

pyFF Documentation

	Author

	Leif Johansson <leifj@sunet.se>

	Release

	0.9.4

pyFF is a simple but reasonably complete SAML metadata processor. It is intended to be
used by anyone who needs to aggregate, validate, combine, transform, sign or publish
SAML metadata.

Possible usecases include running an federation aggregator, filtering metadata for use
by a discovery service, generating reports from metadata (eg certificate expiration reports),
transforming metadata to add custom elements.

pyFF supports producing and validating digital signatures on SAML metadata using
the pyXMLSecurity package which in turn supports using PKCS#11-modules - notoriously
difficult to achieve using other tools.

pyFF is not a SAML metadata registry. If you need one of those have a look at the
PEER project (also on pypi).

	Installation
	Before you install

	Installing

	Upgrading

	Using pyFF

	Examples
	Example 1 - A simple pull

	Example 2 - Grab the IdPs from edugain

	Example 3 - Use an XRD file

	Example 4 - Sign using a PKCS#11 module

	Example 5 - MDX

	Extending pyFF

	Frequenty Asked Questions

The pyFF logo is the chemical symbol for sublimation - a process by which elements
are transitioned from solid to gas without becoming liquids.

Installation

Before you install

Make sure you have a reasonably modern python. pyFF is developed using 2.7 but 2.6
should work just fine. It is recommended that you install pyFF into a virtualenv
but there are two ways: with or without site packages.

For both methods start by installing a few basic OS packages. Here we illustrate
with commands for a debian/ubuntu install:

apt-get install build-essential python-dev libxml2-dev libxslt1-dev libyaml-dev

and if you’re on a centos system (or other yum-based systems):

yum install python-devel libxml2-devel libxslt-devel libyaml-devel
easy_install pyyaml # bug in pip install pyyaml
yum install make gcc kernel-devel kernel-headers glibc-headers

If you want to use OS packages instead of python packages from pypi then
consider also installing the following packages before you begin:

apt-get install python-lxml python-yaml python-eventlet python-setuptools

With Sitepackages

This method re-uses existing OS-level python packages. This means you’ll have
fewer worries keeping your python environment in sync with OS-level libraries.

apt-get install python-virtualenv
mkdir -p /opt/pyff
virtualenv /opt/pyff

Choose this method if you want the OS to keep as many of your packages up to
date for you.

Without Sitepackages

This method keeps everything inside your virtualenv. Use this method if you
are developing pyFF or want to run multiple python-based applications in
parallell without having to worry about conflicts between packages.

apt-get install python-virtualenv
mkdir -p /opt/pyff
virtualenv /opt/pyff --no-site-packages

Choose this method for maximum control - ideal for development setups.

Installing

Now that you have a virtualenv, its time to install pyFF into it. Start by
activating your virtualenv:

. /opt/pyff/bin/activate

Next install pyFF:

pip install pyFF

This will install a bunch of dependencies and compile bindings for both lxml, pyyaml
aswell as pyXMLSecurity. This may take some time to complete. If there are no errors and if
you have the pyff binary in your $PATH you should be done.

Upgrading

Unless you’ve made modifications, upgrading should be as simple as running

. /opt/pyff/bin/activate
pip install -U pyff

This should bring your virtualenv up to the latest version of pyff and its
dependencies. You probably need to restart pyffd manually though.

Using pyFF

pyFF has two command-line tools: pyff and pyffd.

pyff --loglevel=INFO pipeline.fd [pipeline2.fd]
pyffd --loglevel=INFO pipeline.fd [pipeline2.fd]

pyff operates by setting up and running “pipelines”. Each pipeline starts with an empty “active repository” - an
in-memory representation of a set of SAML metadata documents - and an empty “working document” - a subset of the
EntityDescriptor elements in the active repository.

The pyffd tool starts a metadata server with an HTTP-based interface for viewing and downloading metadata. The
HTTP interface can produce XML, HTML and JSON output (as well as other formats with a bit of configuration) and
implements the MDX specification for online SAML metadata query.

Pipeline files are yaml documents representing a list of processing steps:

- step1
- step2
- step3

Each step represents a processing instruction. pyFF has a library of built-in instructions to choose from that
include fetching local and remote metadata, xslt transforms, signing, validation and various forms of output and
statistics.

Processing steps are called pipes. A pipe can have arguments and options:

- step [option]*:
 - argument1
 - argument2
 ...

- step [option]*:
 key1: value1
 key2: value2
 ...

Typically options are used to modify the behaviour of the pipe itself (think macros), while arguments provide
runtime data to operate on.

Documentation for each pipe is in the pyff.pipes.builtins Module. Also take a look at the Examples.

Examples

Examples are king.

Example 1 - A simple pull

Fetch SWAMID metadata, split it up into EntityDescriptor elements and store each as a separate file in /tmp/swamid.

- load:
 - http://mds.swamid.se/md/swamid-2.0.xml
- select
- publish: "/tmp/swamid-2.0.xml"
- stats

This is a simple example in 3 steps: load, select, store and stats. Each of these commands operate on a metadata
repository that starts out as empty. The first command (load) causes a URL to be downloaded and the SAML metadata
found there is stored in the metadata repository. The next command (select) creates an active document (which in
this case consists of all EntityDescriptors in the metadata repository). Next, publish is called which causes
the active document to be stored in an XML file. Finally the stats command prints out some information about
the metadata repository.

This is essentially a 1-1 operation: the metadata loaded is stored in a local file. Next we’ll look at a more
complex example that involves filtering and transformation.

Example 2 - Grab the IdPs from edugain

Grab edugain metadata, select the IdPs (using an XPath expression), run it through the built-in ‘tidy’ XSL
stylesheet (cf below) which cleans up some known problems, sign the result and write the lot to a file.

- load:
 - http://mds.edugain.org edugain-signer.crt
- select: "http://mds.edugain.org!//md:EntityDescriptor[md:IDPSSODescriptor]"
- xslt:
 stylesheet: tidy.xsl
- finalize:
 cacheDuration: PT5H
 validUntil: P10D
- sign:
 key: sign.key
 cert: sign.crt
- publish: /tmp/edugain-idp.xml
- stats

In this case the select (which uses an xpath in this case) picks the EntityDescriptors that contain at least one
IDPSSODescriptor - in other words all IdPs. The xslt command transforms the result of this select using an xslt
transformation. The finalize command sets cacheDuration and validUntil (to 10 days from the current date and time)
on the EntitiesDescriptor element which is the result of calling select. The sign command performs an XML-dsig on
the EntitiesDescriptor.

For reference the ‘tidy’ xsl is included with pyFF and looks like this:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:shibmeta="urn:mace:shibboleth:metadata:1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata"
 xmlns:xi="http://www.w3.org/2001/XInclude"
 xmlns:shibmd="urn:mace:shibboleth:metadata:1.0">

 <xsl:template match="@ID"/>
 <xsl:template match="@validUntil"/>
 <xsl:template match="@cacheDuration"/>

 <xsl:template match="text()|comment()|@*">
 <xsl:copy/>
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy>
 <xsl:apply-templates select="node()|@*"/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

Example 3 - Use an XRD file

Sometimes it is useful to keep metadata URLs and signing certificates used for validation in a separate file and pyFF
supports XRD-files for this purpose. Modify the previous example to look like this:

- load:
 - links.xrd
- select: "!//md:EntityDescriptor[md:IDPSSODescriptor]"
- xslt:
 stylesheet: tidy.xsl
- sign:
 key: sign.key
 cert: sign.crt
- publish: /tmp/idp.xml
- stats

Note that in this case the select doesn’t include the http://mds.edugain.org prefix before the ‘!’-sign. This causes
the xpath to operate on all source URLs, rather than just the single source http://mds.edugain.org . It would have
been possible to call select with multiple arguments, each using a different URL from the file links.xrd which
contains the following:

<?xml version="1.0" encoding="UTF-8"?>
<XRDS xmlns="http://docs.oasis-open.org/ns/xri/xrd-1.0">
 <XRD>
 <Subject>http://mds.swamid.se/md/swamid-2.0.xml</Subject>
 <Link rel="urn:oasis:names:tc:SAML:2.0:metadata" href="http://mds.swamid.se/md/swamid-2.0.xml">
 <Title>SWAMID</Title>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>
 MIIFyzCCA7OgAwIBAgIJAI9LJsUJXDMVMA0GCSqGSIb3DQEBCwUAMHwxCzAJBgNV
 BAYTAlNFMRIwEAYDVQQIDAlTdG9ja2hvbG0xEjAQBgNVBAcMCVN0b2NraG9sbTEO
 MAwGA1UECgwFU1VORVQxDzANBgNVBAsMBlNXQU1JRDEkMCIGA1UEAwwbU1dBTUlE
 IG1ldGFkYXRhIHNpZ25lciB2Mi4wMB4XDTE2MTIwNjA5MjgyMFoXDTM2MTIwNjA5
 MjgyMFowfDELMAkGA1UEBhMCU0UxEjAQBgNVBAgMCVN0b2NraG9sbTESMBAGA1UE
 BwwJU3RvY2tob2xtMQ4wDAYDVQQKDAVTVU5FVDEPMA0GA1UECwwGU1dBTUlEMSQw
 IgYDVQQDDBtTV0FNSUQgbWV0YWRhdGEgc2lnbmVyIHYyLjAwggIiMA0GCSqGSIb3
 DQEBAQUAA4ICDwAwggIKAoICAQDQVw72PnIo9QIeV439kQnPcxZh/LddKw86eIU+
 nMfl4TpjSIyqTu4KJSnXbJyqXg+jQj3RzE9BUblpGrR7okmQwOh2nh+5A6SmyTOR
 p7VEVT/Zw0GNnQi9gAW7J8Cy+Gnok4LeILI5u43hPylNKAnvs1+bo0ZlbHM6U5jm
 6MlO+lrYA9dZzoPQqoCQbr3OweAaq5g8H54HuZacpYa3Q2GnUa4v+xywjntPdSQU
 RTAbWWyJl3cHctX5+8UnX8nGCaxoBZqNp9PcEopyYJX8O1nrLumBMqu9Uh6GW1nx
 OHfKDLvUoykG3Dm704ENVs88KaJXB1qQNsjdlm14UI9XCZbHfnFVnQ53ehsGFMha
 Bf/Abd6v2wnhBLH/RxEUlw347qSeokw+SdDTSdW8jOEBiSqP/8BUzpCcbGlgAsVO
 NKUS0K7IB2Bb79YYhyMvmJl24BGtkX+VM/mv47dxOtfzNFCMtUcJ2Dluv0xJG8xI
 ot7umx/kbMBLuq7WdWELZJrgpt2bb9sXtYBpuxtGCW5g7+U7MNN1aKCiCSfq09YH
 qu2DsU7HHAxEcGFXBiepBliCwZ24WLQh53bA3rihaln7SjdapT9VuSTpCvytb9RX
 rq39mVuHMXvWYOG20XTV0+8U2vnsjAwsy28xPAcrLWRWoZbRJ+RoGp6L3GACq+t+
 HPIukwIDAQABo1AwTjAdBgNVHQ4EFgQUQ2iqKQV/mMZDeJDtLXvy0Bsn/BQwHwYD
 VR0jBBgwFoAUQ2iqKQV/mMZDeJDtLXvy0Bsn/BQwDAYDVR0TBAUwAwEB/zANBgkq
 hkiG9w0BAQsFAAOCAgEAHviIAfS8viUN8Qk//U1p6Z1VK5718NeS7uqabug/SwhL
 Vxtg/0x9FPJYf05HXj4moAf2W1ZLnhr0pnEPGDbdHAgDC672fpaAV7DO95d7xubc
 rofR7Of2fehYSUZbXBWFiQ+xB5QfRsUFgB/qgHUolgn+4RXniiBYlWe6QJVncHx+
 FtxD+vh1l5rLNkJgJLw2Lt3pbemSxUvv0CJtnK4jt2y95GsWGu1uSsVLrs0PR1Lj
 kuxL6zZH4Pp9yjRDOUhbVYAnQ017mdcjvHYtp7c4GIWgyaBkDoMtU6fAt70QpeGj
 XhecXk7Llx+oYNdZn14ZdFPRGMyAESLrT4Zf9M7QS3ypnWn/Ux0SwKWbnPUeRVbO
 VZZ+M0jmdYK6o+UU5xH3peRWSJIjjRaKjbVlW5GgHwGFmQc/LN+va2jjThRsQWWt
 zEwObijedInQ6wfL/VzFAwlWWoDAzKK9qnK4Rf3ORKkvhKrUa//2OYnZD0kHtHiC
 OL+iFRLtJ/DQP5iZAF+M1Hta7acLmQ8v7Mn1ZR9lyDWzFx57VOKKtJ6RAmBvxOdP
 8cIgBNvLAEdXh2knOLqYU/CeaGkxTD7Y0SEKx6OxEEdafba//MBkVLt4bRoLXts6
 6JY25FqFh3eJZjR6h4W1NW8KnBWuy+ITGfXxoJSsX78/pwAY+v32jRxMZGUi1J4=
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </Link>
 </XRD>
 <XRD>
 <Subject>https://incommon.org</Subject>
 <Link rel="urn:oasis:names:tc:SAML:2.0:metadata" href="http://md.incommon.org/InCommon/InCommon-metadata.xml">
 <Title>InCommon Metadata (main aggregate)</Title>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>
 MIIDgTCCAmmgAwIBAgIJAJRJzvdpkmNaMA0GCSqGSIb3DQEBCwUAMFcxCzAJBgNV
 BAYTAlVTMRUwEwYDVQQKDAxJbkNvbW1vbiBMTEMxMTAvBgNVBAMMKEluQ29tbW9u
 IEZlZGVyYXRpb24gTWV0YWRhdGEgU2lnbmluZyBLZXkwHhcNMTMxMjE2MTkzNDU1
 WhcNMzcxMjE4MTkzNDU1WjBXMQswCQYDVQQGEwJVUzEVMBMGA1UECgwMSW5Db21t
 b24gTExDMTEwLwYDVQQDDChJbkNvbW1vbiBGZWRlcmF0aW9uIE1ldGFkYXRhIFNp
 Z25pbmcgS2V5MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA0Chdkrn+
 dG5Zj5L3UIw+xeWgNzm8ajw7/FyqRQ1SjD4Lfg2WCdlfjOrYGNnVZMCTfItoXTSp
 g4rXxHQsykeNiYRu2+02uMS+1pnBqWjzdPJE0od+q8EbdvE6ShimjyNn0yQfGyQK
 CNdYuc+75MIHsaIOAEtDZUST9Sd4oeU1zRjV2sGvUd+JFHveUAhRc0b+JEZfIEuq
 /LIU9qxm/+gFaawlmojZPyOWZ1JlswbrrJYYyn10qgnJvjh9gZWXKjmPxqvHKJcA
 TPhAh2gWGabWTXBJCckMe1hrHCl/vbDLCmz0/oYuoaSDzP6zE9YSA/xCplaHA0mo
 C1Vs2H5MOQGlewIDAQABo1AwTjAdBgNVHQ4EFgQU5ij9YLU5zQ6K75kPgVpyQ2N/
 lPswHwYDVR0jBBgwFoAU5ij9YLU5zQ6K75kPgVpyQ2N/lPswDAYDVR0TBAUwAwEB
 /zANBgkqhkiG9w0BAQsFAAOCAQEAaQkEx9xvaLUt0PNLvHMtxXQPedCPw5xQBd2V
 WOsWPYspRAOSNbU1VloY+xUkUKorYTogKUY1q+uh2gDIEazW0uZZaQvWPp8xdxWq
 Dh96n5US06lszEc+Lj3dqdxWkXRRqEbjhBFh/utXaeyeSOtaX65GwD5svDHnJBcl
 AGkzeRIXqxmYG+I2zMm/JYGzEnbwToyC7yF6Q8cQxOr37hEpqz+WN/x3qM2qyBLE
 CQFjmlJrvRLkSL15PCZiu+xFNFd/zx6btDun5DBlfDS9DG+SHCNH6Nq+NfP+ZQ8C
 GzP/3TaZPzMlKPDCjp0XOQfyQqFIXdwjPFTWjEusDBlm4qJAlQ==
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </Link>
 </XRD>
</XRDS>

The structure of the file should be fairly self-evident. Only links with @rel=”urn:oasis:names:tc:SAML:2.0:metadata”
will be parsed. If a KeyInfo with a X509Certificate element (usual base64-encoded certificate format) then this
certificate is used to validate the signature on the downloaded SAML metadata. Note that while ‘load’ supports validation
based on certificate fingerprint the XRD format does not and you will have to include Base64-encoded certificates if
you want validation to work.

Example 4 - Sign using a PKCS#11 module

Fetch SWAMID metadata (and validate the signature using a certificate matching the given SHA1 fingerprint), select
the Identity Providers, tidy it up a bit and sign with the key with the label ‘signer’ in the PKCS#11 module
/usr/lib/libsofthsm.so. If a certificate is found in the same PKCS#11 object, that certificate is included in
the Signature object.

- load:
 - http://mds.swamid.se/md/swamid-2.0.xml A6:78:5A:37:C9:C9:0C:25:AD:5F:1F:69:22:EF:76:7B:C9:78:67:67:3A:AF:4F:8B:EA:A1:A7:6D:A3:A8:E5:85
- select: "!//md:EntityDescriptor[md:IDPSSODescriptor]"
- xslt:
 stylesheet: tidy.xsl
- sign:
 key: pkcs11:///usr/lib/libsofthsm.so/signer
- publish: /tmp/idp.xml
- stats

Running this example requires some preparation. Run the ‘p11setup.sh’ script in the examples directory.
This results in a SoftHSM token being setup with the PIN ‘secret1’ and SO_PIN ‘secret2’. Now run pyFF (assuming
you are using a unix-like environment).

env PYKCS11PIN=secret1 SOFTHSM_CONF=softhsm.conf pyff --loglevel=DEBUG p11.fd

Example 5 - MDX

Running an MDX server is pretty easy using pyFF. Lets start with the links.xrd file (cf example above) and add
this simple pipeline.

- when update:
 - load:
 - links.xrd
 - break
- when request:
 - select
 - pipe:
 - when accept application/xml:
 - xslt:
 stylesheet: tidy.xsl
 - first
 - finalize:
 cacheDuration: PT5H
 validUntil: P10D
 - sign:
 key: sign.key
 cert: sign.crt
 - emit application/xml
 - break
 - when accept application/json:
 - xslt:
 stylesheet: discojson.xsl
 - emit application/json:
 - break

The big difference here are the two when commands. They are used to select between the two main entrypoints
for the pyFF server: the update flow and the request flow. The update flow is run repeatedly and is usually
used for updating the internal metadata repository.

The request flow is called every time an MDX request is submitted. The internal when statements are used to
provide basic content negotiation for the MDX request. Content negotiation is based both on the Accept header
and on the extension (suffix) on the URL - ending a resource with ‘.json’ selects application/json, etc
and overrides the Accept header.

The only new commands here are emit, break and first. The emit command transforms the result into the
appropriate output format (UTF-8 encoded text), the break terminates the pipeline. The first command strips
the outer EntitiesDescriptor if only a single EntityDescriptor is present in the active document which is
consistent with expected behaviour for the MDX protocol.

The behaviour of the select command in the request pipeline is a bit different: the select operates on
a query fed to the request pipeline from the HTTP server that runs the command. This is called implicit
select.

Now start pyffd:

pyffd -f --loglevel=DEBUG -p /var/run/pyffd.pid mdx.fd

This should start pyffd in the foreground. If you remove the -f pyFF should daemonize. For running
pyFF in production I suggest something like this:

pyffd --loglevel=INFO --log=syslog:auth --frequency=300 -p /var/run/pyffd.pid --dir=`pwd` -H<ip> -P80 mdx.fd

This starts pyff on the interface <ip>:80 and uses the current directory as the working directory. If you leave
out –dir then pyffd will change directory to $HOME of the current user which is probably not what you want.
In this case logging is done through syslog (the auth facility) and with log level INFO. The refresh-rate is set
to 300 seconds so at minimum your downstream feeds will be refreshed that often.

Extending pyFF

Not much here yet - come back later or UTSL

Frequenty Asked Questions

Q: I get ‘select is empty’ but I know my xpath should match. What is wrong?

A: You’ve probably forgotten to include namespaces in your xpath expression. The expression “//EntityDescriptor” won’t match anything - //md:EntityDescriptor” is what you want.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 pyFF Documentation

 		
 Installation

 		
 Before you install

 		
 With Sitepackages

 		
 Without Sitepackages

 		
 Installing

 		
 Upgrading

 		
 Using pyFF

 		
 Examples

 		
 Example 1 - A simple pull

 		
 Example 2 - Grab the IdPs from edugain

 		
 Example 3 - Use an XRD file

 		
 Example 4 - Sign using a PKCS#11 module

 		
 Example 5 - MDX

 		
 Extending pyFF

 		
 Frequenty Asked Questions

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/sublimate.png

_static/ajax-loader.gif

_static/comment-bright.png

