

    
      Navigation

      
        	
          index

        	
          next |

        	Python EDA Documentation 
 
      

    


    
      
          
            
  
Python EDA Documentation





	Release:	0.22.0


	Date:	April 22, 2014





PyEDA is a Python library for electronic design automation.

Fork PyEDA: https://github.com/cjdrake/pyeda

Features:


	Symbolic Boolean algebra with a selection of function representations:
	Logic expressions

	Truth tables, with three output states (0, 1, “don’t care”)

	Reduced, ordered binary decision diagrams (ROBDDs)





	SAT solvers:
	Backtracking

	DPLL

	PicoSAT [http://fmv.jku.at/picosat]





	Espresso [http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm] logic minimization

	Formal equivalence

	Multi-dimensional bit vectors

	DIMACS CNF/SAT parsers

	Logic expression parser



Contents:



	Overview
	What is Electronic Design Eutomation (EDA)?

	Goals

	Free Software

	Repository





	Installing PyEDA
	Supported Platforms

	Supported Python Versions

	Distutils / Virtualenv

	Getting the Source





	Boolean Algebra
	What is Boolean Algebra?

	Import Symbols from PyEDA

	Built-in Python Boolean Operations

	Boolean Variables

	Points in Boolean Space

	Boolean Functions

	PyEDA Variable/Function Base Classes





	Binary Decision Diagrams

	Boolean Expressions
	Expression Constants

	Expression Literals

	Constructing Expressions

	Expression Types

	Satisfiability

	Tseitin’s Encoding

	Formal Equivalence





	Two-level Logic Minimization
	Minimize Boolean Expressions

	Minimize Truth Tables

	Espresso Script

	References





	Using PyEDA to Solve Sudoku
	Getting Started

	Setting Up the Puzzle Grid

	Constraints

	Preparing the Input

	Display Methods

	Finding the Solution





	All Solutions To The Eight Queens Puzzle
	Getting Started

	Setting Up the Chess Board

	Constraints

	Display Method

	Find a Single Solution

	Find All Solutions





	Release Notes
	Version 0.22

	Version 0.21

	Version 0.20

	Version 0.19

	Version 0.18

	Version 0.17

	Version 0.16

	Version 0.15

	Version 0.14

	Version 0.13

	Version 0.12

	Version 0.11












Indices and Tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2012, Chris Drake.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Python EDA Documentation 
 
      

    


    
      
          
            
  
Overview


What is Electronic Design Eutomation (EDA)?

The Intel 4004, the world’s first commercially available microprocessor,
was built from approximately 2300 transistors,
and had a clock frequency of 740 kilohertz (thousands of cycles per second)
[1] [2].
A modern Intel microprocessor can contain over 1.5 billion transistors,
and will typically have a clock frequency ranging from two to four gigahertz
(billions of cycles per second).

In 1971 it took less than one hundred people to manufacture the 4004.
That is approximately 23 transistors per employee.
If that ratio stayed the same between 1971 and 2012,
Intel would need to employ about 65 million people just to
produce the latest Core i7 processor.
That is one fifth the entire population of the United States!

Clearly, companies that design and manufacture integrated circuits have found
ways to be more productive since then.

Simply stated,
electronic design automation (EDA) is the science of optimizing productivity in
the design and manufacture of electronic components.




Goals

After reading the previous section, EDA sounds like a vast field.
The way we have defined it covers everything from controlling robotic arms in
the fabrication plant to providing free coffee to keep interns busy.
We need to narrow our focus a bit.

PyEDA is primarily concerned with implementing the data structures and
algorithms necessary for performing logic synthesis and verification.
These tools form the theoretical foundation for the implementation of CAD tools
for designing VLSI (Very Large Scale Integrated circuit).

PyEDA is a hobby project,
and is very unlikely to ever be a competitor to state-of-the-art EDA industry
technology.
It should be useful for academic exploration and experimentation.
If you use PyEDA, please email the author with your success/failure stories.




Free Software

PyEDA is free software; you can use it or redistribute it under the terms of
the “two-clause” BSD License.




Repository

View the PyEDA source code on
GitHub [http://github.com/cjdrake/pyeda].




	[1]	Wikipedia: Intel 4004 [http://en.wikipedia.org/wiki/Intel_4004]







	[2]	The Story of the Intel 4004 [http://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html]
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Installing PyEDA

This page describes how to procure your very own, shiny copy of PyEDA.
It is a primary goal of the PyEDA project to be a mainstream Python package,
and adhere to the majority of conventions observed by the community.


Supported Platforms

PyEDA supports Windows, and any platform with a C compiler.
The author does most development and testing on Linux Mint.




Supported Python Versions

Starting with version 0.15, PyEDA will only work with Python 3.2+.
There were several reasons to drop support for Python 2:


	Python 3 is the future of the language.

	Almost all scientific software either has already been ported,
or is in the process of being ported to Python 3.

	Only Python 3 has support for the def f(*args, kw1=val1, ...) syntax,
used to great effect by logic expression factory functions.

	It is too arduous to research and support all the C API changes from version
2 to version 3. Preprocessor is evil.



That said, the source code does not yet utilize several new Python 3 features.
For example, classes are still declared using the Python 2.7 syntax for
“new-style” classes, ie class ClassName(object).
The primary reason is that PyLint [http://www.pylint.org] is a little slow to support some of the
latest and greatest language features.




Distutils / Virtualenv

The latest PyEDA release is hosted on
PyPI [http://pypi.python.org/pypi/pyeda].

To get PyEDA with pip [http://www.pip-installer.org/en/latest] (recommended):

$ pip3 install pyeda






Note

If you are using the Linux system distribution of pip,
most likely pip will be part of Python-2.x, which won’t work.
It’s safer to always use pip3.



To get PyEDA with easy_install [http://pythonhosted.org/setuptools/easy_install.html] (not recommended):

$ easy_install pyeda





We strongly recommend that you also install an excellent Python tool called
IPython [http://ipython.org].
For interactive use,
it is vastly superior to using the standard Python interpreter.
To install IPython into your virtual environment:

$ pip install ipython








Getting the Source

The PyEDA repository is hosted on GitHub [https://github.com/cjdrake/pyeda].
If you want the bleeding-edge source code, here is how to get it:

$ git clone https://github.com/cjdrake/pyeda.git
$ cd pyeda
# $PREFIX is the root of the installation area
$ python setup.py install --prefix $PREFIX





If you want to build the documentation,
you must have the excellent Sphinx [http://sphinx-doc.org] documentaton system installed.

$ make html





If you want to run the tests,
you must have the excellent Nose [http://nose.readthedocs.org/en/latest] unit testing framework installed.

$ make test
....................................
----------------------------------------------------------------------
Ran 72 tests in 15.123s

OK
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Boolean Algebra

Boolean Algebra is a cornerstone of electronic design automation,
and fundamental to several other areas of computer science and engineering.
PyEDA has an extensive library for the creation and analysis of Boolean
functions.

This document describes how to explore Boolean algebra using PyEDA.
We will be using some mathematical language here and there,
but please do not run away screaming in fear.
This document assumes very little background knowledge.


What is Boolean Algebra?

All great stories have a beginning, so let’s start with the basics.
You probably took a class called “algebra” in (junior) high school.
So when you started reading this document you were already confused.
Algebra is just algebra, right?
You solve for \(x\), find the intersection of two lines,
and you’re done, right?

As it turns out,
the high school algebra you are familiar with just scratches the surface.
There are many algebras with equally many theoretical and practical uses.
An algebra is the combination of two things:


	a collection of mathematical objects, and

	a collection of rules to manipulate those objects



For example, in high school algebra, you have numbers such as
\(\{1, 3, 5, \frac{1}{2}, .337\}\), and operators such as
\(\{+, -, \cdot, \div\}\).
The numbers are the mathematical objects,
and the operators are the rules for how to manipulate them.
Except in very extreme circumstances (division by zero),
whenever you add, subtract, or divide two numbers, you get another number.

Algebras are a big part of the “tools of the trade” for a mathematician.
A plumber has a wrench, a carpenter has a saw,
and a mathematician has algebras.
To each his own.

A Boolean algebra defines the rules for working with the set \(\{0, 1\}\).
So unlike in normal algebra class where you have more numbers than you can
possibly imagine, in Boolean Algebra you only have two.

Even though it is possible to define a Boolean Algebra using different
operators,
by far the most common operators are complement, sum, and product.


Complement Operator

The complement operator is a unary operator,
which means it acts on a single Boolean input: \(x\).
The Boolean complement of \(x\) is usually written as
\(x'\), \(\overline{x}\), or \(\lnot x\).

The output of the Boolean complement is defined by:


\[\overline{0} = 1\]\[\overline{1} = 0\]




Sum Operator

The sum (or disjunction) operator is a binary operator,
which means it acts on two Boolean inputs: \((x, y)\).
The Boolean sum of \(x\) and \(y\) is usually written as
\(x + y\), or \(x \vee y\).

The output of the Boolean sum is defined by:


\[0 + 0 = 0\]\[0 + 1 = 1\]\[1 + 0 = 1\]\[1 + 1 = 1\]

This looks familiar so far except for the \(1 + 1 = 1\) part.
The Boolean sum operator is also called OR because the output of
\(x\) or \(y\) equals 1 if and only if
\(x = 1\), or \(y = 1\), or both.




Product Operator

The product (or conjunction) operator is also a binary operator.
The Boolean product of \(x\) and \(y\) is usually written as
\(x \cdot y\), or \(x \wedge y\).

The output of the Boolean product is defined by:


\[0 \cdot 0 = 0\]\[0 \cdot 1 = 0\]\[1 \cdot 0 = 0\]\[1 \cdot 1 = 1\]

As you can see, the product operator looks exactly like normal multiplication.
The Boolean product is also called AND because the output of
\(x\) and \(y\) equals 1 if and only if
both \(x = 1\), and \(y = 1\).




Other Binary Operators

For reference, here is a table of all binary Boolean operators:























	\(f\)
	\(g\)
	0
	\(f \downarrow g\)
	\(f < g\)
	\(f'\)
	\(f > g\)
	\(g'\)
	\(f \ne g\)
	\(f \uparrow g\)
	\(f \cdot g\)
	\(f = g\)
	\(g\)
	\(f \le g\)
	\(f\)
	\(f \ge g\)
	\(f + g\)
	1




	0
	0
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1


	0
	1
	0
	0
	1
	1
	0
	0
	1
	1
	0
	0
	1
	1
	0
	0
	1
	1


	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	1
	1
	1
	1


	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1





Some additional notes:


	\(f \downarrow g\) is the binary NOR (not or) operator.

	\(f \uparrow g\) is the binary NAND (not and) operator.

	\(f \leq g\) is commonly written using the binary implication operator
\(f \implies g\).

	\(f = g\) is commonly written using either the binary equivalence
operator \(f \iff g\),
or the binary XNOR (exclusive nor) operator \(f \odot g\).

	\(f \ne g\) is commonly written using the binary XOR (exclusive or)
operator \(f \oplus g\).






Additional Perspective

You are probably thinking this is all very nice,
but what can you possibly do with an algebra that only concerns itself with
0, 1, NOT, OR, and AND?

In 1937, Claude Shannon [http://en.wikipedia.org/wiki/Claude_Shannon]
realized that electronic circuits have two-value switches that can be combined
into networks capable of solving any logical or numeric relationship.
A transistor is nothing but an electrical switch.
Similar to a light bulb, it has two states: off (0), and on (1).
Wiring transistors together in serial imitates the AND operator,
and wiring them together in parallel imitates the OR operator.
If you wire a few thousand transistors together in interesting ways,
you can build a computer.






Import Symbols from PyEDA

All examples in this document require that you execute the following statements
in your interpreter:

>>> from pyeda.inter import *





If you want to see all the symbols you import with this statement,
look into pyeda/inter.py.


Note

Using the from ... import * syntax is generally frowned upon for Python
programming, but is extremely convenient for interactive use.






Built-in Python Boolean Operations

Python has a built-in Boolean data type, bool.
You can think of the False keyword as an alias for the number 0,
and the True keyword as an alias for the number 1.

>>> int(False)
0
>>> int(True)
1
>>> bool(0)
False
>>> bool(1)
True





The keywords for complement, sum, and product are not, or, and.

>>> not True
False
>>> True or False
True
>>> True and False
False





You can use the Python interpreter to evaluate complex expressions:

>>> (True and False) or not (False or True)
False





PyEDA recognizes False, 0, and '0' as Boolean zero (0),
and True, 1, and '1' as Boolean one (1).
You can use the int function to manually convert the bool and
str data types to integers:

>>> int(True)
1
>>> int('0')
0








Boolean Variables

Okay, so we already know what Boolean Algebra is,
and Python can already do everything we need, right?

Just like in high school algebra,
things start to get interesting when we introduce a few variables.

A Boolean variable is an abstract numerical quantity that may assume any value
in the set \(B = \{0, 1\}\).

For example, if we flip a coin, the result will either be “heads” or “tails”.
Let’s say we assign tails the value \(0\),
and heads the value \(1\).
Now divide all of time into two periods: 1) before the flip, and 2) after the flip.

Before you flip the coin,
imagine the possibility of either “tails” (0) or “heads” (1).
The abstract concept in your mind about a coin that may land in one of two ways
is the variable.
Normally, we will give the abstract quantity a name to distinguish it from
other abstract quantities we might be simultaneously considering.
The most familiar name for an arbitrary algebraic variable is \(x\).

After you flip the coin,
you can see the result in front of you.
The coin flip is no longer an imaginary variable; it is a known constant.


Creating Variable Instances

Let’s create a few Boolean expression variables using the exprvar method:

>>> a, b, c, d = map(exprvar, 'abcd')
>>> a.name
a
>>> b.name
b





By default, all variables go into a global namespace.
Also, all variable instances are singletons.
That is, only one variable is allowed to exist per name.
Verify this fact with the following:

>>> a = exprvar('a')
>>> _a = exprvar('a')
>>> id(a) == id(_a)
True






Warning

We recommend that you never do something crazy like assigning
a and _a to the same variable instance.






Indexing Variables


“There are only two hard things in Computer Science: cache invalidation and naming things.”

Tim Bray




Consider the coin-flipping example from before.
But this time, instead of flipping one coin, we want to flip a hundred coins.
You could start naming your variables by assigning the first flip to \(x\),
followed by \(y\), and so on.
But there are only twenty-six letters in the English alphabet,
so unless we start resorting to other alphabets,
we will hit some limitations with this system very quickly.

For cases like these, it is convenient to give variables an index.
Then, you can name the variable for the first coin flip \(x[0]\),
followed by \(x[1]\), \(x[2]\), and so on.

Here is how to give variables indices using the exprvar function:

>>> x_0 = exprvar('x', 0)
>>> x_1 = exprvar('x', 1)
>>> x_0, x_1
(x[0], x[1])





You can even give variables multiple indices by using a tuple:

>>> x_0_1_2_3 = exprvar('x', (0, 1, 2 ,3))
>>> x_0_1_2_3
x[0][1][2][3]





Assigning individual variables names like this is a bit cumbersome.
It is much easier to just use the exprvars factory function:

>>> X = exprvars('x', 8)
>>> X
[x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]]
>>> X[3]
x[3]
>>> X[2:5]
[x[2], x[3], x[4]]
>>> X[:5]
[x[0], x[1], x[2], x[3], x[4]]
>>> X[5:]
[x[5], x[6], x[7]]
>>> X[-1]
x[7]





Similary for multi-dimensional bit vectors:

>>> X = exprvars('x', 4, 4)
>>> X
farray([[x[0][0], x[0][1], x[0][2], x[0][3]],
        [x[1][0], x[1][1], x[1][2], x[1][3]],
        [x[2][0], x[2][1], x[2][2], x[2][3]],
        [x[3][0], x[3][1], x[3][2], x[3][3]]])
>>> X[2]
farray([x[2][0], x[2][1], x[2][2], x[2][3]])
>>> X[2,2]
x[2][2]
>>> X[1:3]
farray([[x[1][0], x[1][1], x[1][2], x[1][3]],
        [x[2][0], x[2][1], x[2][2], x[2][3]]])
>>> X[1:3,2]
farray([x[1][2], x[2][2]])
>>> X[2,1:3]
farray([x[2][1], x[2][2]])
>>> X[-1,-1]
x[3][3]










Points in Boolean Space

Before we talk about Boolean functions,
it will be useful to discuss the nature of Boolean space.

In high school algebra,
you started with functions that looked like \(f(x) = 2x + 3\).
Later, you probably investigated slightly more interesting functions such as
\(f(x) = x^2\), \(f(x) = sin(x)\), and \(f(x) = e^x\).
All of these are functions of a single variable.
That is, the domain of these functions is the set of all values the variable
\(x\) can take.
In all these cases, that domain is \([-\infty, +\infty]\).

Remember that variables in Boolean algebra can only take values of 0 or 1.
So to create interesting functions in Boolean algebra,
you use many variables.

Let’s revisit the coin-flipping example again.
This time we will flip the coin exactly twice.
Create a variable \(x\) to represent the result of the first flip,
and a variable \(y\) to represent the result of the second flip.
Use zero (0) to represent “tails”, and one (1) to represent “heads”.

The number of variables you use is called the dimension.
All the possible outcomes of this experiment is called the space.
Each possible outcome is called a point.

If you flip the coin twice, and the result is (heads, tails),
that result is point \((1, 0)\) in a 2-dimensional Boolean space.

Use the iter_points generator to iterate through all possible points in an
N-dimensional Boolean space:

>>> list(iter_points([x, y]))
[{x: 0, y: 0}, {x: 1, y: 0}, {x: 0, y: 1}, {x: 1, y: 1}]





PyEDA uses a dictionary to represent a point.
The keys of the dictionary are the variable instances,
and the values are numbers in \({0, 1}\).

Try doing the experiment with three coin flips.
Use the variable \(z\) to represent the result of the third flip.

>>> list(iter_points([z, y, x]))
[{x: 0, y: 0, z: 0},
 {x: 0, y: 0, z: 1},
 {x: 0, y: 1, z: 0},
 {x: 0, y: 1, z: 1},
 {x: 1, y: 0, z: 0},
 {x: 1, y: 0, z: 1},
 {x: 1, y: 1, z: 0},
 {x: 1, y: 1, z: 1}]





The observant reader will notice that this is equivalent to:


	generating all bit-strings of length \(N\)

	counting from 0 to 7 in the binary number system






Boolean Functions

A Boolean function is a rule that maps points in an \(N\)-dimensional
Boolean space to an element in \(\{0, 1\}\).
In formal mathematical lingo, \(f: B^N \Rightarrow B\),
where \(B^N\) means the Cartesian product of \(N\) Boolean variables,
\(v \in \{0, 1\}\).
For example, if you have three input variables, \(a, b, c\),
then \(B^3 = a \times b \times c = \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)\}\).
\(B^3\) is the domain of the function (the input part),
and \(B = \{0, 1\}\) is the range of the function (the output part).

In the relevant literature,
you might see a Boolean function described as a type of relation,
or geometrically as a cube.
These are valid descriptions,
but we will use a familiar analogy for better understanding.

A Boolean function is somewhat like a game,
where the player takes \(N\) binary input turns (eg heads/tails),
and there is a binary result determined by a rule (eg win/loss).
Let’s revisit the coin-flipping example.
One possible game is that we will flip the coin three times,
and it will be considered a “win” if heads comes up all three.

Summarize the game using a truth table.









	\(x_0\)
	\(x_1\)
	\(x_2\)
	\(f\)




	0
	0
	0
	0


	0
	0
	1
	0


	0
	1
	0
	0


	0
	1
	1
	0


	1
	0
	0
	0


	1
	0
	1
	0


	1
	1
	0
	0


	1
	1
	1
	1





You can create the equivalent truth table with PyEDA like so:

>>> X = exprvars('x', 3)
>>> f = truthtable(X, "00000001")
>>> f
inputs: x[2] x[1] x[0]
000 0
001 0
010 0
011 0
100 0
101 0
110 0
111 1





Don’t be alarmed that the inputs are displayed most-significant-bit first.
That can actually come in handy sometimes.

The game from the previous example can be expressed as the expression
\(f(x_0, x_1, x_2) = x_0 \cdot x_1 \cdot x_2\).
It is generally not convenient to list all the input variables,
so we will normally shorten that statement to just
\(f = x_0 \cdot x_1 \cdot x_2\).

>>> truthtable2expr(f)
And(x[0], x[1], x[2])





Let’s define another game with a slightly more interesting rule:
“you win if the majority of flips come up heads”.









	\(x_0\)
	\(x_1\)
	\(x_2\)
	\(f\)




	0
	0
	0
	0


	0
	0
	1
	0


	0
	1
	0
	0


	0
	1
	1
	1


	1
	0
	0
	0


	1
	0
	1
	1


	1
	1
	0
	1


	1
	1
	1
	1





This is a three-variable form of the “majority” function.
You can express it as a truth table:

>>> f = truthtable(X, "00010111")
>>> f
inputs: x[2] x[1] x[0]
000 0
001 0
010 0
011 1
100 0
101 1
110 1
111 1





or as an expression:

>>> truthtable2expr(f)
Or(And(~x[0], x[1], x[2]), And(x[0], ~x[1], x[2]), And(x[0], x[1], ~x[2]), And(x[0], x[1], x[2]))








PyEDA Variable/Function Base Classes

Now that we have a better understanding of Boolean variables and functions,
we will dive into how PyEDA models them.

We have already seen a glance of the type of data structure used to represent
Boolean functions (tables and expressions).
There are actually several of these representations,
including (but not limited to):


	Truth tables

	Implicant tables

	Logic expressions

	Decision diagrams, including:
	Binary decision diagrams (BDD)

	Reduced, ordered binary decisions diagrams (ROBDD)

	Zero-suppressed decision diagrams (ZDD)





	And inverter graphs (AIG)



Each data type has strengths and weaknesses.
For example, ROBDDs are a canonical form,
which make proofs of formal equivalence very cheap.
On the other hand, ROBDDs can be exponential in size in many cases,
which makes them memory-constrained.

The following sections show the abstract base classes for Boolean variables
and functions defined in pyeda.boolalg.boolfunc.


Boolean Variables

In order to easily support algebraic operations on Boolean functions,
each function representation has a corresponding variable representation.
For example, truth table variables are instances of TruthTableVariable,
and expression variables are instances of ExpressionVariable,
both of which inherit from Variable.


	
class pyeda.boolalg.boolfunc.Variable(names, indices)[source]

	Abstract base class that defines an interface for a Boolean variable.

A Boolean variable is a numerical quantity that may assume any value in the
set B = {0, 1}.

This implementation includes optional indices, nonnegative integers that
can be used to construct multi-dimensional bit vectors.


	
name[source]

	Return the variable name.






	
qualname[source]

	Return the fully qualified name.












Boolean Functions

This is the abstract base class for Boolean function representations.

In addition to the methods and properties listed below,
classes inheriting from Function should also overload the
__invert__, __or__, __and__, and __xor__ magic methods.
This makes it possible to perform symbolic, algebraic manipulations using
a Python interpreter.


	
class pyeda.boolalg.boolfunc.Function[source]

	Abstract base class that defines an interface for a scalar Boolean function
of \(N\) variables.


	
support[source]

	Return the support set of a function.

Let \(f(x_1, x_2, \dots, x_n)\) be a Boolean function of \(N\)
variables.

The unordered set \(\{x_1, x_2, \dots, x_n\}\) is called the
support of the function.






	
usupport[source]

	Return the untyped support set of a function.






	
inputs[source]

	Return the support set in name/index order.






	
top[source]

	Return the first variable in the ordered support set.






	
degree[source]

	Return the degree of a function.

A function from \(B^{N} \Rightarrow B\) is called a Boolean
function of degree \(N\).






	
cardinality[source]

	Return the cardinality of the relation \(B^{N} \Rightarrow B\).

Always equal to \(2^{N}\).






	
iter_domain()[source]

	Iterate through all points in the domain.






	
iter_image()[source]

	Iterate through all elements in the image.






	
iter_relation()[source]

	Iterate through all (point, element) pairs in the relation.






	
restrict(point)[source]

	Return the Boolean function that results after restricting a subset of
its input variables to \(\{0, 1\}\).

\(f \: | \: x_i = b\)






	
vrestrict(vpoint)[source]

	Expand all vectors before applying ‘restrict’.






	
compose(mapping)[source]

	Return the Boolean function that results after substituting a subset of
its input variables for other Boolean functions.

\(f_1 \: | \: x_i = f_2\)






	
satisfy_one()[source]

	If this function is satisfiable, return a satisfying input point. A
tautology may return a zero-dimensional point; a contradiction must
return None.






	
satisfy_all()[source]

	Iterate through all satisfying input points.






	
satisfy_count()[source]

	Return the cardinality of the set of all satisfying input points.






	
iter_cofactors(vs=None)[source]

	Iterate through the cofactors of a function over N variables.

The cofactor of \(f(x_1, x_2, \dots, x_i, \dots, x_n)\)
with respect to variable \(x_i\) is:
\(f_{x_i} = f(x_1, x_2, \dots, 1, \dots, x_n)\)

The cofactor of \(f(x_1, x_2, \dots, x_i, \dots, x_n)\)
with respect to variable \(x_i'\) is:
\(f_{x_i'} = f(x_1, x_2, \dots, 0, \dots, x_n)\)






	
cofactors(vs=None)[source]

	Return a tuple of the cofactors of a function over N variables.

The cofactor of \(f(x_1, x_2, \dots, x_i, \dots, x_n)\)
with respect to variable \(x_i\) is:
\(f_{x_i} = f(x_1, x_2, \dots, 1, \dots, x_n)\)

The cofactor of \(f(x_1, x_2, \dots, x_i, \dots, x_n)\)
with respect to variable \(x_i'\) is:
\(f_{x_i'} = f(x_1, x_2, \dots, 0, \dots, x_n)\)






	
smoothing(vs=None)[source]

	Return the smoothing of a function over a sequence of N variables.

The smoothing of \(f(x_1, x_2, \dots, x_i, \dots, x_n)\) with
respect to variable \(x_i\) is:
\(S_{x_i}(f) = f_{x_i} + f_{x_i'}\)

This is the same as the existential quantification operator:
\(\exists \{x_1, x_2, \dots\} \: f\)






	
consensus(vs=None)[source]

	Return the consensus of a function over a sequence of N variables.

The consensus of \(f(x_1, x_2, \dots, x_i, \dots, x_n)\) with
respect to variable \(x_i\) is:
\(C_{x_i}(f) = f_{x_i} \cdot f_{x_i'}\)

This is the same as the universal quantification operator:
\(\forall \{x_1, x_2, \dots\} \: f\)






	
derivative(vs=None)[source]

	Return the derivative of a function over a sequence of N variables.

The derivative of \(f(x_1, x_2, \dots, x_i, \dots, x_n)\) with
respect to variable \(x_i\) is:
\(\frac{\partial}{\partial x_i} f = f_{x_i} \oplus f_{x_i'}\)

This is also known as the Boolean difference.






	
is_zero()[source]

	Return whether this function is zero.


Note

This method will only look for a particular “zero form”,
and will NOT do a full search for a contradiction.








	
is_one()[source]

	Return whether this function is one.


Note

This method will only look for a particular “one form”,
and will NOT do a full search for a tautology.








	
static box(obj)[source]

	Convert primitive types to a Function.






	
unbox()[source]

	Return integer 0 or 1 if possible, otherwise return the Function.
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Boolean Expressions

Expressions are a very powerful and flexible way to represent Boolean functions.
They are the central data type of PyEDA’s symbolic Boolean algebra engine.
This chapter will explain how to construct and manipulate Boolean expressions.

The code examples in this chapter assume that you have already prepared your
terminal by importing all interactive symbols from PyEDA:

>>> from pyeda.inter import *






Expression Constants

You can represent \(0\) and \(1\) as expressions:

>>> zero = expr(0)
>>> one = expr(1)





We will describe the expr function in more detail later.
For now, let’s just focus on the representation of constant values.

All of the following conversions from \(0\) have the same effect:

>>> zeroA = expr(0)
>>> zeroB = expr(False)
>>> zeroC = expr("0")





All three “zero” objects are the same:

>>> zeroA == zeroB == zeroC
True





Similarly for \(1\):

>>> oneA = expr(1)
>>> oneB = expr(True)
>>> oneC = expr("1")





All three “one” objects are the same:

>>> oneA == oneB == oneC
True





However, these results might come as a surprise:

>>> expr(0) == 0
False
>>> expr(1) == True
False





PyEDA evaluates all zero-like and one-like objects,
and stores them internally using a module-level singleton in
pyeda.boolalg.expr:

>>> type(expr(0))
pyeda.boolalg.expr._ExprZero
>>> type(expr(1))
pyeda.boolalg.expr._ExprOne





Once you have converted zero/one to expressions,
they implement the full Boolean Function API.

For example, constants have an empty support set:

>>> one.support
frozenset()





Also, apparently zero is not satisfiable:

>>> zero.satisfy_one() is None
True





This fact might seem underwhelming,
but it can have some neat applications.
For example, here is a sneak peak of Shannon expansions:

>>> a, b = map(exprvar, 'ab')
>>> zero.expand([a, b], conj=True)
And(Or(a, b), Or(a, ~b), Or(~a, b), Or(~a, ~b))
>>> one.expand([a, b])
Or(And(~a, ~b), And(~a, b), And(a, ~b), And(a, b))








Expression Literals

A Boolean literal is defined as a variable or its complement.
The expression variable and complement data types are the primitives of
Boolean expressions.


Variables

To create expression variables, use the exprvar function.

For example, let’s create a variable named \(a\),
and assign it to a Python object named a:

>>> a = exprvar('a')
>>> type(a)
pyeda.boolalg.expr.ExprVariable





One efficient method for creating multiple variables is to use Python’s builtin
map function:

>>> a, b, c = map(exprvar, 'abc')





The primary benefit of using the exprvar function rather than a class
constructor is to ensure that variable instances are unique:

>>> a = exprvar('a')
>>> a_new = exprvar('a')
>>> id(a) == id(a_new)
True





You can name a variable pretty much anything you want,
though we recommend standard identifiers:

>>> foo = exprvar('foo')
>>> holy_hand_grenade = exprvar('holy_hand_grenade')





By default, all variables go into a global namespace.
You can assign a variable to a specific namespace by passing a tuple of
strings as the first argument:

>>> a = exprvar('a')
>>> c_b_a = exprvar(('a', 'b', 'c'))
>>> a.names
('a', )
>>> c_b_a.names
('a', 'b', 'c')





Notice that the default representation of a variable will dot all the names
together starting with the most significant index of the tuple on the left:

>>> str(c_b_a)
'c.b.a'





Since it is very common to deal with grouped variables,
you may assign indices to variables as well.
Each index is a new dimension.

To create a variable with a single index, use an integer argument:

>>> a42 = exprvar('a', 42)
>>> str(a42)
a[42]





To create a variable with multiple indices, use a tuple argument:

>>> a_1_2_3 = exprvar('a', (1, 2, 3))
>>> str(a_1_2_3)
a[1][2][3]





Finally, you can combine multiple namespaces and dimensions:

>>> c_b_a_1_2_3 = exprvar(('a', 'b', 'c'), (1, 2, 3))
>>> str(c_b_a_1_2_3)
c.b.a[1][2][3]






Note

The previous syntax is starting to get a bit cumbersome.
For a more powerful method of creating multi-dimensional arrays,
use the exprvars function.






Complements

A complement is defined as the inverse of a variable.
That is:


\[a + a' = 1\]\[a \cdot a' = 0\]

One way to create a complement from a pre-existing variable is to simply
apply Python’s ~ unary negate operator.

For example, let’s create a variable and its complement:

>>> a = exprvar('a')
>>> ~a
~a
>>> type(~a)
pyeda.boolalg.expr.ExprComplement





All complements created from the same variable instance are not just identical,
they all refer to the same object:

>>> id(~a) == id(~a)
True










Constructing Expressions

Expressions are defined recursively as being composed of primitives
(constants, variables),
and expressions joined by Boolean operators.

Now that we are familiar with all of PyEDA’s Boolean primitives,
we will learn how to construct more interesting expressions.


From Constants, Variables, and Python Operators

PyEDA overloads Python’s ~, |, ^, and & operators with
NOT, OR, XOR, and AND, respectively.


Note

Version 0.18 of PyEDA used -, +, and * for
NOT, OR, and AND.
This is currently maintained for backwards-compatibility,
but will go away in some future release.
See issue #53 [https://github.com/cjdrake/pyeda/issues/53] for details.



Let’s jump in by creating a full adder:

>>> a, b, ci = map(exprvar, "a b ci".split())
>>> s = ~a & ~b & ci | ~a & b & ~ci | a & ~b & ~ci | a & b & ci
>>> co = a & b | a & ci | b & ci





Using XOR looks a lot nicer for the sum output:

>>> s = a ^ b ^ ci





You can use the expr2truthtable function to do a quick check that the
sum logic is correct:

>>> expr2truthtable(s)
inputs: ci b a
000 0
001 1
010 1
011 0
100 1
101 0
110 0
111 1





Similarly for the carry out logic:

>>> expr2truthtable(co)
inputs: ci b a
000 0
001 0
010 0
011 1
100 0
101 1
110 1
111 1








From Factory Functions

Python does not have enough builtin operators to handle all interesting Boolean
functions we can represent directly as an expression.
Also, binary operators are limited to two operands at a time,
whereas several Boolean operators are N-ary (arbitrary many operands).
This section will describe all the factory functions that can be used to create
arbitrary Boolean expressions.

The general form of these functions is
OP(arg [, arg], simplify=True, factor=False).
The function is an operator name, followed by one or more arguments,
followed by the simplify, and factor parameters.
Some functions also have a conj parameter,
which selects between conjunctive (conj=True) and disjunctive
(conj=False) formats.

One advantage of using these functions is that you do not need to create
variable instances prior to passing them as arguments.
You can just pass string identifiers,
and PyEDA will automatically parse and convert them to variables.

For example, the following two statements are equivalent:

>>> Not('a[0]')
~a[0]





and:

>>> a0 = exprvar('a', 0)
>>> Not(a0)
~a[0]






Primary Operators

Since NOT, OR, and AND form a complete basis for a Boolean algebra,
these three operators are primary.


	
Not(arg, simplify=True, factor=False)

	Return an expression that is the inverse of the input.






	
Or(*args, simplify=True, factor=False)

	Return an expression that evaluates to \(1\) if and only if any inputs
are \(1\).






	
And(*args, simplify=True, factor=False)

	Return an expression that evaluates to \(1\) if and only if all inputs
are \(1\).





Example of full adder logic using Not, Or, and And:

>>> s = Or(And(Not('a'), Not('b'), 'ci'), And(Not('a'), 'b', Not('ci')), And('a', Not('b'), Not('ci')), And('a', 'b', 'ci'))
>>> co = Or(And('a', 'b'), And('a', 'ci'), And('b', 'ci'))








Secondary Operators

A secondary operator is a Boolean operator that can be natively represented
as a PyEDA expression,
but contains more information than the primary operators.
That is, these expressions always increase in tree size when converted to
primary operators.


	
Nor(*args, simplify=True, factor=False)

	Return an expression that evaluates to \(0\) if and only if any inputs
are \(1\).
The inverse of Or.






	
Nand(*args, simplify=True, factor=False)

	Return an expression that evaluates to \(0\) if an only if all inputs
are \(1\).
The inverse of And.






	
Xor(*args, simplify=True, factor=False, conj=False)

	Return an expression that evaluates to \(1\) if and only if the input
parity is odd.





The word parity in this context refers to whether the number of ones in the
input is even (divisible by two).
For example, the input string “0101” has even parity (2 ones),
and the input string “0001” has odd parity (1 ones).

The full adder circuit has a more dense representation when you
use the Xor operator:

>>> s = Xor('a', 'b', 'ci')
>>> co = Or(And('a', 'b'), And('a', 'ci'), And('b', 'ci'))






	
Xnor(*args, simplify=True, factor=False, conj=False)

	Return an expression that evaluates to \(1\) if and only if the input
parity is even.






	
Equal(*args, simplify=True, factor=False, conj=False)

	Return an expression that evaluates to \(1\) if and only if all inputs
are equivalent.






	
Unequal(*args, simplify=True, factor=False, conj=False)

	Return an expression that evaluates to \(1\) if and only if not all
inputs are equivalent.






	
Implies(p, q, simplify=True, factor=False)

	Return an expression that implements Boolean implication
(\(p \implies q\)).












	\(p\)
	\(q\)
	\(p \implies q\)




	0
	0
	1


	0
	1
	1


	1
	0
	0


	1
	1
	1





Note that this truth table is equivalent to \(p \leq q\),
but Boolean implication is by far the more common form due to its use in
propositional logic [http://en.wikipedia.org/wiki/Propositional_calculus].


	
ITE(s, d1, d0, simplify=True, factor=False)

	Return an expression that implements the Boolean “if, then, else” operator.
If \(s = 1\), then the output equals \(d_{0}\).
Otherwise (\(s = 0\)), the output equals \(d_{1}\).













	\(s\)
	\(d_{1}\)
	\(d_{0}\)
	\(ite(s, d_{1}, d_{0})\)




	0
	0
	0
	0


	0
	0
	1
	1


	0
	1
	0
	0


	0
	1
	1
	1


	1
	0
	0
	0


	1
	0
	1
	0


	1
	1
	0
	1


	1
	1
	1
	1








High Order Operators

A high order operator is a Boolean operator that can NOT be natively
represented as a PyEDA expression.
That is, these factory functions will always return expressions composed from
primary and/or secondary operators.


	
OneHot0(*args, simplify=True, factor=False, conj=True)

	Return an expression that evaluates to \(1\) if and only if the number
of inputs equal to \(1\) is at most \(1\).
That is, return true when at most one input is “hot”.






	
OneHot(*args, simplify=True, factor=False, conj=True)

	Return an expression that evaluates to \(1\) if and only if exactly one
input is equal to \(1\).
That is, return true when exactly one input is “hot”.






	
Majority(*args, simplify=True, factor=False, conj=False)

	Return an expression that evaluates to \(1\) if and only if the majority
of inputs equal \(1\).





The full adder circuit has a much more dense representation when you
use both the Xor and Majority operators:

>>> s = Xor('a', 'b', 'ci')
>>> co = Majority('a', 'b', 'ci')






	
AchillesHeel(*args, simplify=True, factor=False)

	Return the Achille’s Heel function, defined as
\(\prod_{i=0}^{N-1}{(x_{i/2} + x_{i/2+1})}\).





The AchillesHeel function has \(N\) literals in its CNF form,
but \(N/2 \times 2^{N/2}\) literals in its DNF form.
It is an interesting demonstration of tradeoffs when choosing an expression
representation.
For example:

>>> f =  AchillesHeel('a', 'b', 'c', 'd', 'w', 'x', 'y', 'z')
>>> f
And(Or(a, b), Or(c, d), Or(w, x), Or(y, z))
>>> f.to_dnf()
Or(And(a, c, w, y), And(a, c, w, z), And(a, c, x, y), And(a, c, x, z), And(a, d, w, y), And(a, d, w, z), And(a, d, x, y), And(a, d, x, z), And(b, c, w, y), And(b, c, w, z), And(b, c, x, y), And(b, c, x, z), And(b, d, w, y), And(b, d, w, z), And(b, d, x, y), And(b, d, x, z))






	
Mux(fs, sel, simplify=True, factor=False)

	Return an expression that multiplexes a sequence of input functions over a
sequence of select functions.





For example:

>>> X = exprvars('x', 4)
>>> S = exprvars('s', 2)
>>> Mux(X, S)
Or(And(~s[0], ~s[1], x[0]), And(s[0], ~s[1], x[1]), And(~s[0], s[1], x[2]), And(s[0], s[1], x[3]))










From the expr Function


	
expr(arg, simplify=True, factor=False)

	



The expr function is very special.
It will attempt to convert the input argument to an Expression object.

We have already seen how the expr function converts a Python bool
input to a constant expression:

>>> expr(False)
0





Now let’s pass a str as the input argument:

>>> expr('0')
0





If given an input string, the expr function will attempt to parse the input
string and return an expression.

Examples of input expressions:

>>> expr("~a & b | ~c & d")
Or(And(~a, b), And(~c, d))
>>> expr("a | b ^ c & d")
Or(a, Xor(b, And(c, d)))
>>> expr("p => q")
Implies(p, q)
>>> expr("p <=> q")
Equal(p, q)
>>> expr("s ? d[1] : d[0]")
ITE(s, d[1], d[0])
>>> expr("Or(a, b, Not(c))")
Or(a, b, ~c)
>>> expr("Majority(a, b, c)")
Or(And(a, b), And(a, c), And(b, c))





Operator Precedence Table (lowest to highest):







	Operator
	Description




	s ? d1 : d0
	If Then Else


	=>
<=>
	Binary Implies,
Binary Equal


	|
	Binary OR


	^
	Binary XOR


	&
	Binary AND


	~x
	Unary NOT


	(expr ...)
OP(expr ...)
	Parenthesis,
Explicit operators





The full list of valid operators accepted by the expression parser:


	Or(...)

	And(...)

	Xor(...)

	Xnor(...)

	Equal(...)

	Unequal(...)

	Nor(...)

	Nand(...)

	OneHot0(...)

	OneHot(...)

	Majority(...)

	AchillesHeel(...)

	ITE(s, d1, d0)

	Implies(p, q)

	Not(a)








Expression Types

This section will cover the hierarchy of Boolean expression types.


Unsimplified

An unsimplified expression consists of the following components:


	Constants

	Expressions that can easily be converted to constants (eg \(x + x' = 1\))

	Literals

	Primary operators: Not, Or, And

	Secondary operators



Also, an unsimplified expression does not automatically join adjacent,
associative operators.
For example, \(a + (b + c)\) is equivalent to \(a + b + c\).
The depth of the unsimplified expression is two:

>>> f = Or('a', Or('b', 'c'), simplify=False)
>>> f.args
(a, Or(b, c))
>>> f.depth
2





The depth of the simplified expression is one:

>>> g = f.simplify()
>>> g.args
(b, a, c)
>>> g.depth
1








Simplifed

A simplified expression consists of the following components:


	Literals

	Primary operators: Not, Or, And

	Secondary operators



Also, \(0\) and \(1\) are considered simplified by themselves.

That is, the act of simplifying an expression eliminates constants,
and all sub-expressions that can be easily converted to constants.

All expressions constructed using overloaded operatiors are automatically
simplified:

>>> a | 0
a
>>> a | 1
1
>>> a | b & ~b
a





Unsimplified expressions are not very useful,
so the factory functions also simplify by default:

>>> Or(a, And(b, ~b))
a





To simplify an expression, use the simplify method:

>>> f = Or(a, 0, simplify=False)
>>> f
Or(0, a)
>>> g = f.simplify()
>>> g
a





You can check whether an expression is simplified using the simplified
attribute:

>>> f.simplified
False
>>> g.simplified
True








Factored

A factored expression consists of the following components:


	Literals

	Primary operators: Or, And



That is, the act of factoring an expression converts all secondary operators
to primary operators,
and uses DeMorgan’s transform to eliminate Not operators.

You can factor all secondary operators:

>>> Xor(a, b, c).factor()
Or(And(~a, ~b, c), And(~a, b, ~c), And(a, ~b, ~c), And(a, b, c))
>>> Implies(p, q).factor()
Or(~p, q)
>>> Equal(a, b, c).factor()
Or(And(~a, ~b, ~c), And(a, b, c))
>>> ITE(s, a, b).factor()
Or(And(b, Or(a, b, ~ci), Or(a, ~b, ci)), And(a, Or(And(~a, ~b, ci), And(~a, b, ~ci))))





Factoring also eliminates all Not operators,
by using DeMorgan’s law:

>>> Not(a | b).factor()
And(~a, ~b)
>>> Not(a & b).factor()
Or(~a, ~b)








Normal Form

A normal form expression is a factored expression with depth less than or
equal to two.

That is, a normal form expression has been factored, and flattened.

There are two types of normal forms:


	disjunctive normal form (SOP: sum of products)

	conjunctive normal form (POS: product of sums)



The preferred method for creating normal form expressions is to use the
to_dnf and to_cnf methods:

>>> f = Xor(a, Implies(b, c))
>>> f.to_dnf()
Or(And(~a, ~b), And(~a, c), And(a, b, ~c))
>>> f.to_cnf()
And(Or(~a, b), Or(~a, ~c), Or(a, ~b, c))








Canonical Normal Form

A canonical normal form expression is a normal form expression with the
additional property that all terms in the expression have the same degree as
the expression itself.

That is, a canonical normal form expression has been factored, flattened,
and reduced.

The preferred method for creating canonical normal form expressions is to use
the to_cdnf and to_ccnf methods.

Using the same function from the previous section as an example:

>>> f = Xor(a, Implies(b, c))
>>> f.to_cdnf()
Or(And(~a, ~b, ~c), And(~a, ~b, c), And(~a, b, c), And(a, b, ~c))
>>> f.to_ccnf()
And(Or(a, ~b, c), Or(~a, b, c), Or(~a, b, ~c), Or(~a, ~b, ~c))










Satisfiability

Expressions have smart support for Boolean satisfiability.

They inherit both the satisfy_one and satisfy_all methods from the
Function interface.

For example:

>>> f = Xor('a', Implies('b', 'c'))
>>> f.satisfy_one()
{a: 0, b: 0}
>>> list(f.satisfy_all())
[{a: 0, b: 0}, {a: 0, b: 1, c: 1}, {a: 1, b: 1, c: 0}]





By default, Boolean expressions use a very naive “backtracking” algorithm to
solve for satisfying input points.
Since SAT is an NP-complete algorithm,
you should always use care when preparing your inputs.

A conjunctive normal form expression will automatically use the
PicoSAT [http://fmv.jku.at/picosat] C extension.
This is an industrial-strength SAT solver,
and can be used to solve very non-trivial problems.

>>> g = f.to_cnf()
>>> g.satisfy_one()
{a: 0, b: 0, c: 1}
>>> list(g.satisfy_all())
[{a: 0, b: 1, c: 1},
 {a: 0, b: 0, c: 0},
 {a: 0, b: 0, c: 1},
 {a: 1, b: 1, c: 0}]






Note

Future versions of PyEDA might support additional C/C++ extensions
for SAT solving. This is an active area of research, and no single
solver is ideal for all cases.




Assumptions

A common pattern in SAT-solving is to setup a large database of clauses,
and attempt to solve the CNF several times with different simplifying
assumptions.
This is equivalent to adding unit clauses to the database,
which can be easily eliminated by boolean constraint propagation.

The Expression data type supports applying assumptions using the with
statement.
Here is an example of creating a nested context of literals that assumes
a=1 and b=0:

>>> f = Xor(a, b, c)
>>> with a, ~b:
...     print(f.satisfy_one())
{a: 1, b: 0, c: 0}





There are four satisfying solutions to this function,
but the return value will always correspond to the input assumptions.

And terms of literals (clauses) may also be used as assumptions:

>>> with a & ~b:
...     print(f.satisfy_one())
{a: 1, b: 0, c: 0}





Note that it is an error to assume conflicting values for a literal:

>>> with a, ~a:
...     print(f.satisfy_one())
ValueError: conflicting constraints: a, ~a










Tseitin’s Encoding

To take advantage of the PicoSAT solver,
you need an expression that is in conjunctive normal form.
Some expressions (especially Xor) have exponentially large size when you
expand them to a CNF.

One way to work around this limitation is to use Tseitin’s encoding.
To convert an expression to Tseitin’s encoding, use the tseitin method:

>>> f = Xor('a', Implies('b', 'c'))
>>> tf = f.tseitin()
>>> tf
And(Or(a, ~aux[0]), Or(~a, aux[0], ~b, c), Or(~a, ~aux[2]), Or(a, ~aux[1], aux[2]), Or(aux[0], aux[2]), Or(~aux[0], b), Or(~aux[0], ~c), Or(aux[1], ~aux[2]), Or(aux[1], b), Or(aux[1], ~c), Or(~aux[1], ~b, c))





As you can see, Tseitin’s encoding introduces several “auxiliary” variables
into the expression.

You can change the name of the auxiliary variable by using the auxvarname
parameter:

>>> f = Xor('a', Implies('b', 'c'))
>>> f.tseitin(auxvarname='z')
And(Or(a, ~z[0]), Or(~a, ~b, c, z[0]), Or(~a, ~z[2]), Or(a, ~z[1], z[2]), Or(b, z[1]), Or(~b, c, ~z[1]), Or(b, ~z[0]), Or(~c, ~z[0]), Or(~c, z[1]), Or(z[0], z[2]), Or(z[1], ~z[2]))





You will see the auxiliary variables in the satisfying points:

>>> tf.satisfy_one()
{a: 0, aux[0]: 0, aux[1]: 1, aux[2]: 1, b: 0, c: 1}
>>> list(tf.satisfy_all())
[{a: 1, aux[0]: 0, aux[1]: 0, aux[2]: 1, b: 1, c: 0},
 {a: 0, aux[0]: 1, aux[1]: 1, aux[2]: 0, b: 1, c: 1},
 {a: 0, aux[0]: 1, aux[1]: 1, aux[2]: 0, b: 0, c: 0},
 {a: 0, aux[0]: 1, aux[1]: 1, aux[2]: 0, b: 0, c: 1}]





Just filter them out to get the answer you’re looking for:

>>> [{v: val for v, val in point.items() if v.name != 'aux'} for point in tf.satisfy_all()]
[{a: 1, b: 1, c: 0},
 {a: 0, b: 1, c: 1},
 {a: 0, b: 0, c: 0},
 {a: 0, b: 0, c: 1}]








Formal Equivalence

Two Boolean expressions \(f\) and \(g\) are formally equivalent if
\(f \oplus g\) is not satisfiable.

Boolean expressions have an equivalent method that implements this basic
functionality.
It uses the naive backtracking SAT,
because it is difficult to determine whether any particular expression can
be converted efficiently to a CNF.

Let’s test whether bit 6 of a ripple carry adder is equivalent to bit 6 of a
Kogge Stone adder:

>>> from pyeda.logic.addition import ripple_carry_add, kogge_stone_add
>>> A = exprvars('a', 16)
>>> B = exprvars('b', 16)
>>> S1, C1 = ripple_carry_add(A, B)
>>> S2, C2 = kogge_stone_add(A, B)
>>> S1[6].equivalent(S2[6])
True





Note that this is the same as the following:

>>> Xor(S1[6], S2[6]).satisfy_one() is None
True
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Two-level Logic Minimization

This chapter will explain how to use PyEDA to minimize two-level
“sum-of-products” forms of Boolean functions.

Logic minimization is known to be an NP-complete problem.
It is equivalent to finding a minimal-cost set of subsets of a set \(S\)
that covers \(S\).
This is sometimes called the “paving problem”,
because it is conceptually similar to finding the cheapest configuration of
tiles that cover a floor.
Due to the complexity of this operation,
PyEDA uses a C extension to the famous Berkeley Espresso library [1].

All examples in this chapter assume you have interactive symbols imported:

>>> from pyeda.inter import *






Minimize Boolean Expressions

Consider the three-input function
\(f_{1} = a \cdot b' \cdot c' + a' \cdot b' \cdot c + a \cdot b' \cdot c + a \cdot b \cdot c + a \cdot b \cdot c'\)

>>> a, b, c = map(exprvar, 'abc')
>>> f1 = ~a & ~b & ~c | ~a & ~b & c | a & ~b & c | a & b & c | a & b & ~c





To use Espresso to perform minimization:

>>> f1m, = espresso_exprs(f1)
>>> f1m
Or(And(~a, ~b), And(a, b), And(~b, c))





Notice that the espresso_exprs function returns a tuple.
The reason is that this function can minimize multiple input functions
simultaneously.
To demonstrate, let’s create a second function
\(f_{2} = a' \cdot b' \cdot c + a \cdot b' \cdot c\).

>>> f2 = ~a & ~b & c | a & ~b & c
>>> f1m, f2m = espresso_exprs(f1, f2)
>>> f1m
Or(And(~a, ~b), And(a, b), And(~b, c))
>>> f2m
And(~b, c)





It’s easy to verify that the minimal functions are equivalent to the originals:

>>> f1.equivalent(f1m)
True
>>> f2.equivalent(f2m)
True








Minimize Truth Tables

An expression is a completely specified function.
Sometimes, instead of minimizing an existing expression,
you instead start with only a truth table that maps inputs in \({0, 1}\)
to outputs in \({0, 1, *}\), where \(*\) means “don’t care”.
For this type of incompletely specified function,
you may use the espresso_tts function to find a low-cost, equivalent
Boolean expression.

Consider the following truth table with four inputs and two outputs:











	Inputs
	Outputs


	x3
	x2
	x1
	x0
	f1
	f2




	0
	0
	0
	0
	0
	0


	0
	0
	0
	1
	0
	0


	0
	0
	1
	0
	0
	0


	0
	0
	1
	1
	0
	1


	0
	1
	0
	0
	0
	1


	0
	1
	0
	1
	1
	1


	0
	1
	1
	0
	1
	1


	0
	1
	1
	1
	1
	1


	1
	0
	0
	0
	1
	0


	1
	0
	0
	1
	1
	0


	1
	0
	1
	0
	X
	X


	1
	0
	1
	1
	X
	X


	1
	1
	0
	0
	X
	X


	1
	1
	0
	1
	X
	X


	1
	1
	1
	0
	X
	X


	1
	1
	1
	1
	X
	X





The espresso_tts function takes a sequence of input truth table functions,
and returns a sequence of DNF expression instances.

>>> X = exprvars('x', 4)
>>> f1 = truthtable(X, "0000011111------")
>>> f2 = truthtable(X, "0001111100------")
>>> f1m, f2m = espresso_tts(f1, f2)
>>> f1m
Or(x[3], And(x[0], x[2]), And(x[1], x[2]))
>>> f2m
Or(x[2], And(x[0], x[1]))





You can test whether the resulting expressions are equivalent to the original
truth tables by visual inspection (or some smarter method):

>>> expr2truthtable(f1m)
inputs: x[3] x[2] x[1] x[0]
0000 0
0001 0
0010 0
0011 0
0100 0
0101 1
0110 1
0111 1
1000 1
1001 1
1010 1
1011 1
1100 1
1101 1
1110 1
1111 1
>>> expr2truthtable(f2m)
inputs: x[2] x[1] x[0]
000 0
001 0
010 0
011 1
100 1
101 1
110 1
111 1








Espresso Script

Starting with version 0.20, PyEDA includes a script that implements some
of the functionality of the original Espresso command-line utility.

$ espresso -h
usage: espresso [-h] [-e {fast,ness,nirr,nunwrap,onset,strong}] [--fast]
                [--no-ess] [--no-irr] [--no-unwrap] [--onset] [--strong]
                [file]

Minimize a PLA file

positional arguments:
  file                  PLA file (default: stdin)

optional arguments:
  -h, --help            show this help message and exit
  ...





Here is an example of a simple PLA file that is part of the BOOM benchmark suite.
This function has 50 input variables, 5 output variables, and 50 product terms.
Also, 20% of the literals in the implicants are “don’t care”.

$ cat extension/espresso/test/bb_all/bb_50x5x50_20%_0.pla
.i 50
.o 5
.p 50
.ilb x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 x38 x39 x40 x41 x42 x43 x44 x45 x46 x47 x48 x49
.ob y0 y1 y2 y3 y4
.type fr
001011110--00--0100-0010-10-01010101-010--01011111 00011
0-1-1010-01000100--11011-0110001010-10001010-1-1-0 00100
0111010111110110110-100101101010010001111----1-011 10000
01-0010011-001110--000-011--11--1-0100-01101--1000 00001
001011010-1100000001101--10100-010-001100111110010 00101
011-01010-10-1101110-00-1-11001-1-0000--1-1-00-000 00011
0000000011001-0000010-000110-11011001110--100-1-10 00110
00-111111-00100-100111101000-11101100--0-1110-1-10 10001
-1-10011011000011--00-0011011101-1-1101110--1-001- 11100
-0101100-110111-010-01110-0110011-1-1---1001011111 11000
0-111011101000-11-1--10-0001001101000010-11-111101 11001
11000000-1-01--1111-10111111----0010--1-0--1--0111 01010
00-101000011-1-10101101-1101011-0101000-111111011- 11011
1-00-11111-0010-0---000--0110-0010111--000001-0001 11011
-1-1100100001--00--00001000-1-1--100-0111-00011011 11000
0-0000-010-11-1100-101-00101000111-01--11-0010-011 10000
11-1-0001100101-10-0-1-0-1100010101111-1111000-101 11101
10-01--10011111-11011-001001101100110010010-000-0- 01110
1-11010-00011101-010--101010--0111010101-11-101--1 00111
11--111-111-111-000-11000-101-1-011--1000--1111100 01111
0---0-10011101000--11001-1100-10-000011-0100011100 11110
-01--11-010-1001011-0-101000100000--10111---100-1- 11101
11-1-000010--00110-011101--11-10-1-0000110100-1101 11010
-0111110-100-11-110001001100001-100011110001001100 11110
11--00100-01--00-10---11-0001-00011101001011-01110 00000
1--010011-001-0000--0-11-001010001110-00-01-110-11 01101
100011--0101--1-1-0-101--001-0-101-1-1011101011-01 00111
0--0-01-10101-11-0100111111000-1-1011100-111-01111 10100
0-0110010--11101-0---1001-1001--001-110000---1011- 00100
0-1000-0--00000010-0--1011-1001011-01-00-011001111 10000
111-1101111-01001101-111--00-01011111000001-001001 11100
0--100111-1010001-0111-0-000--00-0111101111-101100 11000
00001101100-001001-1010010010011-1101-110-10-110-1 01011
0101-01-0100101000010111--0011-0011011110-111100-0 00100
000-1--100-00-1001-10-000000100-001100-10101010001 10000
10001001-0001011-1-1-0-00101110-10100---0010001--- 10111
01011000000100100000---1--11-0001011111101-01-1011 01111
1--01--00100110001-110-0-00001011---01001000110--- 10010
0-0001--01--11101010100000000010011001000-01100001 00011
0-0100110-00111100-001--11--00-1001-00-0-11-1-0-1- 00100
101-1-100-001001-010111-01--010-1-1011-01101001001 11000
0110-111011--1-010101-011-1-00100110-00-1111000-11 11001
011001011---010011-10-00-11-001000000101101101-0-1 00100
1001111-1-1111-1001-000111010-100--0111110011000-1 10111
1-1010-1-100111110010-101011-1001000111-0000--11-1 11000
-00110001000010000010100010010-0-0-100-1-0111011-1 00101
1110-01100111111-1-1-110-0-110--011--01-11-0000-01 00000
-01010101010-1-1-00-1111010100-1001111110110--0-00 11011
110-10000001--0-0-01001111-0011-0110110100010--111 11111
101-10111000011110000-1001-001-01111-011-0001-0100 00100
.e





After running the input file through the espresso script,
it minimizes the function to 26 implicants with significantly fewer literals.

$ espresso extension/espresso/test/bb_all/bb_50x5x50_20%_0.pla
.i 50
.o 5
.ilb x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 x38 x39 x40 x41 x42 x43 x44 x45 x46 x47 x48 x49
.ob y0 y1 y2 y3 y4
.p 26
----------------------0-----1---0------0---------- 01110
------0-----------------------------1-----1--0--0- 11100
---------------------------1--------1---0------0-- 01011
-------------------------------------11-1--------1 10000
0-------------------------1---------1-1----------- 00110
--------0--------1----------0-------0------------- 00010
-------------0---------0-0-0--------------------1- 10001
--------------0-00------------------0-------1----- 00101
--------------------------0-0---0---------0------- 00011
-----------0----0-------------------------0---0--- 10000
-------------------------1---0---1---------------1 10000
-----------01-----------------------------0---1--1 11000
-------------00------------------------11--------- 11000
----------------------------0-1---------0-0---1--- 11110
--------------------------1----1--0------------1-- 00100
-----1-----------------------------1-1---1-------- 00111
------1---------------0-------1--1---0------------ 11001
------0----0------------------------------1-1-0--- 01000
-1---1--------1----------------------------------0 00001
-----------------1----------------------0-----0-1- 01010
--------------------0--------1---------1------0--- 00100
---------------------------11-------------1-0-1--- 10010
--------------------------1-----0----10----------- 00100
------0------0---------0---------0-----------0---- 00101
-------0----------0---1--1--0---0----------------- 11011
--------------------0-----------0-----------1-0--- 00100
.e
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Using PyEDA to Solve Sudoku

According to Peter Norvig in his
fantastic essay [http://norvig.com/sudoku.html]
on solving every Sudoku puzzle using Python,
security expert
Ben Laurie [http://en.wikipedia.org/wiki/Ben_Laurie]
once stated that “Sudoku is a denial of service attack on human intellect”.
I can personally attest to that.

In this example,
I will explain how to use PyEDA’s Boolean expressions and
satisfiability engine to create a general-purpose Sudoku solver.

First, let’s get a few ground rules straight:


	There are lots of Sudoku solvers on the Internet;
I make no claims of novelty.

	PyEDA is pretty fast, but unlikely to win any speed competitions.

	Let’s face it–this is a pretty awesome waste of time.




Getting Started

First, import all the standard symbols from PyEDA.

>>> from pyeda.inter import *





Let’s also define a variable “DIGITS” that makes it easier to access the
Sudoku square values.

>>> DIGITS = "123456789"








Setting Up the Puzzle Grid

A Sudoko puzzle is a 9x9 grid.
Each square in the grid may contain any number in the digits 1-9.
The following example grid was generated by
Web Sudoku [http://www.websudoku.com].


[image: https://dl.dropboxusercontent.com/u/95676525/pyeda/images/sudoku_example1.png]
Example Sudoku Grid



To represent the state of the grid coordinate,
create a 3-dimensional variable, X.

>>> X = exprvars('x', (1, 10), (1, 10), (1, 10))





exprvars is a versatile function for returning arrays of arbitrary dimension.
The first argument is the variable name.
Each additional argument adds an additional dimension with a non-negative start
and stop index.
If you provide only a number instead of a two-tuple,
the start index is zero.
For example, we could also have used exprvars('x', 9, 9, 9),
but that would have given X[0:9, 0:9, 0:9] instead of X[1:10, 1:10, 1:10].

The variable X is a 9x9x9 bit vector,
indexed as X[row, column, value].
So for the Example Sudoku Grid, since row 5, column 3 has value ‘8’, we would
represent this by setting X[5,3,8] = 1.




Constraints

Now that we have a variable X[r,c,v] to represent the state of the
Sudoku board,
we need to program the constraints.
We will use the familiar Boolean And function,
and the OneHot function.
In case you are not familiar with the OneHot function,
we will describe it here.


One Hot Function

Let’s say I have three variables, a, b, and c.

>>> a, b, c = map(exprvar, 'abc')





I want to write a Boolean formula that guarantees that only one of them is
true at any given moment.

>>> f = OneHot(a, b, c)





You can use PyEDA to automatically produce the truth table.

>>> expr2truthtable(f)
inputs: c b a
000 0
001 1
010 1
011 0
100 1
101 0
110 0
111 0





By default, the OneHot function returns a formula in conjunctive normal
(product-of-sums) form.
Roughly translated, this formula says that “no two variables can both be true,
and at least one must be true”.

>>> f
And(Or(~a, ~b), Or(~a, ~c), Or(~b, ~c), Or(a, b, c))





In disjunctive normal (sum-of-products) form, the function looks like this:

>>> f.to_dnf()
Or(And(~a, ~b, c), And(~a, b, ~c), And(a, ~b, ~c))








Value Constraints

You probably already noticed that if the square at (5, 3) has value ‘8’,
it is not allowed to have any other value.
That is, if X[5,3,8] = 1,
then X[5,3,1:10] == [0, 0, 0, 0, 0, 0, 0, 1, 0].

We need to write a constraint formula that says “every square on the board
can assume only one value.”
With PyEDA, you can write this formula as follows:

>>> V = And(*[
...         And(*[
...             OneHot(*[ X[r, c, v]
...                 for v in range(1, 10) ])
...             for c in range(1, 10) ])
...         for r in range(1, 10) ])








Row and Column Constraints

Next, we need to write formulas that say “every square in each row is
unique”,
and “every square in each column is unique”, respectively.

>>> R = And(*[
...         And(*[
...             OneHot(*[ X[r, c, v]
...                 for c in range(1, 10) ])
...             for v in range(1, 10) ])
...         for r in range(1, 10) ])

>>> C = And(*[
...         And(*[
...             OneHot(*[ X[r, c, v]
...                 for r in range(1, 10) ])
...             for v in range(1, 10) ])
...         for c in range(1, 10) ])








Box Constraints

The box constraints are a little tricker.
We need a formula that says “every square in a box is unique”.
The key to understanding how to write this formula is to think of the grid as
consisting of 3x3 boxes.
Now instead of iterating over the nine squares in a row or column,
we will iterate over the 3 rows and 3 columns of the 3x3 boxes.

>>> B = And(*[
...         And(*[
...             OneHot(*[ X[3*br+r, 3*bc+c, v]
...                 for r in range(1, 4) for c in range(1, 4) ])
...             for v in range(1, 10) ])
...         for br in range(3) for bc in range(3) ])








Putting It All Together

Now that we have the value, row, column, and box constraints,
we need to combine them all into a single formula.
We will use the And function to join the constraints,
because all constraints must be true for the puzzle to be solved.

>>> S = And(V, R, C, B)
>>> len(S.args)
10530





As you can see, the constraints formula is quite large.






Preparing the Input

We now have the generic constraints for the rules of Sudoku,
but when you sit down to solve a puzzle,
you are always given a set of known values.
These are the inputs,
and they will further constrain the solution.

Here is a function to parse an input string,
and produce the input constraints.
Any character in the set 1-9 will be taken as an assignment,
the values ‘0’ and ‘.’ (period) will be taken as an unknown,
and all other characters will be ignored.
This function also returns a CNF data type.

>>> def parse_grid(grid):
...     chars = [c for c in grid if c in DIGITS or c in "0."]
...     assert len(chars) == 9 ** 2
...     return And(*[ X[i // 9 + 1, i % 9 + 1, int(c)]
...                   for i, c in enumerate(chars) if c in DIGITS ])





The example grid above can be written like this:

>>> grid = ( ".73|...|8.."
...          "..4|13.|.5."
...          ".85|..6|31."
...          "---+---+---"
...          "5..|.9.|.3."
...          "..8|.1.|5.."
...          ".1.|.6.|..7"
...          "---+---+---"
...          ".51|6..|28."
...          ".4.|.52|9.."
...          "..2|...|64." )








Display Methods

To display the solution, we will need some methods.
The PyEDA SAT solver returns a dictionary that represents a “point” in an
N-dimensional Boolean space.
That is,
it maps N Boolean variables (in our case 729) onto their values in {0, 1}.

>>> def get_val(point, r, c):
...     for v in range(1, 10):
...         if point[X[r, c, v]]:
...             return DIGITS[v-1]
...     return "X"

>>> def display(point):
...     chars = list()
...     for r in range(1, 10):
...         for c in range(1, 10):
...             if c in (4, 7):
...                 chars.append("|")
...             chars.append(get_val(point, r, c))
...         if r != 9:
...             chars.append("\n")
...             if r in (3, 6):
...                 chars.append("---+---+---\n")
...     print("".join(chars))








Finding the Solution

Without further ado,
let’s use the PicoSAT [http://fmv.jku.at/picosat] fast SAT solver to crunch the numbers.

>>> def solve(grid):
...     I = parse_grid(grid)
...     cnf = I & S
...     return cnf.satisfy_one()

>>> def solve(grid):
...     with parse_grid(grid):
...         return S.satisfy_one()





Here is the solution to the Example Sudoku Grid:

>>> display(solve(grid))
173|529|864
694|138|752
285|476|319
---+---+---
567|294|138
428|713|596
319|865|427
---+---+---
951|647|283
846|352|971
732|981|645





That example was actually a pretty easy puzzle. Let’s see how the Sudoku
solver handles a few harder puzzles.

>>> grid = ( "6..|3.2|..."
...          ".5.|...|.1."
...          "...|...|..."
...          "---+---+---"
...          "7.2|6..|..."
...          "...|...|.54"
...          "3..|...|..."
...          "---+---+---"
...          ".8.|15.|..."
...          "...|.4.|2.."
...          "...|...|7.." )

>>> display(solve(grid))
614|382|579
953|764|812
827|591|436
---+---+---
742|635|198
168|279|354
395|418|627
---+---+---
286|157|943
579|843|261
431|926|785

>>> grid = ( "38.|6..|..."
...          "..9|...|..."
...          ".2.|.3.|51."
...          "---+---+---"
...          "...|..5|..."
...          ".3.|.1.|.6."
...          "...|4..|..."
...          "---+---+---"
...          ".17|.5.|.8."
...          "...|...|9.."
...          "...|..7|.32" )

>>> display(solve(grid))
385|621|497
179|584|326
426|739|518
---+---+---
762|395|841
534|812|769
891|476|253
---+---+---
917|253|684
243|168|975
658|947|132
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All Solutions To The Eight Queens Puzzle

The eight queens puzzle is the problem of placing eight chess queens on an
8x8 chessboard so that no two queens attack each other.
It is a classic demonstration of finding the solutions to a constraint problem.

In this essay we will use the PyEDA SAT solver to find all solutions to the eight queens puzzle.


Getting Started

First, import all the standard symbols from PyEDA.

>>> from pyeda.inter import *








Setting Up the Chess Board

A chess board is an 8x8 grid.
Each square on the grid either has a queen on it, or doesn’t.
Therefore, we can represent the board using a two-dimensional bit vector, X.

>>> X = exprvars('x', 8, 8)








Constraints


Row and Column Constraints

Rather than start with the constraint that \(\sum X_{i,j} = 8\),
we will instead start with a simplifying observation.
In order to place eight queens on the board,
since there are exactly eight rows and eight columns on the board itself,
it is obvious that exactly one queen must be placed on each row,
and each column.

First, we write a constraint that says
“exactly one queen must be placed on each row”.

>>> R = And(*[OneHot(*[X[r,c] for c in range(8)]) for r in range(8)])





Next, we write a constraint that says
“exactly one queen must be placed on each column”.

>>> C = And(*[OneHot(*[X[r,c] for r in range(8)]) for c in range(8)])








Diagonal Constraints

Diagonal constraints are easy to visualize, but slightly trickier to specify mathematically.
We will break down the diagonal constraints into two separate sets:


	left-to-right

	right-to-left



In both cases, the diagonal is always oriented “bottom-to-top”.

In both cases, we need to write a constraint that says
“at most one queen can be located on each diagonal”.

>>> starts = [(i, 0) for i in range(8-2, 0, -1)] + [(0, i) for i in range(8-1)]
>>> lrdiags = []
>>> for r, c in starts:
...     lrdiags.append([])
...     ri, ci = r, c
...     while ri < 8 and ci < 8:
...         lrdiags[-1].append((ri, ci))
...         ri += 1
...         ci += 1
...
>>> DLR = And(*[OneHot0(*[X[r,c] for r, c in diag]) for diag in lrdiags])





>>> starts = [(i, 8-1) for i in range(8-2, -1, -1)] + [(0, i) for i in range(8-2, 0, -1)]
>>> rldiags = []
>>> for r, c in starts:
...     rldiags.append([])
...     ri, ci = r, c
...     while ri < 8 and ci >= 0:
...         rldiags[-1].append((ri, ci))
...         ri += 1
...         ci -= 1
...
>>> DRL = And(*[OneHot0(*[X[r,c] for r, c in diag]) for diag in rldiags])








Putting It All Together

Now that we have constraints for rows, columns, and diagonals,
we have successfully defined all rules for solving the puzzle.
Put them all together using the And function,
because all constraints must simultaneously be valid.

>>> S = R & C & DLR & DRL





Verify the formula is in CNF form, and show how large it is:

>>> S.is_cnf()
True
>>> len(S.args)
744










Display Method

For convenience,
let’s define a function display to conveniently convert a solution point to
ASCII:

>>> def display(point):
...     chars = list()
...     for r in range(8):
...         for c in range(8):
...             if point[X[r,c]]:
...                 chars.append("Q")
...             else:
...                 chars.append(".")
...         if r != 7:
...             chars.append("\n")
...     print("".join(chars))








Find a Single Solution

Find a single solution to the puzzle using the satisfy_one method:

>>> display(S.satisfy_one())

.......Q
...Q....
Q.......
..Q.....
.....Q..
.Q......
......Q.
....Q...








Find All Solutions

Part of the challenge of the eight queens puzzle is to not just find a
single solution,
but find all solutions.
Use the satisfy_all method to iterate through all solutions:

>>> for i, soln in enumerate(S.satisfy_all()):
...     print("Solution", i+1, end="\n\n")
...     display(soln)
...     print("")

Solution 1

.......Q
...Q....
Q.......
..Q.....
.....Q..
.Q......
......Q.
....Q...

...





It is easy to verify that there are exactly 92 distinct solutions to the puzzle:

>>> S.satisfy_count()
92
>>> len(list(S.satisfy_all()))
92
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Release Notes


Version 0.22

A couple features, and some good bug-fixes in this release.

Fixed Issue 80 [https://github.com/cjdrake/pyeda/issues/80].
Apparently, I forgot to implement the right-side version of XOR operator: 0 ^ x.

Fixed Issue 81 [https://github.com/cjdrake/pyeda/issues/81].
I continue finding bugs with degenerate forms.
This particular one comes up when you try to do something similar to
Or(Or(a, b)).
The __new__ method was implemented incorrectly,
so I moved the Or(a) = a (and similar) rules to the simplify method.

To match the notation used by Univ of Illinois VLSI class,
I changed BDD low/high nodes to “lo”, and “hi”.

Got rid of the “minus” operator, a - b.
This was previously implemented as a | ~b,
but I don’t think it has merit anymore.

The farray type now uses the + operator for concatenation,
and * for repetition.
These are very important features in SystemVerilog.
See Issue 77 [https://github.com/cjdrake/pyeda/issues/77] for details.

Implemented the farray.__setitem__ method.
It is very useful to instantiate an farray using exprzeros,
and then programmatically assign indices one-by-one.
See Issue 78 [https://github.com/cjdrake/pyeda/issues/78] for details.

To demonstrate some of the fancy, new farray features,
I added the AES algorithm to the logic package.
It manages to complete all the logic assignments,
but I haven’t been able to test its correctness yet,
because it explodes the memory on my machine.
At a bare minimum, it will be a nice test case for performance optimizations
necessary to handle large designs.




Version 0.21

Important bug fix! Issue 75 [https://github.com/cjdrake/pyeda/issues/75].
Harnesser [https://github.com/Harnesser] pointed out that Espresso was
returning some goofy results for
degenerate inputs (a literal or AND(lit, lit, ...)).

The major new feature in this release is the farray mult-dimensional
array (MDA) data type.
The implementation of BitVector was a kludge –
it was built around the Expression function type,
and didn’t support all the fancy things you could do with numpy slices.
All usage of the old Slicer and BitVector types has been eliminated,
and replaced by farray.
This includes the bitvec, uint2bv, and int2bv functions,
and the contents of the pyeda.logic package (addition, Sudoku, etc).

Both uint2bv and int2bv are deprecated,
superceded by uint2exprs and int2exprs (or uint2bdds, etc).
So far I haven’t deprecated bitvec,
because it’s a very commonly-used function.

See Issue 68 [https://github.com/cjdrake/pyeda/issues/68] for some details
on the farray type.
My favorite part is the ability to multiplex an farray using Python’s
slice syntax:

>>> xs = exprvars('x', 4)
>>> sel = exprvars('s', 2)
>>> xs[sel]
Or(And(~s[0], ~s[1], x[0]), And(s[0], ~s[1], x[1]), And(~s[0], s[1], x[2]), And(s[0], s[1], x[3]))





This even works with MDAs:

>>> xs = exprvars('x', 4, 4)
>>> sel = exprvars('s', 2)
>>> xs[0,sel]
Or(And(~s[0], ~s[1], x[0][0]), And(s[0], ~s[1], x[0][1]), And(~s[0], s[1], x[0][2]), And(s[0], s[1], x[0][3]))





Added AchillesHeel function to expression parsing engine.

Eliminated the + and * operators for Boolean OR, AND, respectively.
This is annoying, but I need these operators for
Issue 77 [https://github.com/cjdrake/pyeda/issues/77].
Sorry for any trouble, but that’s what major version zero is for :).




Version 0.20

Probably the most useful feature in this release is the espresso script:

$ espresso -h
usage: espresso [-h] [-e {fast,ness,nirr,nunwrap,onset,strong}] [--fast]
                [--no-ess] [--no-irr] [--no-unwrap] [--onset] [--strong]
                [file]

Minimize a PLA file

positional arguments:
  file                  PLA file (default: stdin)

optional arguments:
  ...





This script implements a subset of the functionality of the original
Espresso command-line program.
It uses the new parse_pla function in the pyeda.parsing.pla module
to parse common PLA files.
Note that the script only intends to implement basic truth-table functionality
at the moment.
It doesn’t support multiple-valued variables,
and various other Espresso built-in features.

Added Espresso get_config and set_config functions,
to manipulate global configuration

New Bitvector methods:


	unor - unary nor

	unand - unary nand

	uxnor - unary xnor



Made BitVector an immutable type.
As a result, dropped item assignment X[0] = a,
zero extension X.zext(4), sign extension X.sext(4),
and append method.

The BitVector type now supports more overloaded operators:


	X + Y concatenate two bit vectors

	X << n return the bit vector left-shifted by n places

	X >> n return the bit vector right-shifted by n places



Both left shift and right shift are simple shifts–they use the default
“carry-in” of zero.

Got rid of boolify utility function.
It had been replaced over time by more sophisticated techniques.

There is a new Mux factory function,
for multiplexing arbitrarily many input functions.

Update to PicoSAT 959.
Check the homepage [http://fmv.jku.at/picosat] for details,
but it looks like the only changes were related to header file documentation.

Added a neat capability to specify assumptions for SAT-solving using a with
statement.
It supports both literal and product-term forms:

>>> f = Xor(a, b, c)
>>> with a, ~b:
...     print(f.satisfy_one())
{a: 1, b: 0, c: 0}
>>> with a & ~b:
...     print(f.satisfy_one())
{a: 1, b: 0, c: 0}





At the moment, this only works for the satisfy_one method,
because it is so handy and intuitive.




Version 0.19


Release 0.19.3

Enhanced error handling in the Espresso C extension.




Release 0.19.2

Added the espresso_tts function,
which allows you to run Espresso on one or more TruthTable instances.




Release 0.19.1

Fixed a bone-headed mistake: leaving espresso.h out of the source
distribution.
One of these days I will remember to test the source distribution for all the
necessary files before releasing it.




Release 0.19.0

This is a very exciting release!
After much hard work, PyEDA now has a C extension to the famous Espresso logic
minimization software from Berkeley!
See the new chapter on two-level logic minimization for usage information.

Also, after some feedback from users, it became increasingly obvious that
using the -+* operators for NOT, OR, AND was a limitation.
Now, just like Sympy, PyEDA uses the ~|&^ operators for symbolic algebra.
For convenience, the legacy operators will issue deprecation warnings for now.
In some upcoming release, they will no longer work.

After other feedback from users, I changed the way Expression string
representation works.
Now, the __str__ method uses Or, And, etc, instead of ascii
characters.
The idea is that the string representation now returns valid Python that can
be parsed by the expr function (or the Python interpreter).
To provide support for fancy formatting in IPython notebook,
I added the new to_unicode and to_latex methods.
These methods also return fancy string representations.

For consistency, the uint2vec and int2vec functions have been renamed
to uint2bv and int2bv, respectively.

Since is_pos_unate, is_neg_unate, and is_binate didn’t seem like
fundamental operations,
I remove them from the Function base class.






Version 0.18


Release 0.18.1

Three minor tweaks in this release:


	expr/bdd to_dot methods now return undirected graphs.

	Added AchillesHeel factory function to expr.

	Fixed a few obscure bugs with simplification of Implies and ITE.






Release 0.18.0

New stuff in this release:


	Unified the Expression and Normalform expression types,
getting rid of the need for the nfexpr module.

	Added to_dot methods to both Expression and BinaryDecisionDiagram
data types.



Mostly incremental changes this time around.
My apologies to anybody who was using the nfexpr module.
Lately, Expression has gotten quite fast, especially with the addition
of the PicoSAT C extension.
The normal form data type as set(frozenset(int)) was not a proper
implementation of the Function class,
so finally did away with it in favor of the new “encoded” representation that
matches the Dimacs CNF convention of mapping an index 1..N to each variable,
and having the negative index correspond to the complement.
So far this is only useful for CNF SAT-solving,
but may also come in handy for any future, fast operations on 2-level covers.

Also, somewhat awesome is the addition of the to_dot methods.
I was playing around with IPython extensions,
and eventually hacked up a neat solution for drawing BDDs into the notebook.
The magic functions are published in my
ipython-magic repo [https://github.com/cjdrake/ipython-magic].
See the
usage notes [https://github.com/ipython/ipython/wiki/Extensions-Index#graphviz-extensions].
Using subprocess is probably not the best way to interface with Graphviz,
but it works well enough without any dependencies.






Version 0.17


Release 0.17.1

Got rid of the assumptions parameter from boolalg.picosat.satisfy_all
function, because it had no effect.
Read through picosat.h to figure out what happened,
and you need to re-apply assumptions for every call to picosat_sat.
For now, the usage model seems a little dubious, so just got rid of it.




Release 0.17.0

New stuff in this release:


	Added assumptions=None parameter to PicoSAT satisfy_one and
satisfy_all functions.
This produces a very nice speedup in some situations.

	Got rid of extraneous picosat.py Python wrapper module.
Now the PicoSAT Python interface is implemented by picosatmodule.c.

	Updated Nor/Nand operators to secondary status.
That is, they now can be natively represented by symbolic expressions.

	Added a Brent-Kung adder to logic.addition module

	Lots of other miscellaneous cleanup and better error handling








Version 0.16


Release 0.16.3

Fixed bug: absorption algorithm not returning a fully simplified expression.




Release 0.16.2

Significantly enhance the performance of the absorption algorithm




Release 0.16.1

Fixed bug: PicoSAT module compilation busted on Windows




Release 0.16.0

New stuff in this release:


	Added Expression complete_sum method,
to generate a normal form expression that contains all prime implicants.

	Unicode expression symbols, because it’s awesome

	Added new Expression ForEach, Exists factory functions.

	Changed frozenset implementation of OrAnd and EqualBase arguments
back to tuple.
The simplification aspects had an unfortunate performance penalty.
Use absorb to get rid of duplicate terms in DNF/CNF forms.

	Added flatten=False/True to Expression to_dnf, to_cdnf, to_cnf, to_ccnf methods.
Often, flatten=False is faster at reducing to a normal form.

	Simplified absorb algorithm using Python sets.

	Expression added a new splitvar property,
which implements a common heuristic to find a good splitting variable.








Version 0.15


Release 0.15.1


	Thanks to Christoph Gohlke [http://www.lfd.uci.edu/~gohlke],
added build support for Windows platforms.






Release 0.15.0

This is probably the most exciting release of PyEDA yet!
Integration of the popular PicoSAT [http://fmv.jku.at/picosat/]
fast C SAT solver makes PyEDA suitable for industrial-strength applications.
Unfortunately, I have no idea how to make this work on Windows yet.

Here are the full release notes:


	Drop support for Python 2.7. Will only support Python 3.2+ going forward.

	Integrate PicoSAT [http://fmv.jku.at/picosat/],
a compact SAT solver written in C.

	Added lots of new capabilities to Boolean expression parsing:
	s ? d1 : d0 (ITE), p => q (Implies),
and p <=> q (Equal) symbolic operators.

	Full complement of explicit form Boolean operators:
Or, And, Xor, Xnor, Equal, Unequal,
Nor, Nand, OneHot0, OneHot, Majority,
ITE, Implies, Not

	The expr function now simplifies by default,
and has simplify=True, and factor=False parameters.





	New Unequal expression operator.

	New Majority high-order expression operator.

	OneHot0, OneHot, and Majority all have both disjunctive
(conj=False) and conjunctive (conj=True) forms.

	Add new Expression.to_ast method.
This might replace the expr2dimacssat function in the future,

	Fixed bug: Xor.factor(conj=True) returns non-equivalent expression.

	Changed the meaning of conj parameter in Expression.factor method.
Now it is only used by the top-level, and not passed recursively.

	Normal form expression no longer inherit from Function.
They didn’t implement the full interface, so this just made sense.

	Replaced pyeda.expr.expr2dimacscnf with a new
pyeda.expr.DimacsCNF class.
This might be unified with normal form expressions in the future.








Version 0.14


Release 0.14.2

Fixed Issue #42 [https://github.com/cjdrake/pyeda/issues/42].

There was a bug in the implementation of OrAnd,
due to the new usage of a frozenset to represent the argument container.

With 0.14.1, you could get this:

>>> And('a', 'b', 'c') == Or('a', 'b', 'c')
True





Now:

>>> And('a', 'b', 'c') == Or('a', 'b', 'c')
False





The == operator is only used by PyEDA for hashing,
and is not overloaded by Expression.
Therefore, this could potentially cause some serious issues with Or/And
expressions that prune arguments incorrectly.




Release 0.14.1

Fixed Issue #41 [https://github.com/cjdrake/pyeda/issues/41].
Basically, the package metadata in the 0.14.0 release was incomplete,
so the source distribution only contained a few modules. Whoops.




Release 0.14.0

This release reorganizes the PyEDA source code around quite a bit,
and introduces some awesome new parsing utilities.

Probably the most important new feature is the addition of the
pyeda.boolalg.expr.expr function.
This function takes int or str as an input.
If the input is a str instance, the function parses the input string,
and returns an Expression instance.
This makes it easy to form symbolic expression without even having to declare
variables ahead of time:

>>> from pyeda.boolalg.expr import expr
>>> f = expr("-a * b + -b * c")
>>> g = expr("(-x[0] + x[1]) * (-x[1] + x[2])")





The return value of expr function is not simplified by default.
This allows you to represent arbitrary expressions, for example:

>>> h = expr("a * 0")
>>> h
0 * a
>>> h.simplify()
0






	Reorganized source code:
	Moved all Boolean algebra (functions, vector functions) into a new package,
pyeda.boolalg.

	Split arithmetic into addition and gray_code modules.

	Moved all logic functions (addition, gray code) into a new package,
pyeda.logic.

	Created new Sudoku module under pyeda.logic.





	Awesome new regex-based lexical analysis class, pyeda.parsing.RegexLexer.

	Reorganized the DIMACS parsing code:
	Refactored parsing code to use RegexLexer.

	Parsing functions now return an abstract syntax tree,
to be used by pyeda.boolalg.ast2expr function.

	Changed dimacs.load_cnf to pyeda.parsing.dimacs.parse_cnf.

	Changed dimacs.load_sat to pyeda.parsing.dimacs.parse_sat.

	Changed dimacs.dump_cnf to pyeda.boolalg.expr2dimacscnf.

	Changed dimacs.dump_sat to pyeda.boolalg.expr2dimacssat.





	Changed constructors for Variable factories.
Unified namespace as just a part of the name.

	Changed interactive usage. Originally was from pyeda import *.
Now use from pyeda.inter import *.

	Some more miscellaneous refactoring on logic expressions:
	Fixed weirdness with Expression.simplified implementation.

	Added new private class _ArgumentContainer,
which is now the parent of ExprOrAnd, ExprExclusive, ExprEqual,
ExprImplies, ExprITE.

	Changed ExprOrAnd argument container to a frozenset,
which has several nice properties for simplification of AND/OR expressions.





	Got rid of pyeda.alphas module.

	Preliminary support for logic expression complete_sum method,
for generating the set of prime implicants.

	Use a “computed table” cache in BDD restrict method.

	Use weak references to help with BDD garbage collection.

	Replace distutils with setuptools.

	Preliminary support for Tseitin encoding of logic expressions.

	Rename pyeda.common to pyeda.util.








Version 0.13

Wow, this release took a huge leap from version 0.12.
We’re probably not ready to declare a “1.0”,
but it is definitely time to take a step back from API development,
and start focusing on producing useful documentation.

This is not a complete list of changes, but here are the highlights.


	Binary Decision Diagrams!
The recursive algorithms used to implement this datatype are awesome.

	Unification of all Variable subclasses by using separate factory functions
(exprvar, ttvar, bddvar), but a common integer “uniqid”.

	New “untyped point” is an immutable 2-tuple of variable uniqids assigned
to zero and one.
Also a new urestrict method to go along with it.
Most important algorithms now use untyped points internally,
because the set operations are very elegant and avoid dealing with which type
of variable you are using.

	Changed the Variable’s namespace argument to a tuple of strings.

	Restricting a function to a 0/1 state no longer returns an integer.
Now every function representation has its own zero/one representations.

	Now using the fantastic Logilab PyLint program!

	Truth tables now use the awesome stdlib array.array for internal
representation.

	Changed the names of almost all Expression sublasses to ExprSomething.
the Or/And/Not operators are now functions.
This simplified lots of crummy __new__ magic.

	Expression instances to not automatically simplify,
but they do if you use Or/And/Not/etc with default **kwargs.

	Got rid of constant and binop modules, of dubious value.

	Added is_zero, is_one, box, and unbox to Function interface.

	Removed reduce, iter_zeros, and iter_ones from Function interface.

	Lots of refactoring of SAT methodology.

	Finally implemented unate methods correctly for Expressions.






Version 0.12


	Lots of work in pyeda.table:
	Now two classes, TruthTable, and PCTable
(for positional-cube format, which allows X outputs).

	Implemented most of the boolfunc.Function API.

	Tables now support -, +, *, and xor operators.





	Using a set container for And/Or/Xor argument simplification results in
about 30% speedup of unit tests.

	Renamed boolfunc.iter_space to boolfunc.iter_points.

	New boolfunc.iter_terms generator.

	Changed dnf=True to conf=False on several methods that give the
option of returnin an expression in conjunctive or disjunctive form.

	Added conj=False argument to all expression factor methods.

	New Function.iter_domain and Function.iter_image iterators.

	Renamed Function.iter_outputs to Function.iter_relation.

	Add pyeda.alphas module for a convenience way to grab all the a, b, c, d,
... variables.

	Xor.factor now returns a flattened form, instead of nested.






Version 0.11


Release 0.11.1


	Fixed bug #16: Function.reduce only implemented by Variable






Release 0.11.0


	In pyeda.dimacs changed parse_cnf method name to load_cnf

	In pyeda.dimacs changed parse_sat method name to load_sat

	In pyeda.dimacs added new method dump_cnf, to convert expressions
to CNF-formatted strings.

	In pyeda.dimacs added new method dump_sat, to convert expressions
to SAT-formatted strings.

	Variables now have a qualname attribute, to allow referencing a variable
either by its local name or its fully-qualified name.

	Function gained a reduce method, to provide a standard interface to
reduce Boolean function implementations to their canonical forms.

	Expressions gained a simplify parameter, to allow constructing
unsimplified expressions.

	Expressions gained an expand method, to implement Shannon expansion.

	New if-then-else (ITE) expression type.

	NormalForm expressions now both support -, +, and * operators.
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"""
Boolean Functions

Interface Functions:
    num2point
    num2upoint
    num2term

    point2upoint
    point2term

    iter_points
    iter_upoints
    iter_terms

    vpoint2point

Interface Classes:
    Variable
    Function
"""

import collections
import functools
import operator
import threading

from pyeda.util import bit_on, cached_property

VARIABLES = dict()


def var(name, index=None):
    """Return a unique Variable instance.

    .. NOTE:: Do NOT call this function directly. It should only be used by
              concrete Variable implementations, eg ExprVariable.
    """
    if type(name) is str:
        names = (name, )
    else:
        names = name
    if index is None:
        indices = tuple()
    elif type(index) is int:
        indices = (index, )
    else:
        indices = index

    # Check input types
    assert type(names) is tuple and len(names) > 0
    assert all(type(name) is str for name in names)
    assert type(indices) is tuple
    assert all(type(index) is int for index in indices)

    try:
        v = VARIABLES[(names, indices)]
    except KeyError:
        v = Variable(names, indices)
        VARIABLES[(names, indices)] = v
    return v

def num2point(num, vs):
    """Convert a number into a point in an N-dimensional space.

    Parameters
    ----------
    num : int
    vs : [Variable]
    """
    return {v: bit_on(num, i) for i, v in enumerate(vs)}

def num2upoint(num, vs):
    """Convert a number into an untyped point in an N-dimensional space.

    Parameters
    ----------
    num : int
    vs : [Variable]
    """
    upoint = [set(), set()]
    for i, v in enumerate(vs):
        upoint[bit_on(num, i)].add(v.uniqid)
    return frozenset(upoint[0]), frozenset(upoint[1])

def num2term(num, fs, conj=False):
    """Convert a number into a min/max term.

    Parameters
    ----------
    num : int
    fs : [Function]
    conj : bool
        conj=False for minterms, conj=True for maxterms

    Examples
    --------

    Table of min/max terms for Boolean space {a, b, c}

    +-----+----------+----------+
    | num |  minterm |  maxterm |
    +=====+==========+==========+
    | 0   | a' b' c' | a  b  c  |
    | 1   | a  b' c' | a' b  c  |
    | 2   | a' b  c' | a  b' c  |
    | 3   | a  b  c' | a' b' c  |
    | 4   | a' b' c  | a  b  c' |
    | 5   | a  b' c  | a' b  c' |
    | 6   | a' b  c  | a  b' c' |
    | 7   | a  b  c  | a' b' c' |
    +-------+----------+----------+
    """
    if conj:
        return tuple(~f if bit_on(num, i) else f for i, f in enumerate(fs))
    else:
        return tuple(f if bit_on(num, i) else ~f for i, f in enumerate(fs))

def point2upoint(point):
    """Convert a point into an untyped point.

    Parameters
    ----------
    point : {Variable: int}
    """
    upoint = [set(), set()]
    for v, val in point.items():
        upoint[val].add(v.uniqid)
    upoint[0] = frozenset(upoint[0])
    upoint[1] = frozenset(upoint[1])
    return tuple(upoint)

def point2term(point, conj=False):
    """Convert a point in an N-dimension space into a min/max term.

    Parameters
    ----------
    point : {Variable: int}
    """
    if conj:
        return tuple(~v if val else v for v, val in point.items())
    else:
        return tuple(v if val else ~v for v, val in point.items())

def iter_points(vs):
    """Iterate through all points in an N-dimensional space.

    Parameters
    ----------
    vs : [Variable]
    """
    for num in range(1 << len(vs)):
        yield num2point(num, vs)

def iter_upoints(vs):
    """Iterate through all untyped points in an N-dimensional space.

    Parameters
    ----------
    vs : [Variable]
    """
    for num in range(1 << len(vs)):
        yield num2upoint(num, vs)

def iter_terms(fs, conj=False):
    """Iterate through all min/max terms in an N-dimensional space.

    Parameters
    ----------
    fs : [Function]
    """
    for num in range(1 << len(fs)):
        yield num2term(num, fs, conj)

def vpoint2point(vpoint):
    """Convert a vector point to a point."""
    point = dict()
    for v, val in vpoint.items():
        point.update(_flatten(v, val))
    return point

def _flatten(v, val):
    """Recursively flatten vectorized var => {0, 1} mappings."""
    if isinstance(v, Variable):
        yield v, int(val)
    else:
        if len(v) != len(val):
            raise ValueError("expected 1:1 mapping from Variable => {0, 1}")
        for _var, _val in zip(v, val):
            yield from _flatten(_var, _val)


_UNIQIDS = dict()
_COUNT = 1

[docs]class Variable(object):
    """
    Abstract base class that defines an interface for a Boolean variable.

    A Boolean variable is a numerical quantity that may assume any value in the
    set B = {0, 1}.

    This implementation includes optional indices, nonnegative integers that
    can be used to construct multi-dimensional bit vectors.
    """
    def __init__(self, names, indices):
        global _UNIQIDS, _COUNT
        try:
            uniqid = _UNIQIDS[(names, indices)]
        except KeyError:
            with threading.Lock():
                uniqid = _COUNT
                _COUNT += 1
                _UNIQIDS[(names, indices)] = uniqid

        self.names = names
        self.indices = indices
        self.uniqid = uniqid

    def __repr__(self):
        return self.__str__()

    def __str__(self):
        suffix = "".join("[{}]".format(idx) for idx in self.indices)
        return self.qualname + suffix

    def __lt__(self, other):
        if self.names == other.names:
            return self.indices < other.indices
        else:
            return self.names < other.names

    @property
[docs]    def name(self):
        """Return the variable name."""
        return self.names[0]


    @property
[docs]    def qualname(self):
        """Return the fully qualified name."""
        return ".".join(reversed(self.names))




[docs]class Function(object):
    """
    Abstract base class that defines an interface for a scalar Boolean function
    of :math:`N` variables.
    """

    # Operators
    def __invert__(self):
        """Boolean negation operator

        +-----------+------------+
        | :math:`f` | :math:`f'` |
        +===========+============+
        |         0 |          1 |
        +-----------+------------+
        |         1 |          0 |
        +-----------+------------+
        """
        raise NotImplementedError()

    def __or__(self, other):
        """Boolean disjunction (sum, OR) operator

        +-----------+-----------+---------------+
        | :math:`f` | :math:`g` | :math:`f + g` |
        +===========+===========+===============+
        |         0 |         0 |             0 |
        +-----------+-----------+---------------+
        |         0 |         1 |             1 |
        +-----------+-----------+---------------+
        |         1 |         0 |             1 |
        +-----------+-----------+---------------+
        |         1 |         1 |             1 |
        +-----------+-----------+---------------+
        """
        raise NotImplementedError()

    def __ror__(self, other):
        return self.__or__(other)

    def __and__(self, other):
        r"""Boolean conjunction (product, AND) operator

        +-----------+-----------+-------------------+
        | :math:`f` | :math:`g` | :math:`f \cdot g` |
        +===========+===========+===================+
        |         0 |         0 |                 0 |
        +-----------+-----------+-------------------+
        |         0 |         1 |                 0 |
        +-----------+-----------+-------------------+
        |         1 |         0 |                 0 |
        +-----------+-----------+-------------------+
        |         1 |         1 |                 1 |
        +-----------+-----------+-------------------+
        """
        raise NotImplementedError()

    def __rand__(self, other):
        return self.__and__(other)

    def __xor__(self, other):
        r"""Boolean exclusive or (XOR) operator

        +-----------+-----------+--------------------+
        | :math:`f` | :math:`g` | :math:`f \oplus g` |
        +===========+===========+====================+
        |         0 |         0 |                  0 |
        +-----------+-----------+--------------------+
        |         0 |         1 |                  1 |
        +-----------+-----------+--------------------+
        |         1 |         0 |                  1 |
        +-----------+-----------+--------------------+
        |         1 |         1 |                  0 |
        +-----------+-----------+--------------------+
        """
        raise NotImplementedError()

    def __rxor__(self, other):
        return self.__xor__(other)

    def __add__(self, other):
        from pyeda.boolalg.bfarray import farray
        if isinstance(other, Function):
            return farray([self] + [other])
        elif isinstance(other, farray):
            return farray([self] + list(other.flat))
        else:
            raise TypeError("expected Function or farray")

    def __radd__(self, other):
        from pyeda.boolalg.bfarray import farray
        if isinstance(other, Function):
            return farray([other] + [self])
        elif isinstance(other, farray):
            return farray(list(other.flat) + [self])
        else:
            raise TypeError("expected Function or farray")

    def __mul__(self, other):
        from pyeda.boolalg.bfarray import farray
        if type(other) is not int:
            raise TypeError("expected multiplier to be an int")
        if other < 0:
            raise ValueError("expected multiplier to be non-negative")
        return farray([self] * other)

    def __rmul__(self, other):
        return self.__mul__(other)

    @property
[docs]    def support(self):
        r"""Return the support set of a function.

        Let :math:`f(x_1, x_2, \dots, x_n)` be a Boolean function of :math:`N`
        variables.

        The unordered set :math:`\{x_1, x_2, \dots, x_n\}` is called the
        *support* of the function.
        """
        raise NotImplementedError()


    @cached_property
[docs]    def usupport(self):
        """Return the untyped support set of a function."""
        return frozenset(v.uniqid for v in self.support)


    @property
[docs]    def inputs(self):
        """Return the support set in name/index order."""
        raise NotImplementedError()


    @property
[docs]    def top(self):
        """Return the first variable in the ordered support set."""
        if self.inputs:
            return self.inputs[0]
        else:
            return None


    @property
[docs]    def degree(self):
        r"""Return the degree of a function.

        A function from :math:`B^{N} \Rightarrow B` is called a Boolean
        function of *degree* :math:`N`.
        """
        return len(self.support)


    @property
[docs]    def cardinality(self):
        r"""Return the cardinality of the relation :math:`B^{N} \Rightarrow B`.

        Always equal to :math:`2^{N}`.
        """
        return 1 << self.degree


[docs]    def iter_domain(self):
        """Iterate through all points in the domain."""
        yield from iter_points(self.inputs)


[docs]    def iter_image(self):
        """Iterate through all elements in the image."""
        for point in iter_points(self.inputs):
            yield self.restrict(point)


[docs]    def iter_relation(self):
        """Iterate through all (point, element) pairs in the relation."""
        for point in iter_points(self.inputs):
            yield (point, self.restrict(point))


[docs]    def restrict(self, point):
        r"""
        Return the Boolean function that results after restricting a subset of
        its input variables to :math:`\{0, 1\}`.

        :math:`f \: | \: x_i = b`
        """
        return self.urestrict(point2upoint(point))


    def urestrict(self, upoint):
        """Implementation of restrict that requires an untyped point."""
        raise NotImplementedError()

[docs]    def vrestrict(self, vpoint):
        """Expand all vectors before applying 'restrict'."""
        return self.restrict(vpoint2point(vpoint))


[docs]    def compose(self, mapping):
        r"""
        Return the Boolean function that results after substituting a subset of
        its input variables for other Boolean functions.

        :math:`f_1 \: | \: x_i = f_2`
        """
        raise NotImplementedError()


[docs]    def satisfy_one(self):
        """
        If this function is satisfiable, return a satisfying input point. A
        tautology *may* return a zero-dimensional point; a contradiction *must*
        return None.
        """
        raise NotImplementedError()


[docs]    def satisfy_all(self):
        """Iterate through all satisfying input points."""
        raise NotImplementedError()


[docs]    def satisfy_count(self):
        """Return the cardinality of the set of all satisfying input points."""
        return sum(1 for _ in self.satisfy_all())


[docs]    def iter_cofactors(self, vs=None):
        r"""Iterate through the cofactors of a function over N variables.

        The *cofactor* of :math:`f(x_1, x_2, \dots, x_i, \dots, x_n)`
        with respect to variable :math:`x_i` is:
        :math:`f_{x_i} = f(x_1, x_2, \dots, 1, \dots, x_n)`

        The *cofactor* of :math:`f(x_1, x_2, \dots, x_i, \dots, x_n)`
        with respect to variable :math:`x_i'` is:
        :math:`f_{x_i'} = f(x_1, x_2, \dots, 0, \dots, x_n)`
        """
        vs = self._expect_vars(vs)
        for upoint in iter_upoints(vs):
            yield self.urestrict(upoint)


[docs]    def cofactors(self, vs=None):
        r"""Return a tuple of the cofactors of a function over N variables.

        The *cofactor* of :math:`f(x_1, x_2, \dots, x_i, \dots, x_n)`
        with respect to variable :math:`x_i` is:
        :math:`f_{x_i} = f(x_1, x_2, \dots, 1, \dots, x_n)`

        The *cofactor* of :math:`f(x_1, x_2, \dots, x_i, \dots, x_n)`
        with respect to variable :math:`x_i'` is:
        :math:`f_{x_i'} = f(x_1, x_2, \dots, 0, \dots, x_n)`
        """
        return tuple(cf for cf in self.iter_cofactors(vs))


[docs]    def smoothing(self, vs=None):
        r"""Return the smoothing of a function over a sequence of N variables.

        The *smoothing* of :math:`f(x_1, x_2, \dots, x_i, \dots, x_n)` with
        respect to variable :math:`x_i` is:
        :math:`S_{x_i}(f) = f_{x_i} + f_{x_i'}`

        This is the same as the existential quantification operator:
        :math:`\exists \{x_1, x_2, \dots\} \: f`
        """
        return functools.reduce(operator.or_, self.iter_cofactors(vs))


[docs]    def consensus(self, vs=None):
        r"""Return the consensus of a function over a sequence of N variables.

        The *consensus* of :math:`f(x_1, x_2, \dots, x_i, \dots, x_n)` with
        respect to variable :math:`x_i` is:
        :math:`C_{x_i}(f) = f_{x_i} \cdot f_{x_i'}`

        This is the same as the universal quantification operator:
        :math:`\forall \{x_1, x_2, \dots\} \: f`
        """
        return functools.reduce(operator.and_, self.iter_cofactors(vs))


[docs]    def derivative(self, vs=None):
        r"""Return the derivative of a function over a sequence of N variables.

        The *derivative* of :math:`f(x_1, x_2, \dots, x_i, \dots, x_n)` with
        respect to variable :math:`x_i` is:
        :math:`\frac{\partial}{\partial x_i} f = f_{x_i} \oplus f_{x_i'}`

        This is also known as the Boolean *difference*.
        """
        return functools.reduce(operator.xor, self.iter_cofactors(vs))


[docs]    def is_zero(self):
        """Return whether this function is zero.

        .. NOTE:: This method will only look for a particular "zero form",
                  and will **NOT** do a full search for a contradiction.
        """
        raise NotImplementedError()


[docs]    def is_one(self):
        """Return whether this function is one.

        .. NOTE:: This method will only look for a particular "one form",
                  and will **NOT** do a full search for a tautology.
        """
        raise NotImplementedError()


    @staticmethod
[docs]    def box(obj):
        """Convert primitive types to a Function."""
        raise NotImplementedError()


[docs]    def unbox(self):
        """Return integer 0 or 1 if possible, otherwise return the Function."""
        if self.is_zero():
            return 0
        elif self.is_one():
            return 1
        else:
            return self


    @staticmethod
    def _expect_vars(vs=None):
        """Verify the input type and return an iterable of Variables."""
        if vs is None:
            return list()
        elif isinstance(vs, Variable):
            return [vs]
        else:
            if (isinstance(vs, collections.Iterable) and
                all(isinstance(v, Variable) for v in vs)):
                return vs
            else:
                raise TypeError("expected iter of Variable")
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