

[image: _images/pygobject.svg]

PyGObject is a Python package which provides bindings for GObject [https://developer.gnome.org/gobject/stable/] based libraries such as GTK+ [https://www.gtk.org/], GStreamer [https://gstreamer.freedesktop.org/],
WebKitGTK+ [https://webkitgtk.org/], GLib [https://developer.gnome.org/glib/stable/], GIO [https://developer.gnome.org/gio/stable/] and many more.

If you want to write a Python application for GNOME [https://www.gnome.org/] or a Python GUI application using GTK+, then
PyGObject is the way to go. Also check out the “Python GTK+ 3 Tutorial [https://python-gtk-3-tutorial.readthedocs.io]” and the “Python GI API
Reference [https://lazka.github.io/pgi-docs]”.

How does it work?

[image: _images/overview.svg]

PyGObject uses glib [https://developer.gnome.org/glib/stable/], gobject [https://developer.gnome.org/gobject/stable/], girepository [https://developer.gnome.org/gi/stable/], libffi [https://sourceware.org/libffi/] and other libraries to access the C
library (libgtk-3.so) in combination with the additional metadata from the
accompanying typelib file (Gtk-3.0.typelib) and dynamically provides a Python
interface based on that information.

Who Is Using PyGObject?

	D-Feet [https://wiki.gnome.org/action/show/Apps/DFeet] - an easy to use D-Bus debugger

	GNOME Music [https://wiki.gnome.org/Apps/Music] - a music player for GNOME

	GNOME Tweak Tool [https://wiki.gnome.org/action/show/Apps/GnomeTweakTool] - a tool to customize advanced GNOME 3 options

	Gramps [https://gramps-project.org/] - a genealogy program

	Lollypop [https://gnumdk.github.io/lollypop-web/] - a modern music player

	Meld [http://meldmerge.org/] - a visual diff and merge tool

	MyPaint [http://mypaint.org/] - a nimble, distraction-free, and easy tool for digital painters

	Orca [https://wiki.gnome.org/Projects/Orca] - a flexible and extensible screen reader

	Pithos [https://pithos.github.io/] - a Pandora Radio client

	Pitivi [http://www.pitivi.org/] - a free and open source video editor

	Quod Libet [https://quodlibet.readthedocs.io/] - a music library manager / player

	Transmageddon [http://www.linuxrising.org/] - a video transcoder

The following applications or libraries use PyGObject for optional features,
such as plugins or as optional backends:

	beets [http://beets.io/] - a music library manager and MusicBrainz tagger

	gedit [https://wiki.gnome.org/Apps/Gedit]- a GNOME text editor

	matplotlib [http://matplotlib.org/] - a python 2D plotting library

	Totem [https://wiki.gnome.org/Apps/Videos] - a video player for GNOME

Getting Started

To get things started we will try to run a very simple GTK+ [https://www.gtk.org/] based GUI application using the PyGObject provided
Python bindings. First create a small Python script called hello.py with
the following content and save it somewhere:

import gi
gi.require_version("Gtk", "3.0")
from gi.repository import Gtk

window = Gtk.Window(title="Hello World")
window.show()
window.connect("delete-event", Gtk.main_quit)
Gtk.main()

Before we can run the example application we need to install PyGObject, GTK+
and their dependencies. Follow the instructions for your platform below.

 Windows

	Go to https://msys2.github.io/ and download the x86_64 installer

	Follow the instructions on the page for setting up the basic environment

	Run C:\msys64\mingw32.exe - a terminal window should pop up

	Execute pacman -S mingw-w64-i686-gtk3 mingw-w64-i686-python2-gobject mingw-w64-i686-python3-gobject

	To test that GTK+3 is working you can run gtk3-demo

	Copy the hello.py script you created to C:\msys64\home\<username>

	In the mingw32 terminal execute python2 hello.py - a window should appear.

[image: _images/start_windows.png]

 Ubuntu / Debian

	Open a terminal

	Execute sudo apt install python-gi python-gi-cairo python3-gi python3-gi-cairo gir1.2-gtk-3.0

	Change the directory to where your hello.py script can be found (e.g. cd Desktop)

	Run python2 hello.py

[image: _images/start_linux.png]

 Fedora

	Open a terminal

	Execute sudo dnf install pygobject3 python3-gobject gtk3

	Change the directory to where your hello.py script can be found (e.g. cd Desktop)

	Run python2 hello.py

 Arch Linux

	Open a terminal

	Execute sudo pacman -S python-gobject python2-gobject gtk3

	Change the directory to where your hello.py script can be found (e.g. cd Desktop)

	Run python2 hello.py

 openSUSE

	Open a terminal

	Execute sudo zypper install python-gobject python3-gobject gtk3

	Change the directory to where your hello.py script can be found (e.g. cd Desktop)

	Run python2 hello.py

 macOS

	Go to https://brew.sh/ and install homebrew

	Open a terminal

	Execute brew install pygobject3 --with-python3 gtk+3 to install for both python2 and python3

	Change the directory to where your hello.py script can be found (e.g. cd Desktop)

	Run python2 hello.py

[image: _images/start_macos.png]

User Guide

	GI API

	Basic Types

	Flags & Enums

	GObject.Object

	Cairo Integration

	Threads & Concurrency

GI API

This is the API provided by the toplevel “gi” package.

	
gi.require_version(namespace, version)

	

	Parameters:	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – The namespace

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the namespace which should be loaded

	Raises:	ValueError [https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError]

Ensures the namespace gets loaded with the given version. If the namespace
was already loaded with a different version or a different version was
required previously raises ValueError.

import gi
gi.require_version('Gtk', '3.0')

	
gi.require_foreign(namespace, symbol=None)

	

	Parameters:	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – Introspection namespace of the foreign module (e.g. “cairo”)

	symbol (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Optional symbol typename to ensure a converter exists.

	Raises:	ImportError [https://docs.python.org/2.7/library/exceptions.html#exceptions.ImportError]

Ensure the given foreign marshaling module is available and loaded.

Example:

import gi
import cairo
gi.require_foreign('cairo')
gi.require_foreign('cairo', 'Surface')

	
gi.check_version(version)

	

	Parameters:	version (tuple [https://docs.python.org/2.7/library/functions.html#tuple]) – A version tuple

	Raises:	ValueError [https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError]

Compares the passed in version tuple with the gi version and does nothing
if gi version is the same or newer. Otherwise raises ValueError.

	
gi.get_required_version(namespace)

	

	Returns:	The version successfully required previously by gi.require_version() or None [https://docs.python.org/3/library/constants.html#None]

	Return type:	str or None [https://docs.python.org/3/library/constants.html#None]

	
gi.version_info = (3, 18, 1)

	The version of PyGObject

	
class gi.PyGIDeprecationWarning

	The warning class used for deprecations in PyGObject and the included
Python overrides. It inherits from DeprecationWarning and is hidden
by default.

	
class gi.PyGIWarning

	Like gi.PyGIDeprecationWarning but visible by default.

Basic Types

PyGObject will automatically convert between C types and Python types. In
cases where it’s appropriate it will use default Python types like int [https://docs.python.org/3/library/functions.html#int],
list [https://docs.python.org/3/library/stdtypes.html#list], and dict [https://docs.python.org/3/library/stdtypes.html#dict].

Number Types

All glib integer types get mapped to int [https://docs.python.org/3/library/functions.html#int], long [https://docs.python.org/2.7/library/functions.html#long] and float [https://docs.python.org/3/library/functions.html#float].
Since the glib integer types are always range limited, conversions from Python
int/long can fail with OverflowError [https://docs.python.org/3/library/exceptions.html#OverflowError]:

>>> GLib.random_int_range(0, 2**31-1)
1684142898
>>> GLib.random_int_range(0, 2**31)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
OverflowError: 2147483648 not in range -2147483648 to 2147483647
>>>

Text Types

In case you use Python 2 then text is utf-8 encoded str [https://docs.python.org/3/library/stdtypes.html#str], in case of
Python 3 str [https://docs.python.org/3/library/stdtypes.html#str] is used.

Platform String Types

	Windows + Python 2: utf-8 encoded str [https://docs.python.org/3/library/stdtypes.html#str]

	Windows + Python 3: str [https://docs.python.org/3/library/stdtypes.html#str]

	Unix + Python 2: str [https://docs.python.org/3/library/stdtypes.html#str]

	Unix + Python 3: str [https://docs.python.org/3/library/stdtypes.html#str]

On Python 3 there is currently no support for bytes [https://docs.python.org/3/library/stdtypes.html#bytes], see bug 746564 [https://bugzilla.gnome.org/show_bug.cgi?id=746564] for more details.

Other Types

	GList <-> list [https://docs.python.org/3/library/stdtypes.html#list]

	GSList <-> list [https://docs.python.org/3/library/stdtypes.html#list]

	GHashTable <-> dict [https://docs.python.org/3/library/stdtypes.html#dict]

	arrays <-> list [https://docs.python.org/3/library/stdtypes.html#list]

Flags & Enums

Flags are subclasses of GObject.GFlags [https://lazka.github.io/pgi-docs/GObject-2.0/flags.html#GObject.GFlags] and represent bit fields where
some bits also have names:

>>> Gtk.DialogFlags.MODAL
<flags GTK_DIALOG_MODAL of type Gtk.DialogFlags>
>>> Gtk.DialogFlags.MODAL | Gtk.DialogFlags.DESTROY_WITH_PARENT
<flags GTK_DIALOG_MODAL | GTK_DIALOG_DESTROY_WITH_PARENT of type Gtk.DialogFlags>
>>> int(_)
3
>>> Gtk.DialogFlags(3)
<flags GTK_DIALOG_MODAL | GTK_DIALOG_DESTROY_WITH_PARENT of type Gtk.DialogFlags>
>>> isinstance(Gtk.DialogFlags.MODAL, Gtk.DialogFlags)
True
>>>

Bitwise operations on them will produce a value of the same type.

Enums are subclasses of GObject.GEnum [https://lazka.github.io/pgi-docs/GObject-2.0/enums.html#GObject.GEnum] and represent a list of named
constants:

>>> Gtk.Align.CENTER
<enum GTK_ALIGN_CENTER of type Gtk.Align>
>>> int(Gtk.Align.CENTER)
3
>>> int(Gtk.Align.END)
2
>>> Gtk.Align(1)
<enum GTK_ALIGN_START of type Gtk.Align>
>>> isinstance(Gtk.Align.CENTER, Gtk.Align)
True

GObject.Object

Compare to other types, GObject.Object [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object] has the best integration between
the GObject and Python type system.

	It is possible to subclass a GObject.Object [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object]. Subclassing
creates a new GObject.GType [https://lazka.github.io/pgi-docs/GObject-2.0/classes/GType.html#GObject.GType] which is connected to the new Python
type. This means you can use it with API which takes GObject.GType [https://lazka.github.io/pgi-docs/GObject-2.0/classes/GType.html#GObject.GType].

	The Python wrapper instance for a GObject.Object [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object] is always the same.
For the same C instance you will always get the same Python instance.

In addition GObject.Object [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object] has support for signals and
properties

Examples

Subclassing:

>>> from gi.repository import GObject
>>> class A(GObject.Object):
... pass
...
>>> A()
<__main__.A object at 0x7f9113fc3280 (__main__+A at 0x559d9861acc0)>
>>> A.__gtype__
<GType __main__+A (94135355573712)>
>>> A.__gtype__.name
'__main__+A'
>>>

In case you want to specify the GType name we have to provide a
__gtype_name__:

>>> from gi.repository import GObject
>>> class B(GObject.Object):
... __gtype_name__ = "MyName"
...
>>> B.__gtype__
<GType MyName (94830143629776)>
>>>

GObject.Object [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object] only supports single inheritance, this means you can
only subclass one GObject.Object [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object], but multiple Python classes:

>>> from gi.repository import GObject
>>> class MixinA(object):
... pass
...
>>> class MixinB(object):
... pass
...
>>> class MyClass(GObject.Object, MixinA, MixinB):
... pass
...
>>> instance = MyClass()

Here we can see how we create a Gio.ListStore [https://lazka.github.io/pgi-docs/Gio-2.0/classes/ListStore.html#Gio.ListStore] for our new subclass and
that we get back the same Python instance we put into it:

>>> from gi.repository import GObject, Gio
>>> class A(GObject.Object):
... pass
...
>>> store = Gio.ListStore.new(A)
>>> instance = A()
>>> store.append(instance)
>>> store.get_item(0) is instance
True
>>>

Signals

GObject signals are a system for registering callbacks for specific events.

To find all signals of a class you can use the
GObject.signal_list_names() [https://lazka.github.io/pgi-docs/GObject-2.0/functions.html#GObject.signal_list_names] function:

>>> GObject.signal_list_names(Gio.Application)
('activate', 'startup', 'shutdown', 'open', 'command-line', 'handle-local-options')
>>>

To connect to a signal, use GObject.Object.connect() [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object.connect]:

>>> app = Gio.Application()
>>> def on_activate(instance):
... print("Activated:", instance)
...
>>> app.connect("activate", on_activate)
17L
>>> app.run()
('Activated:', <Gio.Application object at 0x7f1bbb304320 (GApplication at 0x5630f1faf200)>)
0
>>>

It returns number which identifies the connection during its lifetime and which
can be used to modify the connection.

For example it can be used to temporarily ignore signal emissions using
GObject.Object.handler_block() [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object.handler_block]:

>>> app = Gio.Application(application_id="foo.bar")
>>> def on_change(*args):
... print(args)
...
>>> c = app.connect("notify::application-id", on_change)
>>> app.props.application_id = "foo.bar"
(<Gio.Application object at 0x7f1bbb304550 (GApplication at 0x5630f1faf2b0)>, <GParamString 'application-id'>)
>>> with app.handler_block(c):
... app.props.application_id = "no.change"
...
>>> app.props.application_id = "change.again"
(<Gio.Application object at 0x7f1bbb304550 (GApplication at 0x5630f1faf2b0)>, <GParamString 'application-id'>)
>>>

You can define your own signals using the GObject.Signal decorator:

	
GObject.Signal(name='', flags=GObject.SignalFlags.RUN_FIRST, return_type=None, arg_types=None, accumulator=None, accu_data=None)

	

	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The signal name

	flags (GObject.SignalFlags [https://lazka.github.io/pgi-docs/GObject-2.0/flags.html#GObject.SignalFlags]) – Signal flags

	return_type (GObject.GType [https://lazka.github.io/pgi-docs/GObject-2.0/classes/GType.html#GObject.GType]) – Return type

	arg_types (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of GObject.GType [https://lazka.github.io/pgi-docs/GObject-2.0/classes/GType.html#GObject.GType] argument types

	accumulator (GObject.SignalAccumulator [https://lazka.github.io/pgi-docs/GObject-2.0/callbacks.html#GObject.SignalAccumulator]) – Accumulator function

	accu_data (object [https://docs.python.org/3/library/functions.html#object]) – User data for the accumulator

class MyClass(GObject.Object):

 @GObject.Signal(flags=GObject.SignalFlags.RUN_LAST, return_type=bool,
 arg_types=(object,),
 accumulator=GObject.signal_accumulator_true_handled)
 def test(self, *args):
 print("Handler", args)

 @GObject.Signal
 def noarg_signal(self):
 print("noarg_signal")

instance = MyClass()

def test_callback(inst, obj):
 print "Handled", inst, obj
 return True

instance.connect("test", test_callback)
instance.emit("test", object())

instance.emit("noarg_signal")

Properties

Properties are part of a class and are defined through a
GObject.ParamSpec [https://lazka.github.io/pgi-docs/GObject-2.0/classes/ParamSpec.html#GObject.ParamSpec], which contains the type, name, value range and so
on.

To find all the registered properties of a class you can use the
GObject.Object.list_properties() [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object.list_properties] class method.

>>> Gio.Application.list_properties()
[<GParamString 'application-id'>, <GParamFlags 'flags'>, <GParamString
'resource-base-path'>, <GParamBoolean 'is-registered'>, <GParamBoolean
'is-remote'>, <GParamUInt 'inactivity-timeout'>, <GParamObject
'action-group'>, <GParamBoolean 'is-busy'>]
>>> param = Gio.Application.list_properties()[0]
>>> param.name
'application-id'
>>> param.owner_type
<GType GApplication (94881584893168)>
>>> param.value_type
<GType gchararray (64)>
>>>

The GObject.Object [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object] contructor takes multiple properties as keyword
arguments. Property names usually contain “-” for seperating words. In Python
you can either use “-” or “_”. In this case variable names don’t allow “-”, so
we use “_”.

>>> app = Gio.Application(application_id="foo.bar")

To get and set the property value see GObject.Object.get_property() [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object.get_property] and
GObject.Object.set_property() [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object.set_property].

>>> app = Gio.Application(application_id="foo.bar")
>>> app
<Gio.Application object at 0x7f7499284fa0 (GApplication at 0x564b571e7c00)>
>>> app.get_property("application_id")
'foo.bar'
>>> app.set_property("application_id", "a.b")
>>> app.get_property("application-id")
'a.b'
>>>

Each instance also has a props attribute which exposes all properties
as instance attributes:

>>> from gi.repository import Gtk
>>> button = Gtk.Button(label="foo")
>>> button.props.label
'foo'
>>> button.props.label = "bar"
>>> button.get_label()
'bar'
>>>

To track changes of properties, GObject.Object [https://lazka.github.io/pgi-docs/GObject-2.0/classes/Object.html#GObject.Object] has a special notify
signal with the property name as the detail string. Note that in this case you
have to give the real property name and replacing “-” with “_” wont work.

>>> app = Gio.Application(application_id="foo.bar")
>>> def my_func(instance, param):
... print("New value %r" % instance.get_property(param.name))
...
>>> app.connect("notify::application-id", my_func)
11L
>>> app.set_property("application-id", "something.different")
New value 'something.different'
>>>

You can define your own properties using the GObject.Property decorator,
which can be used similarly to the builtin Python property [https://docs.python.org/3/library/functions.html#property] decorator:

	
GObject.Property(type=None, default=None, nick='', blurb='', flags=GObject.ParamFlags.READWRITE, minimum=None, maximum=None)

	

	Parameters:	
	type (GObject.GType [https://lazka.github.io/pgi-docs/GObject-2.0/classes/GType.html#GObject.GType]) – Either a GType, a type with a GType or a
Python type which maps to a default GType

	default (object [https://docs.python.org/3/library/functions.html#object]) – A default value

	nick (str [https://docs.python.org/3/library/stdtypes.html#str]) – Property nickname

	block (str [https://docs.python.org/3/library/stdtypes.html#str]) – Short description

	flags (GObject.ParamFlags [https://lazka.github.io/pgi-docs/GObject-2.0/flags.html#GObject.ParamFlags]) – Property configuration flags

	minimum (object [https://docs.python.org/3/library/functions.html#object]) – Minimum value, depends on the type

	maximum (object [https://docs.python.org/3/library/functions.html#object]) – Maximum value, depends on the type

class AnotherObject(GObject.Object):
 value = 0

 @GObject.Property
 def prop_pyobj(self):
 """Read only property."""

 return object()

 @GObject.Property(type=int)
 def prop_gint(self):
 """Read-write integer property."""

 return self.value

 @prop_gint.setter
 def prop_gint(self, value):
 self.value = value

Cairo Integration

Despite cairo [https://cairographics.org/] not being a GObject based
library, PyGObject provides special cairo integration through pycairo [https://pycairo.readthedocs.io]. Functions returning and taking cairo data
types get automatically converted to pycairo objects and vice versa.

Some distros ship the PyGObject cairo support in a separate package. If you’ve
followed the instructions on “Getting Started” you should have everything
installed.

If your application requires the cairo integration you can use
gi.require_foreign():

try:
 gi.require_foreign("cairo")
except ImportError:
 print("No pycairo integration :(")

Note that PyGObject currently does not support cairocffi [https://pypi.python.org/pypi/cairocffi], only pycairo.

Demo

The following example shows a Gtk.Window [https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Window.html#Gtk.Window] with a custom drawing in Python
using pycairo.

[image: ../_images/cairo_integration.png]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

	#!/usr/bin/env python
"""
Based on cairo-demo/X11/cairo-demo.c
"""

import cairo
import gi
gi.require_version("Gtk", "3.0")
from gi.repository import Gtk

SIZE = 30

def triangle(ctx):
 ctx.move_to(SIZE, 0)
 ctx.rel_line_to(SIZE, 2 * SIZE)
 ctx.rel_line_to(-2 * SIZE, 0)
 ctx.close_path()

def square(ctx):
 ctx.move_to(0, 0)
 ctx.rel_line_to(2 * SIZE, 0)
 ctx.rel_line_to(0, 2 * SIZE)
 ctx.rel_line_to(-2 * SIZE, 0)
 ctx.close_path()

def bowtie(ctx):
 ctx.move_to(0, 0)
 ctx.rel_line_to(2 * SIZE, 2 * SIZE)
 ctx.rel_line_to(-2 * SIZE, 0)
 ctx.rel_line_to(2 * SIZE, -2 * SIZE)
 ctx.close_path()

def inf(ctx):
 ctx.move_to(0, SIZE)
 ctx.rel_curve_to(0, SIZE, SIZE, SIZE, 2 * SIZE, 0)
 ctx.rel_curve_to(SIZE, -SIZE, 2 * SIZE, -SIZE, 2 * SIZE, 0)
 ctx.rel_curve_to(0, SIZE, -SIZE, SIZE, - 2 * SIZE, 0)
 ctx.rel_curve_to(-SIZE, -SIZE, - 2 * SIZE, -SIZE, - 2 * SIZE, 0)
 ctx.close_path()

def draw_shapes(ctx, x, y, fill):
 ctx.save()

 ctx.new_path()
 ctx.translate(x + SIZE, y + SIZE)
 bowtie(ctx)
 if fill:
 ctx.fill()
 else:
 ctx.stroke()

 ctx.new_path()
 ctx.translate(3 * SIZE, 0)
 square(ctx)
 if fill:
 ctx.fill()
 else:
 ctx.stroke()

 ctx.new_path()
 ctx.translate(3 * SIZE, 0)
 triangle(ctx)
 if fill:
 ctx.fill()
 else:
 ctx.stroke()

 ctx.new_path()
 ctx.translate(3 * SIZE, 0)
 inf(ctx)
 if fill:
 ctx.fill()
 else:
 ctx.stroke()

 ctx.restore()

def fill_shapes(ctx, x, y):
 draw_shapes(ctx, x, y, True)

def stroke_shapes(ctx, x, y):
 draw_shapes(ctx, x, y, False)

def draw(da, ctx):
 ctx.set_source_rgb(0, 0, 0)

 ctx.set_line_width(SIZE / 4)
 ctx.set_tolerance(0.1)

 ctx.set_line_join(cairo.LINE_JOIN_ROUND)
 ctx.set_dash([SIZE / 4.0, SIZE / 4.0], 0)
 stroke_shapes(ctx, 0, 0)

 ctx.set_dash([], 0)
 stroke_shapes(ctx, 0, 3 * SIZE)

 ctx.set_line_join(cairo.LINE_JOIN_BEVEL)
 stroke_shapes(ctx, 0, 6 * SIZE)

 ctx.set_line_join(cairo.LINE_JOIN_MITER)
 stroke_shapes(ctx, 0, 9 * SIZE)

 fill_shapes(ctx, 0, 12 * SIZE)

 ctx.set_line_join(cairo.LINE_JOIN_BEVEL)
 fill_shapes(ctx, 0, 15 * SIZE)
 ctx.set_source_rgb(1, 0, 0)
 stroke_shapes(ctx, 0, 15 * SIZE)

def main():
 win = Gtk.Window()
 win.connect('destroy', lambda w: Gtk.main_quit())
 win.set_default_size(450, 550)

 drawingarea = Gtk.DrawingArea()
 win.add(drawingarea)
 drawingarea.connect('draw', draw)

 win.show_all()
 Gtk.main()

if __name__ == '__main__':
 main()

Threads & Concurrency

Operations which could potentially block should not be executed in the main
loop. The main loop is in charge of input processing and drawing and
blocking it results in the user interface freezing. For the user this means
not getting any feedback and not being able to pause or abort the operation
which causes the problem.

Such an operation might be:

	Loading external resources like an image file on the web

	Searching the local file system

	Writing, reading and copying files

	Calculations where the runtime depends on some external factor

The following examples show

	how Python threads, running in parallel to GTK+, can interact with the UI

	how to use and control asynchronous I/O operations in glib

Threads

The first example uses a Python thread to execute code in the background
while still showing feedback on the progress in a window.

import threading
import time

from gi.repository import GLib, Gtk, GObject

def app_main():
 win = Gtk.Window(default_height=50, default_width=300)
 win.connect("delete-event", Gtk.main_quit)

 progress = Gtk.ProgressBar(show_text=True)
 win.add(progress)

 def update_progess(i):
 progress.pulse()
 progress.set_text(str(i))
 return False

 def example_target():
 for i in range(50):
 GLib.idle_add(update_progess, i)
 time.sleep(0.2)

 win.show_all()

 thread = threading.Thread(target=example_target)
 thread.daemon = True
 thread.start()

if __name__ == "__main__":
 app_main()
 Gtk.main()

The example shows a simple window containing a progress bar. After everything
is set up it constructs a Python thread, passes it a function to execute,
starts the thread and the GTK+ main loop. After the main loop is started it is
possible to see the window and interact with it.

In the background example_target() gets executed and calls
GLib.idle_add() [https://lazka.github.io/pgi-docs/GLib-2.0/functions.html#GLib.idle_add] and time.sleep() [https://docs.python.org/3/library/time.html#time.sleep] in a loop. In this example
time.sleep() [https://docs.python.org/3/library/time.html#time.sleep] represents the blocking operation. GLib.idle_add() [https://lazka.github.io/pgi-docs/GLib-2.0/functions.html#GLib.idle_add]
takes the update_progess() function and arguments that will get passed to
the function and asks the main loop to schedule its execution in the main
thread. This is needed because GTK+ isn’t thread safe; only one thread, the
main thread, is allowed to call GTK+ code at all times.

Threads: FAQ

	I’m porting code from pygtk (GTK+ 2) to PyGObject (GTK+ 3). Has anything
changed regarding threads?

Short answer: No.

Long answer: gtk.gdk.threads_init(), gtk.gdk.threads_enter() and
gtk.gdk.threads_leave() are now Gdk.threads_init() [https://lazka.github.io/pgi-docs/Gdk-3.0/functions.html#Gdk.threads_init],
Gdk.threads_enter() [https://lazka.github.io/pgi-docs/Gdk-3.0/functions.html#Gdk.threads_enter] and Gdk.threads_leave() [https://lazka.github.io/pgi-docs/Gdk-3.0/functions.html#Gdk.threads_leave].
gobject.threads_init() can be removed.

	I’m using Gdk.threads_init() [https://lazka.github.io/pgi-docs/Gdk-3.0/functions.html#Gdk.threads_init] and want to get rid of it. What do I
need to do?

	Remove any Gdk.threads_init() [https://lazka.github.io/pgi-docs/Gdk-3.0/functions.html#Gdk.threads_init], Gdk.threads_enter() [https://lazka.github.io/pgi-docs/Gdk-3.0/functions.html#Gdk.threads_enter] and
Gdk.threads_leave() [https://lazka.github.io/pgi-docs/Gdk-3.0/functions.html#Gdk.threads_leave] calls. In case they get executed in a thread,
move the GTK+ code into its own function and schedule it using
GLib.idle_add() [https://lazka.github.io/pgi-docs/GLib-2.0/functions.html#GLib.idle_add]. Be aware that the newly created function will be
executed some time later, so other stuff can happen in between.

	Replace any call to Gdk.threads_add_*() with their GLib counterpart.
For example GLib.idle_add() [https://lazka.github.io/pgi-docs/GLib-2.0/functions.html#GLib.idle_add] instead of Gdk.threads_add_idle() [https://lazka.github.io/pgi-docs/Gdk-3.0/functions.html#Gdk.threads_add_idle].

	What about signals and threads?

Signals get executed in the context they are emitted from. In which context
the object is created or where connect() is called from doesn’t matter.
In GStreamer, for example, some signals can be called from a different
thread, see the respective signal documentation for when this is the case.
In case you connect to such a signal you have to make sure to not call any
GTK+ code or use GLib.idle_add() [https://lazka.github.io/pgi-docs/GLib-2.0/functions.html#GLib.idle_add] accordingly.

	What if I need to call GTK+ code in signal handlers emitted from a thread?

In case you have a signal that is emitted from another thread and you need
to call GTK+ code during and not after signal handling, you can push the
operation with an threading.Event [https://docs.python.org/3/library/threading.html#threading.Event] object to the main loop and wait
in the signal handler until the operation gets scheduled and the result is
available. Be aware that if the signal is emitted from the main loop this
will deadlock. See the following example

[...]

toggle_button = Gtk.ToggleButton()

def signal_handler_in_thread():

 def function_calling_gtk(event, result):
 result.append(toggle_button.get_active())
 event.set()

 event = threading.Event()
 result = []
 GLib.idle_add(function_calling_gtk, event, result)
 event.wait()
 toggle_button_is_active = result[0]
 print(toggle_button_is_active)

[...]

	What about the Python GIL [https://en.wikipedia.org/wiki/Global_Interpreter_Lock] ?

Similar to I/O operations in Python, all PyGObject calls release the
GIL during their execution and other Python threads can be executed
during that time.

Asynchronous Operations

In addition to functions for blocking I/O glib also provides corresponding
asynchronous versions, usually with the same name plus a _async suffix.
These functions do the same operation as the synchronous ones but don’t block
during their execution. Instead of blocking they execute the operation in the
background and call a callback once the operation is finished or got canceled.

The following example shows how to download a web page and display the
source in a text field. In addition it’s possible to abort the running
operation.

import time

from gi.repository import Gio, GLib, Gtk

class DownloadWindow(Gtk.Window):

 def __init__(self):
 super(DownloadWindow, self).__init__(
 default_width=500, default_height=400, title="Async I/O Example")

 self.cancellable = Gio.Cancellable()

 self.cancel_button = Gtk.Button(label="Cancel")
 self.cancel_button.connect("clicked", self.on_cancel_clicked)
 self.cancel_button.set_sensitive(False)

 self.start_button = Gtk.Button(label="Load")
 self.start_button.connect("clicked", self.on_start_clicked)

 textview = Gtk.TextView()
 self.textbuffer = textview.get_buffer()
 scrolled = Gtk.ScrolledWindow()
 scrolled.add(textview)

 box = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=6,
 border_width=12)
 box.pack_start(self.start_button, False, True, 0)
 box.pack_start(self.cancel_button, False, True, 0)
 box.pack_start(scrolled, True, True, 0)

 self.add(box)

 def append_text(self, text):
 iter_ = self.textbuffer.get_end_iter()
 self.textbuffer.insert(iter_, "[%s] %s\n" % (str(time.time()), text))

 def on_start_clicked(self, button):
 button.set_sensitive(False)
 self.cancel_button.set_sensitive(True)
 self.append_text("Start clicked...")

 file_ = Gio.File.new_for_uri(
 "http://python-gtk-3-tutorial.readthedocs.org/")
 file_.load_contents_async(
 self.cancellable, self.on_ready_callback, None)

 def on_cancel_clicked(self, button):
 self.append_text("Cancel clicked...")
 self.cancellable.cancel()

 def on_ready_callback(self, source_object, result, user_data):
 try:
 succes, content, etag = source_object.load_contents_finish(result)
 except GLib.GError as e:
 self.append_text("Error: " + e.message)
 else:
 content_text = content[:100].decode("utf-8")
 self.append_text("Got content: " + content_text + "...")
 finally:
 self.cancellable.reset()
 self.cancel_button.set_sensitive(False)
 self.start_button.set_sensitive(True)

if __name__ == "__main__":
 win = DownloadWindow()
 win.show_all()
 win.connect("delete-event", Gtk.main_quit)

 Gtk.main()

The example uses the asynchronous version of Gio.File.load_contents() [https://lazka.github.io/pgi-docs/Gio-2.0/classes/File.html#Gio.File.load_contents] to
load the content of an URI pointing to a web page, but first we look at the
simpler blocking alternative:

We create a Gio.File [https://lazka.github.io/pgi-docs/Gio-2.0/classes/File.html#Gio.File] instance for our URI and call
Gio.File.load_contents() [https://lazka.github.io/pgi-docs/Gio-2.0/classes/File.html#Gio.File.load_contents], which, if it doesn’t raise an error, returns
the content of the web page we wanted.

file = Gio.File.new_for_uri("http://python-gtk-3-tutorial.readthedocs.org/")
try:
 status, contents, etag_out = file.load_contents(None)
except GLib.GError:
 print("Error!")
else:
 print(contents)

In the asynchronous variant we need two more things:

	A Gio.Cancellable [https://lazka.github.io/pgi-docs/Gio-2.0/classes/Cancellable.html#Gio.Cancellable], which we can use during the operation to
abort or cancel it.

	And a Gio.AsyncReadyCallback() [https://lazka.github.io/pgi-docs/Gio-2.0/callbacks.html#Gio.AsyncReadyCallback] callback function, which gets called
once the operation is finished and we can collect the result.

The window contains two buttons for which we register clicked signal
handlers:

	The on_start_clicked() signal handler calls
Gio.File.load_contents_async() [https://lazka.github.io/pgi-docs/Gio-2.0/classes/File.html#Gio.File.load_contents_async] with a Gio.Cancellable [https://lazka.github.io/pgi-docs/Gio-2.0/classes/Cancellable.html#Gio.Cancellable]
and on_ready_callback() as Gio.AsyncReadyCallback() [https://lazka.github.io/pgi-docs/Gio-2.0/callbacks.html#Gio.AsyncReadyCallback].

	The on_cancel_clicked() signal handler calls
Gio.Cancellable.cancel() [https://lazka.github.io/pgi-docs/Gio-2.0/classes/Cancellable.html#Gio.Cancellable.cancel] to cancel the running operation.

Once the operation is finished, either because the result is available, an
error occurred or the operation was canceled, on_ready_callback() will be
called with the Gio.File [https://lazka.github.io/pgi-docs/Gio-2.0/classes/File.html#Gio.File] instance and a Gio.AsyncResult [https://lazka.github.io/pgi-docs/Gio-2.0/classes/AsyncResult.html#Gio.AsyncResult]
instance which holds the result.

To get the result we now have to call Gio.File.load_contents_finish() [https://lazka.github.io/pgi-docs/Gio-2.0/classes/File.html#Gio.File.load_contents_finish]
which returns the same things as Gio.File.load_contents() [https://lazka.github.io/pgi-docs/Gio-2.0/classes/File.html#Gio.File.load_contents] except in
this case the result is already there and it will return immediately
without blocking.

After all this is done we call Gio.Cancellable.reset() [https://lazka.github.io/pgi-docs/Gio-2.0/classes/Cancellable.html#Gio.Cancellable.reset] so the
Gio.Cancellable [https://lazka.github.io/pgi-docs/Gio-2.0/classes/Cancellable.html#Gio.Cancellable] can be re-used for new operations and we can click
the “Load” button again. This works since we made sure that only one
operation can be active at any time by deactivating the “Load” button using
Gtk.Widget.set_sensitive() [https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget.set_sensitive].

Frequently Asked Questions

Can I use PyGObject with virtualenv?

To use PyGObject in a virtualenv you have to install it globally and use
--system-site-packages.

virtualenv --system-site-packages --python=python2 venv
source venv/bin/activate
python -c "import gi"
deactivate

You can also symlink “gi” and “cairo” in the virtualenv, but this is not
supported.

What about the PyGObject package on PyPI?

The PyGObject [https://pypi.python.org/pypi/PyGObject] on PyPI is the
old PyGObject 2 and should not be used in new projects.

Can I install PyGObject through pip somehow?

You can install directly from git:

virtualenv --system-site-packages --python=python2 venv
source venv/bin/activate
pip install "git+https://git.gnome.org/browse/pygobject@3.22.0"
python -c "import gi"
deactivate

Note that this uses autotools internally and not distutils.

How can I use PyGObject with the official CPython builds on Windows?

https://sourceforge.net/projects/pygobjectwin32 provides binaries which should
be ABI compatible with the official CPython binaries. I’d recommend using
msys2 if at all possible, since there are more people involved and it’s easier
to fix/patch things yourself.

Application Deployment

There is currently no nice deployment story, but it’s not impossible. This is
a list of random notes and examples.

 Linux

On Linux there is no single strategy. Quod Libet uses distutils, MyPaint uses
SCons. Gramps uses distutils.

 macOS

On OSX you can use gtk-osx [https://git.gnome.org/browse/gtk-osx] which is
based on jhbuild and then gtk-mac-bundler [https://git.gnome.org/browse/gtk-mac-bundler] for packaging things up and
making libraries relocatable. With macOS bundles you generally have a startup
shell script which sets all the various env vars relative to the bundle,
similar to jhbuild.

 Windows

On Windows things are usually build to be relocatable by default, so no env
vars are needed. You can build/install through MSYS2, copy the bits you need
and you are done. For GUI application you’ll also need an exe launcher that
links against the python dll.

Example Deployments

	Quod Libet [https://quodlibet.readthedocs.io/] provides a Windows
installer based on MSYS2 and NSIS3. On macOS, jhbuild is used for building,
gtk.mac-bundler for packing things up and dmgbuild [https://pypi.python.org/pypi/dmgbuild] for creating a dmg. distutis is
used for building/installing the application into the final environment.
Most of this is automated and scripts can be found in the git repo.

	MyPaint [http://mypaint.org/] provides a Windows installer based on
MSYS2 and Inno Setup. It uses SCons for building/installing the application.

	...?

Other options

	PyInstaller [http://www.pyinstaller.org/] is a program that freezes (packages) Python programs into stand-alone executables, under Windows, Linux, Mac OS X, and more. PyInstaller’s packager has built-in support for automatically including PyGObject dependencies with your application without requiring additional configuration.

Testing and Continuous Integration

To get automated tests of GTK+ code running on a headless server use Xvfb
(virtual framebuffer X server). It provides the xvfb-run -a command which
creates a temporary X server without the need for any real display hardware.

xvfb-run -a python my_script.py

Continuous Integration using Travis CI / CircleCI

Travis CI uses a rather old Ubuntu and thus the supported GTK+ is at 3.10 and
PyGObject is at 3.12. If that’s enough for you then have a look at our Travis
CI example project:

 https://github.com/pygobject/pygobject-travis-ci-examples

[image: https://travis-ci.org/pygobject/pygobject-travis-ci-examples.svg?branch=master]
 [https://travis-ci.org/pygobject/pygobject-travis-ci-examples]

To get newer PyGObject, GTK+, etc. working on Travis CI [http://travis-ci.org] or CircleCI [https://circleci.com] you can use
Docker with an image of your choosing. Have a look at our Docker example
project which runs tests on various Debian, Ubuntu and Fedora versions:

 https://github.com/pygobject/pygobject-travis-ci-docker-examples

[image: https://travis-ci.org/pygobject/pygobject-travis-ci-docker-examples.svg?branch=master]
 [https://travis-ci.org/pygobject/pygobject-travis-ci-docker-examples][image: https://circleci.com/gh/pygobject/pygobject-travis-ci-docker-examples.svg?style=shield]
 [https://circleci.com/gh/pygobject/pygobject-travis-ci-docker-examples]

Debugging & Profiling

Things can go wrong, these tools may help you find the cause. If you know any
more tricks please share them.

GObject Instance Count Leak Check

Requires a development (only available in debug mode) version of glib. Jhbuild
recommended.

jhbuild shell
GOBJECT_DEBUG=instance-count GTK_DEBUG=interactive ./quodlibet.py

	In the GTK+ Inspector switch to the “Statistics” tab

	Sort by “Cumulative” and do the action which you suspect does leak or where
you want to make sure it doesn’t repeatedly. Like for example opening
and closing a window or switching between media files to present.

	If something in the “Cumulative” column steadily increases there probably
is a leak.

cProfile Performance Profiling

	https://docs.python.org/2/library/profile.html

	bundled with python

python -m cProfile -s [sort_order] quodlibet.py > cprof.txt

where sort_order can one of the following:
calls, cumulative, file, line, module, name, nfl, pcalls, stdname, time

Example output:

 885311 function calls (866204 primitive calls) in 12.110 seconds

 Ordered by: cumulative time

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.002 0.002 12.112 12.112 quodlibet.py:11(<module>)
 1 0.007 0.007 12.026 12.026 quodlibet.py:25(main)
19392/13067 0.151 0.000 4.342 0.000 __init__.py:639(__get__)
 1 0.003 0.003 4.232 4.232 quodlibetwindow.py:121(__init__)
 1 0.000 0.000 4.029 4.029 quodlibetwindow.py:549(select_browser)
 1 0.002 0.002 4.022 4.022 albums.py:346(__init__)
 ...
 ...

SnakeViz - cProfile Based Visualization

	https://jiffyclub.github.io/snakeviz/

	pip install snakeviz

python -m cProfile -o prof.out quodlibet.py
snakeviz prof.out

Sysprof - System-wide Performance Profiler for Linux

	http://sysprof.com/

sysprof-cli -c "python quodlibet/quodlibet.py"
sysprof capture.syscap

GDB

gdb --args python quodlibet/quodlibet.py
type "run" and hit enter

Debugging Wayland Issues

mutter --nested --wayland
start your app, it should show up in the nested mutter

weston
start your app, it should show up in the nested weston

Debugging HiDPI Issue

GDK_SCALE=2 ./quodlibet/quodlibet.py

MUTTER_DEBUG_NUM_DUMMY_MONITORS=2 MUTTER_DEBUG_DUMMY_MONITOR_SCALES=1,2 mutter --nested --wayland
start your app, it should show up in the nested mutter

Porting from Static Bindings

Before PyGObject 3, bindings where not generated automatically through gobject
introspection and where provided as separate Python libraries like pygobject,
pygtk, pygst etc. We call them static bindings.

If your code contains imports like import gtk, import gst, import
glib or import gobject you are using the old bindings and you should
upgrade.

Note that using old and new bindings in the same process is not supported, you
have to switch everything at once.

Static Bindings Library Differences

pygtk supported GTK+ 2.0 and Python 2 only. PyGObject supports GTK+ >=3.0
and Python 2/3. If you port away from pygtk you also have to move to GTK+ 3.0
at the same time. pygtkcompat described below can help you with that
transition.

pygst supports GStreamer 0.10 and Python 2 only. Like with GTK+ you have
to move to PyGObject and GStreamer 1.0 at the same time.

pygobject 2 supports glib 2.0 and Python 2. The new bindings also support
glib 2.0 and Python 2/3.

General Porting Tips

PyGObject contains a shell script which can help you with the many naming
differences between static and dynamic bindings:

https://git.gnome.org/browse/pygobject/plain/pygi-convert.sh

./pygi-convert.sh mymodule.py

It just does basic text replacement. It reduces the amount of naming changes
you have to make in the beginning, but nothing more.

	Run on a Python module

	Check/Verify the changes made (e.g. using git diff)

	Finish porting the module by hand

	Continue to the next module...

Porting Tips for GTK+

While PyGObject theoretically supports GTK+ 2.0 it is not really usable. It
will be easier to port to GTK+ 3.0 right away.

For some general advice regarding the migration from GTK+ 2.0 to 3.0 see the
offical migration guide [https://developer.gnome.org/gtk3/stable/gtk-migrating-2-to-3.html]. If you
need to know how a C symbol is exposed in Python have a look at the symbol
mapping listing [https://lazka.github.io/pgi-docs/#Gtk-3.0/mapping.html].

Using the pygtkcompat Compatibility Layer

PyGObject ships a compatibility layer for pygtk which partially emulates the
old interfaces:

from gi import pygtkcompat
pygtkcompat.enable()
pygtkcompat.enable_gtk(version='3.0')

import gtk

enable() has to be called once before the first gtk import.

Note that pygtkcompat is just for helping you through the transition by
allowing you to port one module at a time. Only a limited subset of the
interfaces are emulated correctly and you should try to get rid of it in the
end.

Default Encoding Changes

Importing gtk had the side effect of changing the default Python encoding
from ASCII to UTF-8 (check sys.getdefaultencoding()) and that no longer
happens with PyGObject. Since text with pygtk is returned as utf-8 encoded
str, your code is likely depending auto-decoding in many places and you can
change it manually by doing:

Python 2 only
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
see if auto decoding works:
assert '\xc3\xb6' + u'' == u'\xf6'

While this is not officially supported by Python I don’t know of any
downsides. Once you are sure that you explicitly decode in all places or you
move to Python 3 where things are unicode by default you can remove this
again.

Development Guide

	Creating a Development Environment

	Building & Testing

	Contribute

	Style Guidelines

	Python Override Guidelines

	Packaging

Creating a Development Environment

This describes how to work on PyGObject itself. Please follow the instructions
on “Getting Started” first, as they are a pre-requirement.

 Ubuntu / Debian

sudo apt build-dep pygobject
git clone https://git.gnome.org/browse/pygobject
cd pygobject
./autogen.sh
make
make check

Building & Testing

Building

Building for Python 2:

./autogen.sh --with-python=python2
make

Building for Python 3:

./autogen.sh --with-python=python3
make

Testing

To run the test suite:

make check

To test only a specific class:

make check TEST_NAMES=test_everything.TestEverything

Contribute

Reporting Bugs

You can search through the GNOME Bugzilla for existing bug reports:
https://bugzilla.gnome.org/page.cgi?id=browse.html&product=pygobject

You can also file a new bug report:
https://bugzilla.gnome.org/enter_bug.cgi?product=pygobject

Submitting Patches

Make your changes and commit them. Use the following to export the, for
example, the last 3 commits:

git format-patch -3

Open a new bug report and attach the resulting files.

Style Guidelines

Python Code

	Generally follow Python’s PEP8 [http://www.python.org/dev/peps/pep-0008/] style guidelines. We run the
pep8 command to verify this during unittest runs.

	Break up logical blocks of related code with a newline. Specifically add a
blank newline after conditional or looping blocks.

	Don’t comment what is obvious. Instead prefer meaningful names of functions
and variables:

Get the functions signal annotations <-- this comment is unnecessary
return_type, arg_types = get_signal_annotations(func)

	Use comments to explain non-obvious blocks and conditionals, magic,
workarounds (with bug references), or generally complex pieces of code.
Good examples:

If a property was defined with a decorator, it may already have
a name; if it was defined with an assignment (prop = Property(...))
we set the property's name to the member name
if not prop.name:
 prop.name = name

Python causes MRO's to be calculated starting with the lowest
base class and working towards the descendant, storing the result
in __mro__ at each point. Therefore at this point we know that
we already have our base class MRO's available to us, there is
no need for us to (re)calculate them.
if hasattr(base, '__mro__'):
 bases_of_subclasses += [list(base.__mro__)]

Python Doc Strings

	Doc strings should generally follow
PEP257 [http://www.python.org/dev/peps/pep-0257/] unless noted here.

	Use reStructuredText (resST) [http://sphinx-doc.org/rest.html]
annotations.

	Use three double quotes for doc strings (""").

	Use a brief description on the same line as the triple quote.

	Include function parameter documentation (including types, returns, and
raises) between the brief description and the full description. Use a
newline with indentation for the parameters descriptions.

def spam(amount):
 """Creates a Spam object with the given amount.

 :param int amount:
 The amount of spam.
 :returns:
 A new Spam instance with the given amount set.
 :rtype: Spam
 :raises ValueError:
 If amount is not a numeric type.

 More complete description.
 """

	For class documentation, use the classes doc string for an explanation of
what the class is used for and how it works, including Python examples.
Include __init__ argument documentation after the brief description in
the classes doc string. The class __init__ should generally be the first
method defined in a class putting it as close as possible (location wise) to
the class documentation.

class Bacon(CookedFood):
 """Bacon is a breakfast food.

 :param CookingType cooking_type:
 Enum for the type of cooking to use.
 :param float cooking_time:
 Amount of time used to cook the Bacon in minutes.

 Use Bacon in combination with other breakfast foods for
 a complete breakfast. For example, combine Bacon with
 other items in a list to make a breakfast:

 .. code-block:: python

 breakfast = [Bacon(), Spam(), Spam(), Eggs()]

 """
 def __init__(self, cooking_type=CookingType.BAKE, cooking_time=15.0):
 super(Bacon, self).__init__(cooking_type, cooking_time)

Python Override Guidelines

This document serves as a guide for developers creating new PyGObject
overrides or modifying existing ones. This document is not intended as hard
rules as there may always be pragmatic exceptions to what is listed here. It
is also a good idea to study the Zen of Python by Tim Peters [http://www.python.org/dev/peps/pep-0020/].

In general, overrides should be minimized and preference should always be
placed on updating the underlying API to be more bindable, adding features to
GI to support the requirement, or adding mechanical features to PyGObject
which can apply generically to all overrides (#721226 [https://bugzilla.gnome.org/show_bug.cgi?id=721226] and
#640812 [https://bugzilla.gnome.org/show_bug.cgi?id=640812]).

If a GI feature or more bindable API for a library is in the works, it is a
good idea to avoid the temptation to add temporary short term workarounds in
overrides. The reason is this can creaste unnecessary conflicts when the
bindable API becomes a reality (#707280 [https://bugzilla.gnome.org/show_bug.cgi?id=707280]).

	Minimize class overrides when possible.

Reason: Class overrides incur a load time performance penalty because
they require the classes GType and all of the Python method bindings to be
created. See #705810 [https://bugzilla.gnome.org/show_bug.cgi?id=705810]

	Prefer monkey patching methods on repository classes over inheritance.

Reason: Class overrides add an additional level to the method
resolution order (mro) which has a performance penalty. Since overrides are
designed for specific repository library APIs, monkey patching is
reasonable because it is utilized in a controlled manner by the API
designer (as opposed to monkey patching a third-party library which is more
fragile).

	Avoid overriding __init__
Reason: Sub-classing the overridden class then becomes challenging and
has the potential to cause bugs (see #711487 [https://bugzilla.gnome.org/show_bug.cgi?id=711487] and reasoning
listed in https://wiki.gnome.org/Projects/PyGObject/InitializerDeprecations).

	Unbindable functions which take variadic arguments are generally ok to add
Python implementations, but keep in mind the prior noted guidelines. A lot
of times adding bindable versions of the functions to the underlying library
which take a list is acceptable. For example: #706119 [https://bugzilla.gnome.org/show_bug.cgi?id=706119]. Another
problem here is if an override is added, then later a bindable version of
the API is added which takes a list, there is a good chance we have to live
with the override forever which masks a working version implemented by GI.

	Avoid side effects beyond the intended repositories API in function/method
overrides.

Reason: This conflates the original API and adds a documentation burden
on the override maintainer.

	Don’t change function signatures from the original API and don’t add default
values.

Reason: This turns into a documentation discrepancy between the libraries
API and the Python version of the API. Default value work should focus on
bug #558620 [https://bugzilla.gnome.org/show_bug.cgi?id=558620], not cherry-picking individual Python functions and
adding defaults.

	Avoid implicit side effects to the Python standard library (or anywhere).

	Don’t modify or use sys.argv

Reason: sys.argv should only be explicitly controlled by application
developers. Otherwise it requires hacks to work around a module modifying
or using the developers command line args which they rightfully own.

saved_argv = sys.argv.copy()
sys.argv = []
from gi.repository import Gtk
sys.argv = saved_argv

	Never set Pythons default encoding.

Reason: Read or watch Ned Batchelders “Pragmatic Unicode [http://nedbatchelder.com/text/unipain.html]“

	For PyGTK compatibility APIs, add them to PyGTKCompat not overrides.

	Prefer adapter patterns over of inheritance and overrides.

Reason: An adapter allows more flexibility and less dependency on
overrides. It allows application developers to use the raw GI API without
having to think about if a particular typelibs overrides have been installed
or not.

Packaging

Some notes on how to package PyGObject

Existing Packages:

	https://www.archlinux.org/packages/extra/x86_64/python-gobject

	https://packages.qa.debian.org/p/pygobject.html

	https://github.com/Alexpux/MINGW-packages/tree/master/mingw-w64-pygobject

Building:

./configure --with-python=${PYTHON} --prefix="${PREFIX}"
make check # if you want to run the test suite
make DESTDIR="${PKGDIR}" install

Runtime dependencies:

	glib

	libgirepository (gobject-introspection)

	libffi

	Python 2 or 3

The overrides directory contains various files which includes various
Python imports mentioning gtk, gdk etc. They are only used when the
corresponding library is present, they are not needed.

Build dependencies:

	The runtime dependencies

	cairo (optional)

	pycairo (optional)

	pkg-config

If autotools is used:

	gnome-common for PyGObject < 3.26

	autoconf-archive for PyGObject >= 3.26

Test Suite dependencies:

	The runtime dependencies

	GTK+ 3 (optional)

	pango (optional)

	pycairo (optional)

Maintainer Guide

Making a Release

	Make sure configure.ac has the right version number

	Update NEWS file (use make release-news target and then edit as you see
fit)

	Run make distcheck, fix any issues and commit.

	Upload tarball: scp pygobject-3.X.Y.tar.gz master.gnome.org:

	Install tarball:
ssh master.gnome.org 'ftpadmin install pygobject-3.X.Y.tar.gz'

	Commit NEWS as "release 3.X.Y" and push

	Tag with: git tag -s 3.X.Y -m "release 3.X.Y"

	Push tag with: git push origin 3.X.Y

	Commit post-release version bump to configure.ac

	Send release announcements to gnome-announce-list@gnome.org;
pygtk@daa.com.au; python-hackers-list@gnome.org;
python-announce-list@python.org

	Blog about it (include the HTMLized NEWS that make release-news prints)

Based on http://live.gnome.org/MaintainersCorner/Releasing

Branching

Each cycle after the feature freeze, we create a stable branch so development
can continue in the master branch unaffected by the freezes.

	Create the branch locally with: git checkout -b pygobject-3-2

	Push new branch: git push origin pygobject-3-2

	In master, update configure.ac to what will be the next version number
(3.3.0)

	Announce the branching, send email telling people to continue development
in master and cherry-picking the changes that are appropriate for the
stable branch

Further Resources

	Python GTK+ 3 Tutorial [https://python-gtk-3-tutorial.readthedocs.io]

	Many examples showing how to build an application using PyGObject and GTK+.

	Python GI API Reference [https://lazka.github.io/pgi-docs]

	Auto generated API documentation for many libraries accessible through
PyGObject.

	PyGObject Wiki on gnome.org [https://wiki.gnome.org/Projects/PyGObject]

	Contains various information collected over time.

Contact

	IRC

	#python on irc.gnome.org

Logs for the channel: http://quodlibet.duckdns.org/irc/pygobject

	Mailinglist

	https://mail.gnome.org/mailman/listinfo/python-hackers-list

Index

 G

G

 	
 	gi.check_version() (built-in function)

 	gi.get_required_version() (built-in function)

 	gi.PyGIDeprecationWarning (built-in class)

 	gi.PyGIWarning (built-in class)

 	
 	gi.require_foreign() (built-in function)

 	gi.require_version() (built-in function)

 	gi.version_info (built-in variable)

 	GObject.Property() (built-in function)

 	GObject.Signal() (built-in function)

 nav.xhtml

 Table of Contents

 		How does it work?

_images/start_linux.png
Terminal

File

Edit

View Search Terminal

[1] Tazkagdebian> python2 hello.py

Help

Hello World —

x

~/besktop

_images/cairo_integration.png
cairo-demo.py

_images/start_windows.png
MINGH32 ~

® HelloWorld

MINGH32 ~

MINGHS2 ~
s python2 hello. py

_static/comment-close.png

_images/start_macos.png
® @ xy — python hello.py — 67x19.

Ibash=3.25 python hello.py
® O @ Hello World

=

_static/minus.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

