

Introduction

Trinity & Py-EVM

Py-EVM is a new implementation of the Ethereum Virtual Machine (EVM) written in Python. Trinity is
the client software that connects to the Ethereum network and runs on top of Py-EVM.

Trinity and Py-EVM aim to replace existing Python Ethereum implementations to eventually become the
defacto standard for the Python ecosystem.

If none of this makes sense to you yet we recommend to checkout the
Ethereum [https://ethereum.org] website as well as a
higher level description [http://www.ethdocs.org/en/latest/introduction/what-is-ethereum.html]
of the Ethereum project.

Py-EVM goals

The main focus is to enrich the Ethereum ecosystem with a Python implementation that:

	Supports Ethereum 1.0 as well as 2.0 / Serenity

	Is well documented

	Is easy to understand

	Has clear APIs

	Runs fast and resource friendly

	Is highly flexible to support:

	Public chains

	Private chains

	Consortium chains

	Advanced research

Trinity goals

While Py-EVM provides the low level APIs of the Ethereum protocol, it does not aim to implement a
full or light node directly.

Trinity is a refernece implementation on top of Py-EVM that aims to:

	Provide a reference implementation for an Ethereum 1.0 node (alpha)

	Support “full” and “light” modes

	Fully support mainnet as well as several testnets

	Provide a reference implementation of an Ethereum 2.0 / Serenity beacon node (pre-alpha)

	Provide a reference implementation of an Ethereum 2.0 / Sereneity validator node (pre-alpha)

Note

Trinity is currently in public alpha and can connect and sync to the main ethereum network.
While it isn’t meant for production use yet, we encourage the adventurous to try it out.
Follow along the Trinity Quickstart to get things going.

Further reading

Here are a couple more useful links to check out.

	Trinity Quickstart

	Source Code on GitHub [https://github.com/ethereum/py-evm]

	Public Gitter Chat [https://gitter.im/ethereum/py-evm]

	Get involved

Table of contents

General

	Introduction

	Quickstart

	Release notes

Fundamentals

	Cookbooks

	Guides

	API

Community

	Contributing

	Code of Conduct

Introduction

Trinity & Py-EVM

Py-EVM is a new implementation of the Ethereum Virtual Machine (EVM) written in Python. Trinity is
the client software that connects to the Ethereum network and runs on top of Py-EVM.

Trinity and Py-EVM aim to replace existing Python Ethereum implementations to eventually become the
defacto standard for the Python ecosystem.

If none of this makes sense to you yet we recommend to checkout the
Ethereum [https://ethereum.org] website as well as a
higher level description [http://www.ethdocs.org/en/latest/introduction/what-is-ethereum.html]
of the Ethereum project.

Py-EVM goals

The main focus is to enrich the Ethereum ecosystem with a Python implementation that:

	Supports Ethereum 1.0 as well as 2.0 / Serenity

	Is well documented

	Is easy to understand

	Has clear APIs

	Runs fast and resource friendly

	Is highly flexible to support:

	Public chains

	Private chains

	Consortium chains

	Advanced research

Trinity goals

While Py-EVM provides the low level APIs of the Ethereum protocol, it does not aim to implement a
full or light node directly.

Trinity is a refernece implementation on top of Py-EVM that aims to:

	Provide a reference implementation for an Ethereum 1.0 node (alpha)

	Support “full” and “light” modes

	Fully support mainnet as well as several testnets

	Provide a reference implementation of an Ethereum 2.0 / Serenity beacon node (pre-alpha)

	Provide a reference implementation of an Ethereum 2.0 / Sereneity validator node (pre-alpha)

Note

Trinity is currently in public alpha and can connect and sync to the main ethereum network.
While it isn’t meant for production use yet, we encourage the adventurous to try it out.
Follow along the Trinity Quickstart to get things going.

Further reading

Here are a couple more useful links to check out.

	Trinity Quickstart

	Source Code on GitHub [https://github.com/ethereum/py-evm]

	Public Gitter Chat [https://gitter.im/ethereum/py-evm]

	Get involved

Quickstart

Installation

This is the quickstart guide for Trinity. If you only care about running a Trinity node, this
guide will help you to get things set up. If you plan to develop on top of Py-EVM or contribute
to the project you may rather want to checkout the Contributing Guide which
explains how to set everything up for development.

Installing on Ubuntu

Trinity requires Python 3.6 as well as some tools to compile its dependencies. On Ubuntu, the
python3.6-dev package contains everything we need. Run the following command to install it.

apt-get install python3.6-dev

Trinity is installed through the pip package manager, if pip isn’t available on the system already,
we need to install the python3-pip package through the following command.

apt-get install python3-pip

Note

Optional: Often, the best way to guarantee a clean Python 3 environment is with
virtualenv [https://virtualenv.pypa.io/en/stable/]. If we don’t have virtualenv installed
already, we first need to install it via pip.

pip install virtualenv

Then, we can initialize a new virtual environment venv, like:

virtualenv -p python3 venv

This creates a new directory venv where packages are installed isolated from any other global
packages.

To activate the virtual directory we have to source it

. venv/bin/activate

Finally, we can install the trinity package via pip.

pip3 install -U trinity

Installing on macOS

First, install LevelDB and the latest Python 3 with brew:

brew install python3 leveldb

Note

Optional: Often, the best way to guarantee a clean Python 3 environment is with
virtualenv [https://virtualenv.pypa.io/en/stable/]. If we don’t have virtualenv installed
already, we first need to install it via pip.

pip install virtualenv

Then, we can initialize a new virtual environment venv, like:

virtualenv -p python3 venv

This creates a new directory venv where packages are installed isolated from any other global
packages.

To activate the virtual directory we have to source it

. venv/bin/activate

Then, install the trinity package via pip:

pip3 install -U trinity

Installing through Docker

Trinity can also be installed using Docker which can be a lightweight alternative where no
changes need to be made to the host system apart from having Docker itself installed.

Note

While we don’t officially support Windows just yet, running Trinity through Docker is a great
way to bypass this current limitation as Trinity can run on any system that runs Docker with
support for linux containers [https://docs.docker.com/docker-for-windows/#switch-between-windows-and-linux-containers].

Using Docker we have two different options to choose from.

1. Run an existing official image

This is the default way of running Trinity through Docker. If all we care about is running
a Trinity node, using one of the latest released versions, this method is perfect.

Run:

docker run -it ethereum/trinity

Alternatively, we can run a specific image version, following the usual docker version schema.

docker run -it ethereum/trinity:0.1.0-alpha.13

2. Build your own image

Alternatively, we may want to try out a specific (unreleased) version. In that case, we can create
our very own image directly from the source code.

make create-docker-image version=my-own-version

After the image has been successfully created, we can run it by invoking:

docker run -it ethereum/trinity:my-own-version

Running Trinity

After Trinity is installed we should have the trinity command available to start it.

trinity

While it may take a couple of minutes before Trinity can start syncing against the Ethereum mainnet,
it should print out some valuable information right away which should look something like this.
If it doesn’t please file an issue [https://github.com/ethereum/py-evm/issues/new]
to help us getting that bug fixed.

 INFO 05-29 01:57:02 main
 ______ _ _ __
/_ __/____(_)___ (_) /___ __
 / / / ___/ / __ \/ / __/ / / /
/ / / / / / / / / / /_/ /_/ /
/_/ /_/ /_/_/ /_/_/__/__, /
 /____/
 INFO 05-29 01:57:02 main Trinity/0.1.0a4/linux/cpython3.6.5
 INFO 05-29 01:57:02 main network: 1
 INFO 05-29 01:57:02 ipc IPC started at: /root/.local/share/trinity/mainnet/jsonrpc.ipc
 INFO 05-29 01:57:02 server Running server...
 INFO 05-29 01:57:07 server enode://09d34ecb0de1806ab0e68cb2d822b967292dc021df06aab9a55aa4d2e1b2e04ae73560137407a48073286026e12dd60d265a1b1ae0505e44e60d55cea9c7b100@0.0.0.0:30303
 INFO 05-29 01:57:07 server network: 1
 INFO 05-29 01:57:07 peer Running PeerPool...
 INFO 05-29 01:57:07 sync Starting fast-sync; current head: #0

Once Trinity successfully connected to other peers we should see it starting to sync the chain.

INFO 05-29 02:23:13 chain Starting sync with ETHPeer <Node(0xaff0@90.114.124.196)>
INFO 05-29 02:23:14 chain Imported chain segment in 0 seconds, new head: #191 (739b)
INFO 05-29 02:23:15 chain Imported chain segment in 0 seconds, new head: #383 (789c)
INFO 05-29 02:23:16 chain Imported chain segment in 0 seconds, new head: #575 (a1d0)
INFO 05-29 02:23:17 chain Imported chain segment in 0 seconds, new head: #767 (aeb6)

Running as a light client

Warning

It may take a very long time for Trinity to find an LES node with open
slots. This is not a bug with trinity, but rather a shortage of nodes
serving LES. Please consider running your own LES server to help improve
the health of the network.

Use the --light flag to instruct Trinity to run as a light node.

Ropsten vs Mainnet

Trinity currently only supports running against either the Ethereum Mainnet or
Ropsten testnet. Use --ropsten to run against Ropsten.

trinity --ropsten

Connecting to preferred nodes

If you would like to have Trinity prioritize connecting to specific nodes, you
can use the --preferred-node command line flag. This flag takes an enode
URI as a single argument and will instruct Trinity to prioritize connecting to
this node.

trinity --preferred-node enode://a41defa74e8d9d4152699cb9a0d195377da95833769ad6b386092ac3b16c184eb4ef4b4f02889e0b5097ff50fb5847ba99694d40b61f911cdea07b444b00e676@127.0.0.1:30304

Using --preferred-node is a good way to ensure Trinity running in
--light mode connects to known peers who serve LES.

Retrieving Chain information via web3

While just running trinity already causes the node to start syncing, it doesn’t let us interact
with the chain directly (apart from the JSON-RPC API).

However, we can attach an interactive shell to a running Trinity instance with the
attach subcommand. The interactive ipython shell binds a
web3 [http://web3py.readthedocs.io] instance to the w3 variable.

trinity attach

Now that Trinity runs in an interactive shell mode, let’s try to get some information about the
latest block by calling w3.eth.getBlock('latest').

In [9]: w3.eth.getBlock('latest')
Out[9]:
AttributeDict({'difficulty': 743444339302,
'extraData': HexBytes('0x476574682f4c5649562f76312e302e302f6c696e75782f676f312e342e32'),
'gasLimit': 5000,
'gasUsed': 0,
'hash': HexBytes('0x1a8487dfb8de7ee27b9cca30b6f3f6c9676eae29c10eef39b86890ed15eeed01'),
'logsBloom': HexBytes('0x00'),
'mixHash': HexBytes('0xf693b8e4bc30728600da40a0578c14ddb7ad08a64e329a19d9355d5665588aef'),
'nonce': HexBytes('0x7382884a72533c59'),
'number': 12479,
'parentHash': HexBytes('0x889c36c51463f100cf50ec2e2a92886aa7ebb3f99fa8c817343214a92f967a29'),
'receiptsRoot': HexBytes('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'),
'sha3Uncles': HexBytes('0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'),
'stateRoot': HexBytes('0x6ad1ecb7d516c679e7c476956159051fa32848f3ba631a47c3fb72937ed86987'),
'timestamp': 1438368997,
'transactionsRoot': HexBytes('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'),
'miner': '0xbb7B8287f3F0a933474a79eAe42CBCa977791171',
'totalDifficulty': 3961372514945562,
'uncles': [],
'size': 544,
'transactions': []})

You can attach to an existing Trinity process using the attach comand.

trinity attach

For a list of JSON-RPC endpoints which are expected to work, see this issue: https://github.com/ethereum/py-evm/issues/178

Warning

Trinity is currently in public alpha. Keep in mind:

	It is expected to have bugs and is not meant to be used in production

	Things may be ridiculously slow or not work at all

	Only a subset of JSON-RPC API calls are currently supported

Release notes

Trinity and Py-EVM are moving fast. Learn about the latest improvements in the release notes.

	Trinity
	0.1.0-alpha.17

	0.1.0-alpha.16

	0.1.0-alpha.15

	0.1.0-alpha.14

	0.1.0-alpha.13

	0.1.0-alpha.12

	0.1.0-alpha.11

	0.1.0-alpha.10

	0.1.0-alpha.9

	0.1.0-alpha.7

	0.1.0-alpha.6

Trinity

0.1.0-alpha.17

Released November 20, 2018

	#1488 [https://github.com/ethereum/py-evm/pull/1488]: Bugfix: Bugfix for state sync to limit the number of open files.

	#1478 [https://github.com/ethereum/py-evm/pull/1478]: Maintenance: Improve logging messages during fast sync to include performance metrics

	#1476 [https://github.com/ethereum/py-evm/pull/1476]: Bugfix: Ensure that network connections are properly close when a peer doesn’t successfully complete the handshake.

	#1474 [https://github.com/ethereum/py-evm/pull/1474]: Bugfix: EthStats fix for displaying correct uptime metrics

	#1471 [https://github.com/ethereum/py-evm/pull/1471]: Maintenance: Upgrade mypy to 0.641

	#1469 [https://github.com/ethereum/py-evm/pull/1469]: Maintenance: Add logging to show when fast sync has completed.

	#1467 [https://github.com/ethereum/py-evm/pull/1467]: Bugfix: Don’t add peers which disconnect during the boot process to the peer pool.

	#1465 [https://github.com/ethereum/py-evm/pull/1465]: Bugfix: Proper handling for when SIGTERM is sent to the main Trinity process.

	#1463 [https://github.com/ethereum/py-evm/pull/1463]: Bugfix: Better handling for bad server responses by EthStats client.

	#1443 [https://github.com/ethereum/py-evm/pull/1443]: Maintenance: Merge the --nodekey and --nodekey-path flags.

	#1438 [https://github.com/ethereum/py-evm/pull/1438]: Bugfix: Remove warnings when printing the ASCII Trinity header

	#1437 [https://github.com/ethereum/py-evm/pull/1437]: Maintenance: Update to use f-strings for string formatting

	#1435 [https://github.com/ethereum/py-evm/pull/1435]: Maintenance: Enable Constantinople fork on Ropsten chain

	#1434 [https://github.com/ethereum/py-evm/pull/1434]: Bugfix: Fix incorrect mainnet genesis parameters.

	#1421 [https://github.com/ethereum/py-evm/pull/1421]: Maintenance: Implement eth_syncing JSON-RPC endpoint

	#1410 [https://github.com/ethereum/py-evm/pull/1410]: Maintenance: Implement EIP1283 for updated logic for SSTORE opcode gas costs.

	#1395 [https://github.com/ethereum/py-evm/pull/1395]: Bugfix: Fix gas cost calculations for CREATE2 opcode

	#1386 [https://github.com/ethereum/py-evm/pull/1386]: Maintenance: Trinity now prints a message to make it more clear why Trinity was shutdown.

	#1387 [https://github.com/ethereum/py-evm/pull/1387]: Maintenance: Use colorized output for WARNING and ERROR level logging messages.

	#1378 [https://github.com/ethereum/py-evm/pull/1378]: Bugfix: Fix address generation for CREATE2 opcode.

	#1374 [https://github.com/ethereum/py-evm/pull/1374]: Maintenance: New ChainTipMonitor service to keep track of the highest TD chain tip.

	#1371 [https://github.com/ethereum/py-evm/pull/1371]: Maintenance: Upgrade mypy to 0.630

	#1367 [https://github.com/ethereum/py-evm/pull/1367]: Maintenance: Improve logging output to include more contextual information

	#1361 [https://github.com/ethereum/py-evm/pull/1361]: Maintenance: Remove HeaderRequestingPeer in favor of BaseChainPeer

	#1353 [https://github.com/ethereum/py-evm/pull/1353]: Maintenance: Decouple peer message handling from syncing.

	#1351 [https://github.com/ethereum/py-evm/pull/1351]: Bugfix: Unhandled DecryptionError

	#1348 [https://github.com/ethereum/py-evm/pull/1348]: Maintenance: Add default server URIs for mainnet and ropsten.

	#1347 [https://github.com/ethereum/py-evm/pull/1347]: Maintenance: Improve code organization within trinity module

	#1343 [https://github.com/ethereum/py-evm/pull/1343]: Bugfix: Rename Chain.network_id to be Chain.chain_id

	#1342 [https://github.com/ethereum/py-evm/pull/1342]: Maintenance: Internal rename of ChainConfig to TrinityConfig

	#1336 [https://github.com/ethereum/py-evm/pull/1336]: Maintenance: Implement plugin for EthStats reporting.

	#1335 [https://github.com/ethereum/py-evm/pull/1335]: Maintenance: Relax some constraints on the ordered task management constructs.

	#1332 [https://github.com/ethereum/py-evm/pull/1332]: Maintenance: Upgrade pyrlp to 1.0.3

	#1317 [https://github.com/ethereum/py-evm/pull/1317]: Maintenance: Extract peer selection from the header sync.

	#1312 [https://github.com/ethereum/py-evm/pull/1312]: Maintenance: Turn on warnings by default if in a prerelease

0.1.0-alpha.16

Released September 27, 2018

	#1332 [https://github.com/ethereum/py-evm/pull/1332]: Bugfix: Comparing rlp objects across processes used to fail sporadically, because of a changing object hash (fixed by upgrading pyrlp to 1.0.3)

	#1326 [https://github.com/ethereum/py-evm/pull/1326]: Maintenance: Squash a stack trace in the logs when a peer sends us an invalid public key during handshake

	#1325 [https://github.com/ethereum/py-evm/pull/1325]: Bugfix: When switching to a new peer to sync headers, it might have started from too far behind the tip, and get stuck

	#1327 [https://github.com/ethereum/py-evm/pull/1327]: Maintenance: Squash some log warnings from trying to make a request to a peer (or receive a response) while it is shutting down

	#1321 [https://github.com/ethereum/py-evm/pull/1321]: Bugfix: Address a couple race condition exceptions when syncing headers from a new peer, and other downstream processing is in progress

	#1316 [https://github.com/ethereum/py-evm/pull/1316]: Maintenance: Reduce size of images in documentation

	#1313 [https://github.com/ethereum/py-evm/pull/1313]: Maintenance: Remove miscellaneous things that are generating python warnings (eg~ using deprecated methods)

	#1279 [https://github.com/ethereum/py-evm/pull/1279]: Reliability: Atomically persist when storing: a block, a chain of headers, or a cluster of trie nodes

	#1304 [https://github.com/ethereum/py-evm/pull/1304]: Maintenance: Refactor AtomicDB to return an explict database instance to write into

	#1296 [https://github.com/ethereum/py-evm/pull/1296]: Maintenance: Require new AtomicDB in chain and header DB layers

	#1295 [https://github.com/ethereum/py-evm/pull/1295]: Maintenance: New AtomicDB interface to enable a batch of atomic writes (all succeed or all fail)

	#1290 [https://github.com/ethereum/py-evm/pull/1290]: Bugfix: more graceful recovery when re-launching sync on a fork

	#1277 [https://github.com/ethereum/py-evm/pull/1277]: Maintenance: add a cancellable call_later to all services

	#1226 [https://github.com/ethereum/py-evm/pull/1226]: Performance: enable multiple peer requests to a single fast peer when other peers are slow

	#1254 [https://github.com/ethereum/py-evm/pull/1254]: Bugfix: peer selection when two peers have exactly the same throughput

	#1253 [https://github.com/ethereum/py-evm/pull/1253]: Maintenance: prefer f-string formatting in p2p, trinity code

0.1.0-alpha.15

	#1249 [https://github.com/ethereum/py-evm/pull/1249]: Misc bugfixes for fast sync reliability.

	#1245 [https://github.com/ethereum/py-evm/pull/1245]: Improved exception messaging for BaseService

	#1244 [https://github.com/ethereum/py-evm/pull/1244]: Use time.perf_counter or time.monotonic over time.time

	#1242 [https://github.com/ethereum/py-evm/pull/1242]: Bugfix: Unhandled MalformedMessage.

	#1235 [https://github.com/ethereum/py-evm/pull/1235]: Typo cleanup.

	#1236 [https://github.com/ethereum/py-evm/pull/1236]: Documentation cleanup

	#1237 [https://github.com/ethereum/py-evm/pull/1237]: Code cleanup

	#1232 [https://github.com/ethereum/py-evm/pull/1232]: Bugfix: Correctly enforce timeouts on peer requests and add lock mechanism to support concurrency.

	#1229 [https://github.com/ethereum/py-evm/pull/1229]: CI cleanup

	#1228 [https://github.com/ethereum/py-evm/pull/1228]: Merge KademliaProtocol and DiscoveryProtocol

	#1225 [https://github.com/ethereum/py-evm/pull/1225]: Expand peer stats tracking

	#1221 [https://github.com/ethereum/py-evm/pull/1221]: Implement Discovery V5 Protocol

	#1219 [https://github.com/ethereum/py-evm/pull/1219]: Re-organize and document fixture filler tools

	#1214 [https://github.com/ethereum/py-evm/pull/1214]: Implement BaseService.is_operational.

	#1210 [https://github.com/ethereum/py-evm/pull/1210]: Convert sync to use streaming queue instead of batches.

	#1209 [https://github.com/ethereum/py-evm/pull/1209]: Chain Builder tool

	#1205 [https://github.com/ethereum/py-evm/pull/1205]: Bugfix: ExchangeHandler stats crash

	#1204 [https://github.com/ethereum/py-evm/pull/1204]: Consensus bugfix for uncle validation

	#1151 [https://github.com/ethereum/py-evm/pull/1151]: Change to import_block to return chain re-organization data.

	#1197 [https://github.com/ethereum/py-evm/pull/1197]: Increase wait time for database IPC socket.

	#1194 [https://github.com/ethereum/py-evm/pull/1194]: Unify ValidationError to use eth-utils exception class.

	#1190 [https://github.com/ethereum/py-evm/pull/1190]: Improved testing for peer authentication

	#1189 [https://github.com/ethereum/py-evm/pull/1189]: Detect crashed sub-services and exit

	#1179 [https://github.com/ethereum/py-evm/pull/1179]: LightNode now uses Server for incoming peer connections.

	#1182 [https://github.com/ethereum/py-evm/pull/1182]: Convert fix-unclean-shutdown CLI command to be a plugin

0.1.0-alpha.14

	#1081 [https://github.com/ethereum/py-evm/pull/1081] #1115 [https://github.com/ethereum/py-evm/pull/1115] #1116 [https://github.com/ethereum/py-evm/pull/1116]: Reduce logging output during state sync.

	#1063 [https://github.com/ethereum/py-evm/pull/1063] #1035 [https://github.com/ethereum/py-evm/pull/1035] #1089 [https://github.com/ethereum/py-evm/pull/1089] #1131 [https://github.com/ethereum/py-evm/pull/1131] #1132 [https://github.com/ethereum/py-evm/pull/1132] #1138 [https://github.com/ethereum/py-evm/pull/1138] #1149 [https://github.com/ethereum/py-evm/pull/1149] #1159 [https://github.com/ethereum/py-evm/pull/1159]: Implement round trip request/response API.

	#1094 [https://github.com/ethereum/py-evm/pull/1094] #1124 [https://github.com/ethereum/py-evm/pull/1124]: Make the node processing during state sync more async friendly.

	#1097 [https://github.com/ethereum/py-evm/pull/1097]: Keep track of which peers are missing trie nodes during state sync.

	#1109 [https://github.com/ethereum/py-evm/pull/1109] #1135 [https://github.com/ethereum/py-evm/pull/1135]: Python 3.7 testing and experimental support.

	#1136 [https://github.com/ethereum/py-evm/pull/1136] #1120 [https://github.com/ethereum/py-evm/pull/1120]: Module re-organization in preparation of extracting p2p and trinity modules.

	#1137 [https://github.com/ethereum/py-evm/pull/1137]: Peer subscriber API now supports specifying specific msg types to reduce msg queue traffic.

	#1142 [https://github.com/ethereum/py-evm/pull/1142] #1165 [https://github.com/ethereum/py-evm/pull/1165]: Implement JSON-RPC endpoints for: eth_estimateGas, eth_accounts, eth_call

	#1150 [https://github.com/ethereum/py-evm/pull/1150] #1176 [https://github.com/ethereum/py-evm/pull/1176]: Better handling of malformed messages from peers.

	#1157 [https://github.com/ethereum/py-evm/pull/1157]: Use shared pool of workers across all services.

	#1158 [https://github.com/ethereum/py-evm/pull/1158]: Support specifying granular logging levels via CLI.

	#1161 [https://github.com/ethereum/py-evm/pull/1161]: Use a tmpfile based LevelDB database for cache during state sync to reduce memory footprint.

	#1166 [https://github.com/ethereum/py-evm/pull/1166]: Latency and performance tracking for peer requests.

	#1173 [https://github.com/ethereum/py-evm/pull/1173]: Better APIs for background task running for Service classes.

	#1182 [https://github.com/ethereum/py-evm/pull/1182]: Convert fix-unclean-shutdown command to be a plugin.

0.1.0-alpha.13

	Remove specified eth-account dependency in favor of allowing web3.py specify the correct version.

0.1.0-alpha.12

	#1058 [https://github.com/ethereum/py-evm/pull/1058] #1044 [https://github.com/ethereum/py-evm/pull/1044]: Add fix-unclean-shutdown CLI command for cleaning up after a dirty shutdown of the trinity CLI process.

	#1041 [https://github.com/ethereum/py-evm/pull/1041]: Bugfix for ensuring CPU count for process pool is always greater than 0

	#1010 [https://github.com/ethereum/py-evm/pull/1010]: Performance tuning during fast sync. Only check POW on a subset of the received headers.

	#996 [https://github.com/ethereum/py-evm/pull/996] Experimental new Plugin API: Both the transaction pool and the console and attach commands are now written as plugins.

	#898 [https://github.com/ethereum/py-evm/pull/898]: New experimental transaction pool. Disabled by default. Enable with --tx-pool. (warning: has known issues that effect sync performance)

	#935 [https://github.com/ethereum/py-evm/pull/935]: Protection against eclipse attacks.

	#869 [https://github.com/ethereum/py-evm/pull/869]: Ensure connected peers are on the same side of the DAO fork.

Minor Changes

	#1081 [https://github.com/ethereum/py-evm/pull/1081]: Reduce DEBUG log output during state sync.

	#1071 [https://github.com/ethereum/py-evm/pull/1071]: Minor fix for how version string is generated for trinity

	#1070 [https://github.com/ethereum/py-evm/pull/1070]: Easier profiling of ChainSyncer

	#1068 [https://github.com/ethereum/py-evm/pull/1068]: Optimize evm.db.chain.ChainDB.persist_block for common case.

	#1057 [https://github.com/ethereum/py-evm/pull/1057]: Additional DEBUG logging of peer uptime and msg stats.

	#1049 [https://github.com/ethereum/py-evm/pull/1049]: New integration test suite for trinity CLI

	#1045 [https://github.com/ethereum/py-evm/pull/1045] #1051 [https://github.com/ethereum/py-evm/pull/1051]: Bugfix for generation of block numbers for GetBlockHeaders requests.

	#1011 [https://github.com/ethereum/py-evm/pull/1011]: Workaround for parity bug parity #8038 [https://github.com/paritytech/parity-ethereum/issues/8038]

	#987 [https://github.com/ethereum/py-evm/pull/987]: Now serving requests from peers during fast sync.

	#971 [https://github.com/ethereum/py-evm/pull/971] #909 [https://github.com/ethereum/py-evm/pull/909] #650 [https://github.com/ethereum/py-evm/pull/650]: Benchmarking test suite.

	#968 [https://github.com/ethereum/py-evm/pull/968]: When launching console and attach commands, check for presence of IPC socket and log informative message if not found.

	#934 [https://github.com/ethereum/py-evm/pull/934]: Decouple the Discovery and PeerPool services.

	#913 [https://github.com/ethereum/py-evm/pull/913]: Add validation of retrieved contract code when operating in --light mode.

	#908 [https://github.com/ethereum/py-evm/pull/908]: Bugfix for transitioning from syncing chain data to state data during fast sync.

	#905 [https://github.com/ethereum/py-evm/pull/905]: Support for multiple UPNP devices.

0.1.0-alpha.11

	Bugfix for PreferredNodePeerPool to respect max_peers

0.1.0-alpha.10

	More bugfixes to enforce --max-peers in PeerPool._connect_to_nodes

0.1.0-alpha.9

	Bugfix to enforce --max-peers for incoming connections.

0.1.0-alpha.7

	Remove min_peers concept from PeerPool

	Add --max-peers and enforcement of maximum peer connections maintained by
the PeerPool.

0.1.0-alpha.6

	Respond to GetBlockHeaders message during fast sync to prevent being disconnected as a useless peer.

	Add --profile CLI flag to Trinity to enable profiling via cProfile

	Better error messaging with Trinity cannot determine the appropriate location for the data directory.

	Handle ListDeserializationError during handshake.

	Add net_version JSON-RPC endpoint.

	Add web3_clientVersion JSON-RPC endpoint.

	Handle rlp.DecodingError during handshake.

Cookbooks

The Cookbooks are collections of simple recipes that demonstrate good practices to accomplish
common tasks. The examples are usually short answers to simple “How do I…” questions that go
beyond simple API descriptions but also don’t need a full guide to become clear.

EVM Cookbook

Using the Chain object

A “single” blockchain is made by a series of different virtual machines
for different spans of blocks. For example, the Ethereum mainnet had
one virtual machine for blocks 0 till 1150000 (known as Frontier),
and another VM for blocks 1150000 till 1920000 (known as Homestead).

The Chain object manages the series of fork rules,
after you define the VM ranges. For example, to set up a chain that would track
the mainnet Ethereum network until block 1920000, you could create this chain
class:

>>> from eth import constants, Chain
>>> from eth.vm.forks.frontier import FrontierVM
>>> from eth.vm.forks.homestead import HomesteadVM
>>> from eth.chains.mainnet import HOMESTEAD_MAINNET_BLOCK

>>> chain_class = Chain.configure(
... __name__='Test Chain',
... vm_configuration=(
... (constants.GENESIS_BLOCK_NUMBER, FrontierVM),
... (HOMESTEAD_MAINNET_BLOCK, HomesteadVM),
...),
...)

Then to initialize, you can start it up with an in-memory database:

>>> from eth.db.atomic import AtomicDB
>>> from eth.chains.mainnet import MAINNET_GENESIS_HEADER

>>> # start a fresh in-memory db

>>> # initialize a fresh chain
>>> chain = chain_class.from_genesis_header(AtomicDB(), MAINNET_GENESIS_HEADER)

Creating a chain with custom state

While the previous recipe demos how to create a chain from an existing genesis header, we can
also create chains simply by specifing various genesis parameter as well as an optional genesis
state.

>>> from eth_keys import keys
>>> from eth import constants
>>> from eth.chains.mainnet import MainnetChain
>>> from eth.db.atomic import AtomicDB
>>> from eth_utils import to_wei, encode_hex

>>> # Giving funds to some address
>>> SOME_ADDRESS = b'\x85\x82\xa2\x89V\xb9%\x93M\x03\xdd\xb4Xu\xe1\x8e\x85\x93\x12\xc1'
>>> GENESIS_STATE = {
... SOME_ADDRESS: {
... "balance": to_wei(10000, 'ether'),
... "nonce": 0,
... "code": b'',
... "storage": {}
... }
... }

>>> GENESIS_PARAMS = {
... 'parent_hash': constants.GENESIS_PARENT_HASH,
... 'uncles_hash': constants.EMPTY_UNCLE_HASH,
... 'coinbase': constants.ZERO_ADDRESS,
... 'transaction_root': constants.BLANK_ROOT_HASH,
... 'receipt_root': constants.BLANK_ROOT_HASH,
... 'difficulty': constants.GENESIS_DIFFICULTY,
... 'block_number': constants.GENESIS_BLOCK_NUMBER,
... 'gas_limit': constants.GENESIS_GAS_LIMIT,
... 'extra_data': constants.GENESIS_EXTRA_DATA,
... 'nonce': constants.GENESIS_NONCE
... }

>>> chain = MainnetChain.from_genesis(AtomicDB(), GENESIS_PARAMS, GENESIS_STATE)

Getting the balance from an account

Considering our previous example, we can get the balance of our pre-funded account as follows.

>>> current_vm = chain.get_vm()
>>> account_db = current_vm.state.account_db
>>> account_db.get_balance(SOME_ADDRESS)
10000000000000000000000

Building blocks incrementally

The default Chain is stateless and thus does not keep a tip block open
that would allow us to incrementally build a block. However, we can import the
MiningChain which does allow exactly that.

>>> from eth.chains.base import MiningChain

Please check out the Understanding the mining process guide for a full example that demonstrates how
to use the MiningChain.

Guides

This section aims to provide hands-on guides to demonstrate how to use Trinity and the Py-EVM. If you are looking for detailed API descriptions check out the API section.

	Trinity

	Py-EVM

Trinity

This section aims to provide hands-on guides to demonstrate how to use Trinity. If you are looking for detailed API descriptions check out the API section.

Guides

	Quickstart
	Installation
	Installing on Ubuntu

	Installing on macOS

	Installing through Docker

	Running Trinity
	Running as a light client

	Ropsten vs Mainnet

	Connecting to preferred nodes

	Retrieving Chain information via web3

	Architecture
	Layering
	EVM

	P2P

	Trinity Application Code

	Processes
	Main Application Process

	Database Process

	Networking Process

	Plugin Processes

	Writing Plugins
	What can plugins do?

	Understanding the different plugin categories
	Plugins that redefine the Trinity process

	Plugins that spawn their own new isolated process

	Plugins that run inside the networking process

	The plugin lifecycle
	Plugin state: NOT_READY

	Plugin state: READY

	Plugin state: STARTED

	Plugin state: STOPPED

	Defining plugins
	Configuring Command Line Arguments

	Defining a plugins starting point

	Starting a plugin

	Communication pattern

	Distributing plugins

Quickstart

Installation

This is the quickstart guide for Trinity. If you only care about running a Trinity node, this
guide will help you to get things set up. If you plan to develop on top of Py-EVM or contribute
to the project you may rather want to checkout the Contributing Guide which
explains how to set everything up for development.

Installing on Ubuntu

Trinity requires Python 3.6 as well as some tools to compile its dependencies. On Ubuntu, the
python3.6-dev package contains everything we need. Run the following command to install it.

apt-get install python3.6-dev

Trinity is installed through the pip package manager, if pip isn’t available on the system already,
we need to install the python3-pip package through the following command.

apt-get install python3-pip

Note

Optional: Often, the best way to guarantee a clean Python 3 environment is with
virtualenv [https://virtualenv.pypa.io/en/stable/]. If we don’t have virtualenv installed
already, we first need to install it via pip.

pip install virtualenv

Then, we can initialize a new virtual environment venv, like:

virtualenv -p python3 venv

This creates a new directory venv where packages are installed isolated from any other global
packages.

To activate the virtual directory we have to source it

. venv/bin/activate

Finally, we can install the trinity package via pip.

pip3 install -U trinity

Installing on macOS

First, install LevelDB and the latest Python 3 with brew:

brew install python3 leveldb

Note

Optional: Often, the best way to guarantee a clean Python 3 environment is with
virtualenv [https://virtualenv.pypa.io/en/stable/]. If we don’t have virtualenv installed
already, we first need to install it via pip.

pip install virtualenv

Then, we can initialize a new virtual environment venv, like:

virtualenv -p python3 venv

This creates a new directory venv where packages are installed isolated from any other global
packages.

To activate the virtual directory we have to source it

. venv/bin/activate

Then, install the trinity package via pip:

pip3 install -U trinity

Installing through Docker

Trinity can also be installed using Docker which can be a lightweight alternative where no
changes need to be made to the host system apart from having Docker itself installed.

Note

While we don’t officially support Windows just yet, running Trinity through Docker is a great
way to bypass this current limitation as Trinity can run on any system that runs Docker with
support for linux containers [https://docs.docker.com/docker-for-windows/#switch-between-windows-and-linux-containers].

Using Docker we have two different options to choose from.

1. Run an existing official image

This is the default way of running Trinity through Docker. If all we care about is running
a Trinity node, using one of the latest released versions, this method is perfect.

Run:

docker run -it ethereum/trinity

Alternatively, we can run a specific image version, following the usual docker version schema.

docker run -it ethereum/trinity:0.1.0-alpha.13

2. Build your own image

Alternatively, we may want to try out a specific (unreleased) version. In that case, we can create
our very own image directly from the source code.

make create-docker-image version=my-own-version

After the image has been successfully created, we can run it by invoking:

docker run -it ethereum/trinity:my-own-version

Running Trinity

After Trinity is installed we should have the trinity command available to start it.

trinity

While it may take a couple of minutes before Trinity can start syncing against the Ethereum mainnet,
it should print out some valuable information right away which should look something like this.
If it doesn’t please file an issue [https://github.com/ethereum/py-evm/issues/new]
to help us getting that bug fixed.

 INFO 05-29 01:57:02 main
 ______ _ _ __
/_ __/____(_)___ (_) /___ __
 / / / ___/ / __ \/ / __/ / / /
/ / / / / / / / / / /_/ /_/ /
/_/ /_/ /_/_/ /_/_/__/__, /
 /____/
 INFO 05-29 01:57:02 main Trinity/0.1.0a4/linux/cpython3.6.5
 INFO 05-29 01:57:02 main network: 1
 INFO 05-29 01:57:02 ipc IPC started at: /root/.local/share/trinity/mainnet/jsonrpc.ipc
 INFO 05-29 01:57:02 server Running server...
 INFO 05-29 01:57:07 server enode://09d34ecb0de1806ab0e68cb2d822b967292dc021df06aab9a55aa4d2e1b2e04ae73560137407a48073286026e12dd60d265a1b1ae0505e44e60d55cea9c7b100@0.0.0.0:30303
 INFO 05-29 01:57:07 server network: 1
 INFO 05-29 01:57:07 peer Running PeerPool...
 INFO 05-29 01:57:07 sync Starting fast-sync; current head: #0

Once Trinity successfully connected to other peers we should see it starting to sync the chain.

INFO 05-29 02:23:13 chain Starting sync with ETHPeer <Node(0xaff0@90.114.124.196)>
INFO 05-29 02:23:14 chain Imported chain segment in 0 seconds, new head: #191 (739b)
INFO 05-29 02:23:15 chain Imported chain segment in 0 seconds, new head: #383 (789c)
INFO 05-29 02:23:16 chain Imported chain segment in 0 seconds, new head: #575 (a1d0)
INFO 05-29 02:23:17 chain Imported chain segment in 0 seconds, new head: #767 (aeb6)

Running as a light client

Warning

It may take a very long time for Trinity to find an LES node with open
slots. This is not a bug with trinity, but rather a shortage of nodes
serving LES. Please consider running your own LES server to help improve
the health of the network.

Use the --light flag to instruct Trinity to run as a light node.

Ropsten vs Mainnet

Trinity currently only supports running against either the Ethereum Mainnet or
Ropsten testnet. Use --ropsten to run against Ropsten.

trinity --ropsten

Connecting to preferred nodes

If you would like to have Trinity prioritize connecting to specific nodes, you
can use the --preferred-node command line flag. This flag takes an enode
URI as a single argument and will instruct Trinity to prioritize connecting to
this node.

trinity --preferred-node enode://a41defa74e8d9d4152699cb9a0d195377da95833769ad6b386092ac3b16c184eb4ef4b4f02889e0b5097ff50fb5847ba99694d40b61f911cdea07b444b00e676@127.0.0.1:30304

Using --preferred-node is a good way to ensure Trinity running in
--light mode connects to known peers who serve LES.

Retrieving Chain information via web3

While just running trinity already causes the node to start syncing, it doesn’t let us interact
with the chain directly (apart from the JSON-RPC API).

However, we can attach an interactive shell to a running Trinity instance with the
attach subcommand. The interactive ipython shell binds a
web3 [http://web3py.readthedocs.io] instance to the w3 variable.

trinity attach

Now that Trinity runs in an interactive shell mode, let’s try to get some information about the
latest block by calling w3.eth.getBlock('latest').

In [9]: w3.eth.getBlock('latest')
Out[9]:
AttributeDict({'difficulty': 743444339302,
'extraData': HexBytes('0x476574682f4c5649562f76312e302e302f6c696e75782f676f312e342e32'),
'gasLimit': 5000,
'gasUsed': 0,
'hash': HexBytes('0x1a8487dfb8de7ee27b9cca30b6f3f6c9676eae29c10eef39b86890ed15eeed01'),
'logsBloom': HexBytes('0x00'),
'mixHash': HexBytes('0xf693b8e4bc30728600da40a0578c14ddb7ad08a64e329a19d9355d5665588aef'),
'nonce': HexBytes('0x7382884a72533c59'),
'number': 12479,
'parentHash': HexBytes('0x889c36c51463f100cf50ec2e2a92886aa7ebb3f99fa8c817343214a92f967a29'),
'receiptsRoot': HexBytes('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'),
'sha3Uncles': HexBytes('0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'),
'stateRoot': HexBytes('0x6ad1ecb7d516c679e7c476956159051fa32848f3ba631a47c3fb72937ed86987'),
'timestamp': 1438368997,
'transactionsRoot': HexBytes('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'),
'miner': '0xbb7B8287f3F0a933474a79eAe42CBCa977791171',
'totalDifficulty': 3961372514945562,
'uncles': [],
'size': 544,
'transactions': []})

You can attach to an existing Trinity process using the attach comand.

trinity attach

For a list of JSON-RPC endpoints which are expected to work, see this issue: https://github.com/ethereum/py-evm/issues/178

Warning

Trinity is currently in public alpha. Keep in mind:

	It is expected to have bugs and is not meant to be used in production

	Things may be ridiculously slow or not work at all

	Only a subset of JSON-RPC API calls are currently supported

Architecture

This guide is intended to provide an overview of the general application architecture that Trinity
follows.

Layering

Trinity is layered to be highly flexible and is based on other independent projects that provide
the foundation for lower levels.

The three main layers from top to bottom are:

	Trinity Application Code

	Peer to Peer (P2P)

	Ethereum Virtual Machine (Py-EVM)

They can be visualized as seen in the following graphic:

[image: Layers of Trinity]
The graphic should be understood in such a way that only the higher levels know and use the lower
levels. Consequently, the Trinity application code knows and uses both the P2P and EVM layers.
However, the P2P layer uses only the EVM layer and the EVM layer neither knows nor uses any higher
layers.

Let’s go briefly over each layer to understand its main purpose. We won’t go into very much detail
for each layer in this guide but rather link to more specific guides that explain the nitty gritty
details.

Let’s start bottom up.

EVM

EVM stands for Ethereum Virtual Machine and is the lowest level layer that Trinity utilizes to
build and validate blocks, run transactions and execute their code (EVM byte code) to eventually
apply transitions to the state of the Ethereum blockchain.

Notice that the EVM is a seperate project and has no dependency against Trinity and that other
projects are free to use it as the Py-EVM project independently from Trinity.

P2P

The peer to peer layer implements the
communication protocol [https://github.com/ethereum/devp2p/blob/master/discv4.md] that each
Ethereum node follows to talk with each other. Ethereum uses an
Kademlia [https://en.wikipedia.org/wiki/Kademlia]-like distributed hash table to store
information about Ethereum nodes.

Trinity Application Code

Everything that makes an Ethereum node an Ethereum node and is not part of the EVM or P2P layer is
handled by the Trinity application layer itself. That includes a lot of networking, orchestrating
the existing building blocks for different modes of operations (e.g. light vs full mode), handling
of the different CLI arguments, providing interactive access to the node and the network as well as
lot of other things.

Processes

An Ethereum node is quite a busy kind of application. There’s a constant flow of actions such as
responding to peers, running transactions and validating blocks that will keep the machine busy.

Since Python doesn’t play very well with multi threading (mainly because of
Pythons GIL [https://en.wikipedia.org/wiki/Global_interpreter_lock#Benefits_and_drawbacks]),
often the best way to achieve an architecture that can handle concurrency efficiently is through
the usage of multiple processes as well as asynchronous IO. Notice that the usage of
asynchronous IO alone doesn’t cut it since a lot concurrent jobs are effectively CPU bound rather
than IO bound.

On startup, Trinity spawns three main processes that we’ll briefly explain here.

[image: Layers of Trinity]

Main Application Process

This is the main process of Trinity that spawns up implicitly when we run the trinity command.
It is responsible for parsing the command line arguments, orchestrating the building blocks to run
the kind of node the user wants to run and eventually kicks off the networking and the database
process.

Database Process

The database process exposes several chain-related operations, all of which are bundled in this
single process. These aren’t necessarily low-level get/set operations, but also include
higher-level APIs, such as the import_block() API.

The way this works is by facilitazing Pythons BaseManager [https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.managers.BaseManager] API
and exposing several BaseProxy [https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.managers.BaseProxy] proxies to coordinate
inter-process access to these APIs.

Since Trinity uses LevelDB as its default database, it is a given requirement (of LevelDB)
that all database reads and writes are done by a single process.

Networking Process

The networking process is what kicks of the peer to peer communication and starts the syncing
process. It does so by running an instance of
Node() in an event loop.

Notice that the instance of Node() has access to the APIs that the
database processes exposes. In pracice that means, that the network process controls the
connections to other peers, starts of the syncing process but will call APIs that run inside
the database processes when it comes to actual importing of blocks or reading and writing of other
things from the database.

The networking process also host an instance of the
PluginManager to run plugins that need to deeply
integrate with the networking process (Further reading:
Writing Plugins).

Plugin Processes

Apart from running these three core processes, there may be additional processes for plugins that
run in isolated processes. Isolated plugins are explained in depth in the
Writing Plugins guide.

Writing Plugins

Trinity aims to be a highly flexible Ethereum node to support lots of different use cases
beyond just participating in the regular networking traffic.

To support this goal, Trinity allows developers to create plugins that hook into the system to
extend its functionality. In fact, Trinity dogfoods its Plugin API in the sense that several
built-in features are written as plugins that just happen to be shipped among the rest of the core
modules. For instance, the JSON-RPC API, the Transaction Pool as well as the trinity attach
command that provides an interactive REPL with Web3 integration are all built as plugins.

Trinity tries to follow the practice: If something can be written as a plugin, it should be written
as a plugin.

What can plugins do?

Plugin support in Trinity is still very new and the API hasn’t stabilized yet. That said, plugins
are already pretty powerful and are only becoming more so as the APIs of the underlying services
improve over time.

Here’s a list of functionality that is currently provided by plugins:

	JSON-RPC API

	Transaction Pool

	EthStats Reporting

	Interactive REPL with Web3 integration

	Crash Recovery Command

Understanding the different plugin categories

There are currently three different types of plugins that we’ll all cover in this guide.

	Plugins that overtake and redefine the entire trinity command

	Plugins that spawn their own new isolated process

	Plugins that run in the shared networking process

Plugins that redefine the Trinity process

This is the simplest category of plugins as it doesn’t really hook into the Trinity process but
hijacks it entirely instead. We may be left wonderering: Why would one want to do that?

The only reason to write such a plugin is to execute some code that we want to group under the
trinity command. A great example for such a plugin is the trinity attach command that gives
us a REPL attached to a running Trinity instance. This plugin could have easily be written as a
standalone program and associated with a command such as trinity-attach. However, using a
subcommand attach is the more idiomatic approach and this type of plugin gives us simple way
to develop exactly that.

We build this kind of plugin by subclassing from
BaseMainProcessPlugin. A detailed example will follow soon.

Plugins that spawn their own new isolated process

Of course, if all what plugins could do is to hijack the trinity command, there wouldn’t be
much room to actually extend the runtime functionality of Trinity. If we want to create plugins
that boot with and run alongside the main node activity, we need to write a different kind of
plugin. These type of plugins can respond to events such as a peers connecting/disconnecting and
can access information that is only available within the running application.

The JSON-RPC API is a great example as it exposes information such as the current count
of connected peers which is live information that can only be accessed by talking to other parts
of the application at runtime.

This is the default type of plugin we want to build if:

	we want to execute logic together with the command that boots Trinity (as opposed
to executing it in a separate command)

	we want to execute logic that integrates with parts of Trinity that can only be accessed at
runtime (as opposed to e.g. just reading things from the database)

We build this kind of plugin subclassing from
BaseIsolatedPlugin. A detailed example will follow soon.

Plugins that run inside the networking process

If the previous category sounded as if it could handle every possible use case, it’s because it’s
actually meant to. In reality though, not all internal APIs yet work well across process
boundaries. In practice, this means that sometimes we want to make sure that a plugin runs in the
same process as the rest of the networking code.

Warning

The need to run plugins in the networking process is declining as the internals of Trinity become
more and more multi-process friendly over time. While it isn’t entirely clear yet, there’s a fair
chance this type of plugin will become obsolete at some point and may eventually be removed.

We should only choose this type of plugin category if what we are trying to build cannot be built
with a BaseIsolatedPlugin.

We build this kind of plugin subclassing from
BaseAsyncStopPlugin. A detailed example will follow soon.

The plugin lifecycle

Plugins can be in one of the following status at a time:

	NOT_READY

	READY

	STARTED

	STOPPED

The current status of a plugin is also reflected in the
status() property.

Note

Strictly speaking, there’s also a special state that only applies to the
BaseMainProcessPlugin which comes into effect when such a
plugin hijacks the Trinity process entirely. That being said, in that case, the resulting process
is in fact something entirely different than Trinity and the whole plugin infrastruture doesn’t
even continue to exist from the moment on where that plugin takes over the Trinity process. This
is why we do not list it as an actual state of the regular plugin lifecycle.

Plugin state: NOT_READY

Every plugin starts out being in the NOT_READY state. This state begins with the instantiation
of the plugin and lasts until the on_ready() hook
was called which happens as soon the core infrastructure of Trinity is ready.

Plugin state: READY

After Trinity has finished setting up the core infrastructure, every plugin has its
PluginContext set and
on_ready() is called. At this point the plugin has
access to important information such as the parsed arguments or the
TrinityConfig. It also has access to the central event bus via its
event_bus() property which enables the plugin to
communicate with other parts of the application including other plugins.

Plugin state: STARTED

A plugin is in the STARTED state after the
start() method was called. Plugins call this method
themselves whenever they want to start which may be based on some condition like Trinity being
started with certain parameters or some event being propagated on the central event bus.

Note

Calling start() while the plugin is in the
NOT_READY state or when it is already in STARTED will cause an exception to be raised.

Plugin state: STOPPED

A plugin is in the STOPPED state after the
stop() method was called and finished any tear down
work.

Defining plugins

We define a plugin by deriving from either
BaseMainProcessPlugin,
BaseIsolatedPlugin or
BaseAsyncStopPlugin depending on the kind of plugin that we
intend to write. For now, we’ll stick to BaseIsolatedPlugin
which is the most commonly used plugin category.

Every plugin needs to overwrite name so voilà, here’s our first plugin!

class PeerCountReporterPlugin(BaseIsolatedPlugin):

 @property
 def name(self) -> str:
 return "Peer Count Reporter"

Of course that doesn’t do anything useful yet, bear with us.

Configuring Command Line Arguments

More often than not we want to have control over if or when a plugin should start. Adding
command-line arguments that are specific to such a plugin, which we then check, validate, and act
on, is a good way to deal with that. Implementing
configure_parser() enables us to do exactly that.

This method is called when Trinity starts and bootstraps the plugin system, in other words,
before the start of any plugin. It is passed a ArgumentParser [https://docs.python.org/3.5/library/argparse.html#argparse.ArgumentParser] as well as a
_SubParsersAction which allows it to amend the configuration of Trinity’s
command line arguments in many different ways.

For example, here we are adding a boolean flag --report-peer-count to Trinity.

 def configure_parser(self,
 arg_parser: ArgumentParser,
 subparser: _SubParsersAction) -> None:
 arg_parser.add_argument(
 "--report-peer-count",
 action="store_true",
 help="Report peer count to console",
)

To be clear, this does not yet cause our plugin to automatically start if --report-peer-count
is passed, it simply changes the parser to be aware of such flag and hence allows us to check for
its existence later.

Note

For a more advanced example, that also configures a subcommand, checkout the trinity attach
plugin.

Defining a plugins starting point

Every plugin needs to have a well defined starting point. The exact mechanics slightly differ
in case of a BaseMainProcessPlugin but remain fairly similar
for the other types of plugins which we’ll be focussing on for now.

Plugins need to implement the do_start() method
to define their own bootstrapping logic. This logic may involve setting up event listeners, running
code in a loop or any other kind of action.

Warning

Technically, there’s nothing preventing a plugin from performing starting logic in the
on_ready() hook. However, doing that is an anti
pattern as the plugin infrastructure won’t know about the running plugin, can’t propagate the
PluginStartedEvent and the plugin won’t be properly shut
down with Trinity if the node closes.

Let’s assume we want to create a plugin that simply periodically prints out the number of connected
peers.

While it is absolutely possible to put this logic right into the plugin, the preferred way is to
subclass BaseService and implement the core logic in such a standalone
service.

class PeerCountReporter(BaseService):

 def __init__(self, event_bus: Endpoint) -> None:
 super().__init__()
 self.event_bus = event_bus

 async def _run(self) -> None:
 self.run_daemon_task(self._periodically_report_stats())
 await self.cancel_token.wait()

 async def _periodically_report_stats(self) -> None:
 while self.is_operational:
 try:
 response = await asyncio.wait_for(
 self.event_bus.request(PeerCountRequest()),
 timeout=1.0
)
 self.logger.info("CONNECTED PEERS: %s", response.peer_count)
 except asyncio.TimeoutError:
 self.logger.warning("TIMEOUT: Waiting on PeerPool to boot")
 await asyncio.sleep(5)

Then, the implementation of do_start() is
only concerned about running the service on a fresh event loop.

 def do_start(self) -> None:
 loop = asyncio.get_event_loop()
 service = PeerCountReporter(self.event_bus)
 asyncio.ensure_future(exit_with_service_and_endpoint(service, self.event_bus))
 asyncio.ensure_future(service.run())
 loop.run_forever()
 loop.close()

If the example may seem unnecessarily complex, it should be noted that plugins can be implemented
in many different ways, but this example follows a pattern that is considered best practice within
the Trinity Code Base.

Starting a plugin

As we’ve read in the previous section not all plugins should run at any point in time. In fact, the
circumstances under which we want a plugin to begin its work may vary from plugin to plugin.

We may want a plugin to only start running if:

	a certain (combination) of command line arguments was given

	another plugin or group of plugins started

	a certain number of connected peers was exceeded / undershot

	a certain block number was reached

	…

Hence, to actually start a plugin, the plugin needs to invoke the
start() method at any moment when it is in its
READY state. Let’s assume a simple case in which we simply want to start the plugin if Trinity
is started with the --report-peer-count flag.

 def on_ready(self) -> None:
 if self.context.args.report_peer_count:
 self.start()

In case of a BaseIsolatedProcessPlugin, this will cause the
do_start() method to run on an entirely
separated, new process. In other cases
do_start() will simply run in the same
process as the plugin manager that the plugin is controlled by.

Communication pattern

For most plugins to be useful they need to be able to communicate with the rest of the application
as well as other plugins. In addition to that, this kind of communication needs to work across
process boundaries as plugins will often operate in independent processes.

To achieve this, Trinity uses the
Lahja project [https://github.com/ethereum/lahja], which enables us to operate
a lightweight event bus that works across processes. An event bus is a software dedicated to the
transmission of events from a broadcaster to interested parties.

This kind of architecture allows for efficient and decoupled communication between different parts
of Trinity including plugins.

For instance, a plugin may be interested to perform some action every time that a new peer connects
to our node. These kind of events get exposed on the EventBus and hence allow a wide range of
plugins to make use of them.

For an event to be usable across processes it needs to be pickable and in general should be a
shallow Data Transfer Object (DTO [https://en.wikipedia.org/wiki/Data_transfer_object])

Every plugin has access to the event bus via its
event_bus() property and in fact we have already
used it in the above example to get the current number of connected peers.

Note

This guide will soon cover communication through the event bus in more detail. For now, the
Lahja documentation [https://github.com/ethereum/lahja/blob/master/README.md] gives us some
more information about the available APIs and how to use them.

Distributing plugins

Of course, plugins are more fun if we can share them and anyone can simply install them through
pip. The good news is, it’s not hard at all!

In this guide, we won’t go into details about how to create Python packages as this is already
covered in the official Python docs [https://packaging.python.org/tutorials/packaging-projects/]
.

Once we have a setup.py file, all we have to do is to expose our plugin under
trinity.plugins via the entry_points section.

#!/usr/bin/env python
-*- coding: utf-8 -*-
from setuptools import setup

setup(
 name='trinity-peer-count-reporter-plugin',
 py_modules=['peer_count_reporter_plugin'],
 entry_points={
 'trinity.plugins': 'peer_count_reporter_plugin=peer_count_reporter_plugin:PeerCountReporterPlugin',
 },
)

Check out the official documentation on entry points [https://packaging.python.org/guides/creating-and-discovering-plugins/#using-package-metadata]
for a deeper explanation.

A plugin where the setup.py file is configured as described can be installed by
pip install <package-name>` and immediately becomes available as a plugin in Trinity.

Note

Plugins installed from a local directory (instead of the pypi registry), such as the sample
plugin described in this article, must be installed with the -e parameter (Example:
pip install -e ./trinity-external-plugins/examples/peer_count_reporter)

Py-EVM

This section aims to provide hands-on guides to demonstrate how to use Py-EVM. If you are looking for detailed API descriptions check out the API section.

Guides

	Quickstart
	Installation

	Sync and interact with the Ropsten chain

	Accessing an existing chain database

	Building an app that uses Py-EVM
	Setting up the application

	Add the Py-EVM library as a dependency

	Writing the application code

	Runing the script

	Architecture
	The Chain

	The VM

	The VMState

	The Message

	The Computation

	The Opcode

	Understanding the mining process
	Mining

	Mining an empty block

	Retrieving a valid nonce and mix hash

	Mining a block with transactions

	Creating Opcodes
	The as_opcode() helper

	Opcodes as classes

Quickstart

Note

This quickstart is aspirational. The code examples may not work
yet.

Installation

pip install py-evm

Sync and interact with the Ropsten chain

Currently we only provide a light client that will sync only block headers,
although it can fetch block bodies on demand. The easiest way to try it is by
running the lightchain_shell, which will run the LightPeerChain in the background
and let you use the python interpreter to interact with it:

$ python -i -m eth.lightchain_shell -db /tmp/testnet.db

That will immediately give you a python shell, with a chain variable that you
can use even before it has finished syncing:

>>> chain.get_canonical_head()
<BlockHeader #2200794 e3f9c6bb>

Some LightPeerChain methods (e.g. those that need data
from block bodies) are coroutines that need to be executed by asyncio’s event
loop, so for those we provide a helper that will schedule their execution and
wait for the result:

>>> wait_for_result(chain.get_canonical_block_by_number(42))
<FrontierBlock(#Block #42)>

Accessing an existing chain database

The Chain object manages the series of fork rules
contained in every blockchain. It requires that you define the VM ranges.
Some pre-built chains are available for your convenience.
To access the Mainnet chain you can use:

from eth import MainnetChain
from eth.chains.mainnet import MAINNET_GENESIS_HEADER
from eth.db.backends.level import LevelDB
from eth.db.chain import ChainDB

Read the previously saved chain database
chaindb = ChainDB(LevelDB('/tmp/mainnet.db'))

Load the saved database into a mainnet chain object
chain = MainnetChain(chaindb)

Then you can read data about the chain that you already downloaded.
For example:

highest_block_num = chain.get_canonical_head().block_number

block1 = chain.get_canonical_block_by_number(1)
assert block1.number == 1

blockhash = block1.hash()
vm = chain.get_vm()
blockgas = vm.get_cumulative_gas_used(block1)

The methods available on the block are variable. They depend on what fork you’re on.
The mainnet follows “Frontier” rules at the beginning, then Homestead, and so on.
To see block features for Frontier, see the API for
FrontierBlock.

Building an app that uses Py-EVM

One of the primary use cases of the Py-EVM library is to enable developers to build applications
that want to interact with the ethereum ecosystem.

In this guide we want to build a very simple script that uses the Py-EVM library to create a
fresh blockchain with a pre-funded address to simply read the balance of that address through the
regular Py-EVM APIs. Frankly, not the most exciting application in the world, but the principle
of how we use the Py-EVM library stays the same for more exciting use cases.

Setting up the application

Let’s get started by setting up a new application. Often, that process involves lots of repetitive
boilerplate code, so instead of doing it all by hand, let’s just clone the
Ethereum Python Project Template [https://github.com/carver/ethereum-python-project-template]
which contains all the typical things that we want.

To clone this into a new directory demo-app run:

git clone https://github.com/carver/ethereum-python-project-template.git demo-app

Then, change into the directory

cd demo-app

Add the Py-EVM library as a dependency

To add Py-EVM as a dependency, open the setup.py file in the root directory of the application
and change the install_requires section as follows.

install_requires=[
 "eth-utils>=1,<2",
 "py-evm==0.2.0a26",
],

Warning

Make sure to also change the name inside the setup.py file to something valid
(e.g. demo-app) or otherwise, fetching dependencies will fail.

Next, we need to use the pip package manager to fetch and install the dependencies of our app.

Note

Optional: Often, the best way to guarantee a clean Python 3 environment is with
virtualenv [https://virtualenv.pypa.io/en/stable/]. If we don’t have virtualenv installed
already, we first need to install it via pip.

pip install virtualenv

Then, we can initialize a new virtual environment venv, like:

virtualenv -p python3 venv

This creates a new directory venv where packages are installed isolated from any other global
packages.

To activate the virtual directory we have to source it

. venv/bin/activate

To install the dependencies, run:

pip install -e .[dev]

Congrats! We’re now ready to build our application!

Writing the application code

Next, we’ll create a new directory app and create a file main.py inside. Paste in the following content.

from eth import constants
from eth.chains.mainnet import MainnetChain
from eth.db.backends.memory import MemoryDB

from eth_utils import to_wei, encode_hex

MOCK_ADDRESS = constants.ZERO_ADDRESS
DEFAULT_INITIAL_BALANCE = to_wei(10000, 'ether')

GENESIS_PARAMS = {
 'parent_hash': constants.GENESIS_PARENT_HASH,
 'uncles_hash': constants.EMPTY_UNCLE_HASH,
 'coinbase': constants.ZERO_ADDRESS,
 'transaction_root': constants.BLANK_ROOT_HASH,
 'receipt_root': constants.BLANK_ROOT_HASH,
 'difficulty': constants.GENESIS_DIFFICULTY,
 'block_number': constants.GENESIS_BLOCK_NUMBER,
 'gas_limit': constants.GENESIS_GAS_LIMIT,
 'extra_data': constants.GENESIS_EXTRA_DATA,
 'nonce': constants.GENESIS_NONCE
}

GENESIS_STATE = {
 MOCK_ADDRESS: {
 "balance": DEFAULT_INITIAL_BALANCE,
 "nonce": 0,
 "code": b'',
 "storage": {}
 }
}

chain = MainnetChain.from_genesis(MemoryDB(), GENESIS_PARAMS, GENESIS_STATE)

mock_address_balance = chain.get_vm().state.account_db.get_balance(MOCK_ADDRESS)

print("The balance of address {} is {} wei".format(
 encode_hex(MOCK_ADDRESS),
 mock_address_balance)
)

Runing the script

Let’s run the script by invoking the following command.

python app/main.py

We should see the following output.

The balance of address 0x00 is 10000000000000000000000 wei

Architecture

The primary use case for Py-EVM is supporting the public Ethereum blockchain.

However, it is architected with a strong focus on configurability and
extensibility. Use of Py-EVM for alternate use cases such as private chains,
consortium chains, or even chains with fundamentally different VM semantics
should be possible without any changes to the core library.

The following abstractions are used to represent the full consensus rules for a
Py-EVM based blockchain.

	Chain: High level API for interacting with the blockchain.

	VM: High level API for a single fork within a Chain

	VMState: The current state of the VM, transaction execution logic and the state transition function.

	Message: Representation of the portion of the transaction which is relevant to VM execution.

	Computation: The computational state and result of VM execution.

	Opcode: The logic for a single opcode.

The Chain

The term Chain is used to encapsulate:

	The state transition function (e.g. VM opcodes and execution logic)

	Protocol rules (e.g. block rewards, header rewards, difficulty calculations, transaction execution)

	The chain data (e.g. Headers, Blocks, Transactions and Receipts)

	The state data (e.g. balance, nonce, code and storage)

	The chain state (e.g. tracking the chain head, canonical blocks)

Note

While a chain is used to wrap these concepts, many of them are actually defined at lower layers such as the underlying Virtual Machines.

The Chain object itself is largely an interface and orchestration layer.
Most of the Chain APIs merely serving as a passthrough to the appropriate
VM.

A chain has one or more underlying Virtual Machines or VMs. The chain
contains a mapping which defines which VM should be active for which blocks.

The chain for the public mainnet Ethereum blockchain would have a separate VM defined
for each fork ruleset (e.g. Frontier, Homestead, Tangerine Whistle,
Spurious Dragon, Byzantium).

The VM

The term VM is used to encapsulate:

	The state transition function for a single fork ruleset.

	Orchestration logic for transaction execution.

	Block construction and validation.

	Chain data storage and retrieval APIs

The VM object loosely mirrors many of the Chain APIs for retrieval of chain
state such as blocks, headers, transactions and receipts. It is also
responsible for block level protocol logic such as block creation and
validation.

The VMState

The term VMState is used to encapsulate:

	Execution context for the VM (e.g. coinbase or gas_limit)

	The state root defining the current VM state.

	Some block validation

The Message

The term Message comes from the yellow paper. It encapsulates the
information from the transaction needed to initiate the outermost layer of VM
execution.

	Parameters like sender, value, to

The message can be thought of as the VM’s internal representation of a
transaction.

The Computation

The term Computation is used to encapsulate:

	The computational state during VM execution (e.g. memory, stack, gas metering)

	The computational results of VM execution (e.g. return data, gas consumption and refunds, execution errors)

This abstraction is the interface through which opcode logic is implemented.

The Opcode

The term Opcode is used to encapsulate:

	A single instruction within the VM such as the ADD or MUL opcodes.

Opcodes are implemented as TODO

Understanding the mining process

From the EVM Cookbook we can already learn how to
use the Chain class to create a single
blockchain as a combination of different virtual machines for different spans
of blocks.

In this guide we want to build up on that knowledge and look into the actual mining process.

Note

Mining is an overloaded term and in fact the names of the mentioned APIs are subject to change.

Mining

The term mining can refer to different things depending on our point of view. Most of the time
when we read about mining, we talk about the process where several parties are competing to be
the first to create a new valid block and pass it on to the network.

In this guide, when we talk about the
mine_block() API, we are only referring to
the part that creates, validates and sets a block as the new canonical head of
the chain but not necessarily as part of the mentioned competition to be the
first. In fact, the mine_block() API is
internally also called when we import existing blocks that others created.

Mining an empty block

Usually when we think about creating blocks we naturally think about adding transactions to the
block first because, after all, one primary use case for the Ethereum blockchain is to process
transactions which are wrapped in blocks.

For the sake of simplicity though, we’ll mine an empty block as a first example (meaning the block
will not contain any transactions)

As a refresher, he’s how we create a chain as demonstrated in the
Using the chain object recipe from the
cookbook.

from eth.db.atomic import AtomicDB
from eth.chains.mainnet import MAINNET_GENESIS_HEADER

increase the gas limit
genesis_header = MAINNET_GENESIS_HEADER.copy(gas_limit=3141592)

initialize a fresh chain
chain = chain_class.from_genesis_header(AtomicDB(), genesis_header)

Since we decided to not add any transactions to our block let’s just call
mine_block() and see what happens.

initialize a fresh chain
chain = chain_class.from_genesis_header(AtomicDB(), genesis_header)

chain.mine_block()

Aw, snap! We’re running into an exception at check_pow(). Apparently we
are trying to add a block to the chain that doesn’t qualify the Proof-of-Work (PoW) rules. The
error tells us precisely that the mix_hash of our block does not match the expected value.

Traceback (most recent call last):
 File "scripts/benchmark/run.py", line 111, in <module>
 run()
 File "scripts/benchmark/run.py", line 52, in run
 block = chain.mine_block() #**pow_args
 File "/py-evm/eth/chains/base.py", line 545, in mine_block
 self.validate_block(mined_block)
 File "/py-evm/eth/chains/base.py", line 585, in validate_block
 self.validate_seal(block.header)
 File "/py-evm/eth/chains/base.py", line 622, in validate_seal
 header.mix_hash, header.nonce, header.difficulty)
 File "/py-evm/eth/consensus/pow.py", line 70, in check_pow
 encode_hex(mining_output[b'mix digest']), encode_hex(mix_hash)))

eth.exceptions.ValidationError: mix hash mismatch;
0x7a76bbf0c8d0e683fafa2d7cab27f601e19f35e7ecad7e1abb064b6f8f08fe21 !=
0x00

Let’s lookup how check_pow() is implemented.

def check_pow(block_number: int,
 mining_hash: Hash32,
 mix_hash: Hash32,
 nonce: bytes,
 difficulty: int) -> None:
 validate_length(mix_hash, 32, title="Mix Hash")
 validate_length(mining_hash, 32, title="Mining Hash")
 validate_length(nonce, 8, title="POW Nonce")
 cache = get_cache(block_number)
 mining_output = hashimoto_light(
 block_number, cache, mining_hash, big_endian_to_int(nonce))
 if mining_output[b'mix digest'] != mix_hash:
 raise ValidationError("mix hash mismatch; {0} != {1}".format(
 encode_hex(mining_output[b'mix digest']), encode_hex(mix_hash)))
 result = big_endian_to_int(mining_output[b'result'])
 validate_lte(result, 2**256 // difficulty, title="POW Difficulty")

Just by looking at the signature of that function we can see that validating the PoW is based on
the following parameters:

	block_number - the number of the given block

	difficulty - the difficulty of the PoW algorithm

	mining_hash - hash of the mining header

	mix_hash - together with the nonce forms the actual proof

	nonce - together with the mix_hash forms the actual proof

The PoW algorithm checks that all these parameters match correctly, ensuring that only valid blocks
can be added to the chain.

In order to produce a valid block, we have to set the correct mix_hash and nonce in the
header. We can pass these as key-value pairs when we call
mine_block() as seen below.

chain.mine_block(nonce=valid_nonce, mix_hash=valid_mix_hash)

This call will work just fine assuming we are passing the correct nonce and mix_hash that
corresponds to the block getting mined.

Retrieving a valid nonce and mix hash

Now that we know we can call mine_block()
with the correct parameters to successfully add a block to our chain, let’s
briefly go over an example that demonstrates how we can retrieve a matching
nonce and mix_hash.

Note

Py-EVM currently doesn’t offer a stable API for actual PoW mining. The following code is for
demonstration purpose only.

Mining on the main ethereum chain is a competition done simultanously by many miners, hence the
mining difficulty is pretty high which means it will take a very long time to find the right
nonce and mix_hash on commodity hardware. In order for us to have something that we can
tinker with on a regular laptop, we’ll construct a test chain with the difficulty set to 1.

Let’s start off by defining the GENESIS_PARAMS.

from eth import constants

GENESIS_PARAMS = {
 'parent_hash': constants.GENESIS_PARENT_HASH,
 'uncles_hash': constants.EMPTY_UNCLE_HASH,
 'coinbase': constants.ZERO_ADDRESS,
 'transaction_root': constants.BLANK_ROOT_HASH,
 'receipt_root': constants.BLANK_ROOT_HASH,
 'difficulty': 1,
 'block_number': constants.GENESIS_BLOCK_NUMBER,
 'gas_limit': 3141592,
 'timestamp': 1514764800,
 'extra_data': constants.GENESIS_EXTRA_DATA,
 'nonce': constants.GENESIS_NONCE
 }

Next, we’ll create the chain itself using the defined GENESIS_PARAMS and the latest
ByzantiumVM.

from eth import MiningChain
from eth.vm.forks.byzantium import ByzantiumVM
from eth.db.backends.memory import AtomicDB

klass = MiningChain.configure(
 __name__='TestChain',
 vm_configuration=(
 (constants.GENESIS_BLOCK_NUMBER, ByzantiumVM),
))
chain = klass.from_genesis(AtomicDB(), GENESIS_PARAMS)

Now that we have the building blocks available, let’s put it all together and mine a proper block!

from eth.consensus.pow import mine_pow_nonce

We have to finalize the block first in order to be able read the
attributes that are important for the PoW algorithm
block = chain.get_vm().finalize_block(chain.get_block())

based on mining_hash, block number and difficulty we can perform
the actual Proof of Work (PoW) mechanism to mine the correct
nonce and mix_hash for this block
nonce, mix_hash = mine_pow_nonce(
 block.number,
 block.header.mining_hash,
 block.header.difficulty)

block = chain.mine_block(mix_hash=mix_hash, nonce=nonce)

>>> print(block)
Block #1

Let’s take a moment to fully understand what this code does.

1. We call finalize_block() on the underlying VM in order to retrieve the
information that we need to calculate the nonce and the mix_hash.

2. We then call mine_pow_nonce() to retrieve the proper nonce and
mix_hash that we need to mine the block and satisfy the validation.

	Finally we call mine_block() and pass
along the nonce and the mix_hash

Note

The code above will essentially perform finalize_block twice.
Keep in mind this code is for demonstration purpose only and that Py-EVM will provide a pluggable
system in the future to allow PoW mining among other things.

Mining a block with transactions

Now that we’ve learned the basics of how the mining process works, let’s revisited our example and
add a transaction before we mine another block. There are a couple of concepts we need to dive into in
order to accomplish that goal.

Every transaction goes from a sender Address to a receiver
Address. Each transaction takes some computational power to get processed
that is measured in a unit called gas.

In practice, we have to pay the miners to put our transaction in a block. However, there is no
technical reason why we have to pay for the computing power, but only an economical, i.e. in reality
we’ll usually have trouble finding a miner who’s willing to include a transaction that doesn’t pay
for its computational costs.

In this example, however, we are the miner which means we are free to include any transactions
we like. In the spirit of this guide, let’s start simple and create a transaction that sends zero
ether from one address to another address. Keep in mind that even if the value being transferred
is zero, there’s still a computational cost for the processing but since we are the miner, we’ll
mine it anyway even if no one is willing to pay for it!

Let’s first setup the sender and receiver.

from eth_keys import keys
from eth_utils import decode_hex
from eth_typing import Address

SENDER_PRIVATE_KEY = keys.PrivateKey(
 decode_hex('0x45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8')
)

SENDER = Address(SENDER_PRIVATE_KEY.public_key.to_canonical_address())

RECEIVER = Address(b'\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x02')

One thing that strikes out here is that we only need the plain address for the receiver whereas for
the sender we are obtaining an address derived from the SENDER_PRIVATE_KEY. That’s because we
obviously can not send transactions from an address that we don’t have the private key to sign it
for.

With sender and receiver prepared, let’s create the actual transaction.

vm = chain.get_vm()
nonce = vm.state.account_db.get_nonce(SENDER)

tx = vm.create_unsigned_transaction(
 nonce=nonce,
 gas_price=0,
 gas=100000,
 to=RECEIVER,
 value=0,
 data=b'',
)

Every transaction needs a nonce not to be confused with the nonce that we previously
mined as part of the PoW algorithm. The transaction nonce serves as a counter to ensure
all transactions from one address are processed in order. We retrieve the current nonce
by calling get_nonce(sender)().

Once we have the nonce we can call create_unsigned_transaction() and
pass the nonce among the rest of the transaction attributes as key-value pairs.

	nonce - Number of transactions sent by the sender

	gas_price - Number of Wei to pay per unit of gas

	gas - Maximum amount of gas the transaction is allowed to consume before it gets rejected

	to - Address of transaction recipient

	value - Number of Wei to be transferred to the recipient

The last step we need to do before we can add the transaction to a block is to sign it with the
private key which is as simple as calling
as_signed_transaction() with the
SENDER_PRIVATE_KEY.

signed_tx = tx.as_signed_transaction(SENDER_PRIVATE_KEY)

Finally, we can call apply_transaction() and pass along the
signed_tx.

chain.apply_transaction(signed_tx)

What follows is the complete script that demonstrates how to mine a single block with one simple
zero value transfer transaction.

>>> from eth_keys import keys
>>> from eth_utils import decode_hex
>>> from eth_typing import Address
>>> from eth import constants
>>> from eth.chains.base import MiningChain
>>> from eth.consensus.pow import mine_pow_nonce
>>> from eth.vm.forks.byzantium import ByzantiumVM
>>> from eth.db.atomic import AtomicDB

>>> GENESIS_PARAMS = {
... 'parent_hash': constants.GENESIS_PARENT_HASH,
... 'uncles_hash': constants.EMPTY_UNCLE_HASH,
... 'coinbase': constants.ZERO_ADDRESS,
... 'transaction_root': constants.BLANK_ROOT_HASH,
... 'receipt_root': constants.BLANK_ROOT_HASH,
... 'difficulty': 1,
... 'block_number': constants.GENESIS_BLOCK_NUMBER,
... 'gas_limit': 3141592,
... 'timestamp': 1514764800,
... 'extra_data': constants.GENESIS_EXTRA_DATA,
... 'nonce': constants.GENESIS_NONCE
... }

>>> SENDER_PRIVATE_KEY = keys.PrivateKey(
... decode_hex('0x45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8')
...)

>>> SENDER = Address(SENDER_PRIVATE_KEY.public_key.to_canonical_address())

>>> RECEIVER = Address(b'\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x02')

>>> klass = MiningChain.configure(
... __name__='TestChain',
... vm_configuration=(
... (constants.GENESIS_BLOCK_NUMBER, ByzantiumVM),
...))

>>> chain = klass.from_genesis(AtomicDB(), GENESIS_PARAMS)
>>> vm = chain.get_vm()

>>> nonce = vm.state.account_db.get_nonce(SENDER)

>>> tx = vm.create_unsigned_transaction(
... nonce=nonce,
... gas_price=0,
... gas=100000,
... to=RECEIVER,
... value=0,
... data=b'',
...)

>>> signed_tx = tx.as_signed_transaction(SENDER_PRIVATE_KEY)

>>> chain.apply_transaction(signed_tx)
(<ByzantiumBlock(#Block #1...)
>>> # We have to finalize the block first in order to be able read the
>>> # attributes that are important for the PoW algorithm
>>> block = chain.get_vm().finalize_block(chain.get_block())

>>> # based on mining_hash, block number and difficulty we can perform
>>> # the actual Proof of Work (PoW) mechanism to mine the correct
>>> # nonce and mix_hash for this block
>>> nonce, mix_hash = mine_pow_nonce(
... block.number,
... block.header.mining_hash,
... block.header.difficulty
...)

>>> chain.mine_block(mix_hash=mix_hash, nonce=nonce)
<ByzantiumBlock(#Block #1)>

Creating Opcodes

An opcode is just a function which takes a BaseComputation
instance as it’s sole argument. If an opcode function has a return value, this
value will be discarded during normal VM execution.

Here are some simple examples.

def noop(computation):
 """
 An opcode which does nothing (not even consume gas)
 """
 pass

def burn_5_gas(computation):
 """
 An opcode which simply burns 5 gas
 """
 computation.consume_gas(5, reason='why not?')

The as_opcode() helper

While these examples are demonstrative of simple logic, opcodes will
traditionally have an intrinsic gas cost associated with them. Py-EVM offers
an abstraction which allows for decoupling of gas consumption from opcode logic
which can be convenient for cases where an opcode’s gas cost changes between
different VM rules but its logic remains constant.

	
eth.vm.opcode.as_opcode(logic_fn, mnemonic, gas_cost)

	
	The logic_fn argument should be a callable conforming to the opcode
API, taking a ~eth.vm.computation.Computation instance as its sole
argument.

	The mnemonic is a string such as 'ADD' or 'MUL'.

	The gas_cost is the gas cost to execute this opcode.

The return value is a function which will consume the gas_cost prior to
execution of the logic_fn.

Usage of the as_opcode() helper:

def custom_op(computation):
 ... # opcode logic here

class ExampleComputation(BaseComputation):
 opcodes = {
 b'\x01': as_opcode(custom_op, 'CUSTOM_OP', 10),
 }

Opcodes as classes

Sometimes it may be helpful to share common logic between similar opcodes, or
the same opcode across multiple fork rules. In these cases, implementing
opcodes as classes may be the right choice. This is as simple as
implementing a __call__ method on your class which conforms to the opcode
API, taking a single Computation instance as the sole
argument.

class MyOpcode:
 def initial_logic(self, computation):
 ...

 def main_logic(self, computation):
 ...

 def cleanup_logic(self, computation):
 ...

 def __call__(self, computation):
 self.initial_logic(computation)
 self.main_logic(computation)
 self.cleanup_logic(computation)

With this pattern, the overall structure, as well as much of the logic can be
re-used while still allowing a mechanism for overriding individual sections of
the opcode logic.

API

This section aims to provide a detailed description of all APIs. If you are looking for something more hands-on or higher-level check out the existing guides.

Warning

We expect each alpha release to have breaking changes to the API.

	Trinity
	Command Line Interface (CLI)

	Extensibility
	Events

	Exceptions

	Plugin

	PluginManager

	Py-EVM
	Chain
	BaseChain

	Chain

	DataBase
	Backends

	Account

	Journal

	Chain

	Exceptions

	RLP
	Accounts

	Blocks

	Headers

	Logs

	Receipts

	Transactions

	Tools
	Builders

	Builder Tools

	Virtual Machine
	Computation

	CodeStream

	ExecutionContext

	GasMeter

	Memory

	Message

	Opcode

	VM

	Stack

	State

	BaseTransactionContext

	Forks

Trinity

This section aims to provide a detailed description of all APIs. If you are looking for something more hands-on or higher-level check out the existing Trinity guides.

API

	Command Line Interface (CLI)

	Extensibility
	Events

	Exceptions

	Plugin
	PluginContext

	BasePlugin

	BaseSyncStopPlugin

	BaseAsyncStopPlugin

	BaseMainProcessPlugin

	BaseIsolatedPlugin

	PluginManager
	BaseManagerProcessScope

	MainAndIsolatedProcessScope

	SharedProcessScope

	PluginManager

Command Line Interface (CLI)

usage: trinity [-h] [--version] [--trinity-root-dir TRINITY_ROOT_DIR]
 [-l {debug,info}] [--network-id NETWORK_ID | --ropsten]
 [--sync-mode {full,light} | --light] [--data-dir DATA_DIR]
 [--nodekey NODEKEY] [--nodekey-path NODEKEY_PATH]
 {console,attach} ...

positional arguments:
{console,attach}
 console run the chain and start the trinity REPL
 attach open an REPL attached to a currently running chain

optional arguments:
-h, --help show this help message and exit

sync mode:
--version show program's version number and exit
--trinity-root-dir TRINITY_ROOT_DIR
 The filesystem path to the base directory that trinity
 will store it's information. Default:
 $XDG_DATA_HOME/.local/share/trinity

logging:
-l {debug,info}, --log-level {debug,info}
 Sets the logging level

network:
--network-id NETWORK_ID
 Network identifier (1=Mainnet, 3=Ropsten)
--ropsten Ropsten network: pre configured proof-of-work test
 network. Shortcut for `--networkid=3`

sync mode:
--sync-mode {full,light}
--light Shortcut for `--sync-mode=light`

chain:
--data-dir DATA_DIR The directory where chain data is stored
--nodekey NODEKEY Hexadecimal encoded private key to use for the nodekey
--nodekey-path NODEKEY_PATH
 The filesystem path to the file which contains the
 nodekey

Extensibility

Warning

The extensibility API isn’t stable yet. Expect breaking changes.

	Events

	Exceptions

	Plugin
	PluginContext

	BasePlugin

	BaseSyncStopPlugin

	BaseAsyncStopPlugin

	BaseMainProcessPlugin

	BaseIsolatedPlugin

	PluginManager
	BaseManagerProcessScope

	MainAndIsolatedProcessScope

	SharedProcessScope

	PluginManager

Events

	
class trinity.extensibility.events.PluginStartedEvent(plugin_type: Type[BasePlugin])

	Broadcasted when a plugin was started

	
class trinity.extensibility.events.ResourceAvailableEvent(resource: Any, resource_type: Type[Any])

	Broadcasted when a resource becomes available

Exceptions

	
class trinity.extensibility.exceptions.EventBusNotReady

	Raised when a plugin tried to access an EventBus before the plugin
had received its on_ready() call.

	
class trinity.extensibility.exceptions.UnsuitableShutdownError

	Raised when shutdown() was called on
a PluginManager instance that operates in the
MainAndIsolatedProcessScope or when
shutdown_blocking() was called on a
PluginManager instance that operates in the
SharedProcessScope.

Plugin

PluginContext

	
class trinity.extensibility.plugin.PluginContext(endpoint: lahja.endpoint.Endpoint, boot_info: trinity.extensibility.plugin.TrinityBootInfo)

	The PluginContext holds valuable contextual information
and APIs to be used by a plugin. This includes the parsed arguments that were used to launch
Trinity as well as an Endpoint that the plugin can use to connect
to the central EventBus.

The PluginContext is set during startup and is
guaranteed to exist by the time that a plugin receives its
on_ready() call.

	
args

	Return the parsed arguments that were used to launch the application

	
event_bus

	Return the Endpoint that the plugin uses to connect to the
central EventBus

	
shutdown_host(reason: str) → None

	Shutdown Trinity by broadcasting a ShutdownRequest on the
EventBus. The actual shutdown routine is executed and coordinated
by the main application process who listens for this event.

	
trinity_config

	Return the TrinityConfig

BasePlugin

	
class trinity.extensibility.plugin.BasePlugin

	
	
configure_parser(arg_parser: argparse.ArgumentParser, subparser: argparse._SubParsersAction) → None

	Give the plugin a chance to amend the Trinity CLI argument parser. This hook is called
before on_ready()

	
do_start() → None

	Perform the actual plugin start routine. In the case of a BaseIsolatedPlugin this method
will be called in a separate process.

This method should usually be overwritten by subclasses with the exception of plugins that
set func on the ArgumentParser to redefine the entire host program.

	
event_bus

	Get the Endpoint that this plugin uses to connect to the
EventBus

	
logger

	Get the Logger [https://docs.python.org/3.5/library/logging.html#logging.Logger] for this plugin.

	
name

	Describe the name of the plugin.

	
on_ready() → None

	Notify the plugin that it is ready to bootstrap itself. Plugins can rely
on the PluginContext to be set
after this method has been called.

	
ready() → None

	Set the status to PluginStatus.READY and delegate to
on_ready()

	
running

	Return True if the status is PluginStatus.STARTED, otherwise return False.

	
set_context(context: trinity.extensibility.plugin.PluginContext) → None

	Set the PluginContext for this plugin.

	
start() → None

	Delegate to do_start() and set running
to True. Broadcast a PluginStartedEvent on the
EventBus and hence allow other plugins to act accordingly.

	
status

	Return the current PluginStatus of the plugin.

BaseSyncStopPlugin

	
class trinity.extensibility.plugin.BaseSyncStopPlugin

	A BaseSyncStopPlugin unwinds synchronoulsy, hence blocks
until the shutdown is done.

	
do_stop() → None

	Stop the plugin. Should be overwritten by subclasses.

	
stop() → None

	Delegate to do_stop() causing the
plugin to stop and setting running to False.

BaseAsyncStopPlugin

	
class trinity.extensibility.plugin.BaseAsyncStopPlugin

	A BaseAsyncStopPlugin unwinds asynchronoulsy, hence
needs to be awaited.

	
coroutine do_stop() → None

	Asynchronously stop the plugin. Should be overwritten by subclasses.

	
coroutine stop() → None

	Delegate to do_stop() causing the
plugin to stop asynchronously and setting running to False.

BaseMainProcessPlugin

	
class trinity.extensibility.plugin.BaseMainProcessPlugin

	A BaseMainProcessPlugin overtakes the whole main process
early before any of the subsystems started. In that sense it redefines the whole meaning of the
trinity command.

BaseIsolatedPlugin

	
class trinity.extensibility.plugin.BaseIsolatedPlugin

	A BaseIsolatedPlugin runs in an isolated process and
hence provides security and flexibility by not making assumptions about its internal
operations.

Such plugins are free to use non-blocking asyncio as well as synchronous calls. When an
isolated plugin is stopped it does first receive a SIGINT followed by a SIGTERM soon after.
It is up to the plugin to handle these signals accordingly.

	
do_stop() → None

	Stop the plugin. Should be overwritten by subclasses.

	
start() → None

	Prepare the plugin to get started and eventually call do_start in a separate process.

PluginManager

BaseManagerProcessScope

	
class trinity.extensibility.plugin_manager.BaseManagerProcessScope

	Define the operational model under which a
PluginManager works. Subclasses
define whether a PluginManager is
responsible to manage a specific plugin and how its
PluginContext is created.

	
create_plugin_context(plugin: trinity.extensibility.plugin.BasePlugin, boot_info: trinity.extensibility.plugin.TrinityBootInfo) → None

	Create the PluginContext for the given plugin.

	
is_responsible_for_plugin(plugin: trinity.extensibility.plugin.BasePlugin) → bool

	Define whether a PluginManager operating
under this scope is responsible to manage the given plugin.

MainAndIsolatedProcessScope

	
class trinity.extensibility.plugin_manager.MainAndIsolatedProcessScope(event_bus: lahja.eventbus.EventBus, main_proc_endpoint: lahja.endpoint.Endpoint)

	
	
create_plugin_context(plugin: trinity.extensibility.plugin.BasePlugin, boot_info: trinity.extensibility.plugin.TrinityBootInfo) → None

	Create a PluginContext that holds a reference to a
dedicated new Endpoint to enable plugins which run in their own
isolated processes to connect to the central EventBus that Trinity
uses to enable application wide event-driven communication even across process boundaries.

	
is_responsible_for_plugin(plugin: trinity.extensibility.plugin.BasePlugin) → bool

	Return True if if the plugin instance is a subclass of
BaseIsolatedPlugin or
BaseMainProcessPlugin

SharedProcessScope

	
class trinity.extensibility.plugin_manager.SharedProcessScope(shared_proc_endpoint: lahja.endpoint.Endpoint)

	
	
create_plugin_context(plugin: trinity.extensibility.plugin.BasePlugin, boot_info: trinity.extensibility.plugin.TrinityBootInfo) → None

	Create a PluginContext that uses the
Endpoint of the
PluginManager to communicate with the
central EventBus that Trinity uses to enable application wide,
event-driven communication even across process boundaries.

	
is_responsible_for_plugin(plugin: trinity.extensibility.plugin.BasePlugin) → bool

	Return True if if the plugin instance is a subclass of
BaseAsyncStopPlugin.

PluginManager

	
class trinity.extensibility.plugin_manager.PluginManager(scope: trinity.extensibility.plugin_manager.BaseManagerProcessScope)

	The plugin manager is responsible to register, keep and manage the life cycle of any available
plugins.

A PluginManager is tight to a specific
BaseManagerProcessScope which defines which
plugins are controlled by this specific manager instance.

This is due to the fact that Trinity currently allows plugins to either run in a shared
process, also known as the “networking” process, as well as in their own isolated
processes.

Trinity uses two different PluginManager
instances to govern these different categories of plugins.

Note

This API is very much in flux and is expected to change heavily.

	
amend_argparser_config(arg_parser: argparse.ArgumentParser, subparser: argparse._SubParsersAction) → None

	Call configure_parser() for every registered
plugin, giving them the option to amend the global parser setup.

	
event_bus_endpoint

	Return the Endpoint that the
PluginManager instance uses to connect to
the central EventBus.

	
prepare(args: argparse.Namespace, trinity_config: trinity.config.TrinityConfig, boot_kwargs: Dict[str, Any] = None) → None

	Create and set the PluginContext and call
ready() on every plugin that this
plugin manager instance is responsible for.

	
register(plugins: Union[trinity.extensibility.plugin.BasePlugin, Iterable[trinity.extensibility.plugin.BasePlugin]]) → None

	Register one or multiple instances of BasePlugin
with the plugin manager.

	
coroutine shutdown() → None

	Asynchronously shut down all running plugins. Raises an
UnsuitableShutdownError if called on a
PluginManager that operates in the
MainAndIsolatedProcessScope.

	
shutdown_blocking() → None

	Synchronously shut down all running plugins. Raises an
UnsuitableShutdownError if called on a
PluginManager that operates in the
SharedProcessScope.

Py-EVM

This section aims to provide a detailed description of all APIs. If you are looking for something more hands-on or higher-level check out the existing EVM guides.

API

	Chain
	BaseChain

	Chain

	DataBase
	Backends
	BaseDB

	LevelDB

	MemoryDB

	Account
	BaseAccountDB

	AccountDB

	Journal
	JournalDB

	Chain
	BaseChainDB

	ChainDB

	Exceptions

	RLP
	Accounts
	Account

	Blocks
	BaseBlock

	Headers
	BlockHeader

	Logs
	Log

	Receipts
	Receipt

	Transactions
	BaseTransactionMethods

	BaseTransactionFields

	BaseTransaction

	BaseUnsignedTransaction

	Tools
	Builders
	Chain Builder
	Constructing Chain Classes

	Initializing Chains

	Building Chains

	Builder Tools
	State Test Fillers
	Creating a Filler

	Virtual Machine
	Computation
	BaseComputation

	CodeStream

	ExecutionContext

	GasMeter

	Memory

	Message

	Opcode

	VM
	BaseVM

	VM

	Stack

	State
	BaseState

	BaseTransactionExecutor

	BaseTransactionContext

	Forks
	Frontier
	FrontierVM

	FrontierState

	FrontierComputation

	Homestead
	HomesteadVM

	HomesteadState

	HomesteadComputation

	TangerineWhistle
	TangerineWhistleVM

	TangerineWhistleState

	TangerineWhistleComputation

	SpuriousDragon
	SpuriousDragonVM

	SpuriousDragonState

	SpuriousDragonComputation

	Byzantium
	ByzantiumVM

	ByzantiumState

	ByzantiumComputation

Chain

BaseChain

	
class eth.chains.base.BaseChain

	The base class for all Chain objects

	
classmethod get_vm_class(header: eth.rlp.headers.BlockHeader) → Type[BaseVM]

	Returns the VM instance for the given block number.

	
classmethod get_vm_class_for_block_number(block_number: NewType.<locals>.new_type) → Type[BaseVM]

	Returns the VM class for the given block number.

	
classmethod validate_chain(root: eth.rlp.headers.BlockHeader, descendants: Tuple[eth.rlp.headers.BlockHeader, ...], seal_check_random_sample_rate: int = 1) → None

	Validate that all of the descendents are valid, given that the root header is valid.

By default, check the seal validity (Proof-of-Work on Ethereum 1.x mainnet) of all headers.
This can be expensive. Instead, check a random sample of seals using
seal_check_random_sample_rate.

Chain

	
class eth.chains.base.Chain(base_db: eth.db.backends.base.BaseAtomicDB)

	A Chain is a combination of one or more VM classes. Each VM is associated
with a range of blocks. The Chain class acts as a wrapper around these other
VM classes, delegating operations to the appropriate VM depending on the
current block number.

	
build_block_with_transactions(transactions: Tuple[eth.rlp.transactions.BaseTransaction, ...], parent_header: eth.rlp.headers.BlockHeader = None) → Tuple[eth.rlp.blocks.BaseBlock, Tuple[eth.rlp.receipts.Receipt, ...], Tuple[eth.vm.computation.BaseComputation, ...]]

	Generate a block with the provided transactions. This does not import
that block into your chain. If you want this new block in your chain,
run import_block() with the result block from this method.

	Parameters

	
	transactions – an iterable of transactions to insert to the block

	parent_header – parent of the new block – or canonical head if None

	Returns

	(new block, receipts, computations)

	
chaindb_class

	alias of eth.db.chain.ChainDB

	
create_header_from_parent(parent_header: eth.rlp.headers.BlockHeader, **header_params) → eth.rlp.headers.BlockHeader

	Passthrough helper to the VM class of the block descending from the
given header.

	
create_transaction(*args, **kwargs) → eth.rlp.transactions.BaseTransaction

	Passthrough helper to the current VM class.

	
create_unsigned_transaction(*, nonce: int, gas_price: int, gas: int, to: NewType.<locals>.new_type, value: int, data: bytes) → eth.rlp.transactions.BaseUnsignedTransaction

	Passthrough helper to the current VM class.

	
ensure_header(header: eth.rlp.headers.BlockHeader = None) → eth.rlp.headers.BlockHeader

	Return header if it is not None, otherwise return the header
of the canonical head.

	
estimate_gas(transaction: Union[BaseTransaction, SpoofTransaction], at_header: eth.rlp.headers.BlockHeader = None) → int

	Returns an estimation of the amount of gas the given transaction will
use if executed on top of the block specified by the given header.

	
classmethod from_genesis(base_db: eth.db.backends.base.BaseAtomicDB, genesis_params: Dict[str, Union[int, None, bytes, NewType.<locals>.new_type, NewType.<locals>.new_type]], genesis_state: Dict[NewType.<locals>.new_type, eth.typing.AccountDetails] = None) → eth.chains.base.BaseChain

	Initializes the Chain from a genesis state.

	
classmethod from_genesis_header(base_db: eth.db.backends.base.BaseAtomicDB, genesis_header: eth.rlp.headers.BlockHeader) → eth.chains.base.BaseChain

	Initializes the chain from the genesis header.

	
get_ancestors(limit: int, header: eth.rlp.headers.BlockHeader) → Tuple[eth.rlp.blocks.BaseBlock, ...]

	Return limit number of ancestor blocks from the current canonical head.

	
get_block() → eth.rlp.blocks.BaseBlock

	Returns the current TIP block.

	
get_block_by_hash(block_hash: NewType.<locals>.new_type) → eth.rlp.blocks.BaseBlock

	Returns the requested block as specified by block hash.

	
get_block_by_header(block_header: eth.rlp.headers.BlockHeader) → eth.rlp.blocks.BaseBlock

	Returns the requested block as specified by the block header.

	
get_block_header_by_hash(block_hash: NewType.<locals>.new_type) → eth.rlp.headers.BlockHeader

	Returns the requested block header as specified by block hash.

Raises BlockNotFound if there’s no block header with the given hash in the db.

	
get_canonical_block_by_number(block_number: NewType.<locals>.new_type) → eth.rlp.blocks.BaseBlock

	Returns the block with the given number in the canonical chain.

Raises BlockNotFound if there’s no block with the given number in the
canonical chain.

	
get_canonical_block_hash(block_number: NewType.<locals>.new_type) → NewType.<locals>.new_type

	Returns the block hash with the given number in the canonical chain.

Raises BlockNotFound if there’s no block with the given number in the
canonical chain.

	
get_canonical_head() → eth.rlp.headers.BlockHeader

	Returns the block header at the canonical chain head.

Raises CanonicalHeadNotFound if there’s no head defined for the canonical chain.

	
get_canonical_transaction(transaction_hash: NewType.<locals>.new_type) → eth.rlp.transactions.BaseTransaction

	Returns the requested transaction as specified by the transaction hash
from the canonical chain.

Raises TransactionNotFound if no transaction with the specified hash is
found in the main chain.

	
get_score(block_hash: NewType.<locals>.new_type) → int

	Returns the difficulty score of the block with the given hash.

Raises HeaderNotFound if there is no matching black hash.

	
get_transaction_result(transaction: Union[BaseTransaction, SpoofTransaction], at_header: eth.rlp.headers.BlockHeader) → bytes

	Return the result of running the given transaction.
This is referred to as a call() in web3.

	
get_vm(at_header: eth.rlp.headers.BlockHeader = None) → BaseVM

	Returns the VM instance for the given block number.

	
import_block(block: eth.rlp.blocks.BaseBlock, perform_validation: bool = True) → Tuple[eth.rlp.blocks.BaseBlock, Tuple[eth.rlp.blocks.BaseBlock, ...], Tuple[eth.rlp.blocks.BaseBlock, ...]]

	Imports a complete block and returns a 3-tuple

	the imported block

	a tuple of blocks which are now part of the canonical chain.

	a tuple of blocks which are were canonical and now are no longer canonical.

	
validate_block(block: eth.rlp.blocks.BaseBlock) → None

	Performs validation on a block that is either being mined or imported.

Since block validation (specifically the uncle validation) must have
access to the ancestor blocks, this validation must occur at the Chain
level.

Cannot be used to validate genesis block.

	
validate_gaslimit(header: eth.rlp.headers.BlockHeader) → None

	Validate the gas limit on the given header.

	
validate_seal(header: eth.rlp.headers.BlockHeader) → None

	Validate the seal on the given header.

	
validate_uncles(block: eth.rlp.blocks.BaseBlock) → None

	Validate the uncles for the given block.

DataBase

Database

	Backends
	BaseDB

	LevelDB

	MemoryDB

	Account
	BaseAccountDB

	AccountDB

	Journal
	JournalDB

	Chain
	BaseChainDB

	ChainDB

Backends

BaseDB

	
class eth.db.backends.base.BaseDB

	This is an abstract key/value lookup with all bytes [https://docs.python.org/3.5/library/functions.html#bytes] values,
with some convenience methods for databases. As much as possible,
you can use a DB as if it were a dict [https://docs.python.org/3.5/library/stdtypes.html#dict].

Notable exceptions are that you cannot iterate through all values or get the length.
(Unless a subclass explicitly enables it).

All subclasses must implement these methods:
__init__, __getitem__, __setitem__, __delitem__

Subclasses may optionally implement an _exists method
that is type-checked for key and value.

LevelDB

	
class eth.db.backends.level.LevelDB(db_path: pathlib.Path = None, max_open_files: int = None)

	

MemoryDB

	
class eth.db.backends.memory.MemoryDB(kv_store: Dict[bytes, bytes] = None)

	

Account

BaseAccountDB

	
class eth.db.account.BaseAccountDB

	
	
make_state_root() → NewType.<locals>.new_type

	Generate the state root with all the current changes in AccountDB

	Returns

	the new state root

	
persist() → None

	Send changes to underlying database, including the trie state
so that it will forever be possible to read the trie from this checkpoint.

AccountDB

	
class eth.db.account.AccountDB(db: eth.db.backends.base.BaseDB, state_root: NewType.<locals>.new_type = b'Vxe8x1fx17x1bxccUxa6xffx83Exe6x92xc0xf8n[Hxe0x1bx99lxadxc0x01b/xb5xe3cxb4!')

	
	
make_state_root() → NewType.<locals>.new_type

	Generate the state root with all the current changes in AccountDB

	Returns

	the new state root

	
persist() → None

	Send changes to underlying database, including the trie state
so that it will forever be possible to read the trie from this checkpoint.

Journal

JournalDB

	
class eth.db.journal.JournalDB(wrapped_db: eth.db.backends.base.BaseDB)

	A wrapper around the basic DB objects that keeps a journal of all changes.
Each time a recording is started, the underlying journal creates a new
changeset and assigns an id to it. The journal then keeps track of all changes
that go into this changeset.

Discarding a changeset simply throws it away inculding all subsequent changesets
that may have followed. Commiting a changeset merges the given changeset and all
subsequent changesets into the previous changeset giving precidence to later
changesets in case of conflicting keys.

Nothing is written to the underlying db until persist() is called.

The added memory footprint for a JournalDB is one key/value stored per
database key which is changed. Subsequent changes to the same key within
the same changeset will not increase the journal size since we only need
to track latest value for any given key within any given changeset.

	
commit(changeset_id: uuid.UUID) → None

	Commits a given changeset. This merges the given changeset and all
subsequent changesets into the previous changeset giving precidence
to later changesets in case of any conflicting keys.

If this is the base changeset then all changes will be written to
the underlying database and the Journal starts a new recording.

	
discard(changeset_id: uuid.UUID) → None

	Throws away all journaled data starting at the given changeset

	
persist() → None

	Persist all changes in underlying db

	
record() → uuid.UUID

	Starts a new recording and returns an id for the associated changeset

	
reset() → None

	Reset the entire journal.

Chain

BaseChainDB

	
class eth.db.chain.BaseChainDB(db: eth.db.backends.base.BaseAtomicDB)

	

ChainDB

	
class eth.db.chain.ChainDB(db: eth.db.backends.base.BaseAtomicDB)

	
	
add_receipt(block_header: eth.rlp.headers.BlockHeader, index_key: int, receipt: eth.rlp.receipts.Receipt) → NewType.<locals>.new_type

	Adds the given receipt to the provide block header.

Returns the updated receipts_root for updated block header.

	
add_transaction(block_header: eth.rlp.headers.BlockHeader, index_key: int, transaction: BaseTransaction) → NewType.<locals>.new_type

	Adds the given transaction to the provide block header.

Returns the updated transactions_root for updated block header.

	
exists(key: bytes) → bool

	Returns True if the given key exists in the database.

	
get(key: bytes) → bytes

	Return the value for the given key or a KeyError if it doesn’t exist in the database.

	
get_block_transaction_hashes(block_header: eth.rlp.headers.BlockHeader) → Iterable[NewType.<locals>.new_type]

	Returns an iterable of the transaction hashes from th block specified
by the given block header.

	
get_block_transactions(header: eth.rlp.headers.BlockHeader, transaction_class: Type[BaseTransaction]) → Iterable[BaseTransaction]

	Returns an iterable of transactions for the block speficied by the
given block header.

	
get_block_uncles(uncles_hash: NewType.<locals>.new_type) → List[eth.rlp.headers.BlockHeader]

	Returns an iterable of uncle headers specified by the given uncles_hash

	
get_receipts(header: eth.rlp.headers.BlockHeader, receipt_class: Type[eth.rlp.receipts.Receipt]) → Iterable[eth.rlp.receipts.Receipt]

	Returns an iterable of receipts for the block specified by the given
block header.

	
get_transaction_by_index(block_number: NewType.<locals>.new_type, transaction_index: int, transaction_class: Type[BaseTransaction]) → BaseTransaction

	Returns the transaction at the specified transaction_index from the
block specified by block_number from the canonical chain.

Raises TransactionNotFound if no block

	
get_transaction_index(transaction_hash: NewType.<locals>.new_type) → Tuple[NewType.<locals>.new_type, int]

	Returns a 2-tuple of (block_number, transaction_index) indicating which
block the given transaction can be found in and at what index in the
block transactions.

Raises TransactionNotFound if the transaction_hash is not found in the
canonical chain.

	
persist_block(block: BaseBlock) → Tuple[Tuple[NewType.<locals>.new_type, ...], Tuple[NewType.<locals>.new_type, ...]]

	Persist the given block’s header and uncles.

Assumes all block transactions have been persisted already.

	
persist_trie_data_dict(trie_data_dict: Dict[NewType.<locals>.new_type, bytes]) → None

	Store raw trie data to db from a dict

	
persist_uncles(uncles: Tuple[eth.rlp.headers.BlockHeader]) → NewType.<locals>.new_type

	Persists the list of uncles to the database.

Returns the uncles hash.

Exceptions

	
exception eth.exceptions.BlockNotFound

	Raised when the block with the given number/hash does not exist.

	
exception eth.exceptions.CanonicalHeadNotFound

	Raised when the chain has no canonical head.

	
exception eth.exceptions.ContractCreationCollision

	Raised when there was an address collision during contract creation.

	
exception eth.exceptions.FullStack

	Raised when the stack is full.

	
exception eth.exceptions.Halt

	Raised when an opcode function halts vm execution.

	
exception eth.exceptions.HeaderNotFound

	Raised when a header with the given number/hash does not exist.

	
exception eth.exceptions.IncorrectContractCreationAddress

	Raised when the address provided by transaction does not
match the calculated contract creation address.

	
exception eth.exceptions.InsufficientFunds

	Raised when an account has insufficient funds to transfer the
requested value.

	
exception eth.exceptions.InsufficientStack

	Raised when the stack is empty.

	
exception eth.exceptions.InvalidInstruction

	Raised when an opcode is invalid.

	
exception eth.exceptions.InvalidJumpDestination

	Raised when the jump destination for a JUMPDEST operation is invalid.

	
exception eth.exceptions.OutOfBoundsRead

	Raised when an attempt was made to read data beyond the
boundaries of the buffer (such as with RETURNDATACOPY)

	
exception eth.exceptions.OutOfGas

	Raised when a VM execution has run out of gas.

	
exception eth.exceptions.ParentNotFound

	Raised when the parent of a given block does not exist.

	
exception eth.exceptions.PyEVMError

	Base class for all py-evm errors.

	
exception eth.exceptions.Revert

	Raised when the REVERT opcode occured

	
exception eth.exceptions.StackDepthLimit

	Raised when the call stack has exceeded it’s maximum allowed depth.

	
exception eth.exceptions.StateRootNotFound

	Raised when the requested state root is not present in our DB.

	
exception eth.exceptions.TransactionNotFound

	Raised when the transaction with the given hash or block index does not exist.

	
exception eth.exceptions.VMError

	Base class for errors raised during VM execution.

	
exception eth.exceptions.VMNotFound

	Raised when no VM is available for the provided block number.

	
exception eth.exceptions.WriteProtection

	Raised when an attempt to modify the state database is made while
operating inside of a STATICCALL context.

RLP

RLP Objects

	Accounts
	Account

	Blocks
	BaseBlock

	Headers
	BlockHeader

	Logs
	Log

	Receipts
	Receipt

	Transactions
	BaseTransactionMethods

	BaseTransactionFields

	BaseTransaction

	BaseUnsignedTransaction

Accounts

Account

	
class eth.rlp.accounts.Account(nonce: int = 0, balance: int = 0, storage_root: bytes = b'Vxe8x1fx17x1bxccUxa6xffx83Exe6x92xc0xf8n[Hxe0x1bx99lxadxc0x01b/xb5xe3cxb4!', code_hash: bytes = b"xc5xd2Fx01x86xf7#<x92~}xb2xdcxc7x03xc0xe5x00xb6Sxcax82';{xfaxd8x04]x85xa4p", **kwargs)

	RLP object for accounts.

Blocks

BaseBlock

	
class eth.rlp.blocks.BaseBlock(*args, **kwargs)

	
	
classmethod from_header(header: eth.rlp.headers.BlockHeader, chaindb: eth.db.chain.BaseChainDB) → eth.rlp.blocks.BaseBlock

	Returns the block denoted by the given block header.

Headers

BlockHeader

	
class eth.rlp.headers.BlockHeader(difficulty: int, block_number: int, gas_limit: int, timestamp: int = None, coinbase: NewType.<locals>.new_type = b'x00', parent_hash: NewType.<locals>.new_type = b'x00', uncles_hash: NewType.<locals>.new_type = b'x1dxccMxe8xdexc7]zxabx85xb5gxb6xccxd4x1axd3x12Ex1bx94x8atx13xf0xa1Bxfd@xd4x93G', state_root: NewType.<locals>.new_type = b'Vxe8x1fx17x1bxccUxa6xffx83Exe6x92xc0xf8n[Hxe0x1bx99lxadxc0x01b/xb5xe3cxb4!', transaction_root: NewType.<locals>.new_type = b'Vxe8x1fx17x1bxccUxa6xffx83Exe6x92xc0xf8n[Hxe0x1bx99lxadxc0x01b/xb5xe3cxb4!', receipt_root: NewType.<locals>.new_type = b'Vxe8x1fx17x1bxccUxa6xffx83Exe6x92xc0xf8n[Hxe0x1bx99lxadxc0x01b/xb5xe3cxb4!', bloom: int = 0, gas_used: int = 0, extra_data: bytes = b'', mix_hash: NewType.<locals>.new_type = b'x00', nonce: bytes = b'x00x00x00x00x00x00x00B')

	
	
classmethod from_parent(parent: eth.rlp.headers.BlockHeader, gas_limit: int, difficulty: int, timestamp: int, coinbase: NewType.<locals>.new_type = b'\x00', nonce: bytes = None, extra_data: bytes = None, transaction_root: bytes = None, receipt_root: bytes = None) → eth.rlp.headers.BlockHeader

	Initialize a new block header with the parent header as the block’s
parent hash.

Logs

Log

	
class eth.rlp.logs.Log(address: bytes, topics: List[int], data: bytes)

	

Receipts

Receipt

	
class eth.rlp.receipts.Receipt(state_root: bytes, gas_used: int, logs: Iterable[eth.rlp.logs.Log], bloom: int = None)

	

Transactions

BaseTransactionMethods

	
class eth.rlp.transactions.BaseTransactionMethods

	
	
gas_used_by(computation: eth.vm.computation.BaseComputation) → int

	Return the gas used by the given computation. In Frontier,
for example, this is sum of the intrinsic cost and the gas used
during computation.

	
get_intrinsic_gas() → int

	Compute the baseline gas cost for this transaction. This is the amount
of gas needed to send this transaction (but that is not actually used
for computation).

	
intrinsic_gas

	Convenience property for the return value of get_intrinsic_gas

	
validate() → None

	Hook called during instantiation to ensure that all transaction
parameters pass validation rules.

BaseTransactionFields

	
class eth.rlp.transactions.BaseTransactionFields(*args, **kwargs)

	

BaseTransaction

	
class eth.rlp.transactions.BaseTransaction(*args, **kwargs)

	
	
check_signature_validity() → None

	Checks signature validity, raising a ValidationError if the signature
is invalid.

	
classmethod create_unsigned_transaction(*, nonce: int, gas_price: int, gas: int, to: NewType.<locals>.new_type, value: int, data: bytes) → eth.rlp.transactions.BaseUnsignedTransaction

	Create an unsigned transaction.

	
get_message_for_signing() → bytes

	Return the bytestring that should be signed in order to create a signed transactions

	
get_sender() → NewType.<locals>.new_type

	Get the 20-byte address which sent this transaction.

	
sender

	Convenience property for the return value of get_sender

	
validate() → None

	Hook called during instantiation to ensure that all transaction
parameters pass validation rules.

BaseUnsignedTransaction

	
class eth.rlp.transactions.BaseUnsignedTransaction(*args, **kwargs)

	
	
as_signed_transaction(private_key: eth_keys.datatypes.PrivateKey) → eth.rlp.transactions.BaseTransaction

	Return a version of this transaction which has been signed using the
provided private_key

Tools

Tools

	Builders
	Chain Builder
	Constructing Chain Classes

	Initializing Chains

	Building Chains

	Builder Tools
	State Test Fillers
	Creating a Filler

Builders

Chain Builder

The chain builder utils are intended to reduce common boilerplace for both
construction of chain classes as well as building up some desired chain state.

Note

These tools are best used in conjunction with cytoolz.pipe.

Constructing Chain Classes

The following utilities are provided to assist with constructing a chain class.

	
eth.tools.builder.chain.fork_at()

	Adds the vm_class to the chain’s vm_configuration.

from eth.chains.base import MiningChain
from eth.tools.builder.chain import build, fork_at

FrontierOnlyChain = build(MiningChain, fork_at(FrontierVM, 0))

these two classes are functionally equivalent.
class FrontierOnlyChain(MiningChain):
 vm_configuration = (
 (0, FrontierVM),
)

Note

This function is curriable.

The following pre-curried versions of this function are available as well,
one for each mainnet fork.

	frontier_at()

	homestead_at()

	tangerine_whistle_at()

	spurious_dragon_at()

	byzantium_at()

	constantinople_at()

	
eth.tools.builder.chain.dao_fork_at()

	Set the block number on which the DAO fork will happen. Requires that a
version of the HomesteadVM is present in
the chain’s vm_configuration

	
eth.tools.builder.chain.disable_dao_fork()

	Set the support_dao_fork flag to False on the
HomesteadVM. Requires that presence of
the HomesteadVM in the
vm_configuration

	
eth.tools.builder.chain.enable_pow_mining()

	Inject on demand generation of the proof of work mining seal on newly
mined blocks into each of the chain’s vms.

	
eth.tools.builder.chain.disable_pow_check()

	Disable the proof of work validation check for each of the chain’s vms.
This allows for block mining without generation of the proof of work seal.

Note

blocks mined this way will not be importable on any chain that does not
have proof of work disabled.

	
eth.tools.builder.chain.name()

	Assign the given name to the chain class.

	
eth.tools.builder.chain.chain_id()

	Set the chain_id for the chain class.

Initializing Chains

The following utilities are provided to assist with initializing a chain into
the genesis state.

	
eth.tools.builder.chain.genesis()

	Initialize the given chain class with the given genesis header parameters
and chain state.

Building Chains

The following utilities are provided to assist with building out chains of
blocks.

	
eth.tools.builder.chain.copy()

	Make a copy of the chain at the given state. Actions performed on the
resulting chain will not affect the original chain.

	
eth.tools.builder.chain.import_block()

	Import the provided block into the chain.

	
eth.tools.builder.chain.import_blocks(*blocks) → Callable[eth.chains.base.BaseChain, eth.chains.base.BaseChain]

	Variadic argument version of import_block()

	
eth.tools.builder.chain.mine_block()

	Mine a new block on the chain. Header parameters for the new block can be
overridden using keyword arguments.

	
eth.tools.builder.chain.mine_blocks()

	Variadic argument version of mine_block()

	
eth.tools.builder.chain.chain_split(*splits) → Callable[eth.chains.base.BaseChain, Iterable[eth.chains.base.BaseChain]]

	Construct and execute multiple concurrent forks of the chain.

Any number of forks may be executed. For each fork, provide an iterable of
commands.

Returns the resulting chain objects for each fork.

chain_a, chain_b = build(
 mining_chain,
 chain_split(
 (mine_block(extra_data=b'chain-a'), mine_block()),
 (mine_block(extra_data=b'chain-b'), mine_block(), mine_block()),
),
)

	
eth.tools.builder.chain.at_block_number()

	Rewind the chain back to the given block number. Calls to things like
get_canonical_head will still return the canonical head of the chain,
however, you can use mine_block to mine fork chains.

Builder Tools

The JSON test fillers found in eth.tools.fixtures is a set of tools which facilitate
creating standard JSON consensus tests as found in the
ethereum/tests repository [https://github.com/ethereum/tests].

Note

Only VM and state tests are supported right now.

State Test Fillers

Tests are generated in two steps.

	First, a test filler is written that contains a high level description of the test case.

	Subsequently, the filler is compiled to the actual test in a process called
filling, mainly consisting of calculating the resulting state root.

The test builder represents each stage as a nested dictionary. Helper functions are provided to
assemble the filler file step by step in the correct format. The
fill_test() function handles compilation and
takes additional parameters that can’t be inferred from the filler.

Creating a Filler

Fillers are generated in a functional fashion by piping a dictionary through a
sequence of functions.

filler = pipe(
 setup_main_filler("test"),
 pre_state(
 (sender, "balance", 1),
 (receiver, "balance", 0),
),
 expect(
 networks=["Frontier"],
 transaction={
 "to": receiver,
 "value": 1,
 "secretKey": sender_key,
 },
 post_state=[
 [sender, "balance", 0],
 [receiver, "balance", 1],
]
)
)

Note

Note that setup_filler() returns a
dictionary, whereas all of the following functions such as
pre_state(),
expect(), expect to be passed a dictionary
as their single argument and return an updated version of the dictionary.

	
eth.tools.fixtures.fillers.common.setup_main_filler(name: str, environment: Dict[Any, Any] = None) → Dict[str, Dict[str, Any]]

	Kick off the filler generation process by creating the general filler scaffold with
a test name and general information about the testing environment.

For tests for the main chain, the environment parameter is expected to be a dictionary with
some or all of the following keys:

	key

	description

	"currentCoinbase"

	the coinbase address

	"currentNumber"

	the block number

	"previousHash"

	the hash of the parent block

	"currentDifficulty"

	the block’s difficulty

	"currentGasLimit"

	the block’s gas limit

	"currentTimestamp"

	the timestamp of the block

	
eth.tools.fixtures.fillers.pre_state(*raw_state, filler: Dict[str, Any]) → None

	Specify the state prior to the test execution. Multiple invocations don’t override
the state but extend it instead.

In general, the elements of state_definitions are nested dictionaries of the following form:

{
 address: {
 "nonce": <account nonce>,
 "balance": <account balance>,
 "code": <account code>,
 "storage": {
 <storage slot>: <storage value>
 }
 }
}

To avoid unnecessary nesting especially if only few fields per account are specified, the
following and similar formats are possible as well:

(address, "balance", <account balance>)
(address, "storage", <storage slot>, <storage value>)
(address, "storage", {<storage slot>: <storage value>})
(address, {"balance", <account balance>})

	
eth.tools.fixtures.fillers.execution()

	For VM tests, specify the code that is being run as well as the current state of
the EVM. State tests don’t support this object. The parameter is a dictionary specifying some
or all of the following keys:

	key

	description

	"address"

	the address of the account executing the code

	"caller"

	the caller address

	"origin"

	the origin address (defaulting to the caller address)

	"value"

	the value of the call

	"data"

	the data passed with the call

	"gasPrice"

	the gas price of the call

	"gas"

	the amount of gas allocated for the call

	"code"

	the bytecode to execute

	"vyperLLLCode"

	the code in Vyper LLL (compiled to bytecode automatically)

	
eth.tools.fixtures.fillers.expect(post_state: Dict[str, Any] = None, networks: Any = None, transaction: eth.typing.TransactionDict = None) → Callable[..., Dict[str, Any]]

	Specify the expected result for the test.

For state tests, multiple expectations can be given, differing in the transaction data, gas
limit, and value, in the applicable networks, and as a result also in the post state. VM tests
support only a single expectation with no specified network and no transaction (here, its role
is played by execution()).

	post_state is a list of state definition in the same form as expected
by pre_state(). State items that are
not set explicitly default to their pre state.

	
	networks defines the forks under which the expectation is applicable. It should be a

	sublist of the following identifiers (also available in ALL_FORKS):

	"Frontier"

	"Homestead"

	"EIP150"

	"EIP158"

	"Byzantium"

	transaction is a dictionary coming in two variants. For the main shard:

	key

	description

	"data"

	the transaction data,

	"gasLimit"

	the transaction gas limit,

	"gasPrice"

	the gas price,

	"nonce"

	the transaction nonce,

	"value"

	the transaction value

In addition, one should specify either the signature itself (via keys "v", "r",
and "s") or a private key used for signing (via "secretKey").

Virtual Machine

Virtual Machine

	Computation
	BaseComputation

	CodeStream

	ExecutionContext

	GasMeter

	Memory

	Message

	Opcode

	VM
	BaseVM

	VM

	Stack

	State
	BaseState

	BaseTransactionExecutor

	BaseTransactionContext

	Forks
	Frontier
	FrontierVM

	FrontierState

	FrontierComputation

	Homestead
	HomesteadVM

	HomesteadState

	HomesteadComputation

	TangerineWhistle
	TangerineWhistleVM

	TangerineWhistleState

	TangerineWhistleComputation

	SpuriousDragon
	SpuriousDragonVM

	SpuriousDragonState

	SpuriousDragonComputation

	Byzantium
	ByzantiumVM

	ByzantiumState

	ByzantiumComputation

Computation

BaseComputation

	
class eth.vm.computation.BaseComputation(state: eth.vm.state.BaseState, message: eth.vm.message.Message, transaction_context: eth.vm.transaction_context.BaseTransactionContext)

	The base class for all execution computations.

Note

Each BaseComputation class must be configured with:

opcodes: A mapping from the opcode integer value to the logic function for the opcode.

_precompiles: A mapping of contract address to the precompile function for execution
of precompiled contracts.

	
apply_child_computation(child_msg: eth.vm.message.Message) → eth.vm.computation.BaseComputation

	Apply the vm message child_msg as a child computation.

	
classmethod apply_computation(state: eth.vm.state.BaseState, message: eth.vm.message.Message, transaction_context: eth.vm.transaction_context.BaseTransactionContext) → eth.vm.computation.BaseComputation

	Perform the computation that would be triggered by the VM message.

	
apply_create_message() → eth.vm.computation.BaseComputation

	Execution of an VM message to create a new contract.

	
apply_message() → eth.vm.computation.BaseComputation

	Execution of an VM message.

	
consume_gas(amount: int, reason: str) → None

	Consume amount of gas from the remaining gas.
Raise eth.exceptions.OutOfGas if there is not enough gas remaining.

	
extend_memory(start_position: int, size: int) → None

	Extend the size of the memory to be at minimum start_position + size
bytes in length. Raise eth.exceptions.OutOfGas if there is not enough
gas to pay for extending the memory.

	
is_error

	Return True if the computation resulted in an error.

	
is_origin_computation

	Return True if this computation is the outermost computation at depth == 0.

	
is_success

	Return True if the computation did not result in an error.

	
memory_read(start_position: int, size: int) → bytes

	Read and return size bytes from memory starting at start_position.

	
memory_write(start_position: int, size: int, value: bytes) → None

	Write value to memory at start_position. Require that len(value) == size.

	
output

	Get the return value of the computation.

	
prepare_child_message(gas: int, to: NewType.<locals>.new_type, value: int, data: bytes, code: bytes, **kwargs) → eth.vm.message.Message

	Helper method for creating a child computation.

	
raise_if_error() → None

	If there was an error during computation, raise it as an exception immediately.

	Raises

	VMError –

	
refund_gas(amount: int) → None

	Add amount of gas to the pool of gas marked to be refunded.

	
return_gas(amount: int) → None

	Return amount of gas to the available gas pool.

	
should_burn_gas

	Return True if the remaining gas should be burned.

	
should_erase_return_data

	Return True if the return data should be zerod out due to an error.

	
should_return_gas

	Return True if the remaining gas should be returned.

	
stack_dup(position: int) → None

	Duplicate the stack item at position and pushes it onto the stack.

	
stack_pop(num_items: int = 1, type_hint: str = None) → Any

	Pop and return a number of items equal to num_items from the stack.
type_hint can be either 'uint256' or 'bytes'. The return value
will be an int or bytes type depending on the value provided for
the type_hint.

Raise eth.exceptions.InsufficientStack if there are not enough items on
the stack.

	
stack_push(value: Union[int, bytes]) → None

	Push value onto the stack.

Raise eth.exceptions.StackDepthLimit if the stack is full.

	
stack_swap(position: int) → None

	Swap the item on the top of the stack with the item at position.

CodeStream

	
class eth.vm.code_stream.CodeStream(code_bytes: bytes)

	

ExecutionContext

	
class eth.vm.execution_context.ExecutionContext(coinbase: NewType.<locals>.new_type, timestamp: int, block_number: int, difficulty: int, gas_limit: int, prev_hashes: Tuple[NewType.<locals>.new_type, ...])

	

GasMeter

	
class eth.vm.gas_meter.GasMeter(start_gas: int, refund_strategy: Callable[[int, int], int] = <function default_refund_strategy>)

	

Memory

	
class eth.vm.memory.Memory

	VM Memory

	
read(start_position: int, size: int) → bytes

	Read a value from memory.

	
write(start_position: int, size: int, value: bytes) → None

	Write value into memory.

Message

	
class eth.vm.message.Message(gas: int, to: NewType.<locals>.new_type, sender: NewType.<locals>.new_type, value: int, data: bytes, code: bytes, depth: int = 0, create_address: NewType.<locals>.new_type = None, code_address: NewType.<locals>.new_type = None, should_transfer_value: bool = True, is_static: bool = False)

	A message for VM computation.

Opcode

	
class eth.vm.opcode.Opcode

	
	
classmethod as_opcode(logic_fn: Callable[..., Any], mnemonic: str, gas_cost: int) → Type[T]

	Class factory method for turning vanilla functions into Opcode classes.

VM

BaseVM

	
class eth.vm.base.BaseVM(header: eth.rlp.headers.BlockHeader, chaindb: eth.db.chain.BaseChainDB)

	
	
classmethod compute_difficulty(parent_header: eth.rlp.headers.BlockHeader, timestamp: int) → int

	Compute the difficulty for a block header.

	Parameters

	
	parent_header – the parent header

	timestamp – the timestamp of the child header

	
configure_header(**header_params) → eth.rlp.headers.BlockHeader

	Setup the current header with the provided parameters. This can be
used to set fields like the gas limit or timestamp to value different
than their computed defaults.

	
classmethod create_header_from_parent(parent_header: eth.rlp.headers.BlockHeader, **header_params) → eth.rlp.headers.BlockHeader

	Creates and initializes a new block header from the provided
parent_header.

	
static get_block_reward() → int

	Return the amount in wei that should be given to a miner as a reward
for this block.

Note

This is an abstract method that must be implemented in subclasses

	
classmethod get_nephew_reward() → int

	Return the reward which should be given to the miner of the given nephew.

Note

This is an abstract method that must be implemented in subclasses

	
static get_uncle_reward(block_number: int, uncle: eth.rlp.blocks.BaseBlock) → int

	Return the reward which should be given to the miner of the given uncle.

Note

This is an abstract method that must be implemented in subclasses

	
make_receipt(base_header: eth.rlp.headers.BlockHeader, transaction: eth.rlp.transactions.BaseTransaction, computation: eth.vm.computation.BaseComputation, state: eth.vm.state.BaseState) → eth.rlp.receipts.Receipt

	Generate the receipt resulting from applying the transaction.

	Parameters

	
	base_header – the header of the block before the transaction was applied.

	transaction – the transaction used to generate the receipt

	computation – the result of running the transaction computation

	state – the resulting state, after executing the computation

	Returns

	receipt

	
validate_transaction_against_header(base_header: eth.rlp.headers.BlockHeader, transaction: eth.rlp.transactions.BaseTransaction) → None

	Validate that the given transaction is valid to apply to the given header.

	Parameters

	
	base_header – header before applying the transaction

	transaction – the transaction to validate

	Raises

	ValidationError if the transaction is not valid to apply

VM

	
class eth.vm.base.VM(header: eth.rlp.headers.BlockHeader, chaindb: eth.db.chain.BaseChainDB)

	The BaseVM class represents the Chain rules for a
specific protocol definition such as the Frontier or Homestead network.

Note

Each BaseVM class must be configured with:

	block_class: The Block class for blocks in this VM ruleset.

	_state_class: The State class used by this VM for execution.

	
apply_all_transactions(transactions: Tuple[eth.rlp.transactions.BaseTransaction, ...], base_header: eth.rlp.headers.BlockHeader) → Tuple[eth.rlp.headers.BlockHeader, Tuple[eth.rlp.receipts.Receipt, ...], Tuple[eth.vm.computation.BaseComputation, ...]]

	Determine the results of applying all transactions to the base header.
This does not update the current block or header of the VM.

	Parameters

	
	transactions – an iterable of all transactions to apply

	base_header – the starting header to apply transactions to

	Returns

	the final header, the receipts of each transaction, and the computations

	
apply_transaction(header: eth.rlp.headers.BlockHeader, transaction: eth.rlp.transactions.BaseTransaction) → Tuple[eth.rlp.headers.BlockHeader, eth.rlp.receipts.Receipt, eth.vm.computation.BaseComputation]

	Apply the transaction to the current block. This is a wrapper around
apply_transaction() with some extra orchestration logic.

	Parameters

	
	header – header of the block before application

	transaction – to apply

	
create_transaction(*args, **kwargs) → eth.rlp.transactions.BaseTransaction

	Proxy for instantiating a signed transaction for this VM.

	
classmethod create_unsigned_transaction(*, nonce: int, gas_price: int, gas: int, to: NewType.<locals>.new_type, value: int, data: bytes) → eth.rlp.transactions.BaseUnsignedTransaction

	Proxy for instantiating an unsigned transaction for this VM.

	
execute_bytecode(origin: NewType.<locals>.new_type, gas_price: int, gas: int, to: NewType.<locals>.new_type, sender: NewType.<locals>.new_type, value: int, data: bytes, code: bytes, code_address: NewType.<locals>.new_type = None) → eth.vm.computation.BaseComputation

	Execute raw bytecode in the context of the current state of
the virtual machine.

	
finalize_block(block: eth.rlp.blocks.BaseBlock) → eth.rlp.blocks.BaseBlock

	Perform any finalization steps like awarding the block mining reward.

	
classmethod generate_block_from_parent_header_and_coinbase(parent_header: eth.rlp.headers.BlockHeader, coinbase: NewType.<locals>.new_type) → eth.rlp.blocks.BaseBlock

	Generate block from parent header and coinbase.

	
classmethod get_block_class() → Type[eth.rlp.blocks.BaseBlock]

	Return the Block class that this VM uses for blocks.

	
classmethod get_state_class() → Type[eth.vm.state.BaseState]

	Return the class that this VM uses for states.

	
classmethod get_transaction_class() → Type[eth.rlp.transactions.BaseTransaction]

	Return the class that this VM uses for transactions.

	
import_block(block: eth.rlp.blocks.BaseBlock) → eth.rlp.blocks.BaseBlock

	Import the given block to the chain.

	
mine_block(*args, **kwargs) → eth.rlp.blocks.BaseBlock

	Mine the current block. Proxies to self.pack_block method.

	
pack_block(block: eth.rlp.blocks.BaseBlock, *args, **kwargs) → eth.rlp.blocks.BaseBlock

	Pack block for mining.

	Parameters

	
	coinbase (bytes [https://docs.python.org/3.5/library/functions.html#bytes]) – 20-byte public address to receive block reward

	uncles_hash (bytes [https://docs.python.org/3.5/library/functions.html#bytes]) – 32 bytes

	state_root (bytes [https://docs.python.org/3.5/library/functions.html#bytes]) – 32 bytes

	transaction_root (bytes [https://docs.python.org/3.5/library/functions.html#bytes]) – 32 bytes

	receipt_root (bytes [https://docs.python.org/3.5/library/functions.html#bytes]) – 32 bytes

	bloom (int [https://docs.python.org/3.5/library/functions.html#int]) –

	gas_used (int [https://docs.python.org/3.5/library/functions.html#int]) –

	extra_data (bytes [https://docs.python.org/3.5/library/functions.html#bytes]) – 32 bytes

	mix_hash (bytes [https://docs.python.org/3.5/library/functions.html#bytes]) – 32 bytes

	nonce (bytes [https://docs.python.org/3.5/library/functions.html#bytes]) – 8 bytes

	
previous_hashes

	Convenience API for accessing the previous 255 block hashes.

	
validate_block(block: eth.rlp.blocks.BaseBlock) → None

	Validate the the given block.

	
classmethod validate_header(header: eth.rlp.headers.BlockHeader, parent_header: eth.rlp.headers.BlockHeader, check_seal: bool = True) → None

	
	Raises

	eth.exceptions.ValidationError – if the header is not valid

	
classmethod validate_seal(header: eth.rlp.headers.BlockHeader) → None

	Validate the seal on the given header.

	
classmethod validate_uncle(block: eth.rlp.blocks.BaseBlock, uncle: eth.rlp.blocks.BaseBlock, uncle_parent: eth.rlp.blocks.BaseBlock) → None

	Validate the given uncle in the context of the given block.

Stack

	
class eth.vm.stack.Stack

	VM Stack

	
dup(position: int) → None

	Perform a DUP operation on the stack.

	
pop(num_items: int, type_hint: str) → Union[int, bytes, Tuple[Union[int, bytes], ...]]

	Pop an item off the stack.

Note: This function is optimized for speed over readability.

	
push(value: Union[int, bytes]) → None

	Push an item onto the stack.

	
swap(position: int) → None

	Perform a SWAP operation on the stack.

State

BaseState

	
class eth.vm.state.BaseState(db: eth.db.backends.base.BaseDB, execution_context: eth.vm.execution_context.ExecutionContext, state_root: bytes)

	The base class that encapsulates all of the various moving parts related to
the state of the VM during execution.
Each BaseVM must be configured with a subclass of the
BaseState.

Note

Each BaseState class must be configured with:

	computation_class: The BaseComputation class for
vm execution.

	transaction_context_class: The TransactionContext
class for vm execution.

	
apply_transaction(transaction: BaseTransaction) → Tuple[bytes, BaseComputation]

	Apply transaction to the vm state

	Parameters

	transaction – the transaction to apply

	Returns

	the new state root, and the computation

	
block_number

	Return the current block_number from the current execution_context

	
coinbase

	Return the current coinbase from the current execution_context

	
commit(snapshot: Tuple[bytes, Tuple[uuid.UUID, uuid.UUID]]) → None

	Commit the journal to the point where the snapshot was taken. This
will merge in any changesets that were recorded after the snapshot changeset.

	
difficulty

	Return the current difficulty from the current execution_context

	
gas_limit

	Return the current gas_limit from the current transaction_context

	
classmethod get_account_db_class() → Type[eth.db.account.BaseAccountDB]

	Return the BaseAccountDB class that the
state class uses.

	
get_ancestor_hash(block_number: int) → NewType.<locals>.new_type

	Return the hash for the ancestor block with number block_number.
Return the empty bytestring b'' if the block number is outside of the
range of available block numbers (typically the last 255 blocks).

	
get_computation(message: eth.vm.message.Message, transaction_context: BaseTransactionContext) → BaseComputation

	Return a computation instance for the given message and transaction_context

	
classmethod get_transaction_context_class() → Type[BaseTransactionContext]

	Return the BaseTransactionContext class that the
state class uses.

	
revert(snapshot: Tuple[bytes, Tuple[uuid.UUID, uuid.UUID]]) → None

	Revert the VM to the state at the snapshot

	
snapshot() → Tuple[bytes, Tuple[uuid.UUID, uuid.UUID]]

	Perform a full snapshot of the current state.

Snapshots are a combination of the state_root at the time of the
snapshot and the id of the changeset from the journaled DB.

	
state_root

	Return the current state_root from the underlying database

	
timestamp

	Return the current timestamp from the current execution_context

BaseTransactionExecutor

	
class eth.vm.state.BaseTransactionExecutor(vm_state: eth.vm.state.BaseState)

	

BaseTransactionContext

	
class eth.vm.transaction_context.BaseTransactionContext(gas_price: int, origin: NewType.<locals>.new_type)

	This immutable object houses information that remains constant for the entire context of the VM
execution.

Forks

Frontier

FrontierVM

	
class eth.vm.forks.frontier.FrontierVM(header: eth.rlp.headers.BlockHeader, chaindb: eth.db.chain.BaseChainDB)

	
	
block_class

	alias of eth.vm.forks.frontier.blocks.FrontierBlock

	
static compute_difficulty(parent_header: eth.rlp.headers.BlockHeader, timestamp: int) → int

	Computes the difficulty for a frontier block based on the parent block.

	
static get_block_reward() → int

	Return the amount in wei that should be given to a miner as a reward
for this block.

Note

This is an abstract method that must be implemented in subclasses

	
classmethod get_nephew_reward() → int

	Return the reward which should be given to the miner of the given nephew.

Note

This is an abstract method that must be implemented in subclasses

	
static get_uncle_reward(block_number: int, uncle: eth.rlp.blocks.BaseBlock) → int

	Return the reward which should be given to the miner of the given uncle.

Note

This is an abstract method that must be implemented in subclasses

FrontierState

	
class eth.vm.forks.frontier.state.FrontierState(db: eth.db.backends.base.BaseDB, execution_context: eth.vm.execution_context.ExecutionContext, state_root: bytes)

	
	
account_db_class

	alias of eth.db.account.AccountDB

	
computation_class

	alias of eth.vm.forks.frontier.computation.FrontierComputation

	
transaction_context_class

	alias of eth.vm.forks.frontier.transaction_context.FrontierTransactionContext

	
transaction_executor

	alias of FrontierTransactionExecutor

FrontierComputation

	
class eth.vm.forks.frontier.computation.FrontierComputation(state: eth.vm.state.BaseState, message: eth.vm.message.Message, transaction_context: eth.vm.transaction_context.BaseTransactionContext)

	A class for all execution computations in the Frontier fork.
Inherits from BaseComputation

	
apply_create_message() → eth.vm.computation.BaseComputation

	Execution of an VM message to create a new contract.

	
apply_message() → eth.vm.computation.BaseComputation

	Execution of an VM message.

Homestead

HomesteadVM

	
class eth.vm.forks.homestead.HomesteadVM(header: eth.rlp.headers.BlockHeader, chaindb: eth.db.chain.BaseChainDB)

	
	
block_class

	alias of eth.vm.forks.homestead.blocks.HomesteadBlock

	
static compute_difficulty(parent_header: eth.rlp.headers.BlockHeader, timestamp: int) → int

	Computes the difficulty for a homestead block based on the parent block.

HomesteadState

	
class eth.vm.forks.homestead.state.HomesteadState(db: eth.db.backends.base.BaseDB, execution_context: eth.vm.execution_context.ExecutionContext, state_root: bytes)

	
	
computation_class

	alias of eth.vm.forks.homestead.computation.HomesteadComputation

HomesteadComputation

	
class eth.vm.forks.homestead.computation.HomesteadComputation(state: eth.vm.state.BaseState, message: eth.vm.message.Message, transaction_context: eth.vm.transaction_context.BaseTransactionContext)

	A class for all execution computations in the Frontier fork.
Inherits from FrontierComputation

	
apply_create_message() → eth.vm.computation.BaseComputation

	Execution of an VM message to create a new contract.

TangerineWhistle

TangerineWhistleVM

	
class eth.vm.forks.tangerine_whistle.TangerineWhistleVM(header: eth.rlp.headers.BlockHeader, chaindb: eth.db.chain.BaseChainDB)

	

TangerineWhistleState

	
class eth.vm.forks.tangerine_whistle.state.TangerineWhistleState(db: eth.db.backends.base.BaseDB, execution_context: eth.vm.execution_context.ExecutionContext, state_root: bytes)

	
	
computation_class

	alias of eth.vm.forks.tangerine_whistle.computation.TangerineWhistleComputation

TangerineWhistleComputation

	
class eth.vm.forks.tangerine_whistle.computation.TangerineWhistleComputation(state: eth.vm.state.BaseState, message: eth.vm.message.Message, transaction_context: eth.vm.transaction_context.BaseTransactionContext)

	A class for all execution computations in the TangerineWhistle fork.
Inherits from HomesteadComputation

SpuriousDragon

SpuriousDragonVM

	
class eth.vm.forks.spurious_dragon.SpuriousDragonVM(header: eth.rlp.headers.BlockHeader, chaindb: eth.db.chain.BaseChainDB)

	
	
block_class

	alias of eth.vm.forks.spurious_dragon.blocks.SpuriousDragonBlock

SpuriousDragonState

	
class eth.vm.forks.spurious_dragon.state.SpuriousDragonState(db: eth.db.backends.base.BaseDB, execution_context: eth.vm.execution_context.ExecutionContext, state_root: bytes)

	
	
computation_class

	alias of eth.vm.forks.spurious_dragon.computation.SpuriousDragonComputation

	
transaction_executor

	alias of SpuriousDragonTransactionExecutor

SpuriousDragonComputation

	
class eth.vm.forks.spurious_dragon.computation.SpuriousDragonComputation(state: eth.vm.state.BaseState, message: eth.vm.message.Message, transaction_context: eth.vm.transaction_context.BaseTransactionContext)

	A class for all execution computations in the SpuriousDragon fork.
Inherits from HomesteadComputation

	
apply_create_message() → eth.vm.computation.BaseComputation

	Execution of an VM message to create a new contract.

Byzantium

ByzantiumVM

	
class eth.vm.forks.byzantium.ByzantiumVM(header: eth.rlp.headers.BlockHeader, chaindb: eth.db.chain.BaseChainDB)

	
	
block_class

	alias of eth.vm.forks.byzantium.blocks.ByzantiumBlock

	
compute_difficulty

	https://github.com/ethereum/EIPs/issues/100

	
static get_block_reward() → int

	Return the amount in wei that should be given to a miner as a reward
for this block.

Note

This is an abstract method that must be implemented in subclasses

ByzantiumState

	
class eth.vm.forks.byzantium.state.ByzantiumState(db: eth.db.backends.base.BaseDB, execution_context: eth.vm.execution_context.ExecutionContext, state_root: bytes)

	
	
computation_class

	alias of eth.vm.forks.byzantium.computation.ByzantiumComputation

ByzantiumComputation

	
class eth.vm.forks.byzantium.computation.ByzantiumComputation(state: eth.vm.state.BaseState, message: eth.vm.message.Message, transaction_context: eth.vm.transaction_context.BaseTransactionContext)

	A class for all execution computations in the Byzantium fork.
Inherits from SpuriousDragonComputation

Contributing

Thank you for your interest in contributing! We welcome all contributions no matter their size. Please read along to learn how to get started. If you get stuck, feel free to reach for help in our Gitter channel [https://gitter.im/ethereum/py-evm].

Setting the stage

First we need to clone the Py-EVM repository. Py-EVM depends on a submodule of the common tests across all clients, so we need to clone the repo with the --recursive flag. Example:

$ git clone --recursive https://github.com/ethereum/py-evm.git

Optional: Often, the best way to guarantee a clean Python 3 environment is with
virtualenv [https://virtualenv.pypa.io/en/stable/]. If we don’t have virtualenv installed
already, we first need to install it via pip.

pip install virtualenv

Then, we can initialize a new virtual environment venv, like:

virtualenv -p python3 venv

This creates a new directory venv where packages are installed isolated from any other global
packages.

To activate the virtual directory we have to source it

. venv/bin/activate

After we have activated our virtual environment, installing all dependencies that are needed to run, develop and test all code in this repository is as easy as:

pip install -e .[dev]

Running the tests

A great way to explore the code base is to run the tests.

We can run all tests with:

pytest

However, running the entire test suite does take a very long time so often we just want to run a subset instead, like:

pytest tests/core/padding-utils/test_padding.py

We can also install tox to run the full test suite which also covers things like testing the code against different Python versions, linting etc.

It is important to understand that each Pull Request must pass the full test suite as part of the CI check, hence it is often convenient to have tox installed locally as well.

Code Style

When multiple people are working on the same body of code, it is important that they write code that conforms to a similar style. It often doesn’t matter as much which style, but rather that they conform to one style.

To ensure your contribution conforms to the style being used in this project, we encourage you to read our style guide [https://github.com/pipermerriam/ethereum-dev-tactical-manual/blob/master/style-guide.md].

Type Hints

The code bases is transitioning to use type hints [https://www.python.org/dev/peps/pep-0484/]. Type hints make it easy to prevent certain types of bugs, enable richer tooling and enhance the documentation, making the code easier to follow.

All new code is required to land with type hints with the exception of test code that is not expected to use type hints.

All parameters as well as the return type of defs are expected to be typed with the exception of self and cls as seen in the following example.

def __init__(self, wrapped_db: BaseDB) -> None:
 self.wrapped_db = wrapped_db
 self.reset()

Documentation

Good documentation will lead to quicker adoption and happier users. Please check out our guide
on how to create documentation for the Python Ethereum ecosystem [https://github.com/ethereum/snake-charmers-tactical-manual/blob/master/documentation.md].

Pull Requests

It’s a good idea to make pull requests early on. A pull request represents the
start of a discussion, and doesn’t necessarily need to be the final, finished
submission.

GitHub’s documentation for working on pull requests is available here [https://help.github.com/articles/about-pull-requests/].

Once you’ve made a pull request take a look at the Circle CI build status in the
GitHub interface and make sure all tests are passing. In general pull requests that do not pass the CI build yet won’t get reviewed unless explicitly requested.

Releasing

Pandoc is required for transforming the markdown README to the proper
format to render correctly on pypi.

For Debian-like systems:

apt install pandoc

Or on OSX:

brew install pandoc

To release a new version:

bumpversion $$VERSION_PART_TO_BUMP$$
git push && git push --tags
make release

How to bumpversion

The version format for this repo is {major}.{minor}.{patch} for
stable, and {major}.{minor}.{patch}-{stage}.{devnum} for unstable
(stage can be alpha or beta).

To issue the next version in line, use bumpversion and specify which
part to bump, like bumpversion minor or bumpversion devnum.

If you are in a beta version, bumpversion stage will switch to a
stable.

To issue an unstable version when the current version is stable, specify
the new version explicitly, like
bumpversion --new-version 4.0.0-alpha.1 devnum

How to release docker images

To create a docker image:

make create-docker-image version=<version>

	By default, this will create a new image with two tags pointing to it:

	
	ethereum/trinity:<version> (explicit version)

	ethereum/trinity:latest (latest until overwritten with a future “latest”)

Then, push to docker hub:

docker push ethereum/trinity:<version>
the following may be left out if we were pushing a patch for an older version
docker push ethereum/trinity:latest

Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
education, socio-economic status, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at piper@pipermerriam.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

 Python Module Index

 e

 		 	

 		
 e	

 	
 	
 eth.exceptions	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	Account (class in eth.rlp.accounts)

 	account_db_class (eth.vm.forks.frontier.state.FrontierState attribute)

 	AccountDB (class in eth.db.account)

 	add_receipt() (eth.db.chain.ChainDB method)

 	add_transaction() (eth.db.chain.ChainDB method)

 	amend_argparser_config() (trinity.extensibility.plugin_manager.PluginManager method)

 	apply_all_transactions() (eth.vm.base.VM method)

 	apply_child_computation() (eth.vm.computation.BaseComputation method)

 	apply_computation() (eth.vm.computation.BaseComputation class method)

 	apply_create_message() (eth.vm.computation.BaseComputation method)

 	(eth.vm.forks.frontier.computation.FrontierComputation method)

 	(eth.vm.forks.homestead.computation.HomesteadComputation method)

 	(eth.vm.forks.spurious_dragon.computation.SpuriousDragonComputation method)

 	
 	apply_message() (eth.vm.computation.BaseComputation method)

 	(eth.vm.forks.frontier.computation.FrontierComputation method)

 	apply_transaction() (eth.vm.base.VM method)

 	(eth.vm.state.BaseState method)

 	args (trinity.extensibility.plugin.PluginContext attribute)

 	as_opcode() (eth.vm.opcode.Opcode class method)

 	as_signed_transaction() (eth.rlp.transactions.BaseUnsignedTransaction method)

 	at_block_number() (in module eth.tools.builder.chain)

B

 	
 	BaseAccountDB (class in eth.db.account)

 	BaseAsyncStopPlugin (class in trinity.extensibility.plugin)

 	BaseBlock (class in eth.rlp.blocks)

 	BaseChain (class in eth.chains.base)

 	BaseChainDB (class in eth.db.chain)

 	BaseComputation (class in eth.vm.computation)

 	BaseDB (class in eth.db.backends.base)

 	BaseIsolatedPlugin (class in trinity.extensibility.plugin)

 	BaseMainProcessPlugin (class in trinity.extensibility.plugin)

 	BaseManagerProcessScope (class in trinity.extensibility.plugin_manager)

 	BasePlugin (class in trinity.extensibility.plugin)

 	BaseState (class in eth.vm.state)

 	BaseSyncStopPlugin (class in trinity.extensibility.plugin)

 	BaseTransaction (class in eth.rlp.transactions)

 	BaseTransactionContext (class in eth.vm.transaction_context)

 	
 	BaseTransactionExecutor (class in eth.vm.state)

 	BaseTransactionFields (class in eth.rlp.transactions)

 	BaseTransactionMethods (class in eth.rlp.transactions)

 	BaseUnsignedTransaction (class in eth.rlp.transactions)

 	BaseVM (class in eth.vm.base)

 	block_class (eth.vm.forks.byzantium.ByzantiumVM attribute)

 	(eth.vm.forks.frontier.FrontierVM attribute)

 	(eth.vm.forks.homestead.HomesteadVM attribute)

 	(eth.vm.forks.spurious_dragon.SpuriousDragonVM attribute)

 	block_number (eth.vm.state.BaseState attribute)

 	BlockHeader (class in eth.rlp.headers)

 	BlockNotFound

 	build_block_with_transactions() (eth.chains.base.Chain method)

 	ByzantiumComputation (class in eth.vm.forks.byzantium.computation)

 	ByzantiumState (class in eth.vm.forks.byzantium.state)

 	ByzantiumVM (class in eth.vm.forks.byzantium)

C

 	
 	CanonicalHeadNotFound

 	Chain (class in eth.chains.base)

 	chain_id() (in module eth.tools.builder.chain)

 	chain_split() (in module eth.tools.builder.chain)

 	ChainDB (class in eth.db.chain)

 	chaindb_class (eth.chains.base.Chain attribute)

 	check_signature_validity() (eth.rlp.transactions.BaseTransaction method)

 	CodeStream (class in eth.vm.code_stream)

 	coinbase (eth.vm.state.BaseState attribute)

 	commit() (eth.db.journal.JournalDB method)

 	(eth.vm.state.BaseState method)

 	computation_class (eth.vm.forks.byzantium.state.ByzantiumState attribute)

 	(eth.vm.forks.frontier.state.FrontierState attribute)

 	(eth.vm.forks.homestead.state.HomesteadState attribute)

 	(eth.vm.forks.spurious_dragon.state.SpuriousDragonState attribute)

 	(eth.vm.forks.tangerine_whistle.state.TangerineWhistleState attribute)

 	compute_difficulty (eth.vm.forks.byzantium.ByzantiumVM attribute)

 	
 	compute_difficulty() (eth.vm.base.BaseVM class method)

 	(eth.vm.forks.frontier.FrontierVM static method)

 	(eth.vm.forks.homestead.HomesteadVM static method)

 	configure_header() (eth.vm.base.BaseVM method)

 	configure_parser() (trinity.extensibility.plugin.BasePlugin method)

 	consume_gas() (eth.vm.computation.BaseComputation method)

 	ContractCreationCollision

 	copy() (in module eth.tools.builder.chain)

 	create_header_from_parent() (eth.chains.base.Chain method)

 	(eth.vm.base.BaseVM class method)

 	create_plugin_context() (trinity.extensibility.plugin_manager.BaseManagerProcessScope method)

 	(trinity.extensibility.plugin_manager.MainAndIsolatedProcessScope method)

 	(trinity.extensibility.plugin_manager.SharedProcessScope method)

 	create_transaction() (eth.chains.base.Chain method)

 	(eth.vm.base.VM method)

 	create_unsigned_transaction() (eth.chains.base.Chain method)

 	(eth.rlp.transactions.BaseTransaction class method)

 	(eth.vm.base.VM class method)

D

 	
 	dao_fork_at() (in module eth.tools.builder.chain)

 	difficulty (eth.vm.state.BaseState attribute)

 	disable_dao_fork() (in module eth.tools.builder.chain)

 	disable_pow_check() (in module eth.tools.builder.chain)

 	discard() (eth.db.journal.JournalDB method)

 	
 	do_start() (trinity.extensibility.plugin.BasePlugin method)

 	do_stop() (trinity.extensibility.plugin.BaseAsyncStopPlugin method)

 	(trinity.extensibility.plugin.BaseIsolatedPlugin method)

 	(trinity.extensibility.plugin.BaseSyncStopPlugin method)

 	dup() (eth.vm.stack.Stack method)

E

 	
 	enable_pow_mining() (in module eth.tools.builder.chain)

 	ensure_header() (eth.chains.base.Chain method)

 	estimate_gas() (eth.chains.base.Chain method)

 	eth.exceptions (module)

 	eth.vm.opcode.as_opcode() (built-in function)

 	event_bus (trinity.extensibility.plugin.BasePlugin attribute)

 	(trinity.extensibility.plugin.PluginContext attribute)

 	
 	event_bus_endpoint (trinity.extensibility.plugin_manager.PluginManager attribute)

 	EventBusNotReady (class in trinity.extensibility.exceptions)

 	execute_bytecode() (eth.vm.base.VM method)

 	execution() (in module eth.tools.fixtures.fillers)

 	ExecutionContext (class in eth.vm.execution_context)

 	exists() (eth.db.chain.ChainDB method)

 	expect() (in module eth.tools.fixtures.fillers)

 	extend_memory() (eth.vm.computation.BaseComputation method)

F

 	
 	finalize_block() (eth.vm.base.VM method)

 	fork_at() (in module eth.tools.builder.chain)

 	from_genesis() (eth.chains.base.Chain class method)

 	from_genesis_header() (eth.chains.base.Chain class method)

 	from_header() (eth.rlp.blocks.BaseBlock class method)

 	
 	from_parent() (eth.rlp.headers.BlockHeader class method)

 	FrontierComputation (class in eth.vm.forks.frontier.computation)

 	FrontierState (class in eth.vm.forks.frontier.state)

 	FrontierVM (class in eth.vm.forks.frontier)

 	FullStack

G

 	
 	gas_limit (eth.vm.state.BaseState attribute)

 	gas_used_by() (eth.rlp.transactions.BaseTransactionMethods method)

 	GasMeter (class in eth.vm.gas_meter)

 	generate_block_from_parent_header_and_coinbase() (eth.vm.base.VM class method)

 	genesis() (in module eth.tools.builder.chain)

 	get() (eth.db.chain.ChainDB method)

 	get_account_db_class() (eth.vm.state.BaseState class method)

 	get_ancestor_hash() (eth.vm.state.BaseState method)

 	get_ancestors() (eth.chains.base.Chain method)

 	get_block() (eth.chains.base.Chain method)

 	get_block_by_hash() (eth.chains.base.Chain method)

 	get_block_by_header() (eth.chains.base.Chain method)

 	get_block_class() (eth.vm.base.VM class method)

 	get_block_header_by_hash() (eth.chains.base.Chain method)

 	get_block_reward() (eth.vm.base.BaseVM static method)

 	(eth.vm.forks.byzantium.ByzantiumVM static method)

 	(eth.vm.forks.frontier.FrontierVM static method)

 	get_block_transaction_hashes() (eth.db.chain.ChainDB method)

 	get_block_transactions() (eth.db.chain.ChainDB method)

 	get_block_uncles() (eth.db.chain.ChainDB method)

 	get_canonical_block_by_number() (eth.chains.base.Chain method)

 	
 	get_canonical_block_hash() (eth.chains.base.Chain method)

 	get_canonical_head() (eth.chains.base.Chain method)

 	get_canonical_transaction() (eth.chains.base.Chain method)

 	get_computation() (eth.vm.state.BaseState method)

 	get_intrinsic_gas() (eth.rlp.transactions.BaseTransactionMethods method)

 	get_message_for_signing() (eth.rlp.transactions.BaseTransaction method)

 	get_nephew_reward() (eth.vm.base.BaseVM class method)

 	(eth.vm.forks.frontier.FrontierVM class method)

 	get_receipts() (eth.db.chain.ChainDB method)

 	get_score() (eth.chains.base.Chain method)

 	get_sender() (eth.rlp.transactions.BaseTransaction method)

 	get_state_class() (eth.vm.base.VM class method)

 	get_transaction_by_index() (eth.db.chain.ChainDB method)

 	get_transaction_class() (eth.vm.base.VM class method)

 	get_transaction_context_class() (eth.vm.state.BaseState class method)

 	get_transaction_index() (eth.db.chain.ChainDB method)

 	get_transaction_result() (eth.chains.base.Chain method)

 	get_uncle_reward() (eth.vm.base.BaseVM static method)

 	(eth.vm.forks.frontier.FrontierVM static method)

 	get_vm() (eth.chains.base.Chain method)

 	get_vm_class() (eth.chains.base.BaseChain class method)

 	get_vm_class_for_block_number() (eth.chains.base.BaseChain class method)

H

 	
 	Halt

 	HeaderNotFound

 	
 	HomesteadComputation (class in eth.vm.forks.homestead.computation)

 	HomesteadState (class in eth.vm.forks.homestead.state)

 	HomesteadVM (class in eth.vm.forks.homestead)

I

 	
 	import_block() (eth.chains.base.Chain method)

 	(eth.vm.base.VM method)

 	(in module eth.tools.builder.chain)

 	import_blocks() (in module eth.tools.builder.chain)

 	IncorrectContractCreationAddress

 	InsufficientFunds

 	InsufficientStack

 	intrinsic_gas (eth.rlp.transactions.BaseTransactionMethods attribute)

 	
 	InvalidInstruction

 	InvalidJumpDestination

 	is_error (eth.vm.computation.BaseComputation attribute)

 	is_origin_computation (eth.vm.computation.BaseComputation attribute)

 	is_responsible_for_plugin() (trinity.extensibility.plugin_manager.BaseManagerProcessScope method)

 	(trinity.extensibility.plugin_manager.MainAndIsolatedProcessScope method)

 	(trinity.extensibility.plugin_manager.SharedProcessScope method)

 	is_success (eth.vm.computation.BaseComputation attribute)

J

 	
 	JournalDB (class in eth.db.journal)

L

 	
 	LevelDB (class in eth.db.backends.level)

 	
 	Log (class in eth.rlp.logs)

 	logger (trinity.extensibility.plugin.BasePlugin attribute)

M

 	
 	MainAndIsolatedProcessScope (class in trinity.extensibility.plugin_manager)

 	make_receipt() (eth.vm.base.BaseVM method)

 	make_state_root() (eth.db.account.AccountDB method)

 	(eth.db.account.BaseAccountDB method)

 	Memory (class in eth.vm.memory)

 	memory_read() (eth.vm.computation.BaseComputation method)

 	
 	memory_write() (eth.vm.computation.BaseComputation method)

 	MemoryDB (class in eth.db.backends.memory)

 	Message (class in eth.vm.message)

 	mine_block() (eth.vm.base.VM method)

 	(in module eth.tools.builder.chain)

 	mine_blocks() (in module eth.tools.builder.chain)

N

 	
 	name (trinity.extensibility.plugin.BasePlugin attribute)

 	
 	name() (in module eth.tools.builder.chain)

O

 	
 	on_ready() (trinity.extensibility.plugin.BasePlugin method)

 	Opcode (class in eth.vm.opcode)

 	
 	OutOfBoundsRead

 	OutOfGas

 	output (eth.vm.computation.BaseComputation attribute)

P

 	
 	pack_block() (eth.vm.base.VM method)

 	ParentNotFound

 	persist() (eth.db.account.AccountDB method)

 	(eth.db.account.BaseAccountDB method)

 	(eth.db.journal.JournalDB method)

 	persist_block() (eth.db.chain.ChainDB method)

 	persist_trie_data_dict() (eth.db.chain.ChainDB method)

 	persist_uncles() (eth.db.chain.ChainDB method)

 	PluginContext (class in trinity.extensibility.plugin)

 	
 	PluginManager (class in trinity.extensibility.plugin_manager)

 	PluginStartedEvent (class in trinity.extensibility.events)

 	pop() (eth.vm.stack.Stack method)

 	pre_state() (in module eth.tools.fixtures.fillers)

 	prepare() (trinity.extensibility.plugin_manager.PluginManager method)

 	prepare_child_message() (eth.vm.computation.BaseComputation method)

 	previous_hashes (eth.vm.base.VM attribute)

 	push() (eth.vm.stack.Stack method)

 	PyEVMError

R

 	
 	raise_if_error() (eth.vm.computation.BaseComputation method)

 	read() (eth.vm.memory.Memory method)

 	ready() (trinity.extensibility.plugin.BasePlugin method)

 	Receipt (class in eth.rlp.receipts)

 	record() (eth.db.journal.JournalDB method)

 	refund_gas() (eth.vm.computation.BaseComputation method)

 	
 	register() (trinity.extensibility.plugin_manager.PluginManager method)

 	reset() (eth.db.journal.JournalDB method)

 	ResourceAvailableEvent (class in trinity.extensibility.events)

 	return_gas() (eth.vm.computation.BaseComputation method)

 	Revert

 	revert() (eth.vm.state.BaseState method)

 	running (trinity.extensibility.plugin.BasePlugin attribute)

S

 	
 	sender (eth.rlp.transactions.BaseTransaction attribute)

 	set_context() (trinity.extensibility.plugin.BasePlugin method)

 	setup_main_filler() (in module eth.tools.fixtures.fillers.common)

 	SharedProcessScope (class in trinity.extensibility.plugin_manager)

 	should_burn_gas (eth.vm.computation.BaseComputation attribute)

 	should_erase_return_data (eth.vm.computation.BaseComputation attribute)

 	should_return_gas (eth.vm.computation.BaseComputation attribute)

 	shutdown() (trinity.extensibility.plugin_manager.PluginManager method)

 	shutdown_blocking() (trinity.extensibility.plugin_manager.PluginManager method)

 	shutdown_host() (trinity.extensibility.plugin.PluginContext method)

 	snapshot() (eth.vm.state.BaseState method)

 	SpuriousDragonComputation (class in eth.vm.forks.spurious_dragon.computation)

 	SpuriousDragonState (class in eth.vm.forks.spurious_dragon.state)

 	SpuriousDragonVM (class in eth.vm.forks.spurious_dragon)

 	
 	Stack (class in eth.vm.stack)

 	stack_dup() (eth.vm.computation.BaseComputation method)

 	stack_pop() (eth.vm.computation.BaseComputation method)

 	stack_push() (eth.vm.computation.BaseComputation method)

 	stack_swap() (eth.vm.computation.BaseComputation method)

 	StackDepthLimit

 	start() (trinity.extensibility.plugin.BaseIsolatedPlugin method)

 	(trinity.extensibility.plugin.BasePlugin method)

 	state_root (eth.vm.state.BaseState attribute)

 	StateRootNotFound

 	status (trinity.extensibility.plugin.BasePlugin attribute)

 	stop() (trinity.extensibility.plugin.BaseAsyncStopPlugin method)

 	(trinity.extensibility.plugin.BaseSyncStopPlugin method)

 	swap() (eth.vm.stack.Stack method)

T

 	
 	TangerineWhistleComputation (class in eth.vm.forks.tangerine_whistle.computation)

 	TangerineWhistleState (class in eth.vm.forks.tangerine_whistle.state)

 	TangerineWhistleVM (class in eth.vm.forks.tangerine_whistle)

 	timestamp (eth.vm.state.BaseState attribute)

 	
 	transaction_context_class (eth.vm.forks.frontier.state.FrontierState attribute)

 	transaction_executor (eth.vm.forks.frontier.state.FrontierState attribute)

 	(eth.vm.forks.spurious_dragon.state.SpuriousDragonState attribute)

 	TransactionNotFound

 	trinity_config (trinity.extensibility.plugin.PluginContext attribute)

U

 	
 	UnsuitableShutdownError (class in trinity.extensibility.exceptions)

V

 	
 	validate() (eth.rlp.transactions.BaseTransaction method)

 	(eth.rlp.transactions.BaseTransactionMethods method)

 	validate_block() (eth.chains.base.Chain method)

 	(eth.vm.base.VM method)

 	validate_chain() (eth.chains.base.BaseChain class method)

 	validate_gaslimit() (eth.chains.base.Chain method)

 	validate_header() (eth.vm.base.VM class method)

 	
 	validate_seal() (eth.chains.base.Chain method)

 	(eth.vm.base.VM class method)

 	validate_transaction_against_header() (eth.vm.base.BaseVM method)

 	validate_uncle() (eth.vm.base.VM class method)

 	validate_uncles() (eth.chains.base.Chain method)

 	VM (class in eth.vm.base)

 	VMError

 	VMNotFound

W

 	
 	write() (eth.vm.memory.Memory method)

 	
 	WriteProtection

 Optional: Often, the best way to guarantee a clean Python 3 environment is with
virtualenv [https://virtualenv.pypa.io/en/stable/]. If we don’t have virtualenv installed
already, we first need to install it via pip.

pip install virtualenv

Then, we can initialize a new virtual environment venv, like:

virtualenv -p python3 venv

This creates a new directory venv where packages are installed isolated from any other global
packages.

To activate the virtual directory we have to source it

. venv/bin/activate

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/trinity_layers.png

_images/trinity_processes.png
aum

peal

LevelDB

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Introduction

 		
 Trinity & Py-EVM

 		
 Py-EVM goals

 		
 Trinity goals

 		
 Further reading

 		
 Quickstart

 		
 Installation

 		
 Installing on Ubuntu

 		
 Installing on macOS

 		
 Installing through Docker

 		
 Running Trinity

 		
 Running as a light client

 		
 Ropsten vs Mainnet

 		
 Connecting to preferred nodes

 		
 Retrieving Chain information via web3

 		
 Release notes

 		
 Trinity

 		
 0.1.0-alpha.17

 		
 0.1.0-alpha.16

 		
 0.1.0-alpha.15

 		
 0.1.0-alpha.14

 		
 0.1.0-alpha.13

 		
 0.1.0-alpha.12

 		
 0.1.0-alpha.11

 		
 0.1.0-alpha.10

 		
 0.1.0-alpha.9

 		
 0.1.0-alpha.7

 		
 0.1.0-alpha.6

 		
 Cookbooks

 		
 EVM Cookbook

 		
 Using the Chain object

 		
 Creating a chain with custom state

 		
 Getting the balance from an account

 		
 Building blocks incrementally

 		
 Guides

 		
 Trinity

 		
 Quickstart

 		
 Architecture

 		
 Writing Plugins

 		
 Py-EVM

 		
 Quickstart

 		
 Building an app that uses Py-EVM

 		
 Architecture

 		
 Understanding the mining process

 		
 Creating Opcodes

 		
 API

 		
 Trinity

 		
 Command Line Interface (CLI)

 		
 Extensibility

 		
 Py-EVM

 		
 Chain

 		
 DataBase

 		
 Exceptions

 		
 RLP

 		
 Tools

 		
 Virtual Machine

 		
 Contributing

 		
 Setting the stage

 		
 Running the tests

 		
 Code Style

 		
 Type Hints

 		
 Documentation

 		
 Pull Requests

 		
 Releasing

 		
 How to bumpversion

 		
 How to release docker images

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

_static/up-pressed.png

_static/up.png

