

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pymangal 0.1 documentation

pymangal

pymangal is a library to interact with APIs returning ecological
interaction networks datasets in the format specified by the mangal
data specification. More informations on mangal can be found here.

The pymangal module provides way to browse, search, and get data, as
well as to upload or patch them.

Data in the mangal database are released under the Creative Commons 0
waiver. Anyone is free to access and use them. Note that the usual rules
of good conduct among academics apply, and you are expected to credit data
collectors by citing either the dataset, or the original publication. These
informations are available in the dataset object.

User guide

These pages will cover the use of various aspect of the pymangal module.

	pymangal 101
	Overview of the module

	Getting a list of resources

	Getting a particular resource

	Creating and modifying resources

	Filtering of resources
	General filtering syntax

	Type of relationships

	Filtering through multiple resources

	How to upload data
	Example: a linear food chain

	Other notes

Developer guide

These page give the complete reference of the pymangal module. They
are mostly intended for people wanting to know how the sausage is made
(with heavy chucks of JSON).

	The mangal class

	Checks of user-supplied arguments

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pymangal 0.1 documentation

pymangal 101

This document provides an overview of what the pymangal module can do,
and more importantly, how to do it.

Overview of the module

Installation

At the moment, the simplest way to install pymangal is to download the
latest version from the GitHub repository, using e.g.:

wget https://github.com/mangal-wg/pymangal/archive/master.zip
unzip master.zip
cp pymangal-master/pymangal .
rm -r pymangal-master

Then from within the pymangal folder,

make requirements
make test
make install

Alternatively, make all will download the requirements, run the tests,
and install the module. Note that by default, the makefile calls
python2 and pip2. If your versions of ptyhon 2 and pip are called,
e.g., python27 and pip, you need to pass them as variable names when
calling make:

make all pip=pip python=python27

Creating a mangal object

Almost all of the actions you will do using pymangal will be done by
calling various methods of the mangal class. The usual first step of
any script is to import the module.

>>> import pymangal as pm
>>> api = pm.mangal()

Calling dir(api) will give you an overview of the methods and attributes.

APIs conforming to the mangal specification can expose either all
resources, or a subset of them. To see which are available,

>>> api.resources

For each value in the previously returned list, there is an element of

>>> api.schemes

This dictionary contains the json scheme for all resources exposed by
the API. This will both give you information about the data format, and be
used internally to ensure that the data you upload or patch in the remote
database are correctly formatted.

Getting a list of resources

mangal objects have a List() method that will give a list of entries
for a type of resource. For example, one can list datasets with:

>>> api.List('dataset')

The returned object is a dict with keys meta and objects. meta
is important because it allows paging through the resources, as we will
see below. The actual content you want to work with is within objects;
objects is an array of dict.

Paging and offset

To preserve bandwidth (yours and ours), pymangal will only return the
first 10 records. The meta dictionary will give you the total_count
(total number of objects) available. If you want to retrieve all of these
objects in a single request, you can use the page='all' argument to the
List() method.

>>> api.List('taxa', page='all')

If you want more that 10 records, you can pass the number of records to
page:

>>> api.List('network', page=20)

An additional important attribute of meta is the offset. It will
tell you how many objects were discarded before returning your results. For
example, the following code

>>> t_1_to_4 = api.List('taxa', page=4, offset=0)
>>> t_5_to_8 = api.List('taxa', page=4, offset=4)

is (roughly, you still would have to recompose the object) equivalent to

>>> t_1_to_8 = api.List('taxa', page=8)

Filtering

There is a special page on filtering. When filtering, it is recommended to
use page='all', as it will ensure that all matched results are returned.

Getting a particular resource

Getting a particular resource required that you know its type, and its unique
identifier. For example, getting the taxa with id equal to 8 si

>>> taxa_8 = api.Get('taxa', 8)

The object is returned as is, i.e. as a python Dict. If there is
no object with the given id, or no matching type, then the call to
Get will fail.

Creating and modifying resources

There is a page dedicated to contributing_. Users with data that they want
to add to the mangal database are invited to read this page, which gives
informations about (1) how to register online and (2) how to prepare data
for upload.

 Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pymangal 0.1 documentation

Filtering of resources

This document covers the different ways to filter resources using the
List method.

General filtering syntax

Filtering follows the general syntax:

field__relation=target

field is the name of one of the fields in the resource model (see
mg.schemes[resource]['properties'].keys()). relation is one of
the ten possible values given below. Finally, target is the value to
match. It is possible to join several filters, by joining them with &.

Note that if the target contains spaces, they will be automatically
changed to %20, so you won’t have to worry about that.

Examples

Let’s start by loading the module:

>>> import pymangal as pm
>>> api = pm.mangal()

Getting all taxa whose name contains “alba”:

>>> api.List('taxa', filters='name__contains=alba', page='all')

Getting the dataset containing network “101”:

>>> api.List('dataset', filters='networks__in=101', page='all')

Getting all networks with “benthic” in their name, between latitudes “-5” and “5”:

>>> api.list('network', filters='name__contains=bentic&latitude__range=-5,5', page='all')

Type of relationships

	relation
	description

	startswith
	All fields starting by the target

	endswith
	All fields ending by the target

	exact
	Exact matching

	contains
	Fields that contain the target

	range
	Fields with values in the range

	gt
	Field with values greater than the target

	lt
	Field with values smaller than the target

	gte
	Field with values greater (or equal to) than the target

	lte
	Field with values smaller (or equal to) than the target

	in
	Field with the target among their values

Filtering through multiple resources

It is possible to combine several resources when filtering. For example, if
one want to retrieve populations belonging to the taxa Alces americanus,
the syntax is

taxa__name__exact=Alces%20americanus

Examples

List of populations whose taxa is of the genus “Alces”:

>>> api.List('population', filters='taxa__name__startswith=Alces', page='all')

List of interactions involving “Canis lupus” as a predator

>>> api.List('interaction', filters='link_type__exact=predation&taxa_from__name__exact=Canis%20lupus', page='all')

 Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pymangal 0.1 documentation

How to upload data

This page will walk you through the upload of a simple food web with
three species. The goal is to cover the basic mechanisms. Posting
data requires to be authenticated. Users can register at <
http://mangal.uqar.ca/dashboard/>. Authentication is done with the username
and API key.

To upload data, a good knowledge of the data specification is
important. JSON schemes are imported when connecting to the database
the first time

>>> import pymangal as pm
>>> api = pm.mangal(usr='myUserName', key='myApiKey')
>>> api.schemes.keys()

Sending data into the database is done though the Post method of the
mangal class. The Post method requires two arguments: resource
and data. resource is the type of object you are sending in the
database, and data is the object as a python dict.:

>>> my_taxa = {'name': 'Carcharodon carcharias', 'vernacular': 'Great white shark', 'eol': 213726, 'status': 'confirmed'}
>>> great_white = api.Post('taxa', my_taxa)

The mangal API is configured so that, when data are received or modified,
it will return the database record created. It means that you can assign
the result of calling Post to an object, for easy re-use. For example,
we can now create a population belonging to this taxa:

>>> my_population = {'taxa': great_white['id'], 'name': 'Amity island sharks'}
>>> amity_island = api.Post('population', my_population)

Note

In the rmangal package, it is possible to pass whole objects rather than just id to the function to patch and post. This is not the case with pymangal.

Example: a linear food chain

In this exercice, we’ll upload a linear food chain made of a top predator
(Canis lupus), a consumer (Alces americanus), and a primary producer
(Abies balsamea).

The first step is to create objects containing the taxa:

>>> wolf = {'name': 'Canis lupus', 'vernacular': 'Gray wolf', 'status': 'confirmed'}
>>> moose = {'name': 'Alces americanus', 'vernacular': 'American moose', 'status': 'confirmed'}
>>> fir = {'name': 'Abies balsamea', 'vernacular': 'Balsam fir', 'status': 'confirmed'}

Now, we will take each of these objects, and send them into the database:

>>> wolf = api.Post('taxa', wolf)
>>> moose = api.Post('taxa', moose)
>>> fir = api.Post('taxa', fir)

The next step is to create interactions between these taxa:

>>> w_m = api.Post('interaction', {'taxa_from': wolf['id'], 'taxa_to': moose['id'], 'link_type': 'predation', 'obs_type': 'litterature'})
>>> m_b = api.Post('interaction', {'taxa_from': moose['id'], 'taxa_to': fir['id'], 'link_type': 'herbivory', 'obs_type': 'litterature'})

That being done, we will now create a network with the different interactions:

>>> net = api.Post('network', {'name': 'Isle Royale National Park', 'interactions': map(lambda x: x['id'], [w_m, m_b])})

The last step is to put this network into a dataset:

>>> ds = api.Post('dataset', {'name': 'Test dataset', 'networks': [net['id']]})

And with these steps, we have (i) created taxa, (ii) established interactions
between them, (iii) put these interactions in a network, and (iv) created
a dataset.

Other notes

Conflicting names

The mangal API will check for the uniqueness of some properties before
writing the data. For example, no two taxa can have the same name, of
taxonomic identifiers. If this happens, the server will throw a 500
error, and the error message will tell you which field is not unique. You
can then use the filtering_ abilities to retrieve the pre-existing record.

Automatic validation

So as to avoid sending “bad” data on the database, pymangal conducts an
automated validation of user-supplied data before doing anything. In case
the data are not properly formatted, a ValidationError will be thrown,
along with an explanation of (i) which field(s) failed to validate and (ii)
what acceptable values were.

Resource IDs and URIs

The pymangal module will, internaly, take care of replacing objects
identifiers by their proper URIs. If you want to make a reference to the
taxa whose id is 1, the Post method will automatically convert
1 to api/v1/taxa/1/, i.e. the format needed to upload.

 Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pymangal 0.1 documentation

The mangal class

The mangal class is where most of the action happens. Almost all user
actions consist in calling various methods of this class.

Documentation

	
class pymangal.mangal(url='http://mangal.uqar.ca', suffix='/api/v1/', usr=None, key=None)

	Creates an object of class mangal

This is the main class used by pymangal. When called, it will return
an object with all methods and attributes required to interact with
the database.

	Parameters:	
	url – The URL of the site with the API (default: http://mangal.uqar.ca)

	suffix – The suffix of the API (default: /api/v1/)

	usr – Your username on the server (default: None)

	key – Your API key on the server (default: None)

	Returns:	An object of class mangal

	
Get(resource='dataset', key='1')

	Get an object identified by its key (id)

	Parameters:	
	resource – The type of object to get

	key – The unique identifier of the object

	Returns:	A dict representation of the resource

	
List(resource='dataset', filters=None, page=10, offset=0)

	Lists all objects of a given resource type, according to a filter

	Parameters:	
	resource – The type of resource (default: dataset)

	filters – A string giving the filtering criteria (default: None)

	page – Either an integer giving the number of results to return, or 'all' (default: 10)

	offset – Number of initial results to discard (default: 0)

	Returns:	A dict with keys meta and objects

Note

The objects key of the returned dictionary is a list of dict, each being a record in the database. The meta key contains the next and previous urls, and the total_count number of objects for the request.

	
Post(resource='taxa', data=None)

	Post a resource to the database

	Parameters:	
	resource – The type of object to post

	data – The dict representation of the object

The data may or may not contain an owner key. If so, it
must be the URI of the owner object. If no owner key is present,
the value used will be self.owner.

This method converts the fields values to URIs automatically

If the request is successful, this method will return the newly created
object. If not, it will print the reply from the server and fail.

 Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pymangal 0.1 documentation

Checks of user-supplied arguments

Several methods share arguments, so it made sense to have a set of functions
designed to validate the in the same place. These functions are all in
pymangal.checks, and are used internally only by the different methods.

Documentation

	
pymangal.checks.check_resource_arg(api, resource)[source]

	Checks that the resource argument is correct

	Parameters:	
	api – A mangal instance

	resource – A user-supplied argument (tentatively, a string)

	Returns:	Nothing, but fails if resource is not valid

So as to be valid, a resource argument must

	be of type str

	be included in api.resources, which is collected from the API root

	
pymangal.checks.check_upload_res(api, resource, data)[source]

	Checks that the data to be uploaded are in the proper format

	Parameters:	
	api – A mangal instance

	resource – A resource argument

	data – The data to be uploaded. This is supposed to be a dict.

	Returns:	Nothing, but fails if something is wrong.

The first checks are basic:

	the user must provide authentication

	the data must be given as a dict

The next check concers data validity, i.e. they must conform to the data schema
in json, as obtained from the API root when calling __init__.

	
pymangal.checks.check_filters(filters)[source]

	Checks that the filters are valid

	Parameters:	filters – A string of filters

	Returns:	Nothing, but can modify filters in place, and raises ``ValueError``s if the filters are badly formatted.

This functions conducts minimal parsing, to make sure that the relationship exists, and that the filter is generally well formed.

The filters string is modified in place if it contains space.

 Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pymangal 0.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pymangal	

 	
 	
 pymangal.checks	

 Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pymangal 0.1 documentation

Index

 C
 | G
 | L
 | M
 | P

C

 	

 	check_filters() (in module pymangal.checks)

 	check_resource_arg() (in module pymangal.checks)

 	

 	check_upload_res() (in module pymangal.checks)

G

 	

 	Get() (pymangal.mangal method)

L

 	

 	List() (pymangal.mangal method)

M

 	

 	mangal (class in pymangal)

P

 	

 	Post() (pymangal.mangal method)

 	pymangal (module)

 	

 	pymangal.checks (module)

 Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

 _static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		pymangal 0.1 documentation »

 All modules for which code is available

		pymangal

		pymangal.checks

 © Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

_modules/pymangal/checks.html

 Navigation

 		
 index

 		
 modules |

 		pymangal 0.1 documentation »

 		Module code »

 		pymangal »

 Source code for pymangal.checks

from jsonschema import validate

[docs]def check_resource_arg(api, resource):
 """Checks that the ``resource`` argument is correct

 :param api: A ``mangal`` instance
 :param resource: A user-supplied argument (tentatively, a string)

 :returns: Nothing, but fails if ``resource`` is not valid

 So as to be valid, a ``resource`` argument *must*

 * be of type ``str``
 * be included in ``api.resources``, which is collected from the API root

 """
 if not api.__class__.__name__ == 'mangal':
 raise TypeError("The API object must be an instance of the mangal class")
 if not isinstance(resource, str):
 raise TypeError("The resource argument must be given as a string")
 if not resource in api.resources:
 raise ValueError("The API do not expose resources of types "+resource)

[docs]def check_upload_res(api, resource, data):
 """Checks that the data to be uploaded are in the proper format

 :param api: A ``mangal`` instance
 :param resource: A resource argument
 :param data: The data to be uploaded. This is supposed to be a dict.

 :returns: Nothing, but fails if something is wrong.

 The first checks are basic:

 * the user must provide authentication
 * the data must be given as a dict

 The next check concers data validity, i.e. they must conform to the data schema
 in json, as obtained from the API root when calling ``__init__``.
 """
 # This saves a bunch of typing
 check_resource_arg(api, resource)
 # Next, checks on the data
 if not api.auth:
 raise ValueError("You need to provide authentication to post")
 if data == None :
 raise ValueError("You need to provide data")
 if not isinstance(data, dict):
 raise TypeError("Data must be in dict format")
 if not data.has_key('owner'):
 data['owner'] = api.owner
 validate(data, api.schemes[resource])

[docs]def check_filters(filters):
 """Checks that the filters are valid

 :param filters: A string of filters

 :returns: Nothing, but can modify ``filters`` in place, and raises ``ValueError``s if the filters are badly formatted.

 This functions conducts minimal parsing, to make sure that the relationship exists, and that the filter is generally well formed.

 The ``filters`` string is modified in place if it contains space.
 """
 if not isinstance(filters, str):
 raise TypeError("filters must be a string")
 # We replace all spaces with %20
 filters.replace(' ', '%20')
 # These steps will check that the filters are correct
 REL = ['sartswith', 'endswith', 'exact', 'contains', 'range', 'gt', 'lt', 'gte', 'lte', 'in']
 filters = filters.split('&')
 for fi in filters:
 if not '=' in fi:
 raise ValueError("Filter "+fi+" is invalid (no =)")
 if not '__' in fi:
 raise ValueError("Filter "+fi+" is invalid (no __)")
 splitted_filter = fi.split('=')
 match = splitted_filter[0]
 target = splitted_filter[1]
 request = match.split('__')
 relationship = request[len(request)-1]
 if not relationship in REL:
 raise ValueError("Filter "+fi+" is invalid ("+ relationship +" is not a valid relationship)")
 if len(filters) == 1 :
 return filters
 else :
 return '&'.join(filters)

 © Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

_modules/pymangal.html

 Navigation

 		
 index

 		
 modules |

 		pymangal 0.1 documentation »

 		Module code »

 Source code for pymangal

-*- coding: utf-8 -*-
__version__ = '0.2.0'
__title__ = 'pymangal'
__author__ ='Timothée Poisot'
__license__ = 'BSD-2'

from api import mangal
from makeschema import makeschema

numVer = map(int, __version__.split('.'))
if numVer[0] == 0 :
 unstableMess = "pymangal v."+__version__+" - this is an UNSTABLE release"
 if not numVer[2] == 0 :
 unstableMess += ", development version"
 print unstableMess

 © Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pymangal 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Timothée Poisot.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/minus.png

