

PHP Components

A set of Components that easily integrate to you php project.

Note

You can get a Demo App [https://github.com/eddmash/powerocomponentsdemo]
that show this componets in use.

Visit a Live Demo of the App [https://powerocomponentsdemo.herokuapp.com]
that shows this componets in use.

The Orm

Powerorm is an object-relational mapper in which you describe your database layout in PHP code.

Form

Dealing with HTML forms is one of the most common - and challenging - tasks for a web developer.
Powerform component makes dealing with forms easy.

Debugbar

Debugbar Displays a debug bar in the browser with information from php.

Data Faker

Data Faker Generate dummy data for powerorm models.

PhpGis

PhpGis Makes the powerorm work with gis data.

Extra Information

	PowerOrm User Guide

	PowerForm User Guide

	Powerorm Debugbar Guide

	Powerorm Faker Guide

	Phpgis Guide

	The MIT License (MIT)

	Change Log

	License Agreement

	Change Log

PowerOrm User Guide

Note

This documentation is mostly for PowerOrm(1.1.0).

You can get a Demo App [https://github.com/eddmash/powerocomponentsdemo]
that show this componets in use.

Visit a Live Demo of the App [https://powerocomponentsdemo.herokuapp.com]
that shows this componets in use.

For assistance post your questions
here Powerorm Help [https://groups.google.com/d/forum/powerorm-users]

Overview

	Introduction
	Introduction

	Setup Powerorm

	Configuration

	Components

	Dependencies

	Features

	Credits

Model

	Model
	Model inheritance

	Multi-table inheritance

	Abstract base classes

	Proxy models

	Model Meta Settings

	Model Fields

	Model Instance

Queries

	Making queries
	Making queries

	QuerySet API reference

	Custom Lookups

	Custom Lookups

Migration

	Migration

Integrations

	Integrating Powerorm
	Integrating with Codeigniter 4

	Integrating with Laravel

Extra Information

	Development Tools
	Powerorm Management Commands

Introduction

Powerorm at a glance

This is an informal overview of how to write a database-driven Web app with
Powerorm.
The goal of this document is to give you enough technical specifics to
understand how Powerorm works.

This assumes you have already Installed the orm

Design your model

Powerorm is an object-relational mapper in which you describe your database
layout in PHP code.

The data-model syntax offers many rich ways of representing your models – so far.

What all this means is if an app requires a database table called role with two
columns name and code. Instead of creating this table manually on database
server. The orm can do this for us.

We tell the orm of our intentions by creating a Model
which outlines the table, columns to be on that table and anyother information
needed on the table.

For the table role outlined above, The model for that table would look as below

// application/models/Role.php

use Eddmash\PowerOrm\Model\Model;

class Role extends Model
{
 public function unboundFields() {
 return [
 'name' => Model::CharField(['maxLength' => 40, 'dbIndex' => true]),
 'code' => Model::CharField(['maxLength' => 10, 'dbIndex' => true]),
];
 }

}

Create Table

So far we have created a model that represents a role table, but the actual
table does not exist yet.

Note

The advantage of having the orm create tables for is that it will keep track
of any changes made to the models, hence we can always undo or redo any
changes we have made to the models reflected onto the database. This is made
possible by Migration

Now to create the table that represents the Role model on the database.

Run this command to have orm keep track of the models state by detecting any
changes made.

$ php pmanager.php makemigrations

Run this command to have the orm apply the changes on
the database.

$ php pmanager.php migrate

The migrate command looks at all your available models
and creates tables in your database for whichever tables don’t already exist,
as well as optionally providing much richer schema control.

If your project is based on an framework
Integrations for how to access
Powerorm command line utility.

Persisting Objects to the Database

Now that you have mapped the Role model to its corresponding role table,
you’re ready to persist Role objects to the database.

$role = new Role();
$role->name = "test role";
$role->code = "test_role";
$role->save();
var_dump("saved ".$role->id);

Fetching Objects from the Database

Fetching an object back out of the database is even easier.

When you query for a particular type of object, you always use a “manager”.
You can think of a manager as a PHP class whose only job is to help you fetch
models of a certain class.
You can access the manager object for a model class via the objects() method:

// fetch select * from role
$roles = Role::objects()->all();

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

// fetch select * from role where code = 'Et qui qui'
$roles = Role::objects()->filter(['code'=>"Et qui qui"]);

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

// fetch SELECT * FROM testing_role WHERE (code = a) AND (code = qu)
$roles = Role::objects()->filter(['code'=>"qu"], ["code"=>"a"]);

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

// fetch SELECT * FROM testing_role WHERE (code LIKE %v) AND (code LIKE e%)
$roles = Role::objects()->filter(['code__startswith'=>"e", "code__endswith"=>"v"]);

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

// fetch SELECT * FROM testing_role WHERE (code LIKE a%) OR (code LIKE %qu)
$roles = Role::objects()->filter(['code__endswith'=>"qu", "~code__startswith"=>"a"]);

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

// fetch select * from role where id in (1,2,3)
$roles = Role::objects()->filter(['id__in'=>[1,2,3]]);

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

Note

The filter method can take one/multiple arrays that contain the conditions to
use when filtering.

Since its not possible to have the same array key repeated on the same array,
use a second array to add more conditions for the same key.

For example to query roles based on the value of the code field.

This will work fine since the keys are different

Role::objects()->filter(["code"=>"admin_role", "~code"=>"user_role"])

This wont work as expected since the keys are the same

Role::objects()->filter(["code"=>"admin_role", "code"=>"user_role"])

Solve this by making another array.

Role::objects()->filter(["code"=>"admin_role"], ["code"=>"user_role"])

	Introduction

	Setup Powerorm

	Configuration

	Components

	Dependencies

	Features

	Credits

Introduction

Powerorm at a glance

This is an informal overview of how to write a database-driven Web app with
Powerorm.
The goal of this document is to give you enough technical specifics to
understand how Powerorm works.

This assumes you have already Installed the orm

Design your model

Powerorm is an object-relational mapper in which you describe your database
layout in PHP code.

The data-model syntax offers many rich ways of representing your models – so far.

What all this means is if an app requires a database table called role with two
columns name and code. Instead of creating this table manually on database
server. The orm can do this for us.

We tell the orm of our intentions by creating a Model
which outlines the table, columns to be on that table and anyother information
needed on the table.

For the table role outlined above, The model for that table would look as below

// application/models/Role.php

use Eddmash\PowerOrm\Model\Model;

class Role extends Model
{
 public function unboundFields() {
 return [
 'name' => Model::CharField(['maxLength' => 40, 'dbIndex' => true]),
 'code' => Model::CharField(['maxLength' => 10, 'dbIndex' => true]),
];
 }

}

Create Table

So far we have created a model that represents a role table, but the actual
table does not exist yet.

Note

The advantage of having the orm create tables for is that it will keep track
of any changes made to the models, hence we can always undo or redo any
changes we have made to the models reflected onto the database. This is made
possible by Migration

Now to create the table that represents the Role model on the database.

Run this command to have orm keep track of the models state by detecting any
changes made.

$ php pmanager.php makemigrations

Run this command to have the orm apply the changes on
the database.

$ php pmanager.php migrate

The migrate command looks at all your available models
and creates tables in your database for whichever tables don’t already exist,
as well as optionally providing much richer schema control.

If your project is based on an framework
Integrations for how to access
Powerorm command line utility.

Persisting Objects to the Database

Now that you have mapped the Role model to its corresponding role table,
you’re ready to persist Role objects to the database.

$role = new Role();
$role->name = "test role";
$role->code = "test_role";
$role->save();
var_dump("saved ".$role->id);

Fetching Objects from the Database

Fetching an object back out of the database is even easier.

When you query for a particular type of object, you always use a “manager”.
You can think of a manager as a PHP class whose only job is to help you fetch
models of a certain class.
You can access the manager object for a model class via the objects() method:

// fetch select * from role
$roles = Role::objects()->all();

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

// fetch select * from role where code = 'Et qui qui'
$roles = Role::objects()->filter(['code'=>"Et qui qui"]);

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

// fetch SELECT * FROM testing_role WHERE (code = a) AND (code = qu)
$roles = Role::objects()->filter(['code'=>"qu"], ["code"=>"a"]);

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

// fetch SELECT * FROM testing_role WHERE (code LIKE %v) AND (code LIKE e%)
$roles = Role::objects()->filter(['code__startswith'=>"e", "code__endswith"=>"v"]);

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

// fetch SELECT * FROM testing_role WHERE (code LIKE a%) OR (code LIKE %qu)
$roles = Role::objects()->filter(['code__endswith'=>"qu", "~code__startswith"=>"a"]);

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

// fetch select * from role where id in (1,2,3)
$roles = Role::objects()->filter(['id__in'=>[1,2,3]]);

foreach ($roles as $role) :
 echo $role->name."===>".$role->code."
";
endforeach;

Note

The filter method can take one/multiple arrays that contain the conditions to
use when filtering.

Since its not possible to have the same array key repeated on the same array,
use a second array to add more conditions for the same key.

For example to query roles based on the value of the code field.

This will work fine since the keys are different

Role::objects()->filter(["code"=>"admin_role", "~code"=>"user_role"])

This wont work as expected since the keys are the same

Role::objects()->filter(["code"=>"admin_role", "code"=>"user_role"])

Solve this by making another array.

Role::objects()->filter(["code"=>"admin_role"], ["code"=>"user_role"])

	Introduction

	Setup Powerorm

	Configuration

	Components

	Dependencies

	Features

	Credits

Setup Powerorm

	Install

	Create configuration

	Load the orm

	Create application

	Register Application

	Create enable Powerorm on the command line

Install

We assume your project structure looks like this

app_base
 ----vendor/
 ----composer.json
 ----config.php
 ----src
 ---- Models
 ---- Migrations

Via composer (recommended):

composer require eddmash/powerorm

Or add this to the composer.json file:

"eddmash/powerorm": "1.1" (check latest version)

You could also Download or Clone package from github.

To rest of this guide assumes a plain php based project, no-frameworks used.

If you wish to see how to setup on specific frameworks please visit
Frameworks Integrations

Create configuration

The orm requires a few
Configurations, things like the database settings.

This will be added in the config.php

return [
 'database' => [
 'host' => '127.0.0.1',
 'dbname' => 'tester',
 'user' => 'admin',
 'password' => 'admin',
 'driver' => 'pdo_pgsql',
],
 'dbPrefix' => 'demo_',
 'charset' => 'utf-8',
];

Load the orm

To load powerorm use the following code and pass the
Configs needed for powerorm to work.

$configs = require_once 'config.php';
\Eddmash\PowerOrm\Loader::webRun($configs);

This should be load as early as possible, Place it a the beginning of your
script.

Create application

So far we have not told the orm anything about our project, to do this
We need to create an application class the will be used
by the orm to get information about your php project.

If your project is namespaced as App;
Create a class the extends the Eddmash\\PowerOrm\\Components\\AppComponent.
This class should be placed on the same level as your models, migration folders.

namespace App;

use Eddmash\PowerOrm\BaseOrm;
use Eddmash\PowerOrm\Components\AppComponent;

class App extends AppComponent
{

 public function ready(BaseOrm $baseOrm)
 {
 }

 public function getDbPrefix()
 {
 return "php_app";
 }
}

Technically this file can be place anywhere in your project tree, To get this
flexibility you need to override :

	Application::getMigrationsPath()
to tell the the orm where to find the models files and

	Application::getMigrationsPath()
to tell the orm where to place generated migrations files.

Register Application

Once we have the projects application class, we need to register it with the
orm.

To register we add the App class we have created above into our configurations
under the component configuration setting as shown below.

$config = [
 'database' => [
 'host' => '127.0.0.1',
 'dbname' => 'tester',
 'user' => 'root',
 'password' => 'root1.',
 'driver' => 'pdo_mysql',
],
 'dbPrefix' => 'demo_',
 'charset' => 'utf-8',
 'timezone' => 'Africa/Nairobi',
 'components' => [
 App::class,
]
];

Create enable Powerorm on the command line

To be able to use the orm on the command line create a file on the same level as
the composer.json file.

create file named pmanager.php and add the following .

use Eddmash\PowerOrm\Loader;
require_once 'vendor/autoload.php';
$configs = require_once 'config.php';
Loader::consoleRun($configs);

See all the available commands commands.

With that you ready.

Enjoy !

Configuration

The ORM takes several configurations

	
	database

	This are the database configurations the ORM will use to connect to a database.

The orm uses Doctrine Dbal [http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/index.html] to
connect to database.

This means the orm will support most if not all the databases suported by Doctrine dbal.

To learn more about the database drivers supported and the different configurations requried for each databases
please view
Database Configs [http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/configuration.html]

An example of database configuration for mysql is presented below.

	charset

The charset used when working with strings.

	timezone

Default: uses timezone of the current php installation.

A string representing the time zone .

	dbPrefix

This is the prefix to use in all tables created by the ORM.
e.g.

if

dbPrefix = 'testing'

all tables created will prefixed with testing so instead of the table user it will becomes testing_user.

	components

	This configuration serves two purposes:

	
	Registering applications. This are
applications/project
that the orm will be used to manage models, migrations and perform
queries.

	Registering components that extend the orm good
examples of this are :

	Faker which is used to generate dummy data for
the orm.

	Debuging Toolbar A tool bar to help in
development to view things like what sql the orm ran.

	PhpGis Makes the orm work with gis data.

see Components for more.

Sample Configuration file.

A sample configurations.

$config = [
 'database' => [
 'host' => '127.0.0.1',
 'dbname' => 'tester',
 'user' => 'root',
 'password' => 'root1.',
 'driver' => 'pdo_mysql',
],
 'dbPrefix' => 'demo_',
 'charset' => 'utf-8',
 'timezone' => 'Africa/Nairobi',
 'components' => [
 App::class,
 PhpGis::class,
 Toolbar::class,
 Faker::class,
],
 'signalManager' => function (BaseOrm $orm) {

 return new SignalManager();
 },
];

Components

	Basics

	Project Application

	Class Reference

	Component

	AppComponent

Basics

A component in powerorm is any project that needs to extend the orm.

Basically its a class that implements Eddmash\PowerOrm\Components\ComponentInterface interface .

An example of a component class can be found at Faker ,
which is the component class for the faker library.

This library extends the orm to add the generatedata command which is used to generate dummy data.

namespace Eddmash\PowerOrmFaker;

use Eddmash\PowerOrm\BaseOrm;
use Eddmash\PowerOrm\Components\Component;
use Eddmash\PowerOrmFaker\Commands\Generatedata;

class Faker extends Component
{

 function ready(BaseOrm $baseOrm)
 {
 }

 /**
 * Command classes
 * @return array
 * @since 1.1.0
 *
 * @author Eddilbert Macharia (http://eddmash.com) <edd.cowan@gmail.com>
 */
 function getCommands()
 {
 return [
 Generatedata::class
];
 }
}

Project Application

An application in powerorm is a form of a component with
the difference being an application provides more information that determines
things like where

	the orm should look for models,

	where it should place the generated migrations

For a php project to use powerorm, an application class needs to be created for
that project.

If you have a project with the namespace App.
Create a class that extends the Eddmash\PowerOrm\Components\AppComponent.
This class should be placed on the same level as your models, migration folders.

namespace App;

use Eddmash\PowerOrm\BaseOrm;
use Eddmash\PowerOrm\Components\AppComponent;

class App extends AppComponent
{

 public function ready(BaseOrm $baseOrm)
 {
 }

}

Technically this file can be placed anywhere on your project tree, To get this
flexibility you need to override :

	Application::getMigrationsPath()
to tell the the orm where to find the models files and

	Application::getMigrationsPath()
to tell the orm where to place generated migrations files.

Class Reference

Component

	
\Eddmash\PowerOrm\Components\Component

	
	
ready()

	
This method is invoked after the orm registry is ready .
This means the models can be accessed within this model without any
issues.

	
isQueryable()

	true if it this component is accessible as an attribute of the orm.

	
getInstance()

	Instance to return if the component is queryable..

	
getCommands()

	An array of Command classes that this component provides.

	
getName()

	Name to use when querying this component, ensure its unique.

AppComponent

	
\Eddmash\PowerOrm\Components\AppComponent

	
	
ready()

	
This method is invoked after the orm registry is ready .
This means the models can be accessed within this model without any
issues.

	
getMigrationsPath()

	This is location where the ORM will use to store migrations files.

	
getModelsPath()

	This is location where the ORM will expect to find the model files.

	
getDbPrefix()

	This is the prefix to use in all tables created by the ORM for this
project.e.g.
if

dbPrefix = 'testing'

all tables created for this project will prefixed with testing so
instead of the table user it will becomes testing_user.

Dependencies

PowerOrm relies on :

	Doctrine Dbal [http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/index.html].

	Symfony console component [http://symfony.com/doc/current/components/console.html].

	Symfony polyfill-mbstring component [http://symfony.com/blog/new-in-symfony-2-8-polyfill-components].

Features

	Allows to fully think of the database and its table in an object oriented manner i.e. table are represented by model and columns are represented by fields.

	Create automatic migrations.

	Create forms automatically based on models.

	All fields visible on the model, no need to look at the database table when you want to interact with the database.

	Provides database interaction methods

Credits

The following frameworks assisted me greatly in creating this project :

	Django framework

	FuelPHP framework

	Yii2 framework

	CakePHP framework

	Laravel framework

	Symfony2 framework

	Codeigniter 3/4 framework

Model

	Quick example

	Model Fields

	Automatic primary key fields

	Verbose field names

	Relationships

	Many-to-one relationships

	Many-to-many relationships

	Extra fields on many-to-many relationships

	One-to-one relationships

	Meta Settings

	A model is the single, definitive source of information about your data. It

	
	contains the essential fields and behaviors of the data you’re storing.

	Generally, each model maps to a single database table.

A model is a PHP class that subclasses Eddmash\PowerOrm\Model\Model.

Quick example

This example model defines a User, which has a first_name and last_name:

// models/User.php
use Eddmash\PowerOrm\Model\Model;

class User extends Model
{
 public function unboundFields(){
 return [
 'first_name'=>Model::CharField(['maxLength'=>30]),
 'last_name'=>Model::CharField(['maxLength'=>30]),
];
 }
}

first_name and last_name are fields of the model and each attribute maps to a database column.

Model Fields

The most important part of a model – and the only required part of a model – is the list of database fields it defines.

Note

The name unboundFields was choosen for the method because at the time of declaring this
fields the have not been attached to class in any way.

Model fields are defined on unboundFields method which should return an associative array whose :

	keys are the names of the fields.Be careful not to choose field names that conflict with the models
API like clean, save, or delete. The know should be an acceptable php variable name.

	values are instances of one of the subclasses of the Eddmash\PowerOrm\Model\Field class.
see Fields.

All the field subclasses can be accessed from the Eddmash\PowerOrm\Model\Model, via static methods whose name
matches that of the subclass. e.g
To use the Eddmash\PowerOrm\Model\Field\CharField subclass from the Eddmash\PowerOrm\Model\Model;
use the Eddmash\PowerOrm\Model\Model::CharField().

PowerOrm ships with dozens of built in field types, a complete list can be found at
model field reference, its uses this models fields to determine things like

	database column type (e.g. INTEGER, VARCHAR).

	how to perform queries e.g. if its a relationship field when to add joins

The above User model would create a database table like this:

CREATE TABLE user (
 "id" serial NOT NULL PRIMARY KEY,
 "first_name" varchar(30) NOT NULL,
 "last_name" varchar(30) NOT NULL
);

Note

	The name of the table, user, is automatically derived from the name of model but can be overridden.
See Table names for more details.

	An id field is added automatically, but this behavior can be overridden.
See Automatic primary key fields.

	The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it’s worth noting PowerOrm uses
SQL tailored to the database backend specified in your configurations file.

Automatic primary key fields

By default, PowerOrm gives each model the following field:

id = Eddmash\PowerOrm\Model\Model::AutoField(['primaryKey'=>true])

This is an auto-incrementing primary key.

If you would like to specify a custom primary key, just specify primarykey=true on one of your fields.
If PowerOrm sees you’ve explicitly set Field->primaryKey, it won’t add the automatic id column.

Each model requires exactly one field to have primaryKey=true (either explicitly declared or automatically added).

Verbose field names

All fields accept a verboseName argument.

If the verbose name isn’t given, PowerOrm will automatically create it using the field’s attribute name,
converting underscores to spaces.

In this example, the verbose name is “person’s first name”:

first_name = Eddmash\PowerOrm\Model\Model::CharField(['verboseName'=>"person's first name", 'maxLength'=30])

In this example, the verbose name is “first name”:

first_name = Eddmash\PowerOrm\Model\Model::CharField(['maxLength'=30])

Relationships

The power of relational databases lies in relating tables to each other. PowerOrm offers ways to define the three most
common types of database relationships: many-to-one, many-to-many and one-to-one.

In all the relationships types a recursive relationship can be defined.

Many-to-one relationships

To define a many-to-one relationship, use Eddmash\PowerOrm\Model\Model::ForeignKey. You use it just like any
other Field type: by including
it on the unboundFields method of your model.

ForeignKey requires a to argument, which specifies the class to which the model is related.

For example, if a Car model has a Manufacturer – that is,
a Manufacturer makes multiple cars but each Car only has one Manufacturer – use the following definitions:

// models/Car.php
use Eddmash\PowerOrm\Model\Model;
class Car extends Model{
 public function unboundFields()
 {
 return [
 'manufacturer' => Model::ForeignKey(['to' => Manufacturer::class])
];
 }
}

// models/Manufacturer.php
use Eddmash\PowerOrm\Model\Model;
class Manufacturer extends Model
{

 public function unboundFields(){
 return [];
 }
}

It’s suggested, but not required, that the name of a ForeignKey field (manufacturer in the example above) be the name
of the model, lowercase.You can, of course, call the field whatever you want.

Many-to-many relationships

To define a many-to-many relationship, use Eddmash\PowerOrm\Model\Model::ManyToManyField.
You use it just like any other Field type: by including it on the unboundFields method of your model.

ManyToManyField requires a to argument, which specifies the class to which the model is related.

For example, if a Pizza has multiple Topping objects – that is, a Topping can be on multiple pizzas and each Pizza has
multiple toppings – here’s how you’d represent that:

// models/Topping.php
use Eddmash\PowerOrm\Model\Model;
class Topping extends Model
{

 public function unboundFields(){
 return [
 'name'=> Model::CharField(['maxLength'=>50])
];
 }
}

// models/Pizza.php
use Eddmash\PowerOrm\Model\Model;
class Pizza extends Model{
 public function unboundFields()
 {
 return [
 'toppings' => Model::ManyToManyField(['to' => Topping::class])
];
 }
}

It’s suggested, but not required, that the name of a ManyToManyField (toppings in the example above) be a plural
describing the set of related model objects.

It doesn’t matter which model has the ManyToManyField, but you should only put it in one of the models – not both.

Generally, ManyToManyField instances should go in the object that’s going to be edited on a form. In the above example,
toppings is in Pizza (rather than Topping having a pizzas ManyToManyField) because it’s more natural to think about a
pizza having toppings than a topping being on multiple pizzas. The way it’s set up above, the Pizza form would let users
select the toppings.

Extra fields on many-to-many relationships

When you’re only dealing with simple many-to-many relationships such as mixing and matching pizzas and toppings,
a standard ManyToManyField is all you need. However, sometimes you may need to associate data with the relationship
between two models.

For example, consider the case of an application tracking the musical groups which musicians belong to. There is a
many-to-many relationship between a person and the groups of which they are a member, so you could use a ManyToManyField
to represent this relationship. However, there is a lot of detail about the membership that you might want to collect,
such as the date at which the person joined the group.

For these situations, PowerOrm allows you to specify the model that will be used to govern the many-to-many
relationship. You can then put extra fields on the intermediate model. The intermediate model is associated with the
ManyToManyField using the through argument to point to the model that will act as an intermediary.
For our musician example, the code would look something like this:

// models/Pesron.php
use Eddmash\PowerOrm\Model\Model;
class Person extends Model
{

 public function unboundFields(){
 return [
 'name'=> Model::CharField(['maxLength'=>50])
];
 }
}

// models/Group.php
use Eddmash\PowerOrm\Model\Model;
class Group extends Model{
 public function unboundFields()
 {
 return [
 'name'=> Model::CharField(['maxLength'=>50]),
 'members' => Model::ManyToManyField(['to' => 'Person', 'through'=>Membership::class])
];
 }
}

// models/Membership.php
use Eddmash\PowerOrm\Model\Model;
class Membership extends Model{
 public function unboundFields()
 {
 return [
 'person' => Model::ForeignKey(['to' => 'Person']),
 'group' => Model::ForeignKey(['to' => 'Group']),
 'invite_reason'=>Model::CharField(['maxLength'=>65])
];
 }
}

One-to-one relationships

To define a one-to-one relationship, use Eddmash\PowerOrm\Model\Model::OneToOneField.
You use it just like any other Field type: by including it on the unboundFields method of your model.

This is most useful on the primary key of an object when that object “extends” another object in some way.

OneToOneField requires a to argument, which specifies the class to which the model is related.

For example, if you were building a database of “places”, you would build pretty standard stuff such as address,
phone number, etc. in the database. Then, if you wanted to build a database of restaurants on top of the places,
instead of repeating yourself and replicating those fields in the Restaurant model, you could make Restaurant have a
OneToOneField to Place (because a restaurant “is a” place; in fact, to handle this you’d typically use inheritance,
which involves an implicit one-to-one relation).

Meta Settings

Give your model metadata by return an array of model meta setting from the method getMetaSettings, like so:

// models/Group.php
use Eddmash\PowerOrm\Model\Model;
class User extends Model
{

 public function unboundFields(){
 return [
 'first_name'=>Model::CharField(['maxLength'=>30]),
 'last_name'=>Model::CharField(['maxLength'=>30]),
];
 }

 public function getMetaSettings(){
 return [
 'dbTable'=>"local_user",
 'verboseName'=>"Local Users",
];
 }
}

Model metadata is ‘anything that’s not a field’ such as database table name (db_table) or human-readable .
None are required, and overriding the getMetaSettings method is completely optional.

A complete list of all possible Meta options can be found in the model option reference.

More Model Information

	Model inheritance

	Multi-table inheritance

	Abstract base classes

	Proxy models

	Model Meta Settings

	Model Fields

	Model Instance

Model inheritance

Model inheritance in Powerorm works almost identically to the way normal class inheritance works in PHP,
That means the base class should subclass EddmashPowerOrmModelModel;.

The only decision you have to make is whether you want the parent models to be models in their own right
(with their own database tables), or if the parents are just holders of common information that will only
be visible through the child models.

There are three styles of inheritance that are possible in PowerOrm:

	Abstract base Often, you will just want to use the parent class to hold information that you
don’t want to have to type out for each child model. This class isn’t going to ever be used in isolation,
so Abstract base classes are what you’re after.

	Multi-table inheritance If you’re subclassing an existing model and want each model
to have its own database table, Multi-table inheritance is the way to go.

	Proxy models Finally, if you only want to modify the PHP-level behavior of a model, without changing
the models fields in any way, you can use Proxy models.

Multi-table inheritance

The second type of model inheritance supported by Powerorm is when each model in
the hierarchy is a table all by itself. i.e. each model corresponds to its own
database table and can be queried and created individually.

The inheritance relationship introduces links between the child model and
its parents (via an automatically-created OneToOne).

For example:

use Eddmash\PowerOrm\Model\Model;

class Place extends Model
{
 public function unboundFields()
 {
 return [
 'name' => Model::CharField(['maxLength' => 100]),
 'address' => Model::CharField(['maxLength' => 80])
];
 }
}

class Restaurant extends Place
{
 public function unboundFields()
 {
 return [
 'serves_hot_dogs' => Model::BooleanField(['default' => false]),
 'serves_pizza' => Model::BooleanField(['default' => false])
];
 }
}

All of the fields of Place will also be available in Restaurant, although the
data will reside in a different database table. So these are both possible:

Restaurant::objects()->filter([name=>"Bob's Cafe"]);
Place::objects()->filter([name=>"Bob's Cafe"]);

	If you have a Place that is also a Restaurant, you can get from the Place object

	to the Restaurant object by using the lower-case version of the model name:

$p = Place::objects()->get(['id'=>12]);
// If p is a Restaurant object, this will give the child class:
$p->restaurant

However, if $p in the above example was not a Restaurant
(it had been created directly as a Place
object or was the parent of some other class), referring to p.restaurant would
throw an exception.

In reality the orm creates the base model table as expected in the database i.e
with all the field the model specifies but for the child model it creates the a
table with fields that have been specfied in the child model
and create a one-to-one connection to the base models’ table.

Abstract base classes

Abstract base classes are useful when you want to put some common information into a number of other models.
You create an Abstract base class by simply creating a normal php abstract base class.

This model will then not be used to create any database table.

Instead, when it is used as a base class for other models, its fields will be added to those of the child class.

Any fields defined in the Abstract that are again defined in the Child class will be over written by those in the
child class.:

use Eddmash\PowerOrm\Model\Model;

abstract class CommonInfo extends Model
{
 public function unboundFields()
 {
 return [
 'name' => Model::CharField(['maxLength' => 100]),
 'age' => Model::IntegerField()
];
 }
}

class Student extends CommonInfo
{
 public function unboundFields()
 {
 return [
 'home_group' => Model::CharField(['maxLength' => 5])
];
 }
}

The Student model will have three fields: name, age and home_group.

The CommonInfo model cannot be used as a normal model, since it is an abstract base class.
It does not generate a database table, and cannot be instantiated or saved directly.

For many uses, this type of model inheritance will be exactly what you want.

It provides a way to factor out common information at the php level, while still only
creating one database table per child model at the database level.

Meta inheritance

When inheriting, Some attributes will need to be overridden in child classes, since it doesn’t make sense to
set them in the base class.

For example, setting dbtable would mean that all the child classes (the ones that don’t specify dbtable explicitly)
would use the same database table,which is almost certainly not what you want.

Proxy models

When using multi-table inheritance, a new database table is created for each subclass of a model.

This is usually the desired behavior, since the subclass needs a place to store any additional data fields
that are not present on the base class.

Sometimes, however, you only want to change the php behavior of a model – perhaps to add a new method.

This is what proxy model inheritance is for:

	creating a proxy for the original model. You can create, delete and update instances of the proxy model
and all the data will be saved as if you were using the original (non-proxied) model.

	The difference is that you can change things like the default model ordering in
the proxy, without having to alter the original.

Proxy models are declared like normal models. You tell PowerOrm that it’s a proxy model by setting
the proxy meta setting of the class to True.

use Eddmash\PowerOrm\Model\Model;

class Employee extends Model
{
 public function unboundFields()
 {
 return [
 'name' => Model::CharField(['maxLength' => 100]),
 'age' => Model::IntegerField()
];
 }
}

class Auditor extends Employee
{

 public function pricePerAuditJob($employee)
 {
 // logic
 }

 public function getMetaSettings()
 {
 return [
 'proxy' => true
];
 }
}

The Auditor class operates on the same database table as its parent Employee class.

In particular, any new instances of Employee will also be accessible through Auditor, and vice-versa:

$employee = new Employee();
$employee->name = 'foobar';
$employee->save();

Auditor::objects()->get(['name'='foobar']);

Learn more on Querying Models

Note

QuerySets still return the model that was requested

There is no way to have Powerorm return, say, a Auditor object whenever you query for Employee objects.
A queryset for Employee objects will return those employee objects.
The whole point of proxy objects is that code relying on the original Employee will use employee objects and your
own code can use the extensions you included (that no other code is relying on anyway).
It is not a way to replace the Employee (or any other) model everywhere with something of your own creation.

Model Meta Settings

This document explains all the possible metadata options that you can give your model in its getMetaSettings method.
see example below

	dbTable

	managed

	proxy

	verboseName

	defaultRelatedName

	Example

dbTable

The name of the database table to use for the model:

dbTable = 'inventory_user'

Table names

To save you time, PowerOrm automatically derives the name of the database table from the name of your model class.

For example, if you have, a model defined as class Book will have a database table named book.

To override the database table name, use the dbTable parameter in getMetaSettings model method.

managed

Default True,

When managed is true PowerOrm will create the appropriate database tables in migrate or as part of migrations and
remove them as part of a flush management command. That is, PowerOrm manages the database tables’ lifecycles.

If false, no database table creation or deletion operations will be performed for this model. This is useful if the
model represents an existing table or a database view that has been created by some other means. This is the only
difference when managed=false. All other aspects of model handling are exactly the same as normal.

This includes:

	Adding an automatic primary key field to the model if you don’t declare it. To avoid confusion for later code readers,
it’s recommended to specify all the columns from the database table you are modeling when using unmanaged models.

	If a model with managed=false contains a ManyToManyField that points to another unmanaged model, then the
intermediate table for the many-to-many join will also not be created. However, the intermediary table between one
managed and one unmanaged model will be created.

If you need to change this default behavior, create the intermediary table as an explicit model
(with managed set as needed) and use the ManyToManyField through attribute to make the relation
use your custom model. See Through model

If you are interested in changing the PHP-level behavior of a model class, you could set managed=false and create a copy
of an existing model. However, there’s a better approach for that situation: Proxy models.

proxy

default false

If proxy = true, a model which subclasses another model will be treated as a Proxy models.

verboseName

A human-readable name for the object, singular:

verboseName = "pizza"

If this is not given, PowerOrm will use a munged version of the class name: CamelCase becomes camel case.

defaultRelatedName

The name that will be used by default for the relation from a related object back to this one.
The default is <model_name>_set.

This option also sets <related_query_name>relatedQueryQame.

As the reverse name for a field should be unique, be careful if you intend to subclass your model.
To work around name collisions, part of the name should contain ‘%s’, which are replaced respectively by
the name of the model it defined in, both lowercased and any ‘’ in namespace replaced with ‘_’.
See the paragraph on related names for abstract models.

Example

use Eddmash\PowerOrm\Model\Model;

class User extends Model
{

 public function unboundFields()
 {
 return [
 'username'=> Model::CharField(['maxLength'=>25])
];
 }

 public function getMetaSettings()
 {
 return [
 'proxy'=>false,
 'managed'=>true,
 'verbose'=> "Local Users",
 'dbTable'=> 'demo_user'
];
 }
}

Model Fields

This document contains all the API references of Field including the field options and field types PowerOrm offers.

	Field options

	null

	blank

	choices

	dbColumn

	dbIndex

	default

	primaryKey

	unique

	verboseName

	helpText

	validators

	Field types

	AutoField

	CharField

	EmailField

	BooleanField

	IntegerField

	TextField

	URLField

	SlugField

	Relationship fields

	ForeignKey

	ManyToManyField

	OneToOneField

Field options

The following arguments are available to all field types. All are optional.

null

If True, PowerOrm will store empty values as NULL in the database. Default is False.

blank

If True, the field is allowed to be blank. Default is False.

Note that this is different than null. null is purely database-related, whereas blank is validation-related.
If a field has blank=True, form validation will allow entry of an empty value. If a field has blank=False,
the field will be required.

choices

An array consisting itself of associative arrays (e.g. [['f'=>'female'], ['m'=>'male', ...]]) to use as choices
for this field.

If this is given, the default form widget will be a select box with these choices instead of the standard text field.

The key element in each associative array is the actual value to be set on the model, and the second element is the
human-readable name. For example:

$gender_choices = [
 'm'=>'Male',
 'f'=>'Female',
];

$gender = Eddmash\PowerOrm\Model\Model::CharField(['maxLength'=>2, 'choices'=>$gender_choices])

dbColumn

The name of the database column to use for this field. If this isn’t given, PowerOrm will use the field’s name.

dbIndex

If True, this field will be indexed.

default

The default value for the field. This can be a value or a callable object. If callable it will be called every time a
new object is created.

primaryKey

If True, this field is the primary key for the model.

unique

If True, this field must be unique throughout the table.

verboseName

A human-readable name for the field. If the verbose name isn’t given, PowerOrm will
automatically create it using the field’s attribute name, converting underscores to spaces. See
Verbose field names

helpText

Extra “help” text to be displayed with the form widget. It’s useful for documentation even if your field isn’t used on
a form.

validators

A list of validators to run for this field. See the validators documentation for more information.

Field types

AutoField

An IntegerField that automatically increments according to available IDs. You usually won’t need to use this directly;
a primary key field will automatically be added to your model if you don’t specify otherwise.
See
Automatic primary key fields

CharField

A string field, for small- to large-sized strings.

For large amounts of text, use TextField.

The default form widget for this field is a TextInput.

CharField has one extra required argument:

	maxLength :
The maximum length (in characters) of the field. The maxLength is enforced at the database level and in PowerOrm’s
validation.

EmailField

maxLength default is 254.

A CharField that checks that the value is a valid email address. It uses EmailValidator to validate the input.

BooleanField

A true/false field.

The default form widget for this field is a CheckboxInput.

IntegerField

An integer.

The default form widget for this field is a TextInput.

TextField

A large text field.

The default form widget for this field is a Textarea.

If you specify a maxLength attribute, it will be reflected in the Textarea widget of the auto-generated form field.
However it is not enforced at the model or database level. Use a CharField for that.

URLField

A CharField for a URL.

maxLength default is 200.

The default form widget for this field is a TextInput.

Like all CharField subclasses, URLField takes the optional maxLength argument.

If you don’t specify maxLength, a default of 200 is used.

SlugField

Slug is a newspaper term. A slug is a short label for something, containing only letters, numbers, underscores or
hyphens. They’re generally used in URLs.

Like a CharField, you can specify maxLength. If maxLength is not specified, Powerorm
will use a default length of 50.

Implies setting Field.dbIndex to true.

Relationship fields

PowerOrm also defines a set of fields that represent relations.

ForeignKey

A many-to-one relationship. Requires a to argument: the class to which the model is related.

// model/Car.php
use Eddmash\PowerOrm\Model\Model;

class Car extends Model{
 public function unboundFields()
 {
 return [
 'manufacturer' => Model::ForeignKey(['to' => Manufacturer::class])
];
 }
}

// model/Manufacturer.php
use Eddmash\PowerOrm\Model\Model;

class Manufacturer extends Model
{

 public function unboundFields(){
 return [];
 }
}

A database index is automatically created on the ForeignKey. You can disable this by
setting dbIndex to false.
You may want to avoid the overhead of an index if you are creating a foreign key for consistency rather than joins,
or if you will be creating an alternative index like a partial or multiple column index.

relatedName

The name to use for the relation from the related object back to this one. It’s also the default value for
<_related_query_name>relatedQueryName (the name to use for the reverse filter name from the target model).
See the <backwards_related_objects>related objects documentation for a full explanation and example. Note that
you must set this value when defining relations on abstract models and when you do so some
<abstract_related_name>special syntax is available.

If you’d prefer powerorm not to create a backwards relation, set related_name to ‘+’ or end it with ‘+’. For example,
this will ensure that the User model won’t have a backwards relation to this model:

relatedQueryName

The name to use for the reverse filter name from the target model. It defaults to the value of
<_related_name>relatedName or <default_related_name>defaultRelatedName if set, otherwise it defaults to
the name of the model.

Like <_related_name>relatedName, <default_related_name>defaultRelatedName supports app label and class
interpolation via some <abstract_related_name>special syntax.

Recursive relationship

Recursive relationship is when an object that has a many-to-one relationship with itself.

To create a recursive relationship set the to argument to the constant Model::SELF or the name of the model
like we have done in for foreign keys.

Eddmash\PowerOrm\Model\Model::ForeignKey(['to'=>Model::SELF])

ManyToManyField

A many-to-many relationship. Requires a ‘to’ argument: the class to which the model is related, which works exactly
the same as it does for ForeignKey.

Through Model

OneToOneField

A one-to-one relationship. Conceptually, this is similar to a ForeignKey with unique=True, but the “reverse” side of the
relation will directly return a single object.

Model Instance

Saving objects

To save an object back to the database, call save():

Making queries

Once you’ve created your data models, Powerorm automatically gives you a database-abstraction API that lets you
create, retrieve, update and delete objects.

This document explains how to use this API.

Throughout this guide (and in the reference), we’ll refer to the following models, which comprise a Weblog application:

// models/Blog

namespace App\Models;

use Eddmash\PowerOrm\Model\Model;

class Blog extends Model
{

 public function unboundFields()
 {
 return [
 'name'=>Model::CharField(['maxLength'=>100]),
 'tagline'=>Model::TextField()
];
 }
}

// models/Author

namespace App\Models;

use Eddmash\PowerOrm\Model\Model;

class Author extends Model
{

 public function unboundFields()
 {
 return [
 'name'=>Model::CharField(['maxLength'=>200]),
 'email'=>Model::EmailField()
];
 }
}

// models/Entry
namespace App\Models;

use Eddmash\PowerOrm\Model\Model;

/**
* Class Entry
*/
class Entry extends Model
{
 public function unboundFields()
 {
 return [
 'blog'=>Model::ForeignKey(['to'=>Blog::class]),
 'headline'=>Model::CharField(['maxLength'=>255]),
 'blog_text'=>Model::TextField(),
 'authors'=>Model::ManyToManyField(['to'=>Author::class]),
 'n_comments'=>Model::IntegerField(),
 'n_pingbacks'=>Model::IntegerField(),
 'ratings'=>Model::IntegerField(),
];
 }

}

Creating objects

To represent database-table data in PHP objects, Powerorm uses an intuitive system:

	A model class represents a database table, and

	an instance of that class represents a particular record in the database table.

To create an object, instantiate it using an associative array(keys are name of a model field, values are the
value to assign to the fields) to the model class, then call save() to save it to the database.

Using the block model we created above :

$blog = new \App\Models\Blog();
$blog->name = "Beatles Blog";
$blog->tagline='All the latest Beatles news.';
$blog->save();

This performs an INSERT SQL statement behind the scenes. Powerorm doesn’t hit the database until you explicitly call
save().

The save() method has no return value.

Saving changes to objects

To save changes to an object that’s already in the database, use save().

Given a Blog instance $blog that has already been saved to the database,
this example changes its name and updates its record in the database:

$blog->name = 'New name';
$blog->save();

This performs an UPDATE SQL statement behind the scenes.
Powerorm doesn’t hit the database until you explicitly call save().

Saving ForeignKey and ManyToManyField fields

Updating a ForeignKey field works exactly the same way as saving a normal field – simply assign an object of the right
type to the field in question.
This example updates the blog attribute of an Entry instance entry, assuming appropriate instances of Entry and Blog
are already saved to the database (so we can retrieve them below):

$en = \App\Models\Entry::objects()->get(['pk' => 1]);
$en->blog = \App\Models\Blog::objects()->get(['pk'=>4]);
$en->headline = "Filtered :doc:`QuerySet <queryset>`s are unique";
$en->blog_text = "These three :doc:`QuerySet <queryset>`s are separate.";
$en->save();

Updating a ManyToManyField works a little differently – use the add() method on the field
to add a record to the relation. This example adds the Author instance joe to the entry object:

$en = \App\Models\Entry::objects()->get(['pk' => 1]);
$en->authors->add(\App\Models\Author::objects()->get(['name'=>'joe']));

To add multiple records to a ManyToManyField in one go, include multiple arguments in
the call to add(), like this:

$en = \App\Models\Entry::objects()->get(['pk' => 1]);

$paul = \App\Models\Author::objects()->get(['name'=>'paul']);
$john = \App\Models\Author::objects()->get(['name'=>'john']);
$george = \App\Models\Author::objects()->get(['name'=>'george']);
$joe = \App\Models\Author::objects()->get(['name'=>'joe']);
$en->authors->add($paul, $john, $george, $joe);

Note

Powerorm will complain if you try to assign or add an object of the wrong type.

Retrieving objects

To retrieve objects from your database, construct a QuerySet via a Manager on your
model class.

A QuerySet represents a collection of objects from your database. It can have zero, one or many filters.
Filters narrow down the query results based on the given parameters.

In SQL terms, a QuerySet equates to a SELECT statement, and a filter is a limiting clause such as
WHERE or LIMIT.

You get a QuerySet by using your model’s Manager. Each model has at least one Manager,
which is accessed via the static method object(). Access it directly via the model class, like so:

\App\Models\Blog::objects()

The Manager is the main source of a QuerySet for a model.

For example, App\Models\Blog->objects->all() returns a QuerySet that contains all Blog objects in
the database.

Retrieving all objects

The simplest way to retrieve objects from a table is to get all of them. To do this, use the all()
method on a Manager:

\App\Models\Blog::objects()->all()

The all() method returns a QuerySet of all the objects in the database.

Retrieving specific objects with filters

The QuerySet returned by all() describes all objects in the database table.
Usually, though, you’ll need to select only a subset of the complete set of objects.

To create such a subset, you refine the initial QuerySet, adding filter conditions.
The two most common ways to refine a QuerySet are:

filter()

Returns a new QuerySet containing objects that match the given lookup parameters.

exclude()

Returns a new QuerySet containing objects that do not match the given lookup parameters.

This method take an associative array of parameters.

For example, to get a QuerySet of Authors who have the letter ‘joe’ in there name,
use filter() like so:

\App\Models\Author::objects()->filter(['name__contains'=>'joe'])

With the default manager class, it is the same as:

\App\Models\Author::objects()->all()->filter(['name__contains'=>'joe'])

Chaining filters

The result of refining a QuerySet is itself a QuerySet, so it’s possible to chain
refinements together. For example:

\App\Models\Entry::objects()
 ->filter(['headline__startswith'=>'what'])
 ->exclude(['rating__lte'=>3])
 ->filter(['blog_text__contains'=>'kenya']);

This takes the initial QuerySet of all entries in the database, adds a filter, then an exclusion,
then another filter.
The final result is a QuerySet containing all entries with a headline that starts with “What”,
excluding any entries with a rating of 3 or less and the blog_text contains the word ‘kenya’.

Filtered QuerySets are unique

Each time you refine a QuerySet, you get a brand-new QuerySet that is in no way
bound to the previous QuerySet.

Each refinement creates a separate and distinct QuerySet that can be stored, used and reused.

Example:

$qs1 = \App\Models\Entry::objects()->filter(['headline__startswith' => 'what']);
$qs2 = $qs1->exclude(['rating__gte' => 3]);
$qs3 = $qs1->filter(['blog_text__contains' => 'kenya']);

These three QuerySet are separate.

	The first is a base QuerySet containing all entries that contain a headline starting with “What”.

	The second is a subset of the first, with an additional criteria that excludes any entries with a rating of 3 or less.

	The third is a subset of the first, with an additional criteria that selects only the records whose the blog_text
contains the word ‘kenya’.

The initial QuerySet ($q1) is unaffected by the refinement process.

QuerySets are lazy

QuerySet are lazy – the act of creating a QuerySet doesn’t involve any database
activity. You can stack filters together all day long, and Powerorm won’t actually run the query until
the QuerySet is evaluated.

Take a look at this example:

$qs = \App\Models\Entry::objects()->filter(['headline__startswith' => 'what']);
$qs = $qs->exclude(['ratings' => 3]);
$qs = $qs->filter(['blog_text__contains' => 'kenya']);
var_dump($qs);

Though this looks like three database hits, in fact it hits the database only once, at the last line (var_dump($qs)).
In general, the results of a QuerySet aren’t fetched from the database until you “ask” for them.
When you do, the QuerySet is evaluated by accessing the database.

For more details on exactly when evaluation takes place, see When QuerySets are evaluated.

Retrieving a single object with get()

filter() will always give you a QuerySet, even if only a single object
matches the query - in this case, it will be a QuerySet containing a single element.

If you know there is only one object that matches your query, you can use the get() method on a
Manager which returns the object directly:

$autor = \App\Models\Author::objects()->get(['pk' => 1]);

You can use any query expression with get(), just like with filter() -
again, see Field lookups below.

Note

There is a difference between using get(), and using filter() with a
limit().
If there are no results that match the query, filter() will raise a DoesNotExist
exception. so in the code above, if there is no Author object with a primary key of 1, Powerorm will
raise DoesNotExist.

Similarly, Powerorm will complain if more than one item matches the filter() query.
In this case, it will raise MultipleObjectsReturned.

Other QuerySet methods

Most of the time you’ll use all(), get(), filter()
and exclude() when you need to look up objects from the database.
However, that’s far from all there is; see the QuerySet API Reference for a complete list of all the
various QuerySet methods.

Limiting QuerySets

To limit() your QuerySet to a certain number of results. This is the equivalent of
SQL’s LIMIT and OFFSET clauses.

For example, this returns the first 5 objects (LIMIT 5):

var_dump(\App\Models\Entry::objects()->all()->limit(null,5));

This returns the sixth through tenth objects (OFFSET 5 LIMIT 5):

var_dump(\App\Models\Entry::objects()->all()->limit(5,5));

Limiting a QuerySet returns a new QuerySet.

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as an associative array to the
QuerySet methods filter(), exclude()
and get().

Basic lookups keyword arguments take the form [field__lookuptype=> value]. (That’s a double-underscore). For
example:

\App\Models\Blog::objects()->filter(['name__istartswith'=>"a"])

translates (roughly) into the following SQL:

SELECT * FROM blog WHERE name LIKE 'a%'

The field specified in a lookup has to be the name of a model field. There’s one exception though, in case of a
ForeignKey you can specify the field name suffixed with _id. In this case, the value parameter
is expected to contain the raw value of the foreign model’s primary key. For example:

\App\Models\Entry::objects()->filter(['blog_id'=>1]);

Lookups that span relationships

Powerorm offers a powerful and intuitive way to “follow” relationships in lookups, taking care of the SQL JOINs for
you automatically, behind the scenes. To span a relationship, just use the field name of related fields across
models, separated by double underscores, until you get to the field you want.

This example retrieves all Entry objects with a Blog whose name is ‘Beatles Blog’:

\App\Models\Entry::objects()->filter(['blog__name'=>"Beatles Blog"]);

This spanning can be as deep as you’d like.

It works backwards, too. To refer to a “reverse” relationship, just use the lowercase name of the model.

This example retrieves all Blog objects which have at least one Entry whose headline contains ‘Lennon’:

More Queries Information

	Making queries

	QuerySet API reference

	Custom Lookups

	Custom Lookups

Making queries

Once you’ve created your data models, Powerorm automatically gives you a database-abstraction API that lets you
create, retrieve, update and delete objects.

This document explains how to use this API.

Throughout this guide (and in the reference), we’ll refer to the following models, which comprise a Weblog application:

// models/Blog

namespace App\Models;

use Eddmash\PowerOrm\Model\Model;

class Blog extends Model
{

 public function unboundFields()
 {
 return [
 'name'=>Model::CharField(['maxLength'=>100]),
 'tagline'=>Model::TextField()
];
 }
}

// models/Author

namespace App\Models;

use Eddmash\PowerOrm\Model\Model;

class Author extends Model
{

 public function unboundFields()
 {
 return [
 'name'=>Model::CharField(['maxLength'=>200]),
 'email'=>Model::EmailField()
];
 }
}

// models/Entry
namespace App\Models;

use Eddmash\PowerOrm\Model\Model;

/**
* Class Entry
*/
class Entry extends Model
{
 public function unboundFields()
 {
 return [
 'blog'=>Model::ForeignKey(['to'=>Blog::class]),
 'headline'=>Model::CharField(['maxLength'=>255]),
 'blog_text'=>Model::TextField(),
 'authors'=>Model::ManyToManyField(['to'=>Author::class]),
 'n_comments'=>Model::IntegerField(),
 'n_pingbacks'=>Model::IntegerField(),
 'ratings'=>Model::IntegerField(),
];
 }

}

Creating objects

To represent database-table data in PHP objects, Powerorm uses an intuitive system:

	A model class represents a database table, and

	an instance of that class represents a particular record in the database table.

To create an object, instantiate it using an associative array(keys are name of a model field, values are the
value to assign to the fields) to the model class, then call save() to save it to the database.

Using the block model we created above :

$blog = new \App\Models\Blog();
$blog->name = "Beatles Blog";
$blog->tagline='All the latest Beatles news.';
$blog->save();

This performs an INSERT SQL statement behind the scenes. Powerorm doesn’t hit the database until you explicitly call
save().

The save() method has no return value.

Saving changes to objects

To save changes to an object that’s already in the database, use save().

Given a Blog instance $blog that has already been saved to the database,
this example changes its name and updates its record in the database:

$blog->name = 'New name';
$blog->save();

This performs an UPDATE SQL statement behind the scenes.
Powerorm doesn’t hit the database until you explicitly call save().

Saving ForeignKey and ManyToManyField fields

Updating a ForeignKey field works exactly the same way as saving a normal field – simply assign an object of the right
type to the field in question.
This example updates the blog attribute of an Entry instance entry, assuming appropriate instances of Entry and Blog
are already saved to the database (so we can retrieve them below):

$en = \App\Models\Entry::objects()->get(['pk' => 1]);
$en->blog = \App\Models\Blog::objects()->get(['pk'=>4]);
$en->headline = "Filtered :doc:`QuerySet <queryset>`s are unique";
$en->blog_text = "These three :doc:`QuerySet <queryset>`s are separate.";
$en->save();

Updating a ManyToManyField works a little differently – use the add() method on the field
to add a record to the relation. This example adds the Author instance joe to the entry object:

$en = \App\Models\Entry::objects()->get(['pk' => 1]);
$en->authors->add(\App\Models\Author::objects()->get(['name'=>'joe']));

To add multiple records to a ManyToManyField in one go, include multiple arguments in
the call to add(), like this:

$en = \App\Models\Entry::objects()->get(['pk' => 1]);

$paul = \App\Models\Author::objects()->get(['name'=>'paul']);
$john = \App\Models\Author::objects()->get(['name'=>'john']);
$george = \App\Models\Author::objects()->get(['name'=>'george']);
$joe = \App\Models\Author::objects()->get(['name'=>'joe']);
$en->authors->add($paul, $john, $george, $joe);

Note

Powerorm will complain if you try to assign or add an object of the wrong type.

Retrieving objects

To retrieve objects from your database, construct a QuerySet via a Manager on your
model class.

A QuerySet represents a collection of objects from your database. It can have zero, one or many filters.
Filters narrow down the query results based on the given parameters.

In SQL terms, a QuerySet equates to a SELECT statement, and a filter is a limiting clause such as
WHERE or LIMIT.

You get a QuerySet by using your model’s Manager. Each model has at least one Manager,
which is accessed via the static method object(). Access it directly via the model class, like so:

\App\Models\Blog::objects()

The Manager is the main source of a QuerySet for a model.

For example, App\Models\Blog->objects->all() returns a QuerySet that contains all Blog objects in
the database.

Retrieving all objects

The simplest way to retrieve objects from a table is to get all of them. To do this, use the all()
method on a Manager:

\App\Models\Blog::objects()->all()

The all() method returns a QuerySet of all the objects in the database.

Retrieving specific objects with filters

The QuerySet returned by all() describes all objects in the database table.
Usually, though, you’ll need to select only a subset of the complete set of objects.

To create such a subset, you refine the initial QuerySet, adding filter conditions.
The two most common ways to refine a QuerySet are:

filter()

Returns a new QuerySet containing objects that match the given lookup parameters.

exclude()

Returns a new QuerySet containing objects that do not match the given lookup parameters.

This method take an associative array of parameters.

For example, to get a QuerySet of Authors who have the letter ‘joe’ in there name,
use filter() like so:

\App\Models\Author::objects()->filter(['name__contains'=>'joe'])

With the default manager class, it is the same as:

\App\Models\Author::objects()->all()->filter(['name__contains'=>'joe'])

Chaining filters

The result of refining a QuerySet is itself a QuerySet, so it’s possible to chain
refinements together. For example:

\App\Models\Entry::objects()
 ->filter(['headline__startswith'=>'what'])
 ->exclude(['rating__lte'=>3])
 ->filter(['blog_text__contains'=>'kenya']);

This takes the initial QuerySet of all entries in the database, adds a filter, then an exclusion,
then another filter.
The final result is a QuerySet containing all entries with a headline that starts with “What”,
excluding any entries with a rating of 3 or less and the blog_text contains the word ‘kenya’.

Filtered QuerySets are unique

Each time you refine a QuerySet, you get a brand-new QuerySet that is in no way
bound to the previous QuerySet.

Each refinement creates a separate and distinct QuerySet that can be stored, used and reused.

Example:

$qs1 = \App\Models\Entry::objects()->filter(['headline__startswith' => 'what']);
$qs2 = $qs1->exclude(['rating__gte' => 3]);
$qs3 = $qs1->filter(['blog_text__contains' => 'kenya']);

These three QuerySet are separate.

	The first is a base QuerySet containing all entries that contain a headline starting with “What”.

	The second is a subset of the first, with an additional criteria that excludes any entries with a rating of 3 or less.

	The third is a subset of the first, with an additional criteria that selects only the records whose the blog_text
contains the word ‘kenya’.

The initial QuerySet ($q1) is unaffected by the refinement process.

QuerySets are lazy

QuerySet are lazy – the act of creating a QuerySet doesn’t involve any database
activity. You can stack filters together all day long, and Powerorm won’t actually run the query until
the QuerySet is evaluated.

Take a look at this example:

$qs = \App\Models\Entry::objects()->filter(['headline__startswith' => 'what']);
$qs = $qs->exclude(['ratings' => 3]);
$qs = $qs->filter(['blog_text__contains' => 'kenya']);
var_dump($qs);

Though this looks like three database hits, in fact it hits the database only once, at the last line (var_dump($qs)).
In general, the results of a QuerySet aren’t fetched from the database until you “ask” for them.
When you do, the QuerySet is evaluated by accessing the database.

For more details on exactly when evaluation takes place, see When QuerySets are evaluated.

Retrieving a single object with get()

filter() will always give you a QuerySet, even if only a single object
matches the query - in this case, it will be a QuerySet containing a single element.

If you know there is only one object that matches your query, you can use the get() method on a
Manager which returns the object directly:

$autor = \App\Models\Author::objects()->get(['pk' => 1]);

You can use any query expression with get(), just like with filter() -
again, see Field lookups below.

Note

There is a difference between using get(), and using filter() with a
limit().
If there are no results that match the query, filter() will raise a DoesNotExist
exception. so in the code above, if there is no Author object with a primary key of 1, Powerorm will
raise DoesNotExist.

Similarly, Powerorm will complain if more than one item matches the filter() query.
In this case, it will raise MultipleObjectsReturned.

Other QuerySet methods

Most of the time you’ll use all(), get(), filter()
and exclude() when you need to look up objects from the database.
However, that’s far from all there is; see the QuerySet API Reference for a complete list of all the
various QuerySet methods.

Limiting QuerySets

To limit() your QuerySet to a certain number of results. This is the equivalent of
SQL’s LIMIT and OFFSET clauses.

For example, this returns the first 5 objects (LIMIT 5):

var_dump(\App\Models\Entry::objects()->all()->limit(null,5));

This returns the sixth through tenth objects (OFFSET 5 LIMIT 5):

var_dump(\App\Models\Entry::objects()->all()->limit(5,5));

Limiting a QuerySet returns a new QuerySet.

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as an associative array to the
QuerySet methods filter(), exclude()
and get().

Basic lookups keyword arguments take the form [field__lookuptype=> value]. (That’s a double-underscore). For
example:

\App\Models\Blog::objects()->filter(['name__istartswith'=>"a"])

translates (roughly) into the following SQL:

SELECT * FROM blog WHERE name LIKE 'a%'

The field specified in a lookup has to be the name of a model field. There’s one exception though, in case of a
ForeignKey you can specify the field name suffixed with _id. In this case, the value parameter
is expected to contain the raw value of the foreign model’s primary key. For example:

\App\Models\Entry::objects()->filter(['blog_id'=>1]);

Lookups that span relationships

Powerorm offers a powerful and intuitive way to “follow” relationships in lookups, taking care of the SQL JOINs for
you automatically, behind the scenes. To span a relationship, just use the field name of related fields across
models, separated by double underscores, until you get to the field you want.

This example retrieves all Entry objects with a Blog whose name is ‘Beatles Blog’:

\App\Models\Entry::objects()->filter(['blog__name'=>"Beatles Blog"]);

This spanning can be as deep as you’d like.

It works backwards, too. To refer to a “reverse” relationship, just use the lowercase name of the model.

This example retrieves all Blog objects which have at least one Entry whose headline contains ‘Lennon’:

More Queries Information

	Making queries

	QuerySet API reference

	Custom Lookups

	Custom Lookups

QuerySet API reference

This document describes the details of the QuerySet API.

It builds on the material presented in the model and database query guides,
so you’’ll probably want to read and understand those documents before reading this one.

Throughout this reference we’ll use the example Weblog models presented in the database query guide.

	When QuerySets are evaluated

	Methods that return new QuerySets

	filter()

	exclude()

	all()

	limit(offset, limit)

	Methods that do not return QuerySets

	get()

	count()

	exists()

	Field lookups

	exact

	isnull

	icontains

	in

	gt

	gte

	lt

	lte

	istartswith

	iendswith

	range

When QuerySets are evaluated

Internally, a QuerySet can be constructed, filtered, and generally passed around without actually hitting the database.
No database activity actually occurs until you do something to evaluate the queryset.

You can evaluate a QuerySet in the following ways:

	
	Iteration.

	A QuerySet is iterable, and it executes its database query the first time you iterate over it.
For example, this will print the headline of all entries in the database:

$entries = \App\Models\Entry::objects()->all();
foreach ($entries as $entry) :
 echo $entry->headline . "
";
endforeach;

	
	dumping the queryset.

	A QuerySet is evaluated when you call var_dump(), print_r() or symfony’s dump() on it.
This is for convenience so you can immediately see your results when using the API.

var_dump(\App\Models\Entry::objects()->all());

	
	count().

	A QuerySet is evaluated when you call count() on it. This, as you might expect, returns the length of the result list.

Note

If you only need to determine the number of records in the set (and don’t need the actual objects),
it’s much more efficient to handle a count at the database level using SQL’s SELECT COUNT(*).
Powerorm provides a count() method for precisely this reason.

Methods that return new QuerySets

Powerorm provides a range of QuerySet refinement methods that modify either the types of results returned by the
QuerySet or the way its SQL query is executed.

filter()

Returns a new QuerySet containing objects that match the given lookup parameters.
Multiple parameters are joined via AND in the underlying SQL statement.

exclude()

Returns a new QuerySet containing objects that do not match the given lookup parameters.

all()

Returns a copy of the current QuerySet (or QuerySet subclass). This can be useful in situations where you might want
to pass in either a model manager or a QuerySet and do further filtering on the result.
After calling all() on either object, you.ll definitely have a QuerySet to work with.

When a QuerySet is evaluated, it typically caches its results.
If the data in the database might have changed since a QuerySet was evaluated, you can get updated results for the same
query by calling all() on a previously evaluated QuerySet.

limit(offset, limit)

options

	offset - the position to start fetching the record from, if null start fetching for the first record in the
table.

	limit - the number of records to fetch

To limit QuerySet to a certain number of results. This is the equivalent of SQL’s LIMIT and OFFSET clauses.

For example, this returns the first 5 objects (LIMIT 5):

var_dump(\App\Models\Entry::objects()->all()->limit(null,5));

This returns the sixth through tenth objects (OFFSET 5 LIMIT 5):

var_dump(\App\Models\Entry::objects()->all()->limit(5,5));

Limiting a QuerySet returns a new QuerySet.

Methods that do not return QuerySets

The following QuerySet methods evaluate the QuerySet and return something other than a QuerySet.

get()

Returns the object matching the given lookup parameters, which should be in the format described in Field lookups.

get() raises MultipleObjectsReturned if more than one object was found.

get() raises a DoesNotExist exception if an object wasn’t found for the given parameters.

count()

Returns an integer representing the number of objects in the database matching the QuerySet.
The count() method never raises exceptions.

Example:

Returns the total number of entries in the database.

// Returns the total number of entries in the database.
echo \App\Models\Entry::objects()->count();

// Returns the number of entries whose headline starts with 'what'
echo \App\Models\Entry::objects()->filter(['headline__startswith' => 'what'])->count();

A count() call performs a SELECT COUNT(*) behind the scenes, so you should always use count() rather than loading all
of the record into PHP objects and calling count() on the result
(unless you need to load the objects into memory anyway, in which case count() will be faster).

Note that if you want the number of items in a QuerySet and are also retrieving model instances from it
(for example, by iterating over it), it’s probably more efficient to use count(queryset)
which won’t cause an extra database query like Queryset::count() would.

exists()

Returns True if the QuerySet contains any results, and False if not.

This tries to perform the query in the simplest and fastest way possible, but it does execute nearly the same query as
a normal QuerySet query.

exists() is useful for searches relating to both object membership in a QuerySet and to the existence of any objects in
a QuerySet, particularly in the context of a large QuerySet.

The most efficient method of finding whether a model with a unique field (e.g. primary_key) is a member of a QuerySet is:

if(Entry::objects()->filter(['pk'=>123])->exists()):
 ... code
endif;

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as keyword arguments to the
QuerySet methods filter(), exclude() and get().

For an introduction, see models and database queries documentation.

Powerorms’ built-in lookups are listed below. It is also possible to write custom lookups for
model fields.

As a convenience when no lookup type is provided (like in Entry::objects()->get(['id'=>14])) the lookup type is assumed
to be exact.

exact

Exact match. If the value provided for comparison is null, it will be interpreted as an SQL NULL
(see isnull for more details).

Examples:

Entry::objects()->filter(['pk__exact'=>14])
Entry::objects()->filter(['pk__exact'=>null])

SQL equivalents:

SELECT ... WHERE id = 14;
SELECT ... WHERE id IS NULL;

isnull

Takes either true or false, which correspond to SQL queries of IS NULL and IS NOT NULL, respectively.

Example:

Entry::objects()->filter(['pk__isnull'=>true])

SQL equivalent:

SELECT ... WHERE id IS NULL;

icontains

Case-insensitive containment test.

Example:

Entry::objects()->get(['blog_text__icontains'=>'sequi']);

SQL equivalent:

SELECT ... WHERE blog_text LIKE '%sequi%';

Note this will match the blog_text ‘Sequi honored today’ and ‘sequi honored today’.

in

In a given list.

Example:

Entry::objects()->filter(['pk__in'=>[2,5,3]]);

SQL equivalent:

SELECT ... WHERE id IN (2,5,3);

You can also use a queryset to dynamically evaluate the list of values instead of providing a list of literal values:

inner_qs = Blog::objects()->filter(['name__icontains'=>'dolor']);
entries = Entry::objects()->filter(['blog__in'=>inner_qs)

This queryset will be evaluated as subselect statement:

SELECT ... WHERE blog.id IN (SELECT id FROM ... WHERE NAME LIKE '%dolor%')

gt

Greater than.

Example:

Entry::objects()->filter(['pk__gt'=>1])

SQL equivalent:

SELECT ... WHERE id > 4;

gte

Greater than or equal to.

lt

Less than.

lte

Less than or equal to.

istartswith

Case-insensitive starts-with.

Example:

Entry::objects()->filter(['headline__iendswith'=>'Will'])

SQL equivalent:

SELECT ... WHERE headline ILIKE 'Will%';

iendswith

Case-insensitive ends-with.

Example:

Entry::objects()->filter(['headline__iendswith'=>'Will'])

SQL equivalent:

SELECT ... WHERE headline ILIKE '%will'

range

Range test (inclusive).

Example:

$date = new \DateTime('2005-01-01');
$date2 = new \DateTime('2005-05-01');
Entry::objects()->filter(['pub_date__range'=>[$date, $date2]]);

SQL equivalent:

SELECT ... WHERE pub_date BETWEEN '2005-01-01' and '2005-05-01';

Custom Lookups

Custom Lookups

Migration

	The Commands

	Workflow

	Migration files

Migrations are PowerOrm’s way of propagating changes you make to your models (adding a field, deleting a model, etc.)
into your database schema. They’re designed to be mostly automatic, but you’ll need to know when to make migrations,
when to run them, and the common problems you might run into.

The Commands

There are several commands which you will use to interact with migrations and PowerOrm’s handling of database schema:

	migrate, which is responsible for applying migrations, as well as unapplying and listing
their status.

	makemigrations, which is responsible for creating new migrations based on the
changes you have made to your models.

You should think of migrations as a version control system for your database schema. makemigrations
is responsible for packaging up your model changes into individual migration files - analogous to commits - and
migrate is responsible for applying those to your database.

The migration files for each app live in a “migrations” directory inside of that app, and are designed to be committed
to, and distributed as part of, its codebase. You should be making them once on your development machine and then
running the same migrations on your colleagues’ machines, your staging machines, and eventually your production
machines.

Migrations will run the same way on the same dataset and produce consistent results, meaning that what you see in
development and staging is, under the same circumstances, exactly what will happen in production.

PowerOrm will make migrations for any change to your models or fields - even options that don’t affect the database -
as the only way it can reconstruct a field correctly is to have all the changes in the history, and you might need
those options in some data migrations later on (for example, if you’ve set custom validators).

Workflow

Working with migrations is simple. Make changes to your models - say, add a field and remove a model - and then
run makemigrations

$ php pmanager.php makemigrations
 Creating Migrations :
 m0002_Auto_20161023_1010.php
 - Create Model Car
 - Create Model Manufacturer
 - Add Field Manufacturer To Car

Your models will be scanned and compared to the versions currently contained in your migration files, and then a new
set of migrations will be written out. Make sure to read the output to see what makemigrations thinks you have
changed - it’s not perfect, and for complex changes it might not be detecting what you expect.

Once you have your new migration files, you should apply them to your database to make sure they work as expected:

$ php pmanager.php migrate
 Perfoming system checks ...
 System check identified 0 issues
 Running migrations:
 Applying \app\migrations\m0001_Initial...OK

The command runs in two stages;

	first, it synchronizes unmigrated models, and

	then it runs any migrations that have not yet been applied.

Once the migration is applied, commit the migration and the models change to your version control system as a single
commit - that way, when other developers (or your production servers) check out the code, they’ll get both the changes
to your models and the accompanying migration at the same time.

Migration files

Migrations are stored as an on-disk format, referred to here as “migration files”. These files are actually just normal
PHP files with an agreed-upon object layout, written in a declarative style.

A basic migration file looks like this:

/**Migration file generated by PowerOrm(1.1.0-pre-alpha)*/

namespace app\migrations;

use Eddmash\PowerOrm\Migration\Migration;
use Eddmash\PowerOrm\Migration\Operation\Model as modelOperation;
use Eddmash\PowerOrm\Model\Field as modelField;

class m0001_Initial extends Migration{

 public function getDependency(){
 return [];
 }

 public function getOperations(){
 return [
 modelOperation\CreateModel::createObject(
 [
 'name'=> 'User',
 'fields'=>[
 'firstName'=> modelField\CharField::createObject(['maxLength'=> 30]),
 'lastName'=> modelField\CharField::createObject(['maxLength'=> 30]),
 'id'=> modelField\AutoField::createObject(['primaryKey'=> true, 'autoCreated'=> true]),
],
 'meta'=>[
 'dbTable'=> 'local_user',
 'verboseName'=> 'Local Users',
],
]
),
] ;
 }

}

What PowerOrm looks for when it loads a migration file is a subclass of Eddmash\PowerOrm\Migration\Migration
called Migration. It then inspects this object for four attributes, only two of which are used most of the time:

	dependencies, a list of migrations this one depends on.

	operations, a list of Operation classes that define what this migration does.

The operations are the key; they are a set of declarative instructions which tell PowerOrm what schema changes need to
be made.
PowerOrm scans them and builds an in-memory representation of all of the schema changes to all apps, and uses this to
generate the SQL which makes the schema changes.

That in-memory structure is also used to work out what the differences are between your models and the current state of
your migrations; PowerOrm runs through all the changes, in order, on an in-memory set of models to come up with the
state of your models last time you ran makemigrations. It then uses these models to compare against the ones in your
models directory to work out what you have changed.

You should rarely, if ever, need to edit migration files by hand, but it’s entirely possible to write them manually
if you need to. Some of the more complex operations are not autodetectable and are only available via a hand-written
migration, so don’t be scared about editing them if you have to.

Integrating Powerorm

This is guide in setting up and using Powerorm with frameworks :

	Integrating with Codeigniter 4

	Integrating with Laravel

Integrating with Codeigniter 4

This is recipe for using Powerorm with codeigniter.
Make sure to install powerorm via composer.

composer require eddmash/powerorm

Codeigniter 4

Note

Before its officially released ensure you have latest version as per github commits

For Codeigniter 4 and any other projects that use namespace
(see Laravel) you just need to ensure the orm is loaded early
enough.

To integrate the orm into CI4, It boils down to the following steps:

	create application class

	create a service

	Load Orm

	Create Powerorm Command line

Create Application Class

The orm requires application to register there information with it for it to
work. some of the information the application needs to know about an application
are where to find the models, where to place migrations..visit
Components to learn more.

Powerorm needs some configurations for it to
work e.g. the database settings.

We are creating this file inside the application folder, on the same level as
the views folder.

namespace App;

use Eddmash\PowerOrm\BaseOrm;
use Eddmash\PowerOrm\Components\Application;

class Powerorm extends Application
{
 public static function configs()
 {
 return [
 'database' => [
 'host' => '127.0.0.1',
 'dbname' => 'tester',
 'user' => 'root',
 'password' => '',
 'driver' => 'pdo_mysql',
],
 'components' => [
 'app' => static::class,
],
 'dbPrefix' => 'test_',
 'charset' => 'utf-8',
];

 }

 /**
 * @inheritdoc
 */
 public function ready(BaseOrm $baseOrm)
 {
 }
}

Create Service

We need to create an orm service which we can use to access the orm across the
application. If an instance does not exist one will be created. We use a
getSharedInstance to always get the same instance of the orm.

Add this method to the Service class at application/Config/Services.php

/**
 * @param bool $getShared
 * @return \Eddmash\PowerOrm\BaseOrm
 */
public static function orm($getShared = true)
{
 if ($getShared):
 return self::getSharedInstance('orm');
 endif;

 return \Eddmash\PowerOrm\Loader::webRun(\Config\Powerorm::asArray());
}

Load the Orm

To load the orm we listen for the pre_system and call the orm service. This
is a shared service hence we only get the same instance of the orm through out
the application.

Add this to application/Config/Events.php

Events::on('pre_system', function (){
 Services::orm();
});

Create Powerorm Command File

To be able to run commands provided by powerorm,
we need to create a codeigniter 4 command that will enable us interact with
powerorm.

create the file application/Commands/Powerorm.php and add the following
content.

namespace App\Commands;

use CodeIgniter\CLI\BaseCommand;
use Eddmash\PowerOrm\Console\Manager;
use Symfony\Component\Console\Input\ArgvInput;

class Powerorm extends BaseCommand
{
 protected $group = 'Powerorm';
 protected $name = 'powerorm:pmanager';
 protected $description = 'Displays powerorm commands.';

 public function run(array $params)
 {
 // remove the 'ci4.php' from the arguments
 $input = new ArgvInput(array_slice($_SERVER['argv'], 1));

 // launch powerorm console
 Manager::run(true, $input);
 }
}

	With that you can run all the commands that powerorm

	provides as follows:

php spark powerorm:pmanager
php spark powerorm:pmanager makemigrations
php spark powerorm:pmanager makemigrations --dry-run
php spark powerorm:pmanager makemigrations --dry-run -vvv
php spark powerorm:pmanager makemigrations -h
php spark powerorm:pmanager migrate
php spark powerorm:pmanager migrate zero
php spark powerorm:pmanager robot

See commands for all the available commands.

Integrating with Laravel

This is recipe for using Powerorm with laravel.
Make sure to install powerorm via composer.

composer require eddmash/powerorm

Create Powerorm Service Provider

Make a Powerorm service provider that is both a wrapper and a bootstrap
for Powerorm.

php artisan make:provider PowerormServiceProvider

Register the service provider in the config/app.php configuration file.
This file contains a providers array where you can list the class names of
your service providers.

To register PowerormServiceProvider, simply add it to the array:

'providers' => [
 // Other Service Providers

 App\Providers\PowerormServiceProvider::class,
],

Make sure it looks like the one below.

namespace App\Providers;

use Illuminate\Support\ServiceProvider;

class PowerormServiceProvider extends ServiceProvider
{

 /**
 * Bootstrap the application services.
 *
 * @return void
 */
 public function boot()
 {
 \Eddmash\PowerOrm\Loader::webRun(config('powerorm'));
 }

 /**
 * Register the application services.
 *
 * @return void
 */
 public function register()
 {
 $this->app->singleton(\Eddmash\PowerOrm\BaseOrm::class);

 }
}

Create Application Class

The orm requires application to register there information with it for it to
work. some of the information the application needs to know about an application
are where to find the models, where to place migrations..visit
Components to learn more.

Powerorm needs some configurations for it to
work e.g. the database settings.

We create this class inside the app folder on the same level as providers
folder.

namespace App;

use Eddmash\PowerOrm\BaseOrm;
use Eddmash\PowerOrm\Components\Application;

class Powerorm extends Application
{
 public static function configs()
 {
 return [
 'database' => [
 'host' => '127.0.0.1',
 'dbname' => 'tester',
 'user' => 'root',
 'password' => '',
 'driver' => 'pdo_mysql',
],
 'components' => [
 'app' => static::class,
],
 'dbPrefix' => 'test_',
 'charset' => 'utf-8',
];

 }

 /**
 * @inheritdoc
 */
 public function ready(BaseOrm $baseOrm)
 {
 }
}

Create Laravel Command

To be able to run commands provided by powerorm, we
need to create a laravel command that will enable us interact with powerorm.

Create a powerom command using artisan this will be placed at
app/Console/Commands as show below.

php artisan make:command Powerorm

Register the new command with laravel, This is done on the file
app/Console/Kernel.php as shown below

protected $commands = [
 //
 Powerorm::class
];

Make powerorm command look like the one below app/Console/Commands/Powerorm.php

namespace App\Console\Commands;

use Eddmash\PowerOrm\Console\Manager;
use Illuminate\Console\Command;
use Symfony\Component\Console\Input\ArgvInput;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

class Powerorm extends Command
{
 /**
 * The name and signature of the console command.
 *
 * @var string
 */
 protected $signature = 'powerorm:pmanager';

 /**
 * The console command description.
 *
 * @var string
 */
 protected $description = 'Display commands provided by powerorm.';

 /**
 * We stop laravel from running the command and pass control to powerorm
 * {@inheritdoc}
 */
 public function run(InputInterface $input, OutputInterface $output)
 {
 // remove the 'artisan' from the arguments
 $input = new ArgvInput(array_slice($_SERVER['argv'], 1));

 // launch powerorm console
 Manager::run(true, $input);
 }
}

With that you can run all the commands that powerorm
provides as follows:

php artisan powerorm:pmanager
php artisan powerorm:pmanager makemigrations
php artisan powerorm:pmanager makemigrations --dry-run
php artisan powerorm:pmanager makemigrations --dry-run -vvv
php artisan powerorm:pmanager makemigrations -h
php artisan powerorm:pmanager migrate
php artisan powerorm:pmanager migrate zero
php artisan powerorm:pmanager robot

See commands for all the availabel commands.

Development Tools

	Powerorm Management Commands

Powerorm Management Commands

	pmanager.php

	Available Commands

	help

	list

	makemigrations

	checks

	migrate

	showmigrations

	makemodel

	robot

pmanager.php

Is Powerorm’s command-line utility for administrative tasks. This document outlines all it can do.

Usage:

php pmanager.php <command> [options]

Available Commands

help

Displays help for a command

list

Lists commands

makemigrations

Creates new migrations based on the changes detected to your models. Migrations, their relationship with apps and more
are covered in depth in the migrations documentation.

–dry-run

Shows what migrations would be made without actually writing any migrations files to disk.
Using this option along with -vvv will also show the complete migrations files that would be written.

checks

Inspects the models(as per now) in the project for common problems.

–list-tags

Lists all available tags.

–tag TAGS, -t TAGS

As of now this command runs checks on models but in future this command might perfom different types of checks that
are categorized with tags.

You can use these tags to restrict the checks performed to just those in a particular category.

For example, to perform only models and compatibility checks, run:

php pmanager.php check -t MODEL

–fail-level {CRITICAL,ERROR,WARNING,INFO,DEBUG}

Specifies the message level that will cause the command to exit with a non-zero status. Default is ERROR.

migrate

Synchronizes the database state with the current set of models and migrations. Migrations, their relationship with
apps and more are covered in depth in the migrations documentation.

	The behavior of this command changes depending on the arguments provided:

	
	No arguments: All models have all of their migrations run.

	<migrationname>: Brings the database schema to a state where the named migration is applied,but no later
migrations in the same app are applied. This may involve unapplying migrations if you have previously migrated
past the named migration.
Use the name zero to unapply all migrations for an app.

–fake

Tells Powerorm to mark the migrations as having been applied or unapplied, but without actually running the SQL to
change your database schema.

This is intended for advanced users to manipulate the current migration state directly if they’re manually applying
changes; be warned that using –fake runs the risk of putting the migration state table into a state where manual
recovery will be needed to make migrations run correctly.

showmigrations

Shows all migrations in a project. i.e. lists all the migrations available, and whether or not each migration is
applied (marked by an (applied) next to the migration name).

makemodel

Generate a model class.

php pmanager.php makemodel 'App\Models\Author' -p application/Models

<model_name>

The name of the model to generate. Use the name “zero” to unapply all migrations.

-p, –path

The location the generated model will be place relative to vendor folder. defaults to the same level as the vendor
folder.

any path provided should be relative to the vendor folder e.g.

-p app/models

will look for directory name app on the same level as vendor directory.

-f, –force

Force overwrite if model already exists.
if this option is not available the command will through an CommandError if the model already exists.

robot

A little fun is good for the soul, draws a robot because…well, why not ?

PowerForm User Guide

The Form component is a tool to help you solve the problem of allowing end-users to interact with the data and modify
the data in your application. And though traditionally this has been through HTML forms, the component focuses on
processing data to and from your client and application, whether that data be from a normal form post or from an API.

Installation

Via composer (recommended):

composer require eddmash/powerform

Or add this to the composer.json file:

{
 "require": {
 "eddmash/powerform": "1.1"(check latest version)
 }
}

You could also Download or Clone package from github.

Then, require the vendor/autoload.php file to enable the autoloading mechanism provided by Composer. Otherwise, your
application won’t be able to find the classes of Powerform.

	Working with forms
	Building a form

	Form class

	Building a form in Powerform

	The Logic

	More about Powerform classes

	Bound and unbound form instances

	More on fields

	Widgets

	Field data

	Working with form templates

	Form rendering options

	Rendering fields manually

	Rendering form error messages

	Looping over the form’s fields

	Looping over hidden and visible fields

	The Forms API
	Bound and unbound forms

	class Form

	Form.isBound

	Using forms to validate data

	Dynamic initial values

	Accessing the fields from the form

	Accessing “clean” data

	Outputting forms as HTML

	Configuring form elements’ HTML id attributes and <label> tags

	Binding uploaded files to a form

	Testing for multipart forms

	Prefixes for forms

	Form fields
	Core field arguments

	Built-in Field classes

	Widgets
	Specifying widgets

	Built-in widgets

	Creating forms from models
	ModelForm

	Field types

	Overriding the default fields

	Providing initial values

	Overriding the clean() method

	The save() method

	Form and field validation
	Raising ValidationError

	Raising multiple errors

	Using validation in practice

	Validators
	Writing validators

	How validators are run

	Model Form Example
	The Model Class

	The Model Form Class

	The template

	The Rendering fields manually

Working with forms

	Building a form

	Form class

	Building a form in Powerform

	The Logic

	More about Powerform classes

	Bound and unbound form instances

	More on fields

	Widgets

	Field data

	Working with form templates

	Form rendering options

	Rendering fields manually

	Rendering form error messages

	Looping over the form’s fields

	Looping over hidden and visible fields

Handling forms is a complex business. where numerous items of data of several different types may need to be:

	prepared for display in a form,

	rendered as HTML,

	edited using a convenient interface,

	returned to the server,

	validated and cleaned up, and then saved or passed on for further processing.

Powerform functionality can simplify and automate vast portions of this work, and can also do it more securely
than most programmers would be able to do in code they wrote themselves.

Powerform handles three distinct parts of the work involved in forms:

	preparing and restructuring data to make it ready for rendering.

	creating HTML forms for the data

	receiving and processing submitted forms and data from the client.

It is possible to write code that does all of this manually, but Powerform can take care of it all for you.

Building a form

The work that needs to be done

Suppose you want to create a simple form on your website, in order to obtain the user’s name. You’d need something like
this in your template:

<form action="/your-name/" method="post">

 <label for="your_name">Your name: </label>
 <input id="your_name" type="text" name="your_name" value="">

 <input type="submit" value="OK">

</form>

This tells the browser to return the form data to the URL /your-name/, using the POST method. It will display a
text field, labeled “Your name:”, and a button marked “OK”.

When the form is submitted, the POST request which is sent to the server will contain the form data.

Now you’ll also need a view corresponding to that /your-name/ URL which will find the appropriate key/value pairs
in the request, and then process them.

This is a very simple form. In practice, a form might contain dozens or hundreds of fields, many of which might need to
be pre-populated, and we might expect the user to work through the edit-submit cycle several times before concluding
the operation.

We might require some validation to occur in the browser, even before the form is submitted; we might want to use much
more complex fields, that allow the user to do things like pick dates from a calendar and so on.

At this point it’s much easier to get Powerform to do most of this work for us.

Form class

At the heart of this system of components is Powerforms’ Form class. In much the same way that a
Powerorm model describes the logical structure of an object, its behavior, and the way its parts are represented to us,
a Form class describes a form and determines how it works and appears.

In a similar way that a model class’s fields map to database fields, a form class’s fields map to HTML form <input>
elements. (A Model Form maps a model class’s fields to HTML form <input> elements via a Form)

A form’s fields are themselves classes; they manage form data and perform validation when a form is submitted.
A DateField and a FieldField handle very different kinds of data and have
to do different things with it.

A form field is represented to a user in the browser as an HTML “widget” - a piece of user interface machinery.
Each field type has an appropriate default Widget class, but these can be overridden as required.

Building a form in Powerform

The Form class

We already know what we want our HTML form to look like. Our starting point for it in Powerform is this:

namespace App\Forms;

use Eddmash\PowerOrm\Form\Form;

class CommentForm extends Form
{
 /**
 * @inheritDoc
 */
 public function fields()
 {

 return [
 'your_name' => Form::CharField(['label'=>'Your name', 'maxLength'=>100]),
];
 }

}

This defines a Form class with a field (your_name). We’ve applied a human-friendly label to the
field, which will appear in the <label> when it’s rendered (although in this case, the label we specified is actually
the same one that would be generated automatically if we had omitted it).

The field’s maximum allowable length is defined by maxLength. This does two things.:

	It puts a maxlength=”100” on the HTML <input> (so the browser should prevent the user from entering more than
that number of characters in the first place).

	It also means that when Powerform receives the form back from the browser,
it will validate the length of the data.

A Form instance has an isValid() method, which runs validation routines for
all its fields. When this method is called, if all fields contain valid data, it will:

	return true

	place the form’s data in its cleanedData attribute.

The whole form, when rendered for the first time, will look like:

<label for="your_name">Your name: </label>
<input id="your_name" type="text" name="your_name" maxlength="100" required />

Note that it does not include the <form> tags, or a submit button. We’ll have to provide those ourselves in the template.

The Logic

Form data is sent back to your controller, generally the same controller that published the form.
This allows us to reuse some of the same logic.

To handle the form we need to instantiate it in the controller for the URL where we want it to be published.

public function commentform()
{
 if ($_SERVER['REQUEST_METHOD'] === "POST"):

 $form = new CommentForm(['data' => $_POST]);
 if ($form->isValid()):
 // process the data in form.cleaned_data as required
 // ...
 // redirect to a new URL:
 endif;
 else:
 $form = new CommentForm();
 endif;

 return render('create.html', ['form' => $form]);
}

If we arrive at this controller with a GET request, it will create an empty form instance and pass it in to the
template for rendering. This is what we can expect to happen the first time we visit the URL.

If the form is submitted using a POST request, the controller will once again create a form instance and populate
it with data from the request: $form = new CommentForm(['data' => $_POST]).
This is called “binding data to the form” (it is now a bound form).

We call the form’s isValid() method; if it’s not true, we go back to the template with the
form. This time the form is no longer empty (unbound) so the HTML form will be populated with the data previously
submitted, where it can be edited and corrected as required.

If isValid() is true, we’ll now be able to find all the validated form data in its
cleanedData attribute. We can use this data to update the database or do other processing
before sending an HTTP redirect to the browser telling it where to go next.

We don’t need to do much in our create.html template. The simplest example is:

<form method="post" novalidate>

 <?php echo $form;?>

 <input type="submit" value="Send" name="Send">
</form>

All the form’s fields and their attributes will be unpacked into HTML markup from that echo $form;

Note

HTML5 input types and browser validation

If your form includes a URLField, an EmailField or any integer field
type, Powerform will use the url, email and number HTML5 input types. By default, browsers may apply their own
validation on these fields, which may be stricter than Powerforms’s validation. If you would like to disable this
behavior, set the novalidate attribute on the form tag, or specify a different widget on the field, like
TextInput.

That’s all you need to get started, but the forms puts a lot more at your fingertips. Once you understand the basics of
the process described above, you should be prepared to understand other features of the forms system and ready to learn
a bit more about the underlying machinery.

More about Powerform classes

All form classes are created as subclasses of \Eddmash\PowerOrm\Form\Form, including the
ModelForm.

Note

Models and Forms

In fact if your form is going to be used to directly add or edit a Powerorm model, a ModelForm can
save you a great deal of time, effort, and code, because it will build a form, along with the appropriate fields and
their attributes, from a Model class.

Bound and unbound form instances

The distinction between Bound and unbound forms is important:

	An unbound form has no data associated with it. When rendered to the user, it will be empty or will contain
default values.

	A bound form has submitted data, and hence can be used to tell if that data is valid. If an invalid bound form is
rendered, it can include inline error messages telling the user what data to correct.

The form’s isBound attribute will tell you whether a form has data bound to it or not.

More on fields

Consider a more useful form than our minimal example above, which we could use to implement “contact me” functionality
on a personal website:

namespace App\Forms;

use Eddmash\PowerOrm\Form\Form;

class ContactForm extends Form
{
 /**
 * @inheritDoc
 */
 public function fields()
 {
 return [
 'subject' => Form::CharField(['maxLength'=>100]),
 'message' => Form::CharField(['widget'=>Form::TextArea()]),
 'email' => Form::EmailField(),
 'cc_myself'=>Form::BooleanField(['required'=>false])
];
 }

}

Our earlier form used a single field, your_name, a CharField. In this case, our form has
four fields: subject, message, sender and cc_myself. CharField,
EmailField and BooleanField are just three of the available field
types; a full list can be found in Form fields.

Widgets

Each Form fields has a corresponding Widget class, which in turn corresponds to an HTML
form widget such as <input type=”text”>.

In most cases, the field will have a sensible default widget. For example, by default,
a CharField will have a TextInput widget, that produces an
<input type=”text”> in the HTML. If you needed <textarea> instead, you’d specify the appropriate widget when
defining your form field, as we have done for the message field.

Field data

Whatever the data submitted with a form, once it has been successfully validated by calling isValid()
(and isValid() has returned true), the validated form data will be in the cleanedData
associative array.

This data will have been nicely converted into Php types for you.

Note

You can still access the unvalidated data directly from $_POST at this point, but the validated data is better.

In the contact form example above, cc_myself will be a boolean value. Likewise, fields such as IntegerField and
DecimalField convert values to a Php int and float respectively.

Here’s how the form data could be processed in the view that handles this form:

// on your controller
public function contactform()
{
 if (($_SERVER['REQUEST_METHOD'] === "POST"):

 $form = new ContactForm(['data' => $_POST]);
 if ($form->isValid()):
 $subject = $form->cleanedData['subject'];
 $email = $form->cleanedData['email'];
 $message = $form->cleanedData['message'];
 $cc_myself = $form->cleanedData['cc_myself'];

 // more code
 endif;
 else:
 $form = new ContactForm();
 endif;

 return render('form', ['form' => $form]);
}

Some field types need some extra handling. For example, files that are uploaded using a form need to be handled
differently (they can be retrieved from $_FILES, rather than $_POST).

For details of how to handle file uploads with your form, see Binding uploaded files
to a form.

Working with form templates

All you need to do to display your form, is to create an instance of the form and echo it out.

echo $form;

This will render its <label> and <input> elements appropriately.

Form rendering options

Note

Additional form template furniture

Don’t forget that a form’s output does not include the surrounding <form> tags, or the form’s submit control.
You will have to provide these yourself.

There are other output options though for the <label>/<input> pairs:

	asTable() will render them as table cells wrapped in <tr> tags

	asParagraph() will render them wrapped in <p> tags

	asUl() will render them wrapped in tags

Note that you’ll have to provide the surrounding <table> or elements yourself.

Here’s the output of asParagraph() for our ContactForm instance:

echo $form->asParagraph();

<p>
 <label for="id_subject">Subject</label>
 <input maxlength="100" type="text" name="subject" id="id_subject">

</p>
<p>
 <label for="id_message">Message</label>

 <textarea name="message"id="id_message"></textarea>

</p>
<p>
 <label for="id_email">Email</label>

 <input type="email" name="email" id="id_email">

</p>
<p>
 <label for="id_cc_myself">Cc myself</label>

 <input type="checkbox" name="cc_myself" id="id_cc_myself">
</p>

Note that each form field has an ID attribute set to id_<field-name>, which is referenced by the accompanying label
tag. This is important in ensuring that forms are accessible to assistive technology such as screen reader software.
You can also customize the way in which labels and ids are generated.

See Outputting forms as HTML for more on this.

Rendering fields manually

We can do it manually if we like (allowing us to reorder the fields, for example). Each field is available as an
attribute of the form using

echo $form->{name_of_field}

For example:

<form method="post" novalidate>

 <?= $form->nonFieldErrors(); ?>

 <div class="fieldWrapper">
 <?= $form->subject->getErrors(); ?>
 <label for="<?= $form->subject->getIdForLabel(); ?>">Email subject:</label>
 <?= $form->subject; ?>
 </div>

 <div class="fieldWrapper">
 <?= $form->message->getErrors(); ?>
 <label for="<?= $form->message->getIdForLabel(); ?>">Message:</label>
 <?= $form->message; ?>
 </div>

 <div class="fieldWrapper">
 <?= $form->email->getErrors(); ?>
 <label for="<?= $form->email->getIdForLabel(); ?>">Your email address:</label>
 <?= $form->email; ?>
 </div>

 <div class="fieldWrapper">
 <?= $form->cc_myself->getErrors(); ?>
 <label for="<?= $form->cc_myself->getIdForLabel(); ?>">CC yourself?:</label>
 <?= $form->cc_myself; ?>
 </div>

 <input type="submit" value="Send" name="Send">
</form>

Complete <label> elements can also be generated using the labelTag(). For example:

<div class="fieldWrapper">
 <?= $form->cc_myself->getErrors(); ?>
 <?= $form->cc_myself->labelTag(); ?>
 <?= $form->cc_myself; ?>
</div>

Rendering form error messages

Of course, the price of this flexibility is more work. Until now we haven’t had to worry about how to display form
errors, because that’s taken care of for us. In this example we have had to make sure we take care of any errors for
each field and any errors for the form as a whole. Note nonFieldErrors() at the top of the
form and the getErrors() on each field.

Using $form->field_name->getErrors(); displays a list of form errors, rendered as an unordered list.

This might look like:

<ul class="errorlist">
 Sender is required.

The list has a CSS class of errorlist to allow you to style its appearance. If you wish to further customize the
display of errors you can do so by looping over them:

<div class="fieldWrapper">

 <?php foreach ($form->subject->getErrors() as $error) : ?>
 <?= $error; ?>
 <?php endforeach; ?>

 <label for="<?= $form->subject->getIdForLabel(); ?>">Email subject:</label>
 <?= $form->subject; ?>
</div>

Non-field errors (and/or hidden field errors that are rendered at the top of the form when using helpers like
form.asParagraph()) will be rendered with an additional class of nonfield to help distinguish them from
field-specific errors.

Looping over the form’s fields

If you’re using the same HTML for each of your form fields, you can reduce duplicate code by looping through each field
in turn using a foreach loop:

<?php foreach ($form as $field):?>
 <div class="fieldWrapper">

 <?php foreach ($field->getErrors() as $error) : ?>
 <?= $error; ?>
 <?php endforeach; ?>

 <label for="<?= $field->getIdForLabel(); ?>"><?=$field->getLabelName()?></label>
 <?= $field; ?>
 </div>
<?php endforeach; ?>

Useful attributes and methods on Field include:

	getLabelName()

The label of the field, e.g. Email address.

	
	labelTag()

	The field’s label wrapped in the appropriate HTML <label> tag. This includes the form’s label_suffix. For example,
the default label_suffix is a colon:

<label for="id_email">Email address:</label>

	getIdForLabel()

The ID that will be used for this field (id_email in the example above). If you are constructing the label manually,
you may want to use this in lieu of labelTag(). It’s also useful, for example, if you have some inline
JavaScript and want to avoid hardcoding the field’s ID.

	value()

The value of the field. e.g someone@example.com.

	getHtmlName()

The name of the field that will be used in the input element’s name field. This takes the form prefix into account,
if it has been set.

	getHelpText()

Any help text that has been associated with the field.

	getErrors()

Outputs a <ul class=”errorlist”> containing any validation errors corresponding to this field. You can customize the
presentation of the errors with a foreach loop as shown above.
In this case, each object in the loop is a simple string containing the error message.

	isHidden()

This method is true if the form field is a hidden field and false otherwise.

foreach ($form as $field):
 if($field->isHidden()):
 // do something
 endif;
endforeach;

Looping over hidden and visible fields

If you’re manually laying out a form, you might want to treat <input type=”hidden”> fields differently from
non-hidden fields.

For example, because hidden fields don’t display anything, putting error messages “next to” the field could cause
confusion for your users – so errors for those fields should be handled differently.

Powerform provides two methods on a form that allow you to loop over the hidden and visible fields independently:

	hiddenFields() and

	visibleFields().

Here’s a modification of an earlier example that uses these two methods:

// display hidden fields
<?php foreach ($form->hiddenFields() as $field): ?>
 <?= $field; ?>
<?php endforeach; ?>

// display visible fields
<?php foreach ($form->visibleFields() as $field): ?>

 <div class="fieldWrapper">
 <?=$field->getErrors()?>
 <?=$field->labelTag()?>
 <?= $field; ?>
 </div>
<?php endforeach; ?>

This example does not handle any errors in the hidden fields. Usually, an error in a hidden field is a sign of form
tampering, since normal form interaction won’t alter them. However, you could easily insert some error displays for
those form errors, as well.

The Forms API

	Bound and unbound forms

	class Form

	Form.isBound

	Using forms to validate data

	Form.clean()

	Form.isValid()

	Form.errors()

	Form.errors()->asData()

	Form.addError($field, $error)

	Form.hasError($field, $code=null)

	Form.nonFieldErrors()

	Dynamic initial values

	Form.initial

	Form.getInitialForField($field, $name)

	Accessing the fields from the form

	Form.getFields()

	Accessing “clean” data

	Form.cleanedData

	Outputting forms as HTML

	Form.asParagraph()

	Form.asUl()

	Form.asTable()

	Configuring form elements’ HTML id attributes and <label> tags

	autoId

	Form.labelSuffix

	Binding uploaded files to a form

	Testing for multipart forms

	isMultipart()

	Prefixes for forms

	prefix

Bound and unbound forms

A Form instance is either bound to a set of data, or unbound.

If it’s bound to a set of data, it’s capable of validating that data and rendering the form as HTML with the data
displayed in the HTML.

If it’s unbound, it cannot do validation (because there’s no data to validate!), but it can still render the blank form
as HTML.

class Form

To create an unbound Form instance, simply instantiate the class:

$form = new AuthorForm();

The form constructor accepts an associative as argument.

To bind data to a form, pass the data as a associative array with the key data to your Form class constructor:

$data =[
 "name" => "rrrr"
 "email" => "edd.cowan@gmail.com"
];
$form = new AuthorForm(['data'=>$data]);

In this associative array, the keys are the field names, which correspond to the attributes in your Form class.
The values are the data you’re trying to validate. These will usually be strings, but there’s no requirement that they
be strings; the type of data you pass depends on the Field, as we’ll see in a moment.

Form.isBound

If you need to distinguish between bound and unbound form instances at runtime, check the value of the form’s isBound
attribute:

$form = new AuthorForm();
var_dump($form->isBound); // false

$form = new AuthorForm(['data'=>$data]);
var_dump($form->isBound); // true

Note that passing an empty associative array creates a bound form with empty data:

$form = new AuthorForm([]);
var_dump($form->isBound); // true

If you have a bound Form instance and want to change the data somehow, or if you want to bind an unbound Form instance
to some data, create another Form instance. There is no way to change data in a Form instance.

Once a Form instance has been created, you should consider its data immutable, whether it has data or not.

Using forms to validate data

Form.clean()

Implement a clean() method on your Form when you must add custom validation for fields that are interdependent.
See Cleaning and validating fields that depend on each other for example usage.

Form.isValid()

The primary task of a Form object is to validate data. With a bound Form instance, call the isValid() method to run
validation and return a boolean designating whether the data was valid:

$data =[
 "name" => "rrrr"
 "email" => "edd.cowan@gmail.com"
];
$form = new AuthorForm(['data'=>$data]);
var_dump($form->isValid()); // true

Let’s try with some invalid data. In this case, subject is blank (an error, because all fields are required by default)
and email is not a valid email address:

$data =[
 "name" => "rrrr"
 "email" => "edd.gmail.com"
];
$form = new AuthorForm(['data'=>$data]);
var_dump($form->isValid()); // false

Form.errors()

Access the errors method to get a associative array of error messages:

var_dump($form->errors());

[
 "name" => [
 ValidationError { }
]
 "email" => [
 ValidationError { }
]
]

In this associative array, the keys are the field names, and the values are an array of strings representing the error
messages. The error messages are stored in an array because a field can have multiple error messages.

You can access errors without having to call isValid() first. The form’s data will be validated
the first time either you call isValid() or access errors.

The validation routines will only get called once, regardless of how many times you access errors or call
isValid(). This means that if validation has side effects, those side effects will only be
triggered once.

Form.errors()->asData()

Access the errors method to get a associative array of error messages:

var_dump($form->errors());

[
 "name" => [
 ValidationError { }
]
 "email" => [
 ValidationError { }
]
]

Returns an associative array of fields to their original ValidationError instances.

Form.addError($field, $error)

This method allows adding errors to specific fields from within the Form.clean() method, or from outside the form
altogether; for instance from a controller.

The field argument is the name of the field to which the errors should be added. If its value is None the error
will be treated as a non-field error as returned by Form.nonFieldErrors().

The error argument can be a simple string, or preferably an instance of ValidationError. See
Raising ValidationError for best practices when defining form errors.

Note that Form.addError() automatically removes the relevant field from **cleanedData**.

Form.hasError($field, $code=null)

This method returns a boolean designating whether a field has an error with a specific error code.
If code is null, it will return true if the field contains any errors at all.

To check for non-field errors use NON_FIELD_ERRORS as the field parameter.

Form.nonFieldErrors()

This method returns the list of errors from Form.errors() that aren’t associated with a
particular field. This includes ValidationErrors that are raised in Form.clean() and errors added
using Form.addError(null, “…”).

Dynamic initial values

Form.initial

Use initial to declare the initial value of form fields at runtime. For example, you might want to fill in a
username field with the username of the current session.

To accomplish this, use the initial argument to a Form. This argument, if given, should be a associative array mapping
field names to initial values. Only include the fields for which you’re specifying an initial value; it’s not
necessary to include every field in your form. For example:

$data = []; // that the form is validated against.mostly will be from post
$initial = ['subject'=>"yello there"];
$form = ContactForm(['data'=>$data, 'initial'=>$initial])

These values are only displayed for unbound forms, and they’re not used as fallback values if a particular value isn’t
provided.

If a Field defines initial and you include initial when instantiating the Form, then the latter initial will have
precedence. In this example, initial is provided both at the field level and at the form instance level, and the
latter gets precedence:

class ContactForm extends Form
{
 public function fields()
 {
 return [
 'subject' => Form::CharField(['maxLength' => 100, 'initial'=>'welcome']),
 'recipients' => MultiEmailField::instance(),
 'cc_myself' => Form::BooleanField(['required' => false]),
];
 }
}

<input maxlength="100" name="subject" id="id_subject" value="yello there" type="text">

Form.getInitialForField($field, $name)

Use getInitialForField() to retrieve initial data for a form field. It retrieves data from Form.initial and
Field.initial, in that order, and evaluates any callable initial values.

Accessing the fields from the form

Form.getFields()

You can access the fields of Form instance from its getFields() method:

var_dump($form->getFields());

[
 "subject" => CharField { }
 "recipients" => MultiEmailField { }
 "cc_myself" => BooleanField { }
]

Accessing “clean” data

Form.cleanedData

Each field in a Form class is responsible not only for validating data, but also for “cleaning” it – normalizing it to
a consistent format. This is a nice feature, because it allows data for a particular field to be input in a variety
of ways, always resulting in consistent output.

For example, DateField normalizes input into a PhP DateTime object. Regardless of whether you pass it a string in
the format ‘1994-07-15’, a DateTime object, or a number of other formats, DateField will always normalize it to a
DateTime object as long as it’s valid.

Once you’ve created a Form instance with a set of data and validated it, you can access the clean data via its
cleanedData attribute:

$data = [
 "subject" => "help yo",
 "recipients" => "fred@example.com,edd@gmail.com",
 "cc_myself" => true
];

$form = new ContactForm(['data'=>$data]);
$form->isValid();
var_dump($form->cleanedData);

[
 "subject" => "help yo"
 "recipients" => [
 "fred@example.com"
 "edd@gmail.com"
]
 "cc_myself" => true
]

If your data does not validate, the cleanedData associative array contains only the valid fields:

$data = [
 "subject" => "help yo",
 "recipients" => "invalid email",
 "cc_myself" => true
];

$form = new ContactForm(['data'=>$data]);
$form->isValid();
var_dump($form->cleanedData);

[
 "subject" => "help yo",
 "cc_myself" => true
]

cleanedData will always only contain a key for fields defined in the Form, even if you pass extra data when you
define the Form. In this example, we pass a bunch of extra fields to the ContactForm constructor, but cleanedData
contains only the form’s fields:

$data = [
 "subject" => "help yo"
 "recipients" => "invalid email"
 "cc_myself" => "on"
 "Send" => "Send"
]

$form = new ContactForm(['data'=>$data]);
$form->isValid();
var_dump($form->cleanedData);

[
 "subject" => "help yo"
 "cc_myself" => true
]

When the Form is valid, cleanedData will include a key and value for all its fields, even if the data didn’t
include a value for some optional fields. In this example, the data associative array doesn’t include a value for the
box field, but cleanedData includes it, with an empty value:

$data = [
 "subject" => "help there"
 "recipients" => "fred@example.com"
 "cc_myself" => "on"
 "Send" => "Send"
];

$form = new ContactForm(['data'=>$data]);
$form->isValid();
var_dump($form->cleanedData);

[
 "subject" => "help there"
 "recipients" => []
 "cc_myself" => true
 "box" => ""
];

In this above example, the cleanedData value for box is set to an empty string, because box is CharField,
and CharFields treat empty values as an empty string. Each field type knows what its “blank” value is – e.g.,
for DateField, it’s null instead of the empty string. For full details on each field’s behavior in this case,
see the “Empty value” note for each field in the “Built-in Field classes” section below.

You can write code to perform validation for particular form fields (based on their name) or for the form as a whole
(considering combinations of various fields). More information about this is in
Form and field validation.

Outputting forms as HTML

Form.asParagraph()

asParagraph() renders the form as a series of <p> tags, with each <p> containing one field:

echo $form->asParagraph();

<p>
 <label for="id_subject">Subject</label>
 <input maxlength="100" type="text" name="subject" id="id_subject">

</p>
<p>
 <label for="id_message">Message</label>

 <textarea name="message"id="id_message"></textarea>

</p>
<p>
 <label for="id_email">Email</label>

 <input type="email" name="email" id="id_email">

</p>
<p>
 <label for="id_cc_myself">Cc myself</label>

 <input type="checkbox" name="cc_myself" id="id_cc_myself">
</p>

Form.asUl()

asUl() renders the form as a series of tags, with each containing one field. It does not include the
or , so that you can specify any HTML attributes on the for flexibility:

echo $form->asUl();

 <label for="id_mo-subject"> Subject</label>
 <input maxlength="100" type="text" name="mo-subject" id="id_mo-subject">

 <label for="id_mo-message"> Message</label>
 <textarea name="mo-message" id="id_mo-message"></textarea>

 <label for="id_mo-cc_myself"> Cc myself</label>
 <input type="checkbox" name="mo-cc_myself" id="id_mo-cc_myself">

Form.asTable()

Finally, asTable() outputs the form as an HTML <table>. :

<tr>
 <th><label for="id_mo-subject"> Subject</label></th>
 <td><input maxlength="100" type="text" name="mo-subject" id="id_mo-subject"></td>
</tr>
<tr>
 <th><label for="id_mo-message"> Message</label></th>
 <td><textarea name="mo-message" id="id_mo-message"></textarea>
messages</td>
</tr>
<tr>
 <th><label for="id_mo-cc_myself"> Cc myself</label></th>
 <td><input type="checkbox" name="mo-cc_myself" id="id_mo-cc_myself"></td>
</tr>

Configuring form elements’ HTML id attributes and <label> tags

autoId

By default, the form rendering methods include:

	HTML id attributes on the form elements.

	The corresponding <label> tags around the labels. An HTML <label> tag designates which label text is
associated with which form element. This small enhancement makes forms more usable and more accessible to assistive
devices. It’s always a good idea to use <label> tags.

The id attribute values are generated by prepending id_ to the form field names. This behavior is configurable,
though, if you want to change the id convention or remove HTML id attributes and <label> tags entirely.

Use the autoId argument to the Form constructor to control the id and label behavior.
This argument must be true, false or a string.

	If autoId is false, then the form output will not include <label> tags nor id attributes.

$f = new ContactForm(['autoId'=>false]);

echo $f->asTable ();

<tr><th>Subject:</th><td><input type="text" name="subject" maxlength="100" required /></td></tr>
<tr><th>Message:</th><td><input type="text" name="message" required /></td></tr>
<tr><th>Sender:</th><td><input type="email" name="sender" required /></td></tr>
<tr><th>Cc myself:</th><td><input type="checkbox" name="cc_myself" /></td></tr>

echo $f->asUl ();

Subject: <input type="text" name="subject" maxlength="100" required />
Message: <input type="text" name="message" required />
Sender: <input type="email" name="sender" required />
Cc myself: <input type="checkbox" name="cc_myself" />

echo $f->asParagraph();

<p>Subject: <input type="text" name="subject" maxlength="100" required /></p>
<p>Message: <input type="text" name="message" required /></p>
<p>Sender: <input type="email" name="sender" required /></p>
<p>Cc myself: <input type="checkbox" name="cc_myself" /></p>

	If autoId is set to true, then the form output will include <label> tags and will simply use the field
name as its id for each form field:

$f = new ContactForm(['autoId'=>true]);

echo $f->asTable ();

<tr><th><label for="subject">Subject:</label></th><td><input id="subject" type="text" name="subject" maxlength="100" required /></td></tr>
<tr><th><label for="message">Message:</label></th><td><input type="text" name="message" id="message" required /></td></tr>
<tr><th><label for="sender">Sender:</label></th><td><input type="email" name="sender" id="sender" required /></td></tr>
<tr><th><label for="cc_myself">Cc myself:</label></th><td><input type="checkbox" name="cc_myself" id="cc_myself" /></td></tr>

echo $f->asUl ();

<label for="subject">Subject:</label> <input id="subject" type="text" name="subject" maxlength="100" required />
<label for="message">Message:</label> <input type="text" name="message" id="message" required />
<label for="sender">Sender:</label> <input type="email" name="sender" id="sender" required />
<label for="cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="cc_myself" />

echo $f->asParagraph();

<p><label for="subject">Subject:</label> <input id="subject" type="text" name="subject" maxlength="100" required /></p>
<p><label for="message">Message:</label> <input type="text" name="message" id="message" required /></p>
<p><label for="sender">Sender:</label> <input type="email" name="sender" id="sender" required /></p>
<p><label for="cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="cc_myself" /></p>

	If autoId is set to a string containing the format character ‘%s’, then the form output will
include <label> tags, and will generate id attributes based on the format string.
For example, for a format string ‘field_%s’, a field named subject will get the id value ‘field_subject’.

$f = new ContactForm(autoId=['autoId'=>'id_for_%s']);

echo $f->asTable ();

<tr><th><label for="id_for_subject">Subject:</label></th><td><input id="id_for_subject" type="text" name="subject" maxlength="100" required /></td></tr>
<tr><th><label for="id_for_message">Message:</label></th><td><input type="text" name="message" id="id_for_message" required /></td></tr>
<tr><th><label for="id_for_sender">Sender:</label></th><td><input type="email" name="sender" id="id_for_sender" required /></td></tr>
<tr><th><label for="id_for_cc_myself">Cc myself:</label></th><td><input type="checkbox" name="cc_myself" id="id_for_cc_myself" /></td></tr>

echo $f->asUl ();

<label for="id_for_subject">Subject:</label> <input id="id_for_subject" type="text" name="subject" maxlength="100" required />
<label for="id_for_message">Message:</label> <input type="text" name="message" id="id_for_message" required />
<label for="id_for_sender">Sender:</label> <input type="email" name="sender" id="id_for_sender" required />
<label for="id_for_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="id_for_cc_myself" />

echo $f->asParagraph();

<p><label for="id_for_subject">Subject:</label> <input id="id_for_subject" type="text" name="subject" maxlength="100" required /></p>
<p><label for="id_for_message">Message:</label> <input type="text" name="message" id="id_for_message" required /></p>
<p><label for="id_for_sender">Sender:</label> <input type="email" name="sender" id="id_for_sender" required /></p>
<p><label for="id_for_cc_myself">Cc myself:</label> <input type="checkbox" name="cc_myself" id="id_for_cc_myself" /></p>

If autoId is set to any other true value – such as a string that doesn’t include %s – then the library will act
as if autoId is true.

By default, autoId is set to the string ‘id_%s’.

Form.labelSuffix

A translatable string (defaults to a colon (:) in English) that will be appended after any label name when a form is
rendered.

It’s possible to customize that character, or omit it entirely, using the labelSuffix parameter:

$f = new ContactForm([autoId=>'id_for_%s', labelSuffix=>'']);

echo $f->asUl();

<label for="id_for_subject">Subject</label> <input id="id_for_subject" type="text" name="subject" maxlength="100" required />
<label for="id_for_message">Message</label> <input type="text" name="message" id="id_for_message" required />
<label for="id_for_sender">Sender</label> <input type="email" name="sender" id="id_for_sender" required />
<label for="id_for_cc_myself">Cc myself</label> <input type="checkbox" name="cc_myself" id="id_for_cc_myself" />
$f = new ContactForm(auto_id='id_for_%s', label_suffix=' ->')

echo $f->asUl();

<label for="id_for_subject">Subject -></label> <input id="id_for_subject" type="text" name="subject" maxlength="100" required />
<label for="id_for_message">Message -></label> <input type="text" name="message" id="id_for_message" required />
<label for="id_for_sender">Sender -></label> <input type="email" name="sender" id="id_for_sender" required />
<label for="id_for_cc_myself">Cc myself -></label> <input type="checkbox" name="cc_myself" id="id_for_cc_myself" />

Note that the label suffix is added only if the last character of the label isn’t a punctuation character
(in English, those are ., !, ? or :).

Fields can also define their own labelSuffix. This will take precedence over Form.labelSuffix.

Binding uploaded files to a form

Dealing with forms that have FileField and ImageField fields is a little
more complicated than a normal form.

Firstly, in order to upload files, you’ll need to make sure that your <form> element correctly defines the enctype as
“multipart/form-data”:

<form enctype="multipart/form-data" method="post" action="/foo/">

Secondly, when you use the form, you need to bind the file data. File data is handled separately to normal form data,
so when your form contains a FileField and ImageField , you will need to
specify a second argument when you bind your form. So if we extend our ContactForm to include an
ImageField called mugshot,we need to bind the file data containing the mugshot image:

Note

more to come soon

Testing for multipart forms

isMultipart()

If you’re writing reusable views or templates, you may not know ahead of time whether your form is a multipart form or
not. The isMultipart() method tells you whether the form requires multipart encoding for submission:

Prefixes for forms

prefix

You can put several Powerform forms inside one <form> tag. To give each Form its own namespace,
use the prefix keyword argument:

Form fields

	Core field arguments

	required

	label

	widget

	helpText

	validators

	disabled

	Built-in Field classes

	IntegerField

	BooleanField

	CharField

	URLField

	EmailField

	SlugField

	DecimalField

	DateField

	TimeField

	ChoiceField

	MultipleChoiceField

	MultipleChoiceField

	SplitDateTimeField

	FileField

	ImageField

Core field arguments

Each Field class constructor takes at least these arguments. Some Field classes take additional, field-specific
arguments, but the following should always be accepted:

required

By default, each Field class assumes the value is required, so if you pass an empty value – either null or
the empty string (“”) – then clean() will raise a ValidationError exception.

label

The label argument lets you specify the “human-friendly” label for this field. This is used when the Field is displayed
in a Form.

widget

The widget argument lets you specify a Widget class to use when rendering this Field. See Widgets for more
information.

helpText

The helpText argument lets you specify descriptive text for this Field. If you provide helpText, it will be displayed
next to the Field when the Field is rendered by one of the convenience Form methods (e.g., asUl()).

Like the model field’s help_text, this value isn’t HTML-escaped in automatically-generated forms.

validators

The validators argument lets you provide a list of validation functions for this field.

See the validators documentation for more information.

disabled

The disabled boolean argument, when set to true, disables a form field using the disabled HTML attribute so
that it won’t be editable by users. Even if a user tampers with the field’s value submitted to the server, it will be
ignored in favor of the value from the form’s initial data.

Built-in Field classes

Naturally, the forms library comes with a set of Field classes that represent common validation needs. This section
documents each built-in field.

For each field, we describe:
- The default widget used if you don’t specify widget.
- The value returned when you provide an empty value (see the section on required above to understand what that means).

IntegerField

	Default widget: NumberInput.

	Empty value: null

	Normalizes to: A php integer.

	Validates that the given value is an integer. Leading and trailing whitespace is allowed, as in php’s intval()
function.

	Error message keys: required, invalid, maxValue, minValue.

The maxValue and minValue error messages may contain %(limit_value)s, which will be substituted by the
appropriate limit.

Takes two optional arguments for validation:

maxValue

min_value

These control the range of values permitted in the field.

BooleanField

	Default widget: CheckboxInput

	Empty value: false

	Normalizes to: A php boolean true or false value.

	Validates that the value is true (e.g. the check box is checked) if the field has required=true.

	Error message keys: required

Note

Since all Field subclasses have required=true by default, the validation condition here is important. If you
want to include a boolean in your form that can be either True or False (e.g. a checked or unchecked checkbox),
you must remember to pass in required=false when creating the BooleanField.

CharField

	Default widget: TextInput

	Empty value: ‘’ (an empty string)

	Normalizes to: A string.

	Validates maxLength or minLength, if they are provided. Otherwise, all inputs are valid.

	Error message keys: required, maxLength, minLength

Has three optional arguments for validation:

maxLength

minLength

If provided, these arguments ensure that the string is at most or at least the given length.

strip

If True (default), the value will be stripped of leading and trailing whitespace.

URLField

	Default widget: URLInput

	Empty value: ‘’ (an empty string)

	Normalizes to: A string.

	Validates that the given value is a valid URL.

	Error message keys: required, invalid

Takes the following optional arguments:

maxLength

	minLength

	These are the same as CharField.maxLength and
CharField.minLength.

EmailField

	Default widget: EmailInput

	Empty value: ‘’ (an empty string)

	Normalizes to: A string.

	Validates that the given value is a valid email address, using a moderately complex regular expression.

	Error message keys: required, invalid

Has two optional arguments for validation, minLength and minLength. If provided, these arguments ensure that
the string is at most or at least the given length.

SlugField

	Default widget: TextInput

	Empty value: ‘’ (an empty string)

	Normalizes to: A string.

	Validates that the given value contains only letters, numbers, underscores, and hyphens.

	Error message keys: required, invalid

DecimalField

	Default widget: NumberInput

	Empty value: null (an empty string)

	Normalizes to: A float.

	Validates that the given value is a decimal. Leading and trailing whitespace is ignored..

	Error message keys: required, invalid, maxValue, minValue, maxDigits, maxDecimalPlaces,
maxWholeDigits

The maxValue and minValue error messages may contain %(limit_value)s, which will be substituted by the
appropriate limit.

Similarly, the maxDigits, maxDecimalPlaces, and maxWholeDigits error messages may contain %(max)s.

Takes four optional arguments:

maxValue

	minValue

	These control the range of values permitted in the field, and should be given as float values.

maxDigits

The maximum number of digits (those before the decimal point plus those after the decimal point, with leading zeros
stripped) permitted in the value.

maxDecimalPlaces

The maximum number of decimal places permitted.

DateField

	Default widget: DateInput

	Empty value: null

	Normalizes to: A PHP DateTime object.

	Validates that the given value is either a DateTime or string formatted in a particular date format.

	Error message keys: required, invalid.

Takes one optional argument:

input_formats

A list of formats used to attempt to convert a string to a valid DateTime object.

If no input_formats argument is provided, the default input formats are:

[
 'Y-m-d', // '2006-10-25'
 'm/d/Y', // '10/25/2006'
 'm/d/y' // '10/25/06'
]

TimeField

	Default widget: TextInput

	Empty value: None

	Normalizes to: A PHP DateTime object.

	Validates that the given value is either a DateTime or string formatted in a particular time format.

	Error message keys: required, invalid.

Takes one optional argument:

input_formats

A list of formats used to attempt to convert a string to a valid DateTime object.

If no input_formats argument is provided, the default input formats are:

[
 'H:i:s', // '14:30:59'
 'H:i:s.u', // '14:30:59.000200'
 'H:i', // '14:30'
];

ChoiceField

	Default widget: Select

	Empty value: ‘’ (an empty string)

	Normalizes to: A Unicode object.

	Validates that the given value exists in the list of choices.

	Error message keys: required, invalid_choice

The invalid_choice error message may contain %(value)s, which will be replaced with the selected choice.

Takes one extra required argument:

choices

Either an associative array to use as choices for this field, or a callable that returns such an array. This
argument accepts the same formats as the choices argument to a model field. See the
model field reference documentation on choices for more details. If the argument is a callable,
it is evaluated each time the field’s form is initialized.

MultipleChoiceField

	Default widget: SelectMultiple

	Empty value: [] (an empty list)

	Normalizes to: A list of php objects.

	Validates that every value in the given list of values exists in the list of choices.

	Error message keys: required, invalid_choice, invalid_list

The invalid_choice error message may contain %(value)s, which will be replaced with the selected choice.

Takes one extra required argument, choices, as for ChoiceField.

MultipleChoiceField

to be added

SplitDateTimeField

to be added

FileField

to be added

ImageField

to be added

Widgets

A widget is Powerform’s representation of an HTML input element. The widget handles the rendering of the HTML, and
the extraction of data from a GET/POST dictionary that corresponds to the widget.

The HTML generated by the built-in widgets uses HTML5 syntax, targeting <!DOCTYPE html>. For example, it uses boolean
attributes such as checked rather than the XHTML style of checked=’checked’.

Note

Widgets should not be confused with the form fields. Form fields deal with the logic of input
validation and are used directly in templates.
Widgets deal with rendering of HTML form input elements on the web page and extraction of raw submitted data.
However, widgets do need to be assigned to form fields.

	Specifying widgets

	Built-in widgets

	Widgets handling input of text

	Selector and checkbox widgets

Specifying widgets

Whenever you specify a field on a form, Powerform will use a default widget that is appropriate to the type of data
that is to be displayed. To find which widget is used on which field, see the documentation about
Built-in Field classes.

However, if you want to use a different widget for a field, you can just use the widget argument on the field definition.
For example:

namespace App\Forms;

use Eddmash\PowerOrm\Form\Form;

class CommentForm extends Form
{
 /**
 * @inheritDoc
 */
 public function fields()
 {
 return [
 'name'=>Form::CharField(),
 'url'=>Form::UrlField(),
 'comment'=>Form::CharField(['widget'=>Form::TextArea()])
];
 }

}

This would specify a form with a comment that uses a larger Textarea widget, rather than the
default TextInput widget.

Built-in widgets

Powerform provides a representation of all the basic HTML widgets, plus some commonly used groups of widgets in the
EddmashPowerOrmFormWidgets module, including the input of text, various checkboxes and selectors, uploading files, and
handling of multi-valued input.

Widgets handling input of text

These widgets make use of the HTML elements input and textarea.

TextInput

Text input: <input type=”text” …>

NumberInput

Text input: <input type=”number” …>

Beware that not all browsers support entering localized numbers in number input types.

EmailInput

Text input: <input type=”email” …>

URLInput

Text input: <input type=”url” …>

PasswordInput

Password input: <input type=’password’ …>

HiddenInput

Hidden input: <input type=’hidden’ …>

Note that there also is a MultipleHiddenInput widget that encapsulates a set of hidden input elements.

DateInput

Date input as a simple text box: <input type=’text’ …>

Takes same arguments as TextInput, with one more optional argument:

format

The format in which this field’s initial value will be displayed.

If no format argument is provided, the default format is the first format found in DATE_INPUT_FORMATS.

Textarea

Text area: <textarea>…</textarea>

Selector and checkbox widgets

CheckboxInput

Checkbox: <input type=’checkbox’ …>

Takes one optional argument:

check_test

A callable that takes the value of the CheckboxInput and returns True if the checkbox should be checked for
that value.

Select

Select widget: <select><option …>…</select>

choices

This attribute is optional when the form field does not have a choices attribute. If it does, it will override
anything you set here when the attribute is updated on the Field.

NullBooleanSelect

Select widget with options ‘Unknown’, ‘Yes’ and ‘No’

SelectMultiple

Similar to select, but allows multiple selection: <select multiple=’multiple’>…</select>

RadioSelect

Similar to select, but rendered as a list of radio buttons within tags:

 <input type='radio' name='...'>
 ...

CheckboxSelectMultiple

Similar to SelectMultiple, but rendered as a list of check buttons:

 <input type='checkbox' name='...' >
 ...

Creating forms from models

	ModelForm

	Field types

	Overriding the default fields

	Providing initial values

	Overriding the clean() method

	The save() method

ModelForm

If you’re building a database-driven app, chances are you’ll have forms that map closely to Powerorm models. For
instance, you might have a BlogComment model, and you want to create a form that lets people submit comments.
In this case, it would be redundant to define the field types in your form, because you’ve already defined the fields
in your model. we will be using the Author model.

For this reason, Powerform provides a helper class that lets you create a Form class from a Powerorm model.

For example:

namespace App\Forms;

use Eddmash\PowerOrm\Form\Form;
use Eddmash\PowerOrm\Form\ModelForm;
use Eddmash\PowerOrm\Form\Validations\MaxValueValidator;
use Eddmash\PowerOrm\Form\Widgets\DateInput;
use Eddmash\PowerOrm\Form\Widgets\EmailInput;
use Eddmash\PowerOrm\Form\Widgets\NumberInput;
use Eddmash\PowerOrm\Form\Widgets\TextInput;

/**
 * Class AuthorForm
 * @package App\Forms
 * @author: Eddilbert Macharia (http://eddmash.com)<edd.cowan@gmail.com>
 */
class AuthorForm extends ModelForm
{
 protected $modelClass = 'App\Models\Author';
 protected $excludes = ['id'];
}

Field types

The generated Form class will have a form field for every model field specified, in the order specified in the fields
attribute.

Each model field has a corresponding default form field. For example, a CharField on a model is
represented as a CharField on a form. A model ManyToManyField is represented as a MultipleChoiceField.

Here is the full list of conversions:

	Model Field

	Form Field

	AutoField

	Not represented in the form

	CharField

	CharField

	BooleanField

	BooleanField

	UrlField

	UrlField

	DateField

	DateField

	EmailField

	EmailField

	DecimalField

	DecimalField

	ImageField

	ImageField

	IntegerField

	IntegerField

	SlugField

	SlugField

	TextField

	TextField

	ForeignKey

	ModelChoiceField (see below)

	ManyToMany

	ModelMultipleChoiceField (see below)

As you might expect, the ForeignKey and ForeignKey model field types
are special cases:

ForeignKey is represented by ModelChoiceField, which is a
ChoiceField whose choices are a model Queryset.

ManyToMany is represented by ModelMultipleChoiceField,
which is a MultipleChoiceField whose choices are a model
Queryset.

In addition, each generated form field has attributes set as follows:

	If the model field has blank=true, then required is set to false on the form field. Otherwise,
required=true.

	The form field’s label is set to the verboseName of the model field, with the first character capitalized.

	The form field’s helpText is set to the helpText of the model field.

	If the model field has choices set, then the form field’s widget will be set to Select, with choices
coming from the model field’s choices. The choices will normally include the blank choice which is selected by
default. If the field is required, this forces the user to make a selection. The blank choice will not be included
if the model field has blank=false and an explicit default value (the default value will be initially
selected instead).

Finally, note that you can override the form field used for a given model field. See Overriding the default fields below.

Overriding the default fields

The default field types, as described in the Field types table above, are sensible defaults. If you have a DateField
in your model, chances are you’d want that to be represented as a DateField in your form. But ModelForm gives
you the flexibility of changing the form field for a given model.

To specify a custom widget for a field, use the widgets() method of ModelForm class. This should be a
associative array mapping field names to widget classes or instances.

For example, if you want the CharField for the name attribute of Author to be represented by a <textarea>
instead of its default <input type=”text”>, you can override the field’s widget:

namespace App\Forms;

use App\Models\Author;
use Eddmash\PowerOrm\Form\Form;
use Eddmash\PowerOrm\Form\ModelForm;

class AuthorForm extends ModelForm
{
 protected $modelFields = ['name', 'email'];
 protected $modelClass = 'App\Models\Author';

 /**
 * @inheritDoc
 */
 public function widgets()
 {
 return [
 'name'=>Form::TextArea(['cols'=>80, 'rows'=>20])
];
 }

}

The widgets() method returns an associatie array with field name as key and either widget
instances (e.g., Textarea(…)).

Similarly, you can specify the labels, helpTexts and errorMessages methods if you want to further customize
a field.

You can also specify fieldClasses to customize the type of fields instantiated by the form.For example, if you
wanted to use MySlugFormField for the slug fieldFor example, if you wanted to use MySlugFormField for the slug
field

For example if you wanted to customize the wording of all user facing strings for the name field:

namespace App\Forms;

use App\Models\Author;
use Eddmash\PowerOrm\Form\Form;
use Eddmash\PowerOrm\Form\ModelForm;

class AuthorForm extends ModelForm
{
 protected $modelFields = ['name', 'email', 'content', 'reporter', 'slug'];
 protected $modelClass = 'App\Models\Author';

 /**
 * @inheritDoc
 */
 public function widgets()
 {
 return [
 'name'=>Form::TextArea(['cols'=>80, 'rows'=>20])
];
 }

 /**
 * @inheritDoc
 */
 public function labels()
 {
 return [
 'name'=>"Your Name"
];
 }

 /**
 * @inheritDoc
 */
 public function helpTexts()
 {
 return [
 'name'=>"whats your name ?"
];
 }

 /**
 * @inheritDoc
 */
 public function fieldClasses()
 {
 return [
 'slug'=> MySlugField::class
];
 }
}

Finally, if you want complete control over of a field – including its type, validators, required, etc. – you can do this
by declaratively specifying fields like you would in a regular Form.

If you want to specify a field’s validators, you can do so by defining the field declaratively and setting its
validators parameter:

use App\Models\Author;
use Eddmash\PowerOrm\Form\Form;
use Eddmash\PowerOrm\Form\ModelForm;
use Eddmash\PowerOrm\Form\Validations\SlugValidator;

class AuthorForm extends ModelForm
{
 protected $modelFields = ['name', 'email', 'content', 'reporter', 'slug'];
 protected $modelClass = 'App\Models\Author';

 /**
 * @inheritDoc
 */
 public function fields()
 {
 return [
 'slug'=>Form::CharField(['validators'=>[SlugValidator::instance()]])
];
 }
}

Note

When you explicitly instantiate a form field like this, it is important to understand how ModelForm and regular
Form are related.

ModelForm is a regular Form which can automatically generate certain fields. The fields that are
automatically generated depend on the content returns by fields() method on which fields have already been
defined declaratively. Basically, ModelForm will only generate fields that are missing from the form, or in
other words, fields that weren’t defined declaratively.

Fields defined declaratively are left as-is, therefore any customizations made by any of the methods shown above
such as widgets, labels, helpTexts, or errorMessages are ignored; these only apply to fields that
are generated automatically.

Similarly, fields defined declaratively do not draw their attributes like maxLength or required from the
corresponding model. If you want to maintain the behavior specified in the model, you must set the relevant
arguments explicitly when declaring the form field.

Providing initial values

As with regular forms, it’s possible to specify initial data for forms by specifying an initial parameter when
instantiating the form. Initial values provided this way will override both initial values from the form field and
values from an attached model instance. For example:

$article = Article::objects()->get(['pk'=>1]);
echo $article->headline;
'My headline'
$form = new ArticleForm(['initial'=>['headline'=> 'Initial headline'], 'instance'=>$article]);
echo $form['headline']->value();
'Initial headline'

Overriding the clean() method

You can override the clean() method on a model form to provide additional validation in the same way you can on a
normal form.

A model form instance attached to a model object will contain an modelInstance attribute that gives its methods access
to that specific model instance.

The save() method

Every ModelForm also has a save() method. This method creates and saves a database object from the data bound to the
form. A subclass of ModelForm can accept an existing model instance as the keyword argument instance; if this is
supplied, save() will update that instance. If it’s not supplied, save() will create a new instance of the specified
model:

//Create a form instance from POST data
$form = new AuthorForm(['data'=>$_POST]);
$form->save(false);

// Create a form to edit an existing Article, but use
// POST data to populate the form.
$a = Article::objects()->get(['pk'=>1]);

$form = new AuthorForm(['data'=>$_POST, 'instance'=>$a]);
$form->save(false);

Note that if the form hasn’t been validated, calling save() will do so by checking form.errors().
A ValueError will be raised if the data in the form doesn’t validate – i.e., if form.errors() evaluates to
true.

Form and field validation

	Raising ValidationError

	Raising multiple errors

	Using validation in practice

	Using validators

	Form field default cleaning

Form validation happens when the data is cleaned. If you want to customize this process, there are various places to
make changes, each one serving a different purpose. Three types of cleaning methods are run during form processing.
These are normally executed when you call the isValid() method on a form.
There are other things that can also trigger cleaning and validation (accessing the errors() method or
calling fullClean() directly), but normally they won’t be needed.

In general, any cleaning method can raise ValidationError if there is a problem with the data it is processing,
passing the relevant information to the ValidationError constructor. See below for
the best practice in raising ValidationError. If no ValidationError is raised, the method should return the
cleaned (normalized) data as a PHP object.

Most validation can be done using validators - simple helpers that can be reused easily.
Validators are objects that take a single argument when invoked like functions and raise ValidationError on invalid input.
Validators are run after the field’s toPhp and validate methods have been called.

Validation of a form is split into several steps, which can be customized or overridden:

	The toPhp() method on a Field is the first step in every validation. It coerces the value to a correct
datatype and raises ValidationError if that is not possible. This method
accepts the raw value from the widget and returns the converted value. For example, a DateField will turn the
data into a Php DateTime or raise a ValidationError.

	The validate() method on a Field handles field-specific validation that is not suitable for a validator.
It takes a value that has been coerced to a correct datatype and raises ValidationError on any error.
This method does not return anything and shouldn’t alter the value. You should override it to handle validation
logic that you can’t or don’t want to put in a validator.

	The runValidators() method on a Field runs all of the field’s validators and aggregates all the errors
into a single ValidationError. You shouldn’t need to override this method.

	The clean() method on a Field subclass is responsible for running toPhp(), validate(), and
runValidators() in the correct order and propagating their errors. If, at any time, any of the methods raise
ValidationError, the validation stops and that error is raised. This method returns the clean data, which is
then inserted into the cleanedData associative array of the form.

	The clean<fieldname>() method is called on a form subclass – where <fieldname> is replaced with the name of
the form field attribute. This method does any cleaning that is specific to that particular attribute,
unrelated to the type of field that it is. This method is not passed any parameters. You will need to look up
the value of the field in $this->cleanedData and remember that it will be a Php object at this point, not
the original string submitted in the form (it will be in cleanedData because the general field clean()
method, above, has already cleaned
the data once).

For example, if you wanted to validate that the contents of a CharField called serialnumber was unique,
cleanSerialnumber() would be the right place to do this. You don’t need a specific field (it’s just a CharField),
but you want a formfield-specific piece of validation and, possibly, cleaning/normalizing the data.

The return value of this method replaces the existing value in cleanedData, so it must be the field’s value
from cleanedData (even if this method didn’t change it) or a new cleaned value.

	The form subclass’s clean() method can perform validation that requires access to multiple form fields. This
is where you might put in checks such as “if field A is supplied, field B must contain a valid email address”.
This method can return a completely different associative array if it wishes, which will be used as
the cleanedData.

Since the field validation methods have been run by the time clean() is called, you also have access to the
form’s errors attribute which contains all the errors raised by cleaning of individual fields.

Note that any errors raised by your Form.clean() override will not be associated with any field in particular.
They go into a special “field” (called __all__), which you can access via
the nonFieldErrors() method if you need to. If you want to attach errors to a specific
field in the form, you need to call addError().

Also note that there are special considerations when overriding the clean() method of a ModelForm subclass.
(see the ModelForm documentation for more information)

These methods are run in the order given above, one field at a time. That is, for each field in the form (in the order
they are declared in the form definition), the Field.clean() method (or its override) is run,
then clean<fieldname>().Finally, once those two methods are run for every field, the Form.clean() method, or
its override, is executed whether or not the previous methods have raised errors.

Examples of each of these methods are provided below.

As mentioned, any of these methods can raise a ValidationError. For any field, if the Field.clean() method
raises a ValidationError, any field-specific cleaning method is not called. However, the cleaning methods for all
remaining fields are still executed.

Raising ValidationError

In order to make error messages flexible and easy to override, consider the following guidelines:

Provide a descriptive error code to the constructor:

// Good
ValidationError('Invalid value', 'invalid');

// Bad
ValidationError('Invalid value');

Putting it all together:

throw new ValidationError('Invalid value', 'invalid');

Following these guidelines is particularly necessary if you write reusable forms, form fields, and model fields.

While not recommended, if you are at the end of the validation chain (i.e. your form clean() method) and you know you
will never need to override your error message you can still opt for the less verbose:

Raising multiple errors

If you detect multiple errors during a cleaning method and wish to signal all of them to the form submitter, it is
possible to pass a list of errors to the ValidationError constructor.

As above, it is recommended to pass a list of ValidationError instances with codes and params but a list of strings
will also work:

// Good
throw new ValidationError([
 ValidationError('Error 1', 'error1'),
 ValidationError('Error 2', 'error2'),
])

// Bad
throw new ValidationError([
 _('Error 1'),
 _('Error 2'),
])

Using validation in practice

The previous sections explained how validation works in general for forms. Since it can sometimes be easier to put
things into place by seeing each feature in use, here are a series of small examples that use each of the previous
features.

Using validators

Powerform’s form (and model) fields support use of simple utility classes known as validators. A validator is merely
a callable object that takes a value and simply returns nothing if the value is valid or throws a ValidationError if
not. These can be passed to a field’s constructor, via the field’s validators argument, or defined on the Field class
itself with the getDefaultValidators() method.

Simple validators can be used to validate values inside the field, let’s have a look at Powerform’s SlugField:

class SlugField extends CharField
{
 /**
 * @inheritDoc
 */
 public function getDefaultValidators()
 {
 $validators = parent::getDefaultValidators();
 $validators[] = SlugValidator::instance();
 return $validators;
 }

}

As you can see, SlugField is just a CharField with a customized validator that validates that submitted text
obeys to some character rules. This can also be done on field definition so:

$slug = Form::SlugField();

is equivalent to:

$slug = Form::CharField(['validators'=>[SlugValidator::instance()]]);

Form field default cleaning

Let’s first create a custom form field that validates its input is a string containing comma-separated email addresses.
The full class looks like this:

namespace App\Forms;

use Eddmash\PowerOrm\Form\Fields\Field;
use Eddmash\PowerOrm\Form\Validations\EmailValidator;

class MultiEmailField extends Field
{
 public function toPhp($value)
 {
 if (empty($value)) :
 return [];
 endif;

 return explode(",", $value);
 }

 /**
 * @inheritDoc
 */
 public function validate($value)
 {
 foreach ($value as $item) :
 $validator = EmailValidator::instance();
 $validator($item);
 endforeach;
 }

}

Every form that uses this field will have these methods run before anything else can be done with the field’s data.
This is cleaning that is specific to this type of field, regardless of how it is subsequently used.

Let’s create a simple ContactForm to demonstrate how you’d use this field:

class ContactForm extends Form
{
 public function fields()
 {
 return [
 'subject' => Form::CharField(['maxLength'=>100]),
 'recipients' => MultiEmailField::instance(),
 'cc_myself' => Form::BooleanField(['required' => false]),
];
 }
}

Simply use MultiEmailField like any other form field. When the isValid() method is called on the form, the
MultiEmailField.clean() method will be run as part of the cleaning process and it will, in turn, call the custom
toPhp() and validate() methods.

Cleaning a specific field attribute

Continuing on from the previous example, suppose that in our ContactForm, we want to make sure that the recipients
field always contains the address “fred@example.com”. This is validation that is specific to our form, so we don’t
want to put it into the general MultiEmailField class. Instead, we write a cleaning method that operates on the
recipients field, like so:

class ContactForm extends Form
{
 public function fields()
 {
 return [
 'subject' => Form::CharField(['maxLength'=>100]),
 'recipients' => MultiEmailField::instance(),
 'cc_myself' => Form::BooleanField(['required' => false]),
];
 }

 public function cleanRecipients()
 {
 $data = $this->cleanedData['recipients'];
 if (!in_array("fred@example.com", $data)) :
 throw new ValidationError("You have forgotten about Fred!");
 endif;
 return $data;
 }
}

Cleaning and validating fields that depend on each other

Suppose we add another requirement to our contact form: if the cc_myself field is true, the subject must
contain the word “help”. We are performing validation on more than one field at a time, so the
form’s clean() method is a good spot to do this. Notice that we are talking about the clean() method on the form
here, whereas earlier we were writing a clean() method on a field. It’s important to keep the field and form
difference clear when working out where to validate things. Fields are single data points, forms are a collection of
fields.

By the time the form’s clean() method is called, all the individual field clean methods will have been run
(the previous two sections), so $this->cleanedData will be populated with any data that has survived so far. So you
also need to remember to allow for the fact that the fields you are wanting to validate might not have survived the
initial individual field checks.

There are two ways to report any errors from this step. Probably the most common method is to display the error at the
top of the form. To create such an error, you can raise a ValidationError from the clean() method. For example:

class ContactForm extends Form
{
 // .. everything before

 public function clean()
 {
 parent::clean();

 if (array_key_exists('cc_myself', $this->cleanedData) &&
 array_key_exists('recipients', $this->cleanedData) &&
 array_key_exists('subject', $this->cleanedData)
) :
 $ccMyself = $this->cleanedData['cc_myself'];
 $recipients = $this->cleanedData['recipients'];
 $subject = $this->cleanedData['subject'];
 if ($ccMyself && $recipients) :

 if (!strlen(strstr($subject, 'help'))) :
 throw new ValidationError(
 "Did not send for 'help' in the subject despite CC'ing yourself."
);
 endif;
 endif;
 endif;
 }
}

In this code, if the validation error is raised, the form will display an error message at the top of the form
(normally) describing the problem.

The call to parent::clean() in the example code ensures that any validation logic in parent classes is
maintained. use $this->cleanedData to access cleaned field data.

The second approach for reporting validation errors might involve assigning the error message to one of the fields.
In this case, let’s assign an error message to both the “subject” and “cc_myself” rows in the form display.
Be careful when doing this in practice, since it can lead to confusing form output. We’re showing what is possible here
and leaving it up to you and your designers to work out what works effectively in your particular situation.
Our new code (replacing the previous sample) looks like this:

class ContactForm extends Form
{
 // .. everything before

 public function clean()
 {
 parent::clean();

 if (array_key_exists('cc_myself', $this->cleanedData) &&
 array_key_exists('recipients', $this->cleanedData) &&
 array_key_exists('subject', $this->cleanedData)
) :
 $ccMyself = $this->cleanedData['cc_myself'];
 $recipients = $this->cleanedData['recipients'];
 $subject = $this->cleanedData['subject'];
 if ($ccMyself && $recipients) :

 if (!strlen(strstr($subject, 'help'))) :
 $msg = "Did not send for 'help' in the subject despite CC'ing yourself.";
 $this->addError("cc_myself", $msg);
 $this->addError("subject", $msg);
 endif;
 endif;
 endif;
 }
}

The second argument of addError() can be a simple string, or preferably an instance of
ValidationError. See Raising Validation errors for more details. Note that
addError() automatically removes the field from cleanedData.

Validators

Writing validators

A validator is a callable that takes a value and raises a ValidationError if it doesn’t meet some criteria.
Validators can be useful for re-using validation logic between different types of fields.

For example, here’s a validator that only allows even numbers:

function validate_even($value)
{
 if ($value % 2 != 0):
 throw new ValidationError(sprintf('%s is not an even number', $value), 'invalid');
 endif;
}

You can add this to a model field via the field’s validators argument:

namespace App\Forms;

use App\Models\Blog;
use Eddmash\PowerOrm\Exception\ValidationError;
use Eddmash\PowerOrm\Form\Form;
use Eddmash\PowerOrm\Form\ModelForm;

class BlogForm extends ModelForm
{
 protected $modelFields = "__all__";
 /**
 * @inheritDoc
 */
 public function getModelClass()
 {
 return Blog::class;
 }

 /**
 * @inheritDoc
 */
 public function fields()
 {
 return [
 'name'=>Form::CharField(['validators'=>['App\Forms\validate_even']])
];
 }

}

Because values are converted to php before validators are run, you can even use the same validator with forms:

namespace App\Forms;

use Eddmash\PowerOrm\Exception\ValidationError;
use Eddmash\PowerOrm\Form\Form;

class CommentForm extends Form
{
 /**
 * @inheritDoc
 */
 public function fields()
 {
 return [
 'name' => Form::CharField(),
 'url' => Form::UrlField(),
 'even_field'=>Form::IntegerField(['validators'=>['validate_even']]),
 'moderate' => Form::BooleanField(['required' => false]),
];
 }

}

You can also use a class with a __invoke() method for more complex or configurable validators.

How validators are run

See the form validation for more information on how validators are run in forms, and
Validating objects for how they’re run in models. Note that validators will not be run automatically when you save a
model, but if you are using a ModelForm, it will run your validators on any fields that are included in your form.
See the ModelForm documentation for information on how model validation interacts with forms.

Model Form Example

The Model Class

namespace App\Models;

use Eddmash\PowerOrm\Model\Model;

/**
* Class Author
*/
class Author extends Model
{
 public function unboundFields()
 {
 return [
 'name'=>Model::CharField(['maxLength'=>25]),
 'date'=>Model::DateField(),
];
 }

}

The form that represents the Author Model

The Model Form Class

namespace App\Forms;

use Eddmash\PowerOrm\Form\Form;
use Eddmash\PowerOrm\Form\ModelForm;
use Eddmash\PowerOrm\Form\Validations\MaxValueValidator;
use Eddmash\PowerOrm\Form\Widgets\DateInput;
use Eddmash\PowerOrm\Form\Widgets\EmailInput;
use Eddmash\PowerOrm\Form\Widgets\NumberInput;
use Eddmash\PowerOrm\Form\Widgets\TextInput;

/**
 * Class AuthorForm
 * @package App\Forms
 * @author: Eddilbert Macharia (http://eddmash.com)<edd.cowan@gmail.com>
 */
class AuthorForm extends ModelForm
{
 protected $modelClass = 'App\Models\Author';
 protected $excludes = ['id'];

 public function fields()
 {
 return [
 'date2' => Form::DateField(
 [
 'widget' => DateInput::instance(['class' => 'form-control']),
 'required'=>false
]
),
 'age' => Form::IntegerField(
 [
 'validators'=>[MaxValueValidator::instance(['max'=>10])],
 'required'=>false,
 'widget' => NumberInput::instance(['class' => 'form-control']),
 'helpText'=>"What is your age"
]
),
 'email' => Form::EmailField([
 'required'=>false,
 'widget' => EmailInput::instance(['class' => 'form-control']),
]),
];
 }

 public function widgets()
 {
 return [
 'date' => DateInput::instance(['class' => 'form-control']),
 'name' => TextInput::instance(['class' => 'form-control']),
];
 }
}

The template

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
 integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<?php
/**@var $form \Eddmash\PowerOrm\Form\Form */
?>
<div class="container">
 <div class="row">
 <div class="col-md-8 col-md-offset-2">
 <form method="post" action="" enctype="multipart/form-data" novalidate>
 <?=$form;?>
 <input type="submit" value="Send" name="Send">
 </form>
 </div>
 </div>
</div>

The Rendering fields manually

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
 integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<?php
/**@var $form \Eddmash\PowerOrm\Form\Form */
?>
<div class="container">
 <div class="row">
 <div class="col-md-8 col-md-offset-2">
 <form method="post" action="" enctype="multipart/form-data" novalidate>

 <?php
 dump($form->nonFieldErrors());
 /**@var $field \Eddmash\PowerOrm\Form\Fields\Field */
 foreach ($form as $field):?>
 <div class='form-group'>
 <label for='"<?= $field->getIdForLabel(); ?>'><?= $field->getLabelName(); ?></label>
 <?= $field; ?>
 <?= $field->getHelpText(); ?>
 </div>
 <?php endforeach;
 ?>

 <input type="submit" value="Send" name="Send">
 </form>
 </div>
 </div>
</div>

Powerorm Debugbar Guide

Displays a debug bar in the browser with information from php. No more var_dump() in your code!

[image: ../_images/screenshot.png]
This is just wrapper to the PHP Debug Bar [http://phpdebugbar.com/]

Installation

Via composer (recommended):

composer require eddmash/powerormdebug

Or add this to the composer.json file:

{
 "require": {
 "eddmash/powerormdebug": "1.1"(check latest version)
 }
}

Setup

To enable the debugbar, add it as component of the orm on the
components setting as shown below.

use Eddmash\PowerOrm\BaseOrm;
use Eddmash\PowerOrmDebug\Toolbar;

$config = [
 // ..., other orm settings

 'components' => [
 Toolbar::class,
]
];

Usage

DebugBar is very easy to use and you can add it to any of your projects in no time.

	The debugger works by dropping all the static files it requires in the applications
assets directory from where they will be served.
The assets directory is set by calling the setAssetsDirectory method of the debugger
as shown in the example below.
This give you full control on how to serve this files

	You could also use renderAssets method to display this assets together as shown in
the example below.

	Lastly to show the debugger invoke the show method.

Note

invoke the show() function at the end of the page so that its able to get all the
sql queries performed

<?php

$orm = \Eddmash\PowerOrm\Loader::webRun(\App\Config\Powerorm::asArray());

/**@var $debugger \Eddmash\PowerOrmDebug\Debugger*/
$debugger =$orm->debugger;
$debugger->getDebugBar()["messages"]->addMessage("hello world!");
$debugger->setAssetsDirectory('assets');

?>
<html>
 <head>
 <?= $debugger->renderAssets(); ?>
 </head>
 <body>
 ...
 <?php echo $debugger->show() ?>
 </body>
</html>

Powerorm Faker Guide

PowerOrmFaker is an extension of Faker library that generates fake data for the PowerOrm Library.

This is just wrapper to the PHP Faker [https://github.com/fzaninotto/Faker]

Installation

Via composer (recommended):

composer require eddmash/powerormfaker

Or add this to the composer.json file:

{
 "require": {
 "eddmash/powerormfaker": "1.1"(check latest version)
 }
}

Setup

To enable the faker, just register it as a
component with the orm on the as shown below.

use Eddmash\PowerOrmFaker\Generatedata;

$config = [
 // ..., other orm settings

 'components' =>[
 Faker::class,
],
];

Usage

php pmanager.php generatedata

Available options are :

-o, –only

The list of models to use when generating records.

php pmanager.php generatedata -o 'App\Models\Author' -o 'App\Models\Blog'

-i, –ignore

The list of models to ignore when generating records.

php pmanager.php generatedata -i 'App\Models\Entry'

-r, –records

The number of records to generate per model.

php pmanager.php generatedata -r 5

-s, –seed

To always get the same generated data. Calling generatedata twice with the same seed produces the same results

php pmanager.php generatedata -s 5000

Customizing the type of data generated.

This library guesses the kind of data to be set for each field on a model based on the

	name of the field, if its not able it uses,

	the type if model field is.

You have the ability to customize the kind of data generated by implementing the FakeableInterface in you model
as shown below.

The FakeableInterface only has one method the registerFormatter method which should return an associative array
of model field name as key and an anonymous function as its value.

The anonymous function should accept

	a faker object see Using faker object and

	model instance being populated as parameters and returns a valid php value e.g integer/string/date etc.

The registerFormatter method accepts one parameter, the generator object which you can use to register custom
providers see Adding Providers

namespace App\Models;

use Eddmash\PowerOrm\Model\Model;
use Eddmash\PowerOrmFaker\FakeableInterface;

class User extends Model implements FakeableInterface
{
 public function unboundFields()
 {
 return [
 "username" => Model::CharField(['maxLength' => 50]),
 "age" => Model::CharField(['maxLength' => 50]),
];

 }

 public function registerFormatter(Generator $generator)
 {
 return [
 "age" => function ($faker, $object) {
 return $faker->ipv4;
 },
];
 }
}

Using the faker object

// generate data by accessing properties

 echo $faker->randomDigit // 7
 echo $faker->phoneNumber // '201-886-0269 x3767'
 echo $faker->jobTitle // 'Cashier'
 echo $faker->name;
 // 'Lucy Cechtelar';
 echo $faker->randomElements($array = array ('a','b','c'), $count = 1) // array('c')
 echo $faker->address;
 // "426 Jordy Lodge
 // Cartwrightshire, SC 88120-6700"
 echo $faker->text;
 // Dolores sit sint laboriosam dolorem culpa et autem. Beatae nam sunt fugit
 // et sit et mollitia sed.
 // Fuga deserunt tempora facere magni omnis. Omnis quia temporibus laudantium
 // sit minima sint.

See all available Localized Formatters [https://github.com/fzaninotto/Faker#language-specific-formatters]
and General Formatters [https://github.com/fzaninotto/Faker#formatters] on the faker object.

Adding Providers to Faker object

You can create you custom data providers for the faker as shown below.

The create the provider in this case we create a book provider.

namespace App\Provider;

use Faker\Provider\Base;

class BookProvider extends Base
{
 public function book_title($nbWords = 5)
 {
 $sentence = $this->generator->sentence($nbWords);
 return substr($sentence, 0, strlen($sentence) - 1);
 }

 public function book_isbn()
 {
 return $this->generator->ean13();
 }
}

Register the custom provider with the generator on the registerFormatter method
and now you can use the new formaters as shown below.

namespace App\Models;

use App\Provider\BookProvider;
use Eddmash\PowerOrm\Model\Model;
use Eddmash\PowerOrmFaker\FakeableInterface;
use Faker\Generator;

class Book extends Model implements FakeableInterface
{
 public function unboundFields()
 {
 return [
 "title" => Model::CharField(['maxLength' => 50]),
 "isbn" => Model::CharField(['maxLength' => 50]),
 "summary" => Model::CharField(['maxLength' => 50]),
];
 }

 public function registerFormatter(Generator $generator)
 {
 $generator->addProvider(new BookProvider($generator));

 return [
 "title" => function ($faker, $object) {
 return $faker->book_title;
 },
 "isbn" => function ($faker, $object) {
 return $faker->book_isbn;
 },
];
 }

}

For in depth details of how this work see
Faker Internals: Understanding Providers [https://github.com/fzaninotto/Faker#faker-internals-understanding-providers]

Phpgis Guide

Work in progress

The MIT License (MIT)

Copyright (c) 2016 Eddilbert Macharia (edd.cowan@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Change Log

Version 1.1.0-Pre-Alpha

	Additions

	Improvements and Fixes

	Rewrites

Rewrite of the PowerOrm

Release Date: Not Released

Additions

	Registry

This a registry of all the models the orm detected.

	Manager

This is in charge of managing all the command line related tasks for the orm,
no need for users to create a migration controller to be able to work with
the orm anymore

	Doctrine Dbal

Uses Doctrine Dbal to interact with the database.

	Support

	Migrations now supports all database supported by Doctrine Dbal

	Migration Module:

	Add Migrations commands

	check

	showmigration

	migrate

	makemigrations

	robot

	help

	version

	Migrations is able to support :

	Alter/Remove/Add Operations relating to models.

	Forms class

	You can deal with forms in two ways :

	Use the default form provided by the ORM

	this is achieved by calling the $this->orm->get_form()
which helps you build your form.

	Define a form class in the forms folder.

	create a forms folder at the same level as the libraries folder,
if it does not exist.

	inside it, Define a class the extends PForm class

	just like model, override the fields() method and define you
forms fields

	and just like models, you the form fields from PForm e.g.
PFORM::EmailField() .

	the benefits of defining a form class is that it makes it very easy to
do custom validations i.e. that those not handled by CI_form_validation class

	From the orm orm object $this->orm you can be able to access the following :

	registry = this->orm->get_registry()

	orm version = this->orm->get_version()

	
	Orm Form = this->orm->get_form()

	
	this builds a form based on the

	
	orms core form class by default

	use a custom form you have defined if you pass the form as an argument or

	model to build a form based on a model that already exists.

	Contributor, DeConstructable interface to provide a consistent way of
deconstructing objects and contributing objects to other objects

Improvements and Fixes

	Provides a consistent api for the models meta data, for easier access.

	A consistent approach to how checks are carried out.

	Migrations operations

	Queryset to use the mode consistent model meta

	Check system by redefining the check message levels

Rewrites

	The whole migration module.

	This module saw the addition of some important class:

	AutoDetector - rewrite, keeps track of all changes within the models
and produces the migration files..

	Executor - responsible for running the migrations
applying/unapplying.

	Graph - Keeps track of how the migrations are related to each
other i.e. which migration needs to run before which.

	Migration - this was a rewrite, this is the base class for
all migrations

	Loader - this was a rewrite, loads migrations found in the
migrations folder

	Questioner - this was a rewrite

	Recorder - this helps in keeping track of which migrations
have been applied/unapplied by storing them in the database

	State - this was rewrite to allow to use the new registry created

	This drops using the CI_MIGRATION module and implements a differrent
approach of doing migration this was prompted by need to reduce the number
of migration files the previous version was producing

	The whole console module

	This removes the need for user to create a migration controller to be able
to use the orm just copy the pmanger.php file located at ORM_PATH/pmanager.php
to the same directory as index.php

	This also provides a consistent api for adding more commands within the orm

	The whole Form Module

	This was done to enable defining forms as classes on a separate php file.

	This rewrite resulted in the following classes:

	Form - this is the overall class, it keeps track of a forms fields,
form errors etc

	Field - this keeps track of information relating to a form field
like which errors it has, which label to use, the value of the
field etc

	Widget - this is responsible for rendering/ creating the
expected html widget eg. input, textarea, password.

	ValidationError - this thrown if a validation fails.

	Whilst the new Form Module has its own validation technique, it heavily
relies of the Ci_form_validation class. the new validation technique is meant
to be used when doing validation that is not handle by Ci_form_validation class.

You will mostly use it in the following form methods , i.e. if you have defined a form class :

	the forms clean() method

	the forms clean_{field_name}() method

Index

 Symbols

Symbols

 	
 	() (method), [1], [2], [3], [4], [5], [6], [7], [8]

Note

This documentation is mostly for PowerOrm(1.1.0).

You can get a Demo App [https://github.com/eddmash/powerocomponentsdemo]
that show this componets in use.

Visit a Live Demo of the App [https://powerocomponentsdemo.herokuapp.com]
that shows this componets in use.

For assistance post your questions
here Powerorm Help [https://groups.google.com/d/forum/powerorm-users]

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 PHP Components

 		
 PowerOrm User Guide

 		
 Introduction

 		
 Introduction

 		
 Setup Powerorm

 		
 Configuration

 		
 Components

 		
 Dependencies

 		
 Features

 		
 Credits

 		
 Model

 		
 Model inheritance

 		
 Multi-table inheritance

 		
 Abstract base classes

 		
 Proxy models

 		
 Model Meta Settings

 		
 Model Fields

 		
 Model Instance

 		
 Making queries

 		
 Making queries

 		
 QuerySet API reference

 		
 Custom Lookups

 		
 Custom Lookups

 		
 Migration

 		
 Integrating Powerorm

 		
 Integrating with Codeigniter 4

 		
 Integrating with Laravel

 		
 Development Tools

 		
 Powerorm Management Commands

 		
 PowerForm User Guide

 		
 Working with forms

 		
 The Forms API

 		
 Form fields

 		
 Widgets

 		
 Creating forms from models

 		
 Form and field validation

 		
 Validators

 		
 Model Form Example

 		
 Powerorm Debugbar Guide

 		
 Powerorm Faker Guide

 		
 Phpgis Guide

 		
 The MIT License (MIT)

 		
 Change Log

_images/screenshot.png
© | Messages, Request Timeline ©15ms @ 1MB x

hello info
4 world warn
Array ([toto] => Array ([] => titi [1] => tata)) info
© oups. error

