

Welcome to pydanny-event-notes!

I’ve been collecting my notes taken over the years into this one location. My intention is to capture all that I’ve learned or forgotten, share it with others, and compare that with where I am now.

Conferences

	EuroPython 2013

	DjangoCon Europe 2013 (Django Circus)

	Pycon 2013

	LA Migra Hack

	Lean Startup 2012 Simulcast

	PyCon Poland 2012

	Pycon Philippines 2012

	DjangoCon Europe 2012

	Pycon 2012

	Scale 10x

	Mongo LA 2012

	PyCodeConf 2011

	DjangoCon US 2011

	Kiwi Pycon 2011

	Pycon AU 2011

	Django 1.3 Webinar

	Pycon 2011

	Scale 9x

	MongoDB LA 2011

	Django Master Class 2009

	DjangoCon 2010

	Pycon 2010

	DjangoCon US 2009

	Pycon 2009

	Plone Conference 2008

	Pycon 2008

	Plone Conference 2007

Hackathons

	Google Apps Script Hackathon

Meetups

	Women in Engineering

	AngularJS

	SFV Developers

	JS.LA

	Southern California Python Users Group

	PyLadies

	LA Django

	LA Hack Night

Articles

	http://pydanny.blogspot.com/2011/12/story-of-live-noting.html

Credits

	Audrey Roy. She makes this and so much more possible. She is my life.

	Eric Holscher and the http://rtfd.org community.

	Github for DVCS hosting.

	The Django, Python, and the Open Source communities.

Indices and tables

	Index

	Module Index

	Search Page

EuroPython 2013

	venue

	Florence, Italy

	dates

	July 1 - July 7

Note

The first day of the conference we were asked to give a 3-hour tutorial. We put something together in 48 hours, but that means I didn’t get many notes in. Nevertheless, it’s been a great conference. :-)

	Experiences from Teaching Physics with iPython Notebook
	Intro

	Teaching Physics

	What’s good about ipython notebook?

Experiences from Teaching Physics with iPython Notebook

By Anders Lehmann

	Associate Professor, AARHUS UNIVERSITY

	Denmark

	Winner of EuroVision

	Birthplace of Søren Kierkegaard

Intro

	ipython is an awesome tool for teaching

	But could do things better

Teaching Physics

	Physics is considered hard by students

	What is the use?

	ElectroMagnetics is abstract

	What is a field?

	How do semiconductors work?

What’s good about ipython notebook?

	Great tool

	Feels lightweight

	Like MatLab in a browser that starts counting at zero!

Physics extension

	Adds physical quantities

	Adds physical constants

	Enables check if Units match

	Started by: %load_ext physics

How do you make physics interesting?

	Use real life examples demonstrated in ipython notebook

	Be exciting and fun

Experiment

	Introduce ipython as an online calculator

	Show that it can use units

	Extend by adding small functions

	Introduce plotting

DjangoCon Europe 2013 (Django Circus)

	Location: Warsaw, Poland

	URL: http:djangocircus.com

	Other people’s notes:

	http://reinout.vanrees.org/weblog/tags/djangocon.html

	http://foobacca.github.io/foobacca-event-notes/DjangoConEurope2013/index.html

Opening Statements

	Kuba thanked the sponsors and community

	Russell Keith-Magee gave a wonderful eulogy of Malcolm Tredinnick, who passed away on March 17th, 2013.

Django Circus

	Keynotes
	First Keynote: On the Revolutions

	Second Keynote: Why Django Is Awesome

	Circus: process & socket manager
	Typical Django Deployment

	Missing features from supervisord

	Technical choices for Circus

	The Core: psutil

	The Messenger: ZeroMQ

	Circus Architecture

	Recap

	Problem

	WSGI

	Benchmarks

	Upcoming features

	Thanks!

	Processing payments for the paranoid
	Who should be paranoid?

	Mozilla Marketplace

	Steps for purchase

	Vulnerabilities they had to consider

	Tips

	The Imaginative Programmer
	Here we go

	Common Threads

	Proposal

	Battle Plan

	Four types of People who Don’t Really Exist

	Zed’s Imaginative Programming Process

	Examples

	Closing thoughts

	Advanced PostgreSQL in Django
	Database Agnosticism

	What can PostgreSQL do for you

	Where do we sign up?

	Indexes

	Custom Constraints

	Raw SQL

	Tips:

	Getting recommendations out of nothing

	How to combine JavaScript & Django in a smart way
	Basics

	Javascript framework considerations

	How to use Javascript framework with Coffeescript?

	Tools for building JS apps in Django

	Django & APIs for JS apps

	Static files management

	Closing thoughts

	Thread Profiling in Python
	What’s profiling?

	Targeted Profiling

	New Relic targets

	Threads for profiling

	Inquire into what’s going on

	Collate

	Existing Tools

	Summary

	Grand Finale

	Migrating The Future
	Kickstarter

	What’s wrong with South

	New modules

	New migration format

	Dependency Management

	How is it going?

	Resources

	Having Your Pony and Committing It Too
	Not covered

	Thoughts

	Confident vs Bold

	Before you do anything with Django

	Forms of Contribute

	Bug Fixes

	Major Contributions

	Minor Additions

	Risking against everything we are supposed to do

	Russ is talking

	How to make a proposal

	Code

	Review

	Lack of Review

	Review: Part 1 of n

	Fractal Architectures
	Concept

	Backend

	Two Ways for Better Performance

	Devil’s Advocacy

	Thoughts

	Getting past the Django ORM limitations with Postgres
	Public Service Announcements

	Why PostgreSQL?

	Limitations with Django

	What PostgreSQL does that’s cool

	PostgreSQL resources

	The Web of Stuff
	Act I - Little Data

	Act II - Personal Development

	Resources

	Bleed for Speed: Django for Rapid Prototyping
	History Lesson

	24 hour prototyping

	Why Django?

	How to speed up Django development

	Packages to use

	Conclusion

	Growing Open Source Seeds
	Once upon a time…

	Public Source Projects

	On the other hand.. Gittip!

	Shared Investments

	HTTP for Humans

	Dictatorship Projects

	Lessons Learned

	Avoiding Burnout

	Mock your database
	Your database is slow

	Example

	Class Based Views: Untangling the Mess
	Why CBVs?

	What went wrong

	Where to from here?

	Call to Action

	Documentation Ideas for CBVs during the sprints

	Dynamic Models
	How to do it

	Prehistorical Python: Patterns past their prime
	Defaultdict

	Sets

	Conditional Expressions

	Constants and Loops

	String Concatenation

PyWaW

PyWaW is short for the Python Warsaw Meetup Group. Which met a couple days before.

	Django 1.6 and Beyond
	What’s missing?

Keynotes

First Keynote: On the Revolutions

	by Brandon Rhodes

Topic: Nichola Kopernik

	Polish Astronomer

	Lifted the Earth into the heavens, rather than the Earth was at the bottom of the heavens.

	Lived:

Near-Earth environment

	300s BC - Aristotle - spherical Earth

	200s BC - Erathosthenes - radius of Earth

	100s BC - Hipparchus - distance to Moon

Hard to tell how things worked out

	Planets move slowly across the sky

	Retrograde motion

	Didn’t make sense, so Ptolomy came up with a sophisticated way of handling this based off of observations.

	People followed this for thousands of years because it matched empirical evidence.

	It was the lack of evidence against Ptolomy that made the case against Galileo.

Kopernik debated Ptolomy

Kopernik read:

	Galileo

	Kepler’s ellipses

	Newton theories

Bradley in 1725 proved Kopernik

	Stellar aberration

	Speed of light

	Watched the stars move in relation to the Earth’s movement

Note

“It took 1,900 years after the Greeks discovered the distance to the moon for us to determine the distance to a star.” – Brandon Rhodes

Why did Kopernik debate all the physical evidence for the Earth-centric universe?

	Beauty

	Wanted better math

	Made the code pretty

Note

“Kopernik made the most awesome code refactor in history.” – Brandon Rhodes

Kopernik’s model of the solar system made it clear that the Sun was the center of the solar system instead of yet another object.

TODO - get Brandon’s code models for the Ptolomic and Kopernik solar system models.

Copernican Refactor

Brandon’s new term for any refactor that brings things to the center.

Example: Gadgets that combine automobile cigarette lighters with a USB connector to put power into mobile devices.

	Clean Architecture (http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html)

	Docopt (https://pypi.python.org/pypi/docopt)

	Django (compared to Python CGI)

Closing

If your code is driving you crazy, think like Kopernik and turn the world upside down.

Second Keynote: Why Django Is Awesome

	by Daniel Greenfeld aka “Pydanny”

Background

	Principal at Cartwheel Web

	Co-author of Two Scoops of Django (https://django.2scoops.org)

	Fiance of Audrey Roy :)

Why Django is Awesome

Django Is Everywhere

NASA, PBS, Instagram, etc.

Django Lets Us Use Python

Python is awesome!

	Python has Zen

	Python has a style guide

	And indentation and such

Django Has Awesome APIs

Requests is known for having an elegant API. Look at sample code from using the Django test client. It’s practically the same code!

	Example of models and model methods

API conventions encourage clean design:

	Make it easy to separate content from presentation

	Helps us get things done

Django Views are Functions

Function views are very simple. Request -> Response

Even with class-based views, you have View.as_view() which is basically the same thing.

Django Has Awesome Features

	The admin is what we’re known for. Aka “How to sell Django 101”.

	Shortest admin module possible in 3 lines.

	Don’t hack the admin to force it to bend to NoSQL. Write separate code

	Pydanny will be sprinting on django-admin2

Django’s Full Stack Is Awesome

	Dominates hackathons because you have everything in one place

	Building companies is easy with stock Django/Python. Even if you don’t understand the larger Django ecosystem, you can get amazing things done with it.

Django Is Part of an Ecosystem

	30,000 packages on PyPI

	1,750 packages on https://www.djangopackages.com/

Django Sets the Bar for Documentation

	In the Python world, no one says “just read the code” anymore.

	Largely because of Django

Django’s Community is the Best

	Humble and listens to criticism

	The more you help people in the community, the more the community helps you. Case study: book had over 125 contributors. We gave free copies and asked the community to do nice things in return. Huge response: readers volunteered their time to write Django projects for churches, schools, other good deeds around the world.

Call To Action

Be awesome. “I want us to change the world.” Use your knowledge of Django to help people and do good things.

Circus: process & socket manager

	By Tarek Ziade

	Works for Mozilla

	

Circus is a process manager we developped at Mozilla while working on high scalability, we wanted to have a way to deal with our processes directly from python, and in a better way that’s what possible with the standard library.

Circus uses zeromq in its internals, and thus is easily extensible. We’ll present you how you why we built circus, how to use it and some core concepts that were useful in the conception of the tool. Also, we’ll demonstrate how easy it is to plug circus with a Django stack.

Typical Django Deployment

	Nginx > Gunicon > Django + sentry + celery

Supervisord is frequently used for management of these components. Alternatives include:

	Bluepill (less mature)

	upstart (system level - root access needed)

	daemontools (low-level like upstart)

	got, monit, runit, etc.

Missing features from supervisord

	Realtime stdout/stderr

	realtime stats

	powerful web console

	Remote access

	clustering

	event-based plugins

Since those were missing, Tarek launched his own project: Circus!

Technical choices for Circus

	Python

	PSUTIL

	ZeroMQ

	TODO - get rest of this

The Core: psutil

Third-party library that is easy to use and pretty elegant:

>>> import psutil
>>> p = psutil.Process(7384)
>>> p.name
'Address book'

>>> p.uids
user

The Messenger: ZeroMQ

	async library for message passing == smart socket

	highly scalable

	transports: ITC, IPC, TCP, PGM (multicast)

	principal patterns

	request

	pub/sub

	push/pull

	used by IPython

	PyZMG - zmq bind + nice I/O event loop adapted from Tornado

Circus Architecture

TODO - Get a copy of the image from Tarek.

Recap

	circusd: daemon that watches all processes

	circusctl: interaction shell

	circus-top: Like top, but only for things Circus is managing

	circus-httpd: Runs the web client

TODO - get the rest of the components from Tarek

Problem

Can’t interact with Django workers because they are supervised by Gunicorn, which is managed by Circus.

Answer: Circus sockets - Not just sockets, but also manage processes.

	Every process managed by Circus is forked from circusd

	circusd creates & opens sockets

	child processes can accept() connection on those sockets

WSGI

	Chaussette: WSGI server that reuses already opened sockets

	Launched with the socket…

	TODO - catch up

Benchmarks

Circus + gevent is slightly faster than Gunicorn + gevent.

Upcoming features

	Clustering

	stderr/stdout streaming in the web dashboard

Thanks!

	Docs: http://circus.io

	Code: https://github.com/mozilla-services/circus

	slides: http://blog.ziade.org/slides/djangocon2012/circus.html

Processing payments for the paranoid

	By Andy McKay

	@andymckay

	Works at Mozilla

	Presented barefoot

The Mozilla Marketplace is the app store for Firefox OS and this Django powered site takes payments from users.

Combined with issues like localisation, identity and scale - we are processing payments through Django. This talk will cover the marketplace, the architecture of the system and how we cope with all the paranoia.

Who should be paranoid?

Everyone should be paranoid:

	Developers

	Users

	banks

	Everyone

Mozilla Marketplace

	Powered by Django

	Don’t call it an “app store”

	accepts payments

	Powered by open source project ‘zamboni’

Note

Report bugs to Mozilla via their reporting system and they’ll pay you.

Steps for purchase

	Set up your account with Mozilla

	Purchase and use an app

	Mozilla bills your carrier

All powered by Solitude: https://github.com/mozilla/solitude

Vulnerabilities they had to consider

XSS

Over come with
* Mozilla Content Security Policy
* MDN [https://developer.mozilla.org/en/docs‎] docs
* Github blog

Phishing

	navigator.mozPay

	Trusted UI

	MDN [https://developer.mozilla.org/en/docs‎] docs

SQL injection

	careful ORM evaluation

Ourselves

	Many penetrations happen internally, not from technical assaults from outside.

	Wrote anonymizing code

	Inside the DB:

	removed personally identifying information

	encrypted other data

	Defended by depth

Tips

	use python-requests

	SSL certs are not handled well by Python’s URLLIB

	Requests does it well

	
	wrote django-paranoia to help track security things

	
	Includes something called paranoid_forms. Logs when people try to add or subtract keys to forms.

	includes a special sessions component for Django. Logs when:

	user agent changes

	IP Address changes

Note

Just noticed that @andymckay is presenting barefoot at @djangocon @djangofact #djangocon

The Imaginative Programmer

	by Zed Shaw

	Wrote Learn Python the Hard Way.

	E-Version: http://learnpythonthehardway.org

	Upcoming Print Version [http://www.amazon.com/Learn-Python-Hard-Way-Introduction/dp/0321884914/ref=sr_1_1?ie=UTF8&qid=1368612258&sr=8-1&tag=cn-001-20]

	Talks super-fast so I can’t keep up.

	True Fact: @zedshaw kicked me in the nuts at @pycon 2009.

In the world of programming nothing is more irritating than the “artist”. Programmers who are all “front-end”, business guys who are all “ideas”, and designers who can’t draw. I say real programmers don’t need to be artists. Rather, a programmer needs to have the skills necessary to take their imagination (or other people’s) and translate it into working software.

This talk will contain many of my secrets for turning ideas I have in my mind into real things. I will lean heavily on the arts, music, and writing, but ultimately this talk will be about implementing software. There will be no fluffy spirituality or hand waving in this talk, just real tricks to help you make stuff.

Here we go

Talks a quick story about a hipster and an easel in San Francisco. He watched a guy pretend to paint in order to pick up girls.

Zed read tons of design books, but none of them make any sense. Believes that design education is fucking useless. He’s been told that since he’s “logical”, he can’t do art. However, he contends that art is logical (composition, form, etc).

Finds that guitarists are jerks about saying if you aren’t in a band then you aren’t a real musician. However if he says he builds guitars he gets respect. Until he says he’s a programmer.

Rant about writers: Because his best selling book isn’t non-technical, he’s not considered a real writer.

Rant about not submitting pull requests: He brings developers into Python and Django but isn’t considered to have contributed.

Note

I ranted yesterday about this but maybe Zed has a point.

Common Threads

	Artists says he’s not an artist because he works on developing technical skills.

	Writers say he’s not a writer because he writes tech books.

	Guitarists say he’s not a musician

	Programmers say he’s not a programmer because he doesn’t submit pull requests.

Proposal

We hack creativity and make it worthless.

Battle Plan

Learn an “imaginative programming process”

Four types of People who Don’t Really Exist

	Technique, No Imagination: Stereotypical Programmer

	Imagination, No Technique: Stereotypical Biz Dudes

	???

	???

Zed’s Imaginative Programming Process

	Perceiving the Imaginative Idea.

	Establish the Concept.

	Research techniques or tools. Programmers often skip this step.

	Refine the concept through composition.

	Explore through prototypes

	Make it real

Examples

Project Zorn

	Idea: Zed loves mixing colors

	Concept: Create site for teaching color similar to euler project.

	Research: Find tools to build this

	Composition: Make 52 exercises and put it online with interactive parts powered by Django.

	Prototype: Using Zurb he prototyped the first page: http://projectzorn.com

	Realize: Start writing exercises at Django Circus

Other ideas:

	Painting in Poland

	python-lost

Closing thoughts

	Email yourself your ideas

	Don’t worry about the fear aspect. Make sure you don’t care if people don’t like your stuff.

	Great ideas work best in solitude

	Great implementations work best in teams

Advanced PostgreSQL in Django

	by Christophe Pettus

PostgreSQL is the most advanced open-source database on the planet, but (except for GeoDjango) few Django developers take advantage of its more advanced features. We want to change that!

We’ll talk about custom types (including Admin integration), replication tricks, specialized indexes, unstructured types such as JSON, stored procedures, and other ways to get maximum functionality and performance out of your PostgreSQL data store.

Database Agnosticism

	Django has to be able to handle all databases.

	That means it loses special features of individual database systems (PGSQL, MySQL, etc).

	Database migration is a once in a lifetime thing.

What can PostgreSQL do for you

	PostgreSQL has a huge range of built-in types

	Most can be used natively in Django

	You can find libraries to support them.

citext

	case insensitive text

	ignores case on comparisons for a field

hstore

	built-in dict-like structure

	Maps to Python dict

	Can be indexed and queried for inclusion

	requires custom sql

json

	All the cool kids use NoSQL databases

	Something faster than MongoDB to store your JSON databases

	validated going in

	Not feature rich, but it’s growing

Others

	UUID

	IPv4 and IPv6

	Interval - stores time intervals directly in the database

	See Craig Kersteins’s talk later

Where do we sign up?

Getting it work in Django

	Adapt to psycopg2

	take string representation of the type and convert to and from the python object.

	Write a Field class for Django

	subclass django.forms.Field

	Create a widget

TODO - ask Christophe for the slides so I can finish this section

Indexes

Django models are great but it’s index creation syntax is somewhat lacking. Multi-column indexes for example

Partial indexes in Django are good:

CREATE INDEX active_orders ON cart_order(status) IF status == 1

Custom Constraints

	Django’s database agnosticism is a problem for things like foreign-key handling

	It’s also boring

Tips:

	Push database constraints into the database whenever possible.

Raw SQL

The three-join rule:

	If you are joining more than three tables, use raw SQL

	It turns out that PostgreSQL is really good at multiple joins

	Don’t fall back into iterating over querysets to get data. Use SQL!

Tips:

	Put RAW SQL in the model or manager. Put it in the view and you risk losing it

	Use South

	Don’t be constrained by fear of migrating from one database to another. Choose and use special features

Getting recommendations out of nothing

by Ania Warzecha

Note

Was extremely late to this talk. Which makes me sad because this was clearly a good talk.

How to combine JavaScript & Django in a smart way

by Przemek Lewandowski

	http://sunscrapers.com

	Really nice guy, met him earlier this week.

Have you been using JavaScript more and more when building your web applications? Are you implementing REST API frequently? If so, you have probably realised that server-side generated content is no longer enough to provide cutting edge user experience.

I would like to show you how to avoid jQuery callback hell and how to gain more flexibility using MVC on the client side. I will introduce tools for managing modules in JavaScript and will teach you how to become more productive with CoffeeScript. I will share my experience of integrating Django and sophisticated JavaScript stack from two points of view: RESTful API and static files management. Let the trip begin!

Basics

	Django

	Javascript via Coffeescript

Javascript framework considerations

	Backbone didn’t do enough

	Lack of binding mechanism

	no reusable views

	Models are poor

	Backbone & Marionette helped but they were still unhappy

	Angular, very nice

	Ember, very nice

How to use Javascript framework with Coffeescript?

	Use requireJS with extra plugins

	Coffeescript painless integration

	modular code

	builder

	uglifier

Tools for building JS apps in Django

	django-compressor

	django-pipeline

	django-require

Django & APIs for JS apps

	django-piston was too long in the tooth

	django-tastypie had an uncomfortable amount of boilerplate

	django-rest-framework was just right.

django-rest-framrwork example:

serializer
class FriendSerializer(serializers.ModelSerializer):

 class Meta:
 model = Friend
 fields = ('id', 'name',)

TODO - add examples from our book [https://django.2scoops.org], cause we also recommend django-rest-framework.

Static files management

	django.contrib.statisfiles

	django-storages

	django-cumulus

	django-require

Closing thoughts

	Never stop trying new solutions

Thread Profiling in Python

by Amjith Ramamujam

	Works for http://newrelic.com

	Slides: https://speakerdeck.com/amjith/thread-profiling-in-python

This talk will give a tour of different profiling techniques available for Python applications. We’ll cover specific modules in Python for doing function profiling and line level profiling. We’ll show the short comings of such mechanisms in production and discuss how to do sampled profiling of specific functions. We’ll finish with statistical profilers that use thread stack interrogation.

What’s profiling?

cProfile for profiling the performance of something

Usage:

python -m CProfile sample.py

For big projects it can be big in response, so use RunSnakeRun (wxPython app) which gives you better data.

Google uses profiler and displays the results in their search engine. Which is why it’s good to use in production. Unfortunately profiling eats up performance. So what do you do?

Targeted Profiling

	Profile critical functions

	Do hybird stuff

New Relic targets

	Web frameworks

	Django, flask, etc

	View layer

	template layer

	SQL calls

Threads for profiling

example:

import threading
t = threading.Thread(target-handler)
t.setDaemon(True)
t.start()
time.sleep(0.1)

Pros:

	Cross platform

	mod_wsgi compliant

Cons:

	Inaccurate for CPI tasks

	can’t interrupt C-extensions

Inquire into what’s going on

>>> import sys
>>> frames = sys._current_frame()
>>> print(frames)
{1234: <frame>}
>>> import traceback
>>> traceback.extract_stack(frame)
(...stuff here...)

Collate

Attempt 1: Default dictionary

	Uniquely identify a function

Note

Trying to figure out how to document what he’s doing here. TODO: Get Amjith’s images. :P

Existing Tools

	plop - Uses signals and d3.js

	Open sourced by Drop box

	Size of bubble shows how expensive the thread is for the system

Summary

	No green threads is low overhead

	CPython & PyPy have high overhead

Grand Finale

Deterministic profiler + statistical profiler is how they assemble the data. Newrelic merged the profilers so the data is much better.

Migrating The Future

by Andrew Godwin

	Works at http://lanyrd.com

	Django core developer

It’s been almost five years since South was first released, and in that time many things have changed - now it’s time for a new migration system, built into Django itself and with new features and a solid foundation based on those five years of learning. Hear the problems in both running this kind of open source project as well as those of dealing with five different database backends, and how both you and South can learn from them.

Kickstarter

	Wanted ₤2,500 pounds

	Got ₤17,952 pounds from 502 backers

What’s wrong with South

	5 years of learning, lessons learned

	Poor VCS branching, two people commit to same place

	Huge migration file size is too big

	Migration sets get too large

New modules

	django.db.migrations

	Migration commands

	autodetection

	The public API, as it were

	django.db.backends.schema

	SQL generation

	Database abstraction

Databases supported

	PostgreSQL - yes

	MySQL - yes

	SQLite - yes

	Oracle - hopefully

	MSSQL - hopefully

	DB2 - maybe

	MongoDB - maybe

New migration format

Note

TODO get this later, the code samples are on a black background.

	Shrink the size of migration

Dependency Management

If you and another developer both add a new migration with the same name, South sorts in ASCII sort order. Which is a serious problem if you miss a dependency

	South dependencies are driven now by a specification value in the Migration module

	Auto-Merges migrations when there is no conflicting migrations

	Can squash all the migrations into one big migration!

How is it going?

Working 2-3 days a week on this full-time

Working on it:

	Schema backends: Mostly done, ready for merge

	Migration code: Still going, most complex part

Upcoming

	Field API changes: This Field needs to be able to inform migrations what’s going on

Resources

Code: https://github.com/andrewgodwin/django/tree/schema-alteration
Blog: http://aerocode.org/category/django-diaries
email: andrew@aerocode.org

Working to do this for all of us, so give him feedback!

Having Your Pony and Committing It Too

by Jacob Burch

	Works for @revsys

	Contributed to django.core.cache

	Not in AUTHORS file of Django (yet)

For many years before 2012, the topic at the tip of every argument-seeking tongue at Django Conferences was “”when is Django going to get on Github?”” Getting the core framework on the social coding site was the first stride in breaking down the barriers to having anyone and everyone not only having a pony, but getting it into core too. Now that this important step is almost a year in, just how easy is it to take the step from end-user to core-contributor? Delightfully Easy.

So easy, that I’ll be breaking every rule I know in giving a talk and actually attempting to get a feature from idea, to code, to request, to a live haggle-and-debate session with core contributors in-audience, to pull request to (hopefully!) merge all within 30 minutes. Advice from a variety previous contributors on will be provided throughout the demonstration, including tips for getting very small bugs fixed quickly to strategies for getting necessary groundswell for larger full-feature ideas.

Not covered

	You need to know virtualenv/git

	Large overview of Django’s core code

	Advice in what to get involved in

Thoughts

	It’s scary to start contributing to Django

	It seems labrythine, and it is.

	It can take a while to get core code in

Max Weber describes politics as “the slow boring of hard boards”. Open source is much the same. – Russell Keith-Magee

Confident vs Bold

	Follow the wikipedia motto: “Be Bold” – Alex Gaynor

	You are not your code – Marty Alchin

Before you do anything with Django

	Fork Django

	git clone your repo

	./runtestspy --settings=test_sqlite

	Da not pass GO until tests run*

Forms of Contribute

	Bug Fixes are a great place to start

	Minor Contributions

	Major Contributions

Bug Fixes

	Write a test

	Have it break

	Fix the code until tests pass

	Test against regressions

	Fix is not necessarily free from discussion

Major Contributions

Do your homework

	Search trac

	Search django-developers

	Become familiar with the code you’re proposing.

Minor Additions

	Follow same steps as major contribitions

Risking against everything we are supposed to do

	Coding live

	Submitting to Django live

Russ is talking

Ticket #9595 [https://code.djangoproject.com/ticket/9595] in Django

Note

Video of Jacob Talking while he starts coding began here.

How to make a proposal

	Don’t communicate entitlement

	Don’t focus only on your own needs

	Be decent

	State the problem clearly

	Confidence: propose a clear solution

	Show your homework

	Previous tickets/attempts

	Potential downsides/drawbacks

	Humility: Unsure of aspect? Ask!

Code

	Make the code work

	Document your work

	Make the code follow standards

	Stay within pep8 mostly

	respect existing style

	linters are your friend

	comments are must

	get a peer code review before submitting

	Document and boldly defend design decisions (wiki)

Note

Video of Jacob Talking while he starts coding ended here.

Review

	Your ego is not on the line.

	Humility: No, really.

Lack of Review

	Patience: Core members are people

	Pro-active: Send polite, friendly follow up messages often

Review: Part 1 of n

	Confidence: Do not give up or get angry if changes must be mad.

	Follow up quickly

	Email tag can be frustrating

	#djang-dev can help

Note

Russell reviewed the code here

Fractal Architectures

by Laurens Van Houtven

An alternative take on Django’s traditional layered web service architecture.

Note

Was very late.

Concept

Use many tiny servers with tiny Twisted powered web servers with tiny instances of SQLite3 as the backend. Each user gets their own mini-server!

Backend

Twisted

Cause he’s a core dev and is asynchronous. We could use Django.

SQLite3

	It’s in the Python stdlib

	Wrapped by Axiom, a Python library, documented at http://lvh.com/axiombook

	Using SQLite3 means it’s the same development environment as production - because how for developers PostgreSQL is NOT set up the same locally as production.

Static Assets / Long term storage

	Uses a CDN like AWS, OpenStack Swift, or something else.

	Good for handling of micro-instance failure

Two Ways for Better Performance

	Do less stuff

	Make stuff run faster

If you off-put stuff from one server onto a database server, cache server, et al, then even in-database center latency will become an issue. His approach is to put everything on one tiny server per user and reduce latency between machines to nothing.

This is the concept of Data Locality.

Devil’s Advocacy

	Unusual design might make it hard to get more developer help.

	Weird separation.

	Data is weird, maybe not good for big data. But 99% of sites don’t have actual big data.

	Transaction support doesn’t work.

Thoughts

	Crazy, fun idea

	Sometimes it’s good to try the insanity and see what happens

Getting past the Django ORM limitations with Postgres

by Craig Kersteins

	Heroku guy

	http://craigkerstiens.com

	https://twitter.com/craigkerstiens

With most frameworks the ORM attempts to treat all databases equally, this results in developers being limited in how many advantages they can take of their database. In particular Postgres has many features which developers would love to take advantage of but are not easily accessible via the Django ORM.

Note

I’m going to mention the https://www.djangopackages.com/grids/g/postgresql-integration/ grid.

Public Service Announcements

	Postgres.app

Why PostgreSQL?

	It’s the emacs of databases

	Platform to build things on

	Many built-in extensions

	Datatypes

	Conditional index

Limitations with Django

	The ORM works with too many different databases

	Lowest common denominator

	Django ORM has few datatypes

	Indexes are limited compared to pure PostgreSQL

But Django isn’t too bad

What PostgreSQL does that’s cool

Datatypes:

	Arrays datatype

	hstore

	does what MongoDB does but inside of PostgreSQL!

	Stores in JSON

	Getting better in PostgreSQL 9.4

Queueing

Normally doing this in a database is a bad idea. So we use Redis and other resources. PostgreSQL has pub/sub and makes a great queue. You can get it working via celery with:

pip install celery trunk

Text Search

Instead of Lucene, Sphinx, or Solr you can use PostgreSQL for full text search.

Note

Is there a Django extension?

Indexes

You should generally use a BTREE index. Depending on your use case, you may need other indexes.

Flip to Read Only Mode

If you need to do system changes, you can make your site output only by turning on PostgreSQL’s read-only mode. How cool is that?

Connections for Django

	Django right now doesn’t have persistent DB connections (not until Django 1.6 anyway)

	It has to reconnect all the time to the database, which is a performance hit.

PostgreSQL resources

	My favorite is this PostgreSQL book [http://www.2scoops.co/high-perf-postgresql/].

The Web of Stuff

By Zachary Voase

	Cook

	Eat

	lift

	makes stuff

	Was making stuff for Ford for big presentations

	Interactive trade show experiences

As software developers, the world of hardware can seem confusing but alluring. Small computers are now cheap enough that useful products can be built for less than $100. But the real value from the Internet of Things comes from networking. In this talk, I’ll introduce you to basic hardware hacking, and show you how Web, mobile and microcontroller technologies can be brought together using Django—with surprising and playful results.

Act I - Little Data

	Computers are getting big again because of server farms and huge number crunching efforts

	Economy of size goes in both directions. Not just big data, but little Data

As backend developers it’s easy to forget that often with all the servers and code and automation we forget that at some point deep in the chain there is a a human being interaction with the system. Example: Cell Phone

. epigraph:

The maker movement is an effort by computers to liberate themselves from their human overlords. -- Zachary Voase

Note

Zach tempted the demo gods by demonstrating something that used Arduino, Github, Django, Heroku, Foursquare to do something. Alas, the demo gods were not kind. The internet was very flaky. Still, his device was really cool.

Act II - Personal Development

	Tutorials are useful for beginners

	Advanced experts might need references

	In-between beginner and advanced it’s hard to get good.

Note

This in-between spot was the original target of Two Scoops of Django [https://2scoops.org].

Resources

	https://github.com/zacharyvoase/swipecheck

	“Getting started with Arduino [http://www.amazon.com/Getting-Started-Arduino-Massimo-Banzi/dp/1449309879/ref=sr_1_1?ie=UTF8&qid=1368700709&sr=8-1&tag=cn-001-20]”

	“The Art of Electronics [http://www.amazon.com/Art-Electronics-Paul-Horowitz/dp/0521370957/ref=sr_1_1?s=books&ie=UTF8&qid=1368700859&sr=1-1&tag=cn-001-20]”

Bleed for Speed: Django for Rapid Prototyping

By Rob Spectre

	http://twilio.com director of evangelism

	https://twitter.com/@dN0t

Come one, come all to the DjangoCon sideshow to see feats of inhuman speed as we take Django for a spin with rapid prototyping. Tossing security, performance, and maintainability out the tent, Rob Spectre shows a 30 minutes of tips and tricks for building rapid prototypes on Django gained over dozens of hackathons. Find the fastest path from startproject to a publicly accessible endpoint. Discover the reusable apps that cut down your hack’s implementation time in half. Marvel at the testing techniques that will minimize demo-killing broken code. Step right up ladies and gents and see the framework forged in the newsroom furnace blast your entirely temporary project across hackathon deadline.

History Lesson

In the American civil war, there were naval battles. They had boats, and they had the Battle of Mobile Bay. Rear Admiral Bueugard led a fleet in with a simple battle of going between the fort on the left and the mines on the right to bash at the enemy.

The problem was that during the beginning one of the ships sailed right into the minefield and sunk. The admiral was crazy so would climb to the top of the mast and shout orders to the battle.

In his insanity he commanded the fleet to drive through the mines/torpedoes. And he said, “Damn the torpedoes drive straight ahead”. He knew that the mines/torpedoes were old and could be driven through.

What does this have to do with Django?

Sometimes when faced with a daunting task, you have to take the bit between your teeth and plow straight ahead.

24 hour prototyping

	Do it outside of hackathons

	Great for tech and concept discovery

	Throw away that code!

Why Django?

Rob’s claim: Django is the best for rapid prototyping development.

	Django was built explicitly for rapid prototyping development. Out of the newsroom and into production. Today.

	Django is flexible.

	Django has an incredible community. Have a problem?

	Jump on IRC!

	Read the docs!

	Stack Overflow!

	Read Two Scoops of Django [https://2scoops.org]!

	Bottom line: Gets more stuff done!

How to speed up Django development

Initial setup

Note

Disclaimer: Rob really promoted our book [https://2scoops.org]. We had no idea before the conference he was going to do this.

	Read Two Scoops of Django [https://2scoops.org] chapter 2 & 3. Much of it is summarized in https://github.com/twoscoops/django-twoscoops-project

	Suggests add a procfile, which we have as a pull request we may review during the sprints.

	You can use Mozilla’s Play-Doh as well

Static Files

	Use the defaults as much as possible

	Nice API

	Bad: Documentation needs revision.

	Brunch (http://brunch.io/) is nice for compiling everything

Deployment

	Heroku is nice, and works in Europe now!

	You can also use AWS: Learn configuration management (chef/puppet/salt stack etc).

	Salt Stack call-out: https://github.com/esacteksab/salt-states

Packages to use

Build the RESTFUL API

Do it RIGHT away so the front end person can work

	Rob prefers django-tastypie

	These days prefer django-rest-framework now.

Social Auth

	django-social-auth

	Gajillions of auth services it supports

	Takes some work to set up

	django-allauth

	Fast setup

	Doesn’t have as many auth services it supports

	South

	celery

	Unfair advantage for Python/Django in competitions

	Setup is a pain

	Secret: You can use the database for hackathons and not worry about setting up a real queue engine

Testing

	Why would you test in a short time space?

	On the contrary: Why wouldn’t you test?

	Knowing your views all return 200 tests means you don’t make the same results in writing code or demoing the project

More notes:

	Django tests are fast/easy to write

	AngularJS has a great testing tool. Even if you don’t use that many of it’s features, check out testacular.

Conclusion

When faced with a difficult problem, sometimes its good to plow straight ahead.

Growing Open Source Seeds

By Kenneth Reitz

	Heroku guy

	https://twitter.com/kennethreitz

	https://github.com/kennethreitz

	Creator of python-requests

This talk will be an in-depth review of the stages that most open source projects go though, and the decisions their maintainers face. Requests will be used as an example — lessons learned and best practices will be covered.

Once upon a time…

The Facebook SDK Python library

	Facebook rarely updated it

	Became unworkable

	People complained, got on Hacker News

	Disabled comments

Now replaced by http://pythonforfacebook.com

Public Source Projects

	Company open sources code

	Doesn’t maintain it: motivations are unclear

	Really sucks for users of the code

On the other hand.. Gittip!

	Platform for sustainable development

	Everything is open source, including internal discussions, interviews with media, etc

	Everything is an issue

	Major decisions are voted on github.

	Interviewed with journalists are live-streamed

“I’m not building Gittip, I’m building the community that’s building Gittip.” – Chad Whitacre

Shared Investments

	Shared ownership, extreme transparency

	New contributors get involved by following a documented process

	Low risk. High bus-factor

	See also: Python, Django, Firefox, jQUery…

HTTP for Humans

python-requests

	One of the most installed PyPI projects

	Key difference between gittip/django and requests: Kenneth makes all the decisions

Dictatorship Projects

	Totalitarian BDFL owns everything

	Dictator makes all decisions

	Community feedback is encouraged, but users with feedback should have no expectation of change.

Lessons Learned

	Be Cordial be on your way

	Contributors

	Keep all interactions with a maintainer as respectful as possible

	They have likely donated a significant amount of time and energy into their project

	Maintainers

	be immensely thankful to all contributors

	They are the lifeblood of your project

	Ignore non-constructive feedback

	Some people just take things too seriously

Avoiding Burnout

Sustainability

	One of the biggest challenges for open source

	Everyone has a limited amount of time in the day

Learn to do less

	When an issue or pull request comes into the repo, two other developers usually triage it.

	This saves an immense amount of time

	I can focus my time on larger issues.

Learn to say no

	Saying ‘No’ is really important

	Learn to do it nicely

Simple Code is Good. Complex code is bad.

“Open source makes the world a better place. Please, don’t make it complicated.” – Kenneth Reitz

Mock your database

by Marc Tamlyn

	https://twitter.com/mjtamlyn

	Pivotal figure in the giant Django CBV documentation refactor for 1.5

Databases are slow. Well, if the goal is 1 millisecond per test they are anyway. We want to avoid interacting with the database as much as possible when testing, especially if the tests aren’t anything to do with the queries.

This talk will look at various ways of avoiding those pesky database queries and making tests faster!

Your database is slow

	When you are testing, hitting the database is slow. Connections, writing to disk, getting down to SQL, etc

	Why do you care?

	We want SPEED!

	The faster your test goes, the better.

Example

def test_naive(self):
 label = RecordLabel.objects.create()
 artist = Artist.objects.create()
 track = Track.objects.create()
 # etc

	8 database queries

	5.2 seconds for 1000 runs on PostgreSQL

	3.2 seconds for 1000 runs on SQLite3 running in memoery

Doesn’t seem slow, but what if we are testing 40 models this way? Test factories make this worse!

Class Based Views: Untangling the Mess

by Dr. Russell Keith-Magee

	Django Core Developer since January 2006

	DSF President since June 2010

	CTO and co-founder of TradesCloud

Why CBVs?

Introduced in Django 1.3 in 2011. What’s the history?

History per 2005

	Django is for building websites

	Views are for displaying content

	There are lots of refactorable things to do

	Generic views could handle all of this:

	Display template

	Display object or list of objects

	Handle forms

	Every view is a function

	Configuration via arguments

Problems with function based generic views

	Configuration options limited by urls.py args

	No control over logic flow

	No re-use between views

Warning

Another thing against function-based generic views was that people can and do implement their own broken CBV system. Leaky states is a serious issue. Don’t roll your own unless you really understand

Django 1.3

	They kept trying to get CBVs into Django starting with Django 1.0.

What went wrong

	Fundamental confusion over purpose

	Confusion over implementation choices

	Ravioli code

	Luke Plant described the effort as bad code.

	“You don’t know what’s in the ravioli.”

	Steep learning curve

	Bad documentation

	Russell takes the blame for the problems.

	Myself, Marc Tamlyn, and others worked to make it work.

Purpose

Class-Based views are an object-oriented analog for function based views.

	Class based views

	Class based Generic Views

Because we are subclassing a base class, we get tons of extra options.

	automatic OPTIONS request handling

	automatic naive HEAD request handling

	automatic HTTP 405 on unknown verbs

CB Generic Views

	Uses Class Based Views as a base

	Creates analogs of the old generic views

	Addresses limits of functional approach

Implementation Choices

	See details of the debate at https://code.djangoproject.com/wiki/ClassBasedViews

	A class that is instantiated as a view

	Problems:

	What gets instantiated?

	How does it gets instantiated?

	Once per process or request?

	What’s the lifespan?

	What about state? (race conditions!!!)

	How does it work with urls.py?

	How do you configure things?

	Django’s admin system is a CBV

	Implemented using simple __call__()

	Doesn’t have HTTP Verb support

	Suffers from serious state issues

Warning

Don’t put self on Django admin objects or you will cause state issues.

Other concept design:

	Change the urls.py contract

	Current: a callable

	Change to: A callable or a class

	The problem is that this would have forced them to change a lot of source code and make things under the hood much more complex.

	Decision: keep the urls.py contract clear

Ravioli

	Goal: Replace FBV generics with CBV generics

	Make it easy to extend

	Unfortunately complex class hierarchy

	However…

	Allows for maximum reuse of core logic

	Extremely flexible for inserting new logic

	Easy to add your own mixins

Documentation

	Bad as originally designed

	Much better now

	Still need framework decisions needed

Note

Use django-braces to fill out the missing pieces of CBVs.

Where to from here?

	Add new features?

	Did they solve the wrong problem? Modern problems:

	Multiple forms/formsets per page

	Conditional forms

	Continuous scrolling, not pagination

	AHAX support

	PJAX

	Multiple “actions” per page

Call to Action

	IN discussion: Do you mean CBV or CBGV?

	Docs can still be improved. YESSS!!!!

	#18830 - FormCollection

	Experiment with APIs. Django’s admin is a useful case study

Documentation Ideas for CBVs during the sprints

Note

I’m not working on Django CBV documentation during the sprints. However, I’m open to suggesting paths to take:

	Tutorials in the CBVs section of the core Django documents.

	More working code examples

	Flow charts!

Dynamic Models

by Juergen Schackmann

Django has been built on the assumption to have upfront static data models; i.e. the developer implements them completely before deployment. However, there are numerous real-world uses cases that require to have dynamic models that can be created and amended by users or some kind of user actions. Examples could be: customizable products for a shop, unique content types to represent web site content in a CMS or online surveys that are created on the fly.

There are various conceptual options to solve this problem. The most prominent ones are: a) Entity Attribute Value Models, b) Pickeld Fields and Pickeld Models, c) Database DDL operations at run-time Most of which have been discussed intensively and the Django community has developed numerous apps. I will compare the various approaches and apps in terms of usability, speed, features, sweet spots and preferred use cases. This will support any future evaluation for a specific project. But it will hopefully also trigger a fruitful community discussion on the importance of this feature for Django in comparison with other applications and frameworks like Zope/Plone, Magento etc.

How to do it

	Entity attribute values

	Table columns become rows in another table’s rows

	Performance issues

	Serialized Dictionary Django apps

	Dangerous because of use of Pickle

	Problematic because of lack of searchability (this is mitigated via tools like PostgreSQL hstore or MongoDB)

	Runtime schema updates

	Allow updates of the database schema by non-technical user action

	This sounds kind of of risky

	Dynamic models problematic since it can interfere of how the database is designed.

	Complexity is another issue. How do you keep the database from going nuts from user action?

	Database integrity is a major issue.

	Column updates is a really nasty issue. For example, the database has to lock the for minutes or hours.

Prehistorical Python: Patterns past their prime

by Lennart Regebro

	Freelancer

	Django, Pyramid, and Zope guy

	One of the tech reviewers of Two Scoops of Django [https://2scoops.org]!

	Author of Porting Python Python 3 [https://gumroad.com/l/python3]

	worth it if you are upgrading from Python 2 to 3!

There are many idioms and patterns that used to be a best practice but isn’t anymore, thanks to changes in Python. Despite that they often show up even in new code, and some of these patterns are even explained to be Good Ideas at stackoverflow and similar.

This talk will bring out the most common of these patterns so you know what they are, and why you should avoid them.

Defaultdict

python 2.5
from collections import defaultdict
data = defaultdict()
data[key] = value

Python 2.5-
Exists still in Django 1.5.1
django/db/models/sql/query.py
if key in data:
 data[key].add(value)
else:
 data[key] = set([value])

Sets

	Unique values

	Unordered

	Fast lookup

	Python built-in in 2.4

Sets before sets

d = {}
for each in list_of_things:
 d[each] = None

list_of_things = d.keys()

Sorting

new way - missed the old ways
retval = set()
for tn in template_nmes:
 retval.update(search_python(python_code, tn))
retval = sorted(retval)

Conditional Expressions

old way
django 1.5.1 django/db/models/related.py
first_choice = include_blank and blank_choice = []

new way
first_choice = blank_choice if include_blank else []

Constants and Loops

outside vs inside
PyPy is 33x slower on this one!
each * 5 ** a_var

Note

Thought: Evaliate your constants outside the loop

String Concatenation

The 'fastest' way
self._leftover = b''.join([bytes, self._leftover])

adding is faster than using the .join() method used above. WTF?!?

Explaining the ‘WTF?!?’

	Looping over a list of strings and adding them together is slow.

	Using .join with a list of strings is fast.

	If you add just two strings, adding them is faster.

Django 1.6 and Beyond

By Russell Keith-Magee

	Django core team developer

	President of the Django Software Foundation

	@freakboy3742

	PhD in …

This is Russell’s vision for what is happening in Django, but nothing is concrete because Django is a volunteer project.

What’s missing?

Good frameworks don’t come from academia, they come from projects solving real problems.

—Jacob Kaplan-Moss

Things likely to happen

	App Refactor

	Application name is fixed. For example, ‘coupons’ in admin will retain that name.

	What goes into an app?

	Probably not in 1.6, maybe in 1.7.

	Schema Migration

	South ought to be in core.

	Andrew Godwin is working on it.

	The plumbing is the backend, the porcelain is how users interact with it.

	Composite Primary Keys

	Easy concept to explain, hard to implement with all the existing pieces.

	Increased decoupling

	Pieces of Django core are getting moved out.

	Local flavor is getting moved out.

	Admin 2.0

	A lot of things it could do but it doesn’t.

	Many third-party skins

	Current version not using CBVs but they could be.

	Release Schedule

	Averaged a release every 11 months

	OMG this means we have to update Two Scoops of Django faster. :P

	Singleton Cleanup

	The settings a’la django.conf.settings.

	It’s a problem that really needs to be fixed.

	Considering breaking backwards compatibility.

Long Term Predictions (low accuracy)

	Better sharing with the rest of the Python world.

	WSGI

	SQLAlchemy

	NoSQL

	Probably not happening because it would only allow for a subset of the Django ORM functionality

	What about the ORM?

	Extinction-level events (Django is a great framework for 2005, but it’s 2013)

	Django doesn’t handle real-time.

	Server/client separation

	Javascript frameworks are not chosen yet.

	Sourcemaps are making the debugging of compiled Javascript framework

	Mobile

	Objective-C

	Java

	HTML5

	How do we make great ideas happen?

	Decisions are made to those who show up.

Pycon 2013

Note

We arrived a few days late so my notes don’t start until Saturday morning.

	Dynamic Code Patterns: Extending Your Applications with Plugins
	Cliff

	How plugins work?

	What Doug did for cliff

	Porting Django apps to Python 3
	Do I want to use Python 3?

	Can I use Python 3?

	Options

	How to port to Python 3

	Documentation

	Moving Forward

	So Easy You Can Even Do It in JavaScript: Event-Driven Architecture for Regular Programmers
	Things that are hard in Javascript

	Things that are easy in Javascript

	A Tale of Two Events

	When X -> Do Y

	HTML Event-Driven Example

	PyJS (Most complete Python in browser)

	Lightning Talks
	Retask: Queue for humans (Kushal Das)

	How and why a Java Expert switched to Python (Ron Cox)

	Coding Across America (Matt Makai)

	Gitstreams (Justin Lily)

	NasberryPi (Mark Ransom)

	European Conferences (Mike Mueller)

	PyWeek Challenge (Richard Jones)

	Python Epiphanies (Stuart Williams)

	Job Security (Chris Neugebaur)

	Keynotes
	What’s makes Python awesome? (Raymond Hettiger)

	Guido Van Rossum

	Van Lindburgh

Dynamic Code Patterns: Extending Your Applications with Plugins

Python makes loading code dynamically easy, allowing you to configure and extend your application by discovering and loading extensions at runtime. This presentation will discuss the techniques for dynamic code loading used in several well-known applications and weigh the pros and cons of each approach.

by Doug Hellmann

The applications studied include:

	Mercurial

	Sphinx

	Trac

	virtualenvwrapper

	Django

	nose

	ceilometer

	OpenStack CLI

	cliff

Cliff

cliff is a framework for building command line programs and is where Doug did his research for his talk.

	https://github.com/dreamhost/cliff

	https://pypi.python.org/pypi/cliff

	https://cliff.readthedocs.org/en/latest/

see also https://github.com/dreamhost/stevedore

How plugins work?

Discovery

	File/Explicit: Mercurial

	File/Scan: Diamond/Blogofile

	Import reference / Explicit: Django, Mercurial, Pyramid, Spginx, Nova

	Import reference / Scan: 1 or 2

Enabling

	Explicit: Django, Pyramid, SQLAlchemy, Blogofile, Mercurial, Trac, Sphinx

	Implicit: virtualenvwrapper, cliff

Importing

	Custom: Django, Pyramid, Sphinx, Diamond, Nova, Nose, SQLAlchemy, Blogofile

	pkg_resources: Trac, Nose, SQLAlchemy, Blogofile

API Enforcement

	Convention is easier but Base Class / Interface is more stable

	Doug used Abstract Base Classes for cliff

What Doug did for cliff

Discovery / Importing

	Entry points

	Be consistent

Enabling

	Explicit disabling

	Automatic disabling

Summary: Everything is turned on by default.

Integration

	Fine

	Inspect

	Application owns relationship

API enforcement

	Abstract base Classes

	Duck Typing

Invocation

	Storage - Driver

	Notifications - Dispatcher

Porting Django apps to Python 3

Django 1.5 now supports Python 3, so now’s the time to start thinking about porting your apps and sites. Come see how! I’ll talk about the porting techniques that work, and present two case studies: porting a site, and porting a reusable app.

by Jacob Kaplan-Moss

	Django co-creator and BDFL

	https://github.com/jacobian / https://twitter.com/jacobian

Do I want to use Python 3?

Python 3 has fewer warts

	urllib / urllib2 replaced with urlparse

	std library cleanup

	funky syntax is killed

	print() is a function!

	super() syntax is better!

	unicode no longer sucks!

Can I use Python 3?

A solid maybe. Missing pieces as of 3/16/2013:

	No Python Image Library (PIL / Pillow)

	No MySQL python 3 bindings aren’t that good.

	Popular items on https://www.djangopackages.com:

	No gunicorn as async (sync does work)

	No django-debug-toolbar

	No django-registration

	No django-extensions

	No Haystack

	No django-tagging

	No Sentry

	No django-compressor

	Much easier for new projects over existing sites

Options

	Python 3 only

	Brand new project

	Fewer dependencies

	Translated source (2to3)

	Single codebase

3 only

Good for new Django sites.

2to3

First tool released for maintaining code, lets you translate from Python 2 to Python 3.

It’s amazing but not that practical: if you release the Python 3 version of code generated by 2to3 and then someone sends you a Python 3 patch, you have to port the patch to 2, apply it, and run 2to3.

Single (shared) source

Keep a single codebase that runs on both 2 and 3. Good for apps that need to support both.

How to port to Python 3

	Choose an approach from the above.

	Get the test suite running (use django-discover-runner, tox):

[tox]
envlist - py27-django14, py33-django15

py27-django14

	Evaluate dependencies

	syntax changes

	print vs print()

	django.utils.six

	Fix unicode handling:

django.utils.unicode

See Jeff Triplett’s port of django-sitetree

Documentation

	django.me/py3

Moving Forward

	Django used to be the holdup for moving Python 3 usage forward

	Q&A is at room 201 upstairs

So Easy You Can Even Do It in JavaScript: Event-Driven Architecture for Regular Programmers

In this era of rich browser applications, everybody needs to know at least enough about events to write an ‘onclick’ handler. But events have a reputation for being confusing. In this talk I’ll explain why events can be quite easy to understand if you think about them the right way, and how to scale your understanding from trivial browser JavaScript to distributed systems in Python.

by Glyph

	Founder of Twisted

	has been doing event-driven architecture since he was 8 years old

	Not stupid enough to attempt live-coding while on stage.

Note

Code samples too dense to jot down during live-noting.

Things that are hard in Javascript

	Comparing Arrays

	Adding numbers

	Defining types

	Loading Modules

Things that are easy in Javascript

	Calling functions

	Handling events

A Tale of Two Events

	asynchronous I/O

	Clicky buttons

When X -> Do Y

	Event driven architecture is incredibly simple. When X, then do Y.

	When I click -> Do Say “hi”

HTML Event-Driven Example

<!DOCTYPE html>
<button onclick="alert(this.innerHTML);"
 Hello, world!
</button>

PyJS (Most complete Python in browser)

	http://pyjs.org

	Javascript compiler for Python

	Widget toolkit

TODO Add imports

def hello_world(button):
 alert(button.getHTML())
b = Button("Hello, world")
b.addClickListener(hello_world)

TODO Finish

TODO Add imports

def alert(txt):
 lbl = Text()
 btn = Button("OK")

 vert = V.VerticalPanel()
 # TODO Finish

Lightning Talks

Note

Live-noting lighting talks is very challenging. I’ll do what I can but the level of detail provided in lightning talk notes will in general not be the same as my notes on normal talks.

Warning

If you are presenting, never, ever, ever, ever rely on the internet.

Retask: Queue for humans (Kushal Das)

	Simplest setup

	Ease of use

	redis backend

	https://pypi.python.org/pypi/retask

	retask.rtfd.org

producer.py
from retask.task import Task
from retask.queue import Queue
queue = Queue('example')
info1 = {'user':'kushal', 'url':'http://kushaldas.in'}
info2 = {'user':'fedora planet', 'url':'http://planet.fedoraproject.org'}
task1 = Task(info1)
task2 = Task(info2)
queue.connect()
queue.enqueue(task1)
queue.enqueue(task2)

consumer
from retask.task import Task
from retask.queue import Queue
queue = Queue('example')
queue.connect()
while queue.length != 0:
 task = queue.dequeue()
 if task:
 print task.data

How and why a Java Expert switched to Python (Ron Cox)

	Got into Java v1 ages ago

	Worked with servlets to deliver web sites

	About 2.5 years ago was working on mobile tech including Android and iOS work.

	Was tired of Java:

	Java language wasn’t productive enough.

	Java platform was very resource intensive

	New stack:

Python 3.2
CherryPy
MongoDB
Mailgun
AWS

	Steve Holdren’s comment: http://www.artima.com/weblogs/viewpost.jsp?thread=42242

Coding Across America (Matt Makai)

Coding Across America is a five month journey around the United States to learn and write about technology in thirty cities.

	30 cities in 5 months

	Talk with developers from all cities

	Especially Python developers

	http://codingacrossamerica.com

Gitstreams (Justin Lily)

	Doesn’t like the Github activity stream

	Too much activity

	Filtering isn’t good enough

	gitstreams is an email digest of GitHub activity

	You choose the email frequency

NasberryPi (Mark Ransom)

Home media server!

	Just started with RaspberryPi

	Got this working on a Pogo plug, should work fine with RaspberryPi

	What he has setup:

	Fileserver

	Media server

	Web server (nginx, django) (For a personal home site, why does he use Nginx?)

	Torrent server

	More

	Setup is easy, just sudo apt-get 7 packages

European Conferences (Mike Mueller)

Euro SciPy

	August 21-24 in Brussels, Belgium

	2 days of tutorials, 2 days of conference

	http://euroscipy.org

PyCon Germania

	Octover 14-19

	German speaking PyCon

	http://de.pycon.org

PyWeek Challenge (Richard Jones)

	Spend a week writing a video game using Python

	Learn more, create libraries, maybe even release something on Steam!

Python Epiphanies (Stuart Williams)

	How do you pretend to type during talks so you don’t make mistakes?

	Fake it until you make it!

	Use the code module from the Python stdlib

Job Security (Chris Neugebaur)

	PyCon Australia 2013

	People code in Python because it’s readible

	“Readability counts”

	PEP-8

	Readability sucks

	People can comprehend your code

	You can maintain your code

	Your code is applicable in more places

	THIS IS ALL BAD! (if you want more billable hours)

	How do you write unmaintainable code?

	Variable naming systems

	Metaclasses

	Monkey-patching (roll your own stdlib)

Keynotes

What’s makes Python awesome? (Raymond Hettiger)

	Lives in San Jose

	http://twitter.com/raymondh

	Core contributor of PyCon since forever

	set(), frozenset(), sorted(), reversed(), enumerate(), any(), all()

	collections, itertools,etc

	etc

	I’ve seen previous versions of this talk. My notes at those times:

	http://pydanny-event-notes.readthedocs.org/en/latest/PyCodeConf2011/python_is_awesome.html

Specifics

	License

	Commercial distros (ActiveState/Enthought)

	Zen of Python

	Community

	Repository of Modules (PyPI)

	Killer apps (Django, Pandas, etc)

	Win32

	books

	Shameless plug: I wrote a book called Two Scoops of Django. Check it out at http://django.2scoops.org

High level qualities of Python

	Ease of learning

	Rapid development cycle

	Economy of expression

	Readability and Beauty

	One way to do it

	Interactive prompt

	Batteries includes

	Protocols: WSGI, dbapi, etc

search directory tree for all diplicate files
import hashlib, os, pprint

hashmap = {} # content signature -> list of filenames
for path, dirs, files in os.walk('.'):
 for filename in files:
 fullname = os.path.join(path, filename)
 with open(fullname) as f:
 d = f.read()
 h = hashlib.md5(d).hexdigest()
 filelist = hashmap.setdefault(h, [])
 filelist.append(fullname)
pprint.pprint(hashmap)

Indentation

	This is how we write pseudo-code in or out of Python

	Contributes to the uncluttered feel of the language

List comprehensions

	arguably the most loved feature of the language

	How much stuff should we put on one line?

	Each list comprehension should represent a single English sentence

Generators

	Easiest way to write an iterator

	Simple syntax, only adds the YIELD keyword

Generator Expressions

	Same syntax as list comprehensions but with parenthesis instead of brackets

	Acts as a generator

	reduces memory footprints exponentially.

Note

Giant embarrassing oops by pydanny: At PyCon Philippines 2012 I demonstrated a Gajillionitem element generator expression in my shell, but used brackets instead of parenthesis.

Decorators

	Expressive

	Easy on the eyes

	Works for functions, methods, and classes

	Adds powerful layer of composable tools

Abstract Base Classes

Uniform definition of what it means to be a sequence, mapping, etc

Ability to override is isinstance() and issubclass()

	The new duck-typing “If it says it’s a duck…”

Mix-in capability

Superstars

Unbelievably good people coming into things

Guido Van Rossum

Forthcoming

Van Lindburgh

Forthcoming

LA Migra Hack

About me

I am Daniel Greenfeld (blog [https://pydanny.com], twitter [https://twitter.com/pydanny]), one of the principals at Cartwheel Web [http://cartwheelweb.com] and CTO of MoveHero [http://movehero.co].

Talks

	Data Mining with Spreadsheets
	Useful links

	Workforce data to consider for immigrant data analysis

	Foreign Born Workers

	Google Fusion Tables Bootcamp
	Examples

	Cool Tools

	Google Data bootcamp Advanced Track
	Questions to be answered

	Google Fusion Charts Templates

Data Mining with Spreadsheets

by Ronald Campbell of the Journalist at the Orange County Register

Useful links

	http://census.gov/cps/data/cpstablecreator.html

The CPS table creator allows to mine data from the March analysis of Census data.

Workforce data to consider for immigrant data analysis

Generate a report using the following criteria

	Education Attainment (sidebar)

	Nativity: Point of origin (sidebar)

	California (topbar)

You should now have data worth mining!

Time to interview the data!

	Paste the generated data into your spreadsheet of choice.

	Select the highest row with numbers and enter something like into the first empty cell to the right: =D1/B1

	Copy/paste the formula only to the empty cells corresponding to the other rows.

	Format the results to show percentages

Adjusting the Data

	Under ‘Data Options’ change the year to 2007 (sidebar)

	Formula for comparing 2012 with 2007:

	new - old / old

What does this show?

	Incoming workforce with high school and post-high school education dropped

	Surprise: Incoming workforce with bachelor’s degree or higher is increasing.

	Might be because more immigrants coming in have bachelor’s degrees.

	Might be because more immigrants are getting bachelor’s degrees.

	No way to figure out what this means from the data available. We need a journalist to investigate!

Foreign Born Workers

	Choose 2012 (sidebar)

	Table definitions are state and nativity (sidebar)

	Refresh

Visualizing the Results

I used Many Eyes (http://bit.ly/many-eyes) to quickly visualize the data. See

Google Fusion Tables Bootcamp

http://research.google.com/tables

Presented by Rebecca (of Google)

Examples

	NYC snowplow map

	Texas Tribune County map

	SF BAy Area Bike accident map

	Connection examples

Cool Tools

	Chrome Extension to find tables

	New capability to turn shared Google Spreadsheets data into visualizations automagically

	Open Refine

	Used to be Google Refine, a closed source product

	https://github.com/OpenRefine #lamigrahack

Open Refine

Makes turning data into machine readable format much, much easier. Can we have this as a hosted service somewhere?

	Used to be Google Refine, a closed source product

	https://github.com/OpenRefine #lamigrahack

	Installation: https://github.com/OpenRefine/OpenRefine/wiki/Installation-Instructions

Google Data bootcamp Advanced Track

Presented by Rebecca (of Google)

http://support.google.com/fusiontables

Questions to be answered

1. How can I show 2 values for a given polygon?

Fusion tables is about column/row data and merges, so you just use a merge column to show the data you want per polygon.

2. What are best practices for fusion tables?

Not yet covered

3. How do you use fusion tables with secure data?

Not yet covered

4. How do you import data files directly?

	Store in AppEngine

	Store in CloudSQL

5. How do you hide columns completely from viewers?

	It’s a setting control

Google Fusion Charts Templates

Looks like they implemented their own template language

Lean Startup 2012 Simulcast

I am Daniel Greenfeld (blog [https://pydanny.com], twitter [https://twitter.com/pydanny]), one of the principals and CTO at Cartwheel Web [http://cartwheelweb.com], a software consulting shop that builds startups. I have two startups of my own:

	Pet Cheatsheets [http://petcheatsheets.com]

Build custom 1-page reference sheets for your pets in minutes.

	MoveHero [http://movehero.co]

Get free, anonymous moving estimates.

Other live-notes / live-blogs

As is frequently happens, I’m not the only one documenting the event live. Check out the hard work and excellent writing of others!

	https://docs.google.com/document/d/1scTPA9HyYdhMISy1vm6XI8viEUOAkRzboDjTsI2W3fw/preview?sle=true#

	http://www.bizwatchsearchanalytics.com/reporting/?p=907&option=com_wordpress&Itemid=1

	http://www.shoestring.com.au/2012/12/the-lean-startup-conference-live-blog-from-4-am/#.UL0_H2zg4Ds.twitter

Eric Ries

	If you are building a startup you are trying to replace the big companies you dislike. The big companies started the same way you did, as a way to break the current system.

	We want to build the next big companies by mastering the disciplines of entrepreneurship.

Todd Park - USA CTO

	https://twitter.com/todd_park

	Previous - CTO of Health and Human Services

	Current: - U.S. Chief Technology Officer and Assistant to the President. Tech entrepreneur-in-residence at the White House

	Worked a medical startup in Boston that went public in 2006

	Created two more health based companies in Boston

Work

	Often runs startup-like efforts called ‘entrepreneurs in residence’ inside the USA, which allows radical new approaches for the federal government

	The FDA has been working with this program to help the health of the nation.

Open Data Initiatives Program

	URL: http://www.data.gov

	Ronald Reagan is the godfather of the ‘Open Data Initiatives Program’!

	GPS grew out of this system which has provided billions of dollars of business

	The government is the holder of immense archives of useful data

Note

Sunlight Labs (http://sunlightlabs.com/) is a group that works to translate the often not-machine readable data into formats that can be read and used by machines (and hence entrepreneurs).

Todd is working on…

	See RFPEZ to get through government RFPs faster (find on GitHub)

	Getting your health records from the US government without pain.

	US Government runs 24,000 websites. How are they all done? How much replication happens?

	US government spends $80 billion on IT per year. Needs to be cheaper! Use open source and better IT companies!

	https://github.com/presidential-innovation-fellows

	https://github.com/presidential-innovation-fellows/rfpez

Note

This is why OpenStack (http://www.openstack.org) was started at NASA by Chris Kemp. It was to reduce cost of single server setup from tens of thousands of dollars (mostly labor costs for meetings to discuss setting up single machines) to the same cloud costs paid for Amazon AWS. I can tell you as an ex-NASA employee that server provisioning was overly expensive as of 2010.

Diane Tavenner - Summit Public Schools

	http://www.summitps.org/

	Chief Executive Officer and Co-Founder of SPS

Issues

	PROS: Lots of successes! Tons of High School graduates!

	CONS: Only 50% of their graduates finished their college degrees

	Something is wrong

MVP concept

	What if instead of teachers directing classrooms, students went down their own path

	While this is not a new concept, they decided to map out the requirements extremely clearly to students and parents.

	They created an on-line testing system so that students could update their status by passing tests so they could see the results instantly.

	Added tons of testing and metrics. Rather than wait for years for results, they needed to know right away so they could fix it.

	Refused to use vanity metrics to promote the schools. They needed to know honest, real data on actual results - and kept even the bad news.

	Encouraged teens to provide feedback through mechanisms that teens like to use.

What they discovered

	Lectures were not effective.

	Teachers were much more effective dealing with individual student issues, rather than just broadcasting knowledge.

Tendai Charasika

	http://www.greaterlouisville.com/EnterpriseCORP/

	Works with the Kentucky Innovation Network

Get Out of the Building

	Get out and talk to users

	Get Uncomfortable

	Learn quickly and upfront if people actually want/need your idea implemented

	If you don’t ask you miss out on what they really want.

10 pragmatic ways to get out of the building

	Don’t Ask Your Uncle. In other words, don’t ask people you know will say nice things.

	Set up a booth, do a public demo

	Interview potential customers.

	Put your office where your customers are

	Throw a party

	Talk to experts in the field

	Find the decision maker (everyone else is just chaff)

	Listen to what customers are demanding

	Pre-order, landing pages, analytics (show demand for the product)

	Ask for the introduction

Note

Idea: Market your tech startup by sitting in a coffee shop and showing people.

TWO PEOPLE - Eric Ries and Tereza Nemessanyi

	Tereza Nemessanyi (https://twitter.com/TerezaN)

	Talking about using general accounting practices.

	Stay away from vanity metrics, except for what goes into a pitch deck.

	Investors use vanity metrics to make investments in your project, but using them for concrete business decision making is dangerous.

	Issue: Investors often use your original vanity metrics when determining how well your project is doing

Beth Comstock interviewed by Eric Ries

	Beth is the Chief Marketing Officer of General Electric (GE). https://en.wikipedia.org/wiki/Beth_Comstock

	GE believes that entrepreneurs are everywhere

	GE has to keep reinventing itself: You don’t last for over 130 years by staying static.

	Lessons learned: Partner with outside firms to help bring outside ideas into the company

	Recently: GE got into energy storage (batteries) via startup/entrepreneurs and it is now a multi-billion dollar part of their business

	Lesson learned: Really focus on MVP before trying to make it perfect for market. This is critical before ramping up to large production efforts - otherwise you have no idea what the problems really are.

	Statement: You can fall in love with your technology or you can fall in love with what your customers think about your technology.

	They want help and will pay for it! See http://www.gequest.com

Jessica Scorpio

	Founder of http://www.getaround.com/, which lets you rent cars from other people who live near you.

	https://twitter.com/jessicascorpio

Were not sure if it would work, so began prototyping.

Efforts

	Worked with students out of Moffet field, near San Francisco, to see if it would work.

	Built an iPhone app right away to get them a working prototype.

	Competed in Tech Crunch Disrupt to get publicity and won.

	They have a custom product called CarKit to let it wire into your car.

	Worked in litigation because part of this means granting easier access to your car. What if someone else is driving it and wrecks it? By getting some laws passed in California they cleared up the rules for making this service work.

Daniel Kim

	Founder of Litmoters (http://litmotors.com/)

	Builds self-balancing contained motorcycles.

	https://twitter.com/litmotors

Thoughts

	Building a car is hard.

	Building a car and mass producing a car is crazy hard.

	If you are creating a car company, you should know how to build a car, not just be a car executive.

	Trying to build the Model-T of the 21st century. Getting it right means positive income for 90-100 years.

	Different approach from segway

	Spent a lot of money doing research if there was a need for a small, sustainable vehicle market.

	Did building of product after doing market research

	Engineering:

	Built by hand, rather via expensive machinery.

	Didn’t worry to much about meeting prototype deadlines

	Feedback

	Did a small production round to demonstrate that people would buy it. This impressed investors

	Got lots of feedback from users and drivers

Lane Halley

	Carbon 5

	http://www.lanehalley.com/

	thinknow

Process for building products

	Sketch out your ideas as a team

	Lowest response fidelity

	Cross functional pairing is important

	When designers and developers work together, they need to understand each other’s tools.

	Lean startup is great for design

	Quick

	Visual

	Collaborative

	innovative

	Use workflow sketches to determine the flow of a product

	Don’t worry if it’s ugly, use paper

	Don’t use fancy tools

	If you use fancy tools, you risk locking up your product in whoever controls the fancy tools.

	Wireframes

	balsamiq is great

	So is paper

Ron Williams

Kind-of-lean startup talk

	Founder of Knodes

	http://knod.es/

	https://twitter.com/Knodes

	If they can figure out the right people into your funnel to being a user, your user becomes better than you about marketing your product.

	build/measure/learn for everything… or else

	Build: If you don’t build it you don’t know if it can be done

	Measure: Find out how it’s used, by people or whatever

	Learn from what you observe.

	Telling your team to BE lean is like a crash diet

	Don’t say: Hey I just read this awesome book and we’re going to start doing these 15 things differently.

	Changing habits is HARD.

	Beeing lean isn’t your goal

	The real goal is to have fun creating a product your customers love.

	GitHub is a GREAT example.

Andres Glusman

	Works at Meetup.com as Head of Insights & Strategy

	https://twitter.com/glusman

RSVPs are going up? Here is why:

Myth: People give a damn about lean methodologies

	No one wants to switch gears

	No one wants to buy a process

	Instead of convincing, just start doing it.

	Avoid Malkovich Bias

	The tendency that everyone uses technology the same way that you do.

	Example: iPhone/iPad users often don’t realize that the Android market is larger than the iPhone/iPad market.

Myth: People want to test things

	People actually like to build things

	Because of this issue, try to test easy things.

	As you improve your system thanks to easy test results, testing becomes more exciting

	Failure:

	Don’t try to avoid failure, embrace it.

	Learn from each mistake via metrics and tests and improve ever since.

	Go after the things that will cause us to fail as fast and often as we can.

Reality: People want to build and test things.

Myth: You can test your way into a great experience

	Testing your way to an experience often means you create a complete and total mess

	Sometimes you have to restart from scratch and see how it goes.

	See http://www.meetup.com/create/ to see what they’ve managed to get working

Panel - Getting engineers to embrace Lean

	Moderator: Even Henshaw

	Melissa Sedano (http://www.bloomboard.com - https://twitter.com/Bloomboard)

	Sam McAfee (http://www.change.org / http://www.change.org/users/sammcafee)

How to get developers/engineers to switch from Agile to Lean.

	Get engineers to embrace smaller prototypes

	Get your engineers to embrace metrics

	Throw away the code when you are done with the MVP

Warning

Read the ‘Danger: MVPs often not disposable’ section below.

Danger: MVPs often not disposable

Throw away code after the MVP is done? That only works for established companies.

Anyone who thinks you can throw away MVP code hasn’t talked to anyone at Twitter, GitHub, or 95% of other companies. They still run off the original MVP code. The only companies who can get away with throwing away MVP code are pre-existing companies with multi-million dollar budgets who use MVP efforts in tiny segments of their system architecture.

TWO SPEAKERS - Nikhil Arora and Alejandro Velez

	http://www.backtotheroots.com/

	Started selling at farmers markets

	Used a timer to gauge how long each person hung at their booth

	Got explosive growth

	Switched from selling mushrooms to selling mushroom growing kits all over the country

	Have a fish? Grow mushrooms! http://www.kickstarter.com/projects/2142509221/home-aquaponics-kit-self-cleaning-fish-tank-that-g?ref=card

Stephanie Yeager

@ http://twitter.com/steph_hay

Using words that help people find you and choose you

	You want people to choose you.

	But words describing superlative are overused. Everyone is ‘the best’.

	Try using ‘Lean content’ to describe your product to someone who isn’t you.

	Look for the ah-ha body language

	See the questions they respond to you with before the ah-ha moment

	Use the mom test. If you feel uncomfortable explaining it to your mom, then you need to find a better way.

	Growth goal: Get found

	Test your messages in AdWords. Test for clicks, not conversions.

	Embrace the unsexy words in organic searches

	Look for Entry Points and Top Content in GA

Steve Blank

https://en.wikipedia.org/wiki/Steve_Blank

Teaching Entrepreneurship

What we used to believe: Entrepreneurship can’t be taught.

What we know now: Entrepreneurship can be taught to anyone who volunteers to try.

Learn Entrepreneurship

What we used to believe: Learn Entrepreneurship requires a lot of education

What we know now: Learning Entrepreneurship some theory and a lot of practice

Warning

Learning entrepreneurship from an educator is risky. Their experiences may not translate to today’s conditions.

Teach the Entrepreneurial API

	Teach how to create a business model canvas

	Teach understanding of Customer Development

	Teach how to implement the plan using Agile Engineering

George Bilbrey

“Enterprise in the lean startup”

	Part of Return Path: http://www.returnpath.com/

	new product: Anti-phishing system

	Built with small team inside of their large 400 person company

	Read all the lean books

Note

Read http://www.amazon.com/The-State-Philosophy-Theodore-Andrew/dp/1480290556/?ie=UTF8&tag=cn-001-20&linkCode=ur2

Lessons learned

	Determine who the buyers really are.

	Bring in a Salesperson earlier in the process, however, the salesperson must like experimentation.

	Prepare to pivot: That means you have to be ready to admit you got it wrong

	Start small and organize for experimentation.

Ivory Madison

	https://twitter.com/IvoryMadison

	CEO and founder of http://redroom.com

“Bonfire of the Vanity Metrics”

	Vanity blinds you to a lack of actually important data

	Mark Twain: “Facts are stubborn, statistics are more pliable.”

Don’t use these metrics

	Page views

	New members

	Total members

	conversion rate

	Percent growth

	Twitter followers

	Facebook friends or likes

Characteristics of actionable metrics

	Measure success at your core business

	Show direct relations to revenue

Your Four: Most important Metrics

	Measure revenue

	Measure Sales Volume

	Measure Customer Retention

	Measure Relevant Growth

Find the big picture in???

Note

They switched back to the speaker after 2 seconds. :P

Ash Maura

“Getting the ultimate metrics dashboard”

	Establish a standard measure of progress

	DaveMcClure’s Pirate Metrics (look them up)

	As you gain users, it becomes harder to measure progress.

Leah Busque

	Founder and CEO of Task Rabbit

“If you had only $1, where should you spend it?”

	Really understand your customer so you can target your acquisition techniques

	Be holistic:

	test everything

	not just channels

	not just funnels

	Geo-targeting is critically important.

	What works in one place will not work somewhere else

	Test and measure the results

Big Panel

	Scott Cook (Intuit boss)

	Carol Howe

	Joe Hernandez

	Barath Kadaba (VP of engineering)

Question: What is the goal you have for your venture?

	You want to stay small and insignificant? (0%)

	You want to be giant and well known? (100%)

Making it happen

	Scott:

	leaders need to change and lead this change into the business

	Change things to create success after new success

	Large companies typically get stuck and become stifling

	Companies lean on politics and slide desk to stop changes:

	Leaders need to stop deciding on opinion, but to work on actionable metrics

Components of making it happen

1. Leader has to set the grand challenge

Barath Kadaba

	In 2008 he was told to change the lives of India. All the lives

	Given budget for just 3 people to do it.

	First effort:

	Decided to focus on the lives of Indian farmers.

	150m+ of them

	Contribute 25% of India’s GDP

	Most live in poverty

	Decided to solve the narrow problem:

	Problem: To whom can they sell their produce to get the best price?

	Solution: Send farmer’s SMS text messages with the latest known data

	Quick Implementation: Faked it with hand-texted SMS messages to farmers.

	HUGE success

	They got 20+ projects done this way

	Team fought management death threats to stay alive

	Only survived because they were so small

	Yet increased the income of millions of farmers by 20%

2. Leader has to implement organization settings to make it possible to change

“Lawyers often are the barrier to success, they need to be instead considering how to make success more possible”

Joe Hernandez

	Change Mindset, which will change Behavior.

How do you shift a group from saying no (leaders, lawyers) to saying yes?

	Democratize Action

Create a clear set of guidelines in non-legalese that makes it easy for people to understand when they can move forward.

Note

How is a set of guidelines ‘democratization’?!? I think he needs a dictionary. :P

	Becomes the power of success

Enable easily understandable rewards so you can demonstrate success. Payment can be financial or simple numbers.

3. Leader has to model pulling insights from both successes and failures

Carol Howe

	In 2009 created a start-to-finish app for Intuit that lets you take pictures of your tax documents and it files for you.

	But this wasn’t how it started:

	Started with a photo capture app that would upload to your computer and that would file to the government

	But when they created the app prototype, testers made it clear they wanted to just finish it on their phone

	Stepped back and looked at the feedback from prototype users and listened carefully

	Mobile fans raved in long discussions

	Web fans said one word answers like, “nice” and “neat”

	Started with launch in California and took lessons from there

4. Leader has to live by the same rules and disciplines as everyone else.

Scott Cook

	Test your beliefs the same way you make others test theirs.

	If you don’t test your beliefs, then you’ll drive into places based on opinion, not science.

	By testing your hypothesis, you don’t just get better results, you often have more fun.

Drew Houston

	Founder of dropbox.com

Q&A from questions given from the audience:

	Question: What do you look at in regards to metrics?

	Answer: We look primarily for: “How many active users do we have?”

	Question: What tools do you use for gathering metrics?

	Answer: The simplest tools possible to gather metrics

	Answer: Store them in google docs and other simple tools

	Question: How do you find people?

	Answer: Personal network

	Answer: Connect with the developer/business communities

	Question: What are your goals and how are you accomplishing it?

	Answer: Build something that makes me happy

	Answer: Build something that makes others happy

	Answer: Have fun making it work

	Answer: Figure out how many users you need to get in order to do the startup full time.

Charles Hudson

	https://twitter.com/chudson

	http://www.charleshudson.net/

“Being a VC does not protect you from making boneheaded mistakes as founder.”

How they got started

	Saw that none of the games for Android were any good

	Decided to become the ‘android guys’

	Platform decisions matter

	Tech

	Distribution Channels

	Can they go between systems?

Had to pivot

	Couldn’t monetize just on Android

	Tried to leverage switching to Kindle Fire and iOS

	Story isn’t done yet

Dave Binetti

	co-founder of Votizen

	http://davidbinetti.com/

When you do you pivot?

	You need to have a vision to make a decision based off of hard metrics.

	Often people make a pivot based not on hard metrics but emotion

	Pivoting doesn’t mean changing your vision, it means changing your path

Mark Abramson

Did Lean Startup Machine and won it. Ran 10 experiments and pivoted 5 times during the conference

	Experiment - Tax paying

	Discovered that restaurants over 25 employees have to pay an extra tax

	They all send it accountants and pay serious money.

	No pain. Not worth doing.

	Experiment - Happy Hour Marketing

	No one has problems here. Not worth doing.

	Experiment - Getting people into food places

	Fierce competition everywhere. Not worth doing.

	Missed

	Experiment - Wine club for restaurants

	6 bi-monthly events in 2013 for the serious wino with exclusive chefs

	$1500 for 2 people for an annual membership

	People will pay for this service!

	They’ve made $4500 in days

	They could have sold out if not presenting

Marc Andreessen

	http://a16z.com/

	https://twitter.com/pmarca

Interviewed by Eric Ries. Notable quotes:

	Pivoted twice when it was still called, “We fucked up”

	When you get a ton of customer service requests it means you are succeeded.

	You have to move quickly in order to capture the market. You can’t wait. Just have to move.

	Until your effort makes a product market fit, it’s not a real company.

We learned a lot of lessons from the dot-com crash

	Worried that people who lived through the crash are suffering psychological damage from the event.

	Many of the ideas of the time were valid, but were just too early.

	You can take the ideas of the time and with a twist, apply them to great success

	The bubble itself was only 18 months. From 3rd quarter of 1998 to the 1st quarter of 2000.

Problems he hears in pitches

	Not every startup can startup can be lean. Sometimes you need to just be audacious. Think Apple, Intel, or anything Elon Musk does these days.

	You can’t put a rocket into space on a lean program.

	Don’t let the lean startup methodology destroy other ways of doing things.

	Lean startup methodology used to avoid sales marketing strategy seriously.

	Sales and marketing doesn’t happen magically.

	No matter how good your product might be, people won’t come to it without sales and marketing.

	Critical examples: Google, SalesForce, Facebook, and Twitter have thousands of sales rep.

	Business applications do not sell themselves

	Don’t rely on anything going viral

	Entrepreneurs give up too quickly

	Are you going to do the heavy lifting over a long period of time?

	keep at it!

	Failure fetish

	By taking the stigma out of pivoting, entrepreneurs have an excuse to not try hard enough. Don’t be gleeful about failure.

	People who claim to be “serial entrepreneurs” without success are giving themselves a fancy title for being a failure.

	Preserve the good of failing, learn from it and succeed next time.

	History is weird

	Winners are portrayed perfectly, losers are portrayed like idiots

	He contends that winners often are just lucky enough to start at the right time.

Tips

	Do not go public until your company has built a fortress. If you don’t have all the positions filled, brand established, predictability in the market, then you are at great risk.

	Going public today is an extreme sport. It’s very dangerous.

	Lean Startup is like the Theory of Relativity for Business.

	We now have a process and science for getting things done.

	BUT you still need old fashioned sales and marketing.

PyCon Poland 2012

Dates: September 13-16
Venue:

Hotel Przedwiośnie "Early Spring"
Mąchocice Kapitulne 178
26-001 Maslow k / Kielce
center coordinates: 50.9024 N, 20.78021 E.

Note

Even though I don’t speak Polish, I tried to capture some of the Polish talks.

Talks

	Fractal Architectures
	Talk Description

	Standard Architectures

	Consider Instead…

	Breaking the rules

	The Diablo III example

	Axiom

	Manhole

	Contention of the Talk

	Poking holes in his own design

	Testing

	Forms in python - problems and my proposal of solving them
	Talk Description

	Introduction

	FormEncode

	Django Forms

	Sprox

	FormAlchemy

	Formish and Deform

	Anthrax

	Continuous integration - czyli jak spędzić weekend z dziewczyną zamiast z szefem
	Description

	Pyflakes and PEP-8

	Coverage.py, nose, and other tools

	Automatic Installation

	Set up your own QA servers

	What I missed about Python (and how JS taught me to love Python even more)
	Description

	Composability through multiple inheritance
	Description

	Act I: Exposition

	Act II: Rising Action

	Act III: Example

	Monkeypatching Django

	Using Python to Generate Art and Sound
	Description

	background of the Talk

	Introduction

	Overview

	STDLIB!

	Chords for music

	Using matplotlib to visualize the chord

	Concatenate notes into sequences

	Weaving it all together

	Introducing Pycairo

	Summary: Think functionally

	In Memorandum

	Bonus Slide

	PyCon PL 5 lat
	Introduction

	How did we get started?

	PyCon PL 2008

	PyCon PL 2009

	PyCon PL 2010

	PyCon PL 2011

	PyCon PL 2012

	Highly scalable services in Python
	Talk Description (In Polish)

	System Architecture

	Making Python faster

	Benefits

	Critical tools

	Results

	Summary

	Blame it on Ceasar: A rant on calendaring
	Talk Description

	Introduction

	Lunar Calendars

	Lunisolar calendars

	Solar Calendars

	How do you implement the calendar yourself?

	Timezone woes

	Abbreviation Evil

	Daylight Savings Time

	Pytz discussion

	Advantage pytz

	Current standard specification

	Libraries

	Datepickers

	How to bootstrap a startup using Django
	Talk Description

	What is Gidsy?

	Why did they choose Django?

	Why Django is a good choice?

	Implementing search

	Implementing API

	Task Queues

	Caching

	Workflow

	Testing

	Releasing

	Scaling up

	Deploy System

	Operations

	Things they learned

	Asynchronous and event-driven PyOpenCL programming
	Description

	Increasing hardware parallelism

	OpenCL

	Basic OpenCL programming model

	Execution run-time hierarchy

	Execution Models

	PyOpenCL

	OpenCL programming workflow

	Event based programming done in Python

	Event-related objects

	Fission

	Where PyOpenCL helps

	Extensions

	OpenGL

	Future of PyOpenCL

	Suggestions

An Extreme Talk about the Zen of Python

Note

I would have taken notes but as I was presenting it would have caused a fatal recursion error. Fortunately, three people (Audrey Roy, Łukasz Langa, and Zbigniew Siciarz) submitted live-notes of this talk.

	An Extreme Talk about the Zen of Python
	Daniel Greenfeld

	Zen of Python

	super()

	Django CBVs

	Django

	Web2py

	OpenComparison

	Decorators

	Getting it done vs. technical debt

	Namespaces

	Breaking built-ins

	Summary

	Extreme Talk about Zen of Python
	The Opening:

	Controversies

	Exception handling

	More controversy

	Final section

	Summary

	An extreme talk about the Zen of Python
	Description

	Introduction

	The Zen of Python

	The Opening

	Explicit > Implicit

	Django CBVs

	Moving on

	Django controversy

	Separation of presentation from content

	Controversy: web2py

	Exceptions in exception handling

	Django Packages

	Cleaner code

	Decorators

	The last section

	Getting it done vs technical dept

	Must-have docs

	Test patterns

	Namespaces

	The open() story

	COntention

	Summary

	One more thing

Schedule

	http://pl.pycon.org/2012/en/agenda

	CouchDB and Python (unfortunately was doing client work so worked through this)

Invited Speakers

	Audrey M. Roy

	Jannis Leidel

	Laurens Van Houtven

	Kai Diefenbach

	Stefan Kögl

Sponsors

	Python Academy: http://www.python-academy.com/

	Allegro

	Onet

	Megiteam

	OSworld.pl: http://www.osworld.pl/

	OSnews.pl: http://www.osnews.pl/

	Polish Python User Group: http://pl.python.org/

	Bioinformatyk http://www.bioinformatyk.eu/

	Linux Magazine Poland: http://www.linuxmagazine.pl/

	Wingware Python IDE

	Github: https://github.com

	Enthought

	Coders Mill

Fractal Architectures

	by Laurens Van Houtven

	https://twitter.com/lvh

	Twisted Developer

	PSF Member

	Lives in Krakow

Talk Description

Traditional service architecture wisdom generally tells us to build services like this:

	Load balancer in front

	Web servers, preferably stateless

	Database (with a caching layer)

That works great for a wide variety of use cases. The point of this talk isn’t to deprecate that design, but to discuss a radically different one.

The design I will present in this talk is one consisting of recurring, identical components. It localizes state to individual application servers and persists it to durable stores later. It aims to be easier to scale horizontally: that is, enabling you to increase throughput by simply adding more machines to the homogenous cluster.

I will talk about it’s benefits, such as performance and how it fits in well with many cloud providers’ services, but also its downsides, such as the inherent complexities of distributed systems. These qualities are analyzed to come to a conclusion about which kinds of project this design is suitable or not suitable for.

In this talk I will discuss both the abstract concepts and the practical implementation that I have built using Twisted and Axiom (a simple object database on top of SQLite 3), which is currently running in production. Although I will touch on the practical implementation, the talk should still be useful for anyone wanting to implement a similar idea using different tools.

Standard Architectures

Check out Twelve Factor App.

	Level 1: Servers Database Cache

	Level 2: Application Servers

	Level 3: Load Balancing

The problem for you is that scaling all of these levels gets server and code expensive. You have to add in distributed data, messaging queues, and extra servers. Or pay companies like Heroku and dotCloud and Redhat a lot of money.

Consider Instead…

	Sharding architecture

	Problems:

	Expensive

	Only for things on a Facebook scale.

	Most people don’t need this sort of thing.

	Forces restrictions on code patterns.

	Advantages

	Constraints on code means you have the freedom to do what you want within those constraints.

	Lower latency

	Great for when one user is only interacting with data that just affects themselves. For example:

	Perfect for things like a webmail client. Most of the real behavior of the system is interacting with the client, not doing SMTP.

Breaking the rules

Special cases aren’t special enough to break the rules.
However, practicality beats purity

—Tim Peters, Zen of Python

Sometimes it’s good to farm things out rather then forcing it into your stack. For example, instead of doing the SMTP yourself, let Rackspace (Mailgun) or Amazon (SMS) do it for you.

The Diablo III example

Auction house could benefit from this architecture.

	Store the data in tiny places per user per general geolocation.

	Would work perfectly using SQLite3 per user if you add in Axiom

	Alternative databases:

	PostgreSQL

	Redis

	MySQL (not recommended)

	Try to use byte-differential storage. Unfortunately, the only professional option for this method is Dropbox.

Axiom

Links:

	http://divmod.readthedocs.org/en/latest/products/axiom/index.html

	https://launchpad.net/divmod.org

	https://github.com/rcarmo/divmod.org/tree/master/Axiom

	http://www.devshed.com/c/a/Python/SSH-with-Twisted/3/

Installation caveat: Axiom requires Epsilon in setup.py egg-info, so you need to manually install it first

Info:

	Runs on top of SQLite3

	Object database that works with one class per one table.

	Strongly typed

	Great for doing queues

	Does filestore

	Axiom powerups can have more than just static data, you can add behaviors

Manhole

	Twisted project

	TODO: find details as to why he mentioned this

Contention of the Talk

Either make things run faster or make things do less work.

	Query latency between servers (database, caching, http, etc)

	Caching really doesn’t work for game servers and processing

Talk Contention: If you put it all on a bunch of small servers that can just do their limited collection of tasks, then you get to avoid latency issues between components.

Poking holes in his own design

	Some of his data doesn’t fit into small shards. So things like Encyclopedic data or ‘world data’ won’t work. So where do you put this data?

	Size of data becomes an issue. Small shards hold less data

	Data updates with 10 million user stores means you have to update 10 million datastores

	You need to keep most of your queries local per shard.

	This forces tight coupling because a shard needs to really focus on shard data

	Querying across stores is hard. :-(

	Data analytics is harder

	Big data requires special tools like Hadoop, Apache HBASE, Hive, etc

	Odds are you don’t actually need Hadoop. Unless you have terabytes of data you don’t need these tools

	Transactions are a challenge.

	Get the RDBMS to do it

	You could do it in Python, but that isn’t ideal

	No existing tools and frameworks designed explicit for sharding

	Tools he mentions are general purpose that he uses for this sort of activity

	Nothing like Django to composite everything together

	No PaaS (Heroku, dotCloud, OpenShift) to do the system engineering for you

	No load balancing exists that handles this behavior. Which means depending on your setup you’re still playing with load balancing.

Testing

How do you do it?

	Careful focus on functional

	Careful focus on unit tests with mocks

	If you must, use Paxos algorithm to manage the transaction tests

Forms in python - problems and my proposal of solving them

	By Szymon Pyżalski

	STX Next Python Experts

	https://github.com/zefciu/Forms-in-python

Talk Description

My lecture would consist of two parts. First I would like to discuss what can a developer expect from a form library. Secondly I will show a design of one that would address all these problems.

Introduction

The basis of reviews:

Why are they important?

Forms are ubiquitous across all Python frameworks

	Python is a strongly typed language so we have to handle input properly

	Closest to the user

	What they see most

	This is where they tend to see our mistakes

	Our first line of defense against security against CSRF and other attack methods.

	Boilerplate and repition removal

Scope of Features

All form libraries need to have the following components:

	User input handling

	Type coercion

	Validation

	Widget generation

	Data schema reflection

	Critical boilerplate reduction

	Try not to define both data and form schema

Challenges

	Flexible but not full of feature creep

	Easy to grow too big

	but you can’t make the project unmanageable

	Allow reflection but don’t bind user’s hands

	If you can’t modify the reflection then the form library quickly becomes useless on real projects

	Portable but allows developers to use specific features

	If coupled too tightly then it’s hard to move to other projects

	If coupled too loosely then API can suffer.

FormEncode

	By Ian Book

	Minimalist: only validation, coercion, html-filling

	Was recommended by Pylons book

	Problem: No schema reflection

Django Forms

	Second attempt

	Plays best in the Django framework

	Problem: Hard to create new widgets

from django.forms import ModelForm, Textarea

class AuthorForm(ModelForm):
 class Meta:
 model = Author
 fields = ('name', 'title', 'birth_date')
 widgets = {
 'name': Textarea(attrs={'cols': 80, 'rows': 20}),
 }

Sprox

	Combines FormEncode and ToscaWidgets

	Extendable and easy to create new widgets

	Problem: unpleasant API

from sprox.formbase import AddRecordForm
from formencode import Schema
from formencode.validators import FieldsMatch
from tw.forms import PasswordField, TextField

form_validator = Schema(chained_validators=(FieldsMatch('password',
 'verify_password',
 messages={'invalidNoMatch':
 'Passwords do not match'}),))
class RegistrationForm(AddRecordForm):
 __model__ = User
 __require_fields__ = ['password', 'user_name', 'email_address']
 __omit_fields__ = ['_password']
 __field_order__ = ['user_name', 'email_address', 'display_name', 'password', 'verify_password']
 __base_validator__ = form_validator
 email_address = TextField
 display_name = TextField
 verify_password = PasswordField('verify_password')

registration_form = RegistrationForm(DBSession)

FormAlchemy

	Built on idea of shcema reflection

	Generates forms and tables

	Type coercion

fs = FieldSet(User)
fs.append(Field('repeat_password').label('Repeat password'))

def password_match(value, field):
 if value != field.parent.password.value:
 raise ValidationError('Passwords do not match')

Formish and Deform

	deform is a fork of formish

	don’t do reflection

	Strong seperation between schema and form

	Schema can be used for other data-parsing formats

class Schema(colander.Schema):
 password = colander.SchemaNode(
 colander.String(),
 validator=colander.Length(min=5),
 widget=deform.widget.CheckedPasswordWidget(size=20),
 description='Type your password and confirm it')
schema = Schema()
form = deform.Form(schema, buttons=('submit',)

Anthrax

https://github.com/zefciu/Anthrax

Note

The name comes from classic literature, where Galahad visits Castle Anthrax and has his purity threatened.

His own forms library. Pre-alpha but it looks interesting.

	Highly modular. If you create a dependency, create a module

	4 layers

	fields

	widgets

	views

	templates

	building blocks

	forms: A collection of subcontainers and fields

	Field: Knows how to validate and coerce a particular data type

	Widget: a suggestion about presentation

	Validator: Works on a form or container, ad-hoc or generic

	Front-end: A complete system to render the form in forms like HTML, Dojo flavored HTML, Angular flavored HTML, XML, etc

	View: Front end dependent object

	Template: Let you define the output in a flexible way

	Building block relations

	A form has fields. It can be rendered into a front end

	A field has a list of widgets that are called depending on the format requested

	A front-end handles some widgets by assigning views to render them.

class RegisterForm(Form):
 __validators__ = [('equals', 'password', 'repeat_password')]
 __reflect__ = ('eplasty', User)
 __frontend__ = 'dojo'
 login = {'label': 'Login'}
 hash = salt = None
 password = TextField(widgets=[PasswordInput], label='Hasło')
 repeat_password = TextField(widgets=[PasswordInput], label='Powtórz hasło')
 ok = HttpSubmit()

My thoughts on it:

	I like the seperation of layers.

	Like the way widgets are a list attached to a field, not just as a single widget per field

	I don’t like the __<SOMETHING>__ syntax. He likes them so we’ll agree to disagree. ;-)

Continuous integration - czyli jak spędzić weekend z dziewczyną zamiast z szefem

by Łukasz Langa

Note

Alas, I got convinced to try doing this late. And I don’t speak Polish.

Description

Większość z nas woli programować zamiast debugować. Tym bardziej mało kto lubi szukać błędu na serwerze produkcyjnym w sobotni wieczór. Jak tego uniknąć? Nie wpuszczaj błędów na produkcję. Podczas prezentacji pokażę jak przy użyciu takich projektów jak nose, jenkins, pyflakes, fabric tego dokonać.

This is a talk on continuous integration and best practices.

Pyflakes and PEP-8

	Use tools to validate the quality of your code

	Develop good habits

Coverage.py, nose, and other tools

	coverage.py lets you know how much is tested

	nose discovers tests.

Automatic Installation

	Create a reproducable installation procedure that is executed via tools

	Don’t do it manually

Useful tools include:

	Fabric

	Pip

	Virtualenv

Set up your own QA servers

	Set up your own servers takes a lot of work and effort.

	OpenStack is nice because:

	It does a lot of the lifting for you

	Open source so you can use it for free and contribute back

	My Polish is bad so I wonder if I missed him suggesting paid PaaS like Heroku, dotCloud, et al

What I missed about Python (and how JS taught me to love Python even more)

	by Audrey Roy

	https://twitter.com/audreyr

	http://audreymroy.com

	PSF Member

	My fiancee!

Description

What happens when you take a Python developer and immerse her completely in JavaScript for a few weeks? This talk tells the story of my journey through JavaScript, from deep-diving in and looking for Python analogues in JS to achieving a greater understanding and appreciation of Python’s design through comparative language study.

Note

Spent the talk taking pictures. Waiting for some notes taken by others that I’ll be including here.

Background

PyLadies, OpenComparison, PyCon Phillipines

Total immersion in javascript

Several weeks of intense JSing

“JS is a terribly misunderstood language”

	Pre-Immersion:

	python is better
js is invevitable

Is JS good parts is good enough to just work with it?

	Is it worth it?

	use ajax more?
use full blown python soa and backbone.js?
integrate js relatime features?

	JS spectrum:

	avoid at all cost <—> Happiliy use 100% JS

Findings

	Python is elegant!

	good parts included (in js not so readily)

	JS ecosystem is thriving

	works where python ecosys does not
very ambitious

	Funcions in python

	intedentation begets clarity of scope
docstrings, named parameters
minimizing anonymous funs

	Funcitions in JS

	the infamous ‘var’
anonymous function… not
no default params
worse documentation tools

	JS is more functional, and thus better. Right?

	closures as solution for scope leakage
closures as classes
closures as modules

(Audrey had an error on her slide, as if to emphasise
cumbersomnes of JS closure hacks).

	Functional programing in python

	iterators, generators
list comprh.
batteries included (itertools, functools, operator)

Lambdas – anonymous funcs are by design constrained.

You can nest functions in python has much more sense.

	What python cant do?

	close over a non-global var in outer scope (python 3)

	Python classes are elegant!

	scope is obvious
class is namespace
docstring

	Klass in JS:

	at least two different hacks
not one obvious way
prototypal inheritance is complex
different is not always better
reallity: prototypal is annoying

	Modules:

	long history in python
simple, defined by files

	Modules in JS:

	just a script tag
not part of the language, some libraries provide shim

	Packaging

	no one true way in python, confusing

	Packaging JS:

	many alternatives: npm, ender, jam, bower
not build into the lang

	Code reuse

	two obvious necessities
importing libraries
organizing code int o dierctories

	Design patterns

	classes provided by language
decorators
iterators and gens
modules

pthon minimizes boilerplate
js brings DP with libraries, many times

	Standard library

	python has great stdlib, with some parts dated; opinionated
js has none; jQuery, Node, no strong leadership

	Stdlib - datetime

	js date.js died, although it was touted as best
python datetime has limitations, but it’s there
some good js libs exist, but lack recognition

JS and polyfills

hack away what is not defined

JS beats Python (reality wins)

js working in browser
cross platform mobile dev tools
huge innovation

Summary

Python has good parts emphasised
but has catching up to do

You should try diving deep into JS.

Diversity helps community!

Composability through multiple inheritance

Original Polish Title: Kompozycja poprzez wielokrotne dziedziczenie

note:: Talk is in English, but title and description were in Polish

	by Łukasz Langa

	https://twitter.com/llanga

	https://github.com/ambv

Description

Jednym z momentów zwrotnych w historii było wprowadzenie produkcji półfabrykatów. Poprzez tworzenie prostych komponentów, które integruje się później w złożone produkty, producenci są w stanie budować szybciej i taniej, osiągając lepszą jakość. W tej opowieści programisty o sercu inżyniera opisuję, jak używam mechanizmu wielokrotnego dziedziczenia dostępnego w Pythonie, by realizować tę rzeczywistość przemysłową w kodzie źródłowym. Przykłady bazują głównie na Django, jego ORM, formularzach i klasowych widokach. Jednakże zasady, które opisuję, są ogólne. W trakcie wykładu wspominam o sposobach implementacji komponowalnych modeli abstrakcyjnych, a także mixinów do formularzy i widoków. Tłumaczę, jak to podejście tworzy czytelne i zarządzalne idiomy, wraz z ich plusami i minusami. Zakończę podsumowując moje doświadczenia z próbą stworzenia biblioteki ściśle reużywalnych komponentów.

This is a talk on composition

Act I: Exposition

	You can use legos to build small things and yet also to build big things.

	Lego blocks do have the composability feature

	To make components work, you need to have a framework that embodies compositionality.

	UNIX pipes are a good example:

	Composition isn’t a science, it’s an art

	Programming done well is art. Programming done badly is trash

	Jamie Zawinksi: You can have a string that describes things accurately, or you can have a string that describes things accurately with flair

Note

According to Lucasz, the owner of Lego stole the invention from someone else and patented it, and made a fortune. The actual inventor died of grief.

Act II: Rising Action

	If you use old-style style classes, you’re going to have a bad time.

MRO

>>> class A(object):
 pass
...
...
>>> A.mro()
[<class '__main__.A'>, <type 'object'>]

Thoughts on the diamond problem

>>> class A(object): pass
>>> class B(object): pass
>>> class AB(A,B): pass
>>> class BA(B,A): pass
>>> class C(D, AB): pass
>>> class D(A): pass

	Python has a definition of how to resolve the diamond problem in multiple inheritance.

	Python has cooperative inheritance

	In our example, you have to carefully watch how things are constructed

Super was designed to solve this problem

But it failed. It’s only useful in limited cases and can fool you.

class D(A):
 def __init__(self):
 super(D, self).__init__(arg_a='d')

	Don’t omit super(c, self).__init__() even if your base class is object

	Don’t assume you know what arguments you are going to get

	Dont’ assume you know what arguments you should pass to super

Warning: If you mix ClassName.__init__() and super your are going to have a bad time.

Django ORM as a diamond pattern case study

	Problems: If you have a diamond pattern in Django it causes duplicate fields

	breaks the Liskov substitution pattern

	Example https://github.com/ambv/kitdjango/blob/master/src/lck/django/common/models.py

	TASK: Check out what happens when you add TimeTrackable and something else from this file. You will apparently get duplicate fields.

Act III: Example

	Use base classes in Django models is a good way to have easily maintained code. Examples:

	EditorTrackable is a Model base that handles not just who can edit data, but also handles cascading deletes elegantly.

	TimeTrackable is a model that tracks when something was created/deleted. Includes the following:

	Created

	Modified

	cache_version is an field that tracks which cached version is being displayed

	By composing his models on many projects via Abstract Models, he can test each reused abstract model extensively and repeatedly.

Monkeypatching Django

	https://github.com/ambv/kitdjango/blob/master/src/lck/django/common/monkeys.py

Using Python to Generate Art and Sound

	by Audrey Roy

	https://twitter.com/audreyr

	http://audreymroy.com

	PSF Member

	My fiancee!

Note

Lots of code samples with detailed explanations. Can’t keep up with my notes but it’s awesome.

Description

I’ve used Python to draw rainbows of different shapes and colors, Gaussian clouds, and landscapes in perspective. I’ve also used Python to create sound effects for games. This talk explores my experiments with the various Python imaging and sound tools. First, I walk the audience through implementing basic audio building blocks with the Python stdlib’s wave, math, and array modules. Then, I improve upon the code with NumPy and SciPy. Finally, I demonstrate how audio synthesis can be very similar to generative graphic art, using similar techniques to create building blocks for basic illustration.

background of the Talk

A few years back she was painting landscapes and got tired of repetitive techniques so she decided to write a program to do it for her

Introduction

	Overwhelming variety of Python libraries for audio/graphics

	Understanding the fundamentals first

	Helps you understand your options

Overview

	Simple sound with the Python stdlib

	Numpy and Scipy

	Plotting sound arrays with Matplotlib

	Creative sound generation techniques

	Using the same tricks on graphics instead

STDLIB!

	Very east to get started

	Other libraries can and are tricky to install

Parts she’ll be using

	Wave Module

	Use it to open and write .vave files

	Introduced in stdlib 1.6 and hasn’t changed much since

	Array Module

	Using it to store data over time

	Math module

	Using math.sin(x) to calculate 440 Hz audo audio samples

wave, array, math

Generates a 440 Hz sine wave

import array
from math import sin, pi
import wave

SAMPLE_RATE = 44100
DURATION = 3

TODO finish tons more code

Simplifying via a function

import array
from math import sin, pi
import wave

SAMPLE_RATE = 44100

def note() # TODO finish coding this out

Can this be simplified further?

	Yes via NumPy arrays!

	perfect for sound operations

numpy.linspace(start, stop, num):
>>> linspace(0, 1, 10)
array() # TODO get this value

#sumpy.sin(x)

Now we show the simplified example:

from numpy import linspace, int16, sin
from scipy.io.wavfile import write # Using this because it's less code to use than the Wave module

def note(freq, duration, amp=10000, rate=41100):
 # TODO add code stuff here
 pass

Is this music?

Not yet. You need chords for music!

Chords for music

	Simply add 2 notes of different frequencies together

	She looked up Piano key frequencies on wikipedia

chord function
def chord():
 # TODO get a sample of this code
 pass

Using matplotlib to visualize the chord

She showed very nice code to plot out audio files.

Concatenate notes into sequences

She showed using numpy’s concatenate() function to add up arrays of sound samples.

Weaving it all together

File structure

	notes.py

	contains piano keys

	contains imports of all the notes components

	Used numpy’s uniform() function to create nice distributions of frequencies and durations

	Constrained the frequencies so they are humanly playable

	Explained use of random.choice over numpy.choice. Chose it because numpy’s version is in beta.

Results

	Colorful rainbow of sounds that sounds relatively pleasant to the ear

Adding Gaussian Distribution

	Using an algorithm to make things more centralized.

	Which blurred things so instead of a rainbow of sounds it sounded like puffy clouds. :-)

Introducing Pycairo

	Python API for cairo

	HTML Canvas uses cairo as well

	Showed how to use Gaussian algorithm to build clusters of dots

Blocks and Puffs

	Show same technique as used in audio to create puffs of clouds

	Added blue background.

	Alpha and radial gradient background

	Adjust X and Y axis of gaussian to stretch the clouds into a more cloud-like shape

Not just puffs

Can also use these processes on colors.

	Use uniform distribution for picking colors randomly

	Explore constraining to a subset of colors

	Used this technique and more to generate real paintins

Summary: Think functionally

	Parametize everything

	Use numpy array functions as much as you can

	Can combine wave, array, math from the Python stdlib for audio synthesis

	Sound and art composition are extremely similar

	Experiment with Gaussian distributions

In Memorandum

	John Hunter, founder of Numpy, passed away recently

	http://numfocus.org/johnhunter

Bonus Slide

	Tones + filters = sound effects

	Play with looping, itertools

	Image sequences + Reportlab = flipbook PDFs

	Use strokes and not fills

	Save image + sound sequences as videos

	Image composition can respond to audio input

PyCon PL 5 lat

aka Five Years of Python

	by Filip Kłębczyk

Note

I’m translating this entire talk from Polish.
I don’t speak Polish except how to say, “Thanks” and now “Questions?”.

Introduction

	We’ve been doing PyCon PL for 5 years

	How many people have been to PyCon before? (about half)

	How many people have come to their first PyCon? (about half)

How did we get started?

	The inspiration comes from various other user group conferences.

	We wanted an event for Python

	We also give credit to PLUG (Polish Linux User Group)

	Piotr Kasprzyk, Ph.D, gets credit and applause for his untiring work in the Polish Python community. Many attendees are previous students of his and he invited Audrey Roy to PyCon PL 2012.

PyCon PL 2008

	October 18-19 in Rybnik

	Rybnik looks like a lovely city.

	The administration of the event has been a growing process.

	We had a big old-fashioned monitor on the presenter’s desk.

	Lennart Regebro was the first foreign guest to PyCon PL!

	Zope

	Plone

	Lots of beer was drunk!

PyCon PL 2009

	October 16-18 in Ustron

	So much fun last year we had to expand it!

	The day before the conference there was a big snow storm

	It was much harder to get there

	Wesley Chun was the guest speaker

	Google App Engine

	This year we didn’t have a big monitor on the presenter desk.

PyCon PL 2010

	October 8-10 in Ustron

	A little bit earlier so we could miss the snow storm

	The weather was beautiful!

	So nice that people wore short sleeves outside!

	Armin Ronacher was our guest speaker

	Jinja2

	Flask

	This guy played piano a lot

PyCon PL 2011

Note

When asked who had been to all PyCons before this one people raised their hand. So I raised my hand too.

	September 22-25 in Machocice Kapitulne

	Took place at this hotel we are at now (Hotel Przedwiośnie)

	Guest speakers:

	Brandon Craig Rhodes

	Lennart Regebro

	Yummy BBQ outside with lightning talks!

	Note: looks like a very impressive setup

	You had to do it in your heavy coat

	It was fun!

PyCon PL 2012

Note

This weekend’s conference!

	September 13-16 in Machocice Kapitulne

	Took place at this hotel we are at now

	Guest speakers:

	Audrey Roy

	Have fun and do Python!

Highly scalable services in Python

Original title: Wysoko skalowalne serwisy pythonowe w OnetPoczcie

	by Igor Waligóra

	From Warsaw

	Works on high integrity systems at Onet

	About Onet

	Over 70 developers use Python full time

	https://twitter.com/onetpl

	news portal and email provider

	One of the oldest sites in Poland

Note

I’m translating this entire talk from Polish.
I don’t speak Polish except how to say, “Thanks” and “Questions?”.

Talk Description (In Polish)

W prezentacji pokażemy nasz model rozproszenia usług pocztowych, jak zrobiliśmy to przy użyciu Pythona. Pokażemy metody realizacji stabilnych i skalowalnych systemów utylizujących niskopoziomowe biblioteki oraz model ich zwielokrotnienia i integracji. Uchylimy rąbek tajemnicy działania jednego z największych systemów pocztowych w polskim Internecie.

System Architecture

Some sort of email system

	200 servers

	20 database servers

	1 Petabyte of data

	4.7 million users

	80 thousand requests a minute

	Spam

Server types

	SMTP

	Postfix > MDA > Storage

	POP3 / IMAP

	Dovecot > storage

	Webmail

	PHP / JavaScript > Python Server > Storage

Persistence Server

	check RFC 822

Their Python server

	Tornado

	JSON-RPC

libOP - API

	libAUTH

	libDB

	libOCACHE

	libANTYSPAM

	libStorage

Making Python faster

Write in C, make bindings in Cython, import into Python

// op.c
int mparser_fetch(const struct mparser_server *mparser, etc){
 [...]
}

Workflow:

	Take C code that does what they need.

	Implement as Cython

	http://cython.org

	Call the Cython modules from Python

	Put all the dependencies for the C library, Cython components, and Python into setup.py files so they can easily deploy

System Summary

	C

	Cython

	Tornado

	Python

Benefits

	Challenging but successful implementation

	Good performance

	optimized to handle any load

	20x speed over standard Python

Critical tools

	PyPI

	Virtualenv

$ dpkg -i libop_1.1.0_amd64.deb
$ mkvirtualenv mparser
(mparser) $ source mparser/bin/activate
$ pip install -r requirements.txt

Results

	really good performance

	99.8% uptime

	Able to handle 500 thousand spam hits a minute

Summary

	Build good systems

	C libraries are the way to go

	Use Python to build your stuff, but leverage in the C libraries

	Processes

	Scrum

	DevOps

Blame it on Ceasar: A rant on calendaring

by Lennart Regebro

	https://twitter.com/regebro

	http://python3porting.com/

	http://regebro.wordpress.com

	Runs a consulting shop and does really good work.

Talk Description

Timekeeping on all levels is surprisingly difficult. This talk explains why it’s sort hard, and which parts Python can help you with.

	What is calendaring, really, and why is it so complex?

	What’s in a year?

	Dissecting the Julian/Gregorian calendar

	Mesopotamian mathematics

	Time zones

	Recurring events is less fun than you think.

Introduction

The problem with calendaring is that it is based off of multiple cycles that don’t work well with each other

Rome: They had a 10 month calendar that made winter a dead period in the calendar. Eventually they added January and February

Lunar Calendars

	The year is twelve lunar months long.

	The year is out of sync with the seasons

	Example: The Islamic Calendar

Lunisolar calendars

	The year is 12 or 13 months long

	The year is kept in sync with season by leap months

	examples

	Hebrew

	Buddhist

Solar Calendars

The villain of the story is Caesar

	The year follows the solstices/seasons

	The moon is ignored completely

	Examples:

	French republican

	Julian Calendar

Thanks to the success of the Roman Empire Europe takes a weird Solar calendar, and thanks to the success of Europe, the world takes it on too.

How do you implement the calendar yourself?

You don’t. You use libraries.

	Python has datetime, date, and calendar

	JavaScript is momentjs.com, which is the current best option for JavaScript

	Java has issues thanks to an early design decision mistake.

	http://date4j.net/

	The US calendar shows Sunday as the first day of the week, which is confusing because it puts the first day on the weekend.

Timezone woes

	There are not 24 timezones, there are standard times per country

	standard times change

	If you want to accurate describe times from the past, you need a database of timezone changes.

Abbreviation Evil

	CST

	Australia CST

	China Standard Time

	Chungua Standard Time

	US CST

Timezones are based on politics, not science.

Daylight Savings Time

	Changing the hour can cause problems with computers. Going over midnight twice breaks things.

	JavaScript handles this well

	Python handles it well

Pytz discussion

He gave examples of how this module does a lot of the lifting for you on timezones and daylight saving time:

pytz 30 - 15 dateutil

Advantage pytz

	Works well

	Except for POSIX

Current standard specification

	TODO: Find out specified RFCs

Libraries

	http://pypi.python.org/pypi/tzlocal (Download and test it out!)

	http://pypi.python.org/pypi/icalendar

	http://pypi.python.org/pypi/DateUtils

Datepickers

	Based on JavaScript if you are doing the web

	http://arshaw.com/fullcalendar/

	https://github.com/collective/jquery.recurrenceinput.js

How to bootstrap a startup using Django

	by Jannis Leidal

	https://twitter.com/jezdez

	https://github.com/jezdez

	Django core dev

	DSF and PSF member

	Co-maintainer of pip/virtualenv

	works on PyPI

	Lead engineer at http://gidsy.com

Talk Description

Based on the experiences building Gidsy.com this talk will give you valuable insights as to how your infrastructure will evolve and how to set up the basic components (load balancer, web servers, DB, caching, celery, CDN, …) of your site.

What is Gidsy?

Gidsy is a place where anyone can explore, book and offer things to do.

Why did they choose Django?

	Big community

	Network

	Language

	Many problems already solved

	The Admin

Why Django is a good choice?

	Proven technology by similar use cases

	Stable APIs in a well-defined release process

	Good documentation with focus on prose

	Huge community of 3rd party components

Implementing search

Haystack: http://www.haystacksearch.org/

	Needed customizable search abstraction

	Indexing, filtering, faceting, “More like this”

	Spatial search and sorting

Implementing API

Tastypie: http://tastypieapi.org/

	Highly customizable Web API library

	Hooks for auth, throttling, caching, etc

	Backbone.js compatible

	Not for 3rd parties, just to serve out system content. So no need yet for OAuth or other protocols

Task Queues

Celery: http://celeryproject.org/

If you have a user triggered process that will take a long time, use an asynchronous task queue to manage the task

	Async code execution

	Generate thumbnails, search index updates, caching, etc

	Collect stats without blocking

Caching

Memcached

	Periodic cache refreshing for high traffic sites

	Fragment caching with dates and cache version

	Cache warming during deployment

	All their code is based off the Django cache module. They don’t use any libraries here because their data is too complex to rely on a caching framework.

Workflow

“Always check in a module cleaner then when you checked it out.” – Uncle Bob

	Main branch is always deployable

	Development happens in feature branches

	Code reviews via pull requests

	Shared responsibility

Testing

	Seperation of fast and slow tests

	Full test suite via private Travis CI project

	Fast tests locally with django-discover-runner

	http://www.djangopackages.com/packages/p/django-discover-runner/

Releasing

	Virtualenv/pip

	localshop as local PyPI host

	django-configurations for Django Settings

	http://www.djangopackages.com/packages/p/django-configurations/

	Upstart for processes management

Scaling up

	TODO - get slide that I missed

Deploy System

	Builds are virtualenvs

	Atomic and orchestrated releases

	Lots of notifications

	Mix of Chef and Fabric

	Trying to open source it

	Using New Relic and Hipchat to track things

	Operations made as easy as possible via knife and fabric

Operations

	Log everything you can for debugging

	If you deploy often you need immediate feedback

	Use services if you can:

	Mixpanel

	NewRelic

	Librato

	Papertrail

	Pageduty

	Show the metrics on a screen in the office

	django-app-metrics to get a log trail from the system

	http://www.djangopackages.com/packages/p/django-app-metrics/

Things they learned

	Only scale when you need to, but be prepared

	Be pragmatic, use the best tool to do the job

	Automate as much as you can

	Continuous integration and deployment

	Make routine tasks as easy as possible

	Use services

	Display metrics

Asynchronous and event-driven PyOpenCL programming

	by Tomasz Rybak

	tomasz.rybak@post.pl

	Debian Maintainer of PyOpenCL and PyCUDOA

	Currently working at CodiLime

	Worked at University of Geneva

Description

OpenCL is the library, API, and programming language intended to help with performing computations on different computing devices like ordinary CPUs, graphical cards (GPU), specialized chips or FPGAs. OpenCL provides different profiles offering various capabilities (e.g. kernel compilation during runtime, executing native binary code, embedded function libraries) to allow to support different device types. Programming GPUs in Python is easy thanks to PyOpenCL (and PyCUDA). Not everything offered by OpenCL can be used in Python though, because OpenCL is defined assuming usage of the C language. Some functionalities, like calling function in response to event, require providing pointer to C function; fortunately such requirements show themselves only in the most sophisticated use cases. PyOpenCL helps with achieving high performance through asynchronous event-driven programming by allowing us to use many queues and many devices and by mixing synchronous and asynchronous calls. We can create quite sophisticated computation workflow and OpenCL will take try to use the available hardware, e.g. by concurrently call code and transfer data at the same time. New OpenCL versions allow for splitting one physical device into many logical ones (fission) which can be used to reserve some computing capabilities for usage in time-sensitive manner. We can also attach many devices to once shared context which allows to write code performing different tasks and computations in parallel. Some of the features offered by PyOpenCL are similar to those present in Python. Performing asynchronous computations on GPUArray and retrieving results later is similar to Python’s Futures. So far it is impossible to retrieve Futures from GPUArray (to integrate GPU and CPU computing) but this seems to be the case of missing functionality, not incompatibility preventing it from happening. I want to show that creating programs performing quite sophisticated computations might be easy thanks to Python and PyOpenCL. I would also like to start discussion about current PyOpenCL limitations and to get feedback from PyOpenCL users.

Increasing hardware parallelism

	More’s law, increasing transistor density

	Power wall

	Chip’s frequency doesn’t increase anymore

	We get more cores instead

	No more automatic performance improvements

	Different programming models

	OpenCL has emerged as a standard intended to help with programming over this obstacle.

Summary: Use OpenCL to access the power of graphics cards as math processors

OpenCL

	Standard maintained by Khronos

	Similar to OpenGL

	Extensions

	Different models for different devices

	Compile dor binary kernels run on cores separate from CPU

	Based on C

	Includes events and asynchronous execution

	Information

	http://pypi.python.org/pypi/pyopencl

	http://mathema.tician.de/software/pyopencl

	http://documen.tician.de/pyopencl/

Basic OpenCL programming model

	Execution units hierarchy

	Hosts

	Platforms

	Computing devices

	Computing units

	Processing elements

	Memory hierarchy

	Global memory

	Constant memory

	local memory

	Private memory

	Relaxed consistency of memory access

	Cache

Execution run-time hierarchy

	Context

	Queue

	Work-group

	A bunch of threads go into a work group

	Which means you can have 100 threads run in a group, or 1000.

	Work-item

Execution Models

	Task parallelism

	One thread running computations

	Possibility of running many threads at the same time

	Require out-of-order queue or many queues

	Computation parallelism

	Many

TODO - Get the parts I missed

PyOpenCL

	… and PyCUDA

	Python wrapper for OpenCL

	Not only wrapper

	Pythonic

	Object oriented

	Stable but still work in progress

	extensions

	high level programming

OpenCL programming workflow

	Compile kernels

	Prepare data

	Transfer data to device

	Run computations

	After finishing computations get results from device

	Free resources

Event based programming done in Python

	Instruct OpenCl to run computations

	Don’t wait for data

	Computation will get to you when it’s done

event = pyopencl.enqueue_copy(queue, a, agpu)
event.wait()

event = program.increase(queue, a.shape, None, a_gpu)

later code
queue0 = pyopencl.CommandQueue(context)
queue1 = pyopencl.CommandQueue(context)
event = pyopencl.enqueue_copy(queue)

Event-related objects

	Not all PyOpenCL functions and methods accept list of event to wait for

	We can wait for these events manually

	Or we can create a marker or barrier to force the end of a queue

Fission

	Splitting one physical device into many logical ones.

	Can be used to reserve some computational power

	Solution similar to CPU virtualization

	No problems with device-to-device memory transfers

Where PyOpenCL helps

Provides:

	Array

	Random number generators

	Single pass element-wise expressions

	Reduction

	Parallel scan

Designed so you aren’t writing C code from scratch all the time to make your computations work fast in the graphics cards.

Extensions

All extensions require pointers to the C so it’s tricky to make them work

OpenGL

Can share data between OpenCL and OpenGL

Future of PyOpenCL

	Intention to share code between PyOpenCL and PyCUDA

	Increase number 3rd party libraries

	Some of those could be added to PyOpenCL

	Resolving existing problems

	Adding extensions should be easier

	Supporting additional libraries

Suggestions

Check out http://copperhead.github.com as a way to wrap PyCUDA for easier coding.

An Extreme Talk about the Zen of Python

Note

live-noted by Audrey Roy (audreyr) and submitted as a pull request

Daniel Greenfeld

	Family on both sides from Poland

	Principal at Cartwheel Web, PSF & DSF member

	Fiancee is @audreyr!

	Co-lead on OpenComparison which powers djangopackages.com and more

Zen of Python

	By Tim Peters, author of Timsort which is used everywhere

	Extreme examples of each follow

super()

	Built-in method

	Walkthrough of circle-ellipse problem

	Can create ambiguity

	Hard to remember syntax for super()

	Circle.__init__(self, outer) is more explicit and simpler

	Explicit is better than implicit

Django CBVs

	Quiz: What is the ancestor chain for django.views.generic.edit.UpdateView?

	Answer: There are 8 things. Hard to remember what each ancestor does.

	In super(ActionUpdateView, self).form_valid(form), which form_valid() is being called?

	If not careful, super() can cause MRO problems

	Possible mitigations:

	Hope maintainers aren’t angry

	Convert to functional view

	Explore better patterns

Django

	Special cases aren’t special enough to break the rules, although practicality beats purity

	WSGI is fixed

	Config & installation - working on it

	CBVs - working on it

	Not MVC. Model-Template-View. Web not necessarily appropriate for MVC.

Web2py

	Where did the response object come from?

	3 koans broken:

	Explicit is better than implicit

	In the name of ambiguity, refuse the temptation to guess

	Namespaces are good…

	In their case, it’s a design decision. “Practicality beats purity”

	Easier for beginners

	Easy to learn their namespace pattern

	For experienced devs, saves boilerplate

	Web2py’s easy installation process is where they shine

OpenComparison

	Example showing a general exception

	http://bitly.com/????

	By printing (e), you don’t get the error type or stack trace

	Fixed code with a custom exception that gets raised and prints additional info

Decorators

	Awesome to use

	Easy to explain what they do

	He did a walkthrough of a sample decorator without arguments. Then one that accepts an argument.

	3 nested functions

	Hard to read

	He corrected himself because he didn’t use @functools.wraps, which is the better way to define decorators. More complexity.

	Hard to explain implementation

	If the implementation is hard to explain, it’s a bad idea. If the implementation is easy to explain, it may be a good idea.

Getting it done vs. technical debt

	Tests and docs take time. Skipping them risks:

	Multiple coding standards

	Deploying broken code

	Problems upgrading dependencies

	Forgetting install/deploy

	Must document:

	Installation/deployment

	Coding standards

	How to run tests

	Config

	Easy test patterns:

	Always make sure test harness can run

	Use tests instead of shell/repl

	After 1st deadline, reject incoming code that drops coverage

	Use coverage.py

Namespaces

	Powerful, useful, precise

	Dangerous to use import *

>>> from re import *
>>> from os import *

>>> re.error == os.error
False

Breaking built-ins

Continued from above:

>>> compare_builtins(re)

	Breaks compile() built-in

>>> compare_builtins(os)

	Breaks open() built-in

	Bad shortcut pattern to teach beginners. Technical debt.

Summary

	Our community is built off of the Zen of Python

	Thank you: Richard Jones, Raymond Hettiger, Matt Harrison, Kenneth Love, PyCon Poland, others

Extreme Talk about Zen of Python

Note

live-noted by Łukasz Langa (ambv) and submitted as a pull request

“What mistakes I did and how I correct them.”

The speaker: Daniel Greenfeld, both his parents’ ancestors were from Poland. Learned Python at NASA.

Tim Peters is the author of “Zen of Python”, also known for Timsort.

The Opening:

	Beautiful is better than ugly.

	Explicit is better than implicit.

	Simple is better than complex.

	Complex is better than complicated.

	Flat is better than nested.

	Sparse is better than dense.

	Readability counts.

Example 1:

The super() method is doing things automatically and can create ambiguity.
It doesn’t adhere to the Zen of Python by being implicit.

Moreover:

	If the implementation is hard to explain, it’s a bad idea.

	If the implementation is easy to explain, it may be a good idea.

Example 2:

The ancestor chain of django.views.generic.edit.UpdateView is very long (8
ancestors or so):

>>> pprint.pprint(UpdateView.mro())
[<class 'django.views.generic.edit.UpdateView'>,
 <class 'django.views.generic.detail.SingleObjectTemplateResponseMixin'>,
 <class 'django.views.generic.base.TemplateResponseMixin'>,
 <class 'django.views.generic.edit.BaseUpdateView'>,
 <class 'django.views.generic.edit.ModelFormMixin'>,
 <class 'django.views.generic.edit.FormMixin'>,
 <class 'django.views.generic.detail.SingleObjectMixin'>,
 <class 'django.views.generic.edit.ProcessFormView'>,
 <class 'django.views.generic.base.View'>,
 <type 'object'>]

Readability counts and this is not readable:

	it is very hard to actually remember what each mixin does

	they can have non-obvious side effects

Possible mitigations for this view

	leave it as it is

	use concrete parent class methods instead of super() (bad idea)

	rebuild it to use functional views

	increase awareness of the design, simplify it, document it in detail

Controversies

	Special cases aren’t special enough to break the rules.

	Although practicality beats purity.

Django

Django is pretty good about following the Zen of Python.

	WSGI

	fixed

	Class-based views are too complicated (versus complex)

	author works on document them better and simplify where they’re too
complicated

	Not MVC compliant

	not a concern because what matters is separation of data and presentation

web2py

Web2py argues practicality in some very specific places, will always be
contentious.

	“Explicit is better than implicit.” - has implicit imports

	On the other hand this implicitness makes it easier for beginners.

	The namespace pattern is easy to learn.

	Imports are boilerplate.

	“In the face of ambiguity, refuse the temptation to guess.”

Exception handling

	Errors should never pass silently.

	Unless explicitly silenced.

Story: Django Packages. Once a day iterates across all packages. Updates the
metadata from multiple sources. Sometimes the APIs go down or change. Sometimes
objects get deleted. Sometimes network connectivity fails.

The first approach to a solution of these problems was to catch a bare
Exception and print it out. Problems:

	the code is nearly silent: printing the exception causes the stacktrace not to
appear

	print as a logger

More controversy

	In the face of ambiguity, refuse the temptation to guess.

	There should be one– and preferably only one –obvious way to do it.

	Although that way may not be obvious at first unless you’re Dutch.

Decorators are easy to explain for the user, not so much for the implementer.
Especially if they should accept arguments. And don’t forget about
functools.wraps. Etc. etc.

Using decorators is like Zen. Writing decorators is not.

Decorator Template

def decorator(function_to_decorate):
 def wrapper(*args, **kwargs):
 # do something before invoation
 result = func_to_decorate(*args, **kwargs)

 # do something after
 return result
 # update wrapper.__doc__ and .func_name
 # or functools.wraps
 return wrapper

class as a decorator
class decorator_class(object):
 def __init__(self, function):
 self.function = function
 def __call__(self, *arg, **kwargs):
 result = self.function(*arg, **kwargs):
 # do stuff to result
 return result

@decorator_class
def hello():
 return 'hello'

On one hand:

	If the implementation is hard to explain, it’s a bad idea.

	If the implementation is easy to explain, it may be a good idea.

On the other:

	Practicality beats purity.

Final section

Some things can take time like tests or documentation. You can skip them risking
multiple coding standards, deploying broken code or problems upgrading
dependencies. So if you have to skip documentation, at least write down:

	installation/deployment procedures

	coding standards

Easy test patterns for developers racing to meet deadlines:

	always make sure your test harness actually runs even if you don’t have tests
yet

	try using tests instead of shell/REPL

	after the first deadline, reject any incoming code that drops coverage

	use coverage.py

Namespaces

	Extremely powerful

	Useful

	Precise

Beware: from ... import * makes development faster but it can be dangerous:

import re
import os

clashing names!
assert re.sys == os.sys
assert re.error != os.error

clashing builtins!
assert re.compile != compile
assert os.open != open

So don’t do from re import *, etc. Especially, import * is not for
beginners. If you do know Python and know about __all__, etc. you might use
it if you’re careful.

Summary

>>> import this

An extreme talk about the Zen of Python

Note

live-noted by Zbigniew Siciarz (zsiciarz) and submitted as a pull request

	by Daniel Greenfeld

Description

In the Python community we are taught from the outset of learning the language that the Zen of Python serves as a guide for how we should construct our codebases and projects. Rather than go into the zen-like meanings of each statement, this talk will explore how individual koans are implemented via detailed displays of sophisticated code examples.

Introduction

No easy code examples, Daniel’s gonna show some twisted, complicated code.

Daniel’s grandparents come from Dynów, Poland. (Applause)

He was a Python programmer at NASA and later started consulting work.

Met @audreyr at PyCon 2010.

Runs some opencomparison sites - djangopackages etc.

The Zen of Python

Written by Tim Peters, author of timsort algorithm - a really smart guy according to Daniel.

The Opening

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.

Demonstrated using super().

Geometrical figures, Ring derives from Circle. Obvious what super will do. But what if it wasn’t so simple?

super does things automatically and can lead to ambiguity.

In the face of ambiguity, refuse the temptation to guess.

Absolutely inheriting __init__ from base class: explicit, simpler, more readable.

Explicit > Implicit

	::

	Circle.__init__ > super()

Django CBVs

Composition, inheritance, polymorphism and other funny words.

What’s the ancestor chain to UpdateView? Answer: 8 ancestors. Impossible to memorize what each of them does.

form_valid(), but which one?

OMG! OMG! OMG! Even more mixins. Let’s print the MRO. A screenful of <class '...'> follows.

Filter the list on classes which have form_valid() method -> only 5 classes (I was lucky).

MRO is simple, but simple is relative.

Moving on

Django controversy

	WSGI (fixed)

	configuration and setup (working on it)

	CBVs (working on it)

	not MVC-compliant (and this is fine)

MTV != MVC

Is MVC applicable on the web?

The Zen of Python doesn’t mention MVC.

Separation of presentation from content

Django is fine. CBVs are not along the lines of Zen.

Controversy: web2py

Implicit > explicit.

Follows it’s own design patterns.

Where are the imports? No imports neccessary. WAT?

Note

Nobody expected Spanish Inqusition!

web2py breaks 3 koans of the Zen. Implicit behaviors, ambiguity, namespaces.

Although practicality beats purity.

Easy to install, easy to learn, less boilerplate. Web2py <3 Windows.

Similar to Django in terms of contention and trackage.

Exceptions in exception handling

Django Packages

Updates metadata from PyPI, Github, Bitbucket. PyPI unstable, APIs change, projects get deleted etc.

First: concatenating some string with error messages from exception handlers.

Traceback wanted. Type of the error, message, location.

Code is silent - for no good reason apart from laziness.

Solution: added logging in __init__ in a custom Exception subclass.

Code is not silent anymore. Errors are noisy.

Cleaner code

Even more controversy. (Unless you’re Dutch).

Decorators

Decorators are easy to explain!

Wrapper function running code before/after the decorated function.

Getting harder to explain… closures etc.

Now let’s talk about decorators with arguments. general laughter

Danny is evil, uses confusing names: multiplier, multiple…

Whew.

Don’t forget functools.wraps. The decorator code in the slides is growing like a tumor.

It’s not easy to (explain how to) write decorators.

But decorators are awesome! Using them is like Zen, writing is not.

The last section

Getting it done vs technical dept

Tests & docs take time. Do we have to do them? Maybe not. But it brings a lot of risks.

Must-have docs

	installation/deploy

	coding standards

	how to run tests

	version information

Test patterns

Test harness must at least run even without tests.

Use tests, not shell/repl.

Use coverage, reject code that drops coverage.

Don’t use doctests.

Namespaces

Powerful, useful, precise.

import * makes development faster. IMPORT ALL THE THINGS!

Confusing imports, same names in os and re. Subtle trouble!

Replaces things from in builtins (os.open breaks open)

The open() story

os.open needs different arguments than open. You’re screwed if you confuse these calls.

COntention

import * is for people who know what to do.

Remember __all__.

Summary

The Zen of Python (repeated)

One more thing

Capoeira moves!

Pycon Philippines 2012

Dates: June 30 & July 1
Venue: University of Philippines, Diliman

Keynote

I was honored with the opportunity to keynote the event. My slides are available at:

Talks

	Basic Python
	About Python

	Variants of Python

	Prerequisites

	Hello Python

	Assigning Variables

	Dynamic Typing

	Numeric Data Types

	Operations

	Booleans

	String Operators

	Sequences

	Indentation

	Python tricks you can’t live without

	Django Quickstart
	What is Django?

	Demo app

	Set up develop environment

	Creating your virtual envuronment

	Installing Django

	Create Django project

	Directory structure

	settings.py

	Add templates

	Game Programming with Python
	Quotes

	Ph Game Development Industry

	What you need to know to program games

	Math

	Game Design Patterns

	Game Platforms

	pygame

	Let’s make a game

	Functional Programming in Python
	Intro

	The cheatsheet for this talk

	Functional programming is….

	Python Functions

	Useful language features

	Pull out the even numbers

	Types of transforms

	Ansible - code deployment made simple
	What is Ansible

	Dependencies

	I didn’t know it’s Python: Python Advocacy
	How you attract tourists

	Mount a campaign!

	People need to know:

	Why Python?

	Prototyping/Gluing

	Python is…SIMPLE

	Works with JAVA and .Net!!!

	Ten things you didn’t know that use Python

	Maps of Imaginary Lands
	The Goal

	The Problem

	The Solution

	What is success?

	The Secret Tip

	The Stack

	Imaginary Maps

	Sample Model Code

	Closing Keynote: Design your open source project
	Choice Quotes

	About Bryan

Basic Python

	by Allan Palo Barazone

	http://twitter.com/titopao

	Python since 2007, but since early 2000s

	Affiliated of Wikimedia Philippines, Inc

	Major equipment issues including the microphone.

	Live code writing is never a good idea. :P

About Python

	Started by Guido van Rossum a.ka. Benevolent Dictator for Life

	Named after Month Python and the Flying Circus

	Logo of Python is the snake

	Dynamically typed

Variants of Python

	CPython

	Jython

	IronPython

	PyPy

	Stackless Python

Prerequisites

	Python 2.7

	editor scintilla.org/SciTE.html

Hello Python

print("Hello Pycon!")

Assigning Variables

PI = 3.1415
answer2life = 42
_secret_recipe = 0
x, y = 4, 20

Dynamic Typing

a = 10
a = 'python rocks'
a = True
b = None
a = b

Numeric Data Types

>>> print range(5)
[0, 1, 2, 3, 4]
>>> a = 9
>>>b = 2.0
>>>c = 0x999

Operations

>>> 2 ** 10
1024
>>> abs(-1) # absolute
1
>>> 5 % 2 # Modulus
1
>>> hex(12)
'0xc'
>>> oct(100)
'0144'
>>> pow(16, 0.6)
5.278031643091577

Booleans

>>> True
True
>>> true
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'true' is not defined

and
or
is
is not

String Operators

>>> len('Hello')
5
>>> 'hello'.upper()
HELLO
>>> s = 'Hello PyCon'
>>> s[:5]
'Hello'

Sequences

>>> l = [1, 2, 3, 4]
>>> t = (1, 2, 3, 4)
>>> l.append(5)
>>> l
[1, 2, 3, 4, 5]

Indentation

	Code blocks are defined by indentation

	The standard is 4 spaces.

Python tricks you can’t live without

	by Audrey Roy

	http://twitter.com/audreyr

	http://audreymroy.com

	My fiancee!

Note

Audrey used my laptop to present and I was manning the http://twitter.com/pyconph feed. Otherwise this would be full of stuff. What I’m going to to is take notes of the video and add them later.

Django Quickstart

	By Marconi (@marconimjr)

	on Facebook he is ‘Alexander Pierce’

	Wore a github shirt and gave shout out to the pony

	Built off of Audrey’s talk. :-)

What is Django?

	MTV framework

	Template = View

	View = Controller

Demo app

	quickstart.marconijr.com

Set up develop environment

	virtualenv + virtualenvwrapper

.profile on OSX or .bashrc
export WORKON_HOME=~/Envs
source /usr/local/bin/virtualenvwrapper/sh

Creating your virtual envuronment

$ mkvirtualenv pyconph
$ workon pyconph

Installing Django

$ pip install Django

Create Django project

$ django-admin.py startproject quickstart
$ cd quickstart
$ python manage.py runserver
...
Development server is running at http://127.0.0.8000

Directory structure

quickstart
|-manage.py
|-quickstart
 |-__init__.py
 |-settings.py
 |-urls.py
 |-wsgi.py

settings.py

DATABASE = {
 'default': {
 'ENGINE':'django.db.backends.sqlite3',
 'NAME':'dev.db',
 }
}

PROJECT_ROOT = os.xxxxx

Add templates

mkdir templates

quickstart
|-manage.py
|-quickstart
 |-__init__.py
 |-settings.py
 |-urls.py
 |-wsgi.py
|-templates

Game Programming with Python

	by Mr Sony Valdez

	http://twitter.com/mrvaldez

	Fantastic speaker

	Need to introduce him to Richard Jones

	OMG he used notepad to present and pulled it off!

Quotes

	“Are you afraid of math? Too bad! In this tutorial you will learn how to math! Scary, isn’t it?”

	If you’re not familiar with cartoons I feel very sad for you.

Ph Game Development Industry

	http://www.igda.org

What you need to know to program games

	Programming language

	Traditional

	C

	C++

	New

	Flash

	Java

	Math

	game design pattersm

	C++

	Flash

	Lua

	Python

	Javascript

Math

Coordinate System

	x,y system

Collision Detection

	Collection detection is the alogrithm used to see if two sprites intersects

	If two rectangles overlap then there is a collision. An event is triggered.

Game Design Patterns

	Game Loop is simply an infinite loop in which input, updates, and draws occur. Each iteration is what is called a ‘Frame’

	Game object represents an object in the game

Game Platforms

	Programmers use whatever is available

	half-life, Warcraft 3, Multimedia Fusion, GameMaker, and pygame

pygame

	Based on Python

	Object oriented

Let’s make a game

	Python

	Pygame

	Shump

Functional Programming in Python

	by Malcolm Tredinnick

	malcolmt

	Started in Python in 1.4

Intro

	Python is more than just OO, it’s also functional

	Almost every language we use is imperative

	Python can be functional

The cheatsheet for this talk

	map()

	filter()

	functools module

	itertools module

	list comprehensions

	generators

Functional programming is….

	… difficult to define precisely

	Good! (most worthwhile systems are)

Maybe this?

	transform data structures, don’t manipulate state

Most useful?

	concentrate on function return values, not side-effects

Python Functions

	Functions are first class objects

	You can pass them around as arguments to other functions

	You can construct them dynamically

def my_function():
 print "hello"

def show_string(func, arg):
 print func() + arg

>>> show_string(my_function, " Goodbye!")
hello Goodbye!

Useful language features

	lambda expressions

	functools module

	TODO: check out partial() capability in functools

	itertools module

Pull out the even numbers

def evens(seq):
 results = []
 for item in seq:
 if item % 2 == 0:
 results.append(item)
 return results

List comprehension way
def evens(seq):
 results = [x for x in seq if x % 2 == 0]
 return results

pull out the even numbers
def is_even(value):
 return value % 2 == 0

def evens(seq):
 return filter(is_even, seq)

using partials
from functools import partial

def is_even(value):
 return value % 2 == 0

evens = partial(filter, is_even)

>>> evens([1, 2, 3, 4, 5])
[2, 4]

Types of transforms

	Apply a function to every element

	map()

	list comprehensions [x for x in …]

	generators (x for x in …)

	Select elements and filtering

	filter()

	itertools.dropwhile()

	itertools.takewhile()

	combining elements (folding)

	functools.reduce()

	manual loops

	sometimes a good idea

	unfolding

	Manual loops

	Recursion (sometimes)

Ansible - code deployment made simple

Simple Deployment and Configuration

	by Rodney Quillo

	http://capsunlock.net

	https://github.com/cocoy

What is Ansible

	You should make it easy to get servers running

	Ansible aims to solve deployment issues

	https://ansible.github.com

	3-in-1: Just like filipino coffee

Dependencies

	Jinja2 (in case you want fancy templates of configuration files)

	PyYAML (for settings configuration)

	parameiko

Question

	Why isn’t ansible pip installable?

	How does this compare to Salt Stack?

	Why YAML for configuration?

I didn’t know it’s Python: Python Advocacy

	by Allan Palo Barazone

	http://twitter.com/titopao

	Python since 2007, but since early 2000s

	Affiliated of Wikimedia Philippines, Inc

	Good advocacy talk

How you attract tourists

	…use paid television ads?

	…use print ads?

	…use social media?

	…and still be consistent

Mount a campaign!

	Slogan: It’s more fun in the Philippines!

	Logo and slogan alone do not make a good campaign

People need to know:

	What’s in it for me?

Why Python?

	The usual ‘advocacy’ stuff.

	Very, very gentle learning curve

	Even complete newbies can understand

Prototyping/Gluing

	Easily done with Python

	Low-level modules in another language (like C or C++)

	Then Python joins ‘em all together

	Python’s simplicity allows easy rewrites of prototypes

	competitive edge over C/C++/Java

Python is…SIMPLE

	Faster learning curve

	Easier to pick up than ‘traditional’ Filipino CS 101 languages

	Focus on thinking, not synxtax

	More readable than other languages

	Probably influenced by GvR’s math background

	Similar to pseudo code

	Hard to obfuscate

Works with JAVA and .Net!!!

	Reality: IT industry in PH is Java/.Net centric

	problem:

	We’ve already invested in Java/.Net technologies - will we have to rewrite the stuff?

	NO!

Ten things you didn’t know that use Python

	Google!

	YouTube

	http://highscalability.com/youtube-architecture

	Blender

	reddit

	Disqus

	Dropbox

	Facebook

	Instagram

	Pinterest

	Pywikipediabot

Maps of Imaginary Lands

	by Malcolm Tredinnick

	malcolmt

	https://github.com/malcolmt/imaginary-maps-in-django

The Goal

	Build an imaginary land

The Problem

	Not trivial

	Some preparation required

	May be new

	THis should not be a problem, but… :-)

The Solution

	I have provided running code

	Github URL at end of the slides.

What is success?

	Get up to speed on Django and GeoDjango

	Run (and read) my code

	Do something better!

The Secret Tip

	All maps are mashups

The Stack

	PostGUS

	OpenLayer.js

	Mapnik

	Tilecache

	GeoDjango

OpenLayer.js

	Client side, Javascript framework

	For doing maps layering

Mapnik

	Server side way to combine data sources

	Different details and different zoom levels

	Input from raster or vector formats

Tilecache

	Caching tile

	Use this or mod_tile or tilestache or other

	Avoid recomputing common data

GeoDjango

	Use views to provide subset of data

	Easy default output in formats understood by OpenLayers

Imaginary Maps

	Need to replace base image

	GeoAdmin needs to be customized for the imaginary maps

	Mapnik WMS server running locally

Sample Model Code

class Track(models.Model):
 name = models.CharField(unique=True, max_length=50)
 path = models.LineStringField(geography=True)
 objects = models.GeoManager()

 def __unicode__(self):
 return self.name

Closing Keynote: Design your open source project

	by Bryan Veloso

	https://twitter.com/bryanveloso

	https://github.com/bryanveloso

Note

Beautiful and inspirational!

Note

Bryan got schooled on that cats have 3 whiskers per side and the Octocat only has 2 whiskers.

Choice Quotes

	I know what you really want: beer!

	Open source is about collaboration

	GitHub is your new portfolio! Hi @pydanny!

	If you test, use http://travis-ci.org

	Sphinx pretty much powers all of Python’s documentation

	Trade development knowledge for design knowledge

	https://github.com/edu

About Bryan

	Github employer

	https://github.com/jdriscoll/django-imagekit

DjangoCon Europe 2012

	Keynotes
	Jacob Kaplan-Moss

	Karen Tracey - Django and the Community

	Jessica McKellar

	10 Steps to better postgresql performance
	PostgreSQL features

	PostgreSQL negatives

	Configuration

	Easy performance boosts

	On-going maintenance

	Round pegs for square holes - using mongoDB with Django
	MongoDB

	Many options

	Conclusions and further thoughts

	Square pegs and round holes - Django and MongoDB
	BY DANIEL GREENFELD AND AUDREY ROY

	What is MongoDB?

	Analogies

	Connectors

	PyMongo

	Mongoengine

	MongoKit

	Django non-rel + monogdbengine

	Summary

	Thoughts: Danny

	Thoughts: Audrey

	Using Django with Mongo

	Django mongonaut

	Summary

	Class-based Generic Views: patterns and anti-patterns
	Controversy

	What are views in Django?

	Deprecation

	Pre Django-1.3 Django CBVs

	CBV API

	Declarative vs Imperative

	Usage Tips for Django CBVs

	Case Studies

	Shooting yourself in the foot

	Django and the Real-Time Web
	WWW: Changelog

	Can’t miss this opportunity

	Zachary’s definition of Real-Time

	Stories

	Caching

	Implications

	Building secure Django websites
	Three Areas

	How cookies and sessions work

	XSS Injection

	Reflected vs. Stored XSS

	Cookie security

	Server side injections

	Trusting the Browser

	Be careful with ModelForms

	Passwords and SSL

	Clickjacking and Django

	Backups

	Introducing PLY

	Implementing DSLs in Django Apps
	Initial Motivation: Searching Contacts

	Other reasons

	Not for the end user

	How to make a DSL in Python/Django

	Sample

	Parser - The Grammar

	Parser in PLY

	I hate your database
	Hate? Databases?

	Different Databases, different occasions

	Some quick theory

	MySQL

	SQLite

	PostgreSQL

	MongoDB

	Key/value stores

	Spatial databases

	Filesystems

	Graph Databases

	Round-Robin Database

	Summary

	LFS - Lightning Fast Shop
	LF = Lightning Fast WTF?

	Numbers & Facts

	Samples

	Features

	Properties

	Accessories

	Variable Payment Methods

	Development

	Using CSS preprocessors effectively
	Don’t make a mess

	Issues with CSS

	Solution: CSS Preprocessors

	Common Features

	Doing it with Django

	Tools

	Warning

	Conclusion

	Arkestra: semantic information publishing for organizations
	What typically happens when working with a CMS

	His idea

	Informtation, not just data

	Organization

	Don’t waste people’s time

	Django-CMS and Arkestra

	The Semantic Presentation Editor

	Django Chuck - Your powerful project punch button
	Why the name Chuck?

	Use case for django-chuck

	Why not Pinax?

	Installation

	Example usage

	What happened?

	Setup an existing project from source

	It’s about time
	RFC 3339

	aware vs naive datetimes

	DST transitions

	dates and datetimes

	Django >= 1.4

	default and current time zones

	auto-conversions

	Utilities

	limitations in Django 1.4

	Key learnings

	Healthy Webapps Through Continuous Introspection
	Case study: Wasted cycles on Bitbucket

	Common problems

	Dogslow

	django-geordi

	interruptingcow

	Adding tests to an uncovered application
	Instagram started as burbn

	When to automate testing?

	Implementing real time web apps with Django
	Why real time?

	Finding the right tool

	The tools you want

	Why not implement it in Python?

	Using redis for cross-language communications

	Basic Concept

	Hosting socket.io

	Using this today?

	Client Authentication

	How Heroku Uses Heroku To Build Heroku
	What is Heroku?

	Philosophies

	Environmental Parity

	More philosophies in use by Heroku

	Specifics

	Focus on Quality

	Involving women in the community
	New Developer

	Opened the floor to questions and discussion

	Flasky Goodness (or Why Django Sucks?)
	Hos Open Source work

	Open Source All The Things!

	Let’s build something

	Django Application

	Single Codebases are great

	Single codebases are EVIL!

	CONSTRAINTS FOSTER CREATIVITY

	Build for services

	Django: For API Services

	Django: For API Consumer

	Enter Flask

	Flask Familiarities

	Flask Differences

	Flask Improvements

	Popular Flask Extensions

	Services are agnostic

General Notes

	Location: Zurich, Switzerland

Keynotes

Jacob Kaplan-Moss

{{ keynote }}

	jacob**@jacobian**.org

	Keynotes are hard.

	Researched to find different types of keynotes

	Announcements

	Steve Jobs

	Technical Tour-de-force

	David Beasley style

	State of…

	West Wing style

	Make it dramatic

	Celebration

	(Constructive) Criticism

	Cal Henderson’s 2008 DjangoCon talk

	Inspiration

	Neil Gaiman

	Adam Savage

Se he’s going to do the following talks:

	Technical

	State of…

	Celebration

	Criticism

	Inspirational

Technical Talk

Note

@jacobian pointed me out and embarrassed me so I didn’t finish copying out his sphinx example.

Sphinx is awesome:

.. code-block:: html+django

Useful Sphinx stuff for authentication-protected static files:

	static: http://lukearno.com/projects/static

	barrel: http://lukearno.com/projects/barrel

These sorts of integrated components are an incredible indicator of some of the awesomeness of Python

State of Django Talk

	Django is doing very well

	Each release has more and more incredible stuff added.

	“Always feels like we are not moving as fast as we should, but when you look at what’s been accomplished it’s amazing. Especially since forward compatibility has been pretty well maintained.”

	Django 1.5 should give us

	Python 3 support

	Composite keys

Celebration

	This year has seen a ridiculous amount of adoption for Django.

	There is no longer an industry where Django does not exist.

	Django is now considered boring compared to things like node.js. Exciting is good when you are trying something new, but “exciting” and “production” should never be combined in the same sentence.

	See this article http://blog.pinboard.in/2010/01/technical_underpinnings/

	Notable tech acquisition for Instagram.

Criticism

	HTML5 issues

	Bruno’s floppyforms handles the form elements for you: see http://django-floppyforms.rtfd.org/

	Real-time

	State of the art: parallel MVC stacks.

	Mentioned Meteor framework as state of the art.

	You are fooling yourself if you don’t realize that Meteor style systems are not the future of web development.

	Are we doomed to callback hell?

 });
 });
 });
 });
});

Can we not do client/server apps purely in Django?

url('people/1/', person_detail)

def person_detail(request, pk):
 ctx['person'] = get_object_or_404(Person, pk=pk)
 return (request, template, ctx)

{{ person.first_name }}

Inspirational Talk

Jacob’s uncle, a lawyer asks: “But if you give it away, how will you make money?”

	By giving it away, people have made a ton of money with Django

	Jacob is doing quite well

Summary

	Huge community brought in by our boring, stable system.

	Now we can get really crazy with Django

	Make good art

Karen Tracey - Django and the Community

	http://twitter.com/km_tracey

	Been programming since 1987

	Django Core dev for a while.

	Crossword puzzle constructor since 2001

	Cat rescuer since 2009

Note

I’ve been programming since 1980. See http://mytechne.com/user/pydanny/programming-languages/. I win on the age game. So there.

Why?

	Django’s community is one of it’s greatest strengths

Her Django story

	2006 she found Django

	Django open-sourced a year earlier

	Django 0.96

Puzzle Database

	Aid in constructing puzzles, accessible from construction tool

	Amassed over ~5 years

	~5,000 puzzles, ~100,000 unique entries, ~500,000 clues

Project: Web front-end for database

	Primary goal: better ability to see data in crossword puzzle tool

	Secondary goal: learn Python

Survey of Python web frameworks in 2006

	Pylons

	Turbogears

	Django

Snag: Weird database

She wanted to use her old tables instead of Django generated tables. Then she wasn’t sure about the code patterns she was exploring.

class Entry(models.Model):
 entry
 # TODO find the rest of this content

She contacted django-users on mailing list and talked to Malcolm and Adrian. Submitted a patch and got it accepted fast.

Sadness

	Probably never happens today that a person contributes so quickly.

	Everything needs tests before submissions are accepted.

	Balance stability with wow-factor

Back to the mailing list post

	She was hesitant to sign her name

	Open source has bad with regard to treatment of women

	Confident of technical ability

	… but conscious she didn’t know much about web programming

	Would she get more respect if she didn’t reveal her gender

Plea: encourage women

	Women actively discouraged from participating in open source communities

	Please don’t join in bad behavior

	Speak out against it when you see it

Why did she become so active?

	Learn more about Django

	Improve communication skills

	Help people

	Puzzles!

	Long range-goal: get a job

What did the Django community gain from Karen’s involvement?

	Lots of triage/bugfixes prior to 1.0

	Some features/bugfixes since 1.0

	Helped many people learn Django

What did she gain out of Django?

	Become core committer in 2008

	Asked to write a book in 2009 (got published in 2010)

	Got a great job in 2010

Get involved!

	Community events, big or small

	Mailing lists

	IRC

	Stack overflow

	Ticket triage

	Bug fixes

	Feature development

	Patch review

	Blogs

Jessica McKellar

	http://twitter.com/jessicamckellar

	http://jesstess.com

	Kernal Engineer

	PSF Board Director

	Co-lead of Boston Python

Theme talk

	Make me make good choices

	How to make a proper internationalized site

	Education and best practices by default for novice web developers

Accessibility

	Visual

	Motor

	Auditory

	Cognitive

Visual Accessibility

	7-10% of Caucasian men haver some form for color blindness

	2.6% of the global population is visually impaired

	http://www.w3.org/WAI/

	http://www.section508.gov

Note

From 2000 to 2010 I was heavily involved in Section 508 implementations for various US government funded projects including http://science.nasa.gov/

Accessibility Guidelines

	Alt-text on images

	Accessible intra- and inter-page navigation

	Audio and video accessibilut: captions, transcriptions

	Indicate important info by other things besides just color

	TODO: Finish

See djangoproject.com being fixed! https://github.com/django/django/commit/29a80354ab5e5b85fa37863f70b1cf95646dc699

Django Accessibility

	How can Django help people avoid, detect, and address accessibility issues?

	Set a good example: audit ourselves!

	Websites

	Conferences

	Accessibility tutorial?

	Accessibility checklist?

	Warnings on easily correctable issues?

Security

Django handles the following:

	XSS

	CSRF

	But instruction on how to do it with POSTS could be better

	SQL Injection

	Warnings on RAW SQL could be better

	ORM is EXTREMELY secure

	Clickjacking

	Super easy to enable, but not set by default

	Documentation on this is kind of buried

	Cookies

	Important things are possibly set the wrong way

django-secure

	Great little app.

	But if there are that many stupid little things that need to be checked, maybe the defaults should be changed?

How about a security tutorial?

	Teach people from the start what they should be doing

	Include a security checklist

Internationalization

Done:

	Localization

	Translation

	Timezones

	Django natively supports Unicode data everywhere

	How about:

	Internationalization tutorial?

	Internationalization checklist?

Existing Security pages exists, but needs work: https://docs.djangoproject.com/en/1.4/topics/security/

django.contrib.auth.models.User

	First name and last name is very specific to certain Western European nations.

	Work is being done to make the User model properly extendable

Gender Issues

Code samples at djangoproject.com are gender specific:

class Foo(models.Model):
 GENDER_CHOICES = (
 ('M', 'Male'),
 ('F', 'Female'),
)
 gender = models.CharField(max_length=1, choices=GENDER_CHOICES)

Our examples should not get locked into examples from which people could feel excluded by because of personal life choices.

10 Steps to better postgresql performance

	Christophe Pettus

	PostgreSQL guy

	Done PostgreSQL for over 10 years

	Django for 4 years

	Not going to explain why things work great, just will provide good options. Ask him later for details

	http://thebuild.com/presentations/not-your-job.pdf

Note

Christophe talks super fast and I can’t keep up

PostgreSQL features

	Robust, feature-rich, fully ACID compliant database

	Very high performance, can handle hundreds of terabytes

	Default database with Django

PostgreSQL negatives

	Configuration is hard

	Installation is hard on anything but Linux

	Not NoSQL

Configuration

Logging

	Be generous with logging; it’s very low-impact on the system

	Locations for logs

	syslog

	standard format to files

	Just paste the following:

log_destination = 'csvlog'
log_directory = 'pg_log'
TODO - get rest from Christophe

Shared_buffers

TODO - get this

work_mem

	Start low: 32-64MB

	Look for ‘temporary file’ lines in logs

	set to 2-3x the largest temp file you see

	Can cause a huge speed-up if set properly

	Be careful: it can use that amount of memory per query

maintenance_work_mem

	Set to 10% of system memory, up to 1GB

effective_cache_size

	Set to the amount of file system cache available

	If you don’t know it, set it to 50% of the available memory

Checkpointing

	A complete fish of dirty buffers to disk

	Potentially a lot of I/O

	Done when the first of two thresholds are hit:

	A particular…

Note

Didn’t get any of this part of things.

Easy performance boosts

	Don’t run anything else on your PostgreSQL server

	If PostgreSQL is in a VM, remember all of the other VMs on the same host

	Disable the Linux OOM killer

Stupid Database Tricks

	Don’t put your sessions in the database

	Avoid aonstantly-updated accumulator records.

	Don’t put the task queues in the database

	Don’t use the database as a filesystem

	Don’t use frequently-locked singleton records

	Don’t use very long-running transactions

	Mixing transactional and data warehouse queries on the same database

One schema trick

	If one model has a constantly-updated section and a rarely-updated section

	last-seen on site field

	cut out that field into a new model

SQL Pathologies

	Gigantic IN clauses (a typical Django anti-pattern) are problematic

	Unanchored text queries like ‘%this%’ run slow

Indexing

	A good index

	Has high selectivity on commonly-used data

	Returns a small number of records

	Is determined by analysis, not guessing

	Use pg_stat_user_tables - shows sequential scans

	Use pg_stat_index_blah

Vacuuming

	autovacuum slowing the system down?

	increase autovacuum_vacuum_cost_limit in small increments

	Or if the load is periodic

	Do manual VACUUMing instead at low-low times

	You must VACUUM on a regular basis

	Analyze your vacuum

	Collect statistics on the data to help the planner choose a good plan

	Done automatically as part of autovacuum

On-going maintenance

keeping it running

monitoring

	Keep track of disk space and system load

	memory and I/O utilization is very handy

	1 minute bnts

	check_posgres.pl at bucardo.org

Backups

pg_dump

	Easiest backup tool for PostgreSQL

	Low impact on a running database

	Makes a copy of the database

	becomes impractical for large databases

Streaming replication

	Best solution for large databases

	Easy to set up

	Maintains an exact logical copy of the database on a different host

	Does not guard against application-level failures, however

	Can be used for read-only queries

	if you are getting query cancellations then bump up a config

	Is all-or-nothing

	If you need partial replication, you need to use Slony or Bucardo

	..warning:: partial replication is a full-time effort

WAL Archiving

	Maintains a set of base backups and WAL segments on a remote server

	Can be used for point-in-time recovery in case of an application (or DBA) failure

	Slightly more complex to set up

Encodings

	Character encoding is fixed in a database when created

	The defaults are not what you want

	Use UTF-8 encoding

Migrations

	All modifications to a table take an exclusive lock on that table while the modification is being done.

	If you add a column with a default value, the table will be rewritten

	Migrating a big table

	Create the column as NOT NULL

	Add constraint later once field is populated

	
Note

I’ve done this a lot.

Vacuum FREEZE

	Once in a while PostgreSQL needs to scan every table

	This can be a very big surprise

	Run VACUUM manually periodically

Hardware

	Get lots of ECC RAM

	CPU is not as vital as RAM

	Use a RAID

AWS Survival Guide

	Biggest instance you can afford

	EBS for the data and transaction

	Set up streaming replication

Round pegs for square holes - using mongoDB with Django

	Audrey Roy and Daniel Greefeld

	Cartweel people

	Using mongoDB with Django

	Taken by @chrisglass

Note

Hard to keep up here

MongoDB

	Mongo is NoSQL, stores stuff in BSON, uses javascript (V8), bindings for pretty much
anything available.

	Collections are like tables, Documents are like rows.

	Queries return a list of dictionnaries.

Many options

pymongo

	Plenty of connectors available, pymongo being the “official” one, that most others wrap.

	Schemaless, very fast, supported directly by 10Gen.

	You loose modelforms, some admin

MongoEngine

	Mongoengine is another option. It is a more Django looking piece of code, Integrates
better with all the django bells and whistles. VERY FAST development (basically Another
import instead of django.model)
A con is that it’s very close to the normal way of having schemas, which is counter
intuituve in a schemaless DB, and you loose the django admin layer.

MongoKit

	MongoKit: Makes queries a little less Djangonic, more like MongoDB, therefore
easier to go “schemaless”. A litte slower, but admitedly no benchmarks <not sure it matters anyway compared to the DB-server roundtrip>

Django-nonrel

	Django-nonrel with a mongodb backend: “a patch to django”, it’s actually a fork
of django. You can use django as you would normally, still lagging behind The
rest of django, multi-db is confusing

Conclusions and further thoughts

	Django doesn’t really feels like a good match for NoSQL, and better suited for relational DBs

	Mongo is a greate DB, but the is some work to be done to simplify usage of Mongo, “lack of ai simple bridge”.

	If you have a schema definition anyway (models), why should you not use postgres and reap all the good stuff people wrote?

	Treat instrospection like MongoDb queries? To investigate

	Schemaless databases bring great advantages on the other hand - it is should be worth a few compromises.

Square pegs and round holes - Django and MongoDB

BY DANIEL GREENFELD AND AUDREY ROY

Note

Obviously not taken by Daniel as he’s talking. This version by Marc
Tamlyn (@mjtamlyn [http://twitter.com/mjtamlyn]).

	Danny might cartwheel…

	Work at cartwheel web - a django consulting shop. Met at Pycon 2010. Engaged!

What is MongoDB?

	NoSQL

	Fast, indexable…

	Schema-less

	C++, Uses BSON (extended JSON), JS internals, Bindings in EVERYTHING. There’s
a big community.

Analogies

	Collections ~ Table

	Document ~ Row

	A QS looks like a list of dictionaries.

collection = []
document = {
 '_object_id': ObjectId('sadfasdfasdfsa'),
 'name': 'PyDanny'
}
collection = [document,]

Connectors

	pymongo (low level)

	mongoengine/mongokit (Document ORM)

	Django non-rel

PyMongo

	Official binding.

	powers everything else

	low level, but nice enough api.

connection = pymongo.Connection()
db = connection.db

for review in db.reviews.find({'rating': 3}):
 review['title']

	FAST!

	Schema crazy! (each row has its own schema)

	Supported directly by 10gen who make Mongo. Their recommended solution.

Cons

	Very low level.

	Lose all of the things from Django you want.

	Syntax not so clear.

Mongoengine

By @harrymarr!

Looks a lot like the Django ORM.

class Review(mongoengine.Document):
 name = mongoengine.CharField()

...

	Queries like the Django ORM.

	Super easy to develop with.

	Light schema, unenforced by db.

	django-mongonaught for admin-like functionality

	Supports some inter-document connections

Cons

	Too structured?

	Validation messages sometimes unclear

	Lose on things like introspection (though that’s what mongonaut is for)

MongoKit

	Similar pattern to monogengine

class Review(Document):
 structure = {
 'title': unicode,
 'body': unicode
 }

...

	Queries like mongo rather than Django. Much easier to make it schemaless.

	Pretty quick.

	Types are a mix of python & mongo.

	Losing the introspection again. No schema to inspect!

Django non-rel + monogdbengine

	Adds NoSQL to the ORM. A Fork of django.

	Works with App Engine, MongoDB, and SQL dbs.

Pros

	Exactly like normal django

	Has introspection from djangotoolbox

Cons

	Forks ALL of django. (1.3…). Maintenance headache potentially.

	Multidb usage is confusing

	A bit idealistic…

Summary

	pymongo is low level

	monogengine is schemaless django models

	mongokit ~ pymongo++

	django-nonrel is a django fork

Thoughts: Danny

	Can we build a “simple” bridge?

	What about a 3rd party app which combines standard django apps with mongo db?
(e.g. contrib.auth, forms, social-auth etc)

	“Let’s extend the django admin” doesn’t work…

Why add schemas to schemaless when:

	Relational DBs

	South

	High level caching tools

allow you to do fast moving dbs easily.

Introspection tool idea:

Immediate introspection: if there’s no title then don’t show a title! Treat it
like MongoDB queries.

Thoughts: Audrey

	Schemaless dbs promise performance at the expense of ACID. Lose the
guarantees for the highter availability.

	This is OK when performance is more important than being consistend 100% of
the time.

	Schemaless models != schemaless collections. MongoEngine is best case unless
you need schema anarchy! (Props to @harrymarr [http://twitter.com/harrymarr] again)

Using Django with Mongo

	Big hurdles, but it’s improving rapidly.

	Needs:

	New tools

	forms bridge

	admin bridge

	replacement for auth

	creation of best practices

	Nothing wrong with mixing DBs.

Django mongonaut

Introspection for MongoEngine. Works so far. Want to make it independent from
mongoengine and make more generally useful.

Integrate some graphing tools? (e.g. graphviz) Should be based off immediate
introspection rather than ahead-of-time.

Summary

Consider all of the tools. It’s not impossible!

Class-based Generic Views: patterns and anti-patterns

	BY BRUNO RENIÉ

	CBVs added in Django 1.3

	https://speakerdeck.com/u/brutasse/p/class-based-views-patterns-and-anti-patterns

Note

couldn’t keep up with his code samples

Controversy

Blog posts last week

	Luke Plant

	Nick Coghlan

What are views in Django?

“A view is a callable that takes a requests and returns a response”

Deprecation

	Functional views are not deprecated

	Generic functional views are

Pre Django-1.3 Django CBVs

	Admin

	RSS feeds

	Sitemaps

CBV API

class View(Object):

 @classonlymethod
 def as_view(cls, **init):
 def view(request, *args, **kwargs):
 self = cls(**init)
 return self.dispatch(request, *args, **kwargs)

 # TODO find the rest

Declarative vs Imperative

	CBVs have a much steeper learning curve

	ccbv.co.uk is a handy resource

Usage Tips for Django CBVs

	try to keep urls.py for URL definition and nothing else

	Keep decorators in views.oy

Decorating

TODO show Python 2.7 version here

class MyView(generic.ListView):
 pass
Complete this

MRO, extend, don’t override

Unless you’re 100% sure of what you’re doing

Case Studies

Useful recipes

Form processing

TODO - get the form processing example

Nested Navigation

TODO - get example

Pagination

TODO - get example

Registration

from le_social.registration import views

class Register(views.Register):
 form_class = blah

TODO get example

Settings

Don’t set so many settings:

from le_social.registration import views

class Activate(views.Activate):
 expires_in = 3600 * 24 * 7 # 7 days

Shooting yourself in the foot

The problems with using CBVs

The 500 Error

class Handler500(generic.TemplateView):
 template_name = '500.html'

No matter what goes into this, it will throw out blank pages.

Django and the Real-Time Web

	by Zachary Voase

	https://speakerdeck.com/u/zacharyvoase/p/django-and-the-real-time-web

Note

Very thoughtful talk. Zachary scored some very critical points.

WWW: Changelog

	Since July 2008 Chrome has stolen the market from IE.

	Chrome is about to take over IE in the desktop.

	JavaScript and long polling has come around.

Can’t miss this opportunity

But If we spend all your time playing with bright and shiny we’ll lose our existing customer base.

Zachary’s definition of Real-Time

	UI before technology

	Proactive, not reactive

	Synchronized with the ‘real world’.

Stories

MVC

	Parc 1978-1979

	Originally part of Smalltalk-80

	Now the dominant UI design pattern

How it works on the web:

	Listen for reqursts

	Load session state for this user

	Persist session state, clean up objects

REST

	REpresentational **S**tate **T**ransfer

	Roy T Fielding (2000)

	Descriptive, not prescriptive

	Constraints

	Client-server

	Stateless

	Cacheable

	Layered

	Code-on-demand (optional)

	Uniform

WebSockets

	Real TCP connection

	Magic HTTP request to port 80

	Reduces latency

	Enables real-time push

REST & WebSockets

	Full-duplex communication

	Long-running connections

	Direct TCP connection

	TODO missed

Version Control

	Centralized VCS (CVS, SVN, etc)

	Distributed VCS (Git, Mercurial, etc)

Summary of the stores

	Imagine a system where the client is a full MVC stack, as is the server.

	Content is a matter of pushing/pulling like with DVCS

	Backbone.js does this, as well as Cappucino

Caching

	Read RFC 2616

	Seriously.

	Etags

	Cache-Control

	Conflict resolution:

(uri, etag, dirty?)

Implications

	Assumption of orthogonality

	Lossless representations

	Authn & Authz are hard topics

	Pub/sub

	Resource-oriented client

Pub/Sub

	AMQP

	0MQ

	Django Signals

Barriers

	Django ORM - be opinionated!

	Content Negotiation

	Don’t have a separate API app

	Created separately from the standard architecture

	This is a good use case for Django CBVs

	JavaScript

	proxies and middleware

Building secure Django websites

	by Erik Romijn

	hello@solidlinks.nl

	http://twitter.com/erikpub

	slides: https://speakerdeck.com/u/erik/p/building-secure-django-websites

Three Areas

	Integrity

	Internal consistency or lack of corruption in electronic data

	Confidential

	To keep data secret that was intended to be secrity

	Available

	ability to be used or obtained

How cookies and sessions work

Set-cookie: name: value
Cookie: name=value

Sessions

sessionid=8f70xxxxa3d9
session: {
 key: 8f70xxxxa3d9,
 user: Erik
}

If you can access the session of another user, you can impersonate the other user.

Cross Site Request Forging

Fortunately for us, if you use POST, Django by default has CSRF protection enabled via:

<form>
 {% csrf_token %}

</form>

XSS Injection

Injecting HTML or JavaScript into things like field data

<p>Injecting issues <script>alert("I'm a JavaScript injection!");</script></p>

Reflected vs. Stored XSS

	Previous examples are reflected XSS

	Have to try the user into visiting my link

	Other possibility is stored XSS

	Store some data which is later sent back to users, e.g. blog comments

Cookie security

	HTTPOnly flag will prevent reading cookie from JS

	Alternate attack is Cross Site Tracing (XST): disable TRACE on your web server

	Note: if cookie domain is set to e.g. djangocon, every website under djangocon.eu is at risk.

Server side injections

SQL injection

	No concern, Django ORM prevents injection

	If you don’t use it, stick to prepared statements

LDAP Injections

	You can play creative games if you know the LDAP specification

Note

I saw this at NASA HQ before we rolled out my first professional Python application back in 2006.

Shell Injection

	Always use subprocess

Trusting the Browser

	The browser is under the user’s control

	Which means you cannot trust anything that the user is doing

Be careful with ModelForms

Don’t use the exclude Meta attribute in ModelForms!

class Profile(models.Model):
 user = ForeignKey(User)
 phone = models.CharField()
 is_admin = BooleanField() # added later

class ProfileForm(ModelForm):
 model = Profile
 exclude = ('user',)

<form>
 {{ form.non_field_errors }}
 Phone: {{ form.phone }}
</form>

Passwords and SSL

	Don’t use plaintext passwords

	Limit the number of attempts (django-axes, django-lockout)

	If you use logins, use SSL

	If you use SSL, look at django-secure

Clickjacking and Django

	Protection in Django 1.4

	django.middleware.clickjacking

	etc

Backups

	Run backups

	If you don’t have backups, who owns your stuff?

	Test your restores!

Introducing PLY

	PLY is an implementation of lex and yacc for Python

	Made by David Beazley

	http://www.dabeaz.com/ply/

	Naming conventions and introspection => very “economic” code

Let’s us compile things like:

groups name="XXX" AND NOT groups__name="YYY"
(modified > 1/4/2011 OR NOT state__name="OK") AND groups__name=="XXX"

into django.db.models.Q objects

Implementing DSLs in Django Apps

	by Mattieu Amiguet

Initial Motivation: Searching Contacts

class Contact(models.Model):

 first_name = models.CharField()
 groups = models.ManyToManyField('Group')

	Client wants to customize things themselves

	giving them access to code is dangerous

	Limit their actions

Other reasons

	Quick and easy to implement (if you use the right tools)

	Fun to code!

Not for the end user

	Only to be used by power users

	Your DSL could be used as a scripting language

How to make a DSL in Python/Django

	Basics

	Lexer (vocabulary)

	Parser (grammar)

	Some kind of backend

	The lexer and parser part are quite generic

	use code generator

Sample

import ply.lex as lex

tokens = (
 'COMPA', # comparison operator
 'STRING',
 'NUMBER'
)

t_COMPA = r'=|[<>]=?|~~?'

literals = '()' # shortcut for 1-character functions

def t_STRING(t):
 r'"[^"]*"'
 t.value = t.value[1:-1]

def t_NUMBER(t):
 r'\d+'
 # TODO - finish this function

Note

Not sure how this works. Me need to read up on PLY

Parser - The Grammar

expression : expression B_OP expression
expression : U_OP expression
expression : ‘(‘ expression ‘)’
value : STRING

NUMBER

DATE

Parser in PLY

	Grammar rules go into docstrings

	Special argument p corresponds to rule parts

def p_expression_u_op(p):
 '''expression : U_OP expression'''
 if p[1] == 'NOT':
 p[0] = p[1]

I hate your database

by Andrew Godwin

	Lead developer for South http://south.aeracode.org/

	Cheese fan

	http://twitter.com/andrewgodwin

	Slides: http://www.aeracode.org/static/slides/djangocon-eu-2012.pdf

Hate? Databases?

Countering

	Misuse

	Ignorance

	Lies

Different Databases, different occasions

	People use the same database for everything they touch

	You shouldn’t use a database for things it was not designed to do.

	Types of databases:

	Relational

	Document

	Key-value

	Graph

	Object / Heirarchial

	Spatial

	Time-series / RRD

	Search

	Relational

	PostgreSQL

	MySQL

	SQLite

	Document

	MongoDB

	CouchDB

	Key-value

	Redis

	Riak

Some quick theory

	ACID

	Atomicity

	Consistency

	Isolation

	Durability

	CAP Theorem (you can only have 2 of the 3 of them)

	Consistency

	Availability

	Partition Tolerance

MySQL

Very interesting database system

	No transactional DDL

	Poor query optimizer

	MyISAM: full-table locking, no transactions

	Oracle

	Very fast for some operations

SQLite

	Little integrity checking

	Impossible to do some table alterations

	No concurrent access

	Low overhead

	Very portable

PostgreSQL

	Slow default configuration

	Can be a little harder to learn

	Almost too many features

	Incredibly reliable

MongoDB

	No fixed schema

	Very similar to Python types

	Immature (but improving)

	No transactons

	No integrity checking

Key/value stores

Redis, Riak, memcached

	Horizontal scaling (but with drawbacks)

	Extremely fast

	Can only fetch objects by key

	Batch/map-reduce queries

	Transactions not possible

Spatial databases

	Knowledge of projections useful

	Spatial indexes really speed up some problems

	Generally add-on to existing DB

Filesystems

	Hierarchal key-value store

	Allows multiple writers for appends

	Supports very large files

Graph Databases

	Allow efficient neighbor queries

	Generally not much use for anything else

Round-Robin Database

	Deliberately loses old data

	Useful for logging or statistics

Summary

	It’s unlikely your data all fits in one paradigm

	Just buying bigger servers goes a long way to overcoming shortcomings of a particular database

	Try multiple things before making a decision. Educate yourself!

LFS - Lightning Fast Shop

http://www.getlfs.com/

by Kai Diefenbach

	Living in Germany

	Does Python and Django

	Lead on LFS

	http://diefenba.ch/

	http://twitter.com/diefenbach

	Slides: https://speakerdeck.com/u/diefenbach/p/lfs-an-online-shop-based-on-django

LF = Lightning Fast WTF?

	Faster than the old Plone shop they used to support

	Calculation ~200ms / ~100ms

	Page 0.5 - 2 seconds

	Renders pretty fast

Numbers & Facts

	Django

	JQuery

	BSD license

	100,000 downloads on PyPI

	Google Group > 170 members

	9 committers

	On github

	~40 known shops

Samples

	http://demmelhuber.net

	https://www.anwaltakademie.de/

	http://www.holzimgarten.de/

Features

	Custom management interface

	default theme is attractive

	Products can have variants

	Downloadable products coming soon!

	Topsellers

	Vouchers

	SEO

	Sitemaps

	Prepared for Google Analytics

	Good URL patterns

	Portlets

	Filtered navigation

Properties

	Extend products

	Create variants & configurable products

	Filtering

	Select field, float field, and text field

Accessories

	Lets you tack accessory products to a product

	Roofs could list nails and tiles

	MBA could list Sublime Text 2

Variable Payment Methods

	Credit

	Debit

	PayPal

	Pluggable so we can add Stripe

Development

	On Github

	PEP8 & pyflakes

	Every new feature must have a real live use case

	Every new feature must have tests

	Every new feature must have documentation

	Using Jenkins for CI

	Deprecations over two releases

Using CSS preprocessors effectively

by Jonas Wagner

	Known for doing crazy and creative stuff

	Porting Physic engines to JavaScript via Python

	Works as Software Engineer at local.ch

	3.1 million unique clients

Don’t make a mess

	Most programming languages encourage good code pattern

	CSS is not one of those languages

Issues with CSS

	No Variables

	No hierarchy

	Prefixes

	Sprites

	Lack of abstraction

Solution: CSS Preprocessors

Choosing a Preprocessor

SASS

	Official implementation is in Ruby

	Two dialects scss and sass

	Sassy CSS

	Syntactically Awesome Stylesheets

	PySCSS is an implementaton of SCSS in Python

	Compass is

LESS

	Originally written in Ruby

	Now implemented using JavaScript in Node.js

	Can be compiled on the client and using Node.js

	Twitter bootstrap uses LESS

Which one?

	Features virtually equivalent

	Both are a superset of CSS

	He recommends SCSS

	More explicit syntax

	Compass offers lots of goodies

	Decent Python implementation

Common Features

	Variables

	math and functions

	nesting

	avoiding CSS hacks

	More elegant comment system

	Mixins

	Prefixes

Doing it with Django

pip install webassets cssmin

STATICFILES_FINDERS = (
 ...
 'django_assets.finders.AssetsFinder',
)

INSTALLED_APPS = (
 ...,
 'django_assets',
)

in assets.py:

from django_assets import Bundle, register
js = Bundle('common/jquery.js', 'site/base.js', 'site/widgets.js',
 filters='jsmin', output='gen/packed.js')
register('js_all', js)

{% load assets %}
{% assets "js_all" %}
 <script type="text/javascript" src="{{ ASSET_URL }}"></script>
{% endassets %}

Tools

	Good editor support for Preprocessors

	Graphical tools like LiveReload and Compass.app

	FireSASS

Warning

	Increased complexity

	Might not work with IE

	Makes debugging harder

	Potential for bloat

Conclusion

	Preprocessors solve common problems

	Allow us to focus on writing clear and meaningful CSS

	Try it on at least one project

	Plain old CSS feels very silly

Arkestra: semantic information publishing for organizations

by Daniele Procida

	Works at Cardiff University School of Medicine

	http://medicine.cf.ac.uk is his main site

	http://arkestra-project.org/

	http://readthedocs.org/docs/arkestra/

	slides: https://speakerdeck.com/u/evildmp/p/arkestra-at-djangocon-europe-2012

Note

Good talk but some slides had too many bullets.

What typically happens when working with a CMS

	You have to repeat yourself

	data gets wasted and lost

	content & presentation becomes inconsistent

	info in templates gets broken and petrifies

	information ages, withers & dies

	users play fast & loose

	The larger the site the worse the problems get

His idea

Create a model of the real world

Informtation, not just data

	information not useless stupid data

	templates don’t hold information

	Semantic modeling real-world relationships

	user semantics!

Organization

	Can you model a CMS based off an organization?

	He created a concept of entity

	Many interconnections of content and data

	He did it on http://medicine.cf.ac.uk

	Entities are associated with pages

	Not entity needs to have a page

	We did a very similar effort on http://science.nasa.gov/, but…

	not so well organized.

	grown organically during the course of a number of badly run meetings

Don’t waste people’s time

	Make everything re-usable and re-use it

	Make it easier to re-use then re-enter

Django-CMS and Arkestra

	Django CMS & Arkestra grew up together

	have been developed alongside each other

	portions of Django CMS conceived as part of Arkestra

	integration with pages, placeholders/plugins, menus

The Semantic Presentation Editor

The problem:

	Create complex, flexible, multiple-column layouts

	produce well-structured semantic HTML

	Need no HTML/CSS skills

Solution:

	The Semantic Presentation Editor

	Special text editor that renders out things in a lovely, semantic fashion

	See https://bitbucket.org/spookylukey/semanticeditor/wiki/Home

Django Chuck - Your powerful project punch button

by Bastian Ballmann and Lukas Bünger

Note

Looks to be an amazing, modular tool for standing up projects easily. Missed most of the talk so my notes are incomplete.

Why the name Chuck?

	Chuck is not informal term for meal

	Not meaning vomit

	Chuck has no times to anything

Use case for django-chuck

	Same setup all the time

	Manual project setups

	Same conditions apply all the time

Why not Pinax?

	No modular template structure or code base

	Monolithic Python script

	Addresses project creation only

	No flexible build process management

Installation

pip install django-chuck

copy example_conf.py to:

~/django_chuck_conf.py

See django-chuck.rtfd.org

Example usage

chuck create_project <prefix> <name> [modules] -a [pip modules]
chuck create_project ni djangocon django-cms,test,nginx

What happened?

This got generated:

	settings

	requirements

	uwsgi

	fabfile

	hosting

	jenkins

	templates

Setup an existing project from source

chuck setup_project git@whatever.com:your-project.git

Note

Stepped away for things.

It’s about time

by Aymeric Augustin

	Django core dev

	http://static.myks.org/data/20120605-DjangoCon-It’s_about_time.pdf [http://static.myks.org/data/20120605-DjangoCon-It's_about_time.pdf]

Note

Had to deal with a business thing so didn’t get all of Aymeric’s talk down. What I got was from some really awesome material.

RFC 3339

	Current era

	Stated offset

	universal time

	instant in time

from datetime import datetime
datetime(
 year=2012, month=6, day=5
 hour=16, minute=10, second-0,
 microsecond=0,
 tzinfo=FixedOffset(120)
)

Time zones add complexity

aware vs naive datetimes

>>> naive = datetime(2012, 6, 5, 16, 15)
>>> tz = timzeone("Europe/Paris")
>>> aware - tz.localize(naive)
>>> naive - aware

From the Python docs: Whether a naive datetime object represents UTC, local time, or time in some other timezone is purely up to the program.

DST transitions

from datetime import datetime

dates and datetimes

	dates are always naive

	they don’t suffer from the same problems as naive datetimes

	using an aware datetime as a date is an accident waiting to happen

	Django supports mixing naive datetimes and dates

Django >= 1.4

	Uses aware datetimes in URC internally

	stores naive datetime sin UTC in the database (except PostgreSQL)

	converts to aware datetimes in local time in forms and templates

	supports multiple time zones!

default and current time zones

	default = settings.TIME_ZONE

	used in models for conversions between naive and aware objects

	current = end user’s time zone

	used in templates and forms

	for multiple time zones support

auto-conversions

	ensure backwards compatibility

	avoid surprises for single time zone sites

	but support sloppy contructs e.g.,

	filter a DateTimeField with a date

	save a datetime in a DateField

Utilities

>>> from django.conf import settings
>>> from django.utils import timezone

>>> settings.USE_TZ = True
>>> timezone.now()
<snip>

limitations in Django 1.4

	The database works in UTC (ticket #17260)

	QuerySet.dates()

	__year/month/day/week_day

	Author of pluggable apps may have to handle two cases

Key learnings

	A datetime is a point in time. A date is a calendaring concept.

	Use aware datetimes in UTC and convert to local time for humans.

	learn how to use pytz properly especially localize and normalize

Time isn’t as simple as it seems. Learn and practice!

Healthy Webapps Through Continuous Introspection

by Erik van Zijst

	http://twitter.com/erikvanzijst

	https://bitbucket.org/evzijst

	Slides: http://t.co/V0rHYjIu

Case study: Wasted cycles on Bitbucket

=> SSHD => conq (Python) => git/hg

	conq is our custom SSH shell

	conq imports Django ORM and Bitbucket code

	takes ~1.41 seconds to start (spawns ~50/second)

Solution after analysis: Stop the imports and just write native SQL

	16 times faster to start up (0.09s vs 1.41s)

	60% load decrease on all web servers!

Lessons learned

	Test your stuff

	Monitor your servers

Common problems

Slowness in Web Apps

	Slow SQL queries (or too many!)

	lock contention

	between threads

	database table/row locks

	fine locks (git/hg)

	excessive IO (disk/network)

	evil regex: r'^(a+)+$'

consequences

	503 - worker pools full

	500 if requests time out (Gunicorn SIGKILL)

The latter is best avoided as it destroys forensic evidence and leaves stale state (e.g. lock files)

Dogslow

	Django middleware

	emails tracebacks of slow requests

	no performance penalty, safe on prod

	https://bitbucket.org/evzijst/dogslow

django-geordi

Designed to profile your production environment without impacting performance

	selectively profile individual requests

	add “?__geordi__” to any URL

	products PDF call graph

	https://bitbucket.org/brodie/geordi

interruptingcow

Designed to let you catch and then bubble up a system locking issue

import re
from interruptingcow import timeout

try:
 with timeout(20.0, RuntimeError):
 #evil regix
 re.match(r'^(a+)+$', 'aaaaaaaaaaaa')
except RuntimeError:
 print 'Interrupted'

Adding tests to an uncovered application

by Zach Smith

	Slides: https://speakerdeck.com/u/zmsmith/p/adding-tests-to-an-uncovered-app

Instagram started as burbn

	Instagram started as a HTML5 version of 4square

	Pivoted

	If they had written tests those tests were wasted

When to automate testing?

	Think about time: can you spend the time to write these tests?

Types of Tests

	Acceptance tests

	Functional tests

	Unit tests

Libraries to help increase test coverage

	lettuce

	sprinter

Implementing real time web apps with Django

by Kristian Ollegaard

	Works at Divio

	Django since 0.96

	Danish, but lived in Zurich for 1.5 years

	http://kristian.io

	http://twitter.com/oellegaard

	slides: http://www.slideshare.net/oellegaard/implementing-real-time-web-applications-with-django

Why real time?

	Better user experience

	More options in front end

	Make the web feel like native apps

	Showing live data

	Collaboration is much easier

Finding the right tool

	Criterias

	Use websockets but has fallbacks

	Good browser support including old IE

	Should be usable from Python

	Does not require extensive changes in frontend

	As fast as it can be

The tools you want

	Node.js

	Built on Chrome’s JavaScript runtime

	Uses an event-driven non-blocking I/O model

	Socket.io

	one interface for all transport methods (sockets, polling, etc)

	Compatible with almost everything

Why not implement it in Python?

	Already active community

	Can be used from python without too much trouble

	Most people know very basic javascript

	More importantly, frontend engineers know javascript and can therefore contribute to the different browser-specific implementations.

Using redis for cross-language communications

	Support for many datatypes

	Can be used both as storage and as a queue

	Implemented in many different languages

	For the usage in this talk, any other queue could have been used as well

Basic Concept

	Something happens, the user must be notified in real time

	From Django we insert the new value into the queue

	Node.js listens on the queue

var io = require('socket.io).listen(8001);
var redis = require('redis').createClient();
redis.psubscribe("socketio_*");

// TODO add the rest

<!-- Add this part -->

import redis
import json
redis_subscribe = redis.StrictRedis()
redis_subscribe.publish('socketio_news',
 json.dumps("Hey, how are you?"))

Hosting socket.io

	Nginx does not support websockets!

	Needs its own app, if hosted on an application cloud (e.g. Heroku)

	Recommended to expose the node server directly

	But hey, it’s node.js, it scales!

Using this today?

	Maybe not

	Do some research

Client Authentication

	Socket.io handles authentication from node -> client

	Currently no authentication between django and node

	Could possibly be solved by storing your sessions in redis and checking them between systems

How Heroku Uses Heroku To Build Heroku

by Craig Kerstiens

	Works at Heroku

	http://twitter.com/craigkerstiens

What is Heroku?

	Platform as a Service (PaaS)

	focuses on developer productivity

	4000 heroku apps

	500+ releases a day

	200+ deploys a day

	105 public github repos

	85 people across 21 teams

	a cloud unix

Philosophies

	Do 1 thing and do it well

	Run and forget

	Defined Contract/API

	Developer Environments

	Environment Parity

Do 1 thing and do it well

	Small functional apps

	KISSMetrics Data Loader

	Open DB connection

	Run query

	Post data

	Others

	OAuth

	Vault

	API

	Core

Run and forget

	Start an app

	Let them run

	Forget about them

	Alert me when things break

Sample standing up an app

git clone git://github.com/opencomparison/opencomparison.git
heroku create -s cedar
git push heroku master

Environmental Parity

Dev and staging and production should be identical

DEFAULT_FROM_EMAIL = os.environ.get('DEFAULT_FROM_EMAIL', 'pydanny <pydanny@cartwheelweb.com>')
AWS_ACCESS_KEY_ID = os.environ.get('AWS_ACCESS_KEY_ID')

More philosophies in use by Heroku

	ownership

	productivity

	agility

Specifics

	“Let engineers be engineers”

	You choose the tools to get the job done, you support the API for others, you own the features to make users happier, you ensure it works, you carry the pager

	Broad focus around quality, quality comes from solid engineering, give time to engineers, get stuff done.

	Iterate fast and often, a failed attempt is a successful experiment, culture around seeing/doing over talking

	Github issues alone doesn’t fix communication

Focus on Quality

	Make good art

	Hire for quality and culture

	Quality doesn’t work with deadlines

Involving women in the community

by Lynn Root

	http://twitter.com/roguelynn

	Founder of the San Francisco chapter of pyladies (hundreds of members)

	Event coordinator for Women learning to code

New Developer

	Started last fall

	Ran into problems with signing up for classes because of her last name

	Comes from a financial background

	correlation vs causation

	http://xkcd.com/552/

Opened the floor to questions and discussion

“I don’t think we should care that much, because if we care too much then the problem gets bigger.”

Note

Cause if you ignore the problem, it goes away, right? This is a really bad path to take.

Paraphrasing: “Sauna statements with mention of female body parts.”

Note

WHAT THE FUCK?!?

	“Hire anyone because they are smart, not because of gender.”

Note

YES! If you are having trouble finding developers, hire smart people regardless of their race, gender, creed, etc and train them up.

	“I have a game: Any time someone says, ‘Women tend to’ or ‘Men tend to’, interrupt them and yell ‘BULLSHIT!’”

Note

Brilliant! I’m going to play this game.

“Is this the right place or platform for this discussion? With so many people watching it’s all too easy for me to screw this up and offend someone.”

Note

Good point. This is very, very hard. We’ve all made mistakes. I’m not sure what the answer is.

“For those of you wondering about if it’s okay to sponsor women/minorities and give special treatment, it makes a huge difference in the lives of those who benefits. Including Audrey Roy”

Note

I agree. :-)

“Now is the time. Don’t let this fade. Our ancestors fought hard for our rights, lets’ keep up the cause”

Note

Simple summary of my statement

“Don’t make sexist jokes”

Note

Awesome

Flasky Goodness (or Why Django Sucks?)

by Kenneth Reitz

	http://twitter.com/kennethreitz

	Works for Heroku

Hos Open Source work

	http://python-guide.org

	Documented best practices

	Guidebook for newcomers

	Reference for seasoned veterans

	Don’t panic & always carry a towel

	http://python-requests.org

	HTTP for humans

	http://httpbin.org

	legit: Git workflow for Humans

	Envoy: Subprocess for Humans

	Tablib: Tabular Data for Humans

	Clint: CLI App Toolkit

	Autoenv: Magic Shell Environments

	OSX-GCC Installer: Provokes Lawyers

Open Source All The Things!

	Components become concise and decoupled

	Concerns separate themselves

	Best practices emerge

	Documentation and tests become crucial

	Code can be released at any time

	Abstraction

Let’s build something

Why pick Django?

	Makes modular decisions for you

	Makes security decisions for you

	Excellent documentation

	Installable third-party Django apps

	Tremendous resources & Community

	much more cause anything is possible!

Django Application

	Tools & Utilities

	Management Tools

	Supporting Services

	Web Process

	User Interface

	API

	Data Persistence

	CRUD Admin

	Authentication

	Worker Process

	Deferred Tasks

	Scheduled Tasks

Single Codebases are great

	All the benefits of the Django stack

	Figure out architecture as you go

	Shared modules keep you dry

	Make broad, sweeping changes

	Only need to deploy once

Single codebases are EVIL!

	Tight coupling of components

	Broad tribal knowledge required

	Iterative change of components difficult

	Technical debt has a tendency to spread

	Forced to deploy everything at once.

Anything is possible… but that ends up with a monolithic application.

CONSTRAINTS FOSTER CREATIVITY

	Having rules gives you an environment in which to play.

	Text Editors vs IDEs (Vim lets you do so much, Sublime Text limits what you can do)

	Prime vs Zoom Lenses

	Mac OS X vs Desktop Linux

	Pen/paper vs electronic notes

Build for services

	Components become concise & decoupled

	Concerns separate themselves

	Best practices emerge

	Documentation and contracts become crucial

	
Note

missed some here

Results in composability

Django: For API Services

	Significant boilerplate code for simple views

	No need to templates, tags, etc

	API Libraries are buggy; could use some love

	if request.method == 'POST'

Django: For API Consumer

	Keep in mind, database is handled by the API

	Makes modular decisions for you

	Deals with the database for you

	Installable third-party Django apps

Enter Flask

	HTTP Web Framework based on Werkzeug

	Excellent for building web services

	Elegant and simple

Flask Familiarities

	WSGI Application Framework

	Jinja2

	activity community

	Started an April Fool’s joke

	Just 800 lines of code

	Heavily tested, 1500 lines of tests

	Exhaustively document; 200 pages of docs

	Layered API; built on Werkzeug, WSGI

Flask Differences

	Explicit & Passable app objects

	Simple, elegant API. No boiler player

	BYOB: Bring your own batteries

	No built-in ORM or form validation

	Context locals. Keeps things looking clean

Flask Improvements

	Fewer batteries == greater flexibility

	Jinja2 is an incredible template system

	Everything harnesses actual references

	Configuration is a simple dictionary

	It’s hard to build monolithic applications

	Response objects are WSGI applications

	Werzueg debugger

	No import-time side effects

	Signals system outside of ORM

	Tests are simpler with real app objects

	return (content, status)

Popular Flask Extensions

	Flask-SQLAlchemy: Database Mapper

	Flask-Celery: Delayed jobs

	Flask-Script: Management commands

	Flask-WTF: Form Validation

Services are agnostic

	Just speak HTTP

	Use both Django and Flask

Pycon 2012

Note

Github was gracious enough to donate their booth to our startup, Consumer Notebook [http://consumernotebook.com]. So instead of going to many awesome talks and taking notes, I spent most of the time at our booth. Tons of people came by and checked us out. On Sunday I learned just how painful standing for two days on concrete combined with feet pounding Capoeira action can be. ;)

	Diversity in Practice
	Basics

	Motivation

	Goals

	Workshop goals

	Schedule

	The results

	Reflection & Sharing

	How they share the work

	Scaling out: impact beyond Boston

	Next steps

	Resources

	Other

	Transifex: Beautiful Python app localization
	Intro

	Workflow

	Python & Gettext

	How to render PO files

	Traditional model of translations

	Existing solutions before Transifex

	Transifex

	Simpler model of translations

	Transifex size of project

	Tech

	Workflow automation

	Workflow automation

	Nifty features

	Python Web Summit March 8, 2012
	Introduction

	Creating a Better Deployment Story

	Porting to Python 3

	Factoring Code for Reuse

	“State-Of” Multi-Talk Round 1

	Promoting Python for Web Use

	“State-Of” Multi-Talk - Round 2

	Quotes

	Keynotes
	Stormy Peters

	Paul Graham

	Other Pycon Notes

Other events I’ll be attending

	Saturday’s Consumer Notebook [http://consumernotebook.com] booth on PyCon Startup Row [https://us.pycon.org/2012/community/startuprow/].

	Saturday’s Capoeira Roda [https://us.pycon.org/2012/community/openspaces/capoeira/]

Diversity in Practice

“How the Boston Python User Group grew to 1700 people and over 15% women”

	by Jessica McKellar , Asheesh Laroia

	Boston Python user group organizers

	PSF members

	PSF outreach and education committed members

	Open hatch

	FOSS

Basics

	Diversity membership makes user groups better.

	Diversity outreach helps user groups group

Motivation

	No women at user group events

	No pipeline for newcomers / beginners.

	To fix it, they decided to change things from within

Goals

	Bring more women into the community. Get to 15%

	Show examples of great women programmers

	Encourage other user groups to think about diversity

Workshop goals

	workshops + follow up events

	Over 200 women alums

	Large volunteer base

	Beginner’s stay inside!

Schedule

How they do it:

Friday: Spaces

	Windows and Python sucks.

	Fixing tabs versus spaces

	Practice with the interpreter

	All their materials are available on the web

Saturday: Lecture and practice

	Basics of python objects and structures (2 hours)

	Lunch

	Build your own project (2 hours)

	A couple games

	Play with the twitter API

Post event

	Hack nights

	Discussion groups

The results

Before

	1 organizer (Ned Batchelder)

	700 members

After

	3 organizers

	1800 members

	Monthly lecture-style events

	hack nights

	classes

	more

Reflection & Sharing

	Volunteers are awesome

	Why’d you sign up? “Women, judgement-free, free”

	Staff wrap-up. Lesson’s learned:

	More coding practice

	simplified projects

How they share the work

	Curriculem on wiki

	Share their code:

	codingbat.com

Scaling out: impact beyond Boston

How they influenced the world

	Montreal Python: Women & friends workshop

	Pystar: Workshops and material

	PyStar Philly

	PyLadies: women-friendly python user group(s)

	Ladies learning code: women-oriented tech programming in Toronto

	7 of the 50 poster sessions came out of women who got involved because of these groups

Next steps

	Continuing innovation of organization

	Get people in via workshops, user groups, PSF memberships,

	project nights

Resources

	http://bostonpython.org

Other

	Lessons from Railsbridge:

from sf.ruby
import railsbridge

Transifex: Beautiful Python app localization

by Dimitris Glezos

Intro

	Github for translations

	Develop for an international audience

Workflow

	Mark translatable strings

	Release string freeze

	Translator: VCS checkout

	Translate w/special tools

	Get ‘em files back

	SSH, email, tickets

	For every frigging release

Python & Gettext

TODO show Django import
from gettext import gettext as _

thing = _("I'm going to be translated")

{% load i18n %}

{% trans "person" %}

{% blocktrans count ppl|length as num %}
TODO show moar

	Generates PO files

How to render PO files

TODO: show the command-line actions for pure Python and Django

Traditional model of translations

	Content owner/developer

	Localization manager

	Content management system

	Developers

Existing solutions before Transifex

	Emails to translation agencies

	loss of control

	Expensive

	Build own L10N system

	Lots of work

	Expensive

Transifex

	SaaS product

	Open source platform

	Built for developers to maintain

Simpler model of translations

	Content owner/developer

	Content Management System

	Transifex

Transifex size of project

	17,000 users

	3,000 products

Tech

	Django, Python, PostgreSQL, MongoDB, Redis

	Celery AMQP

	Django Add-ons

	Mercurial, Git

Workflow automation

$ pip install transifex-client
$ tx set --auto-local -r myrproj.myres --source-lang en etc...

Creates a local .tx file that set sup the configuration file. This can be uploaded to git.

commands to interact with Transifex
$ tx pull --source
$ tx push --translations

Workflow automation

	Continious integration

	VCS commit hooks

	API to translate content

	Services on Github and Bitbucket

	Heroku Addon

Nifty features

	Social interactivity, comes with a onboarded community

Python Web Summit March 8, 2012

	Hosted by

	Michael Ryabushkin

	Chris McDonough

	url: https://us.pycon.org/2012/community/WebDevSummit/

Note

Taking notes on a panel is really challenging. Apologies on whatever or to whoever I miss. Any misquotes are my fault and not the fault of the speaker.

Introduction

by Michael Ryabushkin

How did this start?

	People:

Chris McDonough
Mike Orr
Phil Jenvey
Mike Bayer
Danny Greenfeld
Audrey Roy

During the summit

	Panels are important, but take people aside if need be

Creating a Better Deployment Story

Moderated by Jacob Kaplan-Moss (Django DBFL)

Panelists:

	Tarek Ziadé (Distribute/Packaging)

	New distutils lets you specify versions of third-party packages. But… redhat and other OS tools have their own package names. Ugh.

	Nate Aune (DjangoZoom, Appsembler)

	All tools (Plone, Django) makes it hard to do deployments. Hence his deployment startups (DjangoZoom and Appsembler).

	We need to come up with a standard and insist on using it.

	Kenneth Reitz (Heroku)

	pip needs to be able to set versions of Python

	PyPI needs more attention

	Ian Bicking (Paste/WebOb/Silver Lining)

	Let’s create a formal Application Package specification.

	Problem to overcome is the difference between developers and sys admin

	Jim Fulton (Buildout/Zope)

	Company does development and maintains 500 applications

	“Packaging needs to be better so we can deploy more easily.”

Questions

	How come Java .war files do it better than Python?

	How do we make it so that Python is as easy to deploy to the web as PHP.

	What is the status quo?

	What are people working on to make this better?

Formal Application Package Specification?

Ian Bicking’s thought on how to do it. Would have these things:

Formal path specification
Formal dependency listings
Project description
Python version labeling
Include non-Python components (database, libraries, fortran, etc)

Jacob’s comment: Is this going down the route of Chef/Puppet?

Namespacing Distributions

	Tarek as to play namespacing games to make sure that we get to use DistUtils backporting across versions of Python.

	Armin Ronacher commented: “The fact that having the same package name for distutils2/packaging would be a problem shows the root of the issue: no proper version deps.”

Takeaways

	Force deployed applications be a package.

	Formal application specification?

	Specify Python versions in virtualenv/buildout

	The challenge of dealing with vendor named projects

	Jacob is going to publish a specification that will hopefully get the community moving. And he invites others to participate on his work.

	The others pledged to help out or work on best practices.

Porting to Python 3

Moderated by Barry Warsaw (Canonical, Python FLUFL)

	Chris McDonough (Pyramid/WebOb)

	Armin Ronacher (Flask, Jinja2)

	Guido van Rossum (Python)

	I don’t know much about how you guys do Python web development and want to know so I can make it easier for Python 3 conversions.

	There was artificial ambiguity introduced in Python 2 in regards to strings.

	Mike Bayer (SQLAlchemy/Mako)

	The Python database API needs some love. I agree in that a huge, unmentioned hurdle for Python three are other libraries besides web frameworks and unicode. DBAPI, PIL, etc.

	PEP 249 doesn’t mention unicode. http://www.python.org/dev/peps/pep-0249/

	Robert Brewer (CherryPy)

Questions

	Chris McDonough: Who runs web apps on Python 3?: crickets

	Barry: What are the big blockers

	Me: What about auxiliary library blockers like PIL, lxml, DB-API?

	Answer: http://stackoverflow.com/questions/3896286/image-library-for-python-3

	Answer: https://github.com/gpolo/pil-py3k

	Answer: https://github.com/sloonz/pil-py3k

	Answer: http://www.lfd.uci.edu/~gohlke/pythonlibs/#pil

	Answer: http://www.imagemagick.org/download/python/

	
Note

Pillow does not solve the Python 3 issue

	Dylan Jay: Why are library writers having to maintain two copies of their library code?

Compelling arguments for/on Python 3

	Armin: Python 3 has some powerful features for sockets and other components that Python 2.x lacks.

	Barry Warsaw: Newer and more powerful libraries being written in Python 3.

	Wayne Witzel: Give a ton options for porting to python3, they won’t choose any of them. Most people just want to be told what is right.

	Barry Warsaw: 2-to-3 tool is useful for getting started, but once in the weeds I find that I dive into the code.

Final Thoughts

Note

my summary of their statements.

	Chris McDonough: We need to make people more enthusiastic about Python 3.

	Armin Ronacher: Improve the guides on porting.

	Guido Van Rossum: This will be resolved. It’s going to be a while, but we can make it. We’ll remember how hard it was to move forward to Python 3.

	Mike Bayer: This will be resolved when we think in Python 3 by default. And make Python 2.x a boring backport.

	Robert Brewer:

Factoring Code for Reuse

Moderated by Danny Greenfeld (consumernotebook.com [http://consumernotebook.com])

	Tres Seaver (Zope/CMF/Pyramid)

	Mariano Reingart (Web2Py)

	Alex Gaynor (Django/PyPy)

	Michael Foord (IronPython, Mock)

	Carl Meyer (Virtualenv, Pip)

“State-Of” Multi-Talk Round 1

Each of these speakers, a leader in their field, gets time to talk about his subject.

Graham Dumpleton (WSGI 2 ideas)

	PEP 333 was created back in 2003

	PEP 3333 was created back in 2010

	Wanted something better:

	Make it simpler

	standardized high level request/response objects

	Async support (not possible because so different)

	Resource management

	Unknown request content length

	no compressed request content

	No chunked requests

	no full duplex HTTP

	Has the boat sailed?

	Too much legacy code relying on WSGI 1.0

	Missed opportunity with Python 3

	Graham’s ideas:

	use context managers to improve resource management

	need to override close() of the iterable

	Implement wsgi.input as an iterable

	TODO add what I missed

Benoît Chesneau (gunicorn)

The state of gunicorn:

	First commit was November 30, 2009, Three users at first

	preform model

	Thread-safe

	Automatic worker process management

	Manage using signals

	Natively support WSGI, Django, Paster

	HTTP streams: decode on the fly http chunks

	Supporting sendfile & FileWrapper

	Simple Python configuration

	Multiple workers (sync and async)

	Various server hooks

	use your own logger

	Some issues:

	Reload - graceful (HUP) or reexec (USR2)

	The Django case: python-manage.py

	Performance issues due to WSGI

	CGI compatibility: headers

	CONTENT_TYPE,CONTENT_LENGTH,SCRIPT_NAME

	The WSGI spec needs to be completed

	Async workers & blocking issues

	IO access like the filesystem are not greened

	C drivers

	Web app configurations & deployment: we need a standard

	Challenges:

	Python 3

	the case of sync workers

	Handle extensions/plugins

	New needs on the web: websockets, SPDY

	modular HTTP & WSGI server in Python

Ben Bangert (Pylons Project)

State of the Pylons Project:

	Lots of community plugins developing

	Larger frameworks on top taking off along with bootstraps

	Ploneconf Pyramid track

	62 reports, 31 devs with commit

	lots of pyramid_* packages

Challenges

	Porting to Python 3 (is doing very well)

	organizing and simplifying sometimes overly pedantic documentation

	TurboGears

	Still exists

	Some progress on community migration

	Standardizing deployment

	Foundation efforts

	Pylons conf (189 members of the SF Bay Pylons meetup)

	Increasing presence at conferences (not just Python ones)

	More awareness of professional support

	Moar books?

Robert Brewer (CherryPy)

State of CherryPy

	It works in Python 2.7x

	It works in Python 3.x

	Being broken up into modular components so the WSGI HTTP server can be used in things like Pyramid

Promoting Python for Web Use

Moderated by Paul Everitt (Pyramid)

	Steve Holden (PSF/DjangoCon)

	Liz Leddy (Plone/PloneConf)

	Eric Holscher (Readthedocs.org [http://rtfd.org])

	Leah Culver (Grove.io [http://grove.io])

	Danny Greenfeld (consumernotebook.com [http://consumernotebook.com])

“State-Of” Multi-Talk - Round 2

Glyph Lefkowitz (Twisted)

	It works for the web!

	Lots of cool features

	Works more as a container rather than a platform.

	Has excellent support for Windows. Has an MSI, Executable, etc

	Needs to fight the impression of being a giant library. It is actually small.

Jannis Leidel (Django Project)

	Used in a lot of places around the world in small and gigantic projects

	21,700 user list

	7,000 developer list

	33 committers

	2,5000 downloads/day

	2,100 projects on PyPI

	Django 1.4 almost out:

	New project layout

	Custom project templates

	Standard WSGI entrypoint

	Full timezone support

	In browser testing

	Cookie session backend

	Clickjacking protection

	New form wizard

	i18n URLs

	No exception wrapping templates anymore

	*args, **kwargs

New orm functions:

select_for_update()
bulk_create()
distinct('filename')

New template stuff:

@assignment_tag
{% elif %}
{% static %}
{% truncatechars %}

Django 1.5 news:

	Cool stuff is coming

Quotes

“Django isn’t a functional unit. You include it and it just sits there.”

Keynotes

Stormy Peters

Note

I was working a project issue and couldn’t take notes. Sorry Stormy!

Paul Graham

	PyCon is the center of Silicon Valley.

	His notes are online are at:

	The biggest startup ideas are frightening:

	The threaten your identity

	Think the John Malkovich room

	Let’s say you want to start the next google?

	Microsoft tried and

Other Pycon Notes

Where I’m listing other people’s notes until I get a dedicated site up:

	William McVery, @wam, https://www.dropbox.com/sh/i5jibofn60y14dt/rEs_RzYFxs

Scale 10x

	It’s all good- Decorating Python like Martha Stewart
	Impetus

	Function Review

	Function Definition

	Function Gotcha

	*args and **kwargs

	Closures

	Decorators

	Decorator Template

	Paramaterized decorators

	Warning: Function attributes get mangled in decorators

	Uses for decorators

	What if I want to tweak decorator paramers at runtime?

	Juju Charm School

It’s all good- Decorating Python like Martha Stewart

	by Matt Harrison

	http://twitter.com/_mharrison_

	Works for http://fusion.io

	http://hairysun.com/books/decorators/

	His talk is under creative commons

Impetus

You can get by in Python with basic constructs but…

	you might get bored

	be confused by other’s code

	want more power

Function Review

A function is an instance ot type function

>>> def spam():
... "A function"
... print 'eggs'
>>> spam
<function 0x2342342>
>>> callable(spam)
True
>>> spam()
'eggs'

Functions have attributes

>>> spam.func_name
'spam'
>>> spam.__doc__
"A function"

A function knows about itself

>>> def foo2():
... print "NAME", foo2.func_name

A function can have attributes assigned:

>>> def foo3():
... print "STUFF", foo3.stuff
>>> foo3.stuff = "Data"
>>> foo3()
Data

Function Definition

def func_name(arg1, arg2=value, *args, **kwargs):
 """ docstring """
 # implementation

Function Gotcha

When a function is created, the named/default parameters are defined when the function is created

def named_param(a, foo=[]):
 if not poo:
 foo.append(a)

print named_param.func_defaults
([])

named_param(1)
print named_param.func_defaults
([1,])

Lists and dicts are mutable. When you modify them you don’t create a new list (or dict). Strings and ints are immutable

Parameters are evaluated when the def they belong to is imported

Don’t default to mutable types.

def named_param(a, foo=None):
 foo = foo or []
 if not foo:
 foo.append(a)

*args and **kwargs

Looksee:

	*args is a tuple of parameter values.

	**kwargs is a dictionary of key/values

def param_func(a, b=2, c=5):
 print [x for x in [a, b, c]]

The ‘*’ before args flattens the tuple of parameters values.

def param_func(a, *args):
 print [x for x in [args]]
 # TODO check I got this right

def kwargs_func(a, **kwargs):
 print [x for x in [kwargs]]
 # TODO check I got this right

def param_func(a, b='b', *args, **kwargs):
 print [x for x in [a, b, args, kwargs]]

Closures

	PEP 227 and came out in Python 2.1

	Don’t be afraid of them

	In Python a function can return a new function. The inner function a closuse and any variable it accesses that are defined outside of that function are free variables.

def add_x(x):
 def adder(num):
 # we have read acces to x
 return x + num # x is a free variable here
 return adder

sadd_5 = add_x(5)
add_5 # doctest: + ELLIPSESS
<function add at 0x12324ewe>
print add_5(10)
15

Nested functions only have write access to global and local scope.

x = 3
def outer():
 x = 4 # now local
 y = 2
 def inner():
 global x
 x = 5 #
 print x
 inner() # only changes the local inside the function
 print x
print outer()
4
4
print x # since global the global value
5

Python 3.x has a non-local keyword that replaces the global in Python 2.x

Decorators

	PEPS 318, 3129, implemented in Python 2.4

	allow you to

	modify arguments

	modify function

	modify results

count how many times a function is called
call_count = 0
def count(func):
 def wrapper(*args, **kwargs):
 global call_count
 call_count += 1
 return func(*args, **kwargs)
 return wrapper

def hello():
 print 'invoked hello'

>>> hello = count(hello) # invoking count with the argument being the hello object
>>> hello()
>>> print call_count
>>> 1
>>> hello()
>>> print call_count
>>> 2

Decorator Shortcut
@count
def hello():
 return 'hello'

Better decorator:

def count2(func):
 # TODO - show this one out

Decorator Template

def decorator(function_to_decorate):
 def wrapper(*args, **kwargs):
 # do something before invoation
 result = func_to_decorate(*args, **kwargs)

 # do something after
 return result
 # update wrapper.__doc__ and .func_name
 # or functools.wraps
 return wrapper

class as a decorator
class decorator_class(object):
 def __init__(self, function):
 self.function = function
 def __call__(self, *arg, **kwargs):
 result = self.function(*arg, **kwargs):
 # do stuff to result
 return result

@decorator_class
def hello():
 return 'hello'

Note

Anything that is callable can be used to create a decorator

using a class instance as a decorator
instead of using __call__ use __init__ and then instantiate the class before using it.
deco = Decorator()

@deco
def hello():
 return 'hello'

You can modify deco later! This is UBER powerful!

Note

Not the same as “Class Decorators”. See PEP 3129

Paramaterized decorators

	need 2 closures

def limit(length):
 def decorator(function):
 def wrapper(*args, **kwargs):
 result = function(*args, **kwargs)
 return result[:length]
 return wrapper
 return decorator

@limit(5) #notice parens
def echo(foo):
 return foo

usage
echo('123456')
'12345'

#syntactical sugar for
echo = limit(5)

Warning: Function attributes get mangled in decorators

	I’ve run into this - when you wrap a function a decorator the attributes get lost

	Docstring kills me

	Do this:

def limit(length):
 def decorator(function)
 def wrapper(*args, **kwargs):
 result = function(*args, **kwargs)
 result = result[:length]
 return wrapper
 wrapper.__doc__ = function.__doc__
 return decorator

You can also use functools to deal with this issue, but it’s not as clear a read

import functools
def limit(length):
 def decorator(function)
 @functools.wraps(function)
 def wrapper(*args, **kwargs):
 result = function(*args, **kwargs)
 result = result[:length]
 return wrapper
 wrapper.__doc__ = function.__doc__
 return decorator

Uses for decorators

	caching

	I wrote a cache decorator that uses Raymond Hettinger’s LRU cache code.

	monkey patching stfio

	jsonify

	logging time in function call

	change cwd

	timeout a function call

What if I want to tweak decorator paramers at runtime?

What if I made a mistake in a param and want to change values?

	Use class instance decorator

	Tweak wrapper attributes

	Use context manager

	or…

	Since a decorator is just a class you can invoke it at runtime. Like this:

TODO get example
result = limit(4)(echo)

Juju Charm School

Some kind of deployment tool.

	http://www.socallinuxexpo.org/scale10x/presentations/juju-charm-school

	https://github.com/charms

	https://juju.ubuntu.com/

Note

Demo was powered 100% by the shell. And conference internet is always flaky. This is why I don’t do command-line demos.

Mongo LA 2012

	Keynote: Welcome and What’s new in Mongo DB
	Design Goal: Rich data model

	Journaling improvements

	Compaction improvements

	Index improvements

	Concurrency improvements

	Map-reduce performance

	THings to follow up on:

	New features

	Links

	Schema Design
	Parallels

	The Big Question

	Denormalization

	Managing Arrays

	Schema decisions when sharding

	Running MongoDB in the Cloud
	MongoDB components

	Replica Sets

	Amazon EC2 Instance Types

	Operating System

	Turning JSON into info
	Relative Queries

	A note on queries

	A word on rendering graphs and reports

	Punchlines

	Diagnostics & Performance Computing
	Speed

	Tools

	Common problems

	Indexing & Query Optimization
	High level

	Creating indexes in MongoDB

	Things to know about indexes

	Covered Index

	Spare Index

	Unique Sparse Index

	Geospation indexes

	Query Performance Analysis

	Closing session and MongoDB roadmap
	v2.2 projectedt 2012 Q1

	Concurrency Issues

	Aggregation Framework

	TTL Collections

	Harsh Shard Key

	Short List (not in 2.2 but coming up)

	10gen Hiring

Sponsors

10gen, makers of MongoDB

The main hosts of the event

Redhat for Open Shift Paas

Redhat’s cloud hosting system with git powered deployments.

Joyent Cloud

Better, cheaper, faster system in the cloud. They sell the systems that PaaS are built on.

VMware Cloud Foundry

Completely open source PaaS - same was what ActiveState Stackato uses

Keynote: Welcome and What’s new in Mongo DB

by Paul Pederson, Deputy CTO, 10gen

Design Goal: Rich data model

	JSON/BSON documents

	Good mapping to native programming language types

	Flexibility for dynamic data

	Better data locality

	Schema-free or dynamic schema

Footnote to design goal

(DB degrees of freedom)

	Zero degrees of freedom: static queries, static data

	One degree of freedom: dynamic queries, static schema (Relational DB)

	Two degrees of freedom: dynamic queries, dynamic schema (NoSQL DB)

General-purpose DBMS

	Sophisticated secondary indexes

	Dynamic queries

	Sorting

	Rich updates, upserts

	Easy aggregation

	Viable primary data store

Design Goal: Web Scale

	Scale linearly with sharing

	Say ‘no’ to distributed joins

	Increase capacity with no downtime

	Make scaling transparent to the application

Design Goal: Minimal knobs

	Make it easy to deploy and manage

	Find natural default configuration options

	Do the right thing out of the box

Release History

	1.0 August 2009: supported bson and BTree range query optimization

	1.2 December 2009: map-reduce

	1.4 March 2010: Background indexing, geo indexes

	1.6 August 2010: sharding, replica sets

	1.8 March 2011: journaling, sparse, and covered indexes

	1.10 = 2.0: September 2011: cumulative changes

Changes in 2.0

Here we go…

Journaling improvements

	Enabled by default for 64-bit platforms

	Journal is compressed for faster commits to disk

	–journalCommitInterval command line option exists for specifying some neat feature

	May wait for group commit on write with j=true arg to getLastError()

Compaction improvements

Note

run this after adding an index

	Collection-level command:

db.mycollection.runCommand('compact');

	Copies extent-by-extent using a single 2GB scratch space

	BUilds all the indexes at the end in parallel:

	First half off external sort occurs while copying extent data. For each doc find all index keys and store these and process.

Index improvements

Note

Once you migrate to 2.0 the index changes are not reversable

	Keeping the index working set in RAM is important

	v.20 indexes are 25% smaller than v1.8 indexes

	Index compression arises by optimization of BTree index key BSON representation

Concurrency improvements

	Yielding mitigates reader-witer lock contention

	In general mongodb yields all the time long table scan, yield every 100

	IN v2.0 we now yield around page faults.

Map-reduce performance

	About 3x faster in 2.0 over 1.8

THings to follow up on:

Note

TODO find out what was given in terms of improvements

	Priorities

	Replica set force reconfigure

	Durability

New features

	Multiple location geo search

	Map-reduce sharded output

	Query syntax: $and

	Custom shell prompts

Links

	http//v.gd/mongodb20

Schema Design

by Kevin Hanson, Solutions Architect, 10gen

Parallels

Tables == Collections
Row == Document
Column == Field
Index == Index
Join == Embedding & Linking
Schema Object == None

The Big Question

Do we link or do we embed?

Blog posts and comments

Embedded

	Faster

	But large embeds can make the master document slow. Ex: If a post has a billion comments

Linked

	Slower

	Returning the master document requires extra logic

Each comment gets own doc

Comment gets its own copy of the master blog post

	Fast but inverted

	Great if you have gajillions of comments

	Even more logic

Denormalization

	Caching via memchached, redis, etc are functionally denormalized instances of data sets.

	NoSQL means you cut out the middleman

More thoughts on denormalized data

	Faster than normalized

	More object-oriented

	application level applications

Managing Arrays

	Pussing to an array infinitely

	Document will grow larger than Pre-allocated size

	Document may increase max doc size of 16MB

Sometimes you have to limit size of an array

Logic idea:

first 200 comments are insert into the blog document
After that have a linked comment document

Schema decisions when sharding

	Can we intelligently partition data?

	Will this partitioning create hotspots?

	Can our partitioning actually improve overall performance?

Bad shard key:

Sharding on "date" field and constantly inserting most recent data...

Good example:

sharding blog posts on "author"

Note

TODO find out why the Good example is actually good

Running MongoDB in the Cloud

	by Dan Crosta, Software Engineer, 10gen

	I know speaker from twitter and him answering questions about MongoDB to help me with http://consumernotebook.com

Note

Late cause we were intercepted by Redhat/OpenShift marketing who wanted our advice on logos.

MongoDB components

	Config Servers send config data to shards

	Shards can run with the config server down, but it is not fun.

Replica Sets

Different methods of setup:

	The most popular

	Primary

	Secondary

	Secondary

	Another way

	Primary

	Secondary

	Arbiter

	The big option

	Primary

	Secondary

	Secondary

	Secondary

	Secondary

Amazon EC2 Instance Types

Warning

Never deploy with 32-bit. Don’t do it!!!

	Go for a Large or Extra-Large on-demand instance. More expensive but worth it.

	ConfigD / Arbiter can be done via micro on demand instances

Operating System

	Use ext4, xfs

	Use RAID:

	Raid 10 on MongoD

	Raid1 on ConfigbDB

	Turn off atime

	File descriptor limits:

cat >> /etc/security/limits.conf << EOF
* hard nofile 65536
* soft nofile 65536
EOF

Turning JSON into info

by Roger Bodamer

Note

Did not show the query code. I have to look it up online. Ugh.

Relative Queries

	2 aggregations at the same time

	1 by user

	1 by location

	Break up into several queries

	Fairly complex

	Easiest in Python or other programming languages

A note on queries

	There is no notion of declared schema

	The augmented scheme is coded in queries

	Reuse is very hard, happens at a query language

A word on rendering graphs and reports

	Some libraries

	Gruff

	Scruffy

	HighCharts (Paid for)

	JRafael

	JQuery Vizualize

	MooCharts

Services:

http://getgauag.es

	But basically you have to know how to program

Punchlines

	Fluid requirements are what you get to handle when you use MongoDB

	Know how to program Python (or anything else)

	If you are a business analyst, you’re screwed (Not an acceptable answer)

Diagnostics & Performance Computing

by Dan Crosta, Software Engineer, 10gen

Speed

	MongoDB is a high performance database

	But how do you know you are getting the best performance

Tools

1. mongostat

	give it a host and port number. So we can connect to production. Woot!

	tons of useful columns

	mapped

	vsize

	res

	faults - how many disk faults

	locked %

	In a given window of time, measures two things (TODO find out)

	Rough percentage measure - not perfectly accurate

2. serverStatus

What powers mongostat

> db.serverStatus();
 {
 "host":"MacBook.local",
 "version": "2.0.1",
 "prodess": "mongod",

 // lots more stats
 }

3. Profiler

> db.setProfilingLevel(2)
 {"was": 0, "slowms": 100, "ok": 1}

This saves the data into a collection within the MongoDB. Which is nice cause you can reference it later.

See it in operation!

> db.system.profile.find()
 {
 "ts": ISODate,
 "op": "query",
 "ns": "docs.spreadsheet",
 "query": {"username":"dcrosta"},
 "scanned": 200001,
 "millis": 1407
 // tons more!
 }

Note

This is a capped collection of 1MB. So it stores only the most recent. You can change this with some hacks. TODO - find it out

4. Monitoring Service

	MMS: 10gen.com/try-mms (Free service provided by 10gen)

	Also check out Nagios

	Also check out Munis

Common problems

1. Slow Operations

Check the logs! From the shell:

query docs.spreadsheets ntoreturn:100
reslen:510436
nscanned:19976 { username: "dcrosta"}
nreturned:100 147ms

This means you need to index the username field

2. Replication Lag

Every time you do a read/write, it hits a capped collection called the oplog. Replication
lag refers to the time between when a read/write is called and when it is performed.

Example: If you have a very high write rate on the Primary, your secondaries can have trouble keeping up.

3. Resident Memory

Always use 64-bit!

> db.serverStatus().mem
{
 "bits"64, // need 64, not 32
 "" resident: 7151
 "virtual": ???
 "???": ??
}

> db.stats()
{
// other things
"avgObjSize": 5107.02342342, // capped at 16MB
"dataSixe": 234424323423, // make sure this doesn't exceed your server space!
// other things
}

Equation:

indexSize + dataSize <= RAM

4. Page Faults

> db.serverStatus().extra_info

{
 "heap_usage_buytes": 2313132,
 "page_faults": 2381
}

5. Write Lock Percentage

> db.serverStatus().global_lock

{
 "totalTime": 23234234,
 "lockTime": 134646546,
 "ration": 0.002342342

}

What to look for: ???

6. Reader and Writer Queues

> db.serverStatus().globallock
{
 "blah": "blak=h"

}

What to look for: Things that are eating up tons of process. To stop it, run:

7. Background Flushing

> db.serverStatus().backgroundFlushing

{
 "flushes": 5634,
 "total_ms": 83556,
 "average_ms": 14.832342342,
 "last_ms": 4,
 "last_finished": ISODate
}

In some case you should flush more frequently then MongoDB does by default

Disk Considerations

	Raid: Use it

	SSD: If you can get your server on a SSD, then things will go much, much faster.

	SAN?:

8. Connections

> db.serverStatus().connections
{"current": 7, "available": 19993}

	Make sure you have enough connections.

	On Linux, change the number of connections that can be opened.

	MongoDB can handle up to 20,000 open connections

9. Network Speed

> db.serverStatus()..network
// data here

Check this as one of the things that might be bottlenecking

10. Fragmentation

> db.spreadsheets.stats()
{// data here
}

	When you move data around frequently, fragmentation occurs.

	THis will cost you more memory, slowing things down

	“2 is the magic number”. You disk should be at least twice as big as the MongoDB memory

// blocking command.
// Be careful!!!
db.speadsheets.runCommand("compact");

Compacting fixes the problem, but it stops operations on that server. So run it against a secondary instead of the primary.

Indexing & Query Optimization

by Kevin Hanson, Solutions Architect, 10gen

High level

	What’s an index and why do we need one?

	As we insert data into MongoDB, we store that as a linked list

	So if you search for something in 7 documents, it has to search in all 7 of them

Creating indexes in MongoDB

	You can index anything

	All docs have an _id field that is auto-indexed

	new indexes:

db.blog.save({author: "James", ts: new Date()})
db.blogs.ensureIndex({Author: 1, ts:-1})

Things to know about indexes

	Slows down writes

	But speeds up reads!

	Forces uniqueness on a title

Note

TODO - check that we don’t have dupe titles

Covered Index

	Query resolved in index only

	Eliminated need to pull documents from DB

	NEed to exclude _id from items projected.

db.blogs.save({
 author:"Kevin",
 editor:"Katie"

})
db.blogs.ensureIndex({author: 1, editor: 1});
db.blogs.find({author}) // TODO finish this

Spare Index

	Key value included if and only if the value is present

	Reduces the size of index

	Limited to a single field

// TODO fill this out

Unique Sparse Index

	Key value included if and only if the value is present

	Reduces the size of index

	Limited to a single field

	Null and not-present are different

// TODO fill this out

Geospation indexes

	Geo hash stored in B-Tree

	First two values indexed

Query Performance Analysis

Note

Speaker had to go super fast here because he kept answering questions. This is why you ask people to wait for the Q&A at the end.

Closing session and MongoDB roadmap

	by Paul Pederson, Deputy CTO, 10gen

	paul@10gen.com

v2.2 projectedt 2012 Q1

	Concurrency: yielding and db or collection-level locking

	Improved free list implementation

	New aggregation framework

	TTL collections

	Hash shard key

	Hashing gives you flat distribution

Concurrency Issues

	No excessive blocking

	dropIndex

	getLastError

	isMaster

	etc…

	May block for long times

	foreground index creation

	reindex

	compacty (is that a startup name? ha ha ha)

	repair database

	creating a very large (many gb) capped collection

	validate connection

Aggregation Framework

	Declarative, no JavaScript reipred

	Pipeline model: $match, $project, $group

	Easy to add new operations

	C++ native (non-JavaScript) implementation

TTL Collections

	Currently: Evict old data to make room for new records by crating a timestamp index, an d create a cron job to delete stale items with update

	Coming: per object or per collection: automates deleting documents older than some limit.

Harsh Shard Key

	If you are not expecting range queries on the shard key

	Then it makes sense to shard by hask key, you naturally get a flat distribution

	In a sense this is the easiest possible case

	Mongodb started by solving the hard case.

Short List (not in 2.2 but coming up)

	Full text Search (so you don’t need SOLR)

	The absolute number one requested feature

	Done but needs to be vetted and tested better

	Text searches can generate bajillions of extra records and other issues

	Sounds like they are trying to do it right.

	More concurrency

	Online compaction

	Make the system smaller on the fly

	This way you don’t have to play replica set games to clean things up

	Internal compression

	Read tagging

10gen Hiring

	NYC/Silicon Valley - may see us

	EU

	London

	Dublin

	Anywhere - Language Evangelist

PyCodeConf 2011

	Organizer: Github!

	Venue: Epic Hotel, Miami, USA

	Future is Bright
	What he does

	What is Python?

	Where is Python used?

	Python is amazing

	Status of the Language

	Jesse’s Personal Wishlist

	Jesse says we need

	PyPy!

	Python interpeters

	Python 3

	Community

	Questions

	Embracing the GIL
	Embracing the GIL could be better

	premise

	The Gil in a Nutshell

	What GIL protects

	Major GIL issues

	The Challenge

	Experiment

	Performance Explained - thread priorities

	Another experiment

	Some thoughts

	PyDanny take away

	Python is Awesome
	Context for Success

	License

	Community

	PyPI

	Killer apps

	Easy to learn!

	Economy of expression

	Beauty Counts

	Interactive Prompt (REPL)

	Behind the Scenes

	Protocols

	Specifics of Python: The Foundation

	Winner Language Feature: Iterator Protocol

	Winner Language Feature: Generators

	Proposal: Generators that accept inputs

	Winning language Decorators

	Winning Language Features: exec, eval, type

	Winning Language Feature: With Statement

	Winning Language Feature: Abstract Base Classes

	Winning Language Feature: Indentation

	Backbone.js + Django
	Convore issue?

	Grove!

	Leafy Chat

	Backbone!

	Handlebars templates

	Addition Goodies about backbone.js

	Router

	PyPy talk
	Two things go faster than C

	Story of PyPy

	Why you should use PyPy

	The Future

	Processing Firefox Crash Reports With Python
	Overview

	The Basics

	How crashy is the browser?

	Basic Architecure

	Lifetime to a crash

	Back end processing

	Middleware

	Webapp

	Implementation Details

	Some Numbers

	What can they do?

	Implementation Scale

	Development Process

	Absolutely Critical!

	Upcoming

	Everything is Open Source

	The Future of Collaboration - Daniel Greenfeld
	Intro

	Dark future?

	Trust issues

	Solutions?

	The State of Packaging & Dependency Management
	Pip

	virtualenv

	Best practices

	What’s missing?

	Recap

	Thoughts

	API Design and Pragmatic Python
	Alternative Titles?

	His libraries

	Philosophy

	HTTP as an example of API issues

	Subprocess

	File and System Operations

	Installing Python

	XML

	Packages and Dependencies

	Date[time]s

	Unicode

	Installing Dependencies

	Hitchhikers Guide to Python

	Python is Only Slow If You Use it Wrong
	Stuff he’s done

	Easiest way to do Python wrong

	Other way to do things wrong

	Garbage Collection

	Deterministic Destructors

	JIT vs ???

	.pyc rocks

	Summary

	Amazing Things in Open Source
	Python community is a meritocracy

	Who’s in charge

	Django

	Observation on Packages

	Pyramid Core vs. Add-ons approach

	Pyramid’s Ecosystem over time

	Checklist: What 3rd Party Package Devs need

	What about too many options?

	Too much fragmentation?

	What makes a package useful?

	Anti-patterns

	Glory Pattern: Be Pythonic

	Community Building

	Diversity of Ideas

	Summary

	The Prejudgement of Programming Languages
	2001-

	2001

	2003

	2006

	2009

	Q2 2010

	Instance Variables in Ruby

	Summary

	Why does this all matter?

	Cherry-picking for Huge Success
	Preface

	Consider Twitter

	Does this mean Ruby sucks?

	Proposed Solution

	Protocol Examples

	Loosely couple all the ways!!!

	WSGI

	HTTP

	Breakdancer
	Testing is a boring/hard subject

	Wrote a framework to help set tests

	MVC test framework? Pydanny Thoughts…

	Conclusions

	The Many Hats of Building and Launching a Web Startup
	1. Start off on the Right Foot

	2. Launch as fast as possible

	3. Have a plan for monetization

	4. Don’t be forever alone

	5. Take Shortcuts

	Summary

	Future of Python and NumPy for array-oriented computing
	Python fits your brain

	History of SciPy and NumPy

	What SciPy Does

	Call to Action: Collaboration between Python Core and the Scientific Communication

	Call to Action: NumPy and PyPy

Discussions

	Talked to Mark Ramm and Wayne Witzel about SourceForge API

Future is Bright

	By Jesse Noller

	http://bit.ly/qqxpt8

What he does

	PSF board member

	Pycon chair

	Python core dev

	Dad, developer

What is Python?

	Language

	Community

	PyPy, PyPI

	Heroku: http://bit.ly/o73sOR

	Humble community - no rockstar personas

	Approachable

	etc

Where is Python used?

	Disney Animation Studios

	NASA

	Many other things

	Too many cool places to list

	Python is everywhere

	Everyone uses Python

Python is amazing

	Easy to learn

	Easy to use

	Very fast

	Large scale, small scale

Status of the Language

	Approx 123 accepted PEPS

	about 80 Built-in functions

	250+ stdlibs

	Python 2.7.x is last of the 2.X series

	How about status of http://www.python.org/dev/peps/pep-0397/?

	Windows installer for Windows

	I don’t use Windows, but my students usually do

Jesse’s Personal Wishlist

	Better messaging systems

	Actor support in stdlib

	Support for gevent and other things

Jesse says we need

	More Pythonic APIs (mentions Kenneth Reitz)

	…to remain conservative in changing the language too much

	…but adding to the stdlib is a problem

	Barely fits in the head

	stdlib stalls things

PyPy!

	Super-fast

	Gets things done

	A bit complex - needs people like Alex Gaynor to do the work

	Doesn’t handle cpython stuff that touches C stuff.

	predictions:

	Will be used more and more

	Will continue to be based off the cpython implementation

Python interpeters

	Need to work together, tests, compatibility, etc

	BFFs:

	PyPy

	CPython

	Jython

	IronPython

Python 3

	Keep calm and carry on

	Python is 21 years old, a 5 year plan to migrate to it is nothing

	Python 3 porting is getting finding

	The PSF is willing to give out grants

Community

	Look at the number of Python conferences!

	I got mentioned by Jesse! Yeah!

	Come to workshops and meetup groups

	Get involved

	Outreach

	sprints

	http://pyladies.com

	Don’t be a jerk

	Stay positive

	Not all criticism is constructive

	It can be hard to fight through vitriol and find what’s worthwhiel

Questions

	CW: What PEPs will affect the language

	Answer: Hard to say cause there are so many things going on

	Answer: Twisted components into core is on the docket

	Answer: Some API sugar

Embracing the GIL

	by David Beazley

	slides: http://dabeaz.com/talks/EmbraceGIL/

Embracing the GIL could be better

	People love to talk about it

	Rant about it

	Godwin’s Law of Python?

premise

	People love to hate on them

	That’s because threads are useful

	Threads make great stuff work

	Even if you don’t see them directly

The Gil in a Nutshell

	Every Python file gets compiled into VM instructions

	In cpython, it is unsafe to execute instruction concurrently

	Hence: Locking

What GIL protects

Note

duh missed this

Major GIL issues

	Threads using multiple CPUs

	

The Challenge

	The GIL is unlikely to go away anytime soon

	Can it be improved? Yes!

	How can it be done?

	How about Python 3!

Experiment

	request/reply server for size-prefixed messages

	each method has payload/header

Why this experiment?

	Comes up in a lot of contexts

	Involves IO

	Used as a foundation for a lot of other things

Five different implementations

	1000 iterations of some simple code

	Done on EC2 with nothing else running

	implementations

	C + 0mq

	Python + 0mq

	Python + multiprocessing

	Python + blocking sockets

	Python + nonblocking sockets

	Results

	All finish in about 13 seconds

What happens when you introduce a thread?

	What does it do to the performance?

	C + 0mq (samish seed)

	Python + 0mq (7x slower)

	Python + multiprocessing (8.9x slower)

	Python + blocking sockets (approx 10.x slower)

	Python + nonblocking sockets (approx 10.x slower)

Commentary

	Simple test

	Not a hard-core realistic talk

	How about PyPI?

	What? Older version was 567 slower!

	New version is much faster. .. note:: Get results!

Warning

Distracted by some work stuff. Missed some awesome stuff here.

Performance Explained - thread priorities

	To fix this, you need priorities

	The original “Fix GIL” patch had priorities

	That should be revisited

Another experiment

	David’s 3.2 fork with priorities

	Not suitable for real work

	Interesting for testing

	Lets you set the priorities manually

import sys
import threading
def spin(value):

 sys.set_priority(-1)

Some thoughts

	Huge boost in Python with only minor changes to a few files

	Is this the only GIL improvement?

	No

	There are other ways to do it

	GIL released on non-blocking I/O operations

PyDanny take away

	Now I think I grok the GIL issues finally

	Ya, me is slow. :)

Python is Awesome

Note

Watched this at PyCon AU. Copied over my notes from there so I can fill in the holes here.

	By LA Python’s own Raymond Hettinger

Context for Success

	License

	Commercial Distributions

	Zen

	Community

	Repository of Modules (PyPI)

	Killer Apps and Success Stories

	Win32

	Books

License

	Most Python releases are GPL-compatible. This makes it free.

	Going to a closed source language means you are trapped.

Community

	Mailing lists

	Newsgroups? HA HA HA

	Python User Groups

PyPI

	Repo for Python programming language

	Over 16,000 packages

	pip install ordereddict works for Python 2.5!

Killer apps

	Zope, Django, Pyramid

	Numpy and Scipy

	Bittorrent and Twisted

	YouTube

	Blender and Maya

	Win32 - Factoid: Me, @pydanny, has done all his windows programming using cpython and Win32!

Easy to learn!

	Good teachers.

	Think how fast you got the types and control structures in Python. General 3 hours

	In a day you can learn special methods and stdlib

	Critical because if you need good Python developers it doesn’t take long to get up to speed. Converting developers takes:

	C takes 2 years to get competent

	Java takes 6 months to get competent

	Python takes a week to get competent

	Rapid development cycle

	Scripting languages are unbeatable for development speed

	Programs are grown organically

	Interactive testing lets people work with their code results immediately.

	Bang out real code fast

Economy of expression

	Not many words or characters to get things done.

	clear English means non-coders can understand your work

	Pydanny factoid: One of the first times I wrote Python on a whiteboard for a boss at NASA/SAIC they thought it was very legible pseudo code representing a complex process.

import hashlib
import os
import pprint
hashmap = {}
for path, dirs, files in os.walk('.'):
 for filename in files:
 fullname = os.path.join(path, filename)
 with open(fullname) as f:
 d = f.read()
 h = hashlib.md5(d).hexdigest()
 filelist = hashmap.setdefault(h, [])
 filelist.append(fullname)
pprint.pprint(hashmap)

Beauty Counts

	Readability is the #1 mentioned characteristics of why organizations choose Python

	The beautiful appearance on the page directly affects a programmer’s sense of joy

	Makes us go home and write code

	If you can read other people’s code that makes it easier to maintain

	Because we all mostly share the same idiom it means we can read each other’s code. That doesn’t stifle creativity - it just means we can get along.

	As a parent I can say I would have loved having a formal uniform at school. As a geek in school I would have loved that too. :P

Interactive Prompt (REPL)

	Python experts don’t memorize Python

	They use the interactive prompt often (I try to write tests…)

	This is a killer features that runs circles around compiled languages

	Python shell

	IPython

	BPython (My favorite)

Behind the Scenes

Philosophy of core dev

	Conservative growth

	We read Knuth so you don’t have to

	Aim for simple implementation

Protocols

To interact with these we have defined protocols

	DBAPI

	Hashlib

	Compression

	WSGI for the web

	Conversion protocols

Specifics of Python: The Foundation

	Dictionaries and Lists

	Automatic memory management

	Overridable syntax

	Exceptions

	You can reprogram the brackets?

	And we can reprogram the dot?!?

Winner Language Feature: Iterator Protocol

	High level glue that holds the language together

	Iterables: strings, lsits, sets, dicts, collections, files, open urls, csv readers, itertools

	Um… I know this. I’ve had to construct these on my own in other languages. But not Python… Wow - I just realized this just now.

When Raymond wrote **sorted** he wasn't thinking about sets
But they still just works
sorted(set('abracadabra'))
sorted(set(open(filename))
sorted(set(open(filename))

Warning

If you say “Python has iterators, you have to explain how it is globally implemented. Other languages have iterators, but they have to be implemented and extended and stuff”

Winner Language Feature: Generators

	List comprehensions give us joy

	Logical extension to list comprehensions and generators to unify the language

	List generators are amazing. No one else has them

	Serious magic

	A million rows in a generators is nothing

	Simple syntax to do them. You only need the YIELD keyword.

Sample generator code
def pager(lines, page_len=60):

 for lineno, line in enumerate(lines):
 yield line
 if lineno % pagelen == 0:
 yield FORMFEED

genexps setcomps and dictcomps
sum(x**3 for x in xrange(10000))

Note

I’ve used list generations to super-optimize slow code

Proposal: Generators that accept inputs

	Generators support send(), throw(), close()

	Unique to Python

	Makes it possible to implement Twisted’s inline deferreds

	Add one line of Twisted to your code and it infects your whole app

	Twisted forces you to write in callbacks

	Callback coding is hard to follow and debug

	Wouldn’t it be great if we could have the benefits of Twisted in procedural code?

two way generator example
@inlined_defereed
def session(request, cleared=False):
 while not cleared:
 cleared = yield authenticate(request.user)
 db_result = yield database_query(request.query)
 html - yield format_data(db_result)
 # TODO finish getting this down

Winning language Decorators

Note

I have problem writing these things. Serious problems. :’(

	Expressive

	Easy on the eyes

	Works for functions, methods, and classes

	Adds powerful layer of composable tools

	Raymond shows sample code from Daniel Lindsley’s Itty!

	https://github.com/toastdriven/itty

Winning Language Features: exec, eval, type

	Not a fan of exec and eval because when used in my experience they are done badly

	But type is awesome

Winning Language Feature: With Statement

	Clean, elegant resource management: threads, locks. etc

	Important tool for factoring code

	Factors-out common setUp and tearDown code.

	The reverse of functions

with locking:
 access_resource()

Winning Language Feature: Abstract Base Classes

	Uniform definition of what it means to be a sequence, mapping, etc

	Ability to override isinstance() and issubclass()

	New duck typing method: Just say you are duck!

	Mix-in capability

	Sample:

clas ListBasedSet(collections.Set):

 def __init__(self, iterable):

 self.elements = lst = []
 # TODO add more

 def __iter__(self):
 return iter(self.elements)

 # TODO add more methods

Winning Language Feature: Indentation

	Makes the code really clear

	We write our pseudo code this way

	Less errors!

	Less ambiguity!

Backbone.js + Django

Note

I’m having trouble keeping up when it comes to writing JavaScript fast. :P

	Question: Why not JQuery templates?

	Question: Best Practices?

	by Leah Culver

	Works at convore.com, a YC Combinator funded project

	LeafyChat - Django Dash 2009

	web-based IRC client

Convore issue?

	Who is supposed to use it?

	Internal company stuff

	What kind of discussions

Grove!

	IRC for your company

	Internal for companies

	https://grove.io

Leafy Chat

	Pure JavaScript

	very barebones - just JQuery

	Very dirty in that their construct HTML manually

Each submit for chat:

	handle form submit

	create new message

	display mesage in list

	POST method in AJAX

Backbone!

	MVC style of programming for AJAX/JavaScript

	More like DJango: MTV

// models are easy!
window.Message = Backbone.model.extend({
 model: Message,

 initialize: function(){
 this.model.bind('add', this.addMessage)
 // TODO

 },

 });

// form submits
submitForm: function(){

};

Handlebars templates

	handlebars.js templates

	looks like Django/Jinja2 templates

	See include_raw template tag as per htto://djangosnippets.org/snippets/1684

Addition Goodies about backbone.js

	Uses similiar routing to Django

	Handy code snippet by Leah for Django CBV usage:

	https://gist.github.com/1265346

	Event based asynchronous

	One thing can fire off multiple request

	So if I am watching and someone else posts then I see the results

Router

	Can do overlaps of views

PyPy talk

by Alex Gaynor

	Student at RPI

	Core Python Dev

	cpython

	PyPy

	Core Django Dev

	Interned at Quora and got them on PyPY

	Dressed very classy.

Two things go faster than C

	neutrinos

	PyPy

Story of PyPy

	psyco was JIT python

	Managing it was hard

	hardcoded for 32 bit CPUs and we are on 64 bit

	Any changes to core Python killed pysco

	Years ago created a Python interpreter inside of Python

	2000x slower than cpython

	ran on restricted Python (r-python)

	Wrote a great compiler: now 10x slower than cpython

	Added better garbage collection: now 4x slower than cpython

	New JIT for Python

	Writing a JIT for Python sucks

	Writing a generator for making JITs for any language is easier

	Alex Statement: “PyPy is the only project I know of that uses SVN branches. That’s the most impressive part”

	Doing it this way made it faster? How? Wizard Magic?

	Now PyPY is going fast:

	Crazy that it runs so much faster than cpython

	Hard to believe

	Python using a JIT generator to create a JIT library?

	Faster than cpython

	http://speed.pypy.org/

Why you should use PyPy

Science!

	Fast and scientist friendly

	Now works with numpy!

	Not complete

Tools

	jitviewer

	Finding slow spots in existing code

	Looks at Python, byte code, assembler, et al

Fast!!!

	Faster than cpython

	They now metric it’s speed against C, not Python

	Compatibilities

	Much work with third-party integration

	lots of people are using Python instead of C extensions

	PEP in place so that new stdlib stuff has to be pure python

	Quora is much more snappy

Python 3

	PyPy is beginning the move to Python 3

	JIT generator to the rescue!

JIT generator means…

	
	They can branch the Python 2.7 PyPy stuff to Python 3

	
	Make the Python 3 version work

	And since the JIT generator makes the code, both versions will just work

	Can do a GIL version for single CPU or non-GIL for multicore

	JIT generated so…

	Both versions just work!!!

The Future

	Lets make Python faster!

	Give us problem children to fix!

Processing Firefox Crash Reports With Python

	by Laura Thomson

	Web tools engineering manager

	author of two books:

	PHP and MySQL Web Development

	The Surrealists

	Done about 100 talks!

	Mozilla is hiring like crazy

Overview

	The basics

	The numbers

	Work process and tools

The Basics

	Socorro crash information collector thingee

	Lots of companies use it to track this data:

	Steam (game stuff)

	Other things

How crashy is the browser?

	Mozilla Crash report - please use it!

	Will email you if you have malware they detect

	Generates https://crash-stats.mozilla.com/products/Firefox

	Mozilla needs your data to make Firefox better.

Basic Architecure

	Database is PostGres

	HBase for map-reduce, she wants to replace it with something else

	Lots of components powered by Python

	Front-end is PHP but will be converted to Django in 2012

Lifetime to a crash

	Browser crashes

	Sends data to Mozilla in a big binary dump with a JSON header

	Mozilla processes the header and tries to generate a signature of the crash

	They need more than just the function that created the crash

	Doesn’t cover all cases

	Uses a regex to glean out other things from the binary crash dump

Back end processing

Large number of cron jobs, e.g.:

	Calculate aggregates: Top Crashers (Farmville if you want to know)

	Process incoming builds from ftp server

	Match known crashes to bugzilla bugs

	Duplicate detection

	Match up pairs of dumps (OOPP, content crashes, etc)

	Generates extracts (CSV) for engineers to analyze

Middleware

	Moving all data access to be through REST API (by end of year)

	(Still some queries in webapp)

	Enable other front ends to data and us to rewrite webapp using Django in 2012

	Upcoming (2011 or 2012) each component will have it’s own API

Webapp

	Hard parts: How to vizualize some of this data

	Ex: Nightly builds, moving to reporting in build time, not clock time

	Code crufty (old KohanaPHP)

Implementation Details

	Python 2.6 mostly (PHP is the exception)

	Post Gres 9.1

	memcache for the webapp

	Thrift for HBase access

	HBase is meant to work with Java

	Could do it in Clojure/Scala but finding resources would be hard

	Thought about Jython then backed off

	Considering alternatives

	100 users

	100 Terabytes of data

Some Numbers

	At peak 2300 crashes per minute

	2.5 million per day

	Median crash size 150K, max size 20MB (reject bigger)

	~110TB stored in HDFS (3x replication, ~40TB of HBase data)

What can they do?

	Does a version of FF crash more than others?

	Analyze differences between versions of Flash

	Detect duplicate crashes

	Detect explosive crashes

	Find “frankenstalls” that can happen on Windows

	Email victims of malware

Implementation Scale

	> 115 boxes (not cloud cause that won’t cut it)

	Now 8 devs + sysadmins + QA + Hadoop ops/analysts

	Hiring: https://whitespacejobs.org

	Deploy approximatelt weekly but could do continuous if they need

Development Process

	Fork

	Hard to install (must use VM)

	Pull request with bugfix/feature

	Code review

	Jenkins polls github master, picks up changes

	Jenkins runs tests, builds a package

	Package picked up and moved to dev

	Wanted changes merged to release branch

	Jenkins builds release branch, manual push to stage

	QA runs acceptance on stage

	TODO missing

	TODO missing

Absolutely Critical!

Build all the machinery for continuous deployment even if you don’t want to deploy continuously

	You don’t want to install HBase

Upcoming

	ElasticSearch implemented for better search

	More analytics; automatic detection of explosive crashes, malware, etc

	Better queueing

	Grand Unified Configuration System

Everything is Open Source

	https://github.com/mozilla/socorro

The Future of Collaboration - Daniel Greenfeld

Note

Audreyr took these notes. :)

Intro

Danny cartwheels, still blogs, works on Django Packages and whitespacejobs.org

Mark Pilgrim is gone

	feedparser, httplib2, Dive into Python, Dive into HTML5

	How much did we lose with Mark leaving the developer community?

	kennethreitz created a mirror at https://github.com/diveintomark

Where is httplib2?

	PyPI? No

	Not Google code

	Hard to find cached download

	Many libraries depend on it

Repeating history?

	django-piston, python.org, opencomparison.org all have bus factor and need active maintenance

Dark future?

	Critical Python packages vanish

	Build scripts fail

	Can’t always replace from caches/backups

	Legacy projects unmaintainable

	Domain knowledge leaves

	Hard to move forward

	3rd party community as critical as core

	Actually, this is not the future. It’s today

Like the Library of Alexandria

	When we lose our history, we lose ourselves

Trust issues

	External and internal social issues

	Makes collaboration hard

	Causes “Not Invented Here” plague

Solutions?

Sponsorships

	But focused on short-term development, unusable code from interns

	Server costs are not the issue

Community managers

	Needs core/senior devs

	They’re busy

	Volunteers have different priorities

Paid community managers

	Work with package authors/maintainers

	Mitigate social issues

	Precedence: Ubuntu, Fedora, Twilio, Github

How do we keep Python’s community projects active?

	PSF project incubation: YC-style seed funding

	Helping market projects via python.org, blogs, other channels

	Help community projects find a business model, sustain themselves

	Copy startup model for projects that benefit Python

The State of Packaging & Dependency Management

by Craig Kairsterns

Note

started late cause was coming off my talk

Pip

	replaced easy_install

	Actually supports uninstalling

	Lots of small improvements

	Supports version control (Use only pinned versions!)

virtualenv

	Sandbox tool

	Destroy and recreate often

Best practices

	pin your versions

	Don’t use repos for production

	Not for deployment!

What’s missing?

	locks

Recap

	packaging

	use PyPI

	Dependency Management

	Pip

	virtualenv

Thoughts

	We’re in better shape than realized

	Just need to use the tools we have effectively

API Design and Pragmatic Python

	by Kenneth Reitz

	Works for readability.com

	Used to work for changelog

	loves open source

	Author of requests and tablib libraries

Note

Kenneth’s mic kept going out. Hope all his words are captured!

Alternative Titles?

	Python is a Ghetto

	Python Jumped the Shark

	Python for Humans!

His libraries

	Requests: HTTP for humans

	Tablibs: Pythonic Tabular Datasets

	legit: Awesome Git Interface

	OSX-GCC-Installer (angers lawyers)

	Clint: Command-line Interface Tools

	Httpbin.org: Request & Response Server

Philosophy

We share a dark part:

	PHP

	Java

	ColdFusion

We all love the Zen of Python:

>>> import this

Bits:

	Beautiful is better than ugly

	Explicit is better then implicit

	Simple is better than complex

	If the implementation is hard to explain, its a bad idea (unless you are PyPy)

	There should be one and only one way to do things

HTTP as an example of API issues

Github API client in Ruby

TODO: Get Ruby example from his slides. Ruby makes this easy

Github API client in Python: Ugh

	Pick the right std lib http/url/lib/2

TODO: Show the the example Python code from Confessions that I stole from Kenneth. :)

TODO: Show his example from trying to hit a private repo

Admit it

	If this were you coming into Python, you would leave and not come back

	THis is a serious problem

urllib2 is toxic

	Over-engineering

	Makes the simple/trivial hard

	Hard to debug

	Hard to test

Solution

	Python needs more pragmatic packages

	Pragmatic means implementation without focusing too much on thoery

	Figure out the actual reqs

Contention

	If you have to revisit docs every time to use an API the API is bad

	

Subprocess

	Powerful

	Effective

	Second worst stdlib module ever

Solution

	envoy

	Replaces/wraps Subprocess

File and System Operations

	sys | shutils | os | os.path | io

	Really difficult to run external commands

	The blocks dev+ops guys from wanting to use Python

Installing Python

	Installing Python

	Decisions, Decisions (Binary, Homebrew, 32 bit, Macports, Source, what?!?)

	What happened to just one way to do it?

	Pain on Mac, Windows

XML

	etree is terrible

	lxml is awesome, but difficult to install

Packages and Dependencies

	pip and easy_install?

	setuptools not inclued with python?

	Distribute?

	No easyt_uninstall

Date[time]s

	datetime, time, calendar? Which one?

	What third-party libraries are around

Unicode

	Kenneth says it’s a simple problem

	Danny: Maybe the core docs should have an easy-to-find good description? Am I missing something? Is it an SEO issue?

	Example: http://farmdev.com/talks/unicode is great, but how do you find it?

Installing Dependencies

Hard to do:

	PIL

	TODO: get more

Hitchhikers Guide to Python

	http://python-guide.org

	A guide to newcomes

	References for seasoned veterans

	Install resistance to doctest

	Stays with just one way to do things

Solves

	makes Python more accessible

	Great references

Manifesto

	Simplify terrible APIs

	Document best practices

Python is Only Slow If You Use it Wrong

	by Avery Pennarun

	Google employee

	But this talk has nothing to do with them

	If you apply to google and say his name he get’s money. :)

	Trying to talk about bitter

Stuff he’s done

	bup: Python software doing massive things for real problems

	http://github.com/apenwarr/bup

	sshuttle: VPN software tht handles 802..11 g/n speeds in python

	http://github.com/apenwarr/sshuttle

Easiest way to do Python wrong

tight inner loops

chars = open.file('file').read()
for char in chars:
 ...
 # slow

	Don’t do this

	Apparently for dynamically typed languages, this is a very, very slow operation

Speeding things up

	Use regexes and c modules

	No such thing as 100% pure python

	forget about SWIG

	writing C modules is easy and integrating them easy too

	SWIG is a code generator for C++

	python + C is so far the winning combination

	C is simple; Python is simple; PyPy is hard

	The concept behind PyPy is really hard

	Python and C are relatively straightforward compared to the concepts of PyPy

Note

I want to learn how to write C and then add it to my Python work.

Other way to do things wrong

	Computation threads

	Worthless becauxe of GIL

	Threads are okay for I/O

	fork() works great for both

	C modules that use threads are fine

Garbage Collection

Refcounting

	Every time I use a variable I increase its reference count by one

	Every time I don’t use something its reference count goes down by one

	When it hits ZERO then it goes away

Refcount… and threads: BAD COMBO

	Variable shared between threads forces a lock on the refcount

	One reason why removing the GIL is almost impossible

	There are tricks…

Python is not a garbage collected language++

for i in xrange(1000000):
 a = '\0'*10000

	Sample code in Python

	Metric test done in Python, PyPy, Java, C, and Go

	Java: Running this loop takes more memory and more time than CPython!

	PyPy takes about the same time as Python

	C is much faster

	Go is much slower

Java is a garbage collected language

	Three different collection strategies

	See his upcoming research paper: Seriously Java, WTF?

	Amusingly, the new threaded java system is slower and takes more memory

	“Ever notice complex Java programs seem to run slow and take up tons of memory?”

++Exception sometimes python is a garbage collected language

	Refcount sometimes fails

	Did you know Perl never drops objects?

	This is why you can have memory leaks with it.

	Avoiding this requires a deep understanding of Perl

Get the most out of Python’s GC

	JUST AVOID IT AT ALL COSTS

	Break circular references by hand when you are done

	trees are a good example

	TODO: find out what he meant somehow

	Better still: use the weakref module

Deterministic Destructors

Quiz: Does this program work on win32?

open('file', 'w').write('hello')
open('file', 'w').write('hello')
YES!!! Cause Python doesn't do Garbage Collection. refcounting FTW!

With “real” GC you habe to manually manage reosurces:

	files

	database handlers

	sockets

	locks

When you are done with a variable, it should go away. It shouldn’t stick around. Predictable behavior!

Don’t take away our Deterministic Destructors

	Maybe the GIL is a good thing

	refcounting is good

JIT vs ???

Note

TODO - find out the missing half of this title

	HelloMark benchmark language

	Simple process benchmark for command-line tools

	C

	Go

	Perl

	Ruby 1.8

	Ruby 1.9

	Python

	mono

	Java

	java-client

	java -XX:+UseConcMarkSweepGC

	pypy

	C + valgrind

	jython

	Many it commands run in about 2x the time of C hello world.

	This is not good for Git

	Slow speed hurts user experience

.pyc rocks

	are awesome

	compiles Python files so you get fast

	Ruby tools like Rails take forever to reload after a file change

	Django, Pyramid, Tornado, et al does it really fast

Summary

	Love refcounting, hate gc

	Don’t write tight inner loops

	If you are using the JIT, you are doing it wrong

Amazing Things in Open Source

	by Audrey Roy

	Lots of volunteer work: PyLadies and opencomparison.org

Python community is a meritocracy

If your work has merit people use it

	Anyone can build anything

	Anyone can start a user group

	Anyone can be a leader

No permission needed

	Just implement or emperiment with what you want/need

	Fork if necessary

	Ask forgiveness later!

It’s fun

	Rewarding to see your work published

Who’s in charge

You are if…

	…you deliver code

	…you maintain it

Decisions

	Forced to make quick decisions during Django Dash

	All packages are added manually, using:

	package name

	PyPI URL

	repo URL

	No spiders, no automation, good decision?

	Doesn’t matter, looks like it’s successful

	Be careful of mailing lists, IRC, et all

	don’t talk too much before implementation

	Just get something done

Your gut instinct is often right

	Django Packages

	Fun fact Many of the grids were created as test fixtures and have remained

	You can change them but keep in mind we’ll track the changes and hunt down people who do wrong

Django

Why she uses Django these days

	Lots of packages

	Can wire things together

Django Core vs Apps

	Many, many batteries included

	Gives you one obvious way to do things

	Third party apps: “Django apps”

	Good

	One pretty clear way to do things

	Bad

	Stuck with one way to do things.

	Example: URL routing differences

Clear pattern for Django apps

	Simple

	Easy to understand, implement, install

	Documented

	Repeatable

Django’s Ecosystem over time

	More and more new innovations implemented as 3rd-party packages

	Problem with adding all to core is then you are stuck

	Deprecation becomes challenging

	Additional complexity

Observation on Packages

	Umpteen JQuery plugins

	Perl: 100K modules

	Python: 17K packages

So very useful!

Pyramid Core vs. Add-ons approach

	smaller core, more add-ons

	Anyone can write add-ons

	Some are “officially endorsed”

	Easier to do extensions of the core

	Young, but potential for rapid growth

	Hopefully http://pyramid.opencomparison.org will help that growth

Pyramid’s Ecosystem over time

	Past: Pylons, Repoze.BFG, TurboGears

	Present: small core, docs for doing add-ons - but not many yet

	FutureL Lots of add-ons!

Checklist: What 3rd Party Package Devs need

	“Best practices” doc on how to write 3rd party packages

	Well defined, easy-to-understand spec

	Sample code (as much as possible)

Warning

Telling people to “read the source code” is not the answer.

	Active Community

	Mailing list, IRC

	Docs, tutorial, sample projects

What about too many options?

	Zen of Python: “There should be one– and preferable only one –obvious way to do it”

	This is about Python language constructs

	Not about 3rd party packages

	Sometimes packages are close duplicates

	Please document how you are different from other tools

	deprecate when your stuff gets old, don’t leave people hanging!

Too much fragmentation?

	Lots of Python groups and tools! Maybe too much?

	NO SUCH THING. MOAR IDEAS PLEAZE!

	We need diversity of ideas and approaches

What makes a package useful?

	Unix philosophy: Do one thing and do it well

	Usability: install docs, pip, PyPI

	Reliability: tests, maintained, community

Anti-patterns

	Don’t underestimate the impact of your notes on-line

	Your snippet on your blog can get hit 25K+ times

	Package up your stuff and deploy to PyPI

	Don’t over-engineer things to make them pluggable, abstract

	urllib2 is a good example

	counter: sometimes a single file is good

	Too much functionality

	Kitchen-sink base platforms

	utility, do-everything packages

	django-extensions: ugh

	duct-tape packages that try to fix everything once

	HTML world: CSS resets that also do typography, layouts, and more

Glory Pattern: Be Pythonic

	Why do we love Python?

	Elegance

	Ease of Use

	Explicitness, clarity

	Simplicity

Community Building

	Mentorship

	Today’s new users are tomorrow’s contributors & leaders

	Mentorship groups: Positive encouragement

	PyLadies

	Python Core Mentorship

	(need more like this)

Diversity of Ideas

	Look at schedules & slides from PyCons around the world

	KiwiPycon: Home of Twisted!

	PyCon AU: Focus on core Python, PyPI

	Ideas differ country-to-country

	Same goes for other types of diversity besides geographic

	SoCol Python is often more about deployment/scaling

	LA PyLadies is often about asynchronous

Summary

	Build what you want

	Encourage the 3rd party community to support your effort

	Be helpful

The Prejudgement of Programming Languages

	by Gary Bernhardt

	runs Destroy all software

Alternative Title: 10 years of failures and bad mistakes

2001-

	Used to be ignorant of software

2001

	C is the best thing!

	Java Sucks cause it has garbage collection

	Programming is supposed to be hard, right?

2003

	Learned Lisp

	Started his own crazy language

	But Python did the same thing, so went with that instead

	Python <3

2006

	Exhausted by his company, Python

	BitBacker

2009

	Started doing Ruby/Python 50/50

	Every day of the year switched languages halfway through

Quotes of the time:

	“I can integrate Python lib in 10 minutes, Ruby lib in an hour…”

	“Ruby syntax tricks can be hard, but other languages might want to take note”

	“Wrote a Python specer that would have been trivial to do in Python”

Not sure Ruby is serious cause the docs have some crazy stuff

Q2 2010

Writing tests in python:

class TestCount(UnitTest):

 def test_counter(self):

 c = Counter()
 c.count(1)
 self.assertEquals(1, c)

Writing tests in ruby:

require 'counter'
describe Counter do
 if "increments" do
 c = Counter.new
 expect { c.increment }.to change { c.count }.by(1)
end

	claim: “RSpec is confusing”

	But not really true

	Feigned ignorance

	Python is based off of SUnit: 1994

Awesome tweet he made: “Python programmer rejects without considering its value, Ruby accept without considering it’s value”

Instance Variables in Ruby

	Ugly things in Ruby

class Horse

 def what
 @mustard
 end
end
puts Horse.new.what # => 5

	Really? Let’s take another look…

class Horse

 def what
 @mustard ||= compute_it
 end
end
puts Horse.new.expensive

	This is how you do memoization in Ruby.

	Really trivial to do something really important

	Some bits being added to Python already exist in Ruby

	Generators

	Decorators

Summary

	It is really clear in Python why certain decisions were made

	No other language makes the design decisions so clearly

	Ruby’s design is not that hard for a good developer

	Ruby is different

	More testing

	Crazy bleeding edge that often doesn’t work

	Community changes things in weird ways sometimes

Why does this all matter?

	You can’t evaluate something until you really play with it

	Blocks rock

Cherry-picking for Huge Success

	by Armin Ronacher

	@mitsuhiko

	http://lucumr.pocoo.org/talks/

	Part of the Pocoo team

	Guy behind flask, jinja2, much more

	slides: http://www.scribd.com/doc/67925053/Cherry-Picking

Preface

	Doesn’t care about language fights

	Use the best tool for the job

Consider Twitter

	2006: off the shelf Rails application, static HTML, basic XML API

	Now: The API is the service. Website itself is a JavaScript app. Scala/Erlang backend

Does this mean Ruby sucks?

	Not it does not

	Neither does Python

	Ruby / Python are amazing for prototyping

	Expect applications to change and grow in implementation over time

Proposed Solution

	Build smaller apps

	Combine apps to make bigger apps

Cross boundaries

	Pygments is awesome

	Need Pygments in Ruby

	A: rewrite in Ruby

	B: Use different syntax highlight

	C: Use pygments as a service called by Ruby

“It only does Django”

	You wrote a library that does something useful (thumb-nailing for example)

	Don’t make it depend on Django if you can help it

	Try to make it independent

	Then implement a separate Django app that calls your tool

Note

This also happens with the Zope community. They did “Zope Only Projects” first. ;)

Protocol Examples

Flask Views

	Wiews can return response objects

	Respons eobjects are WSGI apps

	no typecheck

	Return any WSGI app

	WSGI server doesn’t care if it

Difflib + Genshi

	Genshi is valid XML

	Difflib returns a string

	Change Difflib to be <ins>/ so Genshi can render it

	Instant pages!

Serializers

	pickle, phpserialize, itsdangerous, json

	Within the compatible types it

Loosely couple all the ways!!!

Many small bits with specific merge points that are loosely coupled

	WSGI

	HTTP

	ZeroMQ

	Message queues

	Datastore

	JavaScript

WSGI

	Dictionary passed around

	Framework independent, but only for Python

	Tornado and Twisted don’t do it, but everything else does

	Middlewares are unused and hard to make

	TODO: Get his middleware example for use as possible sub-domain hack

	WSGI middleware has issues:

	Can’t consume dform data

	Processing response from application is complex

	Can’t inject HTML

	TODO - last bullet?

	Libraries

	Werkzeug

	WebOb

	Paste

Django & WSGI

	Django used to do WSGI badly

	Getting documented

HTTP

	Pure HTTP is more work than WSGI

	Easily debugged

	Language independant

	Need syntax highlighting with Pygments but your project is Ruby?

	Write small Flask app that exposes Pygments as a service

Libraries

	Python-Requests

	TODO

	TODO

Breakdancer

	by Dustin Sallings

	memcached contributor

	http://dustin.github.com/

	Does a lot of programming languages

	https://github.com/dustin/BreakDancer

	http://dustin.github.com/2010/10/27/breakdancer.html

Testing is a boring/hard subject

	How do you find those edge cases?

	How do you detect crazy pairs of edge cases?

	Wait until there is a reported error?

	pydanny contention: UnitTest makes it hard to document patterns in tests. User controlled

Wrote a framework to help set tests

	Actions are the tests

	Drivers performs the tests and include specific conditions

	So that means your tests are independent of the conditions but defined in code?

Note

Seems like a design of separation of presentation from content in tests!!! MVC anyone?

MVC test framework? Pydanny Thoughts…

	Can this be implemented on top of UnitTest?

	If so, it can be back ported to other systems

	Not actually MVC, just a defined pattern

	BreakDance seems to generate code

Conclusions

	Unit Testing isn’t enough

	Find ways to detect and fire off edge case tests

	itertools will save you

	python makes otherewuse tedious tasks boring

The Many Hats of Building and Launching a Web Startup

	by Tracy Osborn

	@limedaring

	Founder of http://weddinginvitelove.com

	Designer not a programmer

	piloshophy: “An entrpeneur tends to bire off a lottle than he can chew hoping he’ll quick;y learn how to chew it”

	project is ‘ramen profitable’

1. Start off on the Right Foot

	Have a good amount of money in hand to lesson stress

	Be in good health

	Relationships in good shape

	Quit your job cause you can’t do this as a side project

Redefine success

	Don’t try to beat google

	Make your goals modest

	Small goals to begin with

I know HTML! I can program!

	Started in Computer Science but graduated Graphic Design

	Joined a startup as the Designer that grew into a medium sized company

	Got bored

	Wanted to do something that could impact the world

Tried to find a co-founder

	Why weddings?

	Work on something you love to work on

	Cofounders are awesome, but no cofounder is better than the wrong cofounder

	Things didn’t go well with the cofounder didn’t go well

Did it herself

	Learn Python The Hard Way (Zed Shaw) Great programming starter book

	Got recommended to use Django because of so many apps available

	Launched weddinglovely.com in 6 weeks!

2. Launch as fast as possible

	Don’t try to build giant from the start

	Easy to get discourage

	Everything is going to change once you launch - you can’t predict the direction of things

	Take out as many features as possible - add them later if you need them

Work on the hard stuff first

	Programming before HTML layout/design

	Then make it pretty

Active Learning

	Don’t go through a whole book chapter by chapter. Learn the things that work

	http://gigantuan.net

	http://gettingstartedwithdjango.com got mentioned!

Launch with bad code

	Don’t worry about optimization (speed, caching, code smell, etc)

	get it done!

3. Have a plan for monetization

	Have at least a vague plan to making money

	Raising money is a pain in the butt

4. Don’t be forever alone

	Network and meet people!

	Surround yourself with experts (in her case - programming)

	Marketers

	Designers

	find the people who can help you do the work you want to do

	NDAs suck

	Most people won’t sign em, so they won’t be able to help you with advice

	Most people aren’t going to try and implement your idea

	Competition isn’t necessarily a bad thing

	Ask when you get stuck

	Don’t waste time banging your head against an impossible problem

	Go ask for help

	Stack Overflow

	twitter

	local meetups

	Surround yourself with good influences

5. Take Shortcuts

	Skip the hard things if you can, eventually you’ll undertand them

	Django is plug & play!

	http://djangopackages.com

	South for migrations

	hosted on https://www.dotcloud.com (special pricing for startups)

	launchrock.com

Summary

	Start off on the Right Foot

	Launch as fast as possible

	Have a plan for monetization

	Don’t be forever alone

	Take Shortcuts

Future of Python and NumPy for array-oriented computing

	by Travis Oliphant

	NumPy

	SciPy

	Array-Oriented Computed

	Enthought is hiring!

Note

I took Travis’ tutorial on it in 2006. I want to use this for serious number crunching. Why bridge out to another language/server if NumPy can do it for me fast and right in Python?

Python fits your brain

Thesis: Software engineering today is more about neuroscience than computer science

	Even fits the brains of Scientists

	Engineers say things differently than scientists

engineering solution
from scipy.signal import lfilter, lifiltic
from numpy import zeros

TODO get values here

def fibonocci(value):
 x = zeros(N)
 y, zf = lfilter(b,a,x,zi=zi)

	But this is not fast enough for scientists

	C speed

	CPU speed

	FASTER!!!

Conway’s Game of Life

	http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

APL: first array oriented language

	1964

	Descendants still alive: J, K, matlab

	NumPy is a descendant of J

	Crazy non-standard unicode characters

	Very compact

	Can do Conway in a single line of very dense code

Derivative Calculations

	Complex data can be memory intensive

	Big sets break even list generators

	NumPy can do this for you

History of SciPy and NumPy

	Travis started in 1997 on Python 1.4

	Early contributors added numeric as a Python extension

	Jim Hugenin (numeric)

	Jim Fulton

	Paul Dubiois

	Fortran still exists because of complex numbers. Most languages got it wrong for a long time, including C and Java.

Travis Found Python and Numeric in 1997

	Was good at MATLAB but it wasn’t efficient

	Loved the expressive syntax of Python

	Loved that slicing didn’t make copies

	Love the multiple data types

	Much more flexible than MATLAB

	Loved that he could read source code a year later

1999: Early SciPy emerges

	Wanted something more complete than numeric

	A set of libraries and stuff

	Lots of early contributors

NumPy started in 2006

	Wasn’t happy with some of the directions of Numeric

	Got it working after 18 months and the work of 6+ dedicated people

SciPy Today

	Conferences

	Collection of Tools (NumPy, et al)

	Community

	being looked at by the Financial community

What SciPy Does

SciPy

	Lots of cool data shaping tools

NumPy

	We aren’t talking about simple lists but gigantic multidimensional arrays

	Super-duper fast

	Terse but understandable notation

	See Zen of NumPy:

	strided is better than scattered

	contiguous is better than strided

	descriptive is better than imperative

	TODO: finish writing this out!

Call to Action: Collaboration between Python Core and the Scientific Communication

Contention: Collaboration between Python core and scientific developers needs to be tighter

	Index array operator (matrix multiplication is not domain specific)

	Use of slice notation inside function calls

	Array overloading of and and or

	DSL blocks?

Call to Action: NumPy and PyPy

	Stop chasing C, start chasing Fortran. Against an example:

	Python: 202 seconds

	PyPy: 4.71 seconds

	NumPy: 5.56 seconds

	Cython: 2.21 seconds

	Fortran 90: 0.8 seconds

	Mock Fortran if you will, but it is blazing fast for some important stuff.

DjangoCon US 2011

	Keynotes
	David Eaves

	Russell Keith-Magee

	Idan Gazit

	Glyph Lefkowitz

	Read the Docs
	Intro

	Things you can do

	CNAME support

	Architecture

	Open source!

	Hoping it makes people write more docs

	Lessons Learned

	Sponsors

	Questions

	Mirror your project in your test layouts

	Testing: The Developer Strikes Back
	Hard to do it right

	What is unit testing

	Mirror your project in your test layouts

	Use ObjectCreator classes for mocks instead of fixtures

	Beyond the business logic

	Dealing with cache

	Writing tests can improve coding tests

	What about T.D.D.?

	Options to get people to test

	Junction between unit and integration

	Testing a virgin codebase: 0-100%

	Graceful code degratation

	Test Infrastructure

	Useful tools

	How to sell testing at your Django shop

	Questions

	Fireside Chat with a BDFL
	How did Django get started?

	Why did Django get traction and other light Python frameworks didn’t?

	How has Django’s community and structure has changed?

	What about Django 2.0?

	Wishlist?

	How can Django can become a better part of the Python community?

	In your role as BDFL have you had to go against the community?

	How have things changed for the Django community since the last hate talk?

	Real World Deployment using Chef
	Who is here

	How and why

	About chef

	Python cookbook

	Case Studies - Packaginator

	Making the Django ORM Multilingual
	What this is all about

	Que?

	What does he want

	State of now

	Approaches

	Single Table Approach

	Dictionary Table Approach

	Two Table Approach

	Common problems

	Summary: The Situation

	Why the Django Documentation Sucks
	Rambles

	Use cases

	Images and pictures!

	No jokes?

	Problem: overview

	Problem: Tutorial

	Problem: SEO optimization

	Problem: People might get smug about Django docs

	Solutions

	Best Practices for Front-End Django Developers
	Presentation is important

	Start Organized

	Cascading Style Sheets

	JavaScript

	Don’t do HTML from scratch: Use html5boilerplate

	Sass/Compass instead of CSS

	All about the data

	Define you datatypes

	Tests

	Performance

	Documentation

	Wrap Up

	Security
	SSL - safe and secure

	Don’t put your database in your github repo

	Scraping the Web
	Content is what you need

	lxml

	lxml: cssselect

	cssselect

	iterlinks

	sourceline

	find,findall

	nodes of content

	Web pages change

	forms

	text, text_content, iter_text

	Tips for maintainable scrapers

	XPATH fundamentals

	Building LXML w/LXML

	Tweepy Innards

	Other tools

	Don’t forget

	Read up on these!

	Cache rules everything around me
	Intro to caching

	Big Picture

	How to avoid Cache Invalidation Hell

	Third Party tools

	Last minute Advice

	Django Core Dev Panel
	What about App Refactor?

	New community roles

	How about Django on other interpreters?

	Talking on django-dev

	Code of conducts

	How can the Django third-party ecosphere be managed?

	sprints kickoff

General Notes

	slides: http://lanyrd.com/2011/djangocon-us/coverage/

	Remember that I’m engaged to Audrey Roy.

	Flew up on the PyLadies Party Plane on September 4th on just 90 minutes of sleep.

	Taught the Ultimate DjangoCon Tutorial Workshop. Thoughts:

	Not having enough time to QA the content

	Having errors in your slide code can be good

	the class pulled together and we debugged as a team.

	Maybe do this on purpose in the future

	Mentors rock

	The existing tutorial teaches some anti-patterns. :(

	I think there was no confusion until the very end. Which is really good!

	Next time I will do better

Keynotes

David Eaves

	Professional negotiator

	Professional speaker

	Good, positive message

Russell Keith-Magee

	President of DSF

	Django core dev

	Presenting on Django Software Foundation

Organization of the DSF

Board members

	Russell Keith-Magee

	Adrian Holovaty

	Jacob Kaplan-Moss

	Dan Cox (president of Mediaphormedia)

Officers

	Treasurer: Joseph Kocherhans

	Secretary:

Committees

	Infrastructure

Developer Members

	Contributed to Django in a material fashion

	Admissions approved by the board

	Can be anyone “sufficiently material”

	Members can nominate new board

Corporate Member

	Small: $500/year

	Medium: $1000/year

	Large: $500/year

What does the DSF do?

	Trademark management

	The DSF has two lawyers, including a core dev (Justin Bronn)

	stuff

Manages Ownership of Django

	Django is owned by the individual contributors

Idan Gazit

Title Designers make it go to eleven

	Benevolent Designer for Life of Django

	BDesignerFL

	Took the role in Spring of 2011

Compromise is the soul of design

	You can’t get everything you want

	You have to make choices

Usability Stuff

	Color charts

	chunking 8001234567 vs 800-123-4567

Audience

	who

	what

	why

	where

Critical issues that hurts Django in regards to designers

	Python on windows is a problem

	local setup

	project templates - some basic architecture layours

	deployment has been a pain point

	trac is sucky

Glyph Lefkowitz

Title: Why does Django hate Python

Note

Trying to follow Glyph in notes is probably going to fail. He is that awesome

	Started with prose

	I come to bury Python, not to praise it

	“Adding manpower to a late software project makes it later.” - Fred Brooks

	“Over the centuries native Americans came up with sign languages. Developers have a zillion languages” - Alan

	“Systematically identify top designers as early as possible” - Fred Brooks on getting a software architect in place

	Give in to your hate - Glyph on hating things that aren’t Python

Read the Docs

by Eric Holscher

Note

arrived late. :(

Intro

	launched in Django Dash 2010

	Makes documentation hosting trivial

	uses sphinx

Things you can do

	Post commit hooks on Github

	Add custom sphinx theme

	PDF generation via download think

	Use their REST API for links to http://djangopackages.com

CNAME support

	Request for docs.fabfile.org

	docs.fabfile.org > (need to finish this out)

Architecture

	Python

	Front end caching via varnish

	Varnish is the current single point of failure.

	Django front ended via gunicorn and nginx

	Docs are hosted out via nginx

	Postgres SQL

	Haystack and SOLR

	Chef for deployment

	Nagios & Munin

	CoffeeScript (Where is the Python version? This is only in Ruby)

	CLI support via http://rtd.rtfd.org (need to check this out!)

Open source!

Pros:

	Patches

	People trust you most because they can see the code

	BSD license

Cons:

	Known architecture information was on github

	Early version had exposed data like IP addresses and other things

Hoping it makes people write more docs

	mod_wsgi

	django-piston

Lessons Learned

	Think about your URLs. Really hard

	Adding versions was hard

	Lay your project out sanely

	started with no tests

	Shoved code in

	Racked up a lot of technical debt

	worked hard to make the project layout a bit more sane

	Write tests!

	Had a complicated code base without tests

	They have hosted continuous integration

	Build around a standard tool

	Lots of good communication between rtfd and Sphinx

	Passing data through systems is hard

	Serving static files is annoying

	Log. Everything.

	Hard to find people’s problems until they added sophisticated logging

	I personally like the build reports

	Promote your projects!

	Blog

	Tweet

	http://djangopackages.com

	G+

	Find a designer

	Follow the Unix Philosophy

	Do one thing and do it well

	Stay to your project goal and don’t deviate

	RTFD does so well cause all it does is Sphinx documentation hosting

	Have a mission

	RTFD fixes the problem in open source that projects are not well documented

	WIKIs are where your project goes to die

	Sphinx lets you accept Pull Requests

Sponsors

	Revsys

	PSF

	Divio

	pyladies

Questions

Note

ask Russ his question

	How easy to deploy internally?

	Open Source

	Documented

	Chef

	Designer thoughts?

	Started with the project with a designer

Mirror your project in your test layouts

Note

I love this pattern and use it myself!

	Create test modules following the same file layout as your project

	Have as few root test utils as possible

	Use it sparingly

	just a few simple helper functions!

	

Testing: The Developer Strikes Back

Note

Sandy really, really, really rocked this talk

by Sandy Strong

	Been doing Django since fall of 2009

	Pyladies co-founder

Hard to do it right

	Delegate responsibilitiues correctly

	wont always get it right first time

	Presents reasons for refactoring

	increases stability because you can test updates and patches

What is unit testing

	A unit is the smallest possible part of an application

	Integration tests the whole and is often built out of unit tests

Practices

	Each class, method, and function should have its own test

	Starting Django test.py files are limited

	Organize however you want

	Maintain consistency in your test patterns

	Separate your tests between models, views, and hitting other services

	keep things simple

	easy to understand tests

	Don’t keep all your tests into monolithic test.py files

	make multiple assertions

Mirror your project in your test layouts

Note

I love this pattern and use it myself!

	Create test modules following the same file layout as your project

	Have as few root test utils as possible

	Use it sparingly

	just a few simple helper functions!

	Your tests should copy the model/view/whatever tightly

Use ObjectCreator classes for mocks instead of fixtures

	Mock your data by using the ORM or whatever persistence your system uses

	Better than fixtures because mocking your objects this way means you are doing an addition ORM test

	The mock library is supposed to be good

Beyond the business logic

	Testing third-party libraries should be separate from other unit tests

	Third party APIs go down. Even the big ones.

	Mock 3rd party API responses

	Means you can continue to work when Facebook, Google, et al go down

Dealing with cache

	Very hard

	I tend to blow away the cache in a tearDown method

	Her issues are beyond mine. Sandy rocks!

Writing tests can improve coding tests

	Small functions can be tested. 200 lines functions cannot

	Write more tests

	Find good test patterns

	Functions should perform a single function

	Units of code should be true to the definition

What about T.D.D.?

	Step 1 - Write your tests

	Step 2 - Then write the code

Sandy doesn’t believe it exists.

Note

I’ve done it for short periods.

	Goes against prototyping

	Requires full team buy0in to really work

	Business owners rarely get it

Well tested code is often a happy medium

	More realistic

	More practical

	Allows for a more individual style in coding

Options to get people to test

	webhooks tests to block code that isn’t test

	coverage.py makes it a game

	Public shaming!

Junction between unit and integration

	Difficult areas to test because behavior is driven upon environment

	Some code doesn’t always work the way you want because people don’t script/document things out

Testing a virgin codebase: 0-100%

	You may find yourself faced with a project without tests

	Set a pattern for tests, establish a framework follow it and get the team on board

	Smaller tighter tests really help

	Jenkins (continuous integration) is critical

	Test Debt is part of Technical debt

	Enforce the rule that All future code MUST have tests

Graceful code degratation

	Developers need to think outside the box - their local machine is not the same as Staging/Production

	Service unavailable should not be an unavailable site

With good coverage You can survive these things down…

	Search. 3rd party API, Cache

	Test your dependencies on these things when they are shut down

	This way your site doesn’t just die

Test Infrastructure

	No one gets staging environments that match production

	Run SOLR and RabbitMQ on staging environments

	Don’t overdo logging as it will slow everything down

Useful tools

	coverage

	nose

	one-more

How to sell testing at your Django shop

	Pretty coverage charts

	Code not tested is broken by design

	Saves money when you have problems

	Makes it easier to add features

	Happier developers

Questions

	If someone breaks a test pattern and won’t fix it go back and make their tests follow the pattern

	Interesting to see that Sandy is into Behavior Driven Development

Fireside Chat with a BDFL

Moderated by Sean O’Conner and starring Jacob Kaplan-Moss

How did Django get started?

	2002 - 2003 LJ World hired Adrian Holovaty to become their dedicated Web Developer

	Previous to 2002 had Frank Wiles making things for them in Perl

	Adrian hired Simon Willison as the most overqualified intern until Alex Gaynor

	Because of the fast news cycle at a newspaper you don’t have the luxuries of other jobs.

	Sometimes you have to build a project within 24 hours

	Adrian and Simon decided to do it all in Python

	The Python ecosphere didn’t have all the tools they needed so they made things up

	Zope/Plone couldn’t cut it

	No light frameworks existed

	At PyCon 2005 they went to a success story workshop and Adrian demonstrated a blog in 5 minutes

	Nothing else in Python could do it at the time

	People asked them to open source it

	LJ World was okay with open sourcing it

	In July 2005 they released it as open source

Why did Django get traction and other light Python frameworks didn’t?

	Luck of timing

	They did a lot more documentation than any other emerging option

	Jacob and Adrian focused on the on-boarding of incoming developers

	Good input from Wilson Minor on design and the result was that it looked better than it’s competitors

	Spent a lot of time considering how the community ought to be built

How has Django’s community and structure has changed?

	Jacob mentions their are 6 developer journalists. The reality is that there are a lot more

	Linear community growth until 2006 and then it’s grown exponentially

	20,000 members on the mailing list

	Huge issue: Not enough man hours for the leadership to increase the number of contributors.

What about Django 2.0?

	Jacob never wants to have a not backwards compatible version of Python

	Doesn’t want to see Django 1.11, wants to go Django 2.0 at that point

	Massive incompatible rewrites are really challenging

Wishlist?

	Wants to see a better job for formalizing the app interface

	Wants to see Django become a micro-kernel.

	Less features and more APIs and hooks

	No more features in Django

	Delighted that Python Package has been shaped by the Django community!

	Wants to see more people empowered to help build Django

How can Django can become a better part of the Python community?

	2 years ago the communities were a bit separate

	Some tension caused by Django because we as a community sometimes get aggressive

	Some tension caused by Python because the anti-establishment guys don’t like winners

	Django needs to help push for better Packaging in python

	Let’s port to Python 3!

Note

I think having the Django community cook up a good alternative to PIL and make it pure Python.

In your role as BDFL have you had to go against the community?

	Jacob/Adrian admit being wrong about the template language not auto-escaping

	Doesn’t want to overlord too much

How have things changed for the Django community since the last hate talk?

	Changed the core developer rules so that the quorum for new core devs could work

	Any time a core developer says “no” to something, they have to explain why

Real World Deployment using Chef

by Noah Kantrowitz

	Ops Code guy

	Really good at Python!

	Django hacker

	Ruby user (tolerates it and not enthusiastic about ti)

	Developer

Who is here

	Sys admins

	Designers

	Developers

	Designers

How and why

	Infrastructure as good

	Rebuild a system via a script that includes servers and database

	Configuration management

	System integration

	Don’t use wikis

	don’t use spreadsheets

	use code!

How does thus work?

	Provision

	Servers

	Load balancers

	etcs

	Configure

	Servers

	Load balancers

	etcs

About chef

	Reasonability

	flexibility

	libraties and primitives

Bits

	ohai

	chef-client

	chef-server

	knife (command line utility)

..note:: mixed a section here

ecosysye,

	Apache license 2

	400 contrib

	open source code

	On github

Infrastructure

	Recipe

	Have a type

	have a name

	have parameters

	take actions to change state

	can send notifications to other resources

	Resources

	resources take action through providers

	What operating system you are on will determine what action is run

common resources

	package ‘apache2

	template “/etc/apache2/httpd.conf”

	cookbook_file (Load a recipe that does this sort of thing)

Idempotence

Note

what does that word mean anyhow? Ha ha

	Convergence

	Gaurd clauses

Chef Recipes

	Runs just like a script. Doesn;t that make them… scripts?

	Recipes can include other recipes

	Extend recipes with Ruby

	Dynamic configuration through search - so you can search your servers for stuff

Chef Roles

	Things can be assigned server roles

	Roles describe nodes

	Roles have a run list

	Roles can have attributes

Other chef terms

	Cookbooks are collections recipes

	JSON blobs

	Other thing 1

	Other thing 2

Python cookbook

	You can use pip and virtualenv! Yeah!

	gunicorn::default

	supervisor::default

	Debian-style fot now

	servicer service

Case Studies - Packaginator

	Inatll users

	configure sudo

	apt-get update

	install gcc

Warning

Some of the Chef stuff Noah goes over isn’t public yet. Probably in a few days

notes

	Always run the migrations!

	Apparently we have our reqs in a weird place. I kind of agree

	Old-style custom collectstatic. Need to finish the 1.3 integration!

	https://github.com/coderanger/djangocon2011

	Mentions the issues with settings that Jacob Kaplan-Moss taught me.

Making the Django ORM Multilingual

By Jonas Obrist

	Lead of the django-cms project: https://django-cms.org

What this is all about

	Models

	The ORM

	Admin

	Forms

	not gettext!

Que?

	Because you may not understand this title!

	You might lose customers and users

What does he want

	Multilingual content in the database

	Editable in a usable admin inteface

	Easy, Django-like API

	Good performance

	Most of the existing tools are slow

	Bad performance

State of now

	10 packages at http://djangopackages.com/

	No consensus on how this should be done

	API

	Base solutions

	many ideas floating around

Approaches

	1 table, 1 extra field

	1 extra table with key/value translations

	2 tables, one for translated fields one for translated fields (dual-table) - How I’ve done it

	Translations serialized into a single field (Pickle/JSON) - No search without a ton of hacking!!!

	gettext

	Google Translate

	This is not a serious service for a real project

	Third party and relies on Google management

Single Table Approach

Pros

	Somewhat easy

	few queries

	fallbacks

	Hard to implement filtering

Cons

	Multisite this falls apart. Doesn’t work

	Migrations are painful because each language requires a schema migration

	Size of query result can get big

	Hard to make nice admin

	Hard to handle required fields

Example:

.. sourcecode:: sql

select book.isbn, book.title_en, book.title_de from book;

Dictionary Table Approach

Pros

	Easy to implement

Cons

	No filtering

	No sorting

	Admin

No example cause the Query is too big

Two Table Approach

Pros:

	Can be made very fast

	few queries

	Works with south

	makes sense

	possible but hard to make nice admin

Cons:

	Hard to implement

	joins

	Usually done with bad performance I addressed this with caching and celery

	Incompatible with lots of other packages (requires custom queries unless you are really careful)

Common problems

	Admin doesn’t like new ideas

	django.contrib.admin.validation is a blocker

	Extensible but not customizable

	Forms are a weak spot in Django, and Admin uses them in a really odd way

	ORM just wasn’t written to be extended, was written to be used

	Relations: Starting model controls everything

	Not intended to be changed

	Nice things: QuerySet.iterator

	Performance issues on all of them

	Usually written under time pressure (deadline)

	Many packages are undocumented and lack tests

Summary: The Situation

	Translatable models are hard

	All available solutions have their problems

	Maybe something needs to be done in Django

What could Django do?

	Do nothing

	Provide hooks/APIs to make this easier

	Provide support for translated models

If Django does nothing

	List of multilingual libraries grow

	Many custom undocumented implementations

If Django adds new APIs

	Probably too low-level

	abstract solutions add overhead

Django adds multilingul support

	Bikeshedding potential

	What approach to take?

	What API should look like?

	Easiest way to implement

	Could be done backwards compatible

Why the Django Documentation Sucks

by Steve Holden

	PSF chairman

	Rambles

Rambles

	All documentation sucks because the mind of the writer can’t match the mind of the reader

	Use cases mostly appear to be “I want to know about X”

Use cases

	Documentation wasn’t necessarily done with use cases in mind

Images and pictures!

	No pictures? A picture is worth a thousand words

	Some people need visual pictures to process things - visual thinkers

No jokes?

	Jokes cut through barriers and allow people to interact more intimately

	Humor negates fear

	But you run the risk of looking silly

Problem: overview

	google “django overview” https://docs.djangoproject.com/en/dev/intro/overview/

	shouldn’t a glance be visual?

	Gigantic document

Problem: Tutorial

	Put your apps in project subdirectories

	It’s like they’d never heard of the Python PATH

	manage.py startapp still does it that way.

Problem: SEO optimization

	Why isn’t the first Google hit on every ‘django’ somewhere in the docs

	Problem: Curious noob gets odd things

	django users doesn’t return good results

Problem: People might get smug about Django docs

	Because they have become smug

Solutions

	Make documentation submissions process easier

	Ask for all doc submissions and reserve the right to edit

Best Practices for Front-End Django Developers

by Christine Cheung

	One of the co-founders of Pyladies

	Works for Red Interactive Agency

	Does front end development

	Also does a lot of backend stuff

	Quickly mastered CBVs so she has serious chops

	@webdevgirl on http://twitter.com/webdevgirl

	http://xtine.net

Presentation is important

	Polixh front-end is as important as the front end

	It may “scale”

	But bloated markup and JavaScript will slow things

	The implementation really matters

Start Organized

	Structure the templates

	Template Tags should express presentation, not logic

	Presentation and iteration over data, NOT manipulation

Note

I wish people remembered this bullet about template tags and logic

Cascading Style Sheets

	Define a style guide. Write it down!!!

	Consistent Variable naming

	Camel case

	dashes

	underscores

	Keep your css files small. Combine it in deployments

JavaScript

	Use a framework!

	Pick one and stick to it:

	JQuery

	Don’t mix in other things like Dojo

	Avoid plug-in overkill. No more than 3-4

	Reduce performance hits and code conflicts

	Analyze if you can write your own

	Namespace your Javascript

	TODO - get sample code from Christine

	DON’Ts:

 <script type="javascript">
 document.write('foo'');
 </script>
 Stuff

* Lots of JavaScript? Use backbone.js

Don’t do HTML from scratch: Use html5boilerplate

	Comes with a layout via 960

	JQuery

	Modernizr

	You can do wicked class tricks with this tool. Wow

	Need to really look at the slides cause she did this better than the docs

Sass/Compass instead of CSS

	CSS Authoring Framework + Utilities

	SASS - nested rules, variables, mixins

	Image Spriting

	https://github.com/Kronuz/pyScss

All about the data

	Leverage the power of both the front and back end

	Share the work between the front and back side of things

	Generic Class Based Views for quick prototyping

Define you datatypes

	Make an API

	Share the models between back and front end

Tests

	CSSLint

	JSLint

	
Warning

it will make you cry

	Google closure compiler

Performance

	Minify

	Control this via a settings.py value

Documentation

	Consistent folder structures and document style guides

	Does Sphinx autodoc doesn’t work with docstrings in JavaScript or CSS?

	Use a JavaScript library and modern authoring techniques

Wrap Up

	Leverage data loading between front and back ends

	Use HTML Boilerplate + CSS/JS tools to your advantage

	Test and performance check the front end!

Security

Note

Had some things to do so did not get a chance to focus on this talk

by Paul McMillon

	Security expert since 1998

	Just now a core developer of Django

SSL - safe and secure

Are you doing it right?

	Standard way is to redirect from HTTP to HTTPS

	That doesn’t stop images on HTTP from sneaking in cookies

	Use HTTPS secure cookies!

	Use HTTP Strict Transport Secruity (HSTS)

Use django-secure

	Identifies these issues

Don’t put your database in your github repo

	Django needs better hashing

	Even on open source projects

Scraping the Web

by Katharine Jarmul

	Co-Founder and VP of PyLadies

	twitter.com/kjam

Content is what you need

	You need to get content

	good content exists all over the web

	Scrape it!

lxml

	lxml.etree good for good formatted xml

	fast for SOAP or other xml-formatted content

def parse_feed_titles(rss_feed):
 data = []
 dochtml = html.document_fromstring(rss_feed)
 for x in dochtml.cssselect('title'):
 data.append(x)

lxml: cssselect

Uses a JQuery style language to grab bts

article_title = html.cssselect('div#content h1.title)

cssselect

	Learn css to help you scrape

	Various developer tools help to find stuff (firebug)

iterlinks

	Good for high link pages or finding related links

page_links = html.iterlinks

sourceline

	tells you the line the element is on

	Helps you determine distance of one element is from another

pos = element.sourceline

find,findall

	Find the element you want

	Grab only what you need

	

spans = element.findall('span')

nodes of content

	Elements have children

	Elements have siblings

	Elements have ancestors

h1s = list(h1_element.itersiblings())
the_kids = [c for c in element.iterchildren() if len(c.text)]

Web pages change

	All your code can break

	Make a monitoring system to let you know it things change

	Code that checks the pattern of the layout

forms

	Think: log in pages

	Don’t use lxml for evil

	See lxml docs on how to process them

text, text_content, iter_text

text = element.text
text_w_content = element.text_content()
text_bit_by_bit = list(element.itertext()) # The best way!

Tips for maintainable scrapers

	Skip ugly parsing

	Text = Content = Boss

XPATH fundamentals

	Not fun but you need to learn it to handle XML. I hate it

	lxml supports it, of course

Building LXML w/LXML

	Writing templates for things like xml are boring

	Don’t be that guy/gal

Note

Not showing the example because kjam says it is evil!

Tweepy Innards

	If you API lib just returns the API with no frills, that’s not really helpful

	IF API data is fairly standardized, do nice thngs like create models

	“Don’t make me convert datetimes or I’ll put a nasty mark on djangopackages.com about your project” - @kjam

Other tools

	Feedparser

	HTMLparser

	re

	html5lib

	mechanize

	Feedparser for parsing RSS or Atom

	Sometimes you want a lighter tool

	Sometimes LXML doesn’t install easily

Don’t forget

	Content is 1/2 the equation

	Ugly web pages with good content is lame

	Work with your front end people

	Find some good designers and befriend them

Read up on these!

	http://pypi.python.org/pypi/requests library for pulling data

	http://lxml.de

	http://wwwsearch.sourceforge.nt/mechanize

	http://code.google.com/p/html5lib/

	http://scrapy.org/

Cache rules everything around me

By Jacob Burch

	Engineer at Revsys with me

	Former CTO of Mahalo

By Noah Silas

	Engineer at Causes.com

	Former head architect of Mahalo

Intro to caching

	Caching is post-process data

	Stored in a key/value store

	Usually Done to:

	Speed up your app

	Lesson load on third party apps

Big Picture

Jacob’s rule of architecture

	No rules only principals

	Start with assumptions/advice

	Benchmark/inspect before you break principals

Ask some questions

	Do you really need caching? Caching adds…

	complexity

	additional point of failure

	Modern database are stupidly optimized

	May be all you need!

There are only two things in Computer Science, cache invalidation and naming things - Phil Karlton

Relying on your cache always being up

	Rely on a single canonical data source

	This data source IS NOT YOUR CACHE

Common Cache Patterns

	Rollup values often called like settings

	Only do it for common data calls

	What’s easy:

	cache invalidation is relatively easy

	What’s hard

	Known when to invalidate

Thundering herd problem

	If everything in your cache tries to reload at once because you had a service outage

	Huge load on your system and third party apps

	You may get throttled by other systems

The New Hotness Pattern

	Cache Forever, Invalidate, explicitly

	Keep the cache forever

	Invalidate only when the data changes

	Add the data back right then and only for that bit

	Use celery or deferred to handle long processes

Key-holding

	How about storing cache keys in a file?

How to avoid Cache Invalidation Hell

Yay!

What’s in the box

	django.core.cache

	simple setup

	Multi Cache Support

	django.core.cache.backends (best way)

	memcached.MemcachedCache (works with PyPy)

	memcached.PyLibMCCache (faster but on C)

	

	View decorators are interesting because they cache HTML

	But you don’t know cache key names so that makes invalidation hard

	{% load cache %} DON’T USE THIS!!!

	django.core.cache

	settings.CACHES[alias][‘VERSION’]

	settings.CACHES[alias][‘KEY_PREFIX’]

	settings.CACHES[alias][‘KEY_FUNCTION’]

def make_key(key, prefix, version):
 return ':'.join([prefix, str(version), smart_str(key)])

Good cache keys

	Make them unique

	Use separators that don’t appear in your values

	Don’t ever write the same format string once

Key files!

	Don’t define the same key format string in more than one place

	Put all the app key names into one file

Note

What I tend to do is as follows

in core/cachekeys.py I store all my cache keys in functions
def profiles_profile(user):
 return "profiles:profile:{pk}".format(pk=user.pk)

Then I refer to the key thus in a models file
from django.contrib.auth.models import User

from core import cachekeys

class MyModel(models.Model):

 user = models.ForeignKey(user)

 def get_profile(self):
 key = cachekeys.profiles_profile(self.user)
 profile = cache.get(key)
 if profile is not None:
 return profile
 profile = self.user.get_profile()
 cache.set(key, profile)
 return profile

 def save(self, *args, **args):
 profile = self.user.get_profile()
 cache.set(key, profile)
 # TODO add superclass call here

Cache related code stuff

	try MyModel.cache as a manager

	User.cache.get_top10_users.all()

	This is really djangsta!

	invalidation:

	try a post_save signal to separate concerns. Hrm…

	Using signals can make cache invalidation hard

	They have to do model.save() magic to make their system

	QUESTIONS: Aren’t they losing that separation? Why not a save() override instead of signals? Wouldn’t it be less engineering to just put it all in the save()?

	The answer is that they are breaking principals

	Not a clear answer on what they are getting out of post_save stuff then

TODO - Get their OriginalStateModel code

Third Party tools

	TODO - get this list!

Last minute Advice

	Don’t let your cache servers be accessible

	consistent hashing is a neat trick – use it!

DoesNotExist Deserves Cache love

sfsf

Django Core Dev Panel

by cast of thousands

	Alex Gaynor

	First code was a test

	Isn’t excited by the reinvention of things

	Andrew Godwin

	Wrote a breakout clone

	Finds web based games interesting

	Carl Meyer

	Ice hockey

	first code was a patch

	likes playing with Haskell

	Chris Beaven

	async fan of eventlet, node, etc

	Gary Wilson

	Learned on TurboPascal in high school

	Gabriel Hurly

	First wrote a log parser in Perl

	Open Stack fan!

	Idan Gazit

	finds backbone.js exciting

	Doesn’t like sproutcore cause it tries to change your system entirely

	Jacob Kaplan-Moss

	BDFL

	Farming

	Apple][basic code just like me!

	James Bennett

	Joseph Cochrane

	Riak

	Geographical data into distributed systems

	Julien Philip

	Soccer, Rugy

	First code was a calculator

	Justin Bronn

	Linux kernal hacking

	Karen Tracy

	Played with Basic on the IBM PC

	Rescues kittens

	Paul McMillon

	Russ Keith-Magee

	His little kids rock

	Wrote a line based basic game on the Commodore 64

	Excited by the change in the platform

What about App Refactor?

Note

Zoned out and missed this one. Argh

	infrastructure API has been cooked up

	configurable foreign key

New community roles

	Security Manager: Makes Django to be more secure

	Front end BDFL: Makes Django prettier

	No one should be irreplaceable

How about Django on other interpreters?

	Alex Gaynor is also core dev on CPython and PyPy and says it works

	JKM asks about any issues with Django on Iron Python

Talking on django-dev

	be decent

	Don’t just +1 or -1 that doesn’t give them any knowledge

	Explain why you are sharing your opinion

Code of conducts

	JKM: Django community ought to have a written code of conduct

	The Django core dev leadership is very approachable

How can the Django third-party ecosphere be managed?

	Miguel Araujo wanted to know if we can manage the community of third-party world. Cause some packages are just unmaintained

	Possible ideas:

	unmaintained code could fall out of ownership

	How do you maintain/control a community of volunteer projects?

	Core devs are already overloaded

	The DSF can give Django Packages and other projects more support

sprints kickoff

Kiwi Pycon 2011

Talks

	Keynotes
	Python in the Web: Can we keep up?

	Metaprogramming

	relate or !relate

	Giving your website a command line interface
	About the presenter

	Why a command-line interface?

	Protocol Choices

	Authentication

	Live the Server Code

	Live the Client Code

	Conclusion

	Introduction to Matplotlib for Data Analysis
	Why Matplotlib?

	Dependencies

	Install

	On-line Examples

	Ways to run matplotlib

	Simple bar graph using bar

	Things to think about

	Python distributed programming using gevent and redis
	Roadmap

	How many links does google index?

	Talking about a crawler

	Async 101

	gevent - Monkey King and Pool

	Redis - Data Structure Server

	Lessons Learned - Dashboard

	Lesson Learned - Fine balance

	Lessons Learned - Use Profiler

	Behaviour Driven Development
	Why have I asked you here today

	Intro

	BDD

	Conclusions

	Those niggly beginner’s questions answered by a code craft ninja
	Audience Design

	Lightning Talks
	Web Scraping

	Crowdsourcing from NZ

	Web Socket

	Google App Engine

	Wiki-to-speech Robot Presentations

	Pythonic Slide Generation

	Valgrind Memcheck

	Sorry state of the New Zealand Job Market

	What Parkour Taught Me About Programming

	Dependency Management in Python with Buildout

	Just because you can, doesn’t mean you should OR An evil web framework/thing

	Qtile: A Python Tiling Window Manager

	Job security in Python

	Porting (and staying ported) to Python 3
	Overview

	Why Bother?

	Sample

	Porting to Python 3

	Lots of issues

	You now have a working port, now what?

	Django for n00bs
	Awesomeness

	Introduction

	Frameworks vs CMS’s

	Django backstory

	Pros and cons of Django

	Sample model code

	Sample view code

	Quick overview

	Struggling to Find an Open Source Business Model
	Abstract

	Monetisation

	Why an open source business model?

	Successful open source business models

	Models

	Statements

	Automated testing in Python and beyond
	Have unit tests

	Disney Stuff

	Other language test frameworks

	Write Tests

	Re-run

	Asynchronous and Evented programming in Python
	Introduction

	Threading

	Multiprocessing

	Asynchronous is hard

	So really, what is async?

	Async code is hard

	Synchronous Example of same thing

	Asynchronous != faster

	So why do this?

	What about Tornado?

	So why Tornado over Twisted

	New Zealand Python User Group - The Whats, the Whys and the Hows

Tourist suggestions

	Pickton

	Malborough Sound

	Nelson

	Golden Bay

	Waitomo

	http://www.waitomo.com/waitomo-glowworm-caves.aspx

Keynotes

Python in the Web: Can we keep up?

By Audrey Roy

I’m partial but I think she did a great job of pointing out where Python might/should go.

Metaprogramming

By Jeff Rush

“Metaprogramming is the programming of programming”

Note

Apologies, but I couldn’t keep up with the firehouse of knowledge. This is woefully incomplete.

Warning

This is from me: Metaprogramming should be done carefully. Only use it when you have no other options!

This talk makes use of

	metaclasses

	decorators

	attributes

	more

What is metaprogramming orientation

	Code Manipulates Data

	Data Feeds into Code

	Metaprogramming sits about the Code/Data

	Add/adjust elements

	register elements

	tag elements

	event management

	Pre/post initialization

	read/write

	call-and-return

Addressing a problem

class Request(object):

class HTTPServer(object):
 def handle_request(self, ...):
 req = Request(...)

	objective

	subclass a class deep inside a module

	Requires rearrangement content of the module

old_import = sys.modules['__builtin__']
sys.models['__builtin__'].__import__ = self.__import__

Sample code

class Member(object):
 __metaclass__ = DatabaseTable

 dbtable = "Members"

class DatabaseTable(type):

 def __init__(cls, name, bases, class_dict):
 col_defs = db.query_cols()
 for col_def in col_defs:
 db_column = wrap_col_rdwr(col_def)
 setattr(cls, col_def.name, db_column)

def wrap_col_rdwr(col_def):
 def get_dbcol_value(self):
 return self.__dict__.get(col_def.name, None)

 def set_dbcol_value(self, value):
 value = col_def.validate(value)
 self._-dict__[col_def.name] = value

 return property(get_dbcol_value, set_dbcol_name)

Meta classes? class decorators

	The latter are much simpler

	The latter can do almost everything the former can

	only a metaclass can add methods to the class itself

	class-level services (methods)

	@classmethods provide them to instance

	metaclass methods provide them to the class itself

	only a metaclass can add to class attrs not visible to self

	meta-methods

	meta-properties

	Class decorated can be (more easily stacked)

	MISSED BULLET

Example using class decorator

def CallTracer(attr):
 """ Do custom logic stuff here """
 return attr

def tracecalls(cls):

 def my__getattribute(self, name):

 attr - super(cls, self).__getattribute__(name)
 return attr if not callable(attr) else CallTracer(attr)

 cls.__getatttribute__ = my__getattribute
 return cls

@tracecalls
class MyClass(object):
 pass

Diving into attribute manipulators

The talk dived a bit into things like:

	__getattribute__

	__getattr__

Diving into this sort of code is tricky, because the reasons for use of these tools is
not necessary in 99% of Python projects. I prefer to rely on decorators to alter behavior
because they are syntactical sugar. Easy to find and very explicit.

relate or !relate

by Mark Ramm

	“Python has been very good to me”

	Double major in Philosophy, Literature and minors in Theatre and something else

	Wrote the TurboGears 1 book and became a web developer

Opening

	Tools matter

	Python is a great tool

	“SQLAlchemy is the best ORM on the planet regardless of language”

	Data matters just as much

Tools matter

	Know your tools

	Screws and nails

	deck (screws are stronger than nails, but harder to use)

	siding (nailing yourself to the siding)

	mongodb (nailed the SourceForge team to the wall via MongoDB)

Takeaway: If you don’t know your tools when you hit production you are going to be trying to debug something critical.

SQL

“Who here has used a non-relational database? Not many? Oh, there’s this thing called a FILESYSTEM.”

ACID

	Atomicity

	Consistency

	Independent

	Durable

Why I NEED relational

	I can’t use NoSQL because

	It’s financial data (need consistency)

	my data is relational

Mark says BULLSHIT

	Amazon tracks financial data using NoSQL

	You can make things more durable and consistent if you know what you are doing

Reason to use SQL

	Well known, easier to find people who know it

	Robust, scalable, flexible, simple

	pretty ACID

Really good reasons to use RDBS

	DSL for ad-hock queries understood by everyone

	Business and marketing types can run their own queries

	blah blah inconsistencies blah blah latency

	Being down is better than being wrong

	Critical for medical applications!

NoSQL

Many different types:

	key/value store

	distributed key/value store

	column oriented stores

	map-reduce store/system

	documented oriented store

	MongoDB

	CouchDB

	XML (now we use JSON instead of this)

	ZODB (A really good system in Python - just so long as you don’t want to share your data with other languages)

	graph oriented stores

CAP theorem

It is impossible for a distributed computer system to simultaneously provide all three of the following guarantees:

	Consistency

	Availability

	Partition tolerance (the system continues to operate despite arbitrary message loss)

Google and Facebook scale has to handle downtown gracefully so has to choose which of these three things they’ll focus on

Focused

NoSQL systems tend to have a few but not all of the following bullets:

	Scalable

	Simple

	Fast

	Flexible

	Topic

It’s WebScale

Mark calls BULLSHIT on WebScale

	99% of sites don’t care about this issue

	99% of people are okay if their sites have a feature that fails on a continent

	Think about what you actually need

	Don’t implement a database just cause it’s cool

	merciless.sourceforge.net

SQL version:

select * from document where x=3 and y="foo"

MongoDB version:

b.things.find({x:3, y: "foo"});

Conclusion

	Figure out what YOUR app needs

	SQL, MongoDB and Cassandra is great at some things

	Mark couldn’t answer this for Hadoop

	Don’t obsess about SCALE you’ll never achieve

	Launch your project, then worry about scale

Giving your website a command line interface

by Michael Hudson-Doyle

About the presenter

Works for Canonical and Linaro.

Enter Linaro!

The ARM ecosystem is very fragmented and the kernel has a lot of copy/paste code.

Linaro is a not-for-profit software engineering company investing in core Linux software and tools for ARM SoCs.

see: http://validation.linaro.org/

Why a command-line interface?

	We want to do things like trigger test runs when a kernal build finished

	This basically means some kind of Remote Procedure Call (RPC)

Need security

	The boards in our lab are a limited resource

	Some risk of mischief

	Eventually may have test results from unreleased hardware

Protocol Choices

	They use XML-RPC

	Didn’t think about it very hard

	will probably use JSON-RPC

Authentication

OAUTH

	Hard to implement

	Hard to consume

	Doesn’t sign the body of the request in XML-RPC

Used Encryption instead

	Use HTTPS

	Followed RFC 2617 Basic Authentication

	They provide API tokens

	Similar to my Storymarket API work

Live the Server Code

	https://launchpad.net/linaro-django-xmlrpc

	http://djangopackages.com/packages/p/linaro-django-xmlrpc/

from linaro_django_xmlrpc.models import ExposedAPI
from linaro_django_xmlrpc.globals import mapper

class ExampleAPI(ExposedAPI):

 def whoami(self):
 return self.user

mapper.register(ExampleApi)

Live the Client Code

at: https://launchpad.net/lava-tool

TODO find a code example

Conclusion

	Don’t try to be clever - just use HTTPS and Basic Auth

Introduction to Matplotlib for Data Analysis

by Catherine Thwaites

Why Matplotlib?

	Great way to visualize complex data

	Free

	Fast

	Works on any OS

Dependencies

	Python 2.5., 2.6, 2.6, 3.2x

	Numpy 1.3+

	Matplotlib 1.0.1

Install

Linux: http://matplotlib.sourceforge.net/users/installing.html

Windows: Download and install

On-line Examples

Huge gallery of examples!

	http://matplotlib.sourceforge.net

Ways to run matplotlib

	Interactively with pylab and python

	Interactively with the shell

	Normal Python modules

	Some other way?

Simple bar graph using bar

import numpy as np
import matpltlib.pyplot as plt
data1 = [12,23,38,42,41]
figure = plt.figure(1, (6,6))
figure.clf()
ax = fig.add_subplot(111)

ind = np.arange(len(data1))
rects = ax.bar(ind+0.125, data1, width=0.75, color='thistle')
plt.show()

Clarified versionL

import numpy
import matpltlib.pyplot as plot
data1 = [12,23,38,42,41]
figure = plot.figure(1, (6,6))
figure.clf()
axis = fig.add_subplot(111)

ind = numpy.arange(len(data1)) # what is ind representing? An index?
rects = axis.bar(ind+0.125, data1, width=0.75, color='thistle')
plot.show()

You can do more!

	titles

	plot range

	Axis labels

	Axil ticks and labels

	Add bar labels

Things to think about

	Somewhat challenging learning curve

	People with lots of money can’t understand why you aren’t using Matlab

Python distributed programming using gevent and redis

by Alex Dong

	trunk.ly/?q=from:alexdong+gevent

Roadmap

	Crawler: the unsung here

	Async 101

	Gevent: the monkey king

	Redis: data structure server

	lessons learned

How many links does google index?

	18 million when it started

	Only 2-3 billion right now

	First project google employee worked on was the crawler

Talking about a crawler

	Get a url from a task queu

	DNS resolution

	Request HTTP Header

	Download full content

	Store to local file store, database and index

Add in scheduling, throttling, status monitoring, scale up by flicking on more servers.

Async 101

	Whats wrong with multi-thread

	GIL issues

	Yield on IO/socket, but

	Computational expensive will block

	What about multi-process?

	Memory efficiency

	Context switch overhead

The overhead of multi-process in Python causes a lot of server load.

Another way

	controller + worker model

	Cooperative multitasking

	Some unix code:

epollfd = epoll_create();
epoll_ctl(epollfd, EPOLL_CTL_ADD, listen_sock, &ev)
epoll_wait(epollfd, events, MAX_EVENTS, -1)

gevent - Monkey King and Pool

Monkey patches python and magically makes multi-processing work.

from gevent import monkey
monkey.patch_all() # patches the Python magically

from gevent.pool import Pool
worker_pool = Pool(size)
get domain into payload
pool.spawn(socket.getaddrinfo, payload)

Question: Whats the downside?

	Alex says that it makes debugging harder

	Hence the lesson of making a dashboard!

Redis - Data Structure Server

	High performance 15,000 req/sec

	Lock free, single process

	master/save ready

	Data Structures

	FIFO queue: Lists - LPOP, RPUSH

	Working hashtable - HSET, HDEL

Note

lots more I didn’t get in!

Lessons Learned - Dashboard

	Turning point: Most important code we’ve written

	25% code for status update and monitoring

	What’s causing the piling up?

	Someone abusing the system?

	DNS is down?

	ISP’s bandwidth?

	Large file download?

	Scheduler re-submit tasks?

Lesson Learned - Fine balance

	Conflict between frontend an backend

	Capacity planning

Example: If the worker takes too long to return control you can block your system

Lessons Learned - Use Profiler

	Structure the code to make it possible to run all steps in one non-gevent enabled process

	Carefully profile to make sure socket.recv becomes the main bottleneck

	Rule of thumb load average < 1 to saturate 10M Bandwith

Question: Where they using regex to parse HTML?

Behaviour Driven Development

By Malcolm Tredennick

	Slides at http://github.com/malcolmt/bdd-and-testing-talk

Why have I asked you here today

	Testing landscape

	A different way to think about this

	Code

Intro

Data

	Stubs is empty data

	Mocking is pretend versions of data

Mocks

	Substitute for external systems & components

	Need to be injected into the tests

	“monkey patching”

	Dependency injection

	Problem: Mocks need to be kept in synch with reality

Warning

I’ve run into this with mocks. This is why Open Comparison includes real API calls to it’s target systems.

Testing Strategies

	formal verification

	test everything you can think of

	anti-regression suite

	no bug fix without a test

	Test Driven Development (TDD)

	Wraite failing test for next method or clas

	Write minimal code to make test pass

	Rinse, wash, repeat

	Kind of drives Malolm crazy

	Really about “specification, not verification”

	Documentation Driven Development (DDD)

	Behavior Driven Development (BDD)

BDD

Here we go!

Specification

	On paper

	Capturing the idea is probably good

	“What was I thinking when I cooked this up?”

As a [user or role]
I want [feature]
so that [something happens]

BDD

	What is the next most important thing the code should do?

	Need to be able to test

	Need to be able to run

Scenario

Given that [initial context],
if and when [some event occurs],
then [ensure some outcomes]

Interlude: Naming things

	Language helps guide our brain

	Focuses the mind

	Perhaps too exclusively

The Sapir-Whorf Hypothesis

Note

Read http://en.wikipedia.org/wiki/Sapir-Whorf_Hypothesis

Test Titles

class BasicFieldTests(TestCase):
 def test_field_name(self):
 ...
 def test_show_hidden_fields(self):
 ...

Better:

class Fields(TestCase):
 def show_allow_name_override(self):
 ...

class ChoiceFields(TestCase):
 def should_permit_initial_values_in_hidden_widgets(self):
 ...

Excercise

	write a load_test that changes the test_ prefix with should_ prefix

	Cause language matters

Closing thoughts on unittest

	Create more test classes

	Make them more explicit

DSL Packages for testing

	Lettuce (via PyPI)

	Freshen (via PyPI)

These tools are unique and probably good showing to non-coder types with money.

Conclusions

	Behavioral tests are worth trying

	Question the way you think from time to time

	Are your tests’ purpose clear to the future you?

Those niggly beginner’s questions answered by a code craft ninja

by Tim Penhey and Rachel Penhey

Note

I love going to beginner Python talks. You often learn or relearn nice tricks you can implement today.

Audience Design

	Aimed at Python beginners

	Aimed at programmers beginners

	Audience questions at the end

	Won’t take the full hour unless there are questions later

Note

Had to leave early. :(

Lightning Talks

Web Scraping

by Chris Esther

	http://pypi.python.org/pypi/selenium

	http://pypi.python.org/pypi/mechanize

Crowdsourcing from NZ

by Ben Healey

	Rant about Amazon US not allowing the outside world to participate because of terrorists

	Then talked about various services like http://crowdflower.com/

Web Socket

by Alexander Abushkevich

	Provides mechanism for bi-direction data exchange between server and clients

	Seems to more practice thabn XmlHTTPRequests for long polling

	many python libraries

Note

I think Zed Shaw has ranted about web sockets. Need to ask him.

window.onload(){
 // TODO is this how this really works?
 var s = WebSocket('http://blarg.service.org/service')
 s.do_action

}

Google App Engine

by Greg Fawcett

	Google will be charging for it soon

	old version from Django

	Lots of frameworks ported there: Web2py, Zope, old versions of Pyramid

	Sends out inbound and outbound email

	NoSQL database BigTable

	Runs with a Google version of memcached. Question: How do you ask for it?

	Has scheduled task system

	Google App Engine apparently ran the Royal Wedding website

Wiki-to-speech Robot Presentations

by John Graves

	Converts presenters notes to speech

	This way it will convert your slide shows to full presentations

Pythonic Slide Generation

by Leon Mathews

	Wrote some restructured text

	Using rst2pdf to generate slides

	Created a slides.style file to define the results better

	Generated PDF slides

Note

TODO - ask him to provide source code and instructions

Valgrind Memcheck

by Tim Penhey

	“Humans are bad at finding memory leaks”

	Not really a python talk, but rather a review of how to check for memory leaks.

	Created an alias to run his valgrind check with all the arguments already defined

Sorry state of the New Zealand Job Market

by Juergen Brendel

	At NZ bookstore only could find 1 book on Python and one Django 0.96 books

	Need more Python jobs

	Need to expand the community

What Parkour Taught Me About Programming

by Danver Braganza (Organizes his clothes into an array)

	You learn by doing

	You don’t become a good developer by wishing you were a developer and watching the Social Network

	The best practitioners get better by taking their work home with them.

	Learn how to apply your knowledge to other avenues

Dependency Management in Python with Buildout

by Brad Milne

	They control the environments very tightly so they don’t run into the problems I’ve had.

	His examples also seem much cleaner than the sort of thing I’ve suffered through

Just because you can, doesn’t mean you should OR An evil web framework/thing

by Aurynn Shaw

	Generators

	Generators.send()

	Wrote a web framework that uses send to store sessions

	Runs on twisted

	But has a race condition

	Silly prototype

	code: https://github.com/aurynn/evil

Qtile: A Python Tiling Window Manager

by Aldo Cortesi

	A Windows layout tool for Python. He also presented this at PyCon AU.

	https://github.com/cortesi/qtile

Job security in Python

by Chris Neugebauer

Note

This is going to hurt my talk but it’s funny

	“Readability” is not a virtue if you want job security

	PEP 0008 is not a good style code if you want to keep your job

	Contention: Readabiluty sucks

	Other people can comprehend your code

	You can maintain your own code - less billable hours

	Your code will be more

How do you write unmaintainable code?

	Bad variable names

	Metaprogramming

	Breaks the help function

	all kinds of ways to bury logic

	monkey patching

	Roll your own standard library

Porting (and staying ported) to Python 3

by Leon Matthews

Note

presenter had slides with gradient background so things were hard to read. Sigh.

Overview

	Why bother?

	Possible strategies

	Porting to Python 3

	Maintaining Python 2 AND Python 3

	Two concurrent code bases (Python 2 AND Python 3)

	IF/ELSE logic for imports/code

Why Bother?

	Python 3 is the future of Python

	Industry leading unicode support

	It’s nicer - Python 2 after wart removal

	Other people may be waiting on you

Sample

python 2
print 1, 2

python 3
print(2, 3)
print(2, 3, file=sys.stderr)

Porting to Python 3

Already there if:

	You can run under Python 2.7

	You have handle on Unicode

Lots of issues

	Syntax renames

	urllib2 to urllib

	print to print()

	Changed behavior

	Sorting comparisons are different

	division

	unicode

	All strings in Python 3 are Unicode

	Initial transition can hurt but then it gets easy

import io
io.open(path, 'rt',encoding='utf-8')
a = u'Unicode String'
b = b'Binary string'

You now have a working port, now what?

	Two code bases

	Maintain both

	Leave one to die in the cold?

	Way too common a situation

Django for n00bs

by Jen Zajac

	Works for Catalyst

	Uses Sublime 2. So do I!

Awesomeness

Jen educated me on the use of ‘+’ in related names. How cool is that?!?
* https://docs.djangoproject.com/en/1.3/ref/models/fields/#django.db.models.ForeignKey.related_name

Introduction

Quotes:

	“Django is the web framework for perfectionists for deadlines.”

	“A framework is something you can hang stuff off of - it is a structure.”

Frameworks vs CMS’s

Frameworks:

	Frameworks take longer to set up

	Frameworks are for specific applications

	Frameworks only do what you plan them to do

	Few wasted features

CMS:

	Take less time to set up

	Broad in design

	Does everything

	Lots of wasted features

Note

Did you know that Django was extraced from the Ellington CMS? So the next time someone tells you that Django isn’t suited for CMS work, show them https://www.django-cms.org and tell them that http://science.nasa.gov/ is powered by Django (used to be Plone but we rescued it).

Django backstory

	Started in 2003 at LJ World

	Open sourced in 2005

	Hit 1.0 in 2008

	Other frameworks

	Pyramid (awesome)

	Zope (over engineered)

	Bottle (I prefer Flask)

	TurboGears (IMHO deprecated until it is converted to Pyramid)

Pros and cons of Django

Pros:

	Big community

	Tightly integrated components

	Built-in interface

	Documentation

	Release process

	Authentication & Security

Jen Cons:

	Not playing so well with others

Danny Cons:

	No defined best practices by Django core devs

	Documentation has stagnated in places

	Documentation could use better organization

	Needs to be better at explaining itself as not a framework for programming beginners

	Some WSGI weirdness that is being resolved shortly

Sample model code

from django.db import models
from django.contrib.auth.models import User

class Movie(models.Model):
 title = models.CharField(max_length=100)
 genre = models.CharField(max_length=100)
 description = models.TextField()

class Attendee(models.Model):
 # see https://docs.djangoproject.com/en/1.3/ref/models/fields/#django.db.models.ForeignKey.related_name
 user = models.ForeignKey(User, related_name="+")

Sample view code

def home(request, template_name="movies/home.html"):

 movies = Movie.objects.filter()
 data = {'movies': movies}
 return render_to_response(template_name, data, RequestContext(request)

Quick overview

	templatetags

	rss

	admin

	signals (ugh - I keep running into misuse of them)

Struggling to Find an Open Source Business Model

by Grant Paton-Simpson

Abstract

After more than 45,000 downloads, the open source Python project SOFA Statistics has netted $90 (not $90k, just $90). This presentation will explain strategies tried so far, and the options available to open source projects.

	SOFA project

	65,000 downloads

	Lots of positive reviews

	http://sofastatistics.com

Monetisation

	Surely must be possible to sell affordable to at least 0.5-2%

	Apparently a common rate for single-vendor commercial open source firms

Warning

When you play the role of market spoiler it’s much easier to be famous than rich

Warning

99% of the people who say, “The app store is a gold mine! I’m gonna be rich” are wrong

Why an open source business model?

	Low starting costs

	Lower risk of assets than an inventory system

Successful open source business models

	Android:

	Redhat: Enterprise guarantees as a business model

	Mozilla: He says it is Google (sugar daddy) but this is not true: Mozilla cleans up on advertising

	Eclipse: IDE support

Models

	Vulture Model: Pick up projects abandoned/dropped/screwed by Oracle

	Bounty Model: Throw out money to get something done

	Honey Model: TODO - find this out

Statements

“People who complain about open source companies closing off parts of their code generally haven’t tried to make money off of their open source projects. I suggest they go and try to do it.”

Automated testing in Python and beyond

by Brenda Wallace

Note

missed the beginning :(

Have unit tests

	Debugging is fast

	Find bugs elsewhere

	Blame

	Feel free to point fingers at who did it

	look GOOD

	Nose!

	Finds tests and runs them

	Logging capture

	STDOUT

	Running single tests

Disney Stuff

WETA digital uses Disney open source code!

	Pythoscope

	http://pypi.python.org/pypi/pythoscope

	Reads your python

	Writes a stub unit test for all your methods

	“You’ll have 100% code coverage and everything will fail!”

Other language test frameworks

Everyone forks and no one works together

Java

	JUnit

	JTiger

	TestNG

	Looks like Python, but with more words

Perl

	PerlUnit

	Over 60 other test frameworks!!!

PHP

	PhpUnit

	SimpleTest is cool

Erlang

	EUnit

	Best intro to testing ever.

Write Tests

	Write tests before you write code

	I switched from the Shell to writing Unit Tests as well!

	This is how I write a huge majority of my tests.

Re-run

	Hudson/Jenkins

	Oracle Sucks

	Just do it

	I want this to have a service to do setup for you.

Asynchronous and Evented programming in Python

With Rocks In

by Aurynn Shaw

	Works at WETA Digital

	https://github.com/aurynn

	She likes shiny things

Note

This talk not really covering Tornado

Introduction

	Much ado about Node.js

	Event driven!

	Tornado, from facebook

	Lots of buzzwords

	Async is ‘sort of’ doing two things at once

Threading

Really awesome until you hit issues like:

	Locking

	Shared state is hard

	Even experts have problems with it

Multiprocessing

	Let the kernal care

	Easy to write MP code on unix-likes

	Can even go multi-system

Problems

	Hard to share data

	import multiprocessing can be… quirky

Asynchronous is hard

	You have to let go

	Bending your mind to the Async way is still hard

	A single mistake can hang

	Probably going to be slower

So really, what is async?

	The core of async is the event loop.

	Basically a while loop running

	Checks for events

	Events are pretty generic

	In Twisted they have to be callbacks

	But once the code is in the loop, you have to let go.

	Once the code is in the loop it can slow everything down

	Your functions have to be as small as possible

	Keep data/functions/etc really tiny

	should do this anyway

Async code is hard

	functions don’t work anymore - you are working with Deferred’s

	Most APIs built on twited return Deferreds

from twisted.internet import defer

df = defer.Deferred()

def gotARequest(request, response):
 df = conn.query('select * from user;')
 df.addCallback(_someData, response)
 df.addErrback(_someError, response)
 return df

def _transform(rows):
 # rows here is now the returned data
 return [my_object(row) for row in rows]

def _someData(rows, response):
 response.render(rows)
 response.finish()

This is how you fire off things:

	.callback starts the callback chain

	.errback causes the callback chain to explode and die messily

Synchronous Example of same thing

def my_functZ(request, response):
 rows = conn.query('select * from user;')
 # This will hang until DB gets back to us
 return response.row(rows)

Asynchronous != faster

	Not actually faster

	The event loop is overhead

	The event loop is overhead without proper coding

So why do this?

Aurynn says:

	Scales beautifully

	Terribly elegant (not sure I agree with this - need to try it)

	closer mapping to reality

What about Tornado?

	Event loop + web framework

	uses inline callbacks

Incomplete code example:

def my_func():
 def rows(results):
 for res in results:

So why Tornado over Twisted

	Supposedly faster

	Aren’t performance tests biased?

	Tornado’s benchmarks are on extremely insignificant tasks. Literally “Hello, World”.

	Twisted has libraries to interact with real blockers like:

	AMQP

	IMAP

	POP

	PostGres

	SOLR

New Zealand Python User Group - The Whats, the Whys and the Hows

by Danny Adair

	Trying to get Python into NZ

	Started around 2005

Quote: No one is forced to use Python. That doesn’t apply to other languages.

	Website: http://nzpug.org/

	Kiwi PyCon: http://nz.pycon.org/

Pycon AU 2011

Social

	Women’s breakfast packed the place. Lots of great people showed up!

	Everyone at the conference was lovely.

Talks

	Keynotes
	Audrey Roy

	Mary Gardiner

	Raymond Hettiger

	Meta-matters: Using decorators for better Python programming
	The preamble

	What is a decorator?

	Why use decorators?

	Why wouldn’t use Python?

	Decorator Syntax

	Typical uses

	Classic decorators

	Let’s write a decorator!

	A better version of our decorator

	Best practices for using decorators

	Some real-world uses

	Class decorators

	Some decorator thoughts by myself about Django and caching

	Some advice

	Further reading

	State of CPython and Python Ecosystem
	Python Launcher for Windows (PEP 397)

	Teaching Python to the young and impressionable
	Challenges

	Teaching CS in Australia

	How Python Evolves
	The Python Ecosystem

	Alternative Implementations

	What kind of changes get accepted

	Role of Core Developers

	Why contribute to CPython?

	Panel: Python in the webs
	Micro vs Macro frameworks

	Django thoughts

	Zookeeper
	Current System

	Architecture

	Roles

	Standout feature: Admin reports

	Attention needed

	Call to action

	Web Micro Framework Battle
	What he needs for standard library

	What is out

	Sample app: wiki

	Contenders

	How do they rank?

	Pyramid
	Heritage of Pyramid

	Who uses it?

	Differences between Pyramid and others

	Sample view

	Routes

	View Callables

	Renderers

	Templates

	Traversal

	View Predicates

	Security

	Scaffolding

	How Django does it better

	Zen of Python
	Guido’s Original Design Philosophy

	Beautiful is better than ugly

	Explicit is better than implicit

	Simple is better than complex

	Complex is better than complicated

	Flat is better than nested

	Sparse is better than Dense

	Readability counts.

	Special cases aren’t special enough to break the rules

	Although practicality beats purity

	Errors should never pass silently

	In the face of ambiguity, refuse the temptation to guess.

	There should be one - and preferably only one- obvious way to do it

	Although that way may not be obvious at first unless you’re Dutch

	Now is better than never

	Although never is often better than right now.

	If the implementation is hard to explain, it’s a bad idea.

	If the implementation is easy to explain, it may be a good idea.

	Namespaces are one honking great idea – let’s do more of those!

	Reference: Zen of Python

Keynotes

Audrey Roy

Audrey was opening keynote speaker. I’m partial but I think she rocked it. :)

Mary Gardiner

Mary Gardiner spoke about:

	Be an open source super hero and try to change the world

	Find a project that helps people and get involved!

Sample projects:

	plover http://plover.

	Software Carpentry http://software-carpentry.com

	calibre TODO get link

	Sugar TODO get link

Raymond Hettiger

See me fill in all the holes at: http://pydanny-event-notes.readthedocs.org/en/latest/PyCodeConf2011/python_is_awesome.html

LA’s own Raymond Hettiger talked about What makes Python Awesome?

	Other languages are awesome, how is Python better?

	Most Python releases are GPL-compatible. This makes it free.

	Going to a closed source language means you are trapped.

	Commercial distributions like ActiveState and Enthought

	Python has Zen. Internalized as core developers and internalized by community devs

Community

	Mailing lists

	Newsgroups? HA HA HA

	Python User Groups

PyPI

	Repo for Python programming language

	Over 16,000 packages

	pip install ordereddict works for Python 2.5!

Killer apps

	Zope, Django, Pyramid

	Numpy and Scipy

	Bittorrent and Twisted

	YouTube

	Blender and Maya

	Win32 - Factoid: Me, @pydanny, has done all his windows programming using cpython and Win32!

Easy to learn!

	Good teachers.

	Think how fast you got the types and control structures in Python. General 3 hours

	In a day you can learn special methods and stdlib

	Critical because if you need good Python developers it doesn’t take long to get up to speed. Converting developers takes:

	C takes 2 years to get competent

	Java takes 6 months to get competent

	Python takes a week to get competent

	Rapid development cycle

	Scripting languages are unbeatable for development speed

	Programs are grown organically

	Interactive testing lets people work with their code results immediately.

	Bang out real code fast

Economy of expression

	Not many words or characters to get things done.

	clear English means non-coders can understand your work

	Pydanny factoid: One of the first times I wrote Python on a whiteboard for a boss at NASA/SAIC they thought it was very legible pseudo code representing a complex process.

import hashlib
import os
import pprint
hashmap = {}
for path, dirs, files in os.walk('.'):
 for filename in files:
 fullname = os.path.join(path, filename)
 with open(fullname) as f:
 d = f.read()
 h = hashlib.md5(d).hexdigest()
 filelist = hashmap.setdefault(h, [])
 filelist.append(fullname)
pprint.pprint(hashmap)

Beauty Counts

	Readability is the #1 mentioned characteristics of why organizations choose Python

	The beautiful appearance on the page directly affects a programmer’s sense of joy

	Makes us go home and write code

	If you can read other people’s code that makes it easier to maintain

	Because we all mostly share the same idiom it means we can read each other’s code. That doesn’t stifle creativity - it just means we can get along.

	As a parent I can say I would have loved having a formal uniform at school. As a geek in school I would have loved that too. :P

Interactive Prompt (REPL)

	Python experts don’t memorize Python

	They use the interactive prompt often (I try to write tests…)

	This is a killer features that runs circles around compiled languages

	Python shell

	IPython

	BPython (My favorite)

Behind the Scenes

Philosophy of core dev

	Conservative growth

	We read Knuth so you don’t have to

	Aim for simple implementation

Protocols

To interact with these we have defined protocols

	DBAPI

	Hashlib

	Compression

	WSGI for the web

	Conversion protocols

Specifics of Python: The Foundation

	Dictionaries and Lists

	Automatic memory management

	Overridable syntax

	Exceptions

	You can reprogram the brackets?

	And we can reprogram the dot?!?

Winner Language Feature: Iterator Protocol

	High level glue that holds the language together

	Iterables: strings, lsits, sets, dicts, collections, files, open urls, csv readers, itertools

	Um… I know this. I’ve had to construct these on my own in other languages. But not Python… Wow - I just realized this just now.

	List comprehensions give us joy

	List generators are amazing. No one else has them

Winner Language Feature: Generators

	Serious magic

	A million rows in a generators is nothing

	Simple syntax to do them. You only need the YIELD keyword.

Winning language Decorators

	Expressive

	Easy on the eyes

	Works for functions, methods, and classes

	Factoid: I have problem writing them. Serious problems. :’(

Winning Language Features: exec, eval, type

	Not a fan of exec and eval because when used in my experience they are done badly

	But type is awesome

Winning Language Feature: With Statement

	Clean, elegant resource management: threads, locks. etc

	Important tool for factoring code

	Contains the setUp and tearDown code.

	The reverse of functions

Winning Language Feature: Abstract Base Classes

	TODO - go over this one

Winning Language Feature: Indentation

	Makes the code really clear

	We write our pseudo code this way

	Less errors!

	Less ambiguity!

Meta-matters: Using decorators for better Python programming

by Dr. Graeme Cross

Note

I have a lot of trouble writing decorators and I’m here to correct it!

Question: How do we write decorators so that Sphinx/Docutils can handle decorated stuff?

The preamble

	An intro to writing reading/writing decorators

	Python 2.6/2.7 only

	Assumes you have a basic understanding of Python, writing functions and writing classes

	Slides and content at https://bitbucket.org/gjcross/talks

Warning

Code examples are designed for clarity and not for production code!

What is a decorator?

	A function or class that modifies or extends another function or method

	Nothing fancy and nothing new

	aspect oriented programming

	Just syntactical sugar

@cache
def factorize(n):
 factors = []
 # calculate factors of n
 # takes lots of time for large n
 return factors

Why use decorators?

	Robust design

	separation of concerns

	example: you can work the function and not the caching

	Can easily turn behavior on/off

	Improved readability

	Less baggage in code (Cache code is outside the function)

	less lines of boilerplate

	less code duplication

	simplifies code maintenance

	Widely used in Python libraries & frameworks

Why wouldn’t use Python?

	Not built into Python 2.3 or earlier

	Can slow your code down (nested functions can sink your performance)

	Can hamper debugging when a decorator is written badly

	Documentation doesn’t seem to work so well

Decorator Syntax

	stackable

	prefixed with ‘@’

	can have arguments

	same for functions, methods and classes

@assert_inputs
@log_event
@validate_item
def itemable(x, y, z):
 a = x * y * z
 return a

Typical uses

preconditions and post-conditions

	Assert types

	check returned values

	authentication

	authorization

Awesome ideas I need to use ASAP!

	debugging

	logging

	locking of resources (threading, io, database)

	maybe deprecated by with statement?

	threads

	hardware

Classic decorators

Properties! (A favorite of mine!)

class Love(object):

 @property
 def fiancée(self):
 return 'Audrey Roy'

Let’s write a decorator!

	See PEP 318

	Because functions are objects you can pass them around with state and all that…

remember functions are just objects, right?
import math

def trig_power(trig_func):
 print "Storing function=", trig_func

 def power(deg, n):
 return math.pow(trig_func(deg), n)
 return power

if __name__ == "__main__":
 sine_power = trig_power(math.sin)
 tan_power = trig_power(math.tan)

Another example:

def report_entry(func):
 print 'Just entered a %s function' % func
 return func

@report_entry
def add2(n):
 ''' I add two '''
 return n + 2

if __name__ == "__main__":
 print add2(5)
 help(add2)

The problem with docstrings and wrappers:

def report_entry(func):
 print 'Just entered a %s function' % func

 def wrapper(*args):
 ''' our internal wrapper thingee '''
 print 'This will be our docs issue'
 return func(*args)

 return wrapper

@report_entry
def add2(n):
 ''' I add two '''
 return n + 2

if __name__ == "__main__":
 print add2(5)
 help(add2)

A better version of our decorator

from functools import wraps

def report_entry(func):
 print 'Just entered a %s function' % func

 @wraps(func)
 def wrapper(*args):
 ''' our internal wrapper thingee '''
 print 'This will be our docs issues'
 return func(*args)
 return wrapper

@report_entry
def add2(n):
 ''' I add two '''
 return n + 2

if __name__ == "__main__":
 print add2(5)
 help(add2)

Best practices for using decorators

	Document them well

	If you stack them, notate where stacking them can be a proble,

	Use the functools.wraps decorator for internal functions

Some real-world uses

	@precondition

	@postcondition

	@assert_range

	@assert_type

	@stress_data - maybe used in tests to fire off ‘random’ craziness?

Class decorators

	Added in Python 2.6.+ and Python 3

	Singletons

	Class checks

	must have unittests

	must have docstrings!!!

Some decorator thoughts by myself about Django and caching

	Why don’t we have a beaker style decorator pattern for Django projects?

	Is this just a behavioral thing?

	Can we write something that caches:

	Key taken from name of function/method/class + args

	Value from return object

	Again, what are we missing?

	Ask my good friend and caching master Jacob Burch why we don’t do this…

	Is this what Johnny Cache et al is about?

Some advice

	beware the spaghetti!

	No hidden surprises

	Do one thing and do it well

	A clear name

	No side effects

	Don’t overuse decorators - TODO ask what is a good rule of thumb

	Not a one-for-one match for the classic decorator pattern!

Further reading

	PEP 318

	PEP 3129

	Learning Python 38

State of CPython and Python Ecosystem

By Senthil Kumaran

Overview: High level talk about CPython and other implementation

Note

Missed chunks of this so not all of it got in my notes

Python Launcher for Windows (PEP 397)

	proposal by Mark Hammond and implemented by Vinay Sajip

	System to associate python files with a particular Python version

	Will be distributed with Windows installers

	Question: What is the status?

	Question: Which version of windows?

	Question: How can we accelerate development?

Jython

	Seamless integration

	Uses a lot of Java models instead of CPython’s stdlib.

Teaching Python to the young and impressionable

by Georgina Wilcox and Katie Bell

Note

Missed most of this talk. :(

National Computer Science School: http://ncss.edu.au

Challenges

	Laptops issued to students are so locked down the students can’t install programming languages

	They use silverlight

	The also use a JavaScript version of Python

	Sometimes the level of knowledge from some of the students can be both intimidating and discouraging.

Teaching CS in Australia

	Not enough people are teaching programming in high school

	We’re doing a good job of supporting students who already know how to program

	The students who start out with nothing, have a (very) hard time catching up.

How Python Evolves

By Nick Coghlan

Note

He uses a cool slideshow library

	Things have/are/will change

from __future__ import unicode_literals

The Python Ecosystem

Gigantic community

	Product developers

	Linux

	Google

	NASA

	Blender

	etc

	Tools developers

	Mercurial

	Roundup

	gdb

	Reitveld

	Bazaar

	etc

	Distribution efforts

	SciPy

	ActiveState

	Python(x, y)

	etc

	Frameworks

	NumPy

	Web Frameworks

	GUI frameworks

	Everything on PyPI

	Documentation support

	Onine courses

	books

	web sites

	http://readthedocs.org!

	Advocacy & Insight

	Planet Python

	Python User Groups

	Pyladies!

Alternative Implementations

Taking Python where CPython won’t go

	PyPy

	IronPython

	Jython

	Stackless

What kind of changes get accepted

Any time a chance happens there is a cost. So…

	‘do no harm’

	Want the ‘obvious way’ and the ‘right way’ to be identical

	Follow the Zen of Python

	Keep the whole ecosystem in mind

Role of Core Developers

	Decide when and where to commit changes

	different standards for bug fixes and feature requests

	direct commits

	opine on direction

Why contribute to CPython?

	educational

	fun problem solving

	terrifying and exhilarating

	CPython sprint on Monday and Tuesday!

Panel: Python in the webs

	Moderated by Malcolm Treddennick

	Dr Russ Keith-Magee

	Dylan Jay

	Richard Jones

Micro vs Macro frameworks

	Micro frameworks are easy

	Normal frameworks take a long time

	Macro frameworks are CMS like Plone and django-cms.

Django thoughts

Malcolm said: Django is a framework for perfectionists with deadlines, not beginners with deadlines.

	Django gives you one obvious way to do things rather than a bunch of choices.

Zookeeper

by Brianna Laugher

Home grown conference management software

working example: http://linux.conf.au

Current System

Not a trivial syste,

	Started in 2007

	Python

	Handles call for papers

	invoicing

	Scheduling

	GPL

	social networks

	special offers

	schedule

	photo competition

	badge printing

	volunteer system

	inventory system

Architecture

	Pylons

	SQL Alchemy usually PostGres

	Mako

Roles

	organizer

	core team

	papers chair

	paper reviewer

	funding reviewer

	miniconf organizer

	(user + paid => ‘attendee’)

	(user + proposal accepted => ‘speaker’)

Standout feature: Admin reports

	Amazing report system. Can’t capture them all!

	Status of users through the registration process

	Funding reports

	Volunteer things

	A/V release checked report

	XML metadata for video listings

	Registrations per state/country

	tons more

Attention needed

	Write tests

	code refactoring

	un-LCA-ficiation (take the Linux conf out of the system,)

	Proposal selection

	scheduling UI

	dashboards

	mail merge

	mobile interfaces

	feedback system

Call to action

	https://github.com/zookeepr/zookeepr

	https://github.com/zookeepr/zookeepr/issues

	irc://irc.freednode/org/#zookeepr

Web Micro Framework Battle

by Richard Jones

	Richard write code for a telco

	Lots of describe system applications

	Connected via HTTP

	Been writing micro frameworks, about a dozen

Disclaimer: Talking about what is best for Richard Jones

What he needs for standard library

	Easy to understand

	docs (especially downlaodable)

	minimal magic

	no surprises

	terse

	HTTP request/response

	URL routing (“restful”)

	WSSGI

	PyPy and Python 3

	size of the framework (not too many lines of code)

What is out

	No ORM or any DB wrapper

	Template engine

	Mega frameworks

	Django, grok, pyramid, web2py, zope

	routes + webob

	et al

Sample app: wiki

	page view (GET /PageName)

	page creation (GET & POST /edit)

	redirect (GET & POST /edit)

Contenders

Here we go!

cgi + wsgiref

	Standard library

	He’s done it a ton of times

	Manually invoking of the cgi module

	very straightforward

bobo

	Started as one of the first object parsing libraries.

	Became Zope “Bobo became tainted on the way”

	Form objects are pulled into the request

@bobo.query('/')
def index()
 return bobo.redirect("/FrontPage")

@bobo.subroute(':/name?', scan=True) # scan is required to be there for an arcane reason
class Page(object):
 def __init__(self, request, name=None):
 if not storage.wikiname_re
 # more code here not included

if __name__ == '__main__':
 import boboserver
 boboserver.server(['f', __file__])

Cons

	Docs were not clear about display of index

	Strange behavior like weird page not found issues

	Docs focus too much on the Bobo way and not how to make it works

cherrypy

	docs in sphinx!

	easy to get into WSGI

@cherrypy.popargs('name')
class Wiki(object):
 exposed = Ture

 def GET(self, name=None)
 return wiki.render_edit_form(name)

 def POST(self, name, content='', submit=None, cancel=None)
 if submit:
 # not finished here

The funky bit:

conf = {
 '/': {

 }

}

Cons

	Richard Jones had to guess to make things work

	Missing/funky bits

web.py

My first web framework in Python!

class edit:
 def GET(self, name):
 return wiki.render_edit_form(name)

 def POST(self, name):
 f = web.input('content') # This is how you get content from form post data!

urls = (
 '/', 'index',
)
app = web.application(urls, globals())

if __name__ == '__main__':
 app.run()

Cons

	Weird way of handling form post data

	urls are not a list of tuples

bottle

	good docs

	straightforward

	simple template language and lots of wrappers

	Seems elegant!

	pretty cool!

@get('/')
def index()
 redirect('/FrontPage)

@post(/:name/edit')
def edit(name):
 if request.POST.get('submit')

run(host='127.0.0.1', port=8080)

itty

	Very similar to bottle

	more explicit

	By Daniel Lindsley methinks

	much smaller docs

	Much smaller than bottle

Cons

	Redirects throw an error in the stacktrace

flask

	Relies on werkzueg on jinja2

	Downloadable docs

	utilities for testing

	shell/repl

	awesome debugger app.run(debug=True)

	Methinks it rocks. My own personal favorite microframework. :)

cons

	redirects require a download from wekzueg, not flask?!?

pesto

	Kind of like Flask but more explicit

	utilities for testing

	More verbose

werkzeug

	Sample docs are kind of laid out in a funny way

	Sample project does more than Flask sample app - how weird is that?

	Very clear code

	Url mapping done at the end

	No top-level application. So you have wire it together urls to views yourself. Maybe just use Flask? :D

aspen.io

	Very different than everything else

	So neat/odd that he had to include it

	Requires weird templates that make you stick in page breaks:

form aspen import Response
^L
raise Response(301, headers={'Location':'/FrontPage'})
^L

Structure of an app:

.aspen
index.html
%name/index.html
%name/edit

Cons

	Odd boilerplate

	Not sure how to escape certain things

	Very thin documentation

How do they rank?

Warning

this is for sites without sessions or user tracking! His criteria is not for large websites!!

	Framework

	Total

	bottle

	7

	pesto

	6

	itty

	4

	cgi + wsgiref

	3

	flask

	3

	werkzeug

	2

	cherrypy

	1

	web.py

	1

	aspen.io

	-5

	bobo

	-7

Pyramid

by Dylan Jay

Heritage of Pyramid

	Zope => Zope2

	Zope2 => Zope3 begat BlueBreem

	BlueBreem => ZTK

	ZTK => Repoze.BFG (inspired partially by Django)

	Repoze.BFG => Pyramid

	RoR possibly begat:

	Django

	Pylons

	TurboGears

Who uses it?

	Karl Project

	juice.to

Differences between Pyramid and others

Here we go:

	Pyramid

	Django

	Plone

	Not opinionated

	Opinionated

	Structured CMS

	Very simple

	Simple

	Complex

	No DB

	ORM

	Custom DB

Sample view

from paste.httpserver import serve
from pyramid.configuration import Configuration
from pyramid.response import Response

def hello_world(context, request):
 return Response('Hello world')

Routes

config.add_route('myroute', 'me/{one}')
config.add_view(hello_world, route_name='myroute')

View Callables

class MyView(object):
 """ So much more obvious than Django CBVs!"""

 def __init__(self, request):
 # something here I didn't write down

 def __call__(self):
 # why doesn't Django do this?
 raise HttpFound('stuff')

Renderers

from pyramid.view import view_config

@view_config(renderer="json")
def hello_worldrequest):
 return dict(content="hello")

	One of the renderers is a jinja2 package.

Templates

	Default: Chameleon (latest version ZPT system)

	Can use Jinja2 trivially

Traversal

	I don’t really care but the Zope fans seem to love it.

	Works in that you can get things within things

	Some claim you can’t do this in Django - but they are wrong. See MPTT.

View Predicates

All described here: http://docs.pylonsproject.org/projects/pyramid_zcml/en/latest/zcml/view.html

Security

	Seperation of authentication and authorization.

	You can easily control the security context of a request

	Seems to rely natively on ACL, but you can replace that if you want

TODO - add example
config.add_view(myview, name='my-view.html',)

See the fun of:

class Blog(object):
 pass

blog = Blog()

blog.__acl__ = [
 (Allow, Everyone, 'view'),
 (Allow, Editors, 'edit'),
 (Allow, Editors, 'delete'),

]

Scaffolding

	Provides a default best practices project layout. Why doesn’t Django do this?!?

	Very obvious static directory

How Django does it better

	Django’s consistent persistence system means easier to cook up reusable apps

Zen of Python

by Richard Jones

aka 19 Pythonic Theses

Guido’s Original Design Philosophy

Timesaving concepts

	Borrow ideas from elsewhere whenever it makes sense.

	“Things should be as simple as possible, but no simpler.” (Einstein)

	Do one thing well (The “UNIX philosophy”).

	Don’t fret too much about performance–plan to optimize later when needed.

	Don’t fight the environment and go with the flow.

	Don’t try for perfection because “good enough” is often just that.

	(Hence) it’s okay to cut corners sometimes, especially if you can do it right later.

Clarity concepts

	The Python implementation should not be tied to a particular platform. It’s okay if some functionality is not always available, but the core should work everywhere.

	Don’t bother users with details that the machine can handle (I didn’t always follow this rule and some of the of the disastrous consequences are described in later sections).

	Support and encourage platform-independent user code, but don’t cut off access to platform capabilities or properties (This is in sharp contrast to Java.)

	A large complex system should have multiple levels of extensibility. This maximizes the opportunities for users, sophisticated or not, to help themselves.

	Errors should not be fatal. That is, user code should be able to recover from error conditions as long as the virtual machine is still functional.

	At the same time, errors should not pass silently (These last two items naturally led to the decision to use exceptions throughout the implementation.)

	A bug in the user’s Python code should not be allowed to lead to undefined behavior of the Python interpreter; a core dump is never the user’s fault.

Beautiful is better than ugly

See http://en.wikipedia.org/wiki/Euclidean_algorithm:

function gcd(a, b)
 while b ≠ 0
 t := b
 b := a mod b
 a := t
 return

Wikipedia’s version is not as pretty as Python:

def gcd(a,b):
 while b != 0:
 a, b = b, a % b
 return a

Explicit is better than implicit

File openings are not that explicit

The : in Python is lovely and explicit.

class Circle(object):

 def __init__(self, radius):
 self.radius = radius

 def area(self):
 """ The 'tau' value is from outside the class """
 return tau * self.radius

Simple is better than complex

	Something simple is easily knowable

	Something complex is not

	Automatic memory management means code is simpler

	That we can define getter/setters and override existing ones in Python is awesome.

Getting length of objects is simple in python:

l = [1,2,3,4,5,6,7,8]
len(l)

Try to keep your try/except blocks a small as possible. You’ll thank yourself later.

Complex is better than complicated

Note

I never actually think about this koan.

for line in open('document.txt'):
 print(len(line), line, end='')

how about opening up things
for file in glob.glob('*.txt.gz'):
 for line in gzip.

Flat is better than nested

Inheritance flattening

	Keep object inheritance shallow

	Multiple inheritance keeps things shallow but things get more complex

	Richard Jones worries about this

	I don’t worry that much. Never bites me the way Java did.

Break up complex structure

	Keep your if/elif/else use as light as possible

	Smaller code == Better code

Sparse is better than Dense

	Is this a style guide thing?

	whitespace?

	naming standards

	I (pydanny) think it is about spartan programming

	http://www.codinghorror.com/blog/2008/07/spartan-programming.html

	http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/Spartan_programming

	Koans by Tim Ansell

	14 arguments for a method is too much

	Don’t compromise on complexity by adding more complexity

Readability counts.

	Koan: Readability is the number 1 reason why organizations select Python

if (x == y);
{
 // logic
};

// a day wasted

Special cases aren’t special enough to break the rules

	Everything is an object

Although practicality beats purity

Sometimes the rules need to be broken:

>>> class Two(int):
... pass
...
>>> print(Two(1))
1
>>> Two.__str__ = lambda x: '2'
>>> print(Two(1))
2

A better example is circular imports.

	http://stackoverflow.com/questions/3955790/python-circular-imports-once-again-aka-whats-wrong-with-this-design#3956038

Errors should never pass silently

	Errors should not be fatal

	Don’t blame the user for bugs in Python

	Either the core devs fault

	Or the user added in ctypes

Check out except Exception at the bottom!

logging.exception(error) captures the entire error to the logs!

try:
 handle_a_client()
except socket.error, e:
 log.warning('client went away: %s', e)
except Exception, e:
 logging.exception(e) # This captures the whole traceback!!!

In the face of ambiguity, refuse the temptation to guess.

1 + '1'
blows up in Python, not in other languages
We like this behavior!

Also, remove the ambiguity and whack some parenthesis

There should be one - and preferably only one- obvious way to do it

Protocols:

	File API

	DB API

	WSGI

	etc

Although that way may not be obvious at first unless you’re Dutch

	Guido can be quirky

	Community feedback keeps BDFL in check

You try to shoot yourself in the foot, only to realize there’s no need, since Guido thoughtfully shot you in the foot years ago. - TODO: find who said that

Now is better than never

	Fix the problem now

	Try it in your shell, and your tests

	Perfection is the enemy of the good

	Python 3 was years in the making, but much less than Perl 6.

Although never is often better than right now.

Things that ain’t gonna happen

	Adding ‘?’ to identifiers in Python

If the implementation is hard to explain, it’s a bad idea.

If you can’t say it, don’t do it

If the implementation is easy to explain, it may be a good idea.

Just because you can explain your idea, if it has no point then it shouldn’t be included.

Namespaces are one honking great idea – let’s do more of those!

	locals > nonlocals > globals > builtins

	Me (pydanny) loves this about Python

Reference: Zen of Python

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than right now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Django 1.3 Webinar

by Jacob Kaplan-Moss

	New Features
	Templatetags

	Class Based Generic Views

	Model “on delete” options

	Testing

	Caching backend

	Static Files

	Everything else

	Upgrading Django
	Upgrade and Test

	Things to watch for

	What about 3rd party apps?

	Deploy!

	Deprecated Features
	Admin

	Custom auth backends

	Backward Incompatible Changes
	Security Fixes

	AJAX specifics

	Data-loss bug

	Optimizations

	The rest

	Predictions for future Django versions
	Predictions for 1.4

	Predictions for 1.5

New Features

Templatetags

with

New syntax:

{% with total= objects.count name=request.user.name... %}
...
{% endwith %}

include

New syntax:

{% include sub/template.html with total= objects.count name=request.user.name... %}

Where only specified arguments are included

{% include sub/template.html with total= objects.count only %}

load

New syntax:

{% load my_tag from my_tag_lib %}

Also handy bits for future work for making url generation easier:

{% load url from future %}
{% url "path.to.view" %}

Class Based Generic Views

http://django.me/generic-views

One of the problems with using class based views is that if you store data in it, then its not thread-safe. Which is why you have to do MyClass.as_view() because it makes things thread-safe so always build from something that inherits from the base View class.

basic usage in urls.py for direct_to_template:

TemplateView.as_view(template_name='blah.html')

Detail views:

class AuthorDetailView(DetailView):
 queryset = Athor.objects.all()

Sample JSON view

Here we go:

from django import http
from django.utils import simplejson as json

class JSONResponseMixin(object):

 def render_to_response(self, context):
 "Returns a JSON response containing 'context' as payload"
 return self.get_json_response(self.convert_context_to_json(context))

 def get_json_response(self, content, **httpresponse_kwargs):
 "Construct an `HttpResponse` object."
 return http.HttpResponse(content, content_type='application/json', **httpresponse_kwargs)

 def convert_context_to_json(self, context):
 "Convert the context dictionary into a JSON object"
 return json.dumps(context)

class JSONDetailView(JSONResponseMixin, BaseDetailView):
 pass

Should you use CBVs?

	With caution

	Use it ONLY when you need it.

	Wait until some best practices before embracing it wholesale.

Model “on delete” options

http://django.me/on_delete

The basics:

author = models.ForeignKey(Person, on_delete=on_delete=models.PROTECT)

On your models if you want to protect the associated model:

author = models.ForeignKey(Person, on_delete=models.DO_NOTHING)

Only on database fields that are defined to accept null:

author = models.ForeignKey(Person, on_delete=models.SET_NULL)

For setting a new value via a handy sentinal object:

def get_dummy_person():
p, created = Person.objects.get_or_create(name='DELETED')
 return p

author = models.ForeignKey(Person, on_delete=models.SET(get_dummy_person))

Testing

Resources:

	http://django.me/testing

	http://docs.python.org/library/unittest.html

Lots of enhancements to make testing more powerful and more fun. Django 1.3’s test framework is built on Unittest2.

	Vastly improved failure messages

	Easier to skip tests:

class SomeTests(unittest.TestCase)
 @unittest.skip("is always skipped")
 @unittest.skipIf(*conditional*)
 @unittest.skipUnless(*conditional*)
 @unittest.skipIfDBFeature(*conditional*)
 @unittest.skipUnlessDBFeature(*conditional*)
 def test_my_stuff(self):

	TestCase.addCleanup

	assertRaises context manager

	Class and module-level setup/teardown

	Backwards compatible

	assertNumQueries:

	assert number of queries in a views

	Good for confirming possible performance issues

	http://django.me/assertNumQueries

	How to make it work:

from django.core import unittest
class MyTest(unittest.TestCase)

RequestFactory

http://django.me/RequestFactory

So you can test without going through urls or middleware:

def crazy_test(self):

 rf = django.test.client.RequestFactory()
 request = rf.get('/url')
 response = some_view(request)
 self.assertEqual(response.status_code, 200)

Caching backend

	Now supports multiple caches (settings.CACHES)

	Old syntax works but you’ll need to upgrade at some point

	Features

	Versioning

	site-wide prefixing

	transformations

	pylibmc support - new and faster memcached library

Jacob suggests:

	switch to pylibmc

	can be tricky to install on some operating systems

Static Files

	django.contrib.staticfiles - collects static files from multiple apps into a central location.

	django.me/static-files

	media Files uploaded by users, probably stored in a FileField or ImageField

	static Static assets that are part of your site - CSS, JavaScript,

	files Either of the above

In production you have a couple extra steps:

* Use a dedicated media server (nginx preferred)
* run `STATIC_ROOT = '/var/www/static'`
* run `STATIC_URL = 'http://media.example.com/'`
* run `./manage.py collectstatic`

Notes:

switch existing sites only if you are unhappy

Everything else

	Built in support for Logging (http://django.me/logging)

	TemplateResponse (http://django.me/TemplateReponse)

	Good for writing decorators that adds in stuff after a view template has been run.

	Good for not writing so much page specific middleware

	django.shortcuts.render() (http://django.me/render)

	Transactions as context managers (kinda neat)

	“pretty” error emails (???)

	context-aware simple tags (http://django.me/simple_tag)

Upgrading Django

Jacob’s process

	Use virtualenv + pip

	Upgrade just Django. Don’t upgrade other things at the same time.

	Test and pray you have real unit tests.

	Upgrade 3rd Party Python Apps

	Deploy

	Start adding new features

Upgrade and Test

The process:

pip install -- upgrade Django
./manage.py test

This is why having unit tests is a good thing. But also click around and test things manually.

Things to watch for

	Accessing internals: models._meta, queryset.query and other internals are not guaranteed by Django to not change.

	So if your code depends on these things they can break between versions

	Mark this code in comments as using internals

	write tests against this code!

	Arbitrary keyword arguments: model.save(), model.delete(), signal handlers, etc can change.

	Use **kwargs instead of keyword arguments!

	Monkeypatches

	Just say no

	Deprecated APIs and backwards incompatible changes (coming up next)

What about 3rd party apps?

	The big ones should all work: South, Celery, Haystack, Tastypie, etc

	Maybe make a sub-app or fork for those that do not.

Deploy!

Get requirements:

localhost$ pip freeze > requirements.txt
remote$ pip install -U -r requirements.txt

Safety path:

	Build new virtualenv

	Grab code

	Build reqs there

	Point apache at new version of site.

Deprecated Features

check out http://django.me/deprecation

Admin

Don’t use AdminSite.root()!

Follow this pattern:

urlpatterns = patterns('',
 (r'^admin/', include(admin.site.urls))
)

Custom auth backends

New rules for anonymous users that must be in place:

class MyAuthBackend(object):
 supports_object_permissions = False
 supports_anonymous_user = False
 supports_inactive_user = False

Backward Incompatible Changes

Usually because of security or database bugs. Sometimes the docs were wrong.

Security Fixes

	Added CSRF validation for AJAX requests - Done to protect FLASH, not browsers.

	Symptom: Posts request will fail .

	Placed restrictions on filters in the admin

	Stopped rendering passwords in PasswordInput

	Users that are inactive can’t reset their passwords anymore

AJAX specifics

http://django.me/csrf-ajax:

$.ajaxSetup({
 beforeSend: function(xhr, settings) {
 if (!(/^http:.*/.test(settings.url) || /^.test(settings.url))){
 // Only send the token to relative URLs i.e. locally.
 xhr.setRequestHeader("X-CSRFToken",
 $("csrfmiddlewaretoken").val());
 }
 }
});

Data-loss bug

File field deletion issue (Look up in Jacob’s slides!)

Optimizations

	manually managed transactions (via @transaction.commit_manually) needs to be explicitly closed

	New index on session table:

python manage.py sqlindexes sessions

 * But Jacob recommends using memcached or redis sessions for performance on sites with huge numbers of frequent users.
 * Google on django-redis-session

The rest

	Clearable FileField widget is the default

	No more PROFANITIES_LIST (re-set to get the old behavior)

	Localflavor corrections for Canada, Indonesia, and the USA

	FormSets can no longer take empty data

	Iiitial SQL no longer works in tests. Use fixtures instead.

Predictions for future Django versions

Predictions for 1.4

To be removed

	Python 2.4 support

	Remaining single-db support

	Old style messages are going away

	Don’t use django.contrib.auth.messages!

	Use new messages (django.contrib.messages)

	Legacy auth backends are going away

See http://django.me/depreciation

Rampant Speculation

	Basic schema migration support

	Refactor and formalization of “apps”

	Improved ideas of what a “user” is

	Better hooks for monitoring, debugging, and metrics

	template compilation

	Better time zone support

	Python 3

Predictions for 1.5

Possible removals

	Python 2.5 support (2.6 is just plain faster)

	mod_python support (no more support, no way to download, just say no!!!)

	Removal of function based generic views

	Old-style url and ssi template tags

Pycon 2011

	Biased Survey of the Python Web
	The state of Python web things is that right now it is the best of times and the worst of times

	Data Structures in Python
	Builtins

	The stdlib

	Do It Yourself

	Fun with Python’s new features
	Collections.Counter

	collections.namedtuple()

	caching

	Greasing the wheels of exploration

	Obfuscated Python
	Assignment Operators

	Comparisons

	Opening the Flask
	April Fool’s Joke

	Inspiration

	Details

	Outreach
	How the Fedora design group does it

	How the SF rails group grew

	Dos and Don’ts

	Conclusions

	Next steps

	Pluggable Django Patterns
	How do you make an app sure is pluggable?

	Re-Introduction to C
	Talk Notes

Why I went to each event

I have my reasons!

Re-Introduction to C

I’ve wanted to learn C for a long time and a lot of other Pythonistas feel the same way. When Noah proposed this I jumped right behind it and push for its inclusion in the Pycon-PC process (even though I wasn’t part of the tutorial selection team I made my opinion known).

Biased Survey of the Python Web

By Mark Ramm

The state of Python web things is that right now it is the best of times and the worst of times

What is good right now

	Deployment - WSGI

	Frameworks - more pythonic

	Community - bigger (django)

	Lots more great libraries

What is bad right now

	The choice of frameworks is too big

	Just in the web templating space the options to choose from is too big

	Confusing

	Leaderless

	Complicated

	Frustrating

Django specifically

	huge_community

	new_python_devs

	template_language_controversy

	model_layer

	isolated_community

From mike_bayer import awesome

	SQLAlchemy

	mako

	beaker

The state of the python web

	Confusing

	Leaderless

	Complicated

	Frustrating

	Fertile

	Innovative

	Amazing

Data Structures in Python

by Alex Gaynor

Python is awesome because it implements basic data structures as described by Knuth.

Paraphrase: The Python core has read Knuth so we don’t have to!

Alex Commandments

	Use types idiomatically

	Sometimes you don’t get a choice

	Be efficient, when it doesn’t cost you anything

	sometimes you habe more than one concern to deal with. The standard lib can help!

	Don’t do more than you have to: collections.abc are there to help.

Builtins

	list vs tuple

	list vs set

	set vs frozenset

list vs tuple

“I only use tuples if using a namedtuple would be equally appropriate”

Not a performance or mutability issue, but use them idiomatically

sets vs lists

	lists have an order, sets don’t

	sets must be hashable

	sets let you check for uniqueness super-fast

sets vs frozenset

blah blah

The stdlib

collections.OrderedDict

	new in 2.7

	For when you have a dict that needs an order

	Syntax:

OrderedDict([
 ("name":Field),
 ("type":Field),
 ("state": Field),
])

collections.deque

	Fact: list.pop(0) and list.insert(0) are slow

	Good for in memory logs and such

Other

	Array: Good for a bunch of types of the same sort

	heapq: Look into it.

Do It Yourself

When you have to do it yourself use collections.abc!

	abstract base classes for extending collections

	Because you don’t subclass dict ever!!!!

	Subclassing Python’s builtin containers tends not to behave as we want

	Subclassing the ABCs does

	OrderedSet example: http://code.activestate.com/recipes/576694/

Fun with Python’s new features

by Raymond Hettiger

question: For Collections.counter, I thought you weren’t supposed to subclass dicts directly

I think this is all Python 3.x material

Collections.Counter

Can do anything you can do with a dict but you can use counter notation:

c = Counter()
c['x'] += 1
c['y'] += 1
del c[x]

Convenience methods:

	most_common(n) returns a sorted list of the n highest counts

	elements() lists all of the contents individually. Differs from __init__ which returns pairs: (elem, count)

Counter Math:

>>> # simple
>>> x = Counter(a=1, b=1)
>>> x.subtract(a=1, c=1)
>>> x
Counter({'b':1, 'a':0, 'c':-1})
>>> #advanced
>>> {'a','b'} - {'a', 'c'}
{'b'}
>>> Counter(a=1,b=1) - Counter(a=1, c=1)
Counter({'b': 1})

collections.namedtuple()

Works like a regular tuple but lets you assign names to each field:

	makes the code self-documenting

	Makes the printed __repr__ intelligible

	Lets you change tuple order without affecting client code

One of the single best changes you can make to existing code. The additional space cost for namedtuples is zero

Convenience methods:

	_asdict() turns a named tuple into a dictionary

	_replace() creates a new named tuple with altered values:

>>> result._replace(failed=2)
TestResult(failed=2, attempted=7)

Pro tip: Using the Field Structure:

>>> LabeledResult = namedtuple(
 LabeledResult,
 TestResult._fields + ('blah'))

Pro tip: Every time you make one reset the slots to nothing:

>>>> class Point(namedtuple):
... __slots__ = ()

caching

LRU Cache:

from functools import lru_cache

@lru_cahe(maxsize=100)
def big_computation(*args):
 ...

Greasing the wheels of exploration

Note

Pycon politics kept me out of most of this talk. Which sucked!

by Michael Sims

“The last time we explored a new landmass was Australia over 3000 years ago”.

Question: How do you keep the camera lenses on the rover clean of dust

Obfuscated Python

by Johnny Healy

Really funny!

Assignment Operators

Fun things you can do:

>>> object = str
>>> tuple = lambda *x: x
>>> __builtins__.object = str

Comparisons

What?!?:

>>> object() == object()
False
>>> object() == object()
False
>>> object() == object()
False
>>> help((lambda x:x*x).func_code)
... blah blah blah
>>> code = type((lambda x:x*x).func_code)
>>> code
<type 'code'>

Opening the Flask

by Armin Ronacher

April Fool’s Joke

Decided to mock the various microframeworks:

	web.py

	bottle

	web2py

Features

	Eirik Lahavre

	Entirely made up

	“Impressive scaling capabilities”

	one file framework

What he learned

	people took him seriously

	marketing beats quality

	features don’t matter

	people aren’t looking at source code

	Does not have to be new

Inspiration

	be honest

	don’t reinvent things

	stay in touch with others

Details

	jinja2

	wuerkzueg

	optionally blinker for signaling

	tons of documentation

	“best of breed” code

Some numbers

	800 LOC

	1500 LOC tests

	200 A4 Pages of Documentation

Ecosystem

	Over 30 extensions

	very active mailinglist

	over 700 followers and 100 forks on github - yay

Design Decisions

	use of Context Locals as globals

	Rather than pass around the request object you can see it everywhere

	No import time side effects

	Explicit application setup

	Applying WSGI middlewares

	more than one app

	testing

	create app in function

	circular imports

	cached imports

	keeps things simple

Extensions

	Formal extension system

	Approval process

	Core must stay small so extensions must work with core

Lessons Learned

	Documentation matters

	Use a clean documentation style and people will help document more

	Documentation style for extensions

	Simple visual design

	Communication matters

	Heartbeat signals

	Consistency

Outreach

by Asheesh Loroia

How the Fedora design group does it

	Provide contributor bounties

	Tries to get in a new contributor every two weeks

	offers help for new people

	tries to get people of all levels

	if you get three contributors you get a free t-shirt

How the SF rails group grew

	Was at 2% woman

	Ran women only or woman + 1 events

	Huge turnouts!

Dos and Don’ts

	Do: Decrease latency (and terror)

	respond to mailing lists!

	Set a deadline for responses

	Do: Set goals

	Do: Tell people what to do

	assign bugs

	Point them at existing issues

	Do: Attach people to strong communities

	Don’t just run single events

	Keep things moving forward forever

	Do: One-on-one interviews

	Don’t: Talk about how much you hate doing X

Conclusions

	Demographics reinforce themselves

	Exploit the biases in your outreach

Next steps

	All it takes is effort

	Run a meetup outreach effort

	Run a starling bounty for your project

	Put your project on OpenHash

	Ask for help: http://asheesh.org/pycon11

Pluggable Django Patterns

Warning

Corey is a great guy and really smart. I’ve learned from him on other topics. But I strongly disagree with what he presented in this talk. My notes are extremely incomplete.

by Corey Oordt

	An app should not be a monolithic pile of code

	A pluggable app is focused

	It does what it needs to do and nothing more

	Should have all its dependencies easily described

	Should be adaptable

	Should be easily installed

How do you make an app sure is pluggable?

	Use small pieces

	types of apps

	data (manages apps)

	utility (single functions like pagination)

	decorator (add functionality to other apps django-mptt, django-taggit)

Re-Introduction to C

	By Noah Kantrowitz

	Good speaker, knows topic

	Should have gone over fundamentals in second half before having us code

	My proposed change

Insist people type out working code example presented (muscle memory)
Brain dump (what was second half)
Another insist type out of working code example based on brain dump material
Go to attendee excercises where they have to figure things out themselves

Talk Notes

Stack vs Heap

	Stack is very specific memory buffers

	Heap is everything else

Pointer Arithmetic

C knows how many bytes in each variable:

int arr[10];
arr = 1000
arr + 1 = 1004
char arr2[10];
arr2 = 1000
arr2+1 == 1001

Strings

char*s = "abc";
*s == 'a';
char s[4] = "abc";
*(s+1)=='b';

Structures

Structures are the closest in C to having OO style classes. Use typedef to ensure that you can more easily construct the structure.

	Named+typed offsets

	Syntax:

`typedef struct Foo {int x; char y;} Foo;`

	Inside the curly braces you can stick in variables to be called on instantiation

Foo f = {1,2};
f.x==1;
Foo f = {0};

* Useful in that everything is set to Zero even if there is more than one variable. Even works with chars! Yay

Unions

Rare thing used in C, and then specifically for high performance C.

	Also named+typed offsets

	Overlapping (?)

	syntax:

typed union Foo {int x; char y[4];} Foo;
f.y[3] = 1;
f.x == 0x01000000;

Enumerations

Enumerations are symbolic references to numbers. While numbers you should not do math on them. Nice syntax sugar.

	syntax:

typedef enum Foo {BAR, BAZ} Foo;

	BAR is equal to 0

	BAZ is equal to 1

Foo f = BAR;
f = 1;
BAR + 1;
BAZ == BAR + 1;

Comments

Same as in JavaScript.

Function Declarations

	int foo(int x, char y);

	returns int

	accepts int x and char y.

	void foo(void);

	Don’t return anything

	Don’t accept any arguments

	void foo();

	Don’t return anything

	Accept any number of arguments

If C cannot find something it will report an Int error

Main

This is why python has “__name__” == “__main__”!

int main(int argc, char **argv);
./prog foo bar
argc == 3
argv == {"./prog", "foo", "bar"}

printf

How to do a print in C:

#include <stdio.h>
def printf(fmt, *args) return fmt%args
printf("%s %u\n", "foo", 42);

	Coming from a user do this to make sure that their percent signs (%) are not accidentally made part of the format strings:

	printf(“%s”, s);

blocks

Blocks are curly braces and then statements. Variable statements must happen at the top of a block.

{ stmt; stmt; }
if (expr) stmt; else stmt;
if (){} else {};
if () {int x=0; foo(x);}
if (x==1){y=1;} else if (x==2) {y=2;};

while

Same as python

while (x==0){y++;}

do while

Same as while but runs it once first

Switch

Basically a structured GOTO system that jumps to each case as in other languages. How I think it works if expr evaluates to a number (confirm later):

switch (expr)
 {
 case 1: {
 y = 1;
 break;
 };
 case 2:
 y = 2;
 break;
 default:
 y = 3;
 }

Preprocessor

Transforms your code before it hits the compiler. Don’t use ‘#’ to start any lines except for directives!

	#include

	Takes the entire contents of this file and pastes it in. Not quite import!

	#include “file.h” looks in the local path

	#include <stdio.h> looks in the system libraries

	#define

	Values that the preprocessor replaces (simple macros)

	#define Y 1.0 now works in the rest of the file. Think of it as a global. Can’t do C expressions but can define text based replacements.

	Don’t put semi-colons at the end of a #define macro.

	#define can take arguments!

#define Z(a,b) foo (A * 2, b, 0)
Z(1,2);
foo(x +1 * 2, 2, 0);
`#define Z(a,b) foo((a) * 2, (b), 0)

	#if include other preprocessor bits:

#if X
 #define Y 1.0
 #include "file.h"
#endif

	#ifdef is used in older code and is simply #ifdefined(X).

	#pragma once

	Include guard

	Makes sure you include something only once since you might have multiple files including the same thing and that can be bad.

	Don’t do #ifdef __FILE_H__!

Headers

Headers are files that end in ‘.h’ and contain function declarations. This way the compiler knows what functions are going to be used:

#pragma once

void handle_request(int sockfd, const char *request);

Sometimes you see typedef struct Foo Foo and this is to just let the compiler know there will be a struct called Foo.

Useful functions

	string.h

	length: size_t strlen(const char *s)

	compare: strcmp(char *s1, char *s2)

	copy: *strncpy(char *s1, char *s2, size_t n);

	memcpy(void *s1, void *s2, size_t n)

	malloc (buffer management)

	#include <stdlib.h>

	void *malloc(size_t)

	void free(void *ptr)

	void *calloc(size_t count, size_t size)

	stdio.h (I/O handling - files writing and reading)

Runtimes

Check out: http://docs.python.org/c-api/

Convore

https://convore.com/pycon-2011/reintro-to-c-tutorial/

Scale 9x

	Big asterisk talk
	The community

	Asterisk Design Issues

	Asterisk SCF

	asterisk intro
	AEL = Asterisk Extension language

	Warnings!

	Changes in install screen

	Thoughts

	Resources

Big asterisk talk

	By some guy at Digium

	Digium is what started the tech

The community

9800 contributors to Asterisk

Asterisk Design Issues

	Couldn’t predict how it was going to be used

	Wasn’t planned to be used in the cloud

	Asterisk was not planned to be used in some of the directions it is being used

	issues

	performance

	scalability

	extendability

	fault tolerance

	too many implementations to get new design architecture in!

Asterisk SCF

	Asterisk Scalability Framework

	Asterisk SCF is a collection of parts rather than a monolithic whole

	Allows distribution across machines

Get started

	asterisk.org

asterisk intro

SIP = almost universal VOIP protocol
IAX2 (don’t use it!)
Codec used to transfer voice-to-data is ULAW

Channels = how many translations from voice-to-data you need to handle. Generally about 1 channel unless you have scaling issues.

Registration = how your box is registered to accept calls for a particular number

Asterisk can do:

	conference calls.

	caller ID

	special prompts

	voice mail

	asterisk-to-asterisk can be free because there is no middle parties

	telemarketer torture

AEL = Asterisk Extension language

A C-like language used to configure the behavior of an asterisk installation

Warnings!

	People can hack into your box and call Siberia.

	SIPVicious is a tool originally written to check for hacks against Asterisk but is used to hack.

	Can it be placed in the cloud or do we need a datacenter?

	The internet goes down

	64k bandwidth each way

	Echos are troublesome (Open Source Echo Canceller)

	Huge amounts of servers to run this thing

Changes in install screen

	include the sounds in the codec (last three items)

Thoughts

	check asterisk hosting

Resources

	O’Reilly book: Asterisk: The future of telephony

MongoDB LA 2011

	LA MongoDB meetup
	What OS for production?

	For production

	Python Language Driver

	Backups

	Question

	Features, ease of use

	Database Design
	Pure SQL Implementation

	SQL + Mongo Implementation

LA MongoDB meetup

	In February of 2011

What OS for production?

	Linux

	Ubuntu

For production

	Always use 64 bit machines

	Use the 10gen binaries, not the Ubuntu ones

	Register 10gen signing key

	Set up 10gen package repo

TODO - look this up on the mongo wiki

Python Language Driver

	python-longodb

	On launchpad

	Check on pypi

Backups

	Loops of hoopla in community about need for backups.replication

	Single server durability big part of 1.8 release coming up

Question

	If you introspect on a document in order to list its fields, how do you manually order the fields?

Features, ease of use

	learnmongo.com

	

Database Design

Pure SQL Implementation

All tables are assumed to have an ID.

Pros:

	All data in one database means simpler architecture

	All staff familiar with SQL

	SQL is proven

Cons:

	Django Admin becomes unwieldy with complex inlines.

	Requires sophisticated Python logic to handle Survey display and controls.

	Saving survey state is rigid and will make changing the survey model much harder.

	Survey and survey state make saving and fetching historical surveys very rigid. Post-launch might need to make new tables after any change to ensure no historical data is lost.

	Adding sub-surveys adds in a huge amount of complexity

client

Represents customer for a particular survey

	name

	point_of_contact

user

	name

	email

	password

profile

	address_1

	address_2

	city

	state

	zip

	dob

	gender

	occupation

	employer

	address_verified

	dob_verified

	employment_verified

survey

	title

	description

	start_date

	end_date

	max_responses

	value_per_response

	verification_level

	client_id

media

	id

	url

	Optional: survey_id

media_survey

Question: Can a survey have multiple media elements that are shared across
other surveys? If not, then we probably can remove this table.

	survey_id

	media_id

question

	label

	order (within the survey)

	type (radio, select, checkbox, text, textarea)

	survey_id

response

	value (integer, boolean, or text)

	question_id

	user_id

survey_state

Saves the state of a survey for a user.

	completed

	start_date

	end_date

	user_paid

	survey_id

	user_id

SQL + Mongo Implementation

All tables are assumed to have an ID.

Pros:

	User/Financial data separate from survey data. Faster results for both.

	Financial data in SQL, which was designed for that task.

	Doesn’t replace critical components of Django (Session, Auth, User with unproven MongoDB components)

	Survey logic changes much easier to implement in Mongo, just new app for each alteration.

	Survey and Response documents store historical survey app so continue to work over time.

	Adding sub-surveys is of moderate complexity

	Simpler display and controls of Surveys

	BSON/JavaScript interface

Cons:

	Need to construct survey forms from scratch (will have to do that in any implementation)

	New technology to most of the staff

	MongoDB adds complexity to the architecture

	Local deployments harder

client (SQL)

Represents customer for a particular survey

	name

	point_of_contact

user (SQL)

	name

	email

	password

profile (SQL)

	address_1

	address_2

	city

	state

	zip

	dob

	gender

	occupation

	employer

	address_verified

	dob_verified

	employment_verified

survey (SQL)

	title

	description

	start_date

	end_date

	max_responses

	value_per_response

	verification_level

	client_id

media (SQL)

	id

	url

	Optional: survey_id

media_survey (SQL)

Question: Can a survey have multiple media elements that are shared across
other surveys? If not, then we probably can remove this table.

	survey_id

	media_id

survey_state (SQL)

Saves the state of a survey for a user.

	completed

	start_date

	end_date

	user_paid

	survey_id

	user_id

survey_document (MongoDB)

	survey_id (used to relate to SQL)

	survey_app (we create new Django app for new versions of surveys)

	questions (list/array)

	label

	type (radio, select, checkbox, text, textarea)

response_document (MongoDB)

	survey_document (copy of the survey_document this is responding to)

	responses (list/array)

	value (integer, boolean, or text)

	survey_document.question

	user_id (used to relate to SQL)

	survey_id (used to relate to SQL)

	survey_state_id (used to relate to SQL)

Django Master Class 2009

by Jacob Kaplan-Moss in Springfield, Virginia

Note

I had to deal with a work emergency so didn’t get to experience the second half of the class.

	TODO - link to PDF slides in repo

	Caching
	Cache backends to use

	Cache setup

	Per Site Cache

	Template fragment caching

	Low-level cache API

	Documentation

	Cache decorators

	Conditional view processes

	REST
	Gem

	REST properties

	IOW: “Respect the web”

	Adding an API

	Plain Django

	Piston

	Schema Migration
	Gems

	The problem with the Django ORM

	The main lesson

	Django Migrations Tools?

	Django-Evolutions

	South

	Testing
	Gem

	Quotations

	Django Tools

	Unit Tests

	django.test.TestCase

	doctests

	Functional Tests

	Fixtures

	New fixture tool

	Coverage tool

	Mocking tool

	Browser Testing

	Exotic Testing

	Further resources

Caching

The difference between a site that scales well versus what doesn’t comes down to caching.

	tomoayko/writings/things-caches-do

Cache backends to use

	memchached is the way to go

	tokyocabinet is an alternative to memcached. But Jacob seems more familiar memcached

	for testing you can explore

	filesystem

	database

	local memory

Cache setup

settings.py:

CACHE_BACKEND = 'MEMCACHED://10.0.0.100:11211/'
CACHE_BACKEND = 'file:///tmp/cache'

Per Site Cache

	Django has a built-in cache.

	This is good for read-heavy sites.

	Not good for write-heavy sites

	All or none solution

Code:

MIDDLEWARE_CLASSES = (
 'django....UpdateCacheMiddleware',
 ...
 'django....FetchFromCacheMiddleware',
)

CACHE_MIDDLEWARE_SECONDS = 600
CACHE_MIDDLEWARE_KEY_PREFIX = 'mysite'
CACHE_MIDDLEWARE_ANONYMOUS_ONLY = True

Details:

	Only GET requests are cached

	URL captures are added to the cache key

	The cache middleware and per-view share the same logic

	Cache keys are opaque, so cache invalidation is difficult

Template fragment caching

sample:

{% load cache %}
{% cache 600 author_info author.id %}
 {{ author.render_something_expensive }}
{% endcache %}

Low-level cache API

various Cache methods:

* set(key, value, timeout)
* get(key, default)
* add(key, value, timeout)
* get_many([key1, key2, ...])
* delete(key)
* incr(key, amt=1)
* decr(key, amt=1)

Documentation

	http://djangobook.com/en/2.0/chapter15/

	http://jacobian/r/django-cache

Cache decorators

Ack, focusing on work issues so not taking notes.

Conditional view processes

Doesn’t save performance but does save bandwidth

REST

Gem

	request.raw_post_data

REST has an absence of bureaucracy

Concepts

	Resources

	Names (URIs)

	Representations

	Connections (links)

REST properties

	Addressable

	Every resource is addressable

	Statelessness

	Can make requests in any order

	Can make doing transactions a bit challenging (need to treat state as a resource)

	Connectedness

	A uniform resource interface

IOW: “Respect the web”

	RFC 2616

	HTTP

	API

	SQL

	GET

	select

	select

	POST

	create

	insert

	PUT

	update

	update

	DELETE

	delete

	delete

Adding an API

	Odds are you already have one! Your website!

	But cool kids like me (Danny) use JSON

	use Python 2.6+ version of json over simplejson to get better performance. Same library, just implemented in C.

	Jacob likes to set mime type during DEBUG to text/javascript to make debugging easier

Plain Django

	Jacob likes to construct RESTful resources so he can encapsulate all the RESTy bits in external functions and classes. Keeps his API methods really short.

	In POSTS he remembers to set the right status

Piston

Schema Migration

Keeping your sanity when changing models

Gems

	You don’t need to use Django tools to do it. Consider sqlalchemy-migrate

	Question: Will South get brought into core? Not until more thought has been given and products mature nicely.

The problem with the Django ORM

	manage.py syncdb doesn’t alter tables

	manage.py reset just deletes tables

	SQL Shell doesn’t record any changes.

	SQL scripts are problematic

	Forgetting migrations!

	Track migrations

	Need to be able to go forwards and backwards

	Keep multiple developers in sync, just like good source control

The main lesson

	You have to have a tool

	Once started, you always have to use the SQL tool

Django Migrations Tools?

	Nothing in core

	options Jacob knows about

	deseb

	django-evolutions

	dmigrations

	migratory

	south

	yadsel

	sqlalchemy-migrate looks good.

Django-Evolutions

	About 2 years old

	Works with syncdb

	Applies (some) evolutions automatically. Kind of terrifying!

	Write evolutions in Python or SQL

	Requires some care in workflow especially in a team

	Lead by Django core contributor (Russ Keith-McGee)

South

	1 year old

	disables syncdb; migrations from the start

	supports auto-generation

	Python only

	works for data migrations

	good for teams

	At this time is the recommended system.

	South lets you control dependencies

	http://south.aeracode.org/wiki/Dependencies

Testing

Gem

	fixtures = [‘authtestdata’]

Quotations

Kent Beck:

Tests are the programmer's stone, transmuting fear into boredom.

Microsoft Research:

40-90% reduction in bugs takes 15-35% increase in time if you use Test Driven Development.

Jacob Kaplan-Moss:

Whatever happens, don't let your test suite break thinging, "I'll go back and fix this later"

Django Tools

	Unit tests (unittest)

	Doctests (doctest)

	Fixtures

	Test client

	Email capture

Unit Tests

	Python 2.7 should support it much better

django.test.TestCase

	Extends Python unittest

	fixtures

	Email capture

	Database management

	Slower than unittest.TestCase

doctests

	Neat

	Eat to read

	Hard to maintain

Functional Tests

	a.k.a Behavior driven development

	“Blackbox”, holistic testing

	Hardcore TDD folks look down on functional tests

	But they keep your boss happy

	Easy to find problems; harder to find the actual bug.

Fixtures

Jacob like YAML over JSON because of readability. Don’t bother with XML fixtures.

fixtures = [‘authtestdata’]

This is some basic Auth data from core that you can use to have groups and users. Hooray!

Test running:

./manage.py test
./manage.py test app
./manage.py test app.SomeTestCase
./manage.py test app.SomeTestCase.test_method

New fixture tool

	http://farmdev.com/projects/fixture

	Content Types in fixtures

Coverage tool

	Ned Batchelder’s Coverage

	http://nedbatchelder.com/code/coverage/

	Coming in 1.2!

Mocking tool

	http://www.voidspace.org.uk/python/mock/

Browser Testing

	Selenium (ya ya)

	Windmill (has Django support now!)

Exotic Testing

	Static source analysis (pylint is my favorite game)

	Smoke testing via web crawlers (webcheck is my favorite)

	Monkey testing aka fuzz testing

	http://agiletesting.blogspot.com/2006/11/python-fuzz-testing-tools.html

	load testing:

	http://www.portswigger.net/suite/

Further resources

	http://bit.ly/py-testing-tools

	http://us.pycon.org

DjangoCon 2010

	Keynote: Why Django sucks and how we can fix it
	Apps

	Generic Foreign Keys

	Performance

	Django Core

	Badteries

	Reusable apps
	But Standard apps patterns are not truly reusable

	What about class based views?

	Reusable frameworks

	Custom Backends

	Libraries approach

	Class based views
	Ben’s implementation

	Customizing Django Admin
	User Experience

	Customizing the Experience

	Lightning talks
	Hashing by david gouldin

	Maintaining an old Django project
	Background

	What PBS likes about Django

	Things that worked for PBS

	Lessons learned

	Sell the upgrade to the Uppers

	What he wants

	Maps of imaginary lands
	GeoDjango Admin

	What is GeoDjango?

	OpenLayers

	pony pwning
	Notes

	Developers aren’t perfect

	State of Pinax
	Inspiration - Ole Kirk Christianson

	The Trade off

	Pinax IS Django

	Questions

	Treehugging
	Introduction

	Django Apps

	Miscellaneous

	Why Django Discussion

Keynote: Why Django sucks and how we can fix it

By Eric Florenzano

Apps

Making custom changes to an app and now staying in trunk fails.
Apps that provide models are inherently inflexible.
primary key assumptions

Class based views to the rescue?

	No consensus on how to implement it?

	Where do you put customized view subclasses?

	urls.py is already overloaded

Generic Foreign Keys

	good for flexibility

	Bad for configuration

Performance

	Things are slowing down

	Memory usage is going up in each version since 1.0

	performance is going down since 1.0

Django Core

	Closed and very private

	Why isn’t Alex Gaynor not a core developer?

	Why isn’t there a truncatechars filter?

Badteries

	DataBrowse is a joke

	lorem ipsum doesn’t belong

	Need to move to a DVCS

django.contrib.auth

	django.contrib.auth is inflexible

	first_name, last_name is culturally limited

	Admin is couple to user

	Integer primary gey

	get_profile is inelegant

	no way to use secure key

Reusable apps

By Alex Gaynor

Note: Alex talked FAST but it was one of the best talks at DjangoCon.

Basics

	similiar patterns

	write once, use everywhere

	no need to reinvent this wheel

But Standard apps patterns are not truly reusable

Too many differences in business logic between systems

	ex comments:

	comments apps have to cover many different business cases

	differing storage (comments in a group, against a logic)

What about class based views?

	Better than function based views because you have inheritance

	django.contrib.admin has good examples of class based views

Reusable frameworks

	an example would be badges

	brabeion

	You can’t predict all the ways people want to use your software

	You know the common ways (80/20)

	Provide default behavior and let people swap it out

	django-taggit is his example

	non-integer primary keys

	per-user tags

	official tags

	custom caching managers, or anything else

Custom Backends

Many different backend systems

	django-registration

	django.core.cache

	django.contrib.auth

	django.core.files

	django.contrib.sessions

Libraries approach

	not everything is business logic

	Good API design

	Well defined problem spaces

Class based views

by Ben Firshman

	Views have not been updated since release of Django

	Generic views are very inflexible

	newforms-admin use class based views

Ben’s implementation

	In the request – views – reponse stream a view is just a callable (__call())

	Class based views let you do mixins such as rendering Jinja or JSON values. This beats Piston, TastyPie, etc by letting you not have to create a separate application framework.

Customizing Django Admin

Peter Baumgartner and Michael Trythall

User Experience

Problems with the Admin as a User Experience tool

	UI is the gateway to application log

	Users remember bad experiences, associate them with you and the admin

	Good experiences - Happy Customers - Profit!

	No dashboard, statistics, or recent activity

	no actions or modules highlighted or given priority

	No assistance/help for beginner users

	Impact fromc hanges is not always clear

	Disconnect from external systems.

	Doesn’t fit mental models

	Apps are not organized by context

	little or no navigation outside of breadcrumbs

	Doesn’t follow workflow

Missing features of the admin tool

	Content and asset management tools, e.g. WYSIWYG, image manipulation

	Error recovery (undo)

	Export/Import with certain tyoes

	Inline help systems

	Cross model search

Poor display for complex models

	Way too many fields on complex models

	Try to limit your fields

Customizing the Experience

ModelAdminMedia

	js

	JQuery

	AJAX

	Fancy inlines

	Inject HTML

	CSS

	colors

	layout

Custom templates

(base.html, change_form.html, etc)

Model admin / Model Form hacking

	list_editable

	row level permissions

ModelForms

Use a model form and tell the Admin class to use ModelForms.
Not well documented - UNNACCEPTABLE!

Lightning talks

Hashing by david gouldin

Neat ways to do AJAX and fast view pages

Maintaining an old Django project

By Shawn Rider

Background

PBS TeacherLine dates back to 2006. Catalogs, CMS, brochures, and classes lets
users added tons of content every year. Hundreds of classes and tens of thousands
of users.

Before 2006 TeacherLine was written in ColdFusion. Run on Windows, separated from the PBS architecture. PBS has a long history of development with open source. So a complete rebuild was necessary. Some technologies considered:

	Ruby / Rails

	PHP / Some PHP framework

	Python / Django

What PBS likes about Django

	Speed of development

	Code Quality

	Modularity of framework

	Django Admin

	Active community

	Python!

Things that worked for PBS

	Django is opinionated in a generally good way

	A culture of self-criticism

	Isolate functionality into reusable components

Lessons learned

	Never override the User model

	Make tests right away

	Make the most of your VCS

	use tests

	take your time

Sell the upgrade to the Uppers

	it will lower the cost of future development

	it will alleviate a pain point felt by staff processes

What he wants

	Multi-configuration support out-of-the-box

	A better way to know when Django’s modules are completely loaded into memory

	More robust handling (Signals++)

Maps of imaginary lands

By Malcom Tredinnick

GeoDjango Admin

Nice experience out of the box.

	How does it work?

	What can I do next?

	Is this all there is?

What is GeoDjango?

An interface for Django to provide mapping bits easy to work with for Django.

OpenLayers

	Client side JavaScript framework

	Combines data from multiple data fields

	Provides neat looking UI around it

	Day to learn, lifetime to customize

pony pwning

By Adam Baldwin

He breaks stuff. He hack and cracks. And gave a really useful talk!

Notes

django = pile of awesome

Django has good security

Developers aren’t perfect

Don’t rely on QA to find your bug

Security Failures minority issues

30% based on incompetence or ignorance
9% based are needle in haystack code issues (XSS)
1% are 0 days

90% of the problems

XSS issues

	Template system issues

	autoescape off, safe, mark_safe

	context HTML

	IE has security holes.

Avoid getting burned

	Consider OWASP ESAPI

	Audit templates

	Audit reusable and snippets

	Educate designers

File uploads

	images can contain PHO

	ImageField does not case

	Image field does not check extensions

	File uploads often are put in unprotected directories

Direct Access is bad

Return a Not Found error if people can’t find something and log the exception

Doing stupid things

Priviledged operations with HTTP GET

eg /object/delete/2 is bad!

Also, don’t expose IDs

Click Jacking

/admin/ was vulnerable. This has been fixed as of Django 1.3

Mitigations:

	Set X-FRAME-OPTIONS DENY header

	Use django-xframeoptions middleware

	Implement frame breakout code

admin

[Redacted]

Communicate with security guys

	They are impatient

	Will publish it if you do not respond/fix

State of Pinax

Brian Rosner

Inspiration - Ole Kirk Christianson

Legos

	blocks

	sets

	themes

Lego sets - Starter projects

Pinax is NOT just for social networks

	zero project = directory layout, static files, deployment

	static project = zero project + static serve

	account project = zero project + account + mailer + uniform

	company project = zero project + blog

	basic project = account project + profiles + notification + announcements

	private beta project = account project + restricted access + waiting list + signup codes

	intranet project = basic project + restricted access + top level content apps (wiki, attachments, tasks, etc)

	code project = basic project + projects + group-based content apps (wiki, attachments, tasks, etc)

	friends project = basic project + friends + invitations

	social project = friends project, blogs, microblogging, usert-to-user messages + LOTS

The Trade off

	How much to fix

	how much to make configurable

Pinax IS Django

	Django doesn’t hide python and Pinax doesn’t hide Django.

	Pinax is even more opinionated about Django

Questions

	tested on zc.buildout?

	Pinax Project site refactor?

	IE5 CSS corrections

	Pointing new users to Python, Django

Treehugging

by Brian Luft

Introduction

Where do we find structured data:

	Hierarchical data

	graphs

	organizations

Trees and relational database

	A table is not a tree. We need to do a few tricks

Adjacency List

Self referential foreign key. This is how usually I’ve done it in the past.
Can be very cumbersome, requires a lot of joins, not obvious or easy.
My own note: I believe Oracle has a tool to deal with Adjacency Lists but its database specific

	fast writes but slow reads

	fragile update operations

	You need to know what level in the tree your item is at when you look it up

	Easy to create orphans by accident

	Easy to start, hard to maintain

Nested sets

Not easy to set up and hard to modify. Query works reqardless of depth.

	Efficient reads

	high maintenance cost

Materialized Paths

Every node in the tree has a “path” attribute. I did this once.

	Queries simple and fast

	Effectively de normalized

	Writes slow

	Requires some wackiness when making adjustments

Django Apps

	django-mptt (we used this on http://science.nasa.gov/)

	django-treebead

Comparison chart

	http://www.qompr.com/charts/63;django-hierarchical-tree-data/

Versus:

	Treebeard supports all three models, MPTT only handles Nest Sets

	Both provide Move Node forms, MPTT provides a TreeNodeChoiceField(ModelChoiceField)

	MPTT is being maintained, treebead has slightly more active development

	Front end: Treebead has a get_annotated_list function, MPTT has some handy template tags / filters

Overall Impression:

	Treebard: Overall impression: treebead model creation methods on model is weird and uncomfortable

	MPTT: Related items methods

Miscellaneous

	django-treemenus - possibly solves some outstanding treebeard issues

	neo4j - Designed for large graph systems but Java based

	Suckerfish/Superfish - Some view related items

	protovis

Why Django Discussion

Open spaces thing:

@jdunck - I want to see features of how Django has changed lives.

@andymckay - You don't need 400 case studies, you need 6 great ones. Writing case studies is really hard.

-- Idea: DjangoCompanies.com

@natea - Plone allowed sponsorship to get higher rankings in company listings.

@audreyr - Feature the community on whydjango.com since other advocacy sites do that.

@jdunk

Pycon 2010

Note

I met Audrey at this conference. So my notes are even more incomplete than usual. Ha ha ha.

	0.9 Pinax Roadmap
	Must

	Should

	Leafy Chat
	Intro

	LeafyChat

	DjangoDose

	Hurricane

	Pycon 2010

	Django in Depth
	Model Inheritence

	Django Views

	AdminSite

	Overriding templates

	Dude, where’s my database?
	Relational

	Key/Value

	Data Structure

	Graph

	Document-Oriented Database

	Highly Distributed Databases

	Eventlets
	Problem

	Solution: Coroutines

	Eventlet

	Form Panel
	Who is who?

	FormAlchemy

	Sprox

	Django

	Formish

	Neo4j
	Data Model

	Questions

	Support for Django out of the box

	Underwater robots
	Details

	Python

	Unit Testing

	Woes

	The GIL

	GUI & Simulator

	Dependency Management

	Conclusion

	Using Django in Non-Standard Ways
	The main thing

	Choosing alternatives

	Not using django.contrib.auth

	Not using the ORM?

	Using the ORM in stand-alone mode

	WSGI Middleware

	Other

	Django Internationalization
	Code

	Translating models

	Translating templates

	Its just Python

0.9 Pinax Roadmap

Must

	Implement per object permission system

	Finish the django-friends split

	Notifications redo

	Clean up profiles

	Finish off the improved install branch

	Test runner (I’ve got this)

	Tagging (I’ve got this)

Should

	Alternative themes (we want 3 or 4 themes)

	Settings refactor

	Externalizing some of the apps

	Better i18n support

	Add more external authentication

Leafy Chat

by Alex Gaynor

TODO: Get the slides later

Intro

Using AJAX, comet, and lessons learned

LeafyChat

	Used in Django Dash

	Leah Culver, Chris Wainstroth

	Orbited to handle proxying

	Orbited for Comet

	Twisted to handle IRC/Orbited connection

	Used JSON as message packet format for EVERYTHING

Conclusiuons

	Kinda works

	Messy

	IRC in same process as comment so it doesn’t scale

	Any changes goes on the server, the client and the UI lib.

DjangoDose

	Built in a week before than DjangoCon

	Built on twisted, orbited, Django, and StompMQ

	Brian Rosner, Eric Florenzano

	Instead of individual channels just one channel on a message queue.

	Works really well for larger scale

	Initial users had repeats of early data

Hurricane

	An attempt to take lessons learned from LeafyChat and DjangoDose and build a framework

	Uses producers and consumers in a planned, managed method.

	But done on no sleep over 40 hours - had abstraction issues

	Tornado

	Multiprocesses

Pycon 2010

	Do the same thing as Hurricane but better. Include a lot more data (flickr, github) and users (Pycon)

	Uses redis

	Orbited proxies to a twisted Daeon

	One backend process for each item (one for RSS, twitter, etc)

	Don’t reinvent Orbited. Its really good at what it does

Conclusions

	Use orbited

	Asynchronous programming is hard

Django in Depth

by James Bennet

I was trying to fix some problems at work so my notes here are amazingly incomplete.

Model Inheritence

	Abstract/concrete

	ye aulde abstract = True

	Use cases: common field sets and/or methods and/or META declarations

	DB level

	No special mechanism. Just subclass a model

	You can’t directly subclass

	Always implemented as multi-table

	Has OneToOne key to parent

	Good for modeling the “is-a” relationship

	I don’t like it and neither does James Bennet

	Python level inheritence

	proxy = True

	Will use the parent’s table

	Must have one abstract parent

	use cases: Adding methods to existing models, adding managers or changing Meta behavior

Django Views

	SystemExit is not caught by Django, otherwise can be caught

	Exceptions raised by exception middleware or 404 pages

	Deliberately uses empty Context because nothing about the Context can be trusted.

AdminSite

Here we go!

Overriding templates

	

Dude, where’s my database?

by Eric Florenzano

Relational

	Highly structured

	Strong type system

	Powerful query language

	Python talks to all of them

	In common use

Problems

	Hard to scale

Key/Value

	Tracking HTTP sessions

	User references

	URL shorteners

	simple and fast

	Examples:

	gdbm

	Kyoto Cabinet

	Berkely DB

	MemcacheDB

Problems

	No interesting queries

Data Structure

	Super fast

	Maps to certain problems very well.

	Modification of key/value

	Structured values

	Atomic operations

	Example:

	Redis

Problems

	Lack of alternative implementations

Graph

	Store data as nodes and edges in a graph

	Fits logically to many problem spaces

	Programmatic queries

	Examples:

	Neo4j

	VertexDB

Problems

	Scale ceilings

	Lack of alternative implementations

Document-Oriented Database

	Unstructured

	Formatted (JSON, Python object)

	Programmable Query API

	Examples:

	CouchDB

	MongoDB

	ZODB

	Use Cases:

	Activity streams

	User data

	CMS

Problems

	Scale ceiling

	Implementation-specific weaknesses

Highly Distributed Databases

	Optimized for multi-node

	Add and remove nodes on the fly

	Hard to do ad-hoc queries

	Sacrifice consistency

	Examples:

	Cassandra

	Riak

	HBase

	Hypertable

Problems

	Eventual consistency

	Can’t do efficient ad-hoc queries

Eventlets

by ???

Problem

Threads and stuff aren’t so good right?

Solution: Coroutines

Using Generators are an easy way to do co-routines in Python. But these are limited.

Eventlet

Green threads on top of greenlet

Form Panel

by all the framework builders!

Who is who?

	Johnathon Ellis - FormAlchemy

	Christoner McDonough - Formish

	JKM - Django Forms

	Chris Perkins -

FormAlchemy

Looks good to me. I could see using it instead of DjangoForms

Sprox

Ugh. Obvious but code not pretty/elegant.

Django

Django forms are declarative and awesome.

Formish

Not tied to models in any way. I guess you could roll your own.

Neo4j

by Tobias Ivarsson

Data Model

Relationships are what are normally called Edges

	Relations have types and a direction, can be traversed in either direction

	Both nodes and relationships have properties which are key value pairs

Questions

	Can a node have a relationship with itself?

	Yes

	Can nodes have types or do you just rely on properties??

	Nope

Support for Django out of the box

Very similiar format to Django models.

Underwater robots

University of Maryland

Details

	Python

	15,000 SLOC

	AI, GUI

	C++

	50,000 SLOC

30 member team

What does Tortuga do?

	Competes in competitions

	Does not leak

	Drives under water

	see and move around obstacles

	home on sounds

Construction

	6 thrusters

	Pressure vessel with a Mac Mini, batteries, custom electronics

	Runs Gentoo Linux

	4 hydrophones

	Grabber used as a claw

Python

	Great flexibility and unit testing support

	compact code

	easy to learn - easy to get new members up to speed

	stdlib and 3rd party support helped a lot

Unit Testing

	No 3rd party library to install and manage

Woes

	C++ integration

	Boost.Python and Py++ are powerful, but complex

	Overheard for wrappers is large in terms of dependencies, disk space, and compile time

	Small bugs and compiler incompatibilities lead to fragile bindings

The GIL

	Inflexible nature gratly constrains concurrent system design

	Forced the core of our software into C++

	C++ calling back into python is especially likely to run afound of the GIL

GUI & Simulator

	Done in wxPython & Python-Ogre

Dependency Management

	Build things with a custom script

Conclusion

	Dynamic languages are great fit for dynamics problems

	Python is great for robots because of their dynamic nature

	State.py is their AI library

Using Django in Non-Standard Ways

by Eric Florenzano

	Categories

	Choosing alternatives to what Django offers

	Using bits of Django in other contexts

The main thing

Its not as hard as you think its going to be.

Choosing alternatives

	Use Jinja2 with Django.

	More performant

	Some people like it more

Check out his slides for how it was done. In Django 1.2 you can just write a custom template loader.

What about my apps?

	Sometimes you just have to rewrite your template code.

Not using django.contrib.auth

	Sometimes it will be more difficult than not using it

	When using it will make your code less straightforward than not using it

	ie a facebook app

How to do it:

	Create a tiny app with one model whose PK is the Facebook User ID

	Wrote one decorator function redirect to an authorization page if not auth’d

	Convert a few apps to use the tiny app’s key instead of django.contrib.auth.model.User

Not using the ORM?

If against a database, why not write a pluggable Database backend? Cause writing that is non-trivial.

Too much detail to notate but check this out below. Its a way to use settings without a settings file!

Gem:

from django.conf import settings
settings.configure(USE_I18N=False)

Using the ORM in stand-alone mode

	Make sure the app with models is on your python path

	Call settings.configure with your DB info

	Optionally copy manage.py to your project

	import your models and use them

WSGI Middleware

	Start looking at repoze

	repoze.bitbt - Scales images

	repoze.squeeze - Merges JS/CSS based off statistical analysis

	repoze.profile - Aggregates Python profiling data across all requests, and provides an HTML for viewing the data

Other

	Yardbird - IRC using Django’s URL mapping to match messages and views into handling the callbacks

	Djng - Django based microframeworks

	Jng - Single file CMS

Django Internationalization

by Matt Croyden

I already know all this thanks to most of my other Django work but I may learn something new

Code

Sample code:

from django.utils.translation import ugettext as _

output = _("Hello, world!")

Translating models

	Don’t forget the Meta attributes!

	All titles and help_text items on model attributes should be translated

Translating templates

sample:

{% load i18n %}
{% block trans %}{% endblock trans %}
{% trans "blah"%}

Its just Python

	gettext, ugettext, ungettext are just simple wrappers around Python behavior

	Django provides a lazy translation layer on top, useful in models and template tags/filters

DjangoCon US 2009

	Keynote: On politics
	by Ian Bicking

	Keynote by Ted Leung
	Status of web frameworks

	RIAs

	Cloud Computing

	Competition

	JavaScript

	What can Django do better

	Confessions of a Perl bigot
	by Frank Wiles

	Afraid to give up his addiction to Perl

	Outside observations

	Perl thoughts

	What is Django missing?

	Advice on having a Django addiction

	Continuous Integration
	Assumptions and Constraints

	What is CI?

	Tests

	Deploying Django
	by Brian Rosner

	GeoDjango
	by Adam Fast

	GeoDjango

	Grue

	High-Performance JavaScript
	by Erich Ocean

	About sproutcore

	The HTML 5 Stack

	Django’s opportunity

	Lightning Talks
	Dive into cpython by Alex Gaynor

	pywatch by Chris Heisel

	Web Cube. by aron and Nickolai

	Surlex by Cody

	No Bad Pony
	What he does

	How is pony formed?

	Bad pony is:

	Massive Features

	Some popular tickets

	How do you get your Pony?

	If you must write the code…

	Pluggable Applications
	Background

	Reusable App design pattern

	Reusable App design pattern - sort of

	Template tags to the rescue

	The Use Case

	Their reqs

	Solution: Pluggable Resusable App Pluggable

	Make it so

	Very nice!

	Scaling Django web apps
	By Mike Malone

	A Scalable Application

	Caching

	Django has a nice low-level Cache API

	Upping your appserver

	Need to see the slides

	Ur doing it wrong
	by James Bennett

	To start off: RTFM

	Idea: Django module of the week

	Django is just Python

	The biggest problem with the perception of Django

	Testing new Django apps

DjangoCon Report

Note

This was the draft of something I was going to report back on to NASA HQ contract management to show why us developers and NASA staff wanted us to attend this sort of stuff. Unfortunately, Indyne/HITSS was staffed by amateur level management.

	Outreach to Ames Research Center

	Django Education Foundation

	Scaling Django

	Pinax Tutorial

	Pinax 0.7 release

	Discovering Django resources

Keynote: On politics

by Ian Bicking

Django community resists the politics of code.

Keynote by Ted Leung

	Sun Microsystems VP on new tools

	Cloud computing guy at Sun

Status of web frameworks

	The status of web frameworks

	Django is the python web framework

	Growth of django jobs is astronomical, but our numbers are still low

	Django jobs increased 692% in 2009!

RIAs

	Flex/Flash

	Silverlight

	JavaFX

	Open Web

Latency is a big deal. If your app does not respond in 0.1 seconds, then you have a problem.

Cloud Computing

	Began as deploy / operational play

	Will impact development

Competition

	Rails have solved the deployment issue

	Lift (Scala) has a lot of neat features like easy Comet support

	Nitrogen (Erlang) has a strong focus on UI.

JavaScript

	Bleah, slow

	But getting optimized for speed

What can Django do better

	What about an AJAX version of the admin module!

	Django + Comet is a pain in the butt!

	Deployment standards

	Monitoring and building that into the admin!!!

	Suggested stuff that Pinax is doing for best practices

	REST needs to go into core

Confessions of a Perl bigot

Note

In early 2010 Frank and Jacob Kaplan-Moss hired me to consult at RevSys.

by Frank Wiles

Old Django dude who does a lot of Perl

	Don’t flame him

	We want dynamically typed, garbage collected languages

Afraid to give up his addiction to Perl

	Didn’t want to give up his expertise

	Lazy and did not want to learn

Outside observations

	urlconf uses regex

	Quality of his code supply is better

	Good documentation

	Lots of modules that don’t install right

	Hands don’t hurt as much because pinkies aren’t used to grab the shift and obscure things

	Seeing lots of startups using Rails and Django

Perl thoughts

	Perl is a very insular community. Not as many blogs and articles in the modern methods

	Django is moving upwards. Not yet stuck with legacy issues

What is Django missing?

	Centralized repo a’la CPAN. We do have pypi.

	Perl has more HOWTO type docs and blog posts on various topics. PyMOTW is a good example of what we need.

	Dedicated Q&A website. Such as Perlmonks.org

	Centralized user groups structure

	Shared community hosting/infrastructure. Don’t we have webfaction?

Note

Back in the day I said webfaction but compared to djangozoom.com, ep.io, dotCloud.com, gondor.io and now Heroku, it is nothing!

Advice on having a Django addiction

	Just say yes.

	Best of breed.

	Development speed versus app performance

	Right level of coupling

Continuous Integration

	A way to make deployments and releases stronger

Assumptions and Constraints

	CI includes running tests

	VCS must be part of things

	Compiling

What is CI?

	As a developer saves to the VCS it pulls the code, runs the tests, and reports.

	Can be done nightly, daily, or per VCS commit.

	Build artifacts need to be handled. A build artifact is data and other non-code pieces.

Tests

	Integration

	Functional

	Code inspection

Deploying Django

by Brian Rosner

	relative paths in settings.py

	copy from Pinax style of setting things relatively

	use PROJECT_ROOT everywhere

GeoDjango

by Adam Fast

	Ability to CRUD geodata

	Querying based on geographic criteria

	Display of this data (slippy maps)

GeoDjango

	installation is easier

	PostGreSQL: GEOS, PROJ.4

	SQLite: GEOS, PROJ.4, GDAL

	geodjango-basic-apps

	Lots of neat and easy to use methods thanks to the ORM and GeoTools

Grue

	Geometries are big!

	PostGIS DBs aren’t cross platform. Migration is HARD.

	“Search” isn’t straightforward

	You can use South for migrations!

High-Performance JavaScript

Note

This was an awful talk. It could have been better, but the phrase, “Hey I travelled 1000 miles to get you guys to contribute to my unknown framework”” rankled badly with people like me who traveled 3000+ miles to attend.

	Plan for 200 millisecond latency

by Erich Ocean

	JavaScript can be used on mobile devices

	Much, much faster

	Flash, etc has limitations

About sproutcore

	The only HTML 5 application framework adopted by and now developed at Apple

	Open source

	Developers write standard HTML, CSS, and JavaScript

	Is seen as successor to NeXTStep/Cocoa

	First cloud application framework

The HTML 5 Stack

	Webkit (FF, Chrome)

	fast JS engine

	SproutCore application framework

	Favorite DOM library (jQuery, YUI, Dojo, Extjs)

Django’s opportunity

	Client-server interaction in the cloud is hard

	Django has a very well designed ORM that exposes meta-informantion

	Sproutcore has a well designed ORM that makes use of meta-information

Lightning Talks

Dive into cpython by Alex Gaynor

Um… yeah. Doesn’t apply to me!

pywatch by Chris Heisel

Done with buildout. Not touching it.

Web Cube. by aron and Nickolai

	Sales guy will say anything

	Designer takes too long and has programming challenges

	Planning and design process takes too long

	CEO needs day-and-night effort to make things work

	Commercial

Surlex by Cody

	Regex expression can be gnarly

	Surlex tries to make things easier

No Bad Pony

by Dr. Russell Keith-McKee

What he does

	wotnows.com.au - blogs

	wearehunter.com- music

How is pony formed?

	Russell said pony about a silly requirement request

	Cal Henderson said he wanted a magic pony

Bad pony is:

	ideas that are just plain wrong (not following pep 8, stupidity)

	impractical ideas (problems that don’t exist, changes design contracts, architecture astronauting)

	Design mismatch (DTL to Jinja, ORM with SQLAlchemy, test framework with Nose)

	Ignores the philosophy (Add GROUP BY HAVING to ORM, Add variables/callables to template language, Add AJAX to forms)

	Just a setting (less is good)

	Wrong direction (feature creep, make dev server multithreaded, add connection pooling)

	Add a backend (more work, hard to test, they provide APIs anyway)

	The community

	The core doesn’t have to do everything

	In fact, the core can’t do anything

	Community has an essential role

	Blessing by core doesn’t make code better

	Add X to contrib

	django-comments

	django-tagging

	Process ponies

	write more blog posts

	have a weekly news summary

	have a nightly tarball download

	Have a continuous build

	Have a precompiled PDF documentation

Massive Features

	Support for multiple database connections

	schema evolution

	Support for non-SQL data stores

Some popular tickets

	Better related objects admin UI

	Multiple database support

	ModelValidation

	FOR UPDATE in querysets

	Extendable user auth module

	Custom app_label/verbose_name

	Support clearing FileFields

	Identity mapper

	Binary DB fields

	Session-based messages

How do you get your Pony?

	Don’t be an ass.

	Offer to help out

	Help out!

	Advocate

	Document

	Write some code

	But follow the process

Earn some trust from the core team!

If you must write the code…

	Do the research

	Demonstrate you understand the problem

	Implementation trumps idle discussion

	Maximize utility for the core team

No Pony != End of the world

Pluggable Applications

by Nowell Strite and Shawn Rider

Background

	Many sites

	Built on a diverse technical architecture

	Many repetitive components

	Ease of implementation

	Highly specific details

Reusable App design pattern

	Easy to share functionality with other projects

	Quick to get features up and running

	Possible to expand and enhance functionality

Reusable App design pattern - sort of

	Apps are expected to live at one URL

	Convention of adding ‘extra_content’ params are not satisfactory

	Conventional template replacement is not always flexible enough

Template tags to the rescue

	Kind of fixes the problem

	but form postings become complicated

	but performance issues

The Use Case

	Access to a reobust database of curated resources

	Community features to allow educators to share and discuss those resources

Because discussion is so important in this setting, many objects in Peer Connection support discussions. Given thaqt the purpose of the site is partially to learn to use technology, a clean user experience is essential.

Their reqs

	Sensible URLs that follow our patterns elsewhere on the site

	Allow discusisons app to interact with other apps and objects in expected ways

	Allow posting of data and error handling in the same location - no redirects to stand-alone pages to fix a message post

	Flexibility to enforce permissions and other variations of display in an ad-hoc way

Solution: Pluggable Resusable App Pluggable

	Apps can be presented at various URls through the site

	Better architecture

	Content generated by the pluggable app is in the main content well, but can be farmed out to other places

Make it so

	pluggable urls

	pluggable views

	Subclassing / instantiation of pluggable application

Very nice!

	They do control of request stuff very nicely!

Scaling Django web apps

Note

Best Django scaling talk I ever attended!

By Mike Malone

	Common bottlenecks

	Django gave stuff for free

	Scaling is not speed or performance

	Not affected by performance

	No silver bullet

A Scalable Application

	Writing to local disk will kill performance

	A scalable system doesn’t need to change when the size of the problem changes

Caching

	Per site cache (except for forms)

	per view cache

	heavily personalized sites don’t work this way

Django has a nice low-level Cache API

	from django.core.cache import cache

	Use signals.post_save so you can invalidate caches

	They would do a hack by using cache.set to None for certain cases

Monkey patching the cache backend lets you tie the django.cache system to memcache

Upping your appserver

	Load balancing

Need to see the slides

	Tons of details dumped really fast

	Lots of good sys admin information

Ur doing it wrong

by James Bennett

Our WVA friend

To start off: RTFM

	People starting Django often don’t have a background in Python.

	Perl maxim #11924 “Well, if you don’t know what it does, why did you put it in your program?”

	Get the basic python bits down

Idea: Django module of the week

	Just like Doug Hellman’s Python module of the week

	Would take 2 years

	The problem is that I need a better blog engine

Django is just Python

	Django applications are just python modules. Did not reinvent the wheel.

	Django Views could be callable classes. Hmmmm…

	Django admin used callable classes for views.

	Yet people never grok that Django is really just python.

The biggest problem with the perception of Django

People think that Django is too glued together. But that isn’t true:

	Just do import SqlAlchemy

	You don’t need to use Django’s default components

Testing new Django apps

What James does to check out your app:

	Need to have your stuff working with standard Django install tools.

	top level stuff needs to be there in your package.

	Stay away from setuptools. Go to distribute by Tarek Ziade

	Wants to see a concise one-sentence explanation from the README describing what the app does

	You better have a good explanation as to why you are duplicating other person’s work

	Wants to see documentation or will file a bug. Will jump away from your work if you don’t have it unless you are lucky.

	Pick a license. Choosing one causes a flame. Django prefers the BSD.

	Tests are handy. If there aren’t unit tests he doesn’t trust your code.

What turns off James:

	Put this module in django.contrib

	Ignoring standard features of Python or Django is silly

Something cool:

	django-lint looks awesome

	pypants is awesome

	Assigns a score represented by pants on Python packages

Pycon 2009

TODO - Dive into the folders for django, excell, internet, and scrape.

	Behind the scenes at Everyblock.com
	Model designs

	Data Scraping

	IMPORTANT

	Building test frameworks with twill
	What is a test engineer?

	Some options they don’t use

	Cases

	Test framework stack

	Pros

	Cons

	Concurrency

	Coverage Testing - good and bad
	Coverage Measurement

	Coverage tools

	Django History
	Choices

	Guido’s Keynote Speech

	Things to look at

	MetaClasses

	Lightning Talks last Day
	GeoDjango

	What up with Zope

	New command line parsing called argparse

	Zain’s cheapo continuos integration tool

	blist looks awesome

	C types

	Using parenthesis to avoid backslashes in python

	Pinax Talk
	Quisition

	Stuff Upcoming 0.7

	Plone front end other front end
	Why Plone?

	Problems with Plone

	Content Mirror

	Now we can

	How does it work?

	Several created front ends

	Sphinx mini-tutorial
	Steps

	5 essential strategies
	Useful tools

	Strategies

	Testing large, untested code bases
	tools

	The code base

	Issues with code base

	What we already know

	Software forensics

	Grokking code thru coverage

	The State of Django
	What has happened since?

	Django 1.0

	Django 1.1 beta

	What next?

	Using Windmill
	Windmill IDE:

Behind the scenes at Everyblock.com

	Adrian Holovoty

Model designs

	Looks straight-forward

	But can’t do models per type

	
	So perhaps a bit of abstraction?

	
	
	Entry Attribute Value method?

	
	Needs multiple joins

	
	Bitmap method uses limited columns

	
	varchar01, bool01

	Needs an in-database schema

	Sorting can be an issue. Everyblock wrote a custom sort method

	GeoDjango lets you do geographic queries against your models

	Look up select_template method in Django

Data Scraping

	Regex for addresses

	http://code.google.com/p/templatemaker/ (built off C + python)

	Getting public info can be hard

IMPORTANT

	June 30th of 2009 Everyblock gets open sourced!

Building test frameworks with twill

Get the docs for this.
I think this is eclipsed by Windmill

What is a test engineer?

	QA people write a lot of test code

	Doesn’t do much manual testing

Some options they don’t use

	Expensive options like Rational Test Suite

	Windows-only

Cases

	You have tons of tasks to tests and how do you handle mutable tasks?

Test framework stack

	Nose

	Scenario objects

	Order Factory (Abstract State Machine)

	Page Objects

	twill.idyll.org (built off Mechanize)

Pros

	Easy

	Fast

	Pythonic

Cons

	No JS support

	too simple?

Concurrency

	Jesse Noller

	Networks are unreliable

	Bandwidth is never infinite

	Network is never secure

	Topology changes

	Transport is never free

Coverage Testing - good and bad

	WRITE SOME CODE! (happy)

	Does it work? (sad)

Coverage Measurement

	Shows which lines of code are executing

	How much of your code is covered by your tests?

	Your tests test your product

	Coverage testing tests your tests

Coverage tools

	trace.py in standard library

	figleaf by Dr. Titus Brown

	coverage

Running coverage

cli:

$ coverage -e x test_mycode.py arg1 arg2
$ coverage -r -m

Can also annotate source files.
Can run as a Nose plugin
can run it programmatically:

import coverage
coverage.blah()

Good side of things

	Statements are marked as executed or not

	window into your code.

	Fine tune by marking clauses to ignore via pragma

	Clauses can be ignored by regex

	Write more tests

Bad: blunt tool

	Everything considered important

	Leads to many false alarms

	
	Excluding code to boost coverage is too easy

	
	Tempting

	You’ll never come back

	You are only hurting yourself

Goals of coverage measurement

	
	100% coverage

	
	ideal

	Not always possible

	real world issues are thorny. Hardware failures for example

	
	Practical goals

	
	more coverage is better

	Actual number doesn’t matter

	False quantifiability: bad! Only cover what matters!

	Use coverage results to understand your code.

100% coverage issue

	You can fool yourself into thinking you are bug free.

	Tests can have bugs too!

	Doesn’t deal with path coverage

How coverage works

	sys.stack_trace()

	you can trick the trace function

	Lie to python about where the lines are

	Trace byte codes rater than statements

Django History

Considerations

	Web development needs to be stupidly fast

	automate repetitive tasks

	
	best practices

	
	Obsessed with web standards and best practices

	You have to enhance, extend, and maintain

Choices

	open source

	BSD license

	python

	
	pragmatism over methodology

	
	Didn’t care about GoF, MVC, TDD?

	
	Why break the standards?

	
	A lot of it is snake oil

	“There is no silver bullet” - Fred Brooks

	There is the right way and getting things done.

	
	Ramifications on questioning anything new

	
	“What’s the need?”

	No architecture astronauts

	You risk reinventing the wheel

	You can take things to far (Ruby for Rails)

	Messy internals

	
	Web development ought to be fun

	
	Rails asks why software development can’t be fun

	APIs should match behavior, not show how they work

	
	Good APIs almost documents itself

	
	Documentation driven development “DDD”

	
	Why does Django ship full stack?

	
	Lack of choices at the time of inception

	Might make separate choices again

	There is a reason why glue code is called glue code

	Full control over code means you get to define the API nicely

	
	Don’t repeat Zope’s mistake

	
	Don’t have people learn Django and not Python

	Innovation happens elsewhere

	Always someone smarter outside your own group

	Small pieces advance quicker

	
	Don’t make opinionated software

	
	Ego is dangerous

	It is not about you

	You can’t possibly predict what everyone wants

	There is no “one obvious way”

	
	Lots of choices is bad for new users

	
	There are always more beginners than experts for your projects

	Make complicated things easy

	
	Choices in the future

	
	Long tail or huge scale

	Learning curves

	Django in the Enterprise

	Does Django want to fight STRUTS

	
	Avoiding inevitable backlash

	
	Inviting criticism and take it well

	Make conscious decisions

Guido’s Keynote Speech

	Python is too smart to fail.

	community

Things to look at

	Reddit C55 CSS compiler

	Don’t lie about your user-agent when writing web crawlers

MetaClasses

	Everything is an object

	Classes are objects

	The class of a class is its metaclass

Lightning Talks last Day

GeoDjango

	Lets you add geography data to Django

	Works with PostGIS

	Attaches to normal django modelsgeodjango.rst

	Looks very easy to do!

What up with Zope

	Why is Zope still relevant

	PyPI is 90% Zope packages

	Age

	ZODB

New command line parsing called argparse

	argparse

	look on code.google.com

Zain’s cheapo continuos integration tool

	http://inzain.net/blog/

blist looks awesome

	For handling gigantic lists. Why not just use numpy?

C types

	only for cpython

	Allows access to c constructs

Using parenthesis to avoid backslashes in python

code:

>>> t = ("I am"
... " a screwy geek"
... " who likes python")
"I am a screwy geek who likes python"

Pinax Talk

by James Tauber

	Pinax means blank

	
	Seperation of presentation and content

	
	Persistence

	UI

	productivity through compromise

Quisition

	Flashcard site

Stuff Upcoming 0.7

	Better sign up

	New Group App

	Membership app

	endo vs exo

	Shared media

	Ships with famfamfam silk icons

Plone front end other front end

by Carlos A de la Guardia

Why Plone?

	all the great features

	built on python

Problems with Plone

	Complex

	Hard to extend

	Can be slow

	Plone does a lot of things

	Forced to use caching

	Caching is not always the answer to traffic

	Sometimes we are asked to add a couple of features that are Plone-y

	
	Easy to end up with Frankenplone

	
	Becomes very hard to extend and maintain

Content Mirror

	Developed by Kapil

	Serializes plone content into a relational database

	Supports 3rd party / custom archetupes content

	Simple to set up

	completely automated

	Works currently with 3.1

	Configure the database via ZCML

	Works with Oracle, PostGreSQL, and MySQL. I guess anything that SQLAlchemy

	
	easily extended

	
	CouchDB anyone?

	GAPE!

Now we can

	Use plone to manage content and manage workflow

	Serve plone content fast

How does it work?

	Integrates into the Plone event stream

	Uses SQLAlchemy to turn Plone schemas into tables

	Each Plone content type gets its own table

	Each custom content type gets its own table

	Once set up, content changes are sent synchronously to the database

Several created front ends

	
	Repoze.bfg

	
	Lots of Zope styles

	Much lighterthan-Zope infrastructure

	Plango uses Django to generate Plone content

Sphinx mini-tutorial

	Written in python

	
	Has two handy features

	
	Autodoc

	Autosummary

	More than docstrings

	
	Formats

	
	HTML

	Latx

	Author in Restructured Text

	Works with easy_install

	Has a quickstart tool

	Searchable

	Beautiful via styles

	Templates use Jinja, which is very similiar to Django templates

	Works with everything under pygments

	
	Can do test discovery via nose

	
	Start a useage section with bold

	Add in doc tests

Steps

	Use sphinx-quickstart tools

	Configured in conf.py

	Autosummary pulls in all the bits of your module

5 essential strategies

Why?

	Quickest way to verify that all features ‘work’

	Freedom to experiment

	
	Manual testing is error prone and time-consuming

	
	does not scale

	people are lazy

	Hard to test edge cases

Useful tools

	
	http://javascriptlint.com

	
	Validate against multiple browsers

	
	http://www.mozilla.org/rhino

	
	no browser, command line

	continuous integration

	no DOM

	Check out python spidermonkey C bindings

	
	Browser tests

	
	Selenium, Windmill

	hard to automate

	QUnit for JQuery

	http://saucelabs.com/

Strategies

	Test Data Handlers

	Test JavaScript

	Isolate UI for testing

	
	Automate UI tests

	
	Continuous integration

	Make it easy

	
	Gridify your tests

	
	Generate reports

	Selenium Grid

	saucelabs.com

Testing large, untested code bases

Dr. C. Titus Brown

tools

	figlead

The code base

	8k of python, 2k of pyrex

	Little app/UI code almost all library and framework

	Grew of accretion and personal use at UCLA

	Lots of technical debt

Issues with code base

	written at high level throughout

	lots of unfamiliar code

	functional

	Mix of developers

	Crosses domains

	Performance is critical

What we already know

	Unit tests and functional tests rock: use ‘em

	Code coverage is of limited utility because it doesn’t measure branch coverage

	
	Code coverage is invaluable when aimed at:

	
	new test efforts on legacy code

	understanding code bases

	legacy code is code that does not have systematic tests

Software forensics

	understanding big code bases is hard

	
	Code coverage can be used as a lever:

	
	“Give me but a place to stand and with a lever I will move the entire world”

Grokking code thru coverage

	Start with minimum useful statement

	Examine code that’s actually executed

	Add additional statement

	Examine executed code

	Repeat

The State of Django

Note

Interesting to see how this differs almost 3 years later. 2011/12/19

	Django is 5 years old

What has happened since?

	Huge growth

	Merged models and admins

	DjangoCon

	Google App Engine

Django 1.0

	Backwards incompatible

	Changed Signals

	QSRF (queryset refactor branch)

	Pluggable file storage

	newforms is now forms

	Modelforms

	Formsets

	Session backends

	File uploads work reliably

	autoescape

	Databrowse

	geodjango

	Runs on:

	Jython

	PyPy

	IronPython*

Django 1.1 beta

	Aggregates

	Annotations

	Query Expressions

	Unmanaged models

	Lets you subclass User and other things.

	Condition view processing

	Admin

	Expose particular fields as editable

	Define bulk actions

What next?

	Django 1.1 final

	GSoC

	Multiple database support

	EuroDjangoCon in May

	USDjangoCon in the fall

	Django 1.2 in november

	Py3k thoughts

	Support for python 2.3 will fade

	

Using Windmill

A neato browser test tool that does what Selenium does but better

Windmill IDE:

	Supports IE, FF, Safari, Opera

	Controller API

	
	Tools

	
	DOM Explorer

	Assertion explorer

	Firebug light

	Firebug

	Results and performance output

Writing tests

	Building, recording and editing tests

	Playback and debugging IDE

	
	Test languages

	
	python

	JavaScript

Running and Debugging

	You can do it from the command line

	shell environmnt

	results and performance output

	Python proxy thingee

Continuous Integration

	Stop on failure

	Python Logger

	
	Reporting

	
	JUnit Compatible.

Plone Conference 2008

	Started: Wednesday 8 2008

	End: Friday 10 2008

Venue: Ronald Reagan Center, Washington DC

	Day 1 - Keynote

	Day 1 - Feed the Masses

	Day 1 - Plone Developer

	Day 1 - Lightning Talks

	Day 2 - Agile Process

	Day 2 - Bringing Open Source Practices to Educational Enterprises

	Day 2 - Consultant Talk

	Day 2 - What makes a great software development team

	Day 2 - Summary

	Day 3 - Buildout by Clayton Parker

	Day 3 - Buildout with Tarek

	Day 3 - KSS by Joel Burton

	Day 3 - Lightning Talks

	Day 3 - Summary

	Joe Developer Class Curriculum Idea

	Products to investigate

	Sprints

Day 1 - Keynote

With Software as a service, is only the network luddite free?

The history of computers and freedom

Date: Wednesday 8, 2008
Bradley M. Kuhn

In the Beginning

	There were computers

	There were users

	…and users had freedom

Ye Old Four freedoms

	To learn

	To cope and share

	To modify

	To share modified versions

Then freedom eluded us

	Software licensing stuff

	Who invented software licensing?

	Gates convinced IBM to license rather than acquire DOS

Who fixed the problem

	Richard Stallman

	Lived through the golden age

	Programmed on old systems

The Golden Age

	Academic computer

	software sharing

	no licenses

MIT AI Lab

	Discovered that patents == money

	Spin-offs == $$$

GNU

	changed the world

	For the user of individual computers

	No reason now not to have freedom on your own machine

Internet changes little

	Client/server computer model

	Freedom implications are basically the same

	Email example

Email: The MTA

	Free email software

	Plenty of proprietary ones

	RFCs define interoperability

	We reverse-engineer RFC-less protocols

Email: Maul User agents

	Yours has freedom

What changed

	The browser delivered applications

	AJAX made it more powerful

	Where is computing done?

	Computing in the cloud

	Are our freedoms under threat by cloud?

Email become gmail

	The experience

	Effectively thin client

	Mixes up free again: Price vs. Freedom

	RFCs no longer enough

	We are back to proprietary “lock-in”

	Other examples is twitter, amazon cloud, etc

Users and the cloud

	Clouds affect us even when we don’t really we are using it

	Richard Stallman is nervous

What’s the challenge?

	Not merely a question of code and licensing

	A question of code/data control

	Power to move code/data/people and transport it to somewhere else

	Autonomy: of code, data, community

	Example: Trying to leave Twitter

How do we start dealing with this challenge?

	Plone is GPL which is good

	Plone is 100% open source

Keep going

	User communities need ability to move

	Reclaim your data and relocate your community

	This is tough programming

Projects to look at

	identi.ca (laconi.ca): Twitter replacement

	
	Prophet: Distributed database for web applications

	
	Move community via sneakernet, ideal for China

	
	Ourselves

	
	
	Affero GPL

	
	Extends copyleft to network service world

	Handles the code side well

	
	Techniques to look at:

	
	Deployed applications auto-give users source

	Data is downloadable in community-chunks

Future of the Cloud

	Disjointed but integraed

	portable

	Developers decide next direction

	Ask if we are respecting user’s freedoms

	Data belongs to users, and we are merely custodians

More info

	http://autonomo.us

Day 1 - Feed the Masses

	Introducing Vice - Outbound syndication in Plone via the Zope Component Architecture

	by Paul Bugni

	Wednesday 8, 2008

Agenda

	Syndication

	Vice History and Demonstration

	Zope Component Architecture

	Vice Integration

Syndication

	Providing other ways for your site to provide content besides the browser

	Great for frequently updated data

	Web feeds, rss, atom, etc

	
	Allows aggregators to target your site/feeds

	
	Net News Wire

	Feedburner

	Google reader

Prevailing syndication formats

	RSS 2.0

	Atom 1.0

Exposing the myth of RSS compatibility

	There are 9 different and incompatible versions of RSS

	FeedParser handles them all

	RSS has always had many branches

	Check out wikipedia for map of RSS branches

Atom

	Designed to be done via consensus. No branches!

	Atom has required fields

	Atom is gaining momentum because its easy to work with

Plone Syndication

	RSS 1.0 is the current view

	PLIP #128 is there to support RSS

	Uses Zope Adapters (via Five) to provide new views

VICE

	Sponsored by GSOC

	P4A multimedia support

	Plone 3 only

Installing VICE

	Add to the build.cfg

eggs = vice.plone.outbound
fake_zope_eggs = True

Features

	Allows for recursion on objects, their children, and their children’s children

	By content type can select RSS, ATOM, or both

	And even RSS 1.0

	Can syndicate any container

Goals

	Separation of concerns

	easy to add new feed types

	make it easy to add new attributes

	Isolate complexity into manageable objects

I need to bring in my icky one for Chris cause that at least runs cool

Day 1 - Plone Developer

	by Rob Porter

Here we go!

Useful Tools

	Web Developer

	Turn off web caching

	Firebug

	plone.reload

Plan

	Completely reformat Plone

	Show number of days until X-Mas

	Use a minimum number of images and CSS to make changes

viewlets.xml

	lets you define where things are going to be in buildout

Day 1 - Lightning Talks

Last minutes of the day

Special Announcements

Nature Conservancy Announcement

	Announcing Conserve Online

	
	Workers

	
	Rick Minor

	Sally Kleinfeldt

	etc

	
	Neutral forum where conservationists around the world can work together

	
	Work spaces

	Discussions

	Calendars

	Security

	
	Publishing

	
	provides Digital Object Identifiers (DOIs)

	Clearing house

	Collective

	Collaborative

	
	Get it!

	
	GPL

	http://sourceforge.net/projects/conserveonline

Lightning Talks

Here we go

KaizenPlone

	Way too many options in Plone

	Works well for Plone experts, not for others

	Its a FAQ

	Page per problem

	Paragraph per solution

	Names underneath to vote

	Sort of like Stack Overflow

	Not out yet

atomising by Tarek Zaide

	Fetches RSS feed and sticks into a Sqlite3 database

	Managed via simple configuration file

Cluemapper by Nate Aune

	Trac causes pain

	Cluemapper

	Project management tool

	Extension to Trac

	Personal dashboard

	easily create new projects

	Hour management

	Pretty mockups

	Cluemapper tech

	Dojo AJAX framework

	WSGI

	Timetracking rocks!

	Handles hours

	pretty graphs

	collates

	Should replace the crap that is STACR

	cluemapper.org

	cluemapper.blit.tv

PyPI Replication Project

	Buildouts for Zope highly depend on PyPI

	PyPI is a single point of falie (SPOF)

	Need to replicate PyPI

	z3c.pypimirror

	Allows you to mirror PyPI on your local machine

	About 5 GB disk space, 150 GB traffic per month

	Phase 1

	About to go live in November 2008

	Phase 2

	Refactored

	Auto-mirror selection in buildout!

	https://launchpad.net/pypi-mirror

Proposed improvements by Calvin Hendryx-Parker

	Make any folder a root plone site!

	Do so by adding a single interface!

	Answers ways to install 300-400 Plone sites

	Get buildout quick reference card

	Plugged for November buildout class thingee

Net Site Lightning Talk

	Minor CSS tweaks to make editing more close to the final results

	Wrote a more elegant, useful Plone edit toolbar system

Day 2 - Agile Process

by Mike Robinson

Introduction

	Agile is a conceptual framework

	Agile does have documentation

	Agile methods have been around since the 1990s and were united by the agile manifesto.

	Agile empowers the workers

	Agile knows their finished when they are finished

	Agile is:

	Like driving a race car, you know the course but can’t account for all the variables

Agile Values

	Individuals and interactions > process and tools

	Working software > comprehensive documentation

	Customer collaboration > contract negotiation

	Responding to change > following a plan

	Planning is more important than plans

Agile Principles

	Highest priority is to satisfy the customer

	Welcome changing requirements, even late in development. Agile processes harness change for the customer’s competitive advantage

	Deliver working software frequently. 90% completion is a lie. Its either not started, working, or finished. If you do not deliver working software you are of no value.

	Business people and developers must work together daily

	Build projects over motivated people

	Give developers the support they need and trust them to get the job done

	Working software is the primary measure of growth.

	Information is best done in face-to-face conversation

	Agile processes promote sustainable development by not overworking people to meet deadlines.

	The sponsors, developers, and users should be able to maintain constant speed.

	Simplicity is really awesome. Code is a liability to any organization. The less code you can deliver the better.

	The best architecture, requirement, and designs emerge from self-organizing teams.

	At regular intervals the team reflects on how to become more effective, then adjusts its behavior accordingly.

Why use agile?

	Agile lets you meet what the marketing folks want to give to customers

	Agile means good for business so you can plan out hours better

	Operations likes it because your updates are simpler

	Development likes it because it empowers developers

Developers need to be respected

	Don’t agree on schedules without developer input

	Don’t agree on tasks without developer input

	Developers need to be honest in describing what needs to be done

	Get developers to demo their work to the customer!

Charging for the assessment phase

	Bill for it

	Tell customers that you’ll bill for planning as long as the customer is willing to pay

Roles on a team

	Product owner: Drives the project

	Project Manager: Handles the resources

	Team: Developers

	Stakeholders: Customers

	Users: obvious

Artifacts

	Impediment list (use stickies on the wall to be obvious)

	Project iteration

	Working code

Agile requirements analysis, estimating and planning

	Identify the users

	Gather requirements from the users via

	Interviews

	Questionnaires

	Observation

	workshops

	Ways of documenting

	Use cases fixed the ATM returning cards after cash

	too big to plan for and measure with

	prone to include UI details

	User stories

	a tiny bit of information.

	You can attach these to use cases

	Estimating development

	Prediction is difficult!

	You will never be 100% accurate

	Short efforts on estimates are accurate

	Long efforts on estimates are always off

	Breakdown tasks into manageable chunks

	Estimation performed by development team

	Deriving an estimate

	Expert opinion

	Analogy

	Planning poker

	Story points are a relative measure of size of a story. 10 points is more than 5.

	Ideal time it would take to complete a task without interruptions. A football game is 60 ideal minutes and 120 minutes with interruptions

	Planning poker

	Each member gets six cards

	People put the value they think it will take down on the table. The most common value is how long it will take in story points.

	If one person has things way off, then talk out why there is a discrepancy

	After each task has point assigned, figure out how long a point is worth. Use previous effort to determine the length of a story point.

	Prioritizing user stories

	Priority assignment is the primary responsibility of the Product Owner

	Velocity

	Measure the rate of progress of a team

	Amount of story points completed in the last iteration

	Next iteration = same as last iteration (“yesterday weather”)

	velocity corrects estimation error

	Accommodate developer optimism

	Burndown chart

	Plots the amount of committed effort left against the time left to complete the iteration

Agile planning game

Day 2 - Bringing Open Source Practices to Educational Enterprises

moving k-12 to the modern era

Can’t do business with a web site that sucks

	Investigate: http://clubs.psu.edu/up/taxidermy

	Can’t afford the old school ways

	Chose plone because it gives a lot of web 2.0 model of user generated cotnent

Ecosystem

	Engage learners, teachers, families, and communities

	Modernizing business processes

	Cleaning up a bucket of organizations

	Diverse organization

	Platform to build some homogeny on

	Many little bunkers of IT staff

	IT at Penn state is distributed (not)

	IT at Penn state is actually disorganized

Behaviors and Structures

	Policies

	Standards

Day 2 - Consultant Talk

Figuring out charge rates

	Don’t lose money

	Fixed price for very short projects only

	Give estimates for x number of days at x price

	Optional scope reevaluations can be critical

	Give a percentage rate on things you don’t know

Day 2 - What makes a great software development team

	by Mike Robinson

	He can code

	He can manage

	Irish

	Cyclist!

What is the problem?

From the customer’s point of view

	Its expensive

	Its not what they wanted

	Its unpredictable

From the development team’s point of view

	Its mentally hard

	Don’t feel appreciated for their smarts

	It is hard work and the hours are often long, inconsistently hard

	The business doesn’t know what they want

Requirements

	Sometimes not technical enough

	Sometimes too technical

Process is not the answer

	More control eats up engineer team

Technology is not the answer

	Traditional or service doesn’t answer

Tools are not the answer

	trac is not the answer

People are the answer

	Great people are what you want

	Great people need process, technology, tools

Different process methods

	Pick the one you want, it doesn’t matter

	Principles and ethics are what is important

	Values of the developer

What Mike Robinson thinks will work

People

	Change

	Requirements will shift

	Scope will migrate

	Don’t think what you know will always work

	Technology mutates over time

	The market changes

	Embrace change!

	Work in such a way that change does not kill you

	Think like a sculptor in that you refine things over time

	Simplicity is king! If you start complex, it will be harder to enhance later

	Quality!

	Do things right

	Testing early, often, well

	Are you building the right solution to a problem?

	Get feedback

	Commitment

	Everyone has to be committed

	Give them sense ownership

	Make developers feel like what they are doing will make a difference

	Visibility

	Let people see what you are doing

	Give constant status updates

	Metrics are really important

	You are either not started, started, or done. No statements of percentage completes! No more 90% or 75%

	Collaboration

	Get your people into feeling they are part of the team.

	That includes developers, managers, testers, etc

	Focus on Value

	People need to be told what is considered to be of value

	Developers need to be instructed as to what parts of what they do will be shown to have value

	Got to see why what you are doing is important

	If its not of any use, why do something?

Process

	How do you pick the right process for your time?

	No one process is good for all teams.

	Based on values of your effort, pick the simplest approach to process for your team

	Review and adapt your process to see if it needs to be altered

	Evolve your process as needed

Conclusion

	No one method fits all projects, all the time

Day 2 - Summary

I was very rested by the time I arrived. I had slept well.

So you want to be a consultant by panel

No, I’m not looking to leave NASA these days. However, I do some side consulting, and even in my day job there are good project control lessons you can learn from the consulting crowd. For example, ideas on recruiting, customer relations, and how to handle billing when you need time to boost skills. There were 5 plone board members in the panel, and much wisdom was shared. Plone board members there:

	Nate Atune

	Gaer Baekholt

	Calvin Hendryx-Parker

	Jon Stahl

	Someone else whose name escapes me

What makes a great development team by Mike Robinson

He can code, he can manage, he can cycle, and he has an awesome Irish accent, and he taught us about agile programming. And he explained why and how it works in a great fashion. I’m completely sold. I have been for some time, but he gives great arguments for it, or at least on evaluating on how to best handle this sort of thing.

Future of the Plone user experience by Alexander Limi

Limi has strong opinions and what he said may not reflect what ends up happening. He wants deliverance, strong media handling, more widgets, deliverance, better kupu, z3c form improvement, better validators, and an easier way to handle templates. All good stuff.

And he had a much, much better version of what I’ve been aiming at with my customer editor view in NASA Science. Great minds think alike, although I must admit his method is much better than my own.

Simplifying Plone by Martin Aspelli

He wants to do it with a chainsaw and make Plone more approachable from a developer’s point of view.

Plone has a number of embarressments, with issues ranging from rich media support to import/export problems with the database. It is hard to learn and skinning is a challenge. He thanked Lennart for pointing out what Zope did wrong, and how developers expect things to be easy.

Wants to revamp much for Plone 4. Some quick bullets:

	Follow the guiding lights shown by some of the other Python web frameworks.

	Make learning follow a constant set of humps, not huge ones followed by a plateau followed by an insurmountable wall.

	make certain things real easy to do (logo, branding, content types, etc)

	Create one true way and remove the other ways

	embrace through the web but allow filesystem round-trip for deployment and collaboration

NASA Science case study by Katie Cunningham and Daniel Greenfeld

Yes! I helped present!

So we presented and apparently did very well. We had a few luminaries in the room, including a couple Plone board members. I think we nailed all the points we wanted to make, which was a very awesome thing to do. We plan to send the slides off to Alex Clark shortly so we can have them on line for everyone to see.

Evening Agile Development workshop by Mike Robinson

Two more hours of the awesome Mike Robinson ended the day for me. He gave a rock-solid lecture and then we played a game to support his statements. It was a fun game and learning was had by all. That said, I think this would have been better done as part of a day-long class, not at the end of a long day of conferencing.

General Socializing

Where to begin? I had great fun with so many incredibly awesome people. The quick and dirty list:

	Vernon Chapman

	Tarek Zaide

	Alex Clark

	Amy Clark

	Matt Bowen

	Jon Stahl

	Nate Aune

	Katie Cunningham

	Gary Burner

	Joel Burton

	My whole agile development team

If I missed you, let me know!

Day 3 - Buildout by Clayton Parker

	Buildout

	parts

	recipes

	command-line

	ZopeSkel

	Custom recipes

Why buildout?

	because it rocks

	lets us fetch all the dependencies easily

	no more ugly checklists

	lets us put everything involved in setup into one configuration file

Syntax

	Variable substitution

	${part:option}

	option additional and removal

options = foo bar
options += foo
options -= bar

	Reserved characters

	:$%{}

	Don’t use those things

	http-address: 11001

	zeo-address: 10001

Parts and Recipes

	Can’t have a part without a recip

	Part is identified in brackets:

	[plone]

Buildout

Some notes about buildout:

[buildout]
 eggs-directory = where to put eggs
 download directory = where to oput downloads
 zope directory = where zope should go
 index = http://download.zope.org/ppix (for PYPI mirrors)

[instance]
 event-log-level = debug

Recipes

Find recipes on…

	PYPI

	collective

Plone recipes

	plone.recipe.plone

	plone.recipe.zope2install

	plone.recipe.zope2instance

	plone.recipe.squid

plone.recipe.zope2install:

[zope2]
recipe = plone.recipe.zope2install
url = ${plone:zope2-url}
fake-zope-eggs = true
additional-fake-eggs = ZODB3
skip-fake-eggs =
 zope.testing
 zope.component
 zope.i18n

Extending Configuration

	buildout.cfg

	profiles

	base.cfg

	development.cfg

	debug.cfg (high debug settings)

	qa.cfg (testing tools included)

	prod.cfg (squid, varnish, etc)

how to extend:

[buildout]
profile we want to use
extend = profiles

PIL integration!!!

doh:

[buildout]
parts =
 PILwoTK

[PILwoTK]
recipe = zc.recipe.egg
find-links = http://download.zope.org.distribution

Handy tips

TODO: get all this stuff. Some handy stuff from this talk:

[instance]
environment-vars =
 TZ America/New_York

[debugging]
parts =
 debug-products
 debug-products-svn
 ipzope
 zope
eggs =
 plone.reload # real handy for development!!!
 Products.PDBDebugMode
 Products.DocFinderTab
 Products.Clouseau
 Products.PrintingMailHost # sends mailhost messages to console instead of to email!!!
zcml =
 plone.reload

Useful command line tools

	[ipzope]

	sets up ipython for Zope without the ugliness!!! Find this full setup!

	Lots of handy featurs

	[zopepy]

	Python prompt with all the Zope eggs in it but doesn’t start up zope.

	Great for command-line stuff without the weight

Versions.cfg

	Helps us control versions of everything in one simple file.

collective.recipe.zope2cluster

	Controls instances

Creating recipes

$ paster create -t recipe my.recipe.example

Recipe really just consists of:

class Recipe
 def __init__(sefl,buildout,name,options): pass
 def install(self): pass
 def update(self): pass
 def uninstall(self):pass # find conditions for things

Question

	Plone Deployment workshop (Indianapolis Nov 19-21)

	Creates a plone site in your Zope! #asked by me!!!

	collective.recipe.plonesite

Day 3 - Buildout with Tarek

	Expert Python Programming book

	TODO: Buy it at conference and get a hug

	NOTE: Bought it and still have it as of September 2012

	Did Nuxeo and Zope

	got sponsored by the Plone community to come!

Part I - working with packages

distutils

	Builds and distributes a package, registers and uploads it to PyPi

	screencast on http://ziade.org/ploneconf

	distutils is the standard of the whole Python community

	Alas, distutils is broken

	but there is hope

setuptools

	simple dependencies management

	namespaced package

	egg distribution

	provides easy_install

	python setup.py bdist_egg

	Eggs are to python as Jars are to Java

	egg = deployment format in a zip archive

	look up “sdist” which is what Tarek recommends

	python setup.py sdist

	awesome sauce

	easy_install my_package

	will get and install “my_package” from PyPI

Grrr… but setuptools is broken

	setuptools is broken

	funny stuff inside

	packaging future is uncertain for python

Get the community behind packaging system!

	Django

	Turbogears

	etc

	Python at-large

Problems with packaging

	PyPI == SPOF

	packages need privacy sometimes

	plone.org/products is dying

PyPI mirroring

	Make a smart mirror so it updates all the mirrors

	easy_install collective.eggproxy

	Run your own private PyPI mirror!

	Using Plone as a host!

collective.dist

	python 2.6 new “register” and “upload” commands

	This lets you use these commands in older versions of Python

	Lets you push PyPI mirrors with easy config files

Make plone.org/products PyPI compatible

	Plone.org was suppose to switch to that for months. Lazy guys

Big picture:

My product ----> plone.org
 ----> python.org
 ----> your company/agency

summary of part I

	Make mirror

	Run your own PyPI

	Push to several servers

	Use “mregister” and “mupload”

Part II - working with zc.buildout

local mirror:

[buildout]
index = http://my.mirror:8888

5 hours in 2006

	took 5 hours to get a buildout running

	Developers were engineers

5 minutes in 2008

	get the buildout

	$ python bootstrap.py

	$ bin/buildout

	start to work

Not the main purpose for the creation of buildout.

	Reason was eggification of Zope

	Now we can updates on individual eggs rather than the whole stack

	Plone is following the same path

	Plone pollutes Python site-packages

	But zc.buildout isolates the plone environment

zc.buildout best practices

	Use the same layout for all your projects

	folder layout ingunieweb uses

	docs

	buildout

	packages

	releases

	collective.releaser is what they use to handle releases

	make sure all developers have the same environment

	Windows developers are a problem

	Get the windows installer: python2.4.4-win32.zip

	Google “An installer for a buildout-ready Windows”

	This should resolve the Windows issues

	use on cfg per target

	Typical buildout layout uses the extends feature

	buildout.cfg

	dev.cfg (extends buildout.cfg)

	prod.cfg (extends buildout.cfg)

	bootstrap.py

Part III - application lifecycle

releasing packages the old way

sample:

for package in packages:
 raise the version
 edit CHANGES.txt
 create a branch
 push to various mirrors
 make some code edits
 eggify stuff
 deploy
 etc

releasing package the collective.release way

	Do a config file thing!

	sample:

for package in packages:
 release package

Day 3 - KSS by Joel Burton

	Joel is not a JavaScript expert

Overview

	Why KSS

	Client-side convenience

	Server-side power

	Quick reference guide

Challenges of JavaScript

	Another language

	Browser incompatibilities

	Even when done correctly…

	Do it again in Python

What is KSS?

	
	Kinetic Style Sheets

	
	Power of JS, syntax of CSS

	Allows you to declare behavior

	Includes AJAX library

KSS sample 1

basic example:

#logButton:click { /* identifier & event */
 action-client: alert; /* client action: alert */
 alert-message: 'clicked'; /* parameters for alert */
}

KSS sample 2

More complex example:

#logButton:click { /* identifier & event */
 evt-click-preventdefault: True; /* Don't do normal thing */
 action-client: replaceInnerHTML; /* client action: alert */
 replaceInnerHTML-kssSelector: "#message"; /* */
 replaceInnerHTML-html: "Clicked (via KSS)"; /* parameters for alert */
}

Registering KSS

	portal_kss in zmi

	storing just like css

Timeouts

	
	Makes it so you can in-line page auto updates!

	
	Stock market changes

	Chat system

events

	click

	dblclick

	load

	mouse events

	timeouts

	blur, change, field things

	TODO: look up text change!

coreset

	replaceInnerHTML

	insertHTMLafter

	addClass: add css class to html

	removeClass

	toggleClass

	focus on a given node

zope set of commands

	refresh a viewlet

	zope.refreshViewlet (…stuff…)

plone portlet functions!!!

	refreshPortlet

	issuePortalMessage

Debugging KSS

	
	Use Firebug!

	
	turn on portal_javascript debugging

	type in your scripts directly

Future of KSS

	
	Other JS libraries

	
	for people who want to tinker deeply

	
	Possible non-JS backends?

	
	Flash

	Silverlight

	http://plonebootcamps.com/resources

Day 3 - Lightning Talks

CSS Manager by Rob Porter

	Lots of handy push button tools for themes

	Puts changes in the custom folde

Grok + Dexterity by Martin Aspelli

	showing something with grok and dexterity

	Grok inside of Plone!!!

Plone Tune-Ups by Calvin Hendrix-Parker

	What is it?

	Short sprints done one fridays

	#plone-tuneup on irc.freenode.net

	dev.plone.org

	problem tags

	newbie

	green belt

	black belt

	big bugs

	for whom?

	anyone

	css experts

	qa people

	documentation

	why?

	chance to give back to community

	advance plone

Fabric by Aaron Van Der Lip

Because Aaron is Lazy…

	computers are for automating tasks, not for creating tasks that automate us

	A framework for handling repeatable tasks via ssh

Zope on Python 2.6 by so and so

	We get to have Zope on a modern server

Photogallery for repoze.bfg by ???

	Not everything should be done in plone

	Some things should be done in repoze.bfg

	repoze demo gallery

Day 3 - Summary

Day 3 summary

The night before I had weird dreams about angry pets. Angry dogs and angry cats. Very odd. I got out the door a little later than planned and rushed to get there to support the conference. Arrived and they seemed okay for staff and effort.

I did meet Shaun Saphton when walking in to the RR building. He is a certain South African poster on my blog who asked about NASA Science timeliness issues. We chatted and I got a couple others involved. He and his company work under murderously short deadlines. It seems that they have a good system in place to handle things, but one thing I noted was they had issues with skinning on time. Very interesting and from a very different point of view compared to our 6 week-ish long cycles.

That he had to post anonymously and could not easily provide his real email is yet more proof that I need my own real web site on a real web server. I want a simple blog that gives the features I want.

KSS by Joel Burton

Joel gave a good, quick explanation of the why and how of KSS. I knew most of it but there were a few gems I picked out of it that I turned right into working functionality for an internal NASA product.

Buildout by Clayton Parker

I thought I had been getting pretty good with buildout, but Clayton of Six Feet Up demonstrated how little I really knew. Thanks to him my skills really exploded forward. I am very happy right now with what I got from him. I may go to the buildout workshop in Indiana next month.

Distutils and more Buildout by Tarek Zaide

Tarek gave a great overview of distutils and buildout, explaining the current status quo, how things are moving along, and the pains of getting python core people to improve certain things. He talked about the new products section of plone.org, mirroring PyPI, and lots more.

General Socializing

More fun and yet another quick and dirty list in no particular order:

	Tarek Zaide

	Alex Clark

	Amy Clark

	Matt Bowen

	Jon Stahl

	Vernon Chapman

	Katie Cunningham

	Gary Burner

	Chris McDonough

	Chris Perkins (TurboGears)

	Mark (TurboGears)

	Calvin Hendryx-Parker

	Gabrielle Hendryx-Parker

	Alexander Limi

	Martin Aspelli

	Hanno

	Harito

	Darci Hanning

Joe Developer Class Curriculum Idea

Note

This was my idea during the conference. In essence, a class for the rest of us.

Goals of the class for our firm

	Teach plone to more people

	
	Teach Plone A-Z using latest stable technologies

	
	buildout

	Zope 3 style products

	Have fun

	Make enough money to get some Taco bell

	Prospect for potential customers for consulting

	Prospect for potential employees for consulting

	Earn me street cred in Plone community

Quickie view of the curriculum

	
	Class Pre-Requisites

	
	Basic knowledge of python

	laptop, Mac OSX or Linux preferred

	
	Our Setup

	
	Local Pypi mirror that we bring in to remove dependency on local internet connectivity

	
	Assembling the tools (Class starts)

	
	python

	easy_install

	paster

	SVN

	PIL

	
	Buildout - Plone!

	
	Configuring our Plone instance with buildout.cfg

	Building Plone

	Setting up a plone instance in the ZMI

	
	Buildout - Product!

	
	Using Paster and ZopeSkel to build a sample product

	Pointing buildout.cfg at our new product

Class Pre-Requisites

	Basic knowledge of Python

	Laptop

Our Setup

	Local PyPI mirror to expedite buildouts and remove dependency on network connectivity by host

	Projector

Assembling the tools

	Correct version of Python

	easy_install

	Paster

	SVN

	PIL

Buildout

	Create your product

	Doing the bootstrap

Products to investigate

	GloWorm

	plone.reload

	Firebug

	webcoutier

	TAL portlet

	PloneFormGen

	Vice

	plone.z3c.form http://plone.org/documentation/how-to/easy-forms-with-plone3

	Deliverance for skinning - what do we gain?

	Jon Stahl on video embedding

	ipzope (ipython for zope)

	zopepy (python prompt with zope eggs built in, but no zope instance, so good for introspection)

	collective.release

	collective.dist

	testcoverage

Sprints

Note

I teamed up with Katie Cunningham in order to contribute to P4A.

Projects I considered

	KSS (continue from last year)

	Generic Setup (Wanted to see it improved so configuration of Plone would be easier)

	Vice

	P4A (Package of libraries called ‘Plone 4 Artists)

What I did

Work some test tickets
#37 Provide alternatve displays of ordering the audio tracks
 - Drag and drop
 - order fields

What others did

	Faculty staff thing

	PloneFormGen

	Theming sprint (maybe)

	SchoolTool (Zope 3 school info thing)

	ZopeSkel

	Documentation sprint

	beginner’s sprint

	Vice

	KSS

	Dexterity

	Users

	Integration

	User interface

	Plone 4 Artists (what we did)

	Remote Include

Pycon 2008

Venue: Chicago! My first PyCon!

	A database in the clouds
	Using the Google Spreadsheets API

	Why?

	Challenges

	Why google spreadsheets?

	GoogleSpreadsheet API

	What sort of Database

	Simplified Interface

	Searches

	What is a callback?
	Callback implementation

	Customization

	OO Customizing: the TM DP

	Customizing scheduling

	Events

	The Observer DP

	GUI frameworks

	Callback issues

	Fixed args in callbacks

	Callback dispatching

	Callback and Errors

	System-events callbacks

	Event-driven parsing

	Scheduled callbacks

	Concurrent Callbacks

	Timing and Debugging

	Django under the hood
	Intro

	Pluggables

	New features

	Metaclasses

	Why Py3k
	Major Breakages

	Long anticipated breakages

	Major new features

	What’s in it for me

	Enables future evolution

	2to3 tool

	When do we switch

	Getting ready to switch

	What about text handling

	The role of Python 2.6

	Iterators in action
	Overview

	Functional LINQ

	Row composition

	Column Composition

	Naming

	namedtuple

	Select

	operator.itemgetter

	create join primitives

	Research items

	Concepts for use

	Recursive Generators

	Fork

	Global Interpreter Lock

	Netflix Prive
	More CPUs

	Beowulf Clustering

	Amazon EC2

	Parallel programming in Python

	ElasticWulf

	What is MPI?

	Basics of MPI

	Getting started

	nose and TDD
	How laziness drove the development of NOSE

	Basic of Nose

	Reasons to use nose

	Why Pyglet?
	Pyglet!

	Compared to other things (pygame, pyopengl)

	Components (Linx, OS X, Windows)

	Features

	Third parties

	Python for the sys admin
	Why Python?

	Sys admin constraints

	Q&A

	Turbogears Philosophy
	Why TG2?

	Why not just merge TG and Pylons?

	Stuff that was shared

	Going forward with other frameworks

	Roll your own persistence in python
	Example: Invoice

	Implementation

	Storage: Roll your own

	Ways

	Tradeoffs

	Serialization

	Serialization tradeoffs

	Adding features

	Data replication & versioning

	Map-Reduce Querying

	The server

	Summary

	History of SQLAlchemy
	Highlights of 0.4

	SQL Expression language

	New ORM Query ORM

	Inline Aliasing

	High level operators

	New ORM Configurations

	Collections API

	Dynamic Relations

	Polymorphic Inheritence

	New transactional features

	Other features

	What is coming back

	A command line’s tools dream come true
	Ideas for command line tools

	The basics: Subprocess + Optparse

	Some ideas

	Stackless 101
	Channels

	Why python sucks
	Not enough Python developers

	Few organizations have Python solutions

	Python language weirdness

	Python is slow

	Summary

A database in the clouds

Using the Google Spreadsheets API

	Lots of Python community support

	http://docs.google.com/Present?docid-dcmg89gw_70g6ct9jcz

	http://spreadsheets.google.com/ccc?key-pKq0CzjiF3YnZ5oeOipDoEA&hl-en&pli-1

Why?

	Server-side - streaminline server

	Portable

Challenges

	Might be slower

	Requires internet connectivity

	Caching helps and gives you best of both words

Why google spreadsheets?

	Free

	Available anywhere

	Scalable

	Restful API

	Nice UI

GoogleSpreadsheet API

	Web service based on AtomPub

	Series of related Atom Feeds

What sort of Database

	Non relational

	Supports queries

	Multiple concurrent users

	access controls

Simplified Interface

	gdata.spreadsheet.text.db

	Keep it simple

	for mashups

	text data only

Searches

	Ranges, equals, and more fun

What is a callback?

	Its all about framework code that ‘call back’ into your code

	Traditional code uses Hollywood principal, where “don’t call us, we’ll call you”

	Callbacks are used for event-driven architectures (actual events, structuring of control flow)

Callback implementation

	Give someone a callable

	Someone may store it somewhere

	container, attribute, whatever

	or keep as local variable

	Calls when appropriate

	When it needs some specific functionality (for customization)

	Or when appropriate events occur (state changes, user actions, etc)

Customization

	Customizing sort (by key)

	Read up on DSU pattern

	Note that a little workaround is needed with the usual ‘call a method on each object’ OO idiom

def DSU_sort(mylist, key):
 aux = [(key(v), j, v) for j,v in enumerate(mylist)]
 aux.sort()
 mylist[:] = [v for k, j, v in aux]

OO Customizing: the TM DP

Template method design patter: perform the callbacks by self delegation:

class TMparent(object):
 self.somehook()

And customize by inheriting & overriding:

class TMchild(TMparent):
 pass

Customizing scheduling

	Sched needs TWO callback functionalities:

	What time is it right now?

	Wait (sleep) until time T

	The OO way (more structured):

 import time
 s=sched(time)

* the FP way (more flexible):

 s=sched(time.time,time.sleep)

* You might supply callbacks or not

* (Dependency Injections DP & variants)

Events

	Events proper

	Observer/observable design pattern

	GUI frameworks (mouse, keyboard)

	asynchornous (event-driven) I/O

	System-event callbacks

	Pseudo-events

	parsing (SAX and other long tasks)

	scheduled (sched)

	concurrent (threads)

	timing and debugging (timeit, pdb)

The Observer DP

	Target object lets you add observers

	could be simple callables or objects

	when the target’s state changesm it calls back to the left observers know

	Design choices:

	General observers (callback on any state change)

	Specific observers (callbacks on specific states)

	grouped observers (objects with >1 methods for kinds of state-change)

GUI frameworks

	Most classic of event-driven fields

	consider Tkinter:

	elementary callbacks for buttons

	flexible, advanced callbacks and events (pressing the ‘a’ button)

	can also bind by class, all, root window, etc

Callback issues

	What arguments are to be used on the call?

	No arguments: simplest, a bit rough

	In observer: pass as argument the target object whose state just changed

	Or: a ‘description of the state changes

	Saves ‘round trips’ to obtain them

	other: identifier or description of event

	but? WHAT?!? check the PDF

Fixed args in callbacks

functools.partiabl(callable,*a,**kw)
 prebind any or all arguments
 x.setCbk(f,*a,**kw)

Callback dispatching

	What if more than one callback is set for a single event (or, observable target)?

	Remember and call the latest one only

	simplest, roughest

	Remember and call them all

	LIFO? FIFO?

	How do you remove a callback?

	Can one callback ‘preempt’ others

	Can events (or state changes) be grouped?

	use object w/methods instead of callable

Callback and Errors

	Are errors events like any others

	Are they best singled-out?

	Twisted Matrix’s deferred pattern: look this up! It holds:

	N chained callbacks for successes +

	M chained callbacks for errors

	each callback is held with opt (*a, **kw)

System-events callbacks

	For various Python system events:

 atexit.register(callable, *a, **k)
 oldhandler = signal.signal(signum, callable)
 sys.displayhook, sys.excepthook, sys.setttrace(callable)

* extension modules to that too:

 * readline.set_startup_hook
 * set_pre_input_ook
 * set_completer

Event-driven parsing

	SAX for XML

	sometimes very big!

	events are start and end of tags

	handlers are responsible for keeping stack or other structure as needed

	often not necessary to keep all

	XML DOM on other side

Scheduled callbacks

	Standard library sched

s = sched.Sched
evt = s.enter(blah blah blah)
s.run() #runs events

Concurrent Callbacks

	Useful for SR check

	threading.Thread(blah)

	stacklet.tasklet (stackless python)

	processing.Process(like threading.Thread)

	NWS sleigh: eachElem, eachWorker

Timing and Debugging

	timeit.Timer(stmt, setup)

	string arguments to compile and execute

	dynamic language twist on callbacl

	event for callback

	setup: once before anything else

	stmt: many times for running

	pdb module

	pdb.run and .runeval: strings

	pdb.runcall: callable, arguments

Django under the hood

Intro

	This is the undocumented stuff under the hood

	Declarative syntax

	Easy ORM

	Extensible template language

Pluggables

	HTTP middleware

	Database connections

	Cache mechanisms

	Authentication providers

	Context Processors

	Template loaders

New features

	Easy admin customizations

	Subclassing of queries

	File storage

Metaclasses

	Class for creating a class.

	Aren’t these just factories?

	Signals using PyDispatcher

Why Py3k

by Guido van Rossum

	Open source needs to move or die - Mats (creator of ruby)

	To fix early,, sticky design mistakes (classic classes, int division, print statement)

	Changing times (str/unicode, int/long)

	New paradigms come along (dict views, argument annotations)

Major Breakages

	Print function: print(a,b,file-sys.stderr)

	Distingish sharply between text and data

	b”…” for bytes

	“…” for (Unicode) str literals

	Dict keys() returns a set view [+items()/values()]

	Mutates as the dict underneath it mutates

	No default <, <-, >, >- implementation

	1/2 returns 0.5

	Library cleanup

Long anticipated breakages

	Kill classic classes

	int/long unification

	Kill string exceptions

	Raise syntax

Major new features

	Argument annotations

	def f(a: 2*2, b: ‘hello’) -> 42: …

	Abstract Base Classes

	kinda like interfaces

	In Python 2.6+ as well

	Expanded iterable unpacking

	a, b, *x, y - range(5) # 0, 1, [2,3], 4

	new str.format() method:

	“got {0}{kind}.format(42, kind-‘bugs’)”

	got 42 bugs

What’s in it for me

	More predictable unicode handling

	Smaller language

	Makes ‘Python fits in your brain’ more true

	There’s only one way to do it

	common traps removed

	Fewer surprises

	Fewer exceptions

Enables future evolution

	Examples

	Argument annotations

	print() function

	str.format method

	abstract base classes

	unicode letters in names

2to3 tool

	Context-free source code translator

	Handles syntactic changes best

	Handles built-ins pretty well

	Doesn’t do type inferencing

	Doesn’t follow variables in your code

When do we switch

	no hurry! 2.6 will be fully supported for at least 5 years. 2.7 and maybe even 2.8

	Switch when both of these are true

	You are ready

	All your dependencies have been ported

	PIL

	WSGI

	DB-API

	There are tools to help you switch

Getting ready to switch

	Start writing future proof code for 2.5

	Don’t bother with the trivial stuff though

	Focus on what 2to3 can’t do

	Stop using obsolete modules

	Start using iterators and generators

	Inherit exceptions from BaseException

What about text handling

	Yes, its a difficult issue

	Expect for help by this summer

	Isolate handling of encoded text

	use bytes and b’…’ for all data

	Use unicode for all text

The role of Python 2.6

	Stable, compatible, supported!

	Many 3.0 features backported

	But not text/daat distinction

	Warns about non-3.0-isms with -3 flag

	Especially for things that 2to3 can’t fix

Iterators in action

	Jim Baker

	jbaker@zyasft.com

Overview

	Functional LINQ

	Recursvie Generators

Functional LINQ

	LIN primitives

	Relational Algebra

	map, reduce reduce

	Lots of functionality

	Language INtegrated uery

	Streaming

Row composition

	__iter__, next

	All iterators use it

Column Composition

	Colums are harder

	Fundamental ops in relational algerbra

Naming

	Solution to integration in python is naming

	namespaces

namedtuple

	Sublcassing the tuple type

	associated the column names with an index in the tiple

	part of 2.6 - collections.namedtuple # LOOK THIS UP!!!

Select

	write helper functions

	look up tee - part of itertool.tee

operator.itemgetter

	extracts multiple items from a seuence

create join primitives

	hash_join adding two iters on a defined predicate

Research items

	itertools in general

	collections.namedtuple

	collections in general

Concepts for use

	Joining SQl data with other data for mashups

	Best to convert all data to namedtuples because then you have more finicky control

Recursive Generators

	# cookbook recipe 190465

	Graph traversal across edges and nodes

	Workhorse algorithm

	Bone up on yields again

Fork

	2.5+

	Given a generator runs it in a separate thread

	Look up fork

Global Interpreter Lock

	Not in cpython or in jython

	from __future__ import global_interpreter_lock

	from __future__ import GIL

	Not going to happen!

Netflix Prive

	Use Pyflix library to squeeze dataset into 600MB

	http://pyflix.python-hosting.com

More CPUs

	Some algorithms take weeks

	Need runs over many sets of data

	Problem if your resources are limited

Beowulf Clustering

	Expensive

Amazon EC2

	__init__(Amazon Machine Images)

	Pay for what you use

	About $0.10 per hour per small box, 0.80 for that

Parallel programming in Python

	basic prototyping done in Numpy

	Find clustering stuff to extend it

ElasticWulf

	Cheap

	copies Beowulf but uses Amazon EC2 to handle stuff

What is MPI?

	Use Ipython1

	High performance message passing interface (MPI)

	Implemented in multiple languages

	Point to point collective operations

	Very flexible and complex

Basics of MPI

	Each process has a size attribute: num of operations

	Each process has an id attribute

	import mpi

	local_array = mpi.scatter(my_list) # runs a list of functions across multople systems

	root_date = mpi.gather(local_array) # grabs the data from the processes

Getting started

	Sign up for Amazone Web Services

	Get your keys/certs

	Download Elastiwulf python stuff

nose and TDD

	Write tests first so you never have any wasted code

	For this, writing and running tests has t be easy

	And the tests have to be useful, especially when they fail

How laziness drove the development of NOSE

	traditional unittest is high-friction

	py.test is great, but hard to install and complex

	no boilerplate

Basic of Nose

	Extends unittest, doesn’t replace it

	use assert to test

	use print for debugging

	generative tests

Reasons to use nose

	nose makes it easier to write and run useful tests

	useful tests make it easier to write useful code

Why Pyglet?

	Content display

	No extra compilation

	Multiplatform

	Uses an OS’ native ctypes

	Well-designed (or so they say says me)

	Handles many screens and many windows in Python so if you have extra monitors

	Ate their own own dogfood (presentation is done in Pyglet)

Pyglet!

	Modern graphic cards are powerful

	Showed of mandlebrot sets that were live

	Demo done in eee pc.

	Works on Windows, OS X, and Linux

	Put it all together and you get Pyglet

Compared to other things (pygame, pyopengl)

	Runs without extra bits

	easier to control

	very pythonic

	Is Python 2.5+

Components (Linx, OS X, Windows)

	Open GL

	xlib, Carbon, Win32

	gdk-pixbufm Quicktime, GDI+

	Optionally PIL if you have it

	libpng, libjpeg (problematic)

	Audio (OpenAL, ALSA, DirectSound)

	Lets you do lots of fonty stuff with true text fonts

	Linux media is a mess (unreliable installs, wants to own playback)

Features

	streaming audio and video

	image stuff

	resource loading

	resource loading

	event loop

	graphics buffers

	fast sprites

	fast text and formatted text layout

	animated gif support

Third parties

	Cocos (A sprite and game engine that runs over Pyglet)

	rabbyt (a fast sprite rendering and animation library)

	ToGepy ()

Python for the sys admin

Note

I wonder how much of this has been subsumed by Fabric and the advent of Chef/Puppet. 12/22/2011

	http://dev.tummy.com/~jafo/pycon2008/

	Monitoring

	Helpers

	Automation

	Accounting

	Random scripts

Why Python?

	Perl not comfortable

	Python is comfortable

	They use Nagios and needed custom bits

Sys admin constraints

	5% programmer

	Using older versions of Python on older systems

	Security/priviledge issues

	Integration (system commands, file-system, GUIs, web)

	Heavy Data processing

Q&A

	System monitoring & reporting

	They use Nagios

	Backups and recovery

	Configuration management

	User accounts and security / SSH

	Using python for virtual servers/testbeds

Turbogears Philosophy

	grab best of breed items and created framework

	Replaced Kid with Genshi (faster, more flexible)

Why TG2?

	World was moving towards WSGI

	Pylons was already there and had similar components (SQLAlchemy, Paste, buffet)

	Make it easier to understand

	Wanted to get where Pylons was with WSGI

	Share developer efforts with Pylons

	WSGI which allows the fun of Middleware and has a well-defined interface

	WSGI lets you build up your framework from Middleware

Why not just merge TG and Pylons?

	Pylons likes everything to be independent

	TG likes standard options to speed things up

	(Debian != Ubuntu) == (Pylons != TurboGears)

Stuff that was shared

	Pylons middleware for exception handling

	Make a TG style controller in Pylons

Going forward with other frameworks

	Maybe lots of frameworks was good

	Web frameworks need to work better

	Need to communicate better

	Biodiversity is the SIGN of a healthy ecosystem

	Lots of ways to handle different problems like forms and security

	repoze.tm

	repoze.profile

	Stop reinventing the wheel!

	DBSprockets (django admin for other frameworks!) – look this up!!!

	WebOp makes writing middleware easy

	Social prerequisites

	Play nice!

	Respect each other

	willingness to listen

	try other frameworks

	develop a thick skin

Roll your own persistence in python

	http://blog.codejams.net/pycon/

	Performance boost over Sqlite + SQLAlchemy

Example: Invoice

	Invoices have lineitems

	lineitems may be split into accounting codes

	invoice has payments

	Must record amount paid on each accounting code for AR

	Invoice/lineitem

	simple JSON creation

Implementation

	Choose a way to persist string keys and string values

	Choose a serialization format

	Add features as ‘middleware’

	add querying by wrapping our db in a MapReduce implementation

	Serve our database over HTTP using WSGI

Storage: Roll your own

class DictMixin(object):
 def keys(self): pass
 def __getitem__(self,key): pass
 def __setitem__(self,key,value): pass
 def __delitem__(self,key)__: pass

	Other ideas::

	
	Use gdata, amazon, or other on-line db

Ways

dumbdb:

	written in Python, a flat file

	fallback option

dbm:

	Unix only

gbdm:

	Non-standard format

dbhash:

	BSD DB library

Shove:

	Recommends shove which lets you use various Amazon, gdata and other handy ways.

	Found on cheese shop

Tradeoffs

	Scaling

	Editing of data

Serialization

	cPickle

	marshal and repr/eval is not safe

	JSON - yay!

	YAML

	XML

Serialization tradeoffs

	interoptability

	speed (cPickle, JSON are fast)

	security

Adding features

class UserDict(object):
 pass
class JSONSerializer(UserDict):
 pass

Use formEncode to validate a document has the correct schema

Data replication & versioning

class VersionDict(UserDict):
 def __getitem__(self,key): do magic code
 def __setitem__(self,key): do magic code

Map-Reduce Querying

	use Google’s tool to handle storage and data optimization

The server

	class HTTPDict(UserDict): lots to do (disk space, memory usage, parallelizing, concurrency, locking, transactions, many others)

Summary

	Worse is faster and in some ways better

	UserDict amd DictMixin are fascinating

	Document oriented databases are fascinating

History of SQLAlchemy

	0.1 - 2006, very small API, threadlocal, ActiveMapper added to handle objects nicely

	0.2 - Lots of users, changed the API to be closer to today, inspired by Hibernate, Threadlocal turned off, wrote very fast

	0.3 - Rewrite a lot internals, ORMs reorganized, users needs evaluated, API stabilized

	0.4 - Here come developers to help out!, Lots of internal refactoring, speed profiling done, SQL expressions constructs done, lots of transactions and support for more databases.

Highlights of 0.4

	Much faster than 0.3

	Underlying code is simplified

	lots less callcounts and redundant method calls

	Smart operators in SQL calls to handle different database types

SQL Expression language

	s - select([employees,c.id, employees,c.name])

	select([func.now()]) will work with SQLlite!

New ORM Query ORM

	Query object is fully generative. Mapped properties now have relational operators

Inline Aliasing

	Alternate table ids to handle self-referencing tables in order to map out heirarchical data

	All the work can be filtered against a single query expression

	Easy dialogue making it very easy to implement

	In 0.4, join() generates aliased joins and aliases criterion for you

High level operators

	Has and Any are synonyms for SQL exists() method.

New ORM Configurations

	In SQL 0.4.4 familiar table and mapper constructs can be moved into class declarations called ‘New Declarative Layer’.

Collections API

	Sets, dictionaries, and any user-defined collection may be mapped using an open API

	This means any python collection object can be used by SQLAlchemy

	Use declarations to turn any object of your choice into SQLAlchemy objects. NICE!

Dynamic Relations

	Very large collections can be managed by a ‘dynamic’ relation, which issues queries for every access

	This way you don’t have to load a gigantic item into memory, just intelligent bits. A few restrictions, but it speeds things up

Polymorphic Inheritence

	Whole inheritence hierachies can be loaded automatically

	So mapping out standard fields in a table (Title, Description, Create, etc) is easy. This was a gotcha in that Django effort, remember?

	Can use to specify criteria against a subclass.

New transactional features

	Session can be configured to be ‘always transactional’, and optionally auto-flushing

	Databases which supprt SAVEPOINT can nest transactions

	Connections and ORM sessions both support two-phase commit semantics for supported databases

Other features

	ORM supports mutable primary keys, ON UPDATE cascade.

	Arbitrary SQL expressions can be asssigned to object attributes for ‘atomic’ update behavior

	metadata.reflect() can load full schemas at once

	New dialacts: MaxDB, Sybase, Access, Informix, DB2

	Horizontal sharding: extension for ORM, transparently loads and saves rows across multiple databases

What is coming back

	Migrate is back!

	Dialects will soon decouple SQL compilers from DBAPI behavors, allowing reuse among JDBC, ODBC, multiple native DBAPI connectors

	Jython support

	Customize class instrumentation; PJE using it to integrate with Trellis

	SQLAlchemy books

A command line’s tools dream come true

	Optparse: option handling

	Subprocess: elegant

Ideas for command line tools

	Pure Python - no systems calls but do Unix stuff

	Unix Mashups: mix python + system to solve new problems

	Network tools

	Wrapping over existing tools

The basics: Subprocess + Optparse

	Use subprocess.call

	If stout is needed, use subprocess.Popen

Some ideas

	Mix threading

Stackless 101

Note

Pydanny 2011/08/23 = Speaker was replaced by an alternate who wasn’t a coder. This was the second worst talk I’ve ever seen.

	Stackless is cpython with a few modifications

	Stackless adds tasklets, channels, cooperative multitasking

	Stackless is about lightweight threads

Channels

	Akin to unix pipes

Why python sucks

	Not enough developers know Python

	Few organizations have Python solutions

	Python language weirdness

	Python is slow

Not enough Python developers

	Python developers found are of higher quality

	All levels of Python experience provided real insight

	It can be good to hire people interested in new languages

	They like to hire people who are open minded

Few organizations have Python solutions

	Competitive advantage due to language

	Competitive barrier to entry - people are afraid of the language

	Regular opportunity for advocacy

	Likes client that trust them to deliver

	Best customers don’t care about fishing rods, just about the fish caught

Python language weirdness

	Most of this is personal preference.

	Forced indenting forces readability

	Dynamic typing demands more robust testing

Python is slow

	Some problems do not fit a pure Python solution

	Forces you early on to pick the right tool

	No tool meets every need, but knowing when it doesn’t work for your task is the an important skill

Summary

	Python rocks

	Many weaknesses of Python have often turned into great opportunities

Plone Conference 2007

	Ajax with Plone 3 : KSS development Patterns
	by Godefroid Chappelle - Bubblenet

	Anti-patterns and patterns for successful projects
	Speaker: Kamon AYEVA

	Introduction (Why should we care)?

	Follow these rules so life is easier

	Extending and customizing Plone 3
	by Martin Aspelli

	Agenda

	Interesting stuff

	Glossary terms

	Buildout

	Policy Product

	Generic Setup

	Installation tests

	Visual Customization

	Introduction to KSS, Kinetic Style Sheets
	by Balazs Ree

	Lightning Talks Thursday
	Plone HRM

	Quills

	GoReplace

	appy.pod

	Interop-Kmap

	Grok

	Manage your releases with Bundleman

	Repoze: Getting Plone to WSGI

	Storage for Archetypes with SQLAlchemy

	Entransit Content Deployment, bridging the presentation gap

	5 Plone theme tips
	Tip 5 - Centered Design

	Tip 4 - integration of IE

	Tip 3 - Styles alterations

	Tip 2 - Drop down menus

	Tip 1 - Rounded Corners

	So you want to be a Plone Consultant
	Agenda

	Getting Started

	Subtyping Pattern!
	What is subtyping?

	Why subtyping?

	p4a.subtyper

	demo

	cases in Plone4Artists

	Untested code is broken code
	arguments against

	justification

	tests in python

	Test driven development

	Executable documentation

	doctests

	documentation-driven development

	General Test concepts

	Zope 3 for Plone Class Notes
	Exercise: Creating a functional test

	Gotcha

	Interfaces

	Basic UI: View Components

	Writing your own permissions

	Integrating Archetypes

	Setting up the view

	Python scripts inside of templates

	Testing

	Sub-Type Pattern Syllabus

	Adapters

	Revisiting Adapters

	Utilities

	Advanced UI

	Forms & Widgets

	plone.app.form (part of Plone 3)

	Useful components

	Things to look at

	Formlib issues

	Tangent: Plone 3

	Relations with Alex Mitchell
	What is zc.relationship?

	What is Plone.relations?

	What is Plone.app.relations

	Relationship Source

	Relationship Targets

	Code Samples

	What can you do with it?

	What has been done with it

Ajax with Plone 3 : KSS development Patterns

by Godefroid Chappelle - Bubblenet

Note

KSS is a Python/JavaScript library that runs in Plone that uses CSS-style dialogues instead of JavaScript ones. It is something I hope the Plone community has abandoned. Stick with JQuery instead. (Danny 07/05/2011)

Overview

	Goals of KSS

	Design

	Development patterns

	test patterns

Goals

	Business logic should be computed on the server

	Javascript implementations are not standardized

	Transaction differences because you are creating a fat client

	Good integration with current development process

	Ensure we keep accessibility

	As few JS as possible

	Business logic should be computer on the server!

Design

	Kinetic stylesheets

	event binding

	Generic client-side engine

	same as HTML

	HTML snippets manipulation

	Simple server-side API

	dom on the server

	commands

	Plugins

	avoid dependency on JS libraries

Development Patterns

Do it in HTML only first. That way you have complete accessibility and its cross browser

	Client-side

	bind events

	css selectors

	get Data from HTML

	Value providers

	Server-side

	KSS views

	z3 browser views

	inherit from kss.core.KSSView

	Command Sets

	Queried by name (core, zope, plone)

	Z3 subscribers and components

	FireKiss

	Demo

	Debug mode is possible

	kssproject.org/downloads/firekiss.xpi

Test Patterns

	Don’t use Selenium unless you create JS plugin

	Check commands in KSS response

	Kss.core.KSSViewTestCaseMixin

	Check HTML elements in manipulated page

	Selected for events

	Selected for targets

Anti-patterns and patterns for successful projects

Speaker: Kamon AYEVA

Note

I had hoped to get new things out of this but as an experienced US government software contractor, none of this was new. (Danny 07/05/2011)

Introduction (Why should we care)?

	Any website project is a ‘software’ project

	All projects are CMS projects

	Users always want to update the site

	Types of People involved in development

	User

	Works to get tool to address my needs

	Tool should be easy to use

	critical: does not want to change their habits

	Project Manager

	Speaks with user

	speaks with developer

	then manages the budget

	Developer

	Tries to get the right stuff involved: CMS, DMS, Web 2.0, Flex, AJAX, JavaFX, Python, Ruby, .NET, etc…

	Trying hard to get best CMS done right!

	Success depends on the three parties working together

	Challenge is that each party has their own priorities

	Tip one: Try to understand each other

	User should be put first, since funding and interest comes from them

Follow these rules so life is easier

	Avoid things that don’t work (anti-patterns)

	Don’t reinvent the wheel and fight people who do this sort of thing

	File servers, DMS, Mail Server, Calendars, security, LDAP

	If you build it they will come

	What problem are your trying to address?

	Have others done it already?

	I there a third party tool that already exists for this task?

	Am I building the solution for me, my customer, or my ego?

	Trap: Gas Factory

	Bloatware

	We tend to add feature after feature until the application becomes unmanageable

	Apply rules and patterns that work

Extending and customizing Plone 3

Note

I don’t remember this talk at all, but I see from my notes instructions for both buildout and generic setup, two things that caused me a lot of grief during my Zope/Plone days. In retrospect, these are tools that employ configuration over convention, which probably explains my dislike. (Danny 07/05/2011)

by Martin Aspelli

Plone core developer and author.

Agenda

	Love the buildout

	Embrace the egg

	Policy: Repeatable

	Dependencies

	GenericSetup

	Tests

	Visual customization

	Through the web development sucks

Interesting stuff

	Plone 3 is built off smaller packages so easier to test and reuse

	They want to nix through-the-web development cause it SUCKS

	Tell SVN to ignore Eggs

Glossary terms

	Policy Product

	A pattern whereby a project has a single product which upon installation, installs all dependencies and customizations in one step.

Buildout

Sample:

$ paster create -t plone3_buildout test
$ python bootstrap.py

kewl stuff - start building Plone 3 this way instead of manually
http://plone.org/documentation/tutorial/buildout

Policy Product

	(((Read the tutorial on buildout!)))

	(((Read onout setuptools (easy setup) handles versions with dependencies)))

	Create a new egg:

$ cd src
$ paster create -t plone example.policy

	Namespace is example, package is policy, Zope 2 product is True, Zip-safe is False

	Tell bouildout about products

	Declare it as a development egg so buildoutdoesn;t go to cheese shop

	edit things so its reconginized to Zope 2 and zcml

	Edit buildout.cfg:

eggs =
 elementtree
 example.policy
 develop =
 src/example.policy
 [instance]
 zcml =
 ???

	rerun buildout:

$./bin/buildout -o (or do -N to not update the egg)

	Egg now ready

	zcml stuff

	install dependencies:

	<include package=”pone.browserlayer” />

Generic Setup

	XML syntax - bleah

	Extension profile bolts ont a base profile to amend or change configuration.

	This is the most useful kind for third party developers

	edit configure.zcml

	include GS namespace

	add in generic setup tag

	managed via portal_setup but portal_quickinstaller knows how to install them too:

$ mkdir -p example.policy/example/policy/profiles/default

Installation tests

	Need to get boilerplate off presentation documentation

	This sets up a Plone site for testing with our example

	create test_setup.py which tests that we got basic setup right

Visual Customization

	Zope 3 resources are customized with the ‘layer’ ZCML

	Visual components involved

Introduction to KSS, Kinetic Style Sheets

Note

Before JQuery let me walk the dom effortlessly, I had grown annoyed with JavaScript. I didn’t know then it was the DOM, and not the language. KSS seemed like a solution - because CSS syntax against DOM agony is better than JavaScript syntax against DOM agony? In any case, Plone later introduced JQuery and I hope KSS is out. (Danny 07/05/2011)

by Balazs Ree

http://kssproject.org/docs/tutorials/simple-kss
http://codespeak.net/svn/kukit/docs/introducing_kss/trunk

get FireKSS for firefox. Then do stuff like:

h2: click {
 action-click: alert;
}

h2: click {
 action-click: setStyle;
 setStyle-node: backgroundColor;
}

Lightning Talks Thursday

Note

I rarely take this many notes on Lightning Talks these days. (Danny 07/05/11)

Plone HRM

Note

Kind of neat and the sort of thing a Plone CMS might handle well. You need tons of docs plus some core tools. Add in PloneFormGen and you’ve got a pretty nice HR tool. (Danny 07/05/2011)

	Human Resources Product

	Handles different locations

	Functionality

	Salary

	Contract Builder

	Performance Reviews

Quills

Note

This is a tool that lets you turn your Plone site into a blog farm. (Danny 07/05/2011)

	Blogging for Plone

	Not ready but BOF is happening

GoReplace

	SmartFolders + Regular Expressions

	Looks good

appy.pod

-Turns Plone items into PDF, Docs, RTF, and other things

Interop-Kmap

	Semantic indexing and semantic search of documents/contents

	Hard to understand

Grok

Note

This is about the simple Zope powered framework. The work Chris McDonough did on repoze.BFG / Pyramid that eclipsed it clearly eclipsed it in both design strategy and leveraging lessons learned from outside the community. (Danny 07/05/2011)

	Luciano Ramalho

	Simple is good

	Start playing with it now

Manage your releases with Bundleman

Note

Even back then this seemed like a duplication of where the rest of the community was doing with buildout. However, the notes I have from this period claim ‘Good Documentation’, something that can be argued was a failure of the buildout community.

	Handy management tool for releases

	Ties right into SVN

	Used to manage externals. I think I like builtout better.

	Good for maintaining older applications perhaps

	Good documentation

	http://public.dev.nuxeo.com/~ben/bundleman/

Repoze: Getting Plone to WSGI

	Paul Everitt

	WSGI, Eggs, Paste, virtualenv

	Advice: Record your coding, don’t do it live

Storage for Archetypes with SQLAlchemy

	Godefried Chapelle

	Good logging

Entransit Content Deployment, bridging the presentation gap

	Alan Runyan

	Gives human users the ability to design and light data architecture

	Empowers end users

	Can control page layouts

5 Plone theme tips

Note

Lost the name of the author but this has the distinction of being the first Plone (or Python) conference talk I ever got to see. (Danny 07/05/2011)

Tip 5 - Centered Design

Fixed width:

#visual-portal-wrapper {
width: 980px;
margin-left:auto;
margin-right:auto;
}

- Liquid Design
#visual-portal-wrapper {
width: 980px;
margin-left:20%;
margin-right:20%;
}

Tip 4 - integration of IE

	put all stuff in IEFixes.css

	Write styles for IE7 first

	Then hack your styles for other IE version

	portal top is top part of Plone

	For IE6 and lower hack:

 // Below is IE7 , Firefox, and Safari
 #portal-top {
 background: blue;
 }
 // below is IE6 version
 html #portal-top {
 background:red;
 }

- easy to use
- almost no chance of breakage

Tip 3 - Styles alterations

	different sections styling

	site root

	news: blue

	products:orange

	events: yellow;

	about:green

how:

body.section-news {
 background-color: blue;
}
body.section-products {
 background-color: orange;
}

// This is auto-written and any_custom_view could be working_group.pt
body.template-any_custom_view {
 background-color: spotted duck;
}
// example
body.template-working_group_view.pt {
 background-color: spotted duck;
}

Tip 2 - Drop down menus

	Suckerfish for Plone 2.5.x

	Accessible

	valid CSS

	Obvious and clean XHTML

	Plone Dropdowns is for Plone 3.x

	webcouturier.dropdownmenu

	Build it out in folder items and use a heirarchy

	Autobuilds via Plone 3 into portal tabs

	Uses INavtreeStrategy

	Uses SitemapQueryBuilder()

	Can change the depth of the navtree via sitemap properties

Tip 1 - Rounded Corners

	Cornerstone of designer’s minds

	pure CSS solution

	Initial nifty corners

	Too ugly XHTML

	No hooks in Plone

	People don’t like dealing with CSS if they have to change images

	Images based solutions

	Sliding doors - often used for rounding corners

	Adam Kalsey technique

	Plone has XHTML hooks in portlets for this

	pretty simple css

	Most of the cases use nested HTML elements

	Fixed set of images for the corners

	JS + CSS solution

	The most flexible

	Doesn’t require nested elements in HTML

	Does not require additional CSS

	Potential Solutions

	Nifty Corners Cube (Javascript Library

	First doesn not work with borders and background images

	JQuery corners

	Requires jquery and does not work with Safari

	CurvyCorners library (recommended)

	Supports most modern browsers

	Works with borders

	Works with background images

	Supports antialiased corners

	Cons:

	Some problems when background images are used and box has different colors

	Does not work well when used with multiple boxes

	collective.roundedcorners

	On presenter’s laptop

	Normal Plone Package/Product

	Uses a mix of Javascript + CSS

	Raw, and will be released hopefully soon

So you want to be a Plone Consultant

by Nate Aune et al

Note

This was exciting back when I hoped to consult on the side for Plone. When I finally got my chance I hated it. Still, I respect and admire Nate, and can’t say enough good things about him (Danny 07/05/2011)

Agenda

	getting started

	growing your business

	practice and process

	being a good citizen

Getting Started

	How do you find projects

	Work for an existing Plone firm

	Don’t sell Plone, sell service

	How do you sell Plone?

	How do you charge?

Subtyping Pattern!

Note

In a recent design discussion with Nate Aune he said he thinks some of my common design patterns are really similiar to this approach. After striping away the Plone-isms, I have to say there is merit to what Nate thinks. (Danny 07/05/2011)

by Rocky Burt

What is subtyping?

-Allowing for the subtyping of an existing content type

Why subtyping?

-Many possible faces for existing content type
-simple conversion
-delayed specification
-not exclusive to p4a.subtyper, just built off of it

use cases
===============-

-Need diferent content identify depending on situation
-ogg file is video or audio
-transforming of identity based on event reaction
-How do you handle when a file type is uploaded?

p4a.subtyper

-minimal framework
-Hooks up subtypes into content menu
-$easy_install p4a.subtyper
-use workingenv or virtualenv or buildit as preferred
-special subtype events

	add ISubtypAdded

	addISubtypeRemoved

-extension by adapters and schema’s

demo

-new modules interfaces and IUlradoc

	IUltadoc os marker interface

	interface.alsoProvides(needs marker interface, IContentType)

	create descripters module

	new descripter class called UltraDocDescriptor

	for_portal_type = when this content type is displayed, this descriptor will be provided

	create ultraddoc.pt

	register descriptor as utility

	hook up new view applying to utility

	lets you have different views all with files named differently

cases in Plone4Artists

-Look at Audio, Video, Calendar

	no mention of p4a.subtyper

	But uses these techniques

Untested code is broken code

Note

Some of this stuff is awesome and I use it every day. The doctest stuff led me astray and I’m glad to be free. (Danny 07/05/2011)

by Martin Aspeli and Philp von Weiterhausen

arguments against

	they take time to write

	I’m a good developer

	my customer/community does the testing

justification

	You rarely catch subtle problems

	put the time you spend writing silly bugs into writing tests

	you end up saving time when you refactor

tests in python

	Easy, especially in Python

Test driven development

	Write the test first

	You don’t forget to write the tests

	You can catch design mistakes early on

Executable documentation

Note

This section was designed to support doctests. Now I advocate unittests, sphinx, and rtfd.org (Danny 07/05/2011)

	Tests should excercise APIs, demonstrate how to use them

	Developers may find documentation in tests

	Why not turn them into documentation?

doctests

Warning

Use doctests and you’ll hate yourself later, I’m keeping this for the sake of history (Danny 07/05/2011)

	looks like an interpreter session

	restructured text
- can be rendered to HTML, PDF, etc

documentation-driven development

	write unittests first

	science fixture

	tell a story to an imaginary user

	use ‘we’ and ‘you’

	put the story on the product home page!!!

	Danny likes this idea tons!

General Test concepts

	Each test should be totally independent of other tests

	Only load the bits you need, don’t load all components! So…

	Use zope.component.provideAdapter(UpperCaser)

	zope.testing.doctest.DocFileSuite(..,…,..,teardown=True)

	$instance test

	Don’t use: from Testing import ZopeTestCase unless you are doing integration

	from Products.Five.testbrowser import Browser

	Simulates browser actions

	learned in the class

Zope 3 for Plone Class Notes

_Zope 3 Training for Plone Developers: https://dev.serverzen.com/svn/public/documents/serverzen/training/zope3-for-plone-developers/docs/z3pd-training-preparation-notes.html

	Primary focus is component architecture (CA).

	Secondary focus is an application server.

	Adds frameworks and apis built on the CA.

	Five has been incrementally adding Z3 functionality for Z2.

	Zope 3 DOES NOT deprecate archetypes

	Complementary

	Some area’s overlap (schema’s, form generation)

Exercise: Creating a functional test

	Create a new Zope 2 product called Thoughtfulblog

	Reed discovered that PloneTestCase only works in the Instance/Products directory, but you can semlink to it .

Gotcha

Can’t mix and match Zope2.zpt and Zope3.zpt objects in Plone 2.5, but can do it in Plone 3.0. So METAL is bad there. This is why we should move to Plone 3.0.

Interfaces

	Interfaces define what methods are there but doesn’t define the logic inside. It is an agreement of how to build a class and nothing else. So any logic can be tacked on later.

	zope.interface is a good solid way to do Python interfaces. It can be used outside of Zope as seen in Twisted and other non-Zope projects.

	Marker interfaces are interface classes that lack any attributes (methods, properties, etc). A regular interface includes attributes.

Basic UI: View Components

	A view component consists of a page template, python class, and some ZCML glue

	Conventions places view components in a browser subpackage.

	Views can be traversed to

	Classes always take precedence

	Five mapped a bunch of Zope 2 naming permissions to Zope 3.
- Zope2.view is mapped to the standard Zope2 view system.
- zcml: allowed_attributes is a list of properties that can be vieed with same permissions

Writing your own permissions

	Use Products/Five/permissions.zcml as example

	id is name of Zope2 permission

	title must match string in CMF Permissions

	Rocky admitted it was a crude system

Integrating Archetypes

Archetypes based classes are very good

Setting up the view

	Views can be treated like regular CMF skin items

	Views can be registed as content actions

Python scripts inside of templates

	Just say no

	Only return items that the pages really need.

Example inside a browser.py file:

return [{'title': x.Title(), 'link': x.absolute_url()} for x in self.context.posts()]

Testing

	Look at ThoughtfulBlog/tests.py

	And the relevant browser.txt and content.txt file

	Awesome stuff

Sub-Type Pattern Syllabus

	Setting up the interfaces

	Modifying the view

	Introducing adapters

	Adapting folders

	Adapting smart folders

	Summary and Q & A

	Used in Plone4Artists Calendar, Media, and other bits

	Three new interfaces

	IBlog

	IBlogCapable

	IBlogEnhanced

	Mapped browser:page:blog.html to work for IBlogEnhanced by using the for=”.interfaces.IBlogEnhanced”

	Difference between implements and provides, which is critical semantics

	A class implements

	An object provides

Adapters

	A bridge from one type of object to another type

	Say “no” to monkey patches

	Say “yes” to adapters

	Subclassing and aadapting are not exclusive

	Done via ZCML (<adapter />) or ZCML plus python

	Example:

	ICare extends IVehicle

	ITransport could be an adapter for getting mileage info for IVehicle

	Excercise:

	Create new atct module - This is atct.py

	Create new class called ATCTFolderBlog

	Implement new posts method which calls context.contentValues() and returns BlogPost instances

	Wire up the adapter in configure.zcml

Revisiting Adapters

	zope.app.annotation

	Akin to property sheets

	A way to mark unrelated metadata onto an existing object

	Reusable method of reusing dictionary objects

	Multi adapting takes more than one object to adapt

	Sometimes it takes two object to make a bridge

	example:

	from zope import component

	adapted = component.getAdapter(myfolder,provides=IBlog) # -or-

	adapted = IBLog(myfolder)# -or maybe?-

	adapted cmoponent.getMultiAdapter((somelang, myfolder), provides=IBlog)

	Views are multi-adapters

	Adapts the context and request

	Most often used as callables

	getMultiAdapter((context,request),Interface,name=u’blog.html’)

Utilities

	Global Utilities

	Most common

	Akin to typical python module lookup

	can be overriden

	How to lookup a utility

	getUtility(ISomeInterface) #-or-

	Exercise: Creating a global utility

	Local Components

	Defined at the site level

	Zope 3 ‘site’ is mostly noted by the presence of the ISite interface.

	Most folderish objects can become Zope 3 ISites

	A site is just a place to store the “component registry”

	Example: A blog share might have a site for ‘news blogs’ with news components and another site for ‘food blogs’ for food specific components.

	Sites can be nested

	All components can be overriden with the closest component registry

	utilities are commonly overrideen.

	Cannot be registered via ZCML, must be done in install module

	Exercise: Make our global utility a local one

	blocking somerthing from loading in Plone 3: zcml:condition=”not installed Plone.app.portlets”

	Tools to util

	CMF tools are being deprecated in favor of utilities

	CMF tools use getToolByName

	Local utilities similiar to CMF tools

	Interface + name is important, not just name

	CMF tools being deprecated in favor utilities

	Sources

	Vocabularies (similiar type of source), similiar to Archetypes DisplayList

	Vocabularies are frown upon when seperation of concerns is important

	Standard ‘source’ ensures the ‘view’ of an item is calculated at request time (good time to figure out i18n)

	ISource requires only that the ‘in’ operator works

	Iterable sources (very common) require __iter__ and __len__

	Source binders are another utility used to generate a source based on context

	Excercise:

	-Permissions

	
	Permissions are actually utilities providing IPermission

	Permission objects have id, title, and description attributes

	No longer ‘just strings’ in Zope 2

	Example: Getting all the permissions via zopectl debug:

 >>> p = zope.security.interfaces.IPermission
 >>> p
 <InterfaceClass zope.security.interfaces.IPermission>
 >>> from zope import component
 >>> component.getUtilitiesFor(p)
 <generator object at 0x25ab9e0>
 >>> [x for x in component.getUtilitiesFor(p)]

- Custom Events

 - Common way to get notification when 'something; happens
 - one component fires an even
 - zope.event.notify(evt)
 - one component 'subscribes to the event
 - Most common use of events
 - Registered callables (often functions)
 - Does it's work because an event was fired

- Object events

 - Set of events provided and fire by core Zope
 - Examples are IObjectCreated and IObjectMoved
 - Used throughout Zope 3 and should be manually fired when necessary
 - manage_afterAdd is not good and is replaced via events
 - Since Zope 2.9, ObjectManager fires events properly
 - Object-Manager container manage_XXX methods deprecated in favor of listening for object events

Handy events:

 + IOBjectWillBeAddedEvent
 + IOBjectAddedEvent
 + IOBjectWillBeRemovedEvent
 + IOBjectRemovedEvent

- Current Archetypes base_edit fires object modified events
- Plone 3 provides richer set of object events being fired

Advanced UI

	Zope 3 schemas

	Simply an interface with more detailed attribute information

	uses fields as described by zope.schema

	Provides no UI specific information

	Fields provided for all Python primitives (Int, TextLine, List, etc)

	Fields provided for higher-level types (passwords, URI, DottedName, etc)

	Text field type is for hold a string with many lines

	TextLine is for holding a string with just one line

Forms & Widgets

	Widgets are essentially views on schema field instances

	Widgets provide IDisplayWidget or IInputWidget

	Widgets must be callable

	Widgets typically return HTML

	getMultiAdapter((field,request),IInputWidget)

	Automatic form generation via zope.formlib and Products.Five.formlib

	forms are browser views which extend base classes provided by Products.Five.formlib

	Edit forms can automatically popular form with current data (similiar to base_edit)

plone.app.form (part of Plone 3)

	makes formlib generated forms more Plone-llike

	provides extra widgets

	useful with Plone 2.5 and moreso in Plone 3

Useful components

	Python properties rock

	p4a.subtyper might be worth looking into

	CMFonFive
- Can be used to design menu items in Zope 3 style that will work for CMF
- Interesting Stuff:

	<browser:menuItem /> is how you do it

	workingenv.py

	zc.buildout
- svn.plone.org/svn/ploneout/trunk

	zope.app.intid
- provides unique integer based id’s for objects
- fast lookup, uses btree’s
- alternative to UID lookups with the reference catalog
- five.initid brings support to Zope 2 /Plone
- Go find the bloddy readme

	zope.cachedescriptors
- cache descriptors cache their data upon first invocation
- lazy propeties overwrite themselves with actual non-descriptor attributes

	lovely.tag
- Provides a fast tagging engine
- Uses zope.app.initid to manage id mappings
- can generate tag clouds, etc
- http://Plone.tv has this as an example

Things to look at

	Plone4Artists

	Uses sub typinng

	Interesting stuff:

	Enables both file and Blobfile

	Uses Interfaces

	IAudio

	IPossibleAudo

	IAudioEnhanced

	Plone4ArtistsAudio

	Interesting stuff:

	Keeps Zope 3 products seperate from Zope 2 stuff

Formlib issues

	No calendar widget

	No reference widget

	No wysiwig rich text widget

Tangent: Plone 3

	Look up Plone 3 configlets

Relations with Alex Mitchell

Note

This tool lets you establish relationships between any two object types in Zope. The problem is that it is functionally duplicating with Zope/ZODB what relational databases give for free. (Danny 07/05/2011)

What is zc.relationship?

	A low level ZODB index for querying relationships

	Highly optimized for simple relationships across large data

	Default confi allows relations between arbitrary persisten objects

	index can be confired to index complex relationships including non-ZODB objects

	provides transitive searches

	con: hard to use in Plone

What is Plone.relations?

	A local utility built on zc.relationship, which is application to a wide variety of relationship models

	A relationship class that models many-to-many contentl relationships

	Some options aspects of the relationship are also indexable

What is Plone.app.relations

	higher level API

	Content object for UML

	A set of optional adapters and subscribers

	DC workflow for relationships

	“Holding” relationships

	Relationships which are copied when their source is copied.

	example Plone code:

src = IRelationshipSource(obj)
src.createRelationship(target=obj)
src.getTargets()

Relationship Source

	IrelationshipSource

	Create (createRelationship), supports multiple targets

	Query (getTargets, isLInked, getRelationshipChains, getRelationships)

	Modify (deleteRelationships)

Relationship Targets

	IRelationshipTarget

	Same query methods and parameters as IRelationshipSource + getSources

	ISymmetricRelation

-Query (isLinked, getRelationships, getRelations)

Code Samples

stuff from the presentation:

>>> class IFriendship(IDCWorkflowableWorkship):
 """A friendship"""
>>> source = IRelationshipSource(obj)
>>> rel = source.createRelationships(obj, relation='friend', interfaces=(IFriendship)
>>> list(source.getRelationships(relation='friend')
<lazy list response>
>>> list(rel.targets), list(rel.sources)
>>> list(source.getTargets())
>>> target.isLinked()

What can you do with it?

	Model non-container relationships you might need

	Social networking

	User favorites

	Placeless content

	taxonomies or complex vocabularies

What has been done with it

dailyreel.com

Google Apps Script Hackathon

https://sites.google.com/site/appsscripthackathonlosangeles/

What is Apps Script?

Google Apps Script is a JavaScript cloud scripting language that provides easy ways to automate with Google products. Started in the spreadsheets and was expanded from there.

see http://www.google.com/script/start/

Features

	Editor in the browser

	Works with spreadsheets

	Sending email

	JDBC connector

	XML parsing

	SOAP

	Make HTTP requests with URLfetch

	Outbound OAuth support

	Build custom UIs

	Run script as a serice

Use Cases

Grading made easy with Flubaroo

	Create quiz using google forms

	Automatically grades against answer key

	Can email results and answers to each student

	Provides charts to analyze the results

Many types of mail merge

	Define a template

	Mail!

Vacation calendar for Brown University

	Aggregates staff that are on vacation

	Displays the results in a calendar instance

Sample code snippets

function emailTest() {
 // Send myself an email
 MailApp.sendEmail("pydanny@gmail.com", "LA Hackathon test email", "Body of email");

 // Get a list of my files with 'Django' in it
 var files = DocsList.find("Django");

 // Loop and log
 for (var i in files){
 Logger.log(i + '-----------');
 Logger.log(files[i].getId());
 }

 //var app = UiApp.createApplication();
}

My createHomePage code

This is my implementation of https://developers.google.com/apps-script/articles/sites_tutorial. It uses a mix of Contacts,
Calendar, and Sites to generate a page tracking IRC discussions.

Unfortunately the problem is that the tutorial seems to have fallen behind the current API. Took me a while to hack this to work.

 // create a new site

 // ISSUE: had to grab existing site because SitesApp.createSite throws strange errors
 var site = SitesApp.getSiteByUrl("https://sites.google.com/site/pydanny/");

 // add team members from our Gmail Contacts as collaborators, and create a profile webpage for each contact
 var contacts = ContactsApp.findContactGroup("Python").getContacts();
 for (var i = 0; i < contacts.length; i++) {

 // ISSUE: Did this because the first item is a title field of 'contact'
 if (i===0){
 continue;
 };

 try {
 site.addCollaborator(contacts[i].getPrimaryEmail());

 var name = contacts[i].getFullName();
 var pageName = name.replace(/\s/g,"");
 var phone = contacts[i].getWorkPhone();
 var description = contacts[i].getNotes();
 } catch(e){};

 var welcomeMessage = name + "'s profile page

Phone: " + phone + "

" + description;
 try {
 // ISSUE: Did this because on additional runs this for people withpages it throws errors
 var webpage = site.createWebPage(name + "'s Page", pageName + "sPage", welcomeMessage);
 } catch(e){};
 }

 // notify club members about future matches

 // TODO: Make this work by trying site.getChildByName and then site.createAnnouncementsPage
 try {
 var annPage = site.createAnnouncementsPage("PyCon Annoucements", "Announcements", "New announcements for the PyCon thunderdome team will be posted here.");
 } catch(e){
 var annPage = site.getChildByName("Annoucements");
 };
 var d1 = new Date("10/20/2012");
 var d2 = new Date("12/30/2012");
 var events = CalendarApp.openByName("Daniel Greenfeld").getEvents(d1, d2);
 for (var i = 0; i < events.length; i++) {
 var message = "<p>There will be a thunderdome chat from " + events[i].getStartTime() + " until " + events[i].getEndTime() + "!</p>";
 var count = i + 1;
 var notice = "Thunderdome Chat #" + count
 Logger.log(count);
 Logger.log(message);

 // ISSUE: No easy way to check if an announcement has already been created
 try {
 annPage.createAnnouncement(notice, message);
 } catch(e){};
 }
}

Women in Engineering

Talks at L.A. Girl Geek Dinner #1 – Google Venice

	URL: http://ggdla.com/l-a-girl-geek-dinner-1-google-venice

	Date: September 20, 2012

	Socially Assistive Robotics and Discoveries on the Research Path
	Full bio of speaker

	Roboticist

	Bridging the Care Gap

	A new frontier of Sicence and Engineering

	Socially assistive robotics

	Research questions

	Autism Spectrum Disorders (ASD)

	Stroke Rehabilitation

	Eldercare, Alzheimer’s Disease, and Dementia

	Role modeling: How to be a mentor

	Mentoring advice

	Hitting the Road to Mars
	Full bio of speaker

	Many NASA centers

	About JPL

	Four stages of planetary exploration

	About Mars exploration

	Spirit & Opportunity: Same mission in 1997 applied in 2003

	Curiosity

Socially Assistive Robotics and Discoveries on the Research Path

by Maja J Matarić

	http://robotics.usc.edu/interaction/

	Ph.D University of Southern California

	BS in CS at University of Kansas

	Go Jayhawks

	Ph.D earned at MIT

	Center director of CRES, WiSE Chair in Engineering, President of the Faculty, Vice Dean for Research

	Give much credit to her students

Full bio of speaker

Dr. Maja J Matarić is a professor of Computer Science, Neuroscience, and Pediatrics at the University of Southern California, and founding director of the USC Center for Robotics and Embedded Systems. She received her MS and PhD in Computer Science and Artificial Intelligence from MIT and is fellow of the American Association for the Advancement of Science and of the IEEE, and recipient of the Presidential Awards for Excellence in Science, Mathematics & Engineering Mentoring, the Okawa Foundation, NSF Career, and the MIT TR35 Innovation Awards. She is featured in Michal Apted’s movie “Me & Isaac Newton”, in The New Yorker (“Robots that Care”, J. Groopman, 2009), Popular Science (“The New Face of Autism Therapy”, 2010), IEEE Spectrum (“Caregiver Robots”, 2010), and is one of the LA Times Magazine 2010 Visionaries. Her research into socially assistive robotics is aimed at creating caregiving machines that can provide personalized assistance in convalescence, rehabilitation, education, and eldercare. Her group is developing robot-assisted therapies for children with autism spectrum disorders, stroke and traumatic brain injury survivors, and individuals with Alzheimer’s Disease. Details are found at http://robotics.usc.edu/interaction/.

Roboticist

	Enabling technologies

	Bodies (sensors, effectors… humanoids)

	Brains (Moore’s Law)

	Afforability

	Socio-economic factors

	Growing aging population

	In 20 years there will be as many old people as young people.

	Who will take care of all these old people?

	Healthcare crisis

	Increased concerns about safety

	Tech-savvy youth

	People and robots can get closer than ever: HRI is finally possible and interesting

Question: What is HRI?

Bridging the Care Gap

We don’t have the people to provide care for the young, ill or aged.

Imagine a robot:

... that can assist a phisical confgitaive therapist/coach
... that is enjoyable to interact with
... that is easy to command and interact with
... that is unobstrusive
... that encourages socialization
... that increases human quality of life
... that can help identify early signs of disorders
... that can provide continiuous support

They call this robot a ‘shepherd / guide’.

A new frontier of Sicence and Engineering

Human centered robots has the potential to benefit both how we do science and how we develop technologies:

	Robots as tools for scientific inquiry into human behavior and learning processes

	Personalized robot technology helps people, improve health and performance and quality of life

Socially assistive robotics

Robots that help through social rather than physical interaction:

	Monitoring

	Early detection

	decreased risk of injury

	Coaching/training

	Motivation

	Get people to do what they need to do to improve their quality of life.

	Companionship/socialization

	Avoid isolation and depression

Note

Robotics enhance, not replace, human care

Research questions

	Why a robot? The role of embodiment and physical presence.

	embodied communication

	body language

	presence

	believability vs realism

	compliance

	uncanny valley issues! TODO Get a link for Uncanny Vally cause I’ve found this interesting for years.

	Making friends and influencing people? Social monitoring and steering interaction dynamics

	Socially appropriate behavior

	personality

	engagement

	influencing human behavior and habits

	Will it last? Long-term personalized user adaptation.

	sustained engagement

	improved human wellbeing

	Adaption along w/ the user indifinitely

Note

Social time has to be realtime. Chess is not realtime. A conversation with body language has to be done in realtime or you lose engagement with the user.

Autism Spectrum Disorders (ASD)

Those with ASD will live full length lives and are at least as intelligent as the rest of us. How do we make them more productive within society?

	Children with ASD interact socially with robots in ways they do not with people or computers

	Robots seem to elicit social behaviors, communication, join attention, turn taking, initiating play, even the first social smile

	An opportunity to develop robots as tools for ASD diagnosis, intervention and therapy

Note

They look at ways that kids with ASD suddenly begin acting with robots in a way they don’t interact with humans or computers. They do amazing astonishing things they don’t do otherwise.

Stroke Rehabilitation

	Most stroke sufferers are left with permanent deficits due to a lack of long-term supervised rehabilitation

	40% of traumatic brain injury symptoms (TBI) are similar to stroke

	Rehabilitation requires hours of supervised daily exercise

	Continual motivation has shown to be a critical aspects of recovery; rehabilitation is depressing.

Note

Stroke sufferers after the 12 weeks of physical therapy often don’t continue working the body to improve

Note

Stroke sufferers will stay engaged but cheat if they can!

Warning

Robots are always interpreted as male. Adding a wig and bra to a robot is not cool. Real tests have shown that trying to change the gender of a robot is counterproductive.

Eldercare, Alzheimer’s Disease, and Dementia

	We’re all headed there

	Aging-in-place requires a social component to offset isolation

	Evidence supports physical fitness as effective against Alzheimer’s as medication

	Research has shown that senior citizens really like robots. Any statements otherwise are not backed up by science

	Singing games with too-perfect voices (like Frank Sinatra) are counterproductive. This is a good example of Uncanny Valley.

Role modeling: How to be a mentor

	Be transparent and don’t compartmentalize

	Expect 100% effort and commitment

	Demand collaboration. We are a team

	Be completely honest but fair and mindful of difference. You are not me but this is how it works

	Be kind but not wimpy. Life strikes again but so what?

Mentoring advice

	Do what you love and love what you do

	Don’t take no for an answer.

	Be true to yourself: speak up, bit wisely (and increasingly with seniority)

	Do outreach, so you do good and get perspective

	Refuse the false choice of work vs. family

	Be excellent and demand excellence of others

	Form a network of peers; it’s all about people

	be a mentor and recruit mentors lifelong

Hitting the Road to Mars

by Nagin Cox

	Cornell University, Robotics & Psychology

	Joined the US Air Force

	Wanted to be part of JPL since she was 14

	Been involved in Galileo, Spirit, Curiosity, and Opportunity

Full bio of speaker

Nagin Cox is a Systems Engineer and Manager at NASA/JPL. Nagin graduated from Cornell University with a BS in Operations Research and Industrial Engineering, as well as a BA in Psychology, and was commissioned as an officer in the US Air Force. She worked in F-16 Aircrew Training and received a masters degree in Space Operations Systems Engineering from the Air Force Institute of Technology. As a captain, she served as an Orbital Analyst at NORAD/Space Command in Cheyenne Mountain, Colorado Springs. In 1993, joined JPL and has since served as a systems engineer and manager on multiple interplanetary robotic missions including NASA/JPL’s Galileo mission to Jupiter, the Mars Exploration Rover Missions and the Kepler telescope mission to search for earth-like planets around other stars. She is currently on the mission operations team for Mars Science Laboratory (MSL)- NASA’s next rover to Mars that launched in Nov 2011 and successfully landed in August of 2012. Nagin has spoken to audiences around the US, in Europe, and the Middle East on the stories of the people behind the missions.

Many NASA centers

	Kennedy

	HQ (I worked there)

	ARC

	JPL

About JPL

	Used to be an Army base

	Doesn’t do jet testing anymore

	Does robots and exploration for NASA as part of Caltech

Four stages of planetary exploration

	Flyby

	Orbiting mission

	Landing

	Human exploration (only done on the moon)

About Mars exploration

	First started going there in 1960s

	Because of solar orbits, we can get there once every 2 years

	Landing on Mars was first done in 1976 with Viking

	Landed on Mars again in 1997 with Sojourner. Didn’t go far - only about 10 feet.

Spirit & Opportunity: Same mission in 1997 applied in 2003

	http://science.nasa.gov/missions/mars-rovers/

	http://science.nasa.gov/missions/mars-exploration-rover-spirit/

	We were only 35 million miles from Mars, closest in 65,000 years!

	Designed to investigate rocks for evidence of past liquid water

Note

She remembers the last day Spirit’s wheels moved on Earth

Landing the rovers

	Needed a flat landing spot. Scientists wanted the grand canyon but the engineers wanted flat terrain.

	Target landing spot is in a long ellipse pattern

	You bounce many times at five stories high over 25 times.

	Waited 10 minutes for the signal to come back after landing

Driving the rovers

	Found lots of bedrock

	Being stuck in sand happened while trekking over dunes

	Rovers kept functioning longer and longer

	Spirit stopped in 2010

	Opportunity is still going as of 2012!

Curiosity

The next big step

	http://science.nasa.gov/missions/msl/

Curiosity’s Capabilities

	Robot field geologist

	Mobile Geochemical laboratory

	Nuclear powered

	Really big!

	Weighs more than a 2011 minicooper

Landing target

	Landing ellipse is tiny compared to previous missions is tiny

	Not using balloons for landing

	Guided entry, spacecraft guided itself during descent

Do not go where the path may lead. Go instead where there is no path and leave a trail. – Ralph Waldo Emerson

AngularJS

San Francisco

	Rebuilding DoubleClick with AngularJS
	Old app

	New App - challenges

	Transition to prototype

	Transition to AngularJS

	Single Page Architecture

	Other libraries they use

	Third-party controls

	Open sourcing their work?

	Internationalization

	Caching

	AngularJS in review

Rebuilding DoubleClick with AngularJS

	http://www.meetup.com/AngularJS-SF/events/76149102/

	August 14, 2012

	At Google San Francisco

	Case study about use of AngularJS for DoubleClick

Meetup Description

This month we’ll have a very special guest speaker - Marc Jacobs, tech lead of the DoubleClick Digital Marketing Manager team in NYC. If you want to get first hand info about building a large enterprise app with AngularJS, this is the meetup for you!

This presentation will be done over video-conference (from Mountain View) and attendees are encouraged to ask questions and join the discussion over the video link. Additionally, one or two AngularJS core team members will be present on site and can answer questions locally as well.

Old app

	DFA6 FE was C# on ASP.NET

	DFA6 BE was Java on Oracle

New App - challenges

	Rebuild DFA using technologies that made more sense for Google.

	Engineering skills

	Google tech backends

	GWT or not?

	Principal UI technology across Google advertising products

	No resources on their team familiar with it

	Hard to find engineers with GWT

Other tools they considered

	Backbone.js

	JavaScriptMVC

	others

Enter AngularJS

	It was declarative

	Had two-way data binding

	Used plan old JavaScript objects

	Happily integrated with JQuery

	It had a full testing story

	It had a straightforward architectural model

Transition to prototype

	One engineer created a basic prototype in two days.

	Used existing web services and CSS

	10% time spent compared to GWT

	10% of the size of code base

Transition to AngularJS

	Early Strategy: Upgrade the app page-by-page

	Eventual Strategy: Rewrote the app from scratch

Their AngularJS strategy caused a lot of FUD:

	Why weren’t they using GWT?

	AngularJS maintained by less than 5 people.

Google got over the FUD and now embrace AngularJS.

Single Page Architecture

Issues:

	Common view content

	bookmarkability

Other libraries they use

	JQuery

	Underscore.js

	Closure Compiler (https://developers.google.com/closure/compiler/)

	LESS

	HTML5 Boilerplate

Third-party controls

Started with JQueryUI but now have their own:

	list

	grid

	validation framework

	notification framework

Open sourcing their work?

	Sharing across google

	Content that it’s too specific for their use cases

Note

I think that they haven’t released some of their commonly used code is not good.

Internationalization

	DFA is translated into 10 languages

	The have a custom wiki-like language for things to be translated

	They rewrote the gettext protocol.

Caching

	Server

	HTTP

	Browser

	$http

	Application

AngularJS in review

advantages

	Leverages standard web technologies

	New engineers get up to speed quickly

	Testing is deeply embedded in the Angular way

	Velocity of development is excellent

	Passionate framework team

	Growing community of framework users

disadvantages

	AngularJS scenarios are ignored, poorly documented, and not at all obvious to use.

	AngularJS unit testing technologies are currently in flux.

	AngularJS documentation is quite buggy and is missing some key conceptional content.

realities

	Flexible, powerful, but also complex

	Dependency Injection is awesome, but a mind-bender for many JS engineers

	Does not attempt to solve all key problems in large-scale web application design

	Mixing client/server-side templating can be messy, yet it may be unavoidable.

Closing thoughts:

I wish I came out of this talk knowing something about how AngularJS actually works.

The documentation and style of what I see in the AngularJS docs makes me think of a modernized Dojo.

SFV Developers

San Fernando Valley developers

Talks

	May 1, 2012
	spire.io stack

	Django and MongoDB: The State of Things

	Bringing down the system using Python to save lives

	Why Pyramid?

	Heartshark

May 1, 2012

Note

I co-organized the event and gave a talk!

spire.io stack

	By Jason Campbell, http://twitter.com/jxson

	One of the guys at http://spire.io

	Details at http://www.spire.io/posts/our-architecture.html

Stack:

	node.js

	coffeescript.js

	reddis

	Ruby (actually jruby)

	Lots of workers and controls of them.

Django and MongoDB: The State of Things

	By myself

	Slides forthcoming

Bringing down the system using Python to save lives

	By Randall Degges

The issue

	Syrian Uprising

	Military killing civilians

What can I do to help?

	Shut down military communications!

BUT HOW?!?

F@#$ the government!

	Syrian military monitoring civilian communications then dropping bombs

	How to protect people fighting a terrible regime?

	Shut down the system!

Using Voip to save lives

	Use Asterisk and pycall to make millions calls

	just a few bytes to make the call

Why Pyramid?

	By Michael R

	CTO of http://cars.com

	Known on IRC as ‘goodwill’

	Organized the PyCon Web Summit

Very flexible

	Any template engine

	Any ORM or ODM

Support

	Fast, 100% test coverage, well-documented

	Open source with strong community support

	Pay for what you get

What Pyramid doesn’t do

	Make choices for you

	No assumptions about the structure of your application

Features

	Creates a WSGI-compliant application

	Handles HTTP requests and responses

	views, requests, and more

	Awesome t-shirt

	Works with gevent for asynchronous behavior

Example

from paste.httpserver import serve
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello, World!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 app = config.make_wsgi_app()
 serve(app, host='127.0.0.1')

Note

Finish rest of sample app

Boilerplate available

	Libraries

	Scaffolding (see http://pyramid.opencomparison.org/categories/application-scaffolding/)

	FormAlchemy can do roughly what Django admin

Heartshark

by Daniel Stewart

	https://github/heartshark

Plan

	A tool to help you make up for lost meetups.

	People list people they saw on craigslist.

	Parses the craiglist data to figure out where, when, and other details.

JS.LA

JavaScript Los Angeles

Talks

	September 25, 2012
	Text Mining

	July 26, 2012
	Backbone: The framework that isn’t

	Going Native: Practical scripting with the JavaScript Image Object

	JS To Rule Them All

	April 26, 2012
	farmhouse.LA

	Visualizing Sound

	Native performance on Mobile with JavaScript

	Mojito

September 25, 2012

	Event: http://js.la/

	http://jobs.js.la

	Hosted by http://www.crosscamp.us/

	https://twitter.com/crosscampusla

	Sponsors

	HTML5 Dev Conf

	EdgeCast

Text Mining

	Speaker: Danny Tran

	Works for Walt Disney

	https://twitter.com/digi_danny

	https://github.com/digidanny

	http://www.dannytran.me/

Note

very good speaker!

80% of all data is unstructured text

	Sentiment analysis is how you do mining

	Understanding huge amounts of Twitter data

	Wanted to figure out how to investigate this via node.js

	https://github.com/NaturalNode/natural

	But could have used python:

	http://pypi.python.org/pypi/nltk/2.0.3

	Which would have been many times faster than node.js if used with numpy

Types of Sentiment

	Polarity: Positive or negative

	Continuous: -10 to +10

	Categorical: Happy, sad, angry, frustrated

Assumptions

	Bag of Words

	English

Techniques

	Semantic Summation

	Machine learning classification

Pre-processing

	Unrepeat (His description of long terms like sweeeeeet)

	Entity Extraction (Pulling out nouns/entities from text have to not skew the results. For example: Fight against evil can make a positive description sound bad)

	Tokenization

	Problem: Abbreviations

	Problem: Emoticons

	Spell correct http://norvig.com/spell-correct.html

	Word stopping

	Limitization

	Reduce word to it’s root form

	Result is a word

	Running => Run

	Stemming

	Reduce word to a stem

	May not be a word

	Carry => Cari

N-Grams

TODO: Get definitions of this.

Naive Bayes Classifer

TODO: Show javascript example

Note

the data coming needs to train this algorithm

Getting training data

	sentiment140.com

	Use emoticons to pre-classify text

Test!

	Against 70k+ records from sentiment140.com

	Humans only agree 70-80% of the time so don’t expect perfection

July 26, 2012

	Hosted by http://www.citygrid.com/

	Event: http://js.la/

Backbone: The framework that isn’t

Note

Presenter used a presentation tool that doesn’t have a back button. Ahem.

	by Daniel Hengeveld

	http://twitter.com/thedaniel

	http://www.favortree.com

Synopsis

Backbone.js is often discussed alongside the many other popular client-side frameworks like Ember, Knockout, et cetera. This talk will discuss how Backbone.js is less like those opinionated frameworks and more like a set of glue libraries to build your own framework, and will also cover some useful patterns you can use in your own Backbone application.

Lots of hot client frameworks

	Angular

	Ember

	Knockout

	Spine

	Backbone

Backbone is kind of opinionated

The fact that it leaves out even basic framework structure yet makes you make your own decisions

	but you shouldn’t have to rewrite boilerplate

	and you should still have a set of drop-in components that work well together

	You should have the freedom to do what you want.

What do frameworks provide?

	Models

	Views

	Controllers

	Presenters

	Observers

	Routers

In other words, the glue you need to make something work.

What does backbone provide?

	Models

var view - new SandwichView({model: rueben});
// view.model attribute set to reuben

	Events instead of callbacks

this.collection.on('add', this.addItemView, this);

function(item){
 view.$('.js.item.container').append(
 (new SomeItemView({model:item})).render().el
);
}

	Ability to combine template context and user data

var BaseView = Backbone.View.extend({
 // snip giant chunk of code
});

	Do the anti-pattern of having a fat router

app = Backbone.Router.Extend({
 // snip giant router function

});

Presenter’s opinions about Backbone

	Provides Tight coupling between models and views that represent them.

	4 classes and a default sync sync method and kid of sets you loose with them

	Doesn’t force you to follow a ‘Backbone Way’.

	If your app isn’t trivial, Backbone might not be the right choice

	If you need to handle lots of DOM and JS executions, Backbone might be a right choice.

Going Native: Practical scripting with the JavaScript Image Object

A Practical JavaScript talk

	by Aaron Martin

	http://twitter.com/citygridmedia

	http://www.citygrid.com/

	Big fan of Mootools (http://en.wikipedia.org/wiki/Mootools)

Note

This was an AWESOME talk. Great to see how digging into the fundamentals can allow you to do some really impressive things with a tiny bit of code.

Synopsis

JQuery, Dojo, Mootools, Ext, Prototype, Script.aculo.us, Backbone, Modernizer….[sigh]…it’s hard to keep up. Remember when there was just something called JavaScript? I do. Don’t get me wrong I love all the aforementioned libraries like a father loves his children, but when it is time to get practical and create performance solutions those babies got to go. I’m going to introduce you to an old friend of mine, the JavaScript native image object. This ol’boy is perhaps one of the most powerful objects in JavaScript and he’s uber simple to get to know. I’m going to show you some of his tricks and try to convince you that he belongs in your JavaScript solutions tool belt!

What can the Image object do?

	Handle Image Data

	Server Communication (pre AJAX)

	Analytics

	Page Performance

Basic Image Object

var foo = new Image();
foo.src = url;
if(foo.complete) return true
else return false

Image Events

foo.onerror=function(){}
// 404
foo.onsuccess=function(){}
// 200
foo.onabort=function(){}
// cient timeout

image_beacon.js

To see events fired by rollover, these send out business processes on rollovers. This way they can track people’s usage of the site. For example, which image are people perhaps ‘right-clicking’ on and other things not normally detectable.

var quirkyURL = 'http://url.xyz'
var backupURL = 'http://url2.xyz'

var ms = 500;
var totalms = 5000;
var tries = Math.ceil(totalms/ms);
var beacon = new Image();

// create a recursive function
var check = function(){
 if (beacon.complete == false){
 if (tries--){
 // keep on checking until we run out of tries
 setTimeout(function(){check()}, ms);
 }
 else {
 window.removeEvent('unload', quickSend);
 beacon.src = backup; // never went so we go to backup location
 }
 }
 else{
 window.removeEvent('unload', quickSend);
 //ahhhhhhhh don't leave. Need. Moar. Time......
 }

};

//failsafe
var quickSend = window.addEvent('unload', function(){
 tries = 0;
 check();
});

beacon.src=quirkyURL;
check();

image_lazyload.js

How to load things as the page is scrolled:

var img = new Image();

img.onload=function(){
 el.src = img.src;
};

img.onerror=function(){
 el.src = (config.fallback)? config.fallback: "about:blank";
};

img.src = (config.src) ? config.src : config.fallback;

The point of it all

	Adding in Frameworks slows things down. If you have a huge amount of data going back and forward on the site, say images, then loading JavaScript frameworks will slow you down.

	If you can figure out how to do it in Native JavaScript in 4 lines of code, that’s better than loading Mootools or JQuery.

JS To Rule Them All

	by Michael Anthony

	https://twitter.com/_activetheory

	http://activetheory.net/

Note

This guy is a super-talented front end developer. Incredibly good JavaScript and CSS guy.

synopsis

One of the more cringe-inducing terms for any JS developer is “web page”. We’ve now reached the point where any meaningful experience needs to be an application. It also needs to be thoughtfully crafted to work on phones and tablets all the while having the level of animation and polish users have come to expect from the technology they use regardless of platform.

Static pages with responsive layouts aren’t going to cut it in this new universe, so we’ll look at using only JavaScript to structure applications, create and style markup, and also be platform aware in order to present users with an interactive experience suited for each device.

This talk will be a general theory overview accompanied by plenty of examples and very brief code demonstrations. It will cover interesting points along the way such as best practices for smooth UI and animation, content management, SEO, and even how to use these exact techniques to create native mobile applications.

Current state of affairs

	Desktop sites like http://nfl.com or http://techcrunch.com, smashing as much content as possible into big scrolling pages

	Separate mobile sites that “feel jenky”, not smooth like mobile apps

	iOS/Android/etc mobile app

What can we do about it?

Write apps that run everywhere!

But…

	You may be familiar with the term, “write once run everywhere”

	But this is different. Write multiple views and route end users to the appropriate view

How?

	Use good code structure

	Device identification tools

	Write controllers that present the correct view for whichever device the application is being used on.

	The models, and controllers (mostly) can stay consistent

	Coding flexible layouts

Why do this?

	Above all else, it improves the user experience. Don’t send users to mobile app download pages!

	Just the idea of creating applications instead of “web pages” helps narrow the focus to engaging users with a meaningful experience.

Try to stick to using only JS for the view

	In the past:

	Write a ton of markup

	Separate out pieces of HTML via Mustache et al

	But this gets clunky on larger efforts

	Going forward:

	Create an element, style it, and then appending it to a parent

	Easier to debug, much faster to debug, less files open

	Problem: Can be a bit problematic using JQuery on mobile. Maybe use JQuery Mobile?

var $tst $("<div class="test" />");
$test.size(100, 100).setBG('image.png');
$test.css({top: 100, left: 100});
$parent.append($test);

Not just static pages

	Bad animation can be distracting and in the way, good animation can be useful to invoke emotion and hierarchy.

	Getting rid of “click, reload, repeat”

	Using animation to bridge the gap between content presentation

It’s like butter

“making things look pretty on mobile devices”

	Going back to detecting device capabilities

	Use CSS3 transitions applied with JS is the best performance way

	Use top/left for desktop, and translateX/translateY for mobile. Use device detection to automatically convert left/top.

	Watch out for firefox. You can easily have flickering images.

	User translate3d for iOS

	Use canvas only where absolute necessary

	Use the smallest rendering area possible

	Keep your canvas small!

Content Management

	Techniques to use WordPress or other traditional CMS with this type of JS application.

	Serving and loading JSON data

	Using models to store and make that data accessible within the application.

Warning

CMS are not ideal for this sort of API thing unless your app is supposed to be the front end for a CMS.

SEO

	Setting your CMS to accept request from Google based on https://developers.google.com/webmasters/ajax-crawling

	Seperating marking in the application design from markup for SEO.

	Properly routing users to the relevant content with the application.

Note

in other words, be able to present the content in standard markup so Google can pick it up for Search.

Mobile Applications

	Now you have Smooth animation and performance indistinguishable from a native app

	Same code base can be made to accommodate different devices with good routing controls

	Thoughts on PhoneGap vs. Titanium:

	Titanium > PhoneGap

	PhoneGap hijacks the click method and this causes issues

Questions

	When is your library going to be released?

	My previous company owns the rights. I’m doing something new and hope to release it soon.

	Can you use Modernizr for device capability detection?

	Yes

	Do you use load different size images or do you resize them in the JS?

	Always load different size images. Resizing is a performance sink.

April 26, 2012

Note

Arrived late, missed the intro talk about the venue. As always, got a seat up by the front. :-)

farmhouse.LA

	http://farmhouse.la/

	Holds a regional mini-conference held in Hollywood once a year.

	http://farmhouse.la/2012

Visualizing Sound

	By David Guttman

	Visualizing music in realtime

	Visualize anything

	http://davidguttman.github.com/easy-ears/

	https://twitter.com/davidguttman

	“I love that for every CD ever created, there is a monster that lives inside.”

	Good speaker

Note

Very good description of calculus and functional programming. :-)

Fundamentals

	Accept a bunch of values

	Convert it to output

Sample

ears.updateAudio(0.5);

ctx.clearRect(0, 0, canvas.width, canvas.height);

ctx.fillStyle = "rgb(80,80,80)";

var w = Math.floor(canvas.width / 3);
ctx.fillRect(0 * w, canvas.height, w, -canvas.height * ears.lows());
ctx.fillRect(1 * w, canvas.height, w, -canvas.height * ears.mids());
ctx.fillRect(2 * w, canvas.height, w, -canvas.height * ears.highs());

With colors:

ears.updateAudio(0.5);

ctx.clearRect(0, 0, canvas.width, canvas.height);

/* adding colors */
var red = Math.round(ears.lows()*255),
 green = Math.round(ears.mids()*255),
 blue = Math.round(ears.mids()*255);

ctx.fillStyle = "rgb("+red+","+green+","+blue+")";

var w = Math.floor(canvas.width / 3);
ctx.fillRect(0 * w, canvas.height, w, -canvas.height * ears.lows());
ctx.fillRect(1 * w, canvas.height, w, -canvas.height * ears.mids());
ctx.fillRect(2 * w, canvas.height, w, -canvas.height * ears.highs());

Native performance on Mobile with JavaScript

	Michael Anthonya

	https://twitter.com/flashtml5

	Using a framework called Aurora, not yet open sourced

	http://flashtml5.com/

Mojito

	by Gamaiel Zavala

	at Yahoo for 6.5 years

	github: gzip

	Demo and slides are here: https://github.com/gzip/mojito-app

	http://developer.yahoo.com/cocktails/mojito/docs/faq/

Note

Way too many bullets on the slides. Links are just underlined blue titles. Sigh.

What is Mojito?

	Open Source MVC client/server framework for node.js

	Core component is the mojit (not quite a module, not quite a widget)

Mojito Features

	Built on YUI 3

	Server, client, or both

	View engine is mustache

	Broadcasts easily between server and client

	routing, lazy loading, localization

	Mojito is open source

Installation

$ npm i mojito -g
$ npm i supervisor -g

Mojito Terms

	action context is the central access point to rest of mojito in a controller

	affinity determines where a resource will be executed. client, server, or common

	binder only execute in the client and provide access to the controller.

	context key/value pairs for resolving configuration

Mojito request flow

	Middleware

	Routing

	App configuration

	Mojits

	COntrollers

	Addons and Autoloads

	Mojit configuration

	Models

	Views

	Binders

	Assets (css, images, non-YUI libs)

Middleware

built on express.js

module.exports = function (req, res, next){
 // do something
 next();
};

Routing

	stored in routes.json and can vary based on context

	Specify an HTTP method and a mojit action

	May contain Sinatra-style named params

	Calls in entry in specs or an “anonymous” mojit

	Can build URLs from routes using the url addon

[{
 "settings": ["master"],
 "conf": {
 "verbs": ["get"],
 "path": "/conf",
 "call": "conf.index"
 },
 "preso": {
 "verbs": ["get"],
 "path": "/slides/:slide",
 "regex": {"slide": "[0-9]*"},
 "call": "preso.index"
 },
 "home": {
 "verbs": ["get"],
 "path": "/",
 "call": "weather.index"
 }
}]

App configuration

	Stored in application.json

	Can vary based on context

	Configures YUI in yui

Controllers

	May run on the server or client

	Responds to actions

	Have access to action context, addons, autoloads, models, views, and configuration

Models

	Have access only to confiuration, autoloads, and other models.

	Any additional data must be passed through the controller.

Note

I’m guessing that’s for the sake of security

Views

	Out of the box views are Mustache

	They are switching to Handlebars soon, which is possible because the template languages are pluggable

Binders

	Sole access point to controllers and the rest of Mojito in the client

	Have access to autoloads, and other things. TOO MUCH STUFF IN EACH SLIDE

Addons and autoloads

	Addons are how you share code

	Have access to addons, autoloads, models, views, and configuration

	Autoloads are normal YUI modules and will be deployed automatically if required in a binder, controller, etc

	Mojito ships with many addons

Assets

	Assets are css and non-YUI libs and images. They have no affinity

	Does not deploy automatically

	May be included in application,`json` or controller.

	JSON Dialogue to call the asset is really uncomfortably nested control structures. Hmmmm…

My Impressions

	Lots of boilerplate

	looks ‘enterprisy’

	Probably good for Yahoo’s use cases of dozens of types of content, a hundred languages, and thousands of regions. Not so useful for the rest of us.

Southern California Python Users Group

A collection of talks given at SoCalPiggies.

Talks

	December 12, 2012
	OpenCNAM

	The Role and Representation of Python in the Online Educational Boom

	September 26, 2012
	Introduction to OpenStack

	July 20, 2012
	Redis and Python: It’s PB and J time

	Who am I?

	What is Redis?

	Why Redis with Python?

	Cool stuff you can build with Redis + Python

	May 17, 2012
	Amazonian Fabric

	February 22, 2012 - 12 Factor App
	Where we’ve been

	Where we’re going

	What is 12 Factor?

	Dev/Prod Parity

	Config

	Concurrency

	Logs

	Future Thoughts

	June 6, 2011 - Socal Python meetup at Dreamhost
	Asynchronous programming techniques in Python

	Metaclasses: Look behind the curtain

	Approaching Technical challenges as a Startup

	June 6, 2011 - Python at AOL
	about.me

	StudioNow

	Relegence

	AOL Mail - Anti-Spam Operations

	AOL Networking Engineering - Networking Security

	History of Getting Python into AOL

	June 6, 2011 Knowing Things
	Ad.ly’s story

	Thing Types

	Bling

	Time

	Storage

	Iterate

	heapq

	Caching is key!

	Questions

	May 26, 2011 - Python at Walt Disney Animation Studios
	How many ways does WDA use Python?

	Specifics on how WDA use Python?

	May 26, 2011 - Python tricks Fun with Python’s newer tools
	You should be on Python 2.7!

	collections.Counter

	collections.namedtuple()

	Caching

	Grotesque Hacks

	April 20, 2011 - Python tricks
	Questions

	Thoughts

December 12, 2012

	Hosted at QConnect (Get confirmed URL soon)

OpenCNAM

by Randall Degges

	https://twitter.com/rdegges

	http://rdegges.com

	http://opencnam.com

Problems he wants to solve in Caller ID

	Ancient tech dominates (1905 era)

	15 character strings for caller ID isn’t enough

	Caller ID doesn’t really work on Mobile - it involves serious hacks

	Users pay around 1 cent per query

	resolving it is hard

	Pricey: Telco negotiating means talking to Executives and very expensive

	Resources: Tiny community of developers who know CNAM telephony

	Complex: Based off really weird switches that cache CNAM data without updating

	Summary

	Hacks for mobile

	Data quality issues

	Pricey

"It's just a string"

-- Every developer, ever

How they resolved it

	Figure out how to replace it

	Provide longer Unicode string

	Make it cheap: .04 cents per query (really cheap)

	Encrypt everything

	Provide an API:

$ curl -H "Accept: application/json" # TODO add rest

Tools

	Flask

	Fast

	Under 1000 lines of code so they know it’s stable

	Lots of good libraries for it

	AWS

	Dynamic scaling

	DynamoDB

	Similar to MongoDB, at least as fast and much more stable

	Really, really fast

	In their case it’s 2500% (25x) faster than PostgreSQL if you are in the Amazon Datacenter

	DynamoDB is so fast in their case it’s faster than using MemcachedD

	Reliable (data replicated across data centers)

	

	Heroku

	Simple to get started

	Reliable (99.99%)

	PostgreSQL

	Via Heroku can scale up as needed

	Use read-slaves to increase for performance

	Stripe

	BitPay for BitCoin

Method - SOA

	They broke up the project into a bunch of components

	API service (handles telephony)

	Accounts App (user authentication)

	Website app (public facing site)

	Benefits

	Developers can focus on individual components

	If one part breaks, the other parts will still function

Flask Libraries they used

	dynamodb-mapper

	Replicates ORM functionality

	Pretty fast

	flask-login

	Handles authentication

	flask-login decorator

Marketing

	You don’t need marketers

	Use this formula

	Google your industry

	Find your customers

	Put names, urls, and emails into a google docs

	Email 3 customers per day, asking for feedback

	Listen to feedback

Selling: xCNAM

A better protocol for Called ID

	100 character Unicode string

	CNAM Storage product

	Make it faster

	Make it cheaper

The Role and Representation of Python in the Online Educational Boom

By Justin Hampton

Background

	First distance learning system was proposed in 1892!

	In the 1970s correspondence education picked up with television lectures

	Now we have a ton of on-line courses

The Future is in the Headlights

	Modular vs. Linear

	Personalized vs. Generic

	Distributed vs. Localized

	Accessible vs. Elite

… but we’re not there yet.

What we have today

	MOOCs: Massive Open Online Courses (e.g. Coursera, Udemy, Udacity, EDX, etc)

	DIY courses: (hackerspaces, Maker Fair)

	Peer-to-peer Learning Exchanges (Meetups, PyCons, et al)

MOOCs are the new kid on the block. MIT Courseware and other things have been around for a while, but haven’t taken off until recently.

Why this is important: 1 trillion dollars in US student debt means that many students feel can’t educate themselves via college.

The MOOC Controvery

Issues that people raise against MOOC:

	Is that a real education that you’re getting?!?!

	read Clay Shirky’s essay on the subject.

	The encroachment of entrepreneurs

	Is it wise to drive education through business?

	What skills will entrepreneurs want people to learn?

	Potentially inapplicable for most forms of education

	Can you get your medical degree this way?

	Impossible to stop cheating/other forms of academic dishonesty

	How do you really test the student?

	How can the education system get validated if online?

What does this have to do with Python?

	Everyone offers a Python programming course.

	Python pops up even in non-programming courses such as statistics

	Python is “the new Basic”

Taking Advantage

	Getting with the programs: Working with EDX, Coursera, et al on local tutoring programs (can be part of paid portions)

	Making room for the influx

	Reinforcing via tutorials and small instructional efforts like PyCon tutorials

	Devising our own platforms: the black best system

	College degrees take this place in traditional educational systems

	What can we do to enforce standards across MOOCs

Continuing Education

	Not much use for advanced Python developers - perhaps just reinforcement.

	There is a need that exists to educate towards a an individual’s unique circumstance, no matter who one is.

	Opportunity and money for experimentation is there.

Issues

	Collegiate/University education provides a type of socialization that can be a factor in employment. This factor is often ignored by people who advocate not attending Collegiate/University. IE - lack of cultural context needed to interact at certain levels:

	History

	Literacy

	Sociology

	Entrepreneurs are often shockingly uneducated and inexperienced, relying on sales rather than any other skill. Do we want them determine the future of education?

	Really interesting discussion about online education at SoCal Python.

	Are MOOCs really the answer?

	Do we want business driving education?

September 26, 2012

	Hosted at http://dreamhost.com

Note

I’m speaking at this event but can’t take notes on myself. :P

Introduction to OpenStack

By Jonathon LaCour

	Experienced 15 years with Python

	Dreamhost lead developer

	Teaches high level Python classes too

Let’s talk about cloud

	The term cloud has been ruined

	ground rules:

	Cloud - elastic infrastructure providing compute, network, and storage via well-defined APIs

	Public cloud - A multi-tenant, publicly available cloud where resources are metered and billed as a utility, and any entity can place workloads.

	Often makes money by charging monthly or service fees

	Private cloud - A privately owned cloud generally used by a single organization for one or more applications

What is OpenStack?

	OpenStack is a cloud operating system or cloud management system

	Use it to build public or private clouds

	VMs

	Volumes

	Multi-tenancy

	APIS - well defined and documented

History of OpenStack

	2008 - NASA creates Nebula

	2009 - Rackspace creates Swift

	2010 - OpenStack is born!

Note

My last few months at NASA we were begging and pleading for the right to use Nebula so we didn’t have to deal with standard NASA server provisioning which is both time intensive

Components of OpenStack

Nova

	OpenStack’s Compute controller, originally created by NASA

	Communicates with the hypervisor to create/destroy VMs

	“Schedules”where VMs are created

	Originally handled network and storage allocation

	RESTful API

Swift

	Object storage system created by Rackspace

	Highly available, distributed, and eventually consistent

	RESTful APIs - S3 and Swift

	Can be swapped out for Ceph, a unified distributed storage system created at Dreamhost

Cinder

	OpenStack’s block storage as a service platform

	Enables the creation of block devices via API that can be attached to VMs

	Spun out from Nova during the latest release cycle

	RESTful APIs

Glance

	OpenStack’s image service

	Provides services for discovering, registering, and retrieving VM images

	Integrates with Ceph to enable Copy-on-write (COW) for fast VM creation

	RESTful APIs

Quantum

	OpenStack’s networking-as-a-service layer

	Replaces the networking services originally in Nova

	Supports the concepts of complex virtual networks, including isolation from other tenants in the cloud

	L2 services currently supported and some L3 services currently deployed

Keystone

	General identify framework for OpenStack

Horizon

	Django based user interface

	Provides web based interface to all the above components

Parts you may want to add to OpenStack

	Routing

	https://github.com/dreamhost/akanda

	VPN

	load balancing

	Firewall

	Metering system

	Way to monetize OpenStack!

	Ceilometer is an open source version: https://github.com/stackforge/ceilometer

	Billing

Commercial options are available - and open source options are being authored:

How does OpenStack work?

	Components in designed to be loosely coupled

	Several methods of communication

	REST APIs - simple HTTP services used to communicate between components

	Messaging - messages sent via AMQP to a message broker, generally RabbitMQ

Getting involved

	OpenStack is implemented in Python using standard processes

	Familiar frameworks and tools (Django, SQLAlchemy, boto, lxml, etc)

	Github + Gerrit + Jenkins for management and CI

	OpenStack is a community

	Mailing lists

	Governance moved to the newly formed OpenStack foundation. Thousands of members, including 170 companies.

	Key members of OpenStack just joined the PSF for more community crossover

	Documentation

	http://docs.openstack.org

	Getting started

	DevStack - http://devstack.org

	TryStack - http://trystack.org

Dreamhost’s OpenStack Deployment

TODO - Get the image displayed here.

PaaS implementations on top of OpenStack

	OpenShift

	CloudFoundry

Note

Why I like OpenStack is that you have good control over your server provisioning. If a vendor doesn’t play nice, you can move your stack or deploy on your own servers.

July 20, 2012

	Hosted at http://twitter.com/crosscampusla

	Meetup http://www.meetup.com/socalpython/events/71023052/

	http://www.crosscamp.us/

	Run by http://grapheffect.com

Redis and Python: It’s PB and J time

	Dr Josiah Carlson, the author of the upcoming Redis in Action

	http://twitter.com/dr_josiah

	http://bit.ly/redis-in-action

Who am I?

	Python user of 12 years

	Former python-dev bike-shedder

	Former maintainer of Python async sockets libraries

	Author of a few small OS projects

	rpqueue, parse-crontab, async_http, timezone-utels, PyPE

	PyPE is his own text editor

	Worked at some cool places we’ve never heard of:

	Networks in Motion

	Ad.ly

	Worked at some cool places you have heard of:

	Google

	YouTube

	And cool places will hear of: ChowNow

	Very heavy user of Redis

	Author of upcoming Redis in Action

What is Redis?

	In-memory database/data structure server

	Limited to main memory; vm and diskstore defunct

	Persistence via snapshot or append-only file

	Support for master/slave replication (multiple slaves and slave chaining supported)

	No master-master, don’t even try. In other words, if you have two masters running on the same system, you’ll have serious, major, painful issues.

	Client-side sharding

	Cluster is in-progress

	Supports data structures + publish.subscribe

	Strings, Lists, Sets, Hashes, Sorted Sets (ZSETs)

	Server-side scripting with Lua in Redis 2.6

Comparing Redis to other databases/caches

	Memcached

	in-memory, no-persistence, counters, strings, very fast, multi-threaded

	Redis

	in-memory, optionally persisted, data structures, very fast, server-side scripting, single-threaded

	MongoDB

	On-disk, speed inversely related to data integrity, bson, master/slave, sharding, multi-master, server-side map-reduce, database-level locking

	Riak

	on-disk, pluggable data stores, multi-master sharding, RESTful API, server side map-reduce

	MySQL/PostgreSQL

	On-disk/in-memory, pluggable data stores, master/slave, sharding, stored procedures, …

Redis Strings

Note

Apparent other types in Redis are really just strings. Hrm.

	Really just scalars of a few different types

	Character strings

	concatenante values to the end

	get/set individual bits

	get/set byte ranges

	Integers (platform long int)

	increment/decrement

	auto “casting”

	Floats (IEEE 754 FP Double)

	increment/decrement

	auto “casting”

Redis Lists

	Doubly-linked list of character strings

	push/pop from both ends

	blocking pop from multiple lists

	blocking

Redis Sets

	Unique unordered sequence of character strings

	Backed by a hash table

	add, remove. check membership, pop, random pop

Redis Hashes

	kind of like Python dict

	Key-value mapping inside a key

	get/set/delete single/multiple

	increment values by ints/floats

Sorted Sets (ZETS)

	Like a hash, with ‘members’ and ‘scores’, which are limited to numeric values

Note

Maybe good for search generation?

Publish/Subscribe

	Readers subscribe to “channels”, exact strings or patterns

	Writers publish to channels, broadcasting to all subscribers

	Messages are transient so they can be missed

Why Redis with Python?

	Python has reasonable sane syntax/semantics

	Python allows you to easy manipulation of data and data structures

	Python has a large and growing community

	Redis has reasonable sane syntax/semantics

	Redis allows you to easy manipulation of data and data structures

	Redis has a medium-sized and growing community

	Available as remote server

	Like a remote IPython, only for data

Doesn’t that sound like a good match?

from itertools import imap
import redis
def process_lines(prefix, logfile):
 conn = redis.Redis()
 for log in imap(parse_line, open(logfile, 'rb')):
 time = log.timestamp.isoformat()
 ...
 conn.zincrby(prefix + hour,)
 ...

Note

code examples coming too fast. :P

Note

TODO: Download the slides later and try to get the code examples out.

Cool stuff you can build with Redis + Python

	Reddit

	Caching

	Cookies

	Analytics

	Configuration management

	Autocomplete

	Distributed Locks

	Counting semaphores

	Task queues

	Publish/Subscribe

	Messaging

	Search engines

	Ad targeting

	Twitter

	Cat rooms

	Job searching

Note

Ahem. You can do all of this in a relational database. Or an XML filestore. Or anything.

May 17, 2012

Amazonian Fabric

	Evan Cofsky

	https://twitter.com/tunixman

	Hangs out in Glendale while waiting to go back to the UK.

	Just migrated a shop off of custom virtualization to EC2.

	See http://www.memrise.com/dev/

Note

Good talk about patterns and techniques but I’m having trouble keeping up with switching to slides and code non-stop.

Basics

	Why another management framework?

	Wanted to be up and running quickly.

	Wasn’t familiar with Chef, Puppet, or even cfengine.

	Was very familiar with sysadmin, Python, boto, and EC2

Starting instances

Let’s start a backup database server:

$start_instance web web99

This will:

	Create new instance of the “database” type

	Give it the host name db10.memrise.com

	Install MySQL 5.5 from source

	Install our custom .cnf

Instance Types

EC2 Instance Types and AMIs are configured using the… (lost the slide content here)

Control Server

	“Master” server for running other servers and tracking state.

	Issue: Another system to maintain

	Very good at getting out of sync with running systems.

Deployment in Parallel

The fabric command for deployments now can:

	Fund the host types that should be deployed to

	Run common global deployment code once

	Run common deployment code across all servers in parallel

	Update the load balancer

Building Role Lists

	Create lists of each server type using instance_type metadata and instance state

	Add ssh username and port

	Cache results to speed repeated calls

Scaling Web Servers

	Can’t use EC2 Elastic Cloud Service because of metrics

	Will often know in advance when load spikes will occur

	Want to make adding and removing capacity very easy

Load balancing

	Site stack deployed to all active web servers

	New active servers added to load balancer, DNS updated

	Inactive servers removed from load balancer

	When servers inactivated, also removed

February 22, 2012 - 12 Factor App

	by Craig Kersteirns of Heroku

	http://www.12factor.net

Where we’ve been

	Version control

	folders

	cvs/svn

	git/mercurial

	Dependency Management

	python setup.py install

	easy_install somepackage

	Deployment

	rsync myproject runserver

	scp

Where we’re going

	Modern Version Control makes it possible to:

	1 code base with many deploys

	Dependency Management

	pip install somepackage

	pip freeze > requirements.txt

	Deployment

	Capistrano

	Tarball

	slug

	Bundle everything together so rollbacks are trivial

What is 12 Factor?

A set of practices used by Heroku that serves as a mantra as to what they are doing.

	Declarative Setup - Minimize setup time

	Clean contracts - Portability to run anywhere

	Deploy practices - Cloud and horizontal scaling

	Minimize Divergence - Continuous Deployment

Dev/Prod Parity

	Dev = Staging = Prod

	sqlite != postgres = postgres

Warning

Don’t use sqlite in dev or you get screwed! This happened to me!

Config

Don’t do this:

$ ls
settings.py
prod-settings.py
dev-settings.py
local-settings.py

This is fail:

settings.py
from local_settings import *

Or this:

settings/prod.py
from base import *

Do this instead:

settings.py
MY_SETTING = os.environ.get("MY_SETTING")

Concurrency

	Don’t worry about languages/frameworks being able to scale.

	Better to let the server side handle it.

	Use worker processes

Logs

We use logs thus:

$ tail -f access_log

How we percieve logs:

$ ls
access_log
error_log

But when it comes down to it, logs are really an event stream!

	Imagine if logs were aggregated into one stream

	Then you can filter out the parts you want

	Order things the way you want

Future Thoughts

	pip should be able to specify the version of Python

	environment settings should be set as environment variables rather than specified in Python code. Makes local setup and deployment much easier. From experience this is very true.

June 6, 2011 - Socal Python meetup at Dreamhost

Note

Arrived 30 minutes late so my notes are woefully incomplete

Asynchronous programming techniques in Python

Note

My normal answer is to use Celery + Redis/RabbitMQ to handle this stuff. Is that cheating? ;)

	by Dreamhoster Tommi Virtanen

	slides: http://eagain.net/talks/concurrency-oh-my/index.html

Talk

	Walked in the on the part about Twisted…

	Threads vs processes are a debatable issue.

	Cost of using Python to create new processes is considered slow

	Blocking and memory access issues

	Async is a problem in Python because not all libraries support it

	Someone mentioned a library called pystates

	GIL

	Multiple threads in Python are OS processes and you can get blocking on memory objects

	On large processes on things like dict hash-tables you can get blocks/locks on the wrong thing

Multiprocessing

	Called ‘giant hack’

	Looks likes the threads API

	Uses a messages system to use OS processes to share data between processes/threads

	Uses pickles to share data via messages, which means anything that is deserialized executes the code

	Which means you should watch out for code injection!

Communicating Sequential Processes

	Title of an academic paper

	A system of sharing tasks and data

Gevent

	Wonderful monkey patch that does the bulk of the work needed for multi-tasking.

	Does not use threads, replaces certain libraries on the fly.

	Uses co-routines, built on lib-eb

	I’ve played with it, and it is fun.

	See:

monkey.patch_all()

Note

See my notes on Gevent at http://pydanny-event-notes.readthedocs.org/en/latest/KiwiPycon2011/python_dist_gevent_redis.html

Metaclasses: Look behind the curtain

by Dreamhoster John LaCourt

Note

Great talk, with presenter is saying it’s not magic, I agree. However, IMO, 95% people use Metaclasses, they have no reason to do so. So I listen to this talk with concern because debugging bad Metaclass code is a pain.

Warning

If you use Metaclasses badly and I have to debug your code I reserve the right to complain loudly in all public venues.

What does a class do?

	Class constructs are called instances

	What does it really mean to construct an instance?

	A class provides an instance with it’s namespace

	Attributes of a class define the namespace of the instance

	Example of a class:

class Person(object):
 greeting = 'hello'

 def greet(self, who):
 print self.greeting, who

j = Person
print j.greet('SoCal')
'hello SoCal'

Example libraries

	SQLAlchemy

	FormEncode

	Django ORM

What is a metaclass?

	A metaclass is a class of a class

	A metaclass is a class whose instances are classes

	This is called metaprogramming

The type metaclass

	If the instance of a metaclass is a class, can we insubstantiate the class just using type

def greet(self, who):
 print self.greeting, who

Person = type(
 'Person',
 (object,),
 {'greet': greet, 'greeting': 'Hello'}

)

j = Person
print j.greet('SoCal')
'hello SoCal'

First metaclass:

class MyFirstMeta(type):
 def __init__(cls, name, bases, ns):
 cls.uses_my_metaclass = True

 def mystery_method(cls):
 # All methods in metaclasses are metaclasses, which is why
 # the variable is 'cls' and not 'self'
 return 'I am a myster method'

the grungy way of building that class
MyClass = MyFirstMeta(
 'MyFirstMeta',
 (object,),
 {'greet': greet, 'greeting': 'Hello'}
)

the easier way of building that class
class MyClass(object):

 __metaclass__ = MyFirstMeta

Practical example

Enforce all the things, like in Java

class Field(object):

 def __init__(self, ftype):
 self.ftype = ftype

 def TODO(self): #get this method
 pass

class EnforcerMeta(type):
 def __init__(cls, name, bases, ns):

 cls._fields = {}

 for key, value in ns, items
 if isnstance(value, Field):
 cls._fields[key] = value

class Enforcer(EnforcerMeta):
 __metaclass__ = EnforcerMeta

 def __setattr__(self, key, value):
 if key in self._fields:
 if not self._fields[key].is_valid(value):
 raise TypeError('{0} is not valid'.format(key))
 super(Enforcer, self).__setattr__(key, value)

class Person(Enforcer):
 name = Field(str)
 age = Field(int)

Great! Now be @#$%ing careful!!!!

	Because they are constructing classes on the fly, bugs in your metaclasses will often happen during import statements

	Please, please use them judiciously

Approaching Technical challenges as a Startup

by David Litwin

	Django site for film

	http://www.cinely.com/

Cinely

	Website to connect and organize the entire production community

	Allows people to connect with each other, share work, and find jobs

	Transcoding uses zencoder

	Uses amazon ec2

	Details:

	10K lines of Python

	1K of unittest

	Needs to justify the cost of everything that they do. Startups have small budgets!

Video transcoding

	Priority feature

	Need to be able to handle high load

	No tolerance from users about failure

	Needs to be fast:

	1 minute of video needs to be done in 1 minute.

	10 minutes video in 10 minutes

	Chose zencoder rather than ffmpeg probably because they’ve got dedicated resources and experiences

Search

	Thought about Haystack, Solr, Sphinx, Google

	He’s tried the all and they all suit his needs

Real-time feeds

	Tornado + MySQL triggers?!?

	Needs to get something working, doesn’t have to be too fancy

	Uses Tornado with long polling

	Uses Django signals instead of triggers :o

Slow ORM queries

	Django ORM sometimes slows things down so you have to optimize.

	95% of the time it’s not an issue

	5% of the time he hits a bottleneck

	Sometimes you have to break it out into SQL with the .extra() method.

Lessons Learned

	The biggest technical challenge is determining which technical tasks take priority.

	Stay focused and excited

	Took 6 months to develop:

	Learned to program for this project!!! Wow!!!

	Choose Python because…

	Wanted an enthusiastic community that isn’t crazy

	Community answers questions nicely

June 6, 2011 - Python at AOL

Note

Late because of traffic so missed part of the first talk. Some of the audience commentary was not as polite as it should be, and I’m guilty of a little of it. However, in conversing with other attendees and especially potential speakers, it was determined that as a group we need to be better at handling speakers.

By Jathan (Security Engineer)

	Most of AOL is Java and Perl, and there remains a lot of TCL.

	A third of AOL staff are developers.

	Moving towards open source more and more!

	But they had 7 people at PyCon 2011.

	Still have 70% of the old infrastructure run by 25K employees now maintained by 4K employees

	Data centers in:

	Dullas, Virginia

	Manassas, Virginia

	Mountain View, California

	Somewhere in Germany

about.me

A custom profile & personal analytics dashboard. Serves as a landing page for all your social sites.

	100% Python

	TurboGears

	Celery

	SQLAlchemy

	CouchDB (entire backend?)

	Presented at PyCon 2011

	Luke Gotzling (lead engineer)

	http://bit.ly/aboutme_pycon2011

StudioNow

	Create, manage, and syndicate online video

	aquired by APOL in 2010

	AOL’s content farm

	Seen eHow.com? Yeah, like that.

	Web Services

	Django

	Gunicorn + Gevent

	Video Transcoding (ffmpeg)

	Celery

	Fabric

	Boto (EC2 interface)

Relegence

“A major part of the AOL content infrastructure”

	Topical, Real-Time News

	Aquired by AOL in 2006

	Subscription-based service

	Like lingospot.com

	Used by most of AOL web properties.

	Topics API

	All Django all the time

AOL Mail - Anti-Spam Operations

	Protecting AOL users from spam

	Whitelisting the Internet

	Tons of CLI Tools!

	Django Web Services

	Anti-Abuse API

	Mail Reputation Service

AOL Networking Engineering - Networking Security

What Jathan does for work.

	Protecting AOL from becoming Sony

	Blacklisting the Internet!

	Firewall Policy Management

	4 data centers

	850K+ policy lines

	37000+ host nodes

	5,300 host nodes

	Simian Python suite of tools:

	Twisted

	Django

	SimpleParse

	Suds

	A SOAP library for Python

	Netaddr

	Nudge (Evite’s API library)

	Not selling this product so they don’t need to worry about the GPL on Nudge.

History of Getting Python into AOL

	Moved to Python from Perl in 2006.

	Had to deal with thousands of moving components and twisted solved a major problem.

	Entire network/security system is in Python.

June 6, 2011 Knowing Things

By Jeff Schenk

Note

Way too much heckling and too many comments from one person who kept taking him off topic so I asked Jeff to not take so many questions. That did not go over well with the hecklers, but actually asking on the mailing list uncovered a serious problem in the user group. Now things are better.

Ad.ly’s story

	Kinda knowing things is easy

	Really knowing with certainty a lot of complex things is maybe harder

	Need to know things with precision is really important

Thing Types

	Integers (how many people clicked)

	Strings

	Booleans

	Bling (money)

	Time

Bling

Do you want to misplace money and get fired? No? Use Decimal:

from decimal import Decimal
moneys = Decimal('100.01')

Decimal oddities in rounding so use quantize:

>>> moneys / 2
Decimal('50.005') # Copied something wrong here..

so use quantize
>>> (moneys / 2).quantize('001')
Decimal('50.005') # ... or maybe here cause these numbers are the same

Time

	Timezones suck

	Computers like integers

	So they use hours since epoch

	all the work is done in about 10 lines of Python code.

Storage

	SQL

	Joins are death

	If you join, you will die

	intelligent index are super

	if you’re going to group bu it or filter on it, you probably want it indexed.

	Pre-Aggregate

	When you’re working with a lot of data, you need to aggregate chunks as you go.

	My Guess: A lot of Celery tasks!

	Spooned into a single report table that breaks normalization

Iterate

They use itertools a lot!

	itertools.chain is your friend

	itertools.tee is also your friend

heapq

Algorithms makes merging of iterables really powerful:

import heapq
for result in heapq.merge(query1, query2):
 # merge results and know they are in order
 print(result)

Caching is key!

	They need flexibility to slice and dice the data

	Once its been sliced, they want to be able to view, page, and sort the data

	Redis gives the speed of cache with the power to sort and page

	They use redis-py as their library

Questions

	Test coverage?

May 26, 2011 - Python at Walt Disney Animation Studios

WDA = Walt Disney Animation Studios

How many ways does WDA use Python?

	Scripting in Maya.

	DLight (lighting controls)

	Scene Navigation (navigation through scenes in a script once audio/video added)

	Art version control systems.

	Scripts to facilitate moving images and data in and out of sequences

	syrup - SAP scraper. Python Interface to our SAP based timecard system.

	Python CGI that interfaces with Production management tools and generates Excel.

	munki - A client/server to distribute 3rd party packages to max

	Coda - queuing system. C++ application with Python expressions and API

	Squish - 3rd party QT GUI test automation. Lots of Python scripts there.

	Mentor - Unittest library that interfaces well with Maya.

	GEMS - Python CGI system for searching Disney Archives

	Most 3rd party tools for the visual effect community comes with a Python API. How cool is that?

	Another 20 things I couldn’t keep up with!

Specifics on how WDA use Python?

Sample apps out of many:

	Dlight

	C++ 52%, Python 48%

	Surfacing

	Lighting

	Render Picture

	DLight GUI

	C++ 48%, Python 52%

	Scene Navigator

	Python 100%

	Shot management

	Element properties

all tools are fully scriptable in Python

Disney Messaging

	Defines messages independent of Language

	Generates C++ header files with Python bindings

Regression Testing

	Approx 2,000 regression tests between products

	Tests cover both C++ and Python functions

	99% written using unittest

Performance

	A hot topic!

	PyQt vs Qt

	Smart use of classes far mor important than Language interface

	Time-critical functions written (or rewritten) in C++

Package interoperability

All provide a Python API!!!

	Maya (autodesk)

	Houdini (Side effects)

	Renderman (Pixar)

Choosing Python

	Performance trade-off

	Development cost

	Support cost

	Pipeline integration

May 26, 2011 - Python tricks Fun with Python’s newer tools

by Raymond Hettinger

You should be on Python 2.7!

	To be supported for 5-10 years

	Earlier you convert the better

collections.Counter

Tool for making rapid tallies or counts

	Modeled after:

	Multisets in C++

	Bags in smalltalk and Objective C

Very flexible, unrestricted implementation as a directory

You can put anything in it:

	Count with positive and negative numbers

	Count with decimals, floats, or fractions

	it is just a dictionary

Simple design as a dict subclass!

With __missing__() that returns zero:

c[x] += 1 # easy to tally

Has __delitem__() to match __missing__():

del c[x] # easy to delete

Convienance methods

	most_common(n)

	returns sorted list of the n highest counts

	reduces the code to a simple one-liner

	implemented using either sorted() or heapq.nlargest()

	elements

	lists all the contents individually

	if an element has a count of three, it is emitted three times

	Differs from __iter__ which returns pairs

	Done this way because otherwise you change the dict API.

	Multiset use case

	With multisets, the counts are always positive

	Math operations with omit zero or negative counts from the result

	Operations are: + - & |

	The subtraction operation is said to be saturating

	When the counts are all one, works just like regular sets

collections.namedtuple()

Works just like a regular tuple and lets you assign names to each field.

	Makes the code self-documenting

	Makes the printed __repr__ intelligible

	Let’s you change tuple order without affecting client code

	No extra memory cost over tuple

One of the best single best changes you can make to existing code.

Doing an enum in python (not needed but its kind of cool):

Color = namedtuple('Color', 'red orange yellow')._make(range(3))

Caching

Simple unbounded caches can grow without bound.

How to do it:

from functools import lru_cache

@lru_cache(maxsize=100)
def big_computation(*args):
 ...

Fibonacci example:

@lru_cache()
def fibonacci(n):
 if n <= 1:
 return n
 return fibonacci(n-1) + fibonacci(n-2)

print(fibonacci(5))

Grotesque Hacks

Fun things to do with Python

Not so bad

The iter() function has a two argument form that takes a sentinal value:

for block in iter(partial(f.read,20), "")
 ...

Awesome way to stop a loop!

Dicts

Use DefaultDict for 2-D sparse arrays:

d = defaultdict(dict)
d['Canada']['Quebec'] = 1

Getting grotesque

Make dict sparse to speed up a dictionary:

d.update(dict(d)) # doubles space in hash table

Wrap it up in a function:

def sparser(d):
 return d.update(dict(d)) # doubles space in hash table

Turn-off thread-switching (cheap locking):

ci = getcheckinterval(0)
sys.setcheckinterval(0) # switching off
value = max(tasklist)
tasklist.remove(value)
sys.setcheckinterval(ci) # switching on

Atomic actions (no locks required):

v = d.pop(key) # find and remove in one-step
d.setdefault(key, []).append(v) # one-step init

Speed-up builtin access:

from __builtin__ import *

Slow constant-function:

>>> def make_constant_function(x):
... return lambda x=x: x
>>> f = make_constant_function(3)
>>> f()
3

Fast constant functions:

>>> def make_constant_function(x):
... return itertools.repeat(x).next

April 20, 2011 - Python tricks

	April 20, 2011

	http://code.google.com/p/lingospot

Questions

	Shouldn’t attempts to modify Immutables cause a TypeError instead of an AttributeError?

	What is this global thing? (Don’t use it)

Thoughts

	Looks like overly complex implementation of memo-ization

	Suffering from too much Not-Invented-Here

PyLadies

	2011/10/22 Unit Testing

	2011/10/22 Running Django Projects on Heroku

	2011/10/22 trash-or-treasure

	2011/10/22 ProtoRPC

	2011/10/22 Know Your Time Complexities

2011/10/22 Unit Testing

	by Professor Ray Toal Loyala Marymount

	October 22, 2011

How to unit test

	Not manually

	You wrote code that exercises your code

	Perform assertions that record

	That you get the results you expect

TODO - get more info

Test Driven Development

	Write some tests

	Run them

	They’ll fail cause you have no code

	Write some code

	Now run the tests again

	Work until the tests pass

	Iterate!

Unit testing in Python

	Uses the module unittest is already there

	Docs

	Python 2.7

	Python 3 (http://python.readthedocs.org/en/latest/library/unittest.html)

First example

Interleave two lists:

interleave([], [])
interleave([1,2,3], [1,2,3,4,5])
interleave([1,2,3], ["hello, world",])

Test code:

test_interleave.py
from interleave import interleave
import unittest

class TestGettingStarted(unittest.TestCase):
 def test_interleave(self):
 cases = [
 ([],[],[]),
 ([1,2,3], [1,2,3,4,5]),
 ([1,2,3], ["hello, world",])
]
 for case in cases:
 self.assertEqual(interleave(case[0], case[1], case[2]))

interleave.py
def interleave(a, b):
 # will fail. Fix
 return [x for x in izip_longest(a, b) for y in x if y is not None]

2011/10/22 Running Django Projects on Heroku

	by Randall Degges (@rdegges)

	October 22, 2011

	Heroku = python + zombies

Hosting vs PAAS

Hosting

	cheaper

	more time, knowledge, headaches

	more flexible

	constant revisions to architecture

	Less time for coding

PAAS

	More expensive

	More time to coding

	Risk of the service

A bunch of commands

Note

get Randall’s text from him

Bunch more commands

Note

get Randall’s text from him

Get moar features from him

2011/10/22 trash-or-treasure

	by Emma Shroder

	http://djangolookslikefun.wordpress.com

	https://github.com/ecschroder/remake

	http://trash-or-treasure.djangozoom.net/trashure/

This is the world of a beginner who has been growing her skills over time. Nice to see the progression!

2011/10/22 ProtoRPC

By Leo Chen, google staffer

2011/10/22 Know Your Time Complexities

	by Ryan J. O’Neil

	rzoz on #pylaides

Whole bunch of data

Remove duplicates from a large system and remove dupes

import random

choices = range(100000)
x = [random.choice(choices) for i in xrange(1000000)]

The Bad Way

order = []
for i in x:
 if i not in order:
 order.append(i)

The Good Way

order = []
seen = set()
for i in x:
 if i not in seen:
 seen.add(i)
 order.append(i)

LA Django

	LA Django 2012-04-17 various talks
	Talk #1 - Deploying Django with wsgi and nginx

	Talk #2 - Naming things

	Talk #3 - Extracting Domain Objects

	Talk #4 - Integrating Facebook into Django

	Django testing dos and don’ts
	The presentation

	Django testing
	Organize and optimize your tests

	Don’t do this

	Do this

	Dev environments and code testing

	Continuous integration

	Worst Practice: Not testing

	April 19, 2011
	Caching

	Unittesting

	FB Integration

LA Django 2012-04-17 various talks

All lightning talks. I was going to give one but was too busy to finishing assembling my talk.

Talk #1 - Deploying Django with wsgi and nginx

by Sandy Mahalo

	Demonstrated against Django 1.4

	Very technical and spoke fast so didn’t get a chance to write things done. :P

	Material attribution: http://bit.ly/hf6974

Talk #2 - Naming things

by Michael Avila, works at EdgeCast

Two things hard in computer science

	Caching invalidation, naming things, and off-by-one errors. – Phil Karlton

Naming things is very hard

	Programs are just theories for how computers can interact with the world.

Implementation patterns

Using house and street as our naming pattern target:

class - simple super class name

	Top of inheritence chain

	Stick to one word

	Do this: Street

	Not this: HouseList

class - qualified sub class name

	How are they alike?

	How are they different?

	Do this: Hose -> GardenHose

	Not this: Hose -> WaterSource

variable - role suggesting name

	What is it’s type?

	What is it’s scope/lifetime?

	What is it’s role?

	Do this: adams

	Not this: adamsHouse

function - intention-revealing name

	Stick to verb phrases

	Do this: street.add_house(a)

	Not this: street.houses(a)

Useful books for naming things

	Random House Word Menu [http://consumer.io/random-house-websters-word-menu/4f8e352f2beba8000e000000/]

	Ultimate Visual Dictionary [http://www.consumer.io/ultimate-visual-dictionary/4f8e356b2beba8000d000003/]

Talk #3 - Extracting Domain Objects

by Brian Riley, Edgecast

	Target of the talk was some of the code from the Django tutorial :-)

	Django is for serving out the web, not not necessarily other things.

	Sometimes it can be good to extract the business logic from the obvious place and put into other control systems.

	Celery comes to mind.

old way
selected_choice.vote += 1

domain way
class Voter(object):
 DEFAULT_NUMBER_OF_VOTES = 1

 def number_of_votes(self, user):
 if user.is_authenticated():
 return user.votes
 return Voter.DEFAULT_NUMBER_OF_VOTES

Talk #4 - Integrating Facebook into Django

by Dan Loewenhertz of

	Has built a number of Facebook apps

	Very interesting decorator approach to getting this done.

	https://github.com/elmcitylabs/ECL-Facebook

Django testing dos and don’ts

Note: Example code was dark background with gloomy fonts that no one could read.

mahalow
90401902

The presentation

	Do: use AssertEquals/AssertNotEquals

	Don’t: AssertTrue is not good

	Do: Build TestCase Sub-classes

	Don’t repeat yourself

	Create users

	Create objects

	Log users in

	Clear cache

	Don’t make your reusable test methods not too complex

	Do: Test all possible user cases

	
	Analyze all possible exit points of a function

	
	All returns

	all expected exceptions

	Shoot for 80% code coverage

	Do: Test that data changes on success

	Don’t just asset that the function ran successfully

	If data has changed, assert that the DB holds updated data

	If cache was manipulated, assert that it is correct

	Do: Use controls for complex testing

	Create a control record/object to make sure complex functions don’t touch unrelated elements.

	Example: To check user deletion, create user_to_be_deleted and control_user

	Do: Write very specific tests

	in most cases, a given test function should be no more than 10-15 lines long (use your setUp function!)

	Do: Test more than one type of use-case

	Testing all error use-cases are as useful as testing for success

	Success use-cases can still succeed, but for varying reasons over time.

	Do: Keep your tests dirt simple. Don’t write tests that require tests of their own

	Don’t: Write TestCase-specific Helper functions

	Don’t: Test everything in one big TestCase

	Use many test cases: test_managers, test_models, test_views

	Don’t do these things

	Write tests that go beyond your codebase

	Use fixtures for everything

	Write unnecessary code

	Repeat yourself

Django testing

Sandy’s great talk on test organization! I do things very similarly!

Organize and optimize your tests

	All apps need tests

	As your apps become more complex

	test suite will grow larger

	Increasingly complex test scenarios arise

	seperate code and service/infrastructure

	Don’t keep all your tests in one monolithic file named test.py

Don’t do this

	Don’t have a 6000 line test.py file! Break it down into test_models, test_managers, etc.

	Don’t test 3rd party APIs

	Sandy prefers Mock and other faking of those systems

	Danny: But how do you test your payment gateways and other API calls?

	Paypal, Authorize.net

	Github, Bitbucket, etc

	Twilio, Tropo

	Maybe have a stand-alone test suite called third_party_apis

Do this

sample of how I do it:

core/
 tests.py # This is where my test utils go!
myapp/
 tests/
 test_models.py
 test_views.py

I prefix my test modules with test_ so that way it is easier to identify them in various text editors. We already have enough models and views that it confuses me!

Sandy does things a bit differently, in that she calls test modules models and views. Really though, it is a measure of what you prefer for naming conventions

Dev environments and code testing

	Services and infrastructure should not be tested in code tests

	Code should be written to handle this sort of thing.

	Hard to get away from.

	Example: Multiple servers

Continuous integration

	Jenkins is your friend (http://jenkins-ci.org/)

	Track code coverage

Worst Practice: Not testing

There’re lots of things you can do wrong in testing

	Not having them

	Writing them badly

April 19, 2011

Caching

Concept:

class CacheManager(managers.Manager):
 """
 usage:
 objects = CacheManager()

 """
 ...
 DNE = "DoesNotExist"
 # put caching methods here
 # put signal handling here

Unittesting

FactoryBoy looks awesome!

FB Integration

Using the Facebook python SDK?

LA Hack Night

	May 23, 2012 LA Hack Night
	What is Serverless?

	Load testing

	Current APIs

	Spire.io is Secure

	Spire.io is Scalable

	Simple app demo

	Spire.io uses CORS

May 23, 2012 LA Hack Night

	Location: http://spire.io HQ

	Meetup: http://www.meetup.com/Los-Angeles-Hack-Night/events/60609452/

Warning

I like the spire.io guys but I’m going to do my best to pierce the marketing hype tonight and see what they are really doing.

Note

Presentation was given on a monitor. Should have been done off of a projector.

What is Serverless?

	You can just write HTML and CSS and they do the rest.

	They handle users.

	They handle authentication and authorization.

	They handle messaging.

	They handle load balancing and scaling.

	You don’t have to worry about choosing databases.

	Fast prototyping

	Scalable

	Secure (security is not an afterthought)

Load testing

	Can handle HN and Tech Crunch swamping.

	10K requests per second, which will dwarf anything HN or Tech Crunch can do.

	Currently they manually spin up servers. They are working on automation.

Current APIs

	Identity

	Create and authenticate users

	Messaging

	Send messages to thousands of clients in real-time

	Data (coming soon)

Spire.io is Secure

	Capability security (priniciple of least priviledge)

	All traffic in HTTPS

	No need to put password or secret in your client side code

Spire.io is Scalable

	Distributed architecture

	Built with Node.js, Redis, and JRuby

	Node.js for dispatch handling

	Redis for speed

	JRuby for spinning off of tasks

Simple app demo

	Code: https://github.com/spire-io/hacknight-note-app

	Demo: http://iriecycle.net/hacknight/

Spire.io uses CORS

	Like JSONP but better

	See http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Index

pydanny-event-notes

This is where I accumulate and store notes and slides and other content gotten at events, meetups, classes, tutorials, and conferences over the years.

This is a work in progress. What you see here on github is partially rendered with some enhancements at http://pydanny-event-notes.rtfd.org.

You can read the story about my live-noting at: http://pydanny.blogspot.com/2011/12/story-of-live-noting.html

Using Twisted with Everything Else

by LVH

Why should you care about Twisted?

	Async before it was cool!

	IRC, SMTP, DNS, SSH, Websockets

	Time events, sane process and thread management

	Protocol and transport abstractions

	Twisted vs Django, Flask, et al

	Incoming e.g. a chat server

	Outgoing e.g. a scraper

Prereqs for this talk

	Python

	Possibly Twisted

How Twisted Works

	Reactor

	Object

	Register new events

	Waits for events

	Dispatches them when they occur

	Internally an event loop

	Except for test reactors e.g. clock

	backed by some event mechanism

	Reactor Interfaces (usually call higher-level APIs)

	IReactorBase: run, stop

	IReactor(TCP|IDP|SSL|Multicast|UNIX|etc)

	Deferreds

	An object that you get now

	Gets you a result (or failure!) later

	Very flexible

	Used because operations take time now and you can’t always get a response right now

	Blocking API

	Evaluate or raise some point in the future

	Thread can’t do anything else in the meantime

	Deferrred API

	Get an object representing the future result right now

SOA - Service Oriented Architecture

	Loosely coupled things that talk to each other

	Components written in Python, Cobol,

Day 2 - Thursday 9 2008

The future of the Plone UI by Alexander Limi

	Where do we see customers having problems

Disclaimer

	This is science fiction

	Not all of it

	Most of it exists

	Limi has strong opinions

	May not reflect what ends up happening

Handy tools

	Firebug in Firefox lets you copy xpath to a node

Define Skinning

	branding

	theming

	customization

Need one central registry for templates

	Deliverance (xdv actually)

	Handles the skinning process

How does deliverance work?

	Uses XSLT (which you don’t have to know to see)

	Pulls in content from Plone and replaces it in a static HTML file

	You don’t need to know anything about Plone to work with this!

Main focus areas

	rich media handling

	composite pages

	uploaded content

	http://limi.net/articles/simplifying-plone

Simplified UI- Demo

	Get rid of the noise of the edit bar

	Replace tabs with elegant links

	putting workflow in-line!

	
	Simplifying kupu interface

	
	Moving from type centric to a widget centric view of the world

Handling of Rich Media

	Attachments of types

	Portlets/viewlets need to be unified = “widgets”

	Martin will talk about this after lunch

	Transformation on save

Widgets rock

	
	Eleminaes the need for:

	
	Collection type

	Composite page types

	display menu

	content proxy types

	default pages

	don’t need folders anymore

	folderish needs to go away, we should just call them containers

Recent news

	
	Kupu

	
	Evaluating other visual editors

	They all suck

	
	So maybe refactor kupu

	
	rewrite using jQuery

	Move layout outside of contentEditable

	enables advanced column/grid layouts

	be more opinionated

Other important stuff

	Sharing must be improved

	Autocomplete widget

	Date delector needs to be improved

	Whats your pet peeve

	Need good way to demonstrate query construction

	Better date format controls

	Keyword/tag system

	z3c form stuff needs to be improved

	Better validators on incoming text

	Come and tell him!

Day 2 - Thursday 9 2008

Lightning Talks

Kewl Plone tool

http://weblion.psu.edu/wiki/WEbLionHosting

Roadrunner

	Plone tax is ugly

	When you run tests you have to start up everything

	
	Use roadrunner for tests!

	
	4 times faster than plain plone

	Add a recipe to plone buildout

	
	Plans

	
	Code clean up

	Auto test

Agilito by Gerry kirk

	The tool that sucks than the rest of them

	task tracking

	
	metrics

	
	team dashboard

	Written in Django

	
	Doesn’t do

	
	time tracking

	release planning

	email notifications

TinyMCE for Plone

	WYSWIG for Plone

	Can’t here the guy

Drag-n-drop for KSS

	Small text

	looks pretty easy

	Time box for time tracking.

Day 2 - Thursday 9 2008

Simplifying Plone by Martin Aspelli

	With a chainsaw

	How we can make Plone more approachable from a developer’s point of view

Introduction

	Last conference was no more monkey patches

	
	current embarrassments

	
	blog support

	rich media

	import/export sucks

	Plone is hard to learn

	skinning course

Thank you Lennart

	
	What zope did wrong

	
	Zope 2 has inverse learning curve

	Zope 3 has outverse learning curve

	Five has an inverse/outverse learning curve

	Plone 4 needs a lumpy learning curve

	Developers expect things to be easy

Process for making improvements to Plone

Flowchart showing the process

	Ask what are issues

	Categorize the issues

	Evaluate the issues

	Identify the particulars of the issues

	Chop out the old stuff that sucks

Guiding lights

	Grok

	Repoze

	Pylons

	TurboGears

	Repoze.bfg

	web.py

Plone 4

	
	Steps to learning should mirror how development should work

	
	install

	content & settings

	colors/logo

	etc

	integration comes last

Things that work well

	Installation

	content editing

	collections (good but UI sucks)

	workflow

	ZODB

	settings

	content rules

	HTML and CSS

Cliffs

These are the things that take work when you figure them out the first time

	Changing the logo

	branding (“my designer gave me this”)

	Content types (“I want to capture this data”)

	
	Deployment

	
	Import and export of data

	ZODB level configurations

	Adapters ?!?

Some themes

	Think about the audience

	Find the one true way

	Remove the other ways

	customization registry

	embrace through the web

	…but allow filesystem round-trip for deployment and collaboration

 Support for multiple databases has been introduced in Django 1.2 in 2010, and, while amazing, it’s still a minefield filled with programming gotchas. I’ve stumbled upon many of them while developing a highly distributed system at SetJam and then Motorola Mobility and want to share my experiences with you. Knowing how to properly route queries, migrate schemas (using lovely South library) and then test the whole thing, while dodging chainsaws of Multi-DB API, will probably save you a few days of cursing.

Just to ignite your curiosity: Did you remember to set _for_write`correctly in all methods of your custom `QuerySet?

Scrap the Web

	Asheesh Laroia

	http://pycon09.asheesh.org/

Things to remember

	Scrapists are people who scrape web pages.

	Ignore terms of service at your on peril.

	DO NOT BECOME AN EVIL COMMENT SPAMMER

	Hidden form fields

	make traps for automated web scrapers look for emails

	
	If its on the web, you can scrape it

	
	Now you have an API for everything

Why scrape the web?

	You can maintain interoperation with unmaintained systems

	“Rogue interoperability”

Three perspectives

	Be a maverick

	Use the old standby XML tools

	“Use the web tools against the web”

Choosing a parser

	Performance

	Ease-of-use

Some tools

	BeautifulSoup is old and not maintained anymore

	
	html5lib

	
	builds BeautifulSoup objects

	builds elementTrees

	lxml provides XPath

	mechanize (so much better than urllib2!)

	pyquery

	DOMForm is a python module for web scraping but it is not maintained

	
	python-spidermonkey is a bridge between python and spidermonkey

	
	lets you build a python engine that lets you run Javascript inside of Python!

	Firefox via SeleniumRC. Really powerful. Downside is that instances of Selenium is not cheap.

Mechanize

	
	You may need to turn off robots control

	
	mechanize.Browser().set_handle_robots(False)

	See some other tricks

	Handles hidden fields and cookies

HTTP Headers for urllib

	Need to support headers in stuff via urllib2

	2xx: Success

	3xx: Redirection

	4xx: Error

	JavaScript behavior does not mirror Firefox

	Image download behavior

	Cookie behavior

	Invalid HTML handling behavior

	Not emulating web browsers can cause all kinds of fun and random things to happen

HTTP Methods

	GET is for requesting a page

	POST is for submitting a form to a server

	PUT is for uploading files in WebDav

	BREW is because POST is trademarked by Post.

robots.txt

	Check out http://www.robotstxt.org

Getting around IP address limits

	ssh -D to borrow the IP the machine you can log in to

	
	ssh -D 1080 asheesh.org

	
	Binds the 1080 port number to your local

	Sets up a soft proxy redirect to fake out people wondering who you are

Handling CAPTCHA

	Sometimes people only have a limited set of images

	Audio analysis

	Use SeleniumRC to let you do the CAPTCHA for things.

Internet Programming

	Wesley Chun

	Author of Core Python Programming

	http://starship.python.net/crew/wesc/cpp/

Sockets

Client-Server architecture

Diagram:

One-time request <--> Server <--> Clients

Servers un in an infinite loop

	Wait for client connection

	serve the request

	wait for client connection

	loop back

Definitions

	def: static execultable files are programs

	def: Programs in execution are processes

	sockets are the communicating mechanism

	
	Types:

	
	Files

	internet (AF_INET)

Socket Characteristics

Two types

	
	Conenction oriented

	
	stream based (SOCK_STREAM)

	reliable and ordered

	Transmission Control protocol (TCP)

	Think like telephone conversation protocol

	
	Connectionless

	
	Message/Datagram based (SOCK_DGRAM)

	Unreliable and not necessarily ordered messages

	User Datagram protocol (UDP)

	Thing like postal service delivery protocol

Some things to consider

	
	Underlying Infrastructure IPC mechanism combinations

	
	SOCK_STREAM + AF_INET (TCP/IP)

	SOCK_DGRAM + AF_INET (UDP/IP)

	Can also use both with AF_UNIX/AF_LOCAL

Connection-Oriented Call Sequence

Server side:

	Create a socket

	Bind to the socket

	start listening to the connection

	Infinite loop so when a client does connect that fires off a process that communicates back to them.

Client side:

	Create a socket

	Connect to a server via the socket

	Send a request to the server

	Handle the response

	Finish and close

Connectionless Call Sequence

Server:

	Create a socket

	Bind to the socket

	receive and send

	close

Client:

	Create a socket

	Make a request

	Close

SOCKET MODULE

the module:

socket() - creates socket object
SOCK_STREAM - flag to set up TCP
SOCK_DGRAM - flag to set up UDP
AF_INET - Flag to set up an internet socket
AF_UNIX - Flag to set up a Unix socket

SocketServer Module

	
	Simplifies all that we have seen

	
	Provide socket server boilerplate code

	Types provided: TCP & UDP for UNix and stuff

	request Handlers

	
	How to use socket Server

	
	Much simpler

	Create a request handling class with method

	Create a socket server given the address and pass it to your handler class

	Enter server’s infinite loop

	Base request handlers require socket-like access

	Stream and Datagram RF’s provide more file-like access

	Setting up a UDP server is similar

Asynchronous Server

	Use UDP: this is poor man’ asynchronicity

	asyncore provides asynchronous service by using select and manage clients via an event loop

	
	SocketServer has true ansync behavior

	
	multiple threads (THreading)

	Multiple processes (Forking)

	same applies to Unix family sockets

Internet Client Programming

Various protocols

	File Transfer Protol (FTP)

	NNTP (News to news protocol)

	Post office Protocol (POP3)

	HTTP

File transferring protocols

	FTP

	UUCP (uncommon)

	HTTP (primarily download)

	SCP

ftplib module

	
	ftplib.FTP class is all you need:

	
	login()

	quit()

	more

code:

from ftplib import FTP
f = FTP('ftp.mozilla.org)
f.login('anonymous', 'guess@who.org')
f.dir()
f.quit()

Some gotchas:

	Primitive once you connect

Network News Transfer Protocol

	NNTP

	News archived for a certain period of time

	Login/password not necessarily required

	Server may or may not allow ‘posting’ of messages

	Not all newsgroups may be archived on a server.

nntp module

	only need to import nntplib.NNTP

code:

from nntp import NNTP
n = NNTP('my.news.server')
r,c,f,l,g = n.group('comp.lang.python')
...
n.quit()

Electronic Mail Transferring Protocols

	Message Transport Agent (MTA)

	Message Transport System (MTS)

	Message User Agent (MUA)

Post Office Protocol version 3 (POP3)

	Email used to be delivered to your system via SMTP

	
	Resources/complexity made SMTP inefficient

	
	Lack of recources

	Expensive to keep/maintain

	Users should be given local control of their mail

poplib module

	Need to just import poplib.POP3

code:

from poplib import POP3
p = POP3('pop.mail.com')
p.user('dgreenfe')
...
p.pass_('youllNeverGUess')
...
p.quit()

Simple Mail Transfer Protocol (SMTP)

	Email “hops” from MTA-to-MTA via SMTP

	continues until e-mail reaches final destination

	
	Well-known SMTP servers include:

	
	sendmail, exim, postfix, qmail

	commercial junk: Novell, Sun, Microsoft

code:

from smtplib import SMTP
s = SMTP(‘smtp.hq.nasa.gov’)
…
sendmail(sender, recipe, msg)
…
s.quit()

Other Protocol clients

	telnetlib (telnet remote computer login)

	gopherlib (is this still used anywhere?)

CGI Programming

	CGI is neat and new!

	CGI is the wave of the future

	CGI is all about writing C!

	Ha ha ha

Why does CGI suck?

	Not fast

	Gets complex fast

	Way too manual

2 line web server

code:

from CGIHTTPServer import test
test()

Django

Django in the real world

By James Bennett and Jacob Kaplan-Moss

	What’s on the plate

	testing

	production environments

	deployments

	rest of the web stack

	monitoring

	Performance & tuning

Making your apps reusable for Django

	
	Do one thing and do it well

	
	Application == encapsulation

	
	Keep a tight focus

	
	What does this application do?

	Should just b one or two sentences

	Example: Handle storage of users

	Example: Allow content to be tagged

	Bad Example: Handle entries in a weblog

	Even simple Django sites have a dozen installed apps

	Approach features skeptically

	What does the application do?

	
	Don’t be afraid of multiple apps

	
	
	Get rid of the monolithic mindset

	
	The application is the whole site

	Re-use is an afterthoiught

	Tend to developer apps that are plugins for the master effort

	
	Django Mindset

	
	Django encourages multiple applications

	Apps live in the python path so put them anywhere you want

	Abstraction is provided via Site model

	Unrelated features should be in their own apps

	Avoid feature creep

	
	Orthogonality

	
	Should be able to change one feature without affecting other areas

	Almost always indicates a the need for a seperate application

	
	Reuse

	
	There is no such thing as the single case

	
	Advantages

	
	Don’t have to keep rewriting the same bits again and again

	Can use old work over and over

	
	Common Sense

	
	
	Form processing

	
	Supply a form

	But let people specify their own if they want via template parameter in view

	Redirect after successful submission

	Supply a default URL

	
	URL best practices

	
	provide a URLConf in the application

	Use named URL patterns

	Use reverse lookup

	
	Models (egde cases)

	
	whenever possible, avoid hard-coding a model class

	Use get_model() and take an app labl/model name string instead

	Don’t relty on objects; use the default manager

	
	Use to love managers

	
	Easy to reuse

	Managers are easy to subclass and customize

	Managers let you encapsulate patterns of behavior behind a nice API.

	
	Advanced techniques

	
	Encourage subclassing and use of subclasses

	Register things like the admin

	Always consider the API

	
	Good API design

	
	Pass in a value to change behavior

	change the value of this setting

	
	Bad API design

	
	API? What is that?

	Its open source, just fork it!

	
	Build to distribute

	
	Project coupling kills re-use

	Projects should have a settings.py and a URLConf file

	Make your application package-able even if it’s only for your own use

	Be up front about your dependencies

	Write for older Python libraries

	Tell people if you are writing against a stable release of Django or not

	
	Be obsessive about documentation

	
	It is python: give stuff docstrings

	Do it lots

	then do it more

	
	Embracing and extending

	
	Good applications are extensible without hacking them up

	Take advantage of everything the language gives you

	Wrap the code with your own view, this is what decorators are for!

	Relate other models to it

	Write subclasses of it

	You can create proxy subclasses which lets you inherit the code side of things and not the data models.

	
	Other tricks:

	
	middleware

	context processrors

	
	Be a good citizen

	
	If you change someone else’s code, be nice about it

	let the main person know you made the change

Testing

At first glance looks like it is about code quality and not deployment. But untested code is broken code. The current standard case is Stupidity driven testing, which is writing tests against the stupidity. So when you find a bug, you write a test to duplicate that bug.

Whatever happens, don’t let your test suite break thinking, “I’ll go back and fix this later.”:

Unit Testing <---> Functional Testing <---> Browser

You need all the testing tools and methods. You need to test at multiple level.

	
	Unit tests

	
	whitebox testing

	verify the small functional units of your app

	very fine grained

	familiar to many developers

	
	Django.test.TestCase

	
	Fixtures

	Test client

	Email capture

	Database management

	Slower than unittest.TestCase

	
	Doctests

	
	Easy to read and write

	produces self-documenting code

	Great for cases that only use assetEquals

	Somewhere between unit tests and functional tests

	Difficult to debug

	Doesn’t always provide useful test failures

	
	Functional tests

	
	a.k.a Behavior driven development

	Blackbox or holistic testing

	Functional testing tools

	
	Django.test.Client

	
	Close to browser testing

	
	Web browser testing

	
	The ultimate in functional testing for web applications.

	Run test in a web browser

	Can verify JavaScript, AJAX; even design

	Test your site across supported browsers

	
	Browser Testing Tools

	
	Selenium

	Windmill (has built-in Django integration)

	
	Exotic testing

	
	Static source analysis

	Smoke testing

	Monkey testing

	Load testing

Deployment

Deployment should…

	Be automated.

	Automatically manage dependencies.

	Be isolated.

	Be repeatable.

	Be identicale in staging and production.

	Work the same for everyone.

	Dependency Management

	Isolation

	Automation

	apt/yum

	virtualenv

	capistrano

	easy_install

	zc.buildout

	fabric

	pip

	
	puppet

	zc.buildout

	
	

Look into these tools:

	virtualenvwrapper (need to modify my .bashrc)

	pip

Application Servers

	Apache + mod_python

	Apache + mod_wsgi

	Apache/lighttpd + FastCGI

	SCGI, AJP, nginx/mod_wsgi

Unless you have a really good reason, use mod_wsgi. Mod_wsgi is much more predictable than mod_python. Web Faction is a good host.

How does scaling work?

	Scaling means that as your load increases, your system speeds up to match.

Why separate hardware?

	Resource contention

	Separate performance concerns

	0 -> 1 is much harder than 1 -> N.

Use connection middleware:

	Proxy between web and database layers

	
	Most implement hot fallover and connection pooling

	
	Some provide replication, load balancing, parallel queries, connection limiting, etc

	
	Middleware examples:

	
	PostgreSQL: pgpool

	MySQL: MySQL: Proxy

	Database-agnostic: sqlrelay

	Oracle: ?

Media server traits:

	Fast

	Lightweight

	Optimized for high concurrency

	
	Options:

	
	Apache?

	lighttpd

	nginx

Load balancing:

	
	Why load balancers?

	
	So you can have multiple loads

	So you can plug-and-play with new/old systems

	
	Good traits:

	
	Low memory overhead

	High concurrency

	Hot fallover

	Other nifty features…

	
	Examples:

	
	Apache + mod_proxy (use cautiously)

	perlbal

	nginx

Monitoring

	tell me when my site goes down

	Automatically handle common sources of downtime

	
	Ideally handle downtime before it even happens

	
	If load gets heavy, kick in new servers

	Monitor hardware usage to identify hotspots and plan for future growth

	Aid in postmortem analysis

	Give pretty graphics

Availability monitoring principles

	Check services for availability

	More than just ping yoursite.com

	Have some understanding of dependencies

	Notify the right people using the right methods and don’t stop until its fixed.

	Minimize false positives

Example tools

	
	Internal tools

	
	Nagios

	Monit

	Zenoss

	
	External tools

	
	Pingdom.com

Usage Monitering

	keep track of resource usage over time

	Spot and identify trends

	Aid in capacity planning and management

	
	Usage Monitering tools

	
	RRDTool

	Munin

	Cacti

	Graphite

Logging and Log Analysis

	print

	Python logging module

	syslogd

	grep | sort | uniq -c | sort -rn

	Look into Splunk

Performance

When to care about it

	Ignore performance

	Get the code written

	Make it work

	get it on a server

	then look into it if there is an issue

Django slowdowns:

	Look for code using a lot of query

	Use select_related

	use caching

	Look for complex DB queries and look for ways to simplify them

The DB is the bottleneck or it will be I/O.

	Find out what slow means

	Do testing with tools like wget

	Sometimes the slowness is actually on front end

What to do on the server side:

	Cache

	Cache some more

	Caching turns less hardware into more

	
	Caching is a trade-off

	
	Do you want to cache everything from everybody?

	Do you want to only log people logged in?

	
	Not all views are the same

	
	Clean up your DB queries

	Use Django’s cache middlewhere

	http://www.revsys.com/writings/postgresql-performance.html

Using Python with Excel

If this library set can’t do this stuff already, its because no one has written it yet.
What are we going to cover:

What is xlrd for?
What is xlwt for?
What is xlutils for?
What do you still need Excel via COM for?

Why not PyExcelerator?

Dead in the water
Not maintained
xlrd, xlwt, xlutils are based on old PyExcelerator.

Automating Excel using COM

	Slow

	Buggy

	License violation

	requires windows

Real world example

	100+<B Excel file needs processing

	COM, 7 hours, Weird obscure error messages every so often

	xlrd, xlutils, xlwt, 7 minutes, Good error handling

Getting Help

	Google mailing list

xlrd

Opening workbooks:

open_workbook()
 - filename
 - file_contents
 - encoding_override
 - formatting_info

Navigating Workbooks:

Book.nsheets
Book.sheet_by_index(index)
Lots more...

Some specifics:

You can get data by cell, or values of cells.
You can get groups of cells via the Rows commands.
Various Utility functions
xlrd will return unicode
You may need to specify the encoding
 - do so with open_workbook

Types of cell

Text:

* xlrd.XL_CELL_TEXT
* unicode

	Number

	Error

	Empty

	Blank (for formatting)

Date stuff:

Be careful because Excel does dates funny
xlrd.XL_CELL_DATE
float
use xldate_as_tuple
then use datetime(*tuple)
BEWARE dates before 1904

Names:

These are variables defined in Excel by doing Insert > Name > Define
can be a constant, absolute, has scope at different levels

Formatting:

You can load formatting and modify it.
Can be complex

Handy script

runxlrd.py lets you do introspection easily

Writing Excell Files

Workbook is a class in xlwt that is:

Finds sheets only by index
primarily row oriented.

Rows notes:

Every 1000 rows you write, flush your rows.
Once flushed, you can't modify them again.

Column notes:

Only contain formatting information.

Cells:

You can write a cell from the worksheet or from the row.
Try not to overrwrite what you have for a cell and its disabled by default.

Unicode:

Pass unicode to xlwt
If you must use encoded strings, make sure the encoding is consistent
If your encoding isn't ascii, create the workbook appropriately

Formatting

Formatting comes as a group of styles expressed as XF records in xlwt.
xlwt.easyxf is for creating them. What isn’t handled by Styles?

easyxf

(<element>: (<attribute value>,) +;) +

Zero or more element specifications
Follow CSS style patterns
lots of booleans and lots of colors
- Can specify rgb values
- Beware the color palette
- best just to use names and leave the palette be!

types of elements you can set:

font
alignment
borders
pattern
protection
- gotchas!
- does actually work
- very convoluted

More things about easyxf:

lots of synonyms
take a good look at the tables
only use stuff you understand or are happy to experiment with!
More synonyms coming
maybe more coolness for borders

Formatting rows and columns:

row.set_style(xfstyle)
column.set_style(xfstyle)
Precedence
- cell
- row
- column
Hiding
width
- xlwt does not support autowidth
- because that is a function of the application and not the file format
height
- very complicated rules
- easier to set height on row style

Sheets and Workbooks

	Lots of attributes to play with!

	All the ins and outs of these are beyond the scope of this class

	Happy to try and help during the workshop session

Style compression

Excel limits you to 400 fonts and 4000 XF records so be careful when generating large excel files.

Specified when creating the workbook
if its easier to create lots of styles
 - set style compression to 2
In general
 - Create all your styles in advance
 - leave style compression off
Run the example
 - inspect with runxlrd.py xfc *.py

Formulae

	xlwt.Formula(text)

	Row.set_cell_formula(col_index,formula,[style])

What is supported?

all the built-in formula functions
All the analysis toolpak (ATP) functions
Comma or semicolon as argument seperator
case-insensitive matching
- Function names
- Sheet names
- cell names

Not supported?

References to external workbooks
array formula
references to defined Names
data validation
conditional formatting
formula evaluation

Utility methods

	rowcol_to_cell(rowindex,column_index) converts a row/col integer reference into a excel reference

	valid_sheet_name(string) Checks to ensure that the name is valid for a workbook

Other things

	Hyperlinks are just another type of format

	images can be inserted using the insert_bitmap method of the sheet class

	only supports 24 bit bmp?

	merged cells are groups of inserted cells. Use Worksheet.write_merge() and not Worksheet.merge()

	
	Borders around groups of cells is challenging. Follow the examples!

	
	Check out the outlines and zoom functions!

Split and freeze panes:

Split panes do not work in xlwt
non-frozen panes appear to be somewhat buggy

Other utilities in xlutils

	::

	xlutils.styles
- Style name and information for a given cell
xlutils.display
- quoted_sheet_name
- cell_display
xlutils.copy
- xlrd.Book -> xlwt.Workbook

Filters let you change an existing file. Is rather sophisticated

Original -> filter -> filter - results

start()
workbook(rdbook,wtbook_name)
sheet(rdsheet,wtsheet_name)
set_rdsheet(rdsheet)
row(rdrowx,wtrowx)
The order
- start
 * workbook
 - sheet
 - set_rdsheet
 * row
 - cell
 - finish

Introduction to Numpy

	Developed by Travis Oliphant

	27 svn committers to the project

	Numpy replaces Numeric and Numarray

	Scipy sits on top of Numpy

	Written in C so very fast. 5 - 10 time faster than Python for same actions

Getting started

	Shell: Do ipython -pylab or from numpy import *

	from numpy import array,etc (For inside of code)

Array Operations

	a + b adds each element of each array to each other

	Use in place multiplication (*-) for speed

	array([2, 3, 4, 5]) + array([1, 2, 3, 4]) – array([3, 5, 7, 9])

	Since Python 2.1 with operator overloads Numpy lets you do add, minus, equals, greater than, etc with array objects

Attributes of Arrays

	a.dtype # dtype(‘int32’)

	a.itemsize # per element - 4

	a.shape # (4,) returns a tuple listing the lenght of the array along each dimension

	a.size # size of an array

	a.nbytes # size of bytes

	a.ndim # number of dimensions

	a.copy() # copy the array

	a.tolist() # converts to list

	list(a) slower and only works for 1d arrays

Setting of arrays

	a.fill(0) # sets all values in an array [0,0,0,0]

	a[:] - 1 # standard python but much slower

	a[::2] - 200. # Make every other item 200

Beware of type conversion

	a[0] - 10.6 # assigning a float into a int32 type will truncate decimal part!

	a.fill(-4.8) # same as slicing! Beware!

Making a 10 X 10 array (2 dims)

	d - arange(100) # build a 100 element array

	d.shape - (10,10) #

	d # shows a 10 x 10 array

Slicing a multi-dim array

	d[0,1] # first is row, second is column

	d[0,3:5] # first row, columns 3, 4

	d[0,::2] # First row, every other one

	d[3:,[0,2,5]] # starts at third row and grabs the first, third, and sixth column

Indexing with None

Need more research

What are strides?

	Byte handling, useful for understanding underlying machine architecture.

	Really only important when converting from C to Fortran and stuff.

	Don’t care

Where

	a - array((0,12,5,20))

	where(a>10)

	Does not work with attributes, just whole values. So where(a>10) works but a.method does not

	a–0 can work too

Complex Numbers

Research this

Numpy in other environments

	Not in JVM or CLR yet

	Java has more issues with high level math than C#

Type casting

	asarray is efficient. It does not make a copy if the type is the same.

	Really gotcha kinda thing, where it does copies or references so be careful.

Calculation methods

Not all are here

	sum(a) # adds all array values

	sum(a,axis-0) # adds by column in rows

	sum(a,axis–1) # supply the keword sxis to sum along the last axis

	a.min(a) # smallest value

	a.min(axis-1) # smallest value per row

	a.argmin # same as min but provides index of smallest item

	a.mean(axis-0) # mean value of each column

Other array methods

	a.clip(3,5) # sets values lower than 3 to 3 and values higher than 5 to 5

	Round goes to evens. So 1.5 and 2.5 both go to 2.

Matrix

	ESRI guy doesn’t like them.

Pickling

	Pickling header changes can cause you grief if the Python verson changes

	user Numpy save method instead

Memory Mapped Arrays

	Create a memory mapped array whose memory is on disk, on a file of your choice. You have to flush() to save data.

	Possible for distributed systems.

Structured Arrays

	Gives ability to have views into more complex objects

	Kind of like adding in extra attributes. Slide #83

	look up stocks

Broadcasting arrays

	You can add two arrays together so long as axis are closely matched.

Array Functions

	Choose lets you select things in a multi-dim array

Other things to research

	Pytables

	Numpy error handling

Why write automate tests

	Because you want your code to work

	You want your code to meet customer expectations

	Because you want to simplify your programming life

	Because you often over/under design your code

Goal: Become ‘Test Infected’

	Integrate ‘testing way’ into your daily life

	It is now actually psychologically uncomfortable for me to write code that is difficult to test

Some test guidelines

	keep your testing infrastructure as simple and stupid as possible

	Testing should help you write & debug your other code, not become a major part of the codebase in and of itself…

	Always be ready to throw out your test code!

	start small

	build tests incrementally

	Smoke tests are absurdly useful

	Test simply, at many levels

	focus on actual problem areas (existing bugs).

	Continuously integrate

Using testing as part of your process

	Use tests personally, even if other people don’t

	Manage up and across

	Automate what can be easily automated, nothing more. (Corollary: plan for testability)

	Smart small and KISS

Test Enhanced Development

	Test Driven Development: write tests first

	Stupidity driven testing: write tests after you do something stupid, to make sure you never make the same mistake again. a.k.a. Test Enhanced Development

Constrain your code

	Document your expectations, internally and externally

	Use asset more

	Write unit, functional, and regression tests in terms of expectations

Tracer Bullet Development

	Check to see your basics work before testing anything else

	If it does not work, go no further

	Exercise your your setup and teardown code

	Gives you a base from which to expand

Build a test umbrella

	One command -> all tests

	Integrate reporting

	Ease of use and startup

	No memory required

Code coverage

	People will tell you that 100% line coverage is a bad idea

	But if you don’t test every line of code then you can’t know if every line of code works

Continuous Integration

	Run all tests with a single click

	Help you figure out if your code still works

	Helps you in many subtle ways like package dependencies

Deliver Test results as part of the customer interaction process

	Try and show them the test results on a periodic basis

Summary

	Testing should be an integral part of your process

	If its not working for you, don’t force it but don’t give up, either

	Address real problems

	Simplify

	There is no try, only do

Twill

	Really nice testing suite

	Combined with WSGI intercept is really nice

Figleaf

import figleaf
figleaf.start()
…
figleaf.stop()
figleaf.write_coverage(‘.figlead’)

figleaf app.py
figleaf2html

Nose

	nosetests looks in files called ‘tests’ and will run the tests there

	Runs ‘em as you wrote them. Nice for integrated tests

Fitness

	Look up this testing tool

	Referred as PyFit

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pydanny-event-notes!

 		
 EuroPython 2013

 		
 Experiences from Teaching Physics with iPython Notebook

 		
 Intro

 		
 Teaching Physics

 		
 What’s good about ipython notebook?

 		
 DjangoCon Europe 2013 (Django Circus)

 		
 Opening Statements

 		
 Django Circus

 		
 Keynotes

 		
 Circus: process & socket manager

 		
 Processing payments for the paranoid

 		
 The Imaginative Programmer

 		
 Advanced PostgreSQL in Django

 		
 Getting recommendations out of nothing

 		
 How to combine JavaScript & Django in a smart way

 		
 Thread Profiling in Python

 		
 Migrating The Future

 		
 Having Your Pony and Committing It Too

 		
 Fractal Architectures

 		
 Getting past the Django ORM limitations with Postgres

 		
 The Web of Stuff

 		
 Bleed for Speed: Django for Rapid Prototyping

 		
 Growing Open Source Seeds

 		
 Mock your database

 		
 Class Based Views: Untangling the Mess

 		
 Dynamic Models

 		
 Prehistorical Python: Patterns past their prime

 		
 PyWaW

 		
 Django 1.6 and Beyond

 		
 Pycon 2013

 		
 Dynamic Code Patterns: Extending Your Applications with Plugins

 		
 Cliff

 		
 How plugins work?

 		
 What Doug did for cliff

 		
 Porting Django apps to Python 3

 		
 Do I want to use Python 3?

 		
 Can I use Python 3?

 		
 Options

 		
 How to port to Python 3

 		
 Documentation

 		
 Moving Forward

 		
 So Easy You Can Even Do It in JavaScript: Event-Driven Architecture for Regular Programmers

 		
 Things that are hard in Javascript

 		
 Things that are easy in Javascript

 		
 A Tale of Two Events

 		
 When X -> Do Y

 		
 HTML Event-Driven Example

 		
 PyJS (Most complete Python in browser)

 		
 Lightning Talks

 		
 Retask: Queue for humans (Kushal Das)

 		
 How and why a Java Expert switched to Python (Ron Cox)

 		
 Coding Across America (Matt Makai)

 		
 Gitstreams (Justin Lily)

 		
 NasberryPi (Mark Ransom)

 		
 European Conferences (Mike Mueller)

 		
 PyWeek Challenge (Richard Jones)

 		
 Python Epiphanies (Stuart Williams)

 		
 Job Security (Chris Neugebaur)

 		
 Keynotes

 		
 What’s makes Python awesome? (Raymond Hettiger)

 		
 Guido Van Rossum

 		
 Van Lindburgh

 		
 LA Migra Hack

 		
 About me

 		
 Talks

 		
 Data Mining with Spreadsheets

 		
 Google Fusion Tables Bootcamp

 		
 Google Data bootcamp Advanced Track

 		
 Lean Startup 2012 Simulcast

 		
 Other live-notes / live-blogs

 		
 Eric Ries

 		
 Todd Park - USA CTO

 		
 Work

 		
 Open Data Initiatives Program

 		
 Todd is working on…

 		
 Diane Tavenner - Summit Public Schools

 		
 Issues

 		
 MVP concept

 		
 What they discovered

 		
 Tendai Charasika

 		
 Get Out of the Building

 		
 10 pragmatic ways to get out of the building

 		
 TWO PEOPLE - Eric Ries and Tereza Nemessanyi

 		
 Beth Comstock interviewed by Eric Ries

 		
 Jessica Scorpio

 		
 Efforts

 		
 Daniel Kim

 		
 Thoughts

 		
 Lane Halley

 		
 Process for building products

 		
 Ron Williams

 		
 Andres Glusman

 		
 Myth: People give a damn about lean methodologies

 		
 Myth: People want to test things

 		
 Myth: You can test your way into a great experience

 		
 Panel - Getting engineers to embrace Lean

 		
 Danger: MVPs often not disposable

 		
 TWO SPEAKERS - Nikhil Arora and Alejandro Velez

 		
 Stephanie Yeager

 		
 Steve Blank

 		
 Teaching Entrepreneurship

 		
 Learn Entrepreneurship

 		
 Teach the Entrepreneurial API

 		
 George Bilbrey

 		
 Lessons learned

 		
 Ivory Madison

 		
 Don’t use these metrics

 		
 Characteristics of actionable metrics

 		
 Your Four: Most important Metrics

 		
 Find the big picture in???

 		
 Ash Maura

 		
 Leah Busque

 		
 Big Panel

 		
 Question: What is the goal you have for your venture?

 		
 Making it happen

 		
 Components of making it happen

 		
 Drew Houston

 		
 Charles Hudson

 		
 How they got started

 		
 Had to pivot

 		
 Dave Binetti

 		
 When you do you pivot?

 		
 Mark Abramson

 		
 Marc Andreessen

 		
 We learned a lot of lessons from the dot-com crash

 		
 Problems he hears in pitches

 		
 Tips

 		
 PyCon Poland 2012

 		
 Talks

 		
 Fractal Architectures

 		
 Forms in python - problems and my proposal of solving them

 		
 Continuous integration - czyli jak spędzić weekend z dziewczyną zamiast z szefem

 		
 What I missed about Python (and how JS taught me to love Python even more)

 		
 Composability through multiple inheritance

 		
 Using Python to Generate Art and Sound

 		
 PyCon PL 5 lat

 		
 Highly scalable services in Python

 		
 Blame it on Ceasar: A rant on calendaring

 		
 How to bootstrap a startup using Django

 		
 Asynchronous and event-driven PyOpenCL programming

 		
 An Extreme Talk about the Zen of Python

 		
 Schedule

 		
 Invited Speakers

 		
 Sponsors

 		
 Pycon Philippines 2012

 		
 Keynote

 		
 Talks

 		
 Basic Python

 		
 Python tricks you can’t live without

 		
 Django Quickstart

 		
 Game Programming with Python

 		
 Functional Programming in Python

 		
 Ansible - code deployment made simple

 		
 I didn’t know it’s Python: Python Advocacy

 		
 Maps of Imaginary Lands

 		
 Closing Keynote: Design your open source project

 		
 DjangoCon Europe 2012

 		
 Keynotes

 		
 Jacob Kaplan-Moss

 		
 Karen Tracey - Django and the Community

 		
 Jessica McKellar

 		
 10 Steps to better postgresql performance

 		
 PostgreSQL features

 		
 PostgreSQL negatives

 		
 Configuration

 		
 Easy performance boosts

 		
 On-going maintenance

 		
 Round pegs for square holes - using mongoDB with Django

 		
 MongoDB

 		
 Many options

 		
 Conclusions and further thoughts

 		
 Square pegs and round holes - Django and MongoDB

 		
 BY DANIEL GREENFELD AND AUDREY ROY

 		
 What is MongoDB?

 		
 Analogies

 		
 Connectors

 		
 PyMongo

 		
 Mongoengine

 		
 MongoKit

 		
 Django non-rel + monogdbengine

 		
 Summary

 		
 Thoughts: Danny

 		
 Thoughts: Audrey

 		
 Using Django with Mongo

 		
 Django mongonaut

 		
 Summary

 		
 Class-based Generic Views: patterns and anti-patterns

 		
 Controversy

 		
 What are views in Django?

 		
 Deprecation

 		
 Pre Django-1.3 Django CBVs

 		
 CBV API

 		
 Declarative vs Imperative

 		
 Usage Tips for Django CBVs

 		
 Case Studies

 		
 Shooting yourself in the foot

 		
 Django and the Real-Time Web

 		
 WWW: Changelog

 		
 Can’t miss this opportunity

 		
 Zachary’s definition of Real-Time

 		
 Stories

 		
 Caching

 		
 Implications

 		
 Building secure Django websites

 		
 Three Areas

 		
 How cookies and sessions work

 		
 XSS Injection

 		
 Reflected vs. Stored XSS

 		
 Cookie security

 		
 Server side injections

 		
 Trusting the Browser

 		
 Be careful with ModelForms

 		
 Passwords and SSL

 		
 Clickjacking and Django

 		
 Backups

 		
 Introducing PLY

 		
 Implementing DSLs in Django Apps

 		
 Initial Motivation: Searching Contacts

 		
 Other reasons

 		
 Not for the end user

 		
 How to make a DSL in Python/Django

 		
 Sample

 		
 Parser - The Grammar

 		
 Parser in PLY

 		
 I hate your database

 		
 Hate? Databases?

 		
 Different Databases, different occasions

 		
 Some quick theory

 		
 MySQL

 		
 SQLite

 		
 PostgreSQL

 		
 MongoDB

 		
 Key/value stores

 		
 Spatial databases

 		
 Filesystems

 		
 Graph Databases

 		
 Round-Robin Database

 		
 Summary

 		
 LFS - Lightning Fast Shop

 		
 LF = Lightning Fast WTF?

 		
 Numbers & Facts

 		
 Samples

 		
 Features

 		
 Properties

 		
 Accessories

 		
 Variable Payment Methods

 		
 Development

 		
 Using CSS preprocessors effectively

 		
 Don’t make a mess

 		
 Issues with CSS

 		
 Solution: CSS Preprocessors

 		
 Common Features

 		
 Doing it with Django

 		
 Tools

 		
 Warning

 		
 Conclusion

 		
 Arkestra: semantic information publishing for organizations

 		
 What typically happens when working with a CMS

 		
 His idea

 		
 Informtation, not just data

 		
 Organization

 		
 Don’t waste people’s time

 		
 Django-CMS and Arkestra

 		
 The Semantic Presentation Editor

 		
 Django Chuck - Your powerful project punch button

 		
 Why the name Chuck?

 		
 Use case for django-chuck

 		
 Why not Pinax?

 		
 Installation

 		
 Example usage

 		
 What happened?

 		
 Setup an existing project from source

 		
 It’s about time

 		
 RFC 3339

 		
 aware vs naive datetimes

 		
 DST transitions

 		
 dates and datetimes

 		
 Django >= 1.4

 		
 default and current time zones

 		
 auto-conversions

 		
 Utilities

 		
 limitations in Django 1.4

 		
 Key learnings

 		
 Healthy Webapps Through Continuous Introspection

 		
 Case study: Wasted cycles on Bitbucket

 		
 Common problems

 		
 Dogslow

 		
 django-geordi

 		
 interruptingcow

 		
 Adding tests to an uncovered application

 		
 Instagram started as burbn

 		
 When to automate testing?

 		
 Implementing real time web apps with Django

 		
 Why real time?

 		
 Finding the right tool

 		
 The tools you want

 		
 Why not implement it in Python?

 		
 Using redis for cross-language communications

 		
 Basic Concept

 		
 Hosting socket.io

 		
 Using this today?

 		
 Client Authentication

 		
 How Heroku Uses Heroku To Build Heroku

 		
 What is Heroku?

 		
 Philosophies

 		
 Environmental Parity

 		
 More philosophies in use by Heroku

 		
 Specifics

 		
 Focus on Quality

 		
 Involving women in the community

 		
 New Developer

 		
 Opened the floor to questions and discussion

 		
 Flasky Goodness (or Why Django Sucks?)

 		
 Hos Open Source work

 		
 Open Source All The Things!

 		
 Let’s build something

 		
 Django Application

 		
 Single Codebases are great

 		
 Single codebases are EVIL!

 		
 CONSTRAINTS FOSTER CREATIVITY

 		
 Build for services

 		
 Django: For API Services

 		
 Django: For API Consumer

 		
 Enter Flask

 		
 Flask Familiarities

 		
 Flask Differences

 		
 Flask Improvements

 		
 Popular Flask Extensions

 		
 Services are agnostic

 		
 General Notes

 		
 Pycon 2012

 		
 Diversity in Practice

 		
 Basics

 		
 Motivation

 		
 Goals

 		
 Workshop goals

 		
 Schedule

 		
 The results

 		
 Reflection & Sharing

 		
 How they share the work

 		
 Scaling out: impact beyond Boston

 		
 Next steps

 		
 Resources

 		
 Other

 		
 Transifex: Beautiful Python app localization

 		
 Intro

 		
 Workflow

 		
 Python & Gettext

 		
 How to render PO files

 		
 Traditional model of translations

 		
 Existing solutions before Transifex

 		
 Transifex

 		
 Simpler model of translations

 		
 Transifex size of project

 		
 Tech

 		
 Workflow automation

 		
 Workflow automation

 		
 Nifty features

 		
 Python Web Summit March 8, 2012

 		
 Introduction

 		
 Creating a Better Deployment Story

 		
 Porting to Python 3

 		
 Factoring Code for Reuse

 		
 “State-Of” Multi-Talk Round 1

 		
 Promoting Python for Web Use

 		
 “State-Of” Multi-Talk - Round 2

 		
 Quotes

 		
 Keynotes

 		
 Stormy Peters

 		
 Paul Graham

 		
 Other Pycon Notes

 		
 Other events I’ll be attending

 		
 Scale 10x

 		
 It’s all good- Decorating Python like Martha Stewart

 		
 Impetus

 		
 Function Review

 		
 Function Definition

 		
 Function Gotcha

 		
 *args and **kwargs

 		
 Closures

 		
 Decorators

 		
 Decorator Template

 		
 Paramaterized decorators

 		
 Warning: Function attributes get mangled in decorators

 		
 Uses for decorators

 		
 What if I want to tweak decorator paramers at runtime?

 		
 Juju Charm School

 		
 Mongo LA 2012

 		
 Keynote: Welcome and What’s new in Mongo DB

 		
 Design Goal: Rich data model

 		
 Journaling improvements

 		
 Compaction improvements

 		
 Index improvements

 		
 Concurrency improvements

 		
 Map-reduce performance

 		
 THings to follow up on:

 		
 New features

 		
 Links

 		
 Schema Design

 		
 Parallels

 		
 The Big Question

 		
 Denormalization

 		
 Managing Arrays

 		
 Schema decisions when sharding

 		
 Running MongoDB in the Cloud

 		
 MongoDB components

 		
 Replica Sets

 		
 Amazon EC2 Instance Types

 		
 Operating System

 		
 Turning JSON into info

 		
 Relative Queries

 		
 A note on queries

 		
 A word on rendering graphs and reports

 		
 Punchlines

 		
 Diagnostics & Performance Computing

 		
 Speed

 		
 Tools

 		
 Common problems

 		
 Indexing & Query Optimization

 		
 High level

 		
 Creating indexes in MongoDB

 		
 Things to know about indexes

 		
 Covered Index

 		
 Spare Index

 		
 Unique Sparse Index

 		
 Geospation indexes

 		
 Query Performance Analysis

 		
 Closing session and MongoDB roadmap

 		
 v2.2 projectedt 2012 Q1

 		
 Concurrency Issues

 		
 Aggregation Framework

 		
 TTL Collections

 		
 Harsh Shard Key

 		
 Short List (not in 2.2 but coming up)

 		
 10gen Hiring

 		
 Sponsors

 		
 10gen, makers of MongoDB

 		
 Redhat for Open Shift Paas

 		
 Joyent Cloud

 		
 VMware Cloud Foundry

 		
 PyCodeConf 2011

 		
 Future is Bright

 		
 What he does

 		
 What is Python?

 		
 Where is Python used?

 		
 Python is amazing

 		
 Status of the Language

 		
 Jesse’s Personal Wishlist

 		
 Jesse says we need

 		
 PyPy!

 		
 Python interpeters

 		
 Python 3

 		
 Community

 		
 Questions

 		
 Embracing the GIL

 		
 Embracing the GIL could be better

 		
 premise

 		
 The Gil in a Nutshell

 		
 What GIL protects

 		
 Major GIL issues

 		
 The Challenge

 		
 Experiment

 		
 Performance Explained - thread priorities

 		
 Another experiment

 		
 Some thoughts

 		
 PyDanny take away

 		
 Python is Awesome

 		
 Context for Success

 		
 License

 		
 Community

 		
 PyPI

 		
 Killer apps

 		
 Easy to learn!

 		
 Economy of expression

 		
 Beauty Counts

 		
 Interactive Prompt (REPL)

 		
 Behind the Scenes

 		
 Protocols

 		
 Specifics of Python: The Foundation

 		
 Winner Language Feature: Iterator Protocol

 		
 Winner Language Feature: Generators

 		
 Proposal: Generators that accept inputs

 		
 Winning language Decorators

 		
 Winning Language Features: exec, eval, type

 		
 Winning Language Feature: With Statement

 		
 Winning Language Feature: Abstract Base Classes

 		
 Winning Language Feature: Indentation

 		
 Backbone.js + Django

 		
 Convore issue?

 		
 Grove!

 		
 Leafy Chat

 		
 Backbone!

 		
 Handlebars templates

 		
 Addition Goodies about backbone.js

 		
 Router

 		
 PyPy talk

 		
 Two things go faster than C

 		
 Story of PyPy

 		
 Why you should use PyPy

 		
 The Future

 		
 Processing Firefox Crash Reports With Python

 		
 Overview

 		
 The Basics

 		
 How crashy is the browser?

 		
 Basic Architecure

 		
 Lifetime to a crash

 		
 Back end processing

 		
 Middleware

 		
 Webapp

 		
 Implementation Details

 		
 Some Numbers

 		
 What can they do?

 		
 Implementation Scale

 		
 Development Process

 		
 Absolutely Critical!

 		
 Upcoming

 		
 Everything is Open Source

 		
 The Future of Collaboration - Daniel Greenfeld

 		
 Intro

 		
 Dark future?

 		
 Trust issues

 		
 Solutions?

 		
 The State of Packaging & Dependency Management

 		
 Pip

 		
 virtualenv

 		
 Best practices

 		
 What’s missing?

 		
 Recap

 		
 Thoughts

 		
 API Design and Pragmatic Python

 		
 Alternative Titles?

 		
 His libraries

 		
 Philosophy

 		
 HTTP as an example of API issues

 		
 Subprocess

 		
 File and System Operations

 		
 Installing Python

 		
 XML

 		
 Packages and Dependencies

 		
 Date[time]s

 		
 Unicode

 		
 Installing Dependencies

 		
 Hitchhikers Guide to Python

 		
 Python is Only Slow If You Use it Wrong

 		
 Stuff he’s done

 		
 Easiest way to do Python wrong

 		
 Other way to do things wrong

 		
 Garbage Collection

 		
 Deterministic Destructors

 		
 JIT vs ???

 		
 .pyc rocks

 		
 Summary

 		
 Amazing Things in Open Source

 		
 Python community is a meritocracy

 		
 Who’s in charge

 		
 Django

 		
 Observation on Packages

 		
 Pyramid Core vs. Add-ons approach

 		
 Pyramid’s Ecosystem over time

 		
 Checklist: What 3rd Party Package Devs need

 		
 What about too many options?

 		
 Too much fragmentation?

 		
 What makes a package useful?

 		
 Anti-patterns

 		
 Glory Pattern: Be Pythonic

 		
 Community Building

 		
 Diversity of Ideas

 		
 Summary

 		
 The Prejudgement of Programming Languages

 		
 2001-

 		
 2001

 		
 2003

 		
 2006

 		
 2009

 		
 Q2 2010

 		
 Instance Variables in Ruby

 		
 Summary

 		
 Why does this all matter?

 		
 Cherry-picking for Huge Success

 		
 Preface

 		
 Consider Twitter

 		
 Does this mean Ruby sucks?

 		
 Proposed Solution

 		
 Protocol Examples

 		
 Loosely couple all the ways!!!

 		
 WSGI

 		
 HTTP

 		
 Breakdancer

 		
 Testing is a boring/hard subject

 		
 Wrote a framework to help set tests

 		
 MVC test framework? Pydanny Thoughts…

 		
 Conclusions

 		
 The Many Hats of Building and Launching a Web Startup

 		
 1. Start off on the Right Foot

 		
 2. Launch as fast as possible

 		
 3. Have a plan for monetization

 		
 4. Don’t be forever alone

 		
 5. Take Shortcuts

 		
 Summary

 		
 Future of Python and NumPy for array-oriented computing

 		
 Python fits your brain

 		
 History of SciPy and NumPy

 		
 What SciPy Does

 		
 Call to Action: Collaboration between Python Core and the Scientific Communication

 		
 Call to Action: NumPy and PyPy

 		
 Discussions

 		
 DjangoCon US 2011

 		
 Keynotes

 		
 David Eaves

 		
 Russell Keith-Magee

 		
 Idan Gazit

 		
 Glyph Lefkowitz

 		
 Read the Docs

 		
 Intro

 		
 Things you can do

 		
 CNAME support

 		
 Architecture

 		
 Open source!

 		
 Hoping it makes people write more docs

 		
 Lessons Learned

 		
 Sponsors

 		
 Questions

 		
 Mirror your project in your test layouts

 		
 Testing: The Developer Strikes Back

 		
 Hard to do it right

 		
 What is unit testing

 		
 Mirror your project in your test layouts

 		
 Use ObjectCreator classes for mocks instead of fixtures

 		
 Beyond the business logic

 		
 Dealing with cache

 		
 Writing tests can improve coding tests

 		
 What about T.D.D.?

 		
 Options to get people to test

 		
 Junction between unit and integration

 		
 Testing a virgin codebase: 0-100%

 		
 Graceful code degratation

 		
 Test Infrastructure

 		
 Useful tools

 		
 How to sell testing at your Django shop

 		
 Questions

 		
 Fireside Chat with a BDFL

 		
 How did Django get started?

 		
 Why did Django get traction and other light Python frameworks didn’t?

 		
 How has Django’s community and structure has changed?

 		
 What about Django 2.0?

 		
 Wishlist?

 		
 How can Django can become a better part of the Python community?

 		
 In your role as BDFL have you had to go against the community?

 		
 How have things changed for the Django community since the last hate talk?

 		
 Real World Deployment using Chef

 		
 Who is here

 		
 How and why

 		
 About chef

 		
 Python cookbook

 		
 Case Studies - Packaginator

 		
 Making the Django ORM Multilingual

 		
 What this is all about

 		
 Que?

 		
 What does he want

 		
 State of now

 		
 Approaches

 		
 Single Table Approach

 		
 Dictionary Table Approach

 		
 Two Table Approach

 		
 Common problems

 		
 Summary: The Situation

 		
 Why the Django Documentation Sucks

 		
 Rambles

 		
 Use cases

 		
 Images and pictures!

 		
 No jokes?

 		
 Problem: overview

 		
 Problem: Tutorial

 		
 Problem: SEO optimization

 		
 Problem: People might get smug about Django docs

 		
 Solutions

 		
 Best Practices for Front-End Django Developers

 		
 Presentation is important

 		
 Start Organized

 		
 Cascading Style Sheets

 		
 JavaScript

 		
 Don’t do HTML from scratch: Use html5boilerplate

 		
 Sass/Compass instead of CSS

 		
 All about the data

 		
 Define you datatypes

 		
 Tests

 		
 Performance

 		
 Documentation

 		
 Wrap Up

 		
 Security

 		
 SSL - safe and secure

 		
 Don’t put your database in your github repo

 		
 Scraping the Web

 		
 Content is what you need

 		
 lxml

 		
 lxml: cssselect

 		
 cssselect

 		
 iterlinks

 		
 sourceline

 		
 find,findall

 		
 nodes of content

 		
 Web pages change

 		
 forms

 		
 text, text_content, iter_text

 		
 Tips for maintainable scrapers

 		
 XPATH fundamentals

 		
 Building LXML w/LXML

 		
 Tweepy Innards

 		
 Other tools

 		
 Don’t forget

 		
 Read up on these!

 		
 Cache rules everything around me

 		
 Intro to caching

 		
 Big Picture

 		
 How to avoid Cache Invalidation Hell

 		
 Third Party tools

 		
 Last minute Advice

 		
 Django Core Dev Panel

 		
 What about App Refactor?

 		
 New community roles

 		
 How about Django on other interpreters?

 		
 Talking on django-dev

 		
 Code of conducts

 		
 How can the Django third-party ecosphere be managed?

 		
 sprints kickoff

 		
 General Notes

 		
 Kiwi Pycon 2011

 		
 Talks

 		
 Keynotes

 		
 Giving your website a command line interface

 		
 Introduction to Matplotlib for Data Analysis

 		
 Python distributed programming using gevent and redis

 		
 Behaviour Driven Development

 		
 Those niggly beginner’s questions answered by a code craft ninja

 		
 Lightning Talks

 		
 Porting (and staying ported) to Python 3

 		
 Django for n00bs

 		
 Struggling to Find an Open Source Business Model

 		
 Automated testing in Python and beyond

 		
 Asynchronous and Evented programming in Python

 		
 New Zealand Python User Group - The Whats, the Whys and the Hows

 		
 Tourist suggestions

 		
 Pycon AU 2011

 		
 Social

 		
 Talks

 		
 Keynotes

 		
 Meta-matters: Using decorators for better Python programming

 		
 State of CPython and Python Ecosystem

 		
 Teaching Python to the young and impressionable

 		
 How Python Evolves

 		
 Panel: Python in the webs

 		
 Zookeeper

 		
 Web Micro Framework Battle

 		
 Pyramid

 		
 Zen of Python

 		
 Django 1.3 Webinar

 		
 New Features

 		
 Templatetags

 		
 Class Based Generic Views

 		
 Model “on delete” options

 		
 Testing

 		
 Caching backend

 		
 Static Files

 		
 Everything else

 		
 Upgrading Django

 		
 Upgrade and Test

 		
 Things to watch for

 		
 What about 3rd party apps?

 		
 Deploy!

 		
 Deprecated Features

 		
 Admin

 		
 Custom auth backends

 		
 Backward Incompatible Changes

 		
 Security Fixes

 		
 AJAX specifics

 		
 Data-loss bug

 		
 Optimizations

 		
 The rest

 		
 Predictions for future Django versions

 		
 Predictions for 1.4

 		
 Predictions for 1.5

 		
 Pycon 2011

 		
 Biased Survey of the Python Web

 		
 The state of Python web things is that right now it is the best of times and the worst of times

 		
 Data Structures in Python

 		
 Builtins

 		
 The stdlib

 		
 Do It Yourself

 		
 Fun with Python’s new features

 		
 Collections.Counter

 		
 collections.namedtuple()

 		
 caching

 		
 Greasing the wheels of exploration

 		
 Obfuscated Python

 		
 Assignment Operators

 		
 Comparisons

 		
 Opening the Flask

 		
 April Fool’s Joke

 		
 Inspiration

 		
 Details

 		
 Outreach

 		
 How the Fedora design group does it

 		
 How the SF rails group grew

 		
 Dos and Don’ts

 		
 Conclusions

 		
 Next steps

 		
 Pluggable Django Patterns

 		
 How do you make an app sure is pluggable?

 		
 Re-Introduction to C

 		
 Talk Notes

 		
 Why I went to each event

 		
 Re-Introduction to C

 		
 Scale 9x

 		
 Big asterisk talk

 		
 The community

 		
 Asterisk Design Issues

 		
 Asterisk SCF

 		
 asterisk intro

 		
 AEL = Asterisk Extension language

 		
 Warnings!

 		
 Changes in install screen

 		
 Thoughts

 		
 Resources

 		
 MongoDB LA 2011

 		
 LA MongoDB meetup

 		
 What OS for production?

 		
 For production

 		
 Python Language Driver

 		
 Backups

 		
 Question

 		
 Features, ease of use

 		
 Database Design

 		
 Pure SQL Implementation

 		
 SQL + Mongo Implementation

 		
 Django Master Class 2009

 		
 Caching

 		
 Cache backends to use

 		
 Cache setup

 		
 Per Site Cache

 		
 Template fragment caching

 		
 Low-level cache API

 		
 Documentation

 		
 Cache decorators

 		
 Conditional view processes

 		
 REST

 		
 Gem

 		
 REST properties

 		
 IOW: “Respect the web”

 		
 Adding an API

 		
 Plain Django

 		
 Piston

 		
 Schema Migration

 		
 Gems

 		
 The problem with the Django ORM

 		
 The main lesson

 		
 Django Migrations Tools?

 		
 Django-Evolutions

 		
 South

 		
 Testing

 		
 Gem

 		
 Quotations

 		
 Django Tools

 		
 Unit Tests

 		
 django.test.TestCase

 		
 doctests

 		
 Functional Tests

 		
 Fixtures

 		
 New fixture tool

 		
 Coverage tool

 		
 Mocking tool

 		
 Browser Testing

 		
 Exotic Testing

 		
 Further resources

 		
 DjangoCon 2010

 		
 Keynote: Why Django sucks and how we can fix it

 		
 Apps

 		
 Generic Foreign Keys

 		
 Performance

 		
 Django Core

 		
 Badteries

 		
 Reusable apps

 		
 But Standard apps patterns are not truly reusable

 		
 What about class based views?

 		
 Reusable frameworks

 		
 Custom Backends

 		
 Libraries approach

 		
 Class based views

 		
 Ben’s implementation

 		
 Customizing Django Admin

 		
 User Experience

 		
 Customizing the Experience

 		
 Lightning talks

 		
 Hashing by david gouldin

 		
 Maintaining an old Django project

 		
 Background

 		
 What PBS likes about Django

 		
 Things that worked for PBS

 		
 Lessons learned

 		
 Sell the upgrade to the Uppers

 		
 What he wants

 		
 Maps of imaginary lands

 		
 GeoDjango Admin

 		
 What is GeoDjango?

 		
 OpenLayers

 		
 pony pwning

 		
 Notes

 		
 Developers aren’t perfect

 		
 State of Pinax

 		
 Inspiration - Ole Kirk Christianson

 		
 The Trade off

 		
 Pinax IS Django

 		
 Questions

 		
 Treehugging

 		
 Introduction

 		
 Django Apps

 		
 Miscellaneous

 		
 Why Django Discussion

 		
 Pycon 2010

 		
 0.9 Pinax Roadmap

 		
 Must

 		
 Should

 		
 Leafy Chat

 		
 Intro

 		
 LeafyChat

 		
 DjangoDose

 		
 Hurricane

 		
 Pycon 2010

 		
 Django in Depth

 		
 Model Inheritence

 		
 Django Views

 		
 AdminSite

 		
 Overriding templates

 		
 Dude, where’s my database?

 		
 Relational

 		
 Key/Value

 		
 Data Structure

 		
 Graph

 		
 Document-Oriented Database

 		
 Highly Distributed Databases

 		
 Eventlets

 		
 Problem

 		
 Solution: Coroutines

 		
 Eventlet

 		
 Form Panel

 		
 Who is who?

 		
 FormAlchemy

 		
 Sprox

 		
 Django

 		
 Formish

 		
 Neo4j

 		
 Data Model

 		
 Questions

 		
 Support for Django out of the box

 		
 Underwater robots

 		
 Details

 		
 Python

 		
 Unit Testing

 		
 Woes

 		
 The GIL

 		
 GUI & Simulator

 		
 Dependency Management

 		
 Conclusion

 		
 Using Django in Non-Standard Ways

 		
 The main thing

 		
 Choosing alternatives

 		
 Not using django.contrib.auth

 		
 Not using the ORM?

 		
 Using the ORM in stand-alone mode

 		
 WSGI Middleware

 		
 Other

 		
 Django Internationalization

 		
 Code

 		
 Translating models

 		
 Translating templates

 		
 Its just Python

 		
 DjangoCon US 2009

 		
 Keynote: On politics

 		
 by Ian Bicking

 		
 Keynote by Ted Leung

 		
 Status of web frameworks

 		
 RIAs

 		
 Cloud Computing

 		
 Competition

 		
 JavaScript

 		
 What can Django do better

 		
 Confessions of a Perl bigot

 		
 by Frank Wiles

 		
 Afraid to give up his addiction to Perl

 		
 Outside observations

 		
 Perl thoughts

 		
 What is Django missing?

 		
 Advice on having a Django addiction

 		
 Continuous Integration

 		
 Assumptions and Constraints

 		
 What is CI?

 		
 Tests

 		
 Deploying Django

 		
 by Brian Rosner

 		
 GeoDjango

 		
 by Adam Fast

 		
 GeoDjango

 		
 Grue

 		
 High-Performance JavaScript

 		
 by Erich Ocean

 		
 About sproutcore

 		
 The HTML 5 Stack

 		
 Django’s opportunity

 		
 Lightning Talks

 		
 Dive into cpython by Alex Gaynor

 		
 pywatch by Chris Heisel

 		
 Web Cube. by aron and Nickolai

 		
 Surlex by Cody

 		
 No Bad Pony

 		
 What he does

 		
 How is pony formed?

 		
 Bad pony is:

 		
 Massive Features

 		
 Some popular tickets

 		
 How do you get your Pony?

 		
 If you must write the code…

 		
 Pluggable Applications

 		
 Background

 		
 Reusable App design pattern

 		
 Reusable App design pattern - sort of

 		
 Template tags to the rescue

 		
 The Use Case

 		
 Their reqs

 		
 Solution: Pluggable Resusable App Pluggable

 		
 Make it so

 		
 Very nice!

 		
 Scaling Django web apps

 		
 By Mike Malone

 		
 A Scalable Application

 		
 Caching

 		
 Django has a nice low-level Cache API

 		
 Upping your appserver

 		
 Need to see the slides

 		
 Ur doing it wrong

 		
 by James Bennett

 		
 To start off: RTFM

 		
 Idea: Django module of the week

 		
 Django is just Python

 		
 The biggest problem with the perception of Django

 		
 Testing new Django apps

 		
 DjangoCon Report

 		
 Pycon 2009

 		
 Behind the scenes at Everyblock.com

 		
 Model designs

 		
 Data Scraping

 		
 IMPORTANT

 		
 Building test frameworks with twill

 		
 What is a test engineer?

 		
 Some options they don’t use

 		
 Cases

 		
 Test framework stack

 		
 Pros

 		
 Cons

 		
 Concurrency

 		
 Coverage Testing - good and bad

 		
 Coverage Measurement

 		
 Coverage tools

 		
 Django History

 		
 Choices

 		
 Guido’s Keynote Speech

 		
 Things to look at

 		
 MetaClasses

 		
 Lightning Talks last Day

 		
 GeoDjango

 		
 What up with Zope

 		
 New command line parsing called argparse

 		
 Zain’s cheapo continuos integration tool

 		
 blist looks awesome

 		
 C types

 		
 Using parenthesis to avoid backslashes in python

 		
 Pinax Talk

 		
 Quisition

 		
 Stuff Upcoming 0.7

 		
 Plone front end other front end

 		
 Why Plone?

 		
 Problems with Plone

 		
 Content Mirror

 		
 Now we can

 		
 How does it work?

 		
 Several created front ends

 		
 Sphinx mini-tutorial

 		
 Steps

 		
 5 essential strategies

 		
 Useful tools

 		
 Strategies

 		
 Testing large, untested code bases

 		
 tools

 		
 The code base

 		
 Issues with code base

 		
 What we already know

 		
 Software forensics

 		
 Grokking code thru coverage

 		
 The State of Django

 		
 What has happened since?

 		
 Django 1.0

 		
 Django 1.1 beta

 		
 What next?

 		
 Using Windmill

 		
 Windmill IDE:

 		
 Plone Conference 2008

 		
 Day 1 - Keynote

 		
 With Software as a service, is only the network luddite free?

 		
 In the Beginning

 		
 Ye Old Four freedoms

 		
 Then freedom eluded us

 		
 Who fixed the problem

 		
 The Golden Age

 		
 MIT AI Lab

 		
 GNU

 		
 Internet changes little

 		
 Email: The MTA

 		
 Email: Maul User agents

 		
 What changed

 		
 Email become gmail

 		
 Users and the cloud

 		
 What’s the challenge?

 		
 How do we start dealing with this challenge?

 		
 Keep going

 		
 Projects to look at

 		
 Future of the Cloud

 		
 More info

 		
 Day 1 - Feed the Masses

 		
 Agenda

 		
 Syndication

 		
 Prevailing syndication formats

 		
 Exposing the myth of RSS compatibility

 		
 Atom

 		
 Plone Syndication

 		
 VICE

 		
 Installing VICE

 		
 Features

 		
 Goals

 		
 Day 1 - Plone Developer

 		
 Useful Tools

 		
 Plan

 		
 viewlets.xml

 		
 Day 1 - Lightning Talks

 		
 Special Announcements

 		
 Lightning Talks

 		
 Day 2 - Agile Process

 		
 Introduction

 		
 Day 2 - Bringing Open Source Practices to Educational Enterprises

 		
 Can’t do business with a web site that sucks

 		
 Ecosystem

 		
 Behaviors and Structures

 		
 Day 2 - Consultant Talk

 		
 Figuring out charge rates

 		
 Day 2 - What makes a great software development team

 		
 What is the problem?

 		
 What Mike Robinson thinks will work

 		
 Day 2 - Summary

 		
 So you want to be a consultant by panel

 		
 What makes a great development team by Mike Robinson

 		
 Future of the Plone user experience by Alexander Limi

 		
 Simplifying Plone by Martin Aspelli

 		
 NASA Science case study by Katie Cunningham and Daniel Greenfeld

 		
 Evening Agile Development workshop by Mike Robinson

 		
 General Socializing

 		
 Day 3 - Buildout by Clayton Parker

 		
 Why buildout?

 		
 Syntax

 		
 Parts and Recipes

 		
 Buildout

 		
 Recipes

 		
 Extending Configuration

 		
 PIL integration!!!

 		
 Handy tips

 		
 Creating recipes

 		
 Question

 		
 Day 3 - Buildout with Tarek

 		
 Part I - working with packages

 		
 Part II - working with zc.buildout

 		
 Part III - application lifecycle

 		
 Day 3 - KSS by Joel Burton

 		
 Overview

 		
 Challenges of JavaScript

 		
 What is KSS?

 		
 KSS sample 1

 		
 KSS sample 2

 		
 Registering KSS

 		
 Timeouts

 		
 events

 		
 coreset

 		
 zope set of commands

 		
 plone portlet functions!!!

 		
 Debugging KSS

 		
 Future of KSS

 		
 Day 3 - Lightning Talks

 		
 CSS Manager by Rob Porter

 		
 Grok + Dexterity by Martin Aspelli

 		
 Plone Tune-Ups by Calvin Hendrix-Parker

 		
 Fabric by Aaron Van Der Lip

 		
 Zope on Python 2.6 by so and so

 		
 Photogallery for repoze.bfg by ???

 		
 Day 3 - Summary

 		
 Day 3 summary

 		
 Joe Developer Class Curriculum Idea

 		
 Goals of the class for our firm

 		
 Quickie view of the curriculum

 		
 Class Pre-Requisites

 		
 Our Setup

 		
 Assembling the tools

 		
 Buildout

 		
 Products to investigate

 		
 Sprints

 		
 Projects I considered

 		
 What I did

 		
 What others did

 		
 Pycon 2008

 		
 A database in the clouds

 		
 Using the Google Spreadsheets API

 		
 Why?

 		
 Challenges

 		
 Why google spreadsheets?

 		
 GoogleSpreadsheet API

 		
 What sort of Database

 		
 Simplified Interface

 		
 Searches

 		
 What is a callback?

 		
 Callback implementation

 		
 Customization

 		
 OO Customizing: the TM DP

 		
 Customizing scheduling

 		
 Events

 		
 The Observer DP

 		
 GUI frameworks

 		
 Callback issues

 		
 Fixed args in callbacks

 		
 Callback dispatching

 		
 Callback and Errors

 		
 System-events callbacks

 		
 Event-driven parsing

 		
 Scheduled callbacks

 		
 Concurrent Callbacks

 		
 Timing and Debugging

 		
 Django under the hood

 		
 Intro

 		
 Pluggables

 		
 New features

 		
 Metaclasses

 		
 Why Py3k

 		
 Major Breakages

 		
 Long anticipated breakages

 		
 Major new features

 		
 What’s in it for me

 		
 Enables future evolution

 		
 2to3 tool

 		
 When do we switch

 		
 Getting ready to switch

 		
 What about text handling

 		
 The role of Python 2.6

 		
 Iterators in action

 		
 Overview

 		
 Functional LINQ

 		
 Row composition

 		
 Column Composition

 		
 Naming

 		
 namedtuple

 		
 Select

 		
 operator.itemgetter

 		
 create join primitives

 		
 Research items

 		
 Concepts for use

 		
 Recursive Generators

 		
 Fork

 		
 Global Interpreter Lock

 		
 Netflix Prive

 		
 More CPUs

 		
 Beowulf Clustering

 		
 Amazon EC2

 		
 Parallel programming in Python

 		
 ElasticWulf

 		
 What is MPI?

 		
 Basics of MPI

 		
 Getting started

 		
 nose and TDD

 		
 How laziness drove the development of NOSE

 		
 Basic of Nose

 		
 Reasons to use nose

 		
 Why Pyglet?

 		
 Pyglet!

 		
 Compared to other things (pygame, pyopengl)

 		
 Components (Linx, OS X, Windows)

 		
 Features

 		
 Third parties

 		
 Python for the sys admin

 		
 Why Python?

 		
 Sys admin constraints

 		
 Q&A

 		
 Turbogears Philosophy

 		
 Why TG2?

 		
 Why not just merge TG and Pylons?

 		
 Stuff that was shared

 		
 Going forward with other frameworks

 		
 Roll your own persistence in python

 		
 Example: Invoice

 		
 Implementation

 		
 Storage: Roll your own

 		
 Ways

 		
 Tradeoffs

 		
 Serialization

 		
 Serialization tradeoffs

 		
 Adding features

 		
 Data replication & versioning

 		
 Map-Reduce Querying

 		
 The server

 		
 Summary

 		
 History of SQLAlchemy

 		
 Highlights of 0.4

 		
 SQL Expression language

 		
 New ORM Query ORM

 		
 Inline Aliasing

 		
 High level operators

 		
 New ORM Configurations

 		
 Collections API

 		
 Dynamic Relations

 		
 Polymorphic Inheritence

 		
 New transactional features

 		
 Other features

 		
 What is coming back

 		
 A command line’s tools dream come true

 		
 Ideas for command line tools

 		
 The basics: Subprocess + Optparse

 		
 Some ideas

 		
 Stackless 101

 		
 Channels

 		
 Why python sucks

 		
 Not enough Python developers

 		
 Few organizations have Python solutions

 		
 Python language weirdness

 		
 Python is slow

 		
 Summary

 		
 Plone Conference 2007

 		
 Ajax with Plone 3 : KSS development Patterns

 		
 by Godefroid Chappelle - Bubblenet

 		
 Anti-patterns and patterns for successful projects

 		
 Speaker: Kamon AYEVA

 		
 Introduction (Why should we care)?

 		
 Follow these rules so life is easier

 		
 Extending and customizing Plone 3

 		
 by Martin Aspelli

 		
 Agenda

 		
 Interesting stuff

 		
 Glossary terms

 		
 Buildout

 		
 Policy Product

 		
 Generic Setup

 		
 Installation tests

 		
 Visual Customization

 		
 Introduction to KSS, Kinetic Style Sheets

 		
 by Balazs Ree

 		
 Lightning Talks Thursday

 		
 Plone HRM

 		
 Quills

 		
 GoReplace

 		
 appy.pod

 		
 Interop-Kmap

 		
 Grok

 		
 Manage your releases with Bundleman

 		
 Repoze: Getting Plone to WSGI

 		
 Storage for Archetypes with SQLAlchemy

 		
 Entransit Content Deployment, bridging the presentation gap

 		
 5 Plone theme tips

 		
 Tip 5 - Centered Design

 		
 Tip 4 - integration of IE

 		
 Tip 3 - Styles alterations

 		
 Tip 2 - Drop down menus

 		
 Tip 1 - Rounded Corners

 		
 So you want to be a Plone Consultant

 		
 Agenda

 		
 Getting Started

 		
 Subtyping Pattern!

 		
 What is subtyping?

 		
 Why subtyping?

 		
 p4a.subtyper

 		
 demo

 		
 cases in Plone4Artists

 		
 Untested code is broken code

 		
 arguments against

 		
 justification

 		
 tests in python

 		
 Test driven development

 		
 Executable documentation

 		
 doctests

 		
 documentation-driven development

 		
 General Test concepts

 		
 Zope 3 for Plone Class Notes

 		
 Exercise: Creating a functional test

 		
 Gotcha

 		
 Interfaces

 		
 Basic UI: View Components

 		
 Writing your own permissions

 		
 Integrating Archetypes

 		
 Setting up the view

 		
 Python scripts inside of templates

 		
 Testing

 		
 Sub-Type Pattern Syllabus

 		
 Adapters

 		
 Revisiting Adapters

 		
 Utilities

 		
 Advanced UI

 		
 Forms & Widgets

 		
 plone.app.form (part of Plone 3)

 		
 Useful components

 		
 Things to look at

 		
 Formlib issues

 		
 Tangent: Plone 3

 		
 Relations with Alex Mitchell

 		
 What is zc.relationship?

 		
 What is Plone.relations?

 		
 What is Plone.app.relations

 		
 Relationship Source

 		
 Relationship Targets

 		
 Code Samples

 		
 What can you do with it?

 		
 What has been done with it

 		
 Google Apps Script Hackathon

 		
 What is Apps Script?

 		
 Features

 		
 Use Cases

 		
 Grading made easy with Flubaroo

 		
 Many types of mail merge

 		
 Vacation calendar for Brown University

 		
 Sample code snippets

 		
 My createHomePage code

 		
 Women in Engineering

 		
 Talks at L.A. Girl Geek Dinner #1 – Google Venice

 		
 Socially Assistive Robotics and Discoveries on the Research Path

 		
 Hitting the Road to Mars

 		
 AngularJS

 		
 Rebuilding DoubleClick with AngularJS

 		
 Old app

 		
 New App - challenges

 		
 Transition to prototype

 		
 Transition to AngularJS

 		
 Single Page Architecture

 		
 Other libraries they use

 		
 Third-party controls

 		
 Open sourcing their work?

 		
 Internationalization

 		
 Caching

 		
 AngularJS in review

 		
 SFV Developers

 		
 Talks

 		
 May 1, 2012

 		
 JS.LA

 		
 Talks

 		
 September 25, 2012

 		
 July 26, 2012

 		
 April 26, 2012

 		
 Southern California Python Users Group

 		
 Talks

 		
 December 12, 2012

 		
 September 26, 2012

 		
 July 20, 2012

 		
 May 17, 2012

 		
 February 22, 2012 - 12 Factor App

 		
 June 6, 2011 - Socal Python meetup at Dreamhost

 		
 June 6, 2011 - Python at AOL

 		
 June 6, 2011 Knowing Things

 		
 May 26, 2011 - Python at Walt Disney Animation Studios

 		
 May 26, 2011 - Python tricks Fun with Python’s newer tools

 		
 April 20, 2011 - Python tricks

 		
 PyLadies

 		
 2011/10/22 Unit Testing

 		
 How to unit test

 		
 Test Driven Development

 		
 Unit testing in Python

 		
 First example

 		
 2011/10/22 Running Django Projects on Heroku

 		
 Hosting vs PAAS

 		
 A bunch of commands

 		
 Bunch more commands

 		
 Get moar features from him

 		
 2011/10/22 trash-or-treasure

 		
 2011/10/22 ProtoRPC

 		
 2011/10/22 Know Your Time Complexities

 		
 Whole bunch of data

 		
 The Bad Way

 		
 The Good Way

 		
 LA Django

 		
 LA Django 2012-04-17 various talks

 		
 Talk #1 - Deploying Django with wsgi and nginx

 		
 Talk #2 - Naming things

 		
 Talk #3 - Extracting Domain Objects

 		
 Talk #4 - Integrating Facebook into Django

 		
 Django testing dos and don’ts

 		
 The presentation

 		
 Django testing

 		
 Organize and optimize your tests

 		
 Don’t do this

 		
 Do this

 		
 Dev environments and code testing

 		
 Continuous integration

 		
 Worst Practice: Not testing

 		
 April 19, 2011

 		
 Caching

 		
 Unittesting

 		
 FB Integration

 		
 LA Hack Night

 		
 May 23, 2012 LA Hack Night

 		
 What is Serverless?

 		
 Load testing

 		
 Current APIs

 		
 Spire.io is Secure

 		
 Spire.io is Scalable

 		
 Simple app demo

 		
 Spire.io uses CORS

