 v1.3.5

 		
 v1.3.4

 		
 v1.3.3

 		
 v1.3.2

 		
 v1.3.1

 		
 v1.3.0

 		
 v1.2.2

 		
 v1.2.1

 		
 v1.2.0

 		
 v1.1.0

 		
 v1.0.0

 		
 v0.1.13

 		
 v0.1.12

 		
 v0.1.11

 		
 Versioning Scheme

 		
 API

 		
 High Level API

 		
 Low Level API

 		
 Exceptions

 		
 Migration API

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

