

Welcome to pyCraft’s documentation!

pyCraft is a python project to handle networking
between a Minecraft server as a client.

The authentication package contains utilities to manage communicating
with Mojang’s authentication servers in order to log in with a minecraft
account, edit profiles etc

The Connection class under the networking package handles
connecting to a server, sending packets, listening for packets etc

Contents:

	Authentication
	Logging In

	Arbitary Requests

	Connecting to Servers
	Writing Packets

	Listening for Certain Packets

Authentication

The authentication module contains functions and classes to facilitate
interfacing with Mojang’s Yggdrasil [http://wiki.vg/Authentication] authentication service.

Logging In

The most common use for this module in the context of a client will be to
log in to a Minecraft account. The first step to doing this is creating
an instance of the AuthenticationToken class after which you may use the
authenticate method with the user’s username and password in order to make the AuthenticationToken valid.

	
class minecraft.authentication.AuthenticationToken(username=None, access_token=None, client_token=None)

	Represents an authentication token.

See http://wiki.vg/Authentication.

Constructs an AuthenticationToken based on access_token and
client_token.

	Parameters:

	access_token - An str object containing the access_token.
client_token - An str object containing the client_token.

	Returns:

	A AuthenticationToken with access_token and client_token set.

	
authenticate(username, password)

	Authenticates the user against https://authserver.mojang.com using
username and password parameters.

	Parameters:

	
	username - An str object with the username (unmigrated accounts)

	or email address for a Mojang account.

password - An str object with the password.

	Returns:

	Returns True if successful.
Otherwise it will raise an exception.

	Raises:

	minecraft.exceptions.YggdrasilError

Upon success, the function returns True, on failure a YggdrasilError
is raised. This happens, for example if an incorrect username/password
is provided or the web request failed.

	
exception minecraft.authentication.YggdrasilError(message=None, status_code=None, yggdrasil_error=None, yggdrasil_message=None, yggdrasil_cause=None)

	Base Exception for the Yggdrasil authentication service.

	Parameters:	
	message (str [https://docs.python.org/2/library/functions.html#str]) – A human-readable string representation of the error.

	status_code (int [https://docs.python.org/2/library/functions.html#int]) – Initial value of status_code.

	yggdrasil_error (str [https://docs.python.org/2/library/functions.html#str]) – Initial value of yggdrasil_error.

	yggdrasil_message (str [https://docs.python.org/2/library/functions.html#str]) – Initial value of yggdrasil_message.

	yggdrasil_cause (str [https://docs.python.org/2/library/functions.html#str]) – Initial value of yggdrasil_cause.

	
status_code = None

	int or None. The associated HTTP status code. May be set.

	
yggdrasil_cause = None

	str or None. The “cause” field of the Yggdrasil response: a string
containing additional information about the error. May be set.

	
yggdrasil_error = None

	str or None. The “error” field of the Yggdrasil response: a short
description such as “Method Not Allowed” or
“ForbiddenOperationException”. May be set.

	
yggdrasil_message = None

	str or None. The “errorMessage” field of the Yggdrasil response:
a longer description such as “Invalid credentials. Invalid username or
password.”. May be set.

Arbitary Requests

You may make any arbitary request to the Yggdrasil service with the _make_request
method passing in the AUTH_SERVER as the server parameter.

	
minecraft.authentication.AUTH_SERVER = 'https://authserver.mojang.com'

	The base url for Ygdrassil requests

	
minecraft.authentication._make_request(server, endpoint, data)

	Fires a POST with json-packed data to the given endpoint and returns
response.

	Parameters:

	endpoint - An str object with the endpoint, e.g. “authenticate”
data - A dict containing the payload data.

	Returns:

	A requests.Request object.

Example Usage

An example of making an arbitary request can be seen here:

payload = {'username': username,
 'password': password}

authentication._make_request(authentication.AUTH_SERVER, "signout", payload)

Connecting to Servers

Your primary dealings when connecting to a server will be with the Connection class

	
class minecraft.networking.connection.Connection(address, port=25565, auth_token=None, username=None, initial_version=None, allowed_versions=None, handle_exception=None)

	This class represents a connection to a minecraft
server, it handles everything from connecting, sending packets to
handling default network behaviour

Sets up an instance of this object to be able to connect to a
minecraft server.

The connect method needs to be called in order to actually begin
the connection

	Parameters:	
	address – address of the server to connect to

	port(int) – port of the server to connect to

	auth_token – minecraft.authentication.AuthenticationToken
object. If None, no authentication is attempted and
the server is assumed to be running in offline mode.

	username – Username string; only applicable in offline mode.

	initial_version – A Minecraft version string or protocol version
number to use if the server’s protocol version
cannot be determined. (Although it is now
somewhat inaccurate, this name is retained for
backward compatibility.)

	allowed_versions – A set of versions, each being a Minecraft
version string or protocol version number,
restricting the versions that the client may
use in connecting to the server.

	handle_exception – A function to be called when an exception
occurs in the client’s networking thread,
taking 2 arguments: the exception object ‘e’
as in ‘except Exception as e’, and a 3-tuple
given by sys.exc_info(); or None for the
default behaviour of raising the exception
from its original context; or False for no
action. In any case, the networking thread
will terminate, the exception will be
available via the ‘exception’ and ‘exc_info’
attributes of the ‘Connection’ instance.

	
connect()

	Attempt to begin connecting to the server.
May safely be called multiple times after the first, i.e. to reconnect.

	
disconnect()

	Terminate the existing server connection, if there is one.

	
register_packet_listener(method, *args)

	Registers a listener method which will be notified when a packet of
a selected type is received

	Parameters:	
	method – The method which will be called back with the packet

	args – The packets to listen for

	
status(handle_status=None, handle_ping=False)

	Issue a status request to the server and then disconnect.

	Parameters:	
	handle_status – a function to be called with the status
dictionary None for the default behaviour of
printing the dictionary to standard output, or
False to ignore the result.

	handle_ping – a function to be called with the measured latency
in milliseconds, None for the default handler,
which prints the latency to standard outout, or
False, to prevent measurement of the latency.

	
write_packet(packet, force=False)

	Writes a packet to the server.

If force is set to true, the method attempts to acquire the write lock
and write the packet out immediately, and as such may block.

If force is false then the packet will be added to the end of the
packet writing queue to be sent ‘as soon as possible’

	Parameters:	
	packet – The network.packets.Packet to write

	force(bool) – Specifies if the packet write should be immediate

Writing Packets

The packet class uses a lot of magic to work, here is how to use them.
Look up the particular packet you need to deal with, for this example
let’s go with the KeepAlivePacket

	
class minecraft.networking.packets.KeepAlivePacket(context=None, **kwargs)

	
	
definition = [{'keep_alive_id': <class 'minecraft.networking.types.VarInt'>}]

	

Pay close attention to the definition attribute, and how our class variable corresponds to
the name given from the definition:

packet = KeepAlivePacket()
packet.keep_alive_id = random.randint(0, 5000)
connection.write_packet(packet)

and just like that, the packet will be written out to the server.

It is possible to implement your own custom packets by subclassing
minecraft.networking.packets.Packet. Read the docstrings and
follow the examples in packets.py for more details on how to do advanced tasks
like having a packet that is compatible across multiple protocol versions.

Listening for Certain Packets

Let’s look at how to listen for certain packets, the relevant method being

	
Connection.register_packet_listener(method, *args)

	Registers a listener method which will be notified when a packet of
a selected type is received

	Parameters:	
	method – The method which will be called back with the packet

	args – The packets to listen for

An example of this can be found in the start.py headless client, it is recreated here:

connection = Connection(options.address, options.port, auth_token=auth_token)
connection.connect()

def print_chat(chat_packet):
 print "Position: " + str(chat_packet.position)
 print "Data: " + chat_packet.json_data

from minecraft.networking.packets import ChatMessagePacket
connection.register_packet_listener(print_chat, ChatMessagePacket)

The field names position and json_data are inferred by again looking at the definition attribute as before

	
class minecraft.networking.packets.ChatMessagePacket(context=None, **kwargs)

	
	
definition = [{'json_data': <class 'minecraft.networking.types.String'>}, {'position': <class 'minecraft.networking.types.Byte'>}]

	

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 minecraft	

 	
 	
 minecraft.authentication	

 	
 	
 minecraft.networking.connection	

Index

 _
 | A
 | C
 | D
 | K
 | M
 | R
 | S
 | W
 | Y

_

 	
 	_make_request() (in module minecraft.authentication)

A

 	
 	AUTH_SERVER (in module minecraft.authentication)

 	
 	authenticate() (minecraft.authentication.AuthenticationToken method)

 	AuthenticationToken (class in minecraft.authentication)

C

 	
 	ChatMessagePacket (class in minecraft.networking.packets)

 	
 	connect() (minecraft.networking.connection.Connection method)

 	Connection (class in minecraft.networking.connection)

D

 	
 	definition (minecraft.networking.packets.ChatMessagePacket attribute)

 	(minecraft.networking.packets.KeepAlivePacket attribute)

 	
 	disconnect() (minecraft.networking.connection.Connection method)

K

 	
 	KeepAlivePacket (class in minecraft.networking.packets)

M

 	
 	minecraft.authentication (module)

 	
 	minecraft.networking.connection (module)

R

 	
 	register_packet_listener() (minecraft.networking.connection.Connection method), [1]

S

 	
 	status() (minecraft.networking.connection.Connection method)

 	
 	status_code (minecraft.authentication.YggdrasilError attribute)

W

 	
 	write_packet() (minecraft.networking.connection.Connection method)

Y

 	
 	yggdrasil_cause (minecraft.authentication.YggdrasilError attribute)

 	yggdrasil_error (minecraft.authentication.YggdrasilError attribute)

 	
 	yggdrasil_message (minecraft.authentication.YggdrasilError attribute)

 	YggdrasilError

 nav.xhtml

 Table of Contents

 		Welcome to pyCraft's documentation!

 		Authentication

 		Logging In

 		Arbitary Requests

 		Example Usage

 		Connecting to Servers

 		Writing Packets

 		Listening for Certain Packets

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

