

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Platipy 0.9.6 documentation

Platipy Project

[image: _images/platipy-big.png]
The platipy project is an effort to document efforts to build a game in Python and Spyral for the OLPC XO (and other platforms, such as Windows, Mac, and the Raspberry Pi). Spyral is a library/engine for developing 2D games in Python 2.X, with a focus in rapid development and clean design. Any system that runs Pygame should be able to run Spyral. Read the introduction if you’re interested in the motivation and some details behind choices made, or skip right to the guides if you’re ready to start programming.

News

	News

Building Games

	Introduction and Target Audience
	The OLPC XO

	Development Options

	Additional Reading

	Tutorials
	Getting Started

	Your First Game: Pong

	Animations Tutorial

	Becoming a Pythonista

Spyral Documentation

	Complete API Reference
	Actors

	Animations

	Director

	Easings

	Events

	Event Handlers

	Fonts

	Forms

	Images

	Keyboard

	Mouse

	Rects

	Scenes

	Sprites

	Vec2Ds

	Views

	Widgets

	Spyral API Appendices
	Event List

	Anchors

	Keyboard Keys

	Keyboard Modifiers

	Layering

	Rects

	Styleable properties

	Valid Image Formats

	Spyral API Cheat Sheets
	Sprites

	Scenes

	Views

Further References

	Game Development Resources
	General

	Art and Design

	Educational Game Design
	Research

	Queued Research Papers

The Platipy Project

	OLPC Contributor Application
	Project Title & Shipment Detail

	Team Participants

	Objectives

	Plan of Action

	Needs

	Sharing Deliverables

	Quality/Mentoring

	Timeline (Start to Finish)

	Games Gallery
	Educational

	General

	Open Tasks
	Spyral

	Example.Activity

	Platipy

	Conspyre

Release Information

	Latest Versions
	Downloads

	Git Repositories

	Changelogs
	Spyral

	Example.activity

	Contact Developers / Submit Changes

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

News

Release of Spyral 0.9.6

4:08pm April 11, 2014

Today we are pleased to announce the first release of Spyral 0.9.6, a bugfix of our first release using the new API. This API represents a years work of changes to the very core of Spyral, coming with new, powerful features like improved event handling, Views, Animations, and a host of other cool stuff.

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

Introduction and Target Audience

This website is a collection of wisdom learned about developing games for the OLPC XO [http://one.laptop.org/], with a special focus on the goals of the students taking CISC-374 at the University of Delaware [http://udel.edu]. We won’t talk too much about developing individual games, as that varies widely from year to year and team to team, but instead we’ll focus on the differences and particular challenges that are faced when placing these games on the OLPC, and some ways to overcome those challenges. Each section will conclude with links for additional reading that will often include more depth and breadth than will be presented here.

While we will focus mostly on the needs of the course at the University of Delaware, most of the material is generally applicable for developing non-PyGTK activities for the OLPC XO. We will begin with a quick introduction to the One-Laptop-Per-Child project and the XO laptop, its flagship product. Spyral, and this material, is also suitable for other platforms, such as the Raspberry Pi [http://www.raspberrypi.org/] (which ships with Pygame installed!).

The OLPC XO

The XO was chosen as a development environment for a number of reasons. Probably the most important reason is that the middle school with which CISC374 coordinates received a donation that allows them to assign one XO to every student at the school. There is also a large educational development community around the XO and the OLPC foundation, so the hope is that the results of this course can be released to the greater community.

Sugar and Activities

Sugar is the user interface of the XO laptop. It is designed very differently from traditional systems like Windows or OS X. Built on Fedora, there are several concepts unique to the system that you should understand before designing for it.

Key Concepts

	Activities

	Basically, an application or program. Activities are meant to be used by humans. When they run, they take up the whole screen, and it is expected that you only use one Activity at a time.

	Views

	There are three “Views” on the XO: “Home”, “Neighborhood”, “Group”. The Home View is a listing of all the Activities available on the XO. The Neighborhood View is a list of all the visible networks you can connect to. You will never use the Group View. You can switch between Views by using the buttons in the top-left of the Frame.

	Frame

	If you hold your mouse in the corner of the screen (or press the black rectangle in the top-right corner of your keyboard), the Frame will appear. On the top bar, there are buttons to switch between the Views and running Activites. On the bottom, you can see currently connected networks, USB drives, and other system information.

	Journal

	A record of activity on the XO. When you start an Activity, an entry is added to the journal. When you download a file, it is stored in the journal. When you resume a stopped Activity, its state is restored from the journal.

Important Built-in Activities

[image: _images/icon-terminal.png]

	Terminal

	The most important Activity, this is a Linux terminal. You can use it to access the underlying Linux filesystem.

[image: _images/icon-log.png]

	Log

	This is the second most important Activity. When you get error messages, this is where they will show up. The entries on the left are from the Activities and Services that are running or have finished since you turned on the XO. Click on them to see their output. This is the only way to get to error messages!

[image: _images/icon-browse.png]

	Browse

	When you need to browse the internet, you’ll use this web browser. It’s basically a dumbed-down version of Firefox. You can also install Opera or Firefox if you want, but it probably won’t be necessary.

[image: _images/icon-maze.png]

	Maze

	The maze is a fun little activity where you guide a shape out of a maze. Everytime you complete a level, a larger one is generated. For some reason, people love the Maze a lot, and it makes for a good distraction.

If you’re interested in more activities, there are a large number of them at the Sugar Activity Repository [http://activities.sugarlabs.org//en-US/sugar/].

Connecting to the Internet

To get internet access, go to the Neighborhood (in the top-left of the Frame). You should see a bunch of circles. If you hover over these circles, you can see that they represent available networks. Choose your network, and if prompted, put in your passphrase.

	If you have problems connecting, try some of these fixes.

	
	Give the XO a few minutes after you’ve reached the home screen. Sometimes it just takes a bit of time to get itself oriented.

	Keep the “ears” (the little swiveling bars on the XO that cover the USB ports) upwards. That’s where the wifi antennae are.

	Try removing your network history. Right click the XO symbol on the Home View, choose “Control Panel”, and go to “Network”. There should be a button that promises to “Discard network history”. Don’t worry if clicking it doesn’t appear to do anything. It’s a silent fix. Just try connecting again.

	Smack your XO until you feel better.

	A recent research study discovered that when 10+ XO laptops are put together, the mesh network on even a single XO can completely halt the regular internet connection. Disabling the mesh on all the laptops (which can be done with a startup script) should restore functionality. Refer to the following discussion [https://groups.google.com/forum/#!topic/unleashkids/1vkhJ2uS-R0] for more information.

	Try the stuff on this page [http://wiki.laptop.org/go/Wifi_Connectivity#Special_Considerations].

Development Options

Python

As with most platforms, there are a number of options available for development. The first choice we needed to make for the XO was language. Python is the language of choice for a number of reasons. First, the vast majority of activities and most of Sugar itself are written in Python, so using the preferred language makes finding examples and documentation significantly easier. Additionally, given the tight schedule for the course, a dynamic language that allows rapid development is a good choice.

Pygame vs PyGTK+

With Python chosen, we have two choices for a user interface that will work with Sugar: pygame and PyGTK+. PyGTK+ is a set of bindings for GTK+, a common GUI toolkit for Desktop applications. While some games may be written easily within the confines of PyGTK+, many of the game ideas which have been proposed would not, requiring much custom development of widgets and internal knowledge of GTK+.

Pygame, however, is a library made specificially for game development. It provides simple and direct ways of drawing and managing 2D images on the screen, making it a great choice for making simple games. It does, however, also have a few downsides. Most notably, hardware support with pygame is notoriously lacking, and further limited by the XO’s lack of OpenGL drivers on some models. Additionally, compared to PyGTK+, pygame is a second-class citizen in OLPC development, requiring a number of hacks and workarounds. To remedy this situation, a custom library built on top of pygame, called Spyral, has been developed for this course.

Spyral

In addition to Python and Pygame, the recommendation for this course is Spyral, a library built on top of pygame to provide a number of features which are useful for rapid and efficient game development. Most importantly, spyral helps provide the following:

	Some built-in core concepts of game design. Pygame is really just a wrapper for doing 2D drawing, with a few nice features like sound and input support, but doesn’t provide much in terms of higher level game design concepts. Spyral provides a scene system, improved game clocks, an events system, and much more.

	An optimized method of drawing. Because pygame on the XO is not hardware accelerated, pygame’s software rendering is the slowest part of every game. Spyral provides a no-hassle method of doing dirty rendering which can increase performance significantly for sprite-based 2D games

Spyral is a complete wrapper on-top of pygame, meaning that the usage of pygame should be completely hidden from the user. For advanced users, pygame is in full use behind the scenes, and with clever reading of the spyral source code, you can use it in your games, but we feel that spyral should be sufficient for most users in this course. If you find yourself in need of a feature, please contact the developers by raising a new issue on the Spyral Github [https://github.com/platipy/spyral/issues?state=open] .

Additional Reading

	For some additional information about the OLPC XO, visit the OLPC Wiki [http://wiki.laptop.org/go/The_OLPC_Wiki], though be warned that there is a lot of out of date information floating around various areas.

	For some additional motivation for Python and PyGTK+ and Pygame, the FLOSS Manuals guide to “Make your own sugar activities” [http://www.flossmanuals.net/make-your-own-sugar-activities/] is a good read.

	For a more in-depth look at the motivation behind spyral, see our Contributor Application.

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

Tutorials

	Getting Started
	Required Software

	Setting up the Launcher

	Running the Example

	Modifying the Example

	Your First Game: Pong
	The Director and Scenes

	Images

	Sprites

	Moving the Ball

	Collision Detection

	User Input

	User Events

	Animations Tutorial
	Easings

	Attributes

	Animation Events

	Combining Animations

	Looping and Stopping animations

	Follow the Cursor

	Custom Easings

	Conclusion

	Becoming a Pythonista
	Basic Concepts

	Advanced Concepts

	Important Modules

	Third-Party Modules

	Additional Reading

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

 	Tutorials

Getting Started

Required Software

Warning

XO laptops do not run the most current version of most of their software. If you want to be the best XO developer possible, you’ll want to use the earlier versions. If you cannot get older versions installed, Python 2.7 and the latest version of pygame are acceptable, but make sure you are testing often on the XO. There are also programs that can search your source code and make sure it is 2.5 compliant [https://github.com/ghewgill/pyqver] .

Spyral has several dependencies. Moreover, the installation process is very different on Mac and Windows. Please follow the directions that are appropriate for your system.

Mac

	Install Python

	Install setuptools

	Install pip

	Install greenlets

	Install pygame

	Install parsley

	Download Pong

Unix

	sudo apt-get install python-setuptools

	sudo apt-get install python-pip

	sudo apt-get install python-pygame

	sudo pip install greenlet

	sudo pip install parsley

	Download Pong

Windows

There are several steps to getting python and spyral fully running on your PC.

Note

even if you have a 64-bit machine, use the 32-bit version of Python (it’s still more stable).

	Python: Python is the name of the language and the interpeter. Use 2.7 [http://python.org/ftp/python/2.7.6/python-2.7.6.msi] since 2.5 is no longer easily available on Windows.

	Greenlets: Greenlets is a powerful module for adding multiprocessing. Download version 0.4.2, for windows 32-bit 2.7 Python, of greenlets [http://www.lfd.uci.edu/~gohlke/pythonlibs/#greenlet] .

	Pygame: Pygame is the game development library for Python that is installed on the XOs. Download the latest version of pygame [http://pygame.org/ftp/pygame-1.9.1.win32-py2.7.msi] .

	SetupTools: This is a python module for quickly installing new python modules. Download version 2.2, for windows 32-bit 2.7 Python of setuptools [http://www.lfd.uci.edu/~gohlke/pythonlibs/#setuptools] .

	Pip: SetupTools is a requirement for an even better installer named Pip. Download version 1.5.4, for windows 32-bit 2.7 Python, of pip [http://www.lfd.uci.edu/~gohlke/pythonlibs/#pip] .

	Add Python to your Path: To be able to directly run python from the command line, you must add the path to Python to your System’s Path. This Stack Overflow [http://stackoverflow.com/questions/3701646/how-to-add-to-the-pythonpath-in-windows-7] gives general directions, but you might need to google search for directions that work for your version. Make sure you add both the Python folder itself and the Scripts subfolder folder!

	Parsley: This is a module that Spyral uses to handle Spyral Style Files. Use the following on the command line: pip install parsley

	Download Pong Example: Download Pong

Note

Use PowerShell instead of the default Windows Command Line. It has a lot of unix features like ls and should already be installed on your system.

Setting up the Launcher

The Dev Launcher, named Example.activity, is a tool provided for you that takes a lot of the boilerplate out of writing your game. The download links can be found at Downloads, and extract it to whereever you will be working.

Once you’ve extracted the launcher, you should rename the Example.activity directory to a name of your choice. Since you probably don’t yet know the name of your game, you can name it after yourself for now. Once it has been renamed, you should run init.py in a terminal. It will prompt you for some values for setting up your activity. Right now, these aren’t too important, but come back to this section later when you’re ready to pick a name and run your activity on the XO.

The launcher contains a variety of other folders and directories. Many of them will be important later, and a few of them you can ignore entirely. Here’s a summary of what’s included:

	File
	Description

	activity.py
	The activity launcher required for the XO. You should never have to edit this file.

	dev_launcher.py
	This is the launcher that you will use during development. It supports a variety of options, you should never have to edit this file.

	init.py
	A script which does some setup for running your game as an activity on the XO. You should never have to edit this file.

	setup.py
	A script which will provide a number of way for you to deploy your game for testing or when you are ready for release. We’ll come back to setup.py in a later chapter.

	activity/
	This directory contains some metadata required for the XO. It can be modified directly, or generated for you by init.py. Until you have run init.py, this directory will be empty.

	dist/
	When you are building with setup.py, the output will go in here. Any files in this directory will be ignored when building.

	game/
	This is the directory where all your game assets will go. All the code, artwork, fonts, etc. should be placed in here. This is to facilitate updating the launcher in the future and keeping the directory structure clean.

	libraries/
	This directory contains any pure python libraries that you wish to distribute with your game.

	locale/
	This is a build output directory, like dist, except for built translations. You should never be placing things in here by hand

	po/
	This directory contains source files for translations. You can read more about this in the section on Translating

	profiles/
	This directory will contain the output from the performance profiler built into the development launcher.

	skel/
	This directory contains support files for init.py. You can safely ignore it.

Running the Example

With the launcher installed, you can run the example game which comes with it, a simple version of Pong. For running on your regular computers, the file dev_launcher.py is the way to launch the game. It comes with a few options, but for now there are two important ones which we’ll worry about. The first is -r, which allows you to specify a resolution. By default, the launcher will autodetect your screen’s resolution. Because the XO uses a screen resolution of 1200 by 900, all games which we write in that class will have that resolution. This means that on most of your machines, the image will be streched because the aspect ratio does not match. For development, you should pick a good resolution which fits within your screen, and pass that as an option to the dev_launcher. For instance, I usually run “python dev_launcher.py -r 800 600”.

The second important launcher option is “-h”. It will show you other options available in the launcher. We’ll come back to those later.

Modifying the Example

Once you’re ready to start modifying the example code, head into the game directory. Here, you will find the code which is actually of interest to you. In the next chapter, we’ll build the game you see in the example from the ground up.

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

 	Tutorials

Your First Game: Pong

Now that you’ve got the example launcher up and working, let’s start from
scratch and write a game. For the example, we’ll write Pong.

Note

To begin, clear out the game/ directory and follow along as we rewrite it.

In order for the Launcher to find your game, you must make the game/
directory be an importable python module by creating game/__init__.py (you can
read more about Python Packaging here [http://docs.python.org/tutorial/modules.html#packages]). The Launcher expects
this file to have a main function which pushes the first Scene for the
game on the Director‘s stack.

The Director and Scenes

The Director and Scenes are the most fundamental way to
organize a game in Spyral. At any given time, a Scene is running and
controlling the game. The Director manages movement between Scenes. The top
Scene on the stack is the current Scene, and
transitions require:

	Pushing new Scenes on top of old ones.

	Popping the current Scene.

	Replacing the current Scene with a new one.

Your game will have many Scenes (perhaps representing a main menu, a character
select screen, an individual level, or a pause menu), but there is only
ever the one Director.

Our Pong game will eventually have two Scenes: a simple menu, and the
actual Pong game. For now, let’s make an empty class to represent the
second of those two Scenes. Then we can have the main function push
that Scene onto the top of the Director’s stack. To keep our code
organized, we’ll split this into multiple files.

game/__init__.py

	1
2
3
4
5

	import spyral
from pong import Pong

def main():
 spyral.director.push(Pong())

game/pong.py

	1
2
3
4
5

	import spyral

class Pong(spyral.Scene):
 pass

For now, we will only add in a stub for the Scene’s constructor (__init__ [http://interactivepython.org/runestone/static/thinkcspy/Classes/classesintro.html#user-defined-classes]). Notice how we call the constructor
for the Pong classes parent (spyral.Scene) by using the super
python keyword. Whenever you subclass in Python, you should call the
super class in this way (More information [http://learnpythonthehardway.org/book/ex44.html]). Scenes require a size
on initialization, and all XO games should have the same size.

Note

If your monitor is not big enough to display a 1200x900 window, you can
scale the resolution without affecting your game using the development
launcher.

>>> .\dev-launcher.py -r 600 450

game/pong.py

	1
2
3
4
5
6
7
8
9

	import spyral

WIDTH = 1200
HEIGHT = 900
SIZE = (WIDTH, HEIGHT)

class Pong(spyral.Scene):
 def __init__(self):
 super(Pong, self).__init__(SIZE)

Before we can set our first scene property, we have to learn about Images.

Images

Images in spyral are the basic building blocks of drawing. They are
conceptually simple, but there are many methods to manipulate them. It
is worthwhile to spend some time reading the docs on
Images. To make our background, we will

	create a new image using the Image constructor, sized to the Scene,

	assign it as the background for this Scene

	fill this image with black, and finally,

game/pong.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	import spyral

WIDTH = 1200
HEIGHT = 900
SIZE = (WIDTH, HEIGHT)

class Pong(spyral.Scene):
 def __init__(self):
 super(Pong, self).__init__(SIZE)

 self.background = spyral.Image(size=SIZE).fill((0, 0, 0))

Now that we have a background, we’ll want to create Images that
represent the paddles and ball in Pong. For this, we’ll talk about
Sprites.

Sprites

Sprites have an Image, along with some information about where and how to
draw themselves. Sprites allow us to control things like positioning, scaling,
rotation, and more. There are also more advanced Sprites, including ones
that can do animation. For now, we’ll work with basic sprites, but you
can read more about the available sprites in Sprites.

All Sprites must have an image and live in a Scene. They cannot move
between Scenes, and when a Scene ends, so do the sprites. As soon as
Sprites are created, they will start being drawn by the scene (you can
stop them from being drawn with the visible attribute).

For now, we’ll

	create a new Paddle sprite,

	give the Paddle a new image (a solid rectangle),

	create two instances of the Paddle sprites within the scene, and,

	position the sprites close to the left and right of the screen, using the
sprite’s anchor attribute to improve positioning,

game/pong.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	import spyral

WIDTH = 1200
HEIGHT = 900
SIZE = (WIDTH, HEIGHT)

class Paddle(spyral.Sprite):
 def __init__(self, scene):
 super(Paddle, self).__init__(scene)

 self.image = spyral.Image(size=(20, 300)).fill((255, 255, 255))

class Pong(spyral.Scene):
 def __init__(self):
 super(Pong, self).__init__(SIZE)

 self.background = spyral.Image(size=SIZE).fill((0, 0, 0))

 self.left_paddle = Paddle(self)
 self.right_paddle = Paddle(self)

 self.left_paddle.anchor = 'midleft'
 self.left_paddle.pos = (20, HEIGHT / 2)

 self.right_paddle.anchor = 'midright'
 self.right_paddle.pos = (WIDTH - 20, HEIGHT / 2)

A good rule of thumb is to avoid manipulating sprites at the Scene level. So
we’ll refactor the positioning and anchors inside the Paddle constructor.

game/pong.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	import spyral

WIDTH = 1200
HEIGHT = 900
SIZE = (WIDTH, HEIGHT)

class Paddle(spyral.Sprite):
 def __init__(self, scene, side):
 super(Paddle, self).__init__(scene)

 self.image = spyral.Image(size=(20, 300)).fill((255, 255, 255))

 self.anchor = 'mid' + side
 if side == 'left':
 self.x = 20
 else:
 self.x = WIDTH - 20
 self.y = HEIGHT/2

class Pong(spyral.Scene):
 def __init__(self):
 super(Pong, self).__init__(SIZE)

 self.background = spyral.Image(size=SIZE).fill((0, 0, 0))

 self.left_paddle = Paddle(self, 'left')
 self.right_paddle = Paddle(self, 'right')

Moving the Ball

Next, we’ll add a ball, but we’ll treat it differently than the paddles.
The ball is going to move on it’s own, so we’ll make a Ball
class, inheriting from the Sprite class again. We already know how to
position, set an image (using the draw_circle
fuction), and anchor this new sprite.

game/pong.py

	1
2
3
4
5
6
7
8

	class Ball(spyral.Sprite):
 def __init__(self, scene):
 super(Ball, self).__init__(scene)

 self.image = spyral.Image(size=(20, 20))
 self.image.draw_circle((255, 255, 255), (10, 10), 10)
 self.anchor = 'center'
 self.pos = (WIDTH/2, HEIGHT/2)

To make the ball move every frame, we’ll need to register a function
of the ball with the director.update event. There are many possible
events (see the Event List for a complete list), and you can even make
your own (as we will see later). The director.update event is the most
common, however. When a method is registered
with this event, the method will be called every update.

Additionally, we need to perform some math to calculate the velocity of the
ball. In order to reuse this function later, and to keep our code simpler,
we can move it to new method that we’ll name reset.

game/pong.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	class Ball(spyral.Sprite):
 def __init__(self, scene):
 super(Ball, self).__init__(scene)

 self.image = spyral.Image(size=(20, 20))
 self.image.draw_circle((255, 255, 255), (10, 10), 10)
 self.anchor = 'center'

 spyral.event.register('director.update', self.update)
 self.reset()

 def update(self, delta):
 self.x += delta * self.vel_x
 self.y += delta * self.vel_y

 def reset(self):
 # We'll start by picking a random angle for the ball to move
 # We repick the direction if it isn't headed for the left
 # or the right hand side
 theta = random.random()*2*math.pi
 while ((theta > math.pi/4 and theta < 3*math.pi/4) or
 (theta > 5*math.pi/4 and theta < 7*math.pi/4)):
 theta = random.random()*2*math.pi
 # In addition to an angle, we need a velocity. Let's have the
 # ball move at 300 pixels per second
 r = 300

 self.vel_x = r * math.cos(theta)
 self.vel_y = r * math.sin(theta)

 # We'll start the ball at the center. self.pos is actually the
 # same as accessing sprite.x and sprite.y individually
 self.pos = (WIDTH/2, HEIGHT/2)

Collision Detection

Next, we’d like to have our ball interact with the sides of the game
board, and with the paddles. We’ll do two different types of collision
detection here just to showcase them. Which you use will depend largely
on the game.

First, we’ll have the ball bounce off the top and bottom of the screen.
For this, we’ll do simple checks on the y coordinate of the ball. You
may remember that we used a center anchor on the ball, so the
coordinates are relative to the center of the ball. To remedy this,
we’ll use the Sprite attribute rect, which gives us a
rectangle that represents the drawn area of the sprite, and we can check
it’s top and bottom attributes. When we see that they have passed the
ceiling or the floor, we’ll flip the y component of the velocity.

game/pong.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	class Ball(spyral.Sprite):
 def __init__(self, scene):
 super(Ball, self).__init__(scene)

 self.image = spyral.Image(size=(20, 20))
 self.image.draw_circle((255, 255, 255), (10, 10), 10)
 self.anchor = 'center'

 spyral.event.register('director.update', self.update)
 self.reset()

 def update(self, delta):
 self.x += delta * self.vel_x
 self.y += delta * self.vel_y

 r = self.rect
 if r.top < 0:
 r.top = 0
 self.vel_y = -self.vel_y
 if r.bottom > HEIGHT:
 r.bottom = HEIGHT
 self.vel_y = -self.vel_y

 def reset(self):
 # We'll start by picking a random angle for the ball to move

Next, we’ll have the ball collide with the two paddles. We will place the
collision check at the Scene level, because it requires checking two Sprites.
Every director.update, we’ll check to see if the ball is colliding with either
padel; if so, then we will call a method in the Ball class called bounce
that flips the horizontal velocity of the ball. It will check for collisions
using the
collide_sprites method of scenes.
Note that sprites also have a
collide_sprite
method.

game/pong.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

	import spyral
import random
import math

WIDTH = 1200
HEIGHT = 900
SIZE = (WIDTH, HEIGHT)

class Ball(spyral.Sprite):
 def __init__(self, scene):
 super(Ball, self).__init__(scene)

 self.image = spyral.Image(size=(20, 20))
 self.image.draw_circle((255, 255, 255), (10, 10), 10)
 self.anchor = 'center'

 spyral.event.register('director.update', self.update)
 self.reset()

 def update(self, delta):
 self.x += delta * self.vel_x
 self.y += delta * self.vel_y

 r = self.rect
 if r.top < 0:
 r.top = 0
 self.vel_y = -self.vel_y
 if r.bottom > HEIGHT:
 r.bottom = HEIGHT
 self.vel_y = -self.vel_y

 def reset(self):
 # We'll start by picking a random angle for the ball to move
 # We repick the direction if it isn't headed for the left
 # or the right hand side
 theta = random.random()*2*math.pi
 while ((theta > math.pi/4 and theta < 3*math.pi/4) or
 (theta > 5*math.pi/4 and theta < 7*math.pi/4)):
 theta = random.random()*2*math.pi
 # In addition to an angle, we need a velocity. Let's have the
 # ball move at 300 pixels per second
 r = 300

 self.vel_x = r * math.cos(theta)
 self.vel_y = r * math.sin(theta)

 # We'll start the ball at the center. self.pos is actually the
 # same as accessing sprite.x and sprite.y individually
 self.pos = (WIDTH/2, HEIGHT/2)

 def bounce(self):
 self.vel_x = -self.vel_x

class Paddle(spyral.Sprite):
 def __init__(self, scene, side):
 super(Paddle, self).__init__(scene)

 self.image = spyral.Image(size=(20, 300)).fill((255, 255, 255))

 self.anchor = 'mid' + side
 if side == 'left':
 self.x = 20
 else:
 self.x = WIDTH - 20
 self.y = HEIGHT/2

class Pong(spyral.Scene):
 def __init__(self):
 super(Pong, self).__init__(SIZE)

 self.background = spyral.Image(size=SIZE).fill((0, 0, 0))

 self.left_paddle = Paddle(self, 'left')
 self.right_paddle = Paddle(self, 'right')
 self.ball = Ball(self)

 spyral.event.register("director.update", self.update)

 def update(self, delta):
 if (self.collide_sprites(self.ball, self.left_paddle) or
 self.collide_sprites(self.ball, self.right_paddle)):
 self.ball.bounce()

User Input

User Input is handled the same way that director.update is - by registering
a function with the event. To get started, we’ll register another event on the
scene: system.quit, which is fired when the user presses the exit button.
Almost every game will want to respect this event.

game/pong.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	class Pong(spyral.Scene):
 def __init__(self):
 super(Pong, self).__init__(SIZE)

 self.background = spyral.Image(size=SIZE).fill((0, 0, 0))

 self.left_paddle = Paddle(self, 'left')
 self.right_paddle = Paddle(self, 'right')
 self.ball = Ball(self)

 spyral.event.register("director.update", self.update)
 spyral.event.register("system.quit", spyral.director.pop)

A much more interesting event is input.keyboard.down.*, which is fired
whenever the keyboard is pressed. You can also register on specific keys, e.g.,
input.keyboard.down.left or input.keyboard.keyboard.down.f. A complete
list of keys is available Keyboard Keys.

The left and right paddles need to move differently depending on which side
they are on - the left paddle responds to w and s, and the right paddle
responds to up and down. Also, we want the paddles to keep moving after
the keys are released. We’ll use a moving attribute to keep track of
whether the paddle should move either "up" or "down".

game/pong.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

	
 self.image = spyral.Image(size=(20, 300)).fill((255, 255, 255))

 self.anchor = 'mid' + side

 self.side = side
 self.moving = False
 self.reset()

 if self.side == 'left':
 spyral.event.register("input.keyboard.down.w", self.move_up)
 spyral.event.register("input.keyboard.down.s", self.move_down)
 spyral.event.register("input.keyboard.up.w", self.stop_move)
 spyral.event.register("input.keyboard.up.s", self.stop_move)
 else:
 spyral.event.register("input.keyboard.down.up", self.move_up)
 spyral.event.register("input.keyboard.down.down", self.move_down)
 spyral.event.register("input.keyboard.up.up", self.stop_move)
 spyral.event.register("input.keyboard.up.down", self.stop_move)
 spyral.event.register("director.update", self.update)

 def move_up(self):
 self.moving = 'up'

 def move_down(self):
 self.moving = 'down'

 def stop_move(self):
 self.moving = False

 def reset(self):
 if self.side == 'left':
 self.x = 20
 else:
 self.x = WIDTH - 20
 self.y = HEIGHT/2

 def update(self, dt):
 paddle_velocity = 250

 if self.moving == 'up':
 self.y -= paddle_velocity * dt

 elif self.moving == 'down':
 self.y += paddle_velocity * dt

 r = self.get_rect()
 if r.top < 0:
 r.top = 0
 if r.bottom > HEIGHT:
 r.bottom = HEIGHT
 self.pos = r.center

class Pong(spyral.Scene):

User Events

New events can be queued and registered in spyral as easily as system events.
We’ll queue a new event pong.score when the
ball goes either on the left or right side of the screen. Notice that we
pass in a Event, which we give a parameter named
scorer. Functions registered to this event can take in a scorer
parameter to find out who scored.

We also register the reset method with this pong.score event on the
Paddles and Ball, so that they are reset when someone scores. Finally, we
register an increase_score method on the Scene, so that we can keep
track of the score of the game. Notice how we have created a new model
dictionary outside of the Scene; this model can hold the global state, and be
saved and loaded more easily if we someday wanted to enable saving.

game/pong.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

	import spyral
import random
import math

WIDTH = 1200
HEIGHT = 900
SIZE = (WIDTH, HEIGHT)

model = {"left": 0, "right": 0}

class Ball(spyral.Sprite):
 def __init__(self, scene):
 super(Ball, self).__init__(scene)

 self.image = spyral.Image(size=(20, 20))
 self.image.draw_circle((255, 255, 255), (10, 10), 10)
 self.anchor = 'center'

 spyral.event.register('director.update', self.update)
 spyral.event.register('pong.score', self.reset)
 self.reset()

 def update(self, delta):
 self.x += delta * self.vel_x
 self.y += delta * self.vel_y

 r = self.rect
 if r.top < 0:
 r.top = 0
 self.vel_y = -self.vel_y
 if r.bottom > HEIGHT:
 r.bottom = HEIGHT
 self.vel_y = -self.vel_y
 if r.left < 0:
 spyral.event.queue("pong.score", spyral.Event(scorer="left"))
 if r.right > WIDTH:
 spyral.event.queue("pong.score", spyral.Event(scorer="right"))

 def reset(self):
 # We'll start by picking a random angle for the ball to move
 # We repick the direction if it isn't headed for the left
 # or the right hand side
 theta = random.random()*2*math.pi
 while ((theta > math.pi/4 and theta < 3*math.pi/4) or
 (theta > 5*math.pi/4 and theta < 7*math.pi/4)):
 theta = random.random()*2*math.pi
 # In addition to an angle, we need a velocity. Let's have the
 # ball move at 300 pixels per second
 r = 300

 self.vel_x = r * math.cos(theta)
 self.vel_y = r * math.sin(theta)

 # We'll start the ball at the center. self.pos is actually the
 # same as accessing sprite.x and sprite.y individually
 self.pos = (WIDTH/2, HEIGHT/2)

 def bounce(self):
 self.vel_x = -self.vel_x

class Paddle(spyral.Sprite):
 def __init__(self, scene, side):
 super(Paddle, self).__init__(scene)

 self.image = spyral.Image(size=(20, 300)).fill((255, 255, 255))

 self.anchor = 'mid' + side
 self.side = side
 self.moving = False
 self.reset()

 if self.side == 'left':
 spyral.event.register("input.keyboard.down.w", self.move_up)
 spyral.event.register("input.keyboard.down.s", self.move_down)
 spyral.event.register("input.keyboard.up.w", self.stop_move)
 spyral.event.register("input.keyboard.up.s", self.stop_move)
 else:
 spyral.event.register("input.keyboard.down.up", self.move_up)
 spyral.event.register("input.keyboard.down.down", self.move_down)
 spyral.event.register("input.keyboard.up.up", self.stop_move)
 spyral.event.register("input.keyboard.up.down", self.stop_move)
 spyral.event.register("director.update", self.update)
 spyral.event.register('pong.score', self.reset)

 def move_up(self):
 self.moving = 'up'

 def move_down(self):
 self.moving = 'down'

 def stop_move(self):
 self.moving = False

 def reset(self):
 if self.side == 'left':
 self.x = 20
 else:
 self.x = WIDTH - 20
 self.y = HEIGHT/2

 def update(self, delta):
 paddle_velocity = 250

 if self.moving == 'up':
 self.y -= paddle_velocity * delta

 elif self.moving == 'down':
 self.y += paddle_velocity * delta

 r = self.rect
 if r.top < 0:
 r.top = 0
 if r.bottom > HEIGHT:
 r.bottom = HEIGHT

class Pong(spyral.Scene):
 def __init__(self):
 super(Pong, self).__init__(SIZE)

 self.background = spyral.Image(size=SIZE).fill((0, 0, 0))

 self.left_paddle = Paddle(self, 'left')
 self.right_paddle = Paddle(self, 'right')
 self.ball = Ball(self)

 spyral.event.register("director.update", self.update)
 spyral.event.register("system.quit", spyral.director.pop)
 spyral.event.register("pong.score", self.increase_score)

 def increase_score(self, scorer):
 model[scorer] += 1

 def update(self, delta):
 if (self.collide_sprites(self.ball, self.left_paddle) or
 self.collide_sprites(self.ball, self.right_paddle)):
 self.ball.bounce()

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

 	Tutorials

Animations Tutorial

Animations are a useful feature for making Sprites move and change.
They work by interpolating [http://simple.wikipedia.org/wiki/Interpolation] a property over time.
When you interpolate, you mathematically calculate changes from an initial value to a final value.
As an example, here is a simple game where a sprite moves horizontally across the room using an Animation over the x attribute for 1.5 seconds.

game/animating.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	import spyral
import sys
from spyral import Animation, easing

WIDTH = 1200
HEIGHT = 900
SIZE = (WIDTH, HEIGHT)

class Block(spyral.Sprite):
 def __init__(self, scene):
 spyral.Sprite.__init__(self, scene)
 self.image = spyral.Image(size=(64, 64)).fill((255, 0, 0))
 self.anchor = 'center'
 self.y = HEIGHT / 2

 animation = Animation('x', easing.Linear(0, WIDTH), duration = 1.5)
 self.animate(animation)

class Game(spyral.Scene):
 def __init__(self):
 spyral.Scene.__init__(self, SIZE)
 self.background = spyral.Image(size=SIZE).fill((0,0,0))

 spyral.event.register("system.quit", sys.exit)

 self.block = Block(self)

Note

If you have an animation running when the game starts, the first few frames might not be drawn as the program loads. That means your animation might already be in progress by the time you’re able to see it. If you are bothered by this, have the animation triggered by a mouse or keyboard event.

We create an Animation object, and then we pass it into the animate method of a Sprite.
We could very easily make the sprite move vertically simply by changing the attribute, which you’ll notice is given as a str.

animation = Animation('y', easing.Linear(0, HEIGHT), duration = 1.5)
self.block.animate(animation)

A simplest animation requires:

	an attribute (e.g., x, scale, image, or even one you choose yourself)

	an easing (discussed next)

	and a duration (e.g., 1.5 seconds)

Easings

Remember back in Algebra, when you were given two points, and had to find a line that fit them?
And then in Algebra 2, you were taught that you could fit curves to multiple points.
This is similar to an Easing in Animations; a mathematical function over a given interval that Spyral will use in its calculations.
Easings are actually a very common term: to get an idea of the variety of easings, check out this page of easings [http://easings.net/].

Spyral natively supports a number of easings. For instance, the QuadraticIn can be used to start slowly and then go faster.

animation = Animation('y', easing.QuadraticIn(0, HEIGHT), duration = 1.5)

The QuadraticOut starts fast and then slows down:

animation = Animation('y', easing.QuadraticIn(0, HEIGHT), duration = 1.5)

Not all of the easings have an explicit start and end though; consider the Sine easing, which takes in an amplitude instead. First the attribute will oscillate to the positive amplitude, and then to the negative amplitude. Notice that we also use a new parameter of the Animation named shift, that sets the initial value of the attribute.

animation = Animation('x', easing.Sine(WIDTH/4), duration = 1.5, shift=WIDTH/2)

Attributes

Animations can be used for more than just positions. For example, to stretch the Sprite horizontally:

animation = Animation('scale_x', easing.Linear(1.0, 2.0), duration = 1.5)

Of course, some attributes are not numbers, they are Vec2Ds: for instance, pos. Then you must use a Tuple easing Function.

animation = Animation('pos', easing.LinearTuple((0, 0) , (WIDTH, HEIGHT)), duration = 1.5)

And some attributes take on discrete values: visible takes on either True or False, and image could take on one of a list of images. For these animations, you can use the Iterate easing. This can be used to achieve blinking:

animation = Animation('visible', easing.Iterate([True, False]), duration = .5)

Or for running through a sequence of images:

filenames = ["walk0.png", "walk1.png", "walk2.png"]
images = [spyral.Image(filename=f) for f in filenames]
animation = Animation('image', easing.Iterate(images), duration = 1.5)

You can even iterate over your own custom variable. If you had a happiness level for your sprite, you might make it fluctuate between -10 and 10 by:

animation = Animation('happiness', easing.Sine(10), duration = 16)

Animation Events

Sometimes you need to perform an action when an animation is completed or has started.
Fortunately, animations trigger their own Animation Events:

game/animating.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	class Game(spyral.Scene):
 def __init__(self):
 spyral.Scene.__init__(self, SIZE)
 self.background = spyral.Image(size=SIZE).fill((0,0,0))

 spyral.event.register("system.quit", sys.exit)
 spyral.event.register("Block.x.animation.start", self.hello)
 spyral.event.register("Block.x.animation.end", self.goodbye)

 self.block = Block(self)

 def hello(self, sprite):
 print "Hello", sprite

 def goodbye(self, sprite):
 print "Goodbye", sprite

Notice that the naming schema is:

	<the name of the Sprite’s class>.

	<the name of the attribute>.

	animation.

	<either start or end>

A common pattern is to have a Finite-State Machine [http://en.wikipedia.org/wiki/Finite-state_machine] control the behavior of a Sprite in conjunction with animations. For instance, if you had a turret that charges up and then fires, you could control this behavior with an FSM.

game/animating.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	class Turret(spyral.Sprite):
 def __init__(self, scene):
 spyral.Sprite.__init__(self, scene)
 self.image = spyral.Image(size=(64, 64)).fill((255, 0, 0))
 self.anchor = 'center'
 self.pos = (WIDTH/2, HEIGHT/2)
 self.load_images()

 self.charging_ani = Animation('image', easing.Iterate(self.charging_images), 4)
 self.firing_ani = Animation('image', easing.Iterate(self.firing_images), 2)
 self.charge()
 spyral.register('Turret.image.animation.end', self.update_state)

 def update_state(self, sprite):
 if sprite == self:
 # If you have more states, using a dictionary would be more elegant
 # e.g., self.state_functions[self.state]()
 if self.state == 'charging':
 self.fire()
 elif self.state == 'firing':
 self.charge()

 def fire(self):
 self.state = 'firing'
 self.animate(self.firing_ani)

 def charge(self):
 self.state = 'charging'
 self.animate(self.charging_ani)

 def load_images(self):
 self.charging_images = [] #Images go here
 self.firing_images = [] #Images go here

Notice how we test the sprite parameter to make sure that the given sprite is self - all Turrets fire the Turret.image.animation.end event, so we need to handle each individual turret separately. Also notice how we use a str to identify the state - this is good, pythonic practice.

Combining Animations

You can combine two animations into a new one very easily.
For instance, to make one animation run after another, + them together:

first_animation = Animation('x', easing.Linear(0, WIDTH), duration = 1.5)
second_animation = Animation('scale_x', easing.Linear(1.0, 2.0), duration = 1.5)
animation = first_animation + second_animation

To make them run at the same time, in parallel, use the &:

animation = first_animation & second_animation

A special kind of animation is the DelayAnimation, which let’s you add delays.

half_second_delay = DelayAnimation(.5)
move_x = Animation('x', easing.Linear(0, WIDTH), duration = 1)
scale_x = Animation('scale_x', easing.Linear(1.0, 2.0), duration = 1.5)
animation = (half_second_delay + move_x) & scale_x

Looping and Stopping animations

Animations normally end after one iteration, but you can make them loop infinitely by setting an Animation’s loop parameter to True.
This is extremely useful for things like pointing arrows meant to grab users’ attention.

animation = Animation('x', easing.Sine(WIDTH/4), duration = 1.5, shift=WIDTH/2, loop=True)

If you need to stop an animation, you can do it by passing in a specific animation to stop_animation:

def __init__(self, scene):
 ...
 self.moving_animation = Animation('x', easing.Linear(0, 600), duration = 3.0)
 self.animate(self.moving_animation)
 spyral.register.event("input.mouse.down", self.stop_moving)

def stop_moving(self):
 self.stop_animation(self.moving_animation)

Or you can stop all the animations with stop_all_animations :

spyral.register.event("input.mouse.down", self.block.stop_all_animations)

Follow the Cursor

Now we can combine what we know to make a cute game where the block chases the cursor.

game/animating.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	import spyral
import sys
from spyral import Animation, easing

WIDTH = 1200
HEIGHT = 900
SIZE = (WIDTH, HEIGHT)

class Block(spyral.Sprite):
 def __init__(self, scene):
 spyral.Sprite.__init__(self, scene)
 self.image = spyral.Image(size=(64, 64)).fill((255, 0, 0))
 self.anchor = 'center'
 self.pos = (WIDTH/2, HEIGHT/2)

class Game(spyral.Scene):
 def __init__(self):
 spyral.Scene.__init__(self, SIZE)
 self.background = spyral.Image(size=SIZE).fill((0,0,0))
 spyral.event.register("system.quit", sys.exit)
 self.block = Block(self)

 spyral.event.register("input.mouse.motion", self.follow)

 def follow(self, pos):
 self.block.stop_all_animations()
 animation = Animation('pos', easing.LinearTuple(self.block.pos, pos), duration = 1.0)
 self.block.animate(animation)

Custom Easings

You can create your own Easings; more examples are given in the source code for the Easing module.

def MyEasing(start=0.0, finish=1.0):
 """
 Linearly increasing: f(x) = x
 """
 def my_easing(sprite, delta):
 return (finish - start) * (delta) + start
 return my_easing
 animation = Animation('x', MyEasing(0, WIDTH), duration = 1.5)

If you end up creating any Easings of your own (e.g., QuadraticInTuple), please share them!

Conclusion

Animations cover a wide range of use cases, from movement to image changes, and beyond.
But don’t let the great power go to your head: some actions will always be slow on the XO laptops.
For instance, animating over the angle attribute.
Basically, you want to avoid dynamic drawing as much as possible.
As you use more animations, test your creation on the XO laptop directly to see how it performs.

If you want to see all the easings and animations in action, there is an example [https://github.com/platipy/spyral/blob/master/examples/animations.py] in the Spyral github.

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

 	Tutorials

Becoming a Pythonista

This chapter is will provide a very brief review of some important python concepts which will be useful and necessary. The basic concepts will be for those who are unfamiliar with Python, but a good refresher for those who don’t write in Python every day. Intermediate concepts will be great for programmers of all levels to refresh on some Python idioms. The code below will focus on Python 2.5+, since that is the version on most XO laptops.

Basic Concepts

PEP8 and The Zen of Python

One of the most important aspects of developing in Python is the Python community. Code is meant to be read, used, and worked on by many people. As building most games is going to end up being a group project, code style is of particular importance. PEP8 [http://www.python.org/dev/peps/pep-0008/] provides a style guide for Python code. It is a lengthy document, and not everything it has to say will be immediately applicable, but come back to it as you learn and grow as a developer. Some guidelines you may choose to ignore in your own code with no reprecussions, but some guidelines are absolutely essential. Some guidelines that are essential to follow for this course:

	Use 4 spaces per indentation level. (Good editors will allow you to set soft-tabs to four spaces. Figure this out before you continue. When working with a team, indentation style is non-negotiable.)

	Rules on blank lines [http://www.python.org/dev/peps/pep-0008/#blank-lines]

	Naming conventions [http://www.python.org/dev/peps/pep-0008/#prescriptive-naming-conventions] are particularly important.

The Zen of Python is a list of guiding principles behind the design of Python, and a good list of guiding principles for any project written in python. The most common way to find it is a little easter egg. In a python interpreter

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Control Flow in Python

The if statement acts predictably in Python.

>>> if <conditional>:
... statement
... elif <conditional>:
... statement
... else:
... statement

When it comes to loops, the most preferred idiom in Python is a for loop , used in the style that most other languages refer to as a “for each” loop.

>>> for <item> in <sequence>:
... statement

Occasionally, you will use the other looping mechanism, while (but you probably shouldn’t, second-guess any use of it).

>>> while <conditional>:
... statement

Instead of a “do-until” loop like most languages have, a common idiom is

>>> for <item> in <sequence>:
... statement
... if <conditional>:
... break

>>> while True:
... statement
... if <conditional>:
... break

A final useful keyword is pass, which simply ends execution of the branch. This is often used to define stubs and “to-do” code.

>>> if <conditional>:
... pass # TODO: make this "statement"

“Variables” in Python

Don’t mistake Python for having variables, because that’s not really true. Instead, there are “names” and “references. There is a good pictorial explanation of this concept here [http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#other-languages-have-variables].

Numerics

There are two main kinds of numerical types in Python: float and int. Basically, float is used for decimal values and int is used for Integers. When possible, stick with int, because computers are not good at storing and comparing [http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems] float. When performing operations between float and int, the result will be a float.

The operators + (addition), - (subtraction), and * (multiplication), all act predictably. Some other operations that are slightly more unusual are:

	x / y (division): quotient of x and y

	x // y (integer division): quotient of x and y, rounded down.

	x % y (remainder, or modulo [http://simple.wikipedia.org/wiki/Modular_arithmetic]): remainder of x / y

	x ** y (power): raises x to the power of y

	abs(x) (absolute value, or magnitude): forces x to be positive

	int(x) (convert to integer): converts x to integer

	float(x) (convert to float): converts y to float

Sequence Types

A sequence [http://docs.python.org/glossary.html#term-sequence] is a key concept in Python. There are many different kinds of sequences, but the basic idea is simply a bunch of data.

The list and the tuple are two of the most common sequence types. Lists are denoted by square brackets, while tuples are usually denoted by parenthesis, though they are not required. Both of them allow access by numeric keys, starting from 0.

>>> alist = [1,2,3]
>>> atuple = (1,2,3)
>>> atuple
(1, 2, 3)
>>> atuple = 1,2,3
>>> alist[1]
2
>>> atuple[1]
2
>>> alist[2]
3
>>> atuple[2]
3

The key difference between lists and tuples is that lists are mutable [http://docs.python.org/glossary.html#term-mutable], and tuples are immutable [http://docs.python.org/glossary.html#term-immutable].

>>> alist[2] = 4
>>> alist
[1, 2, 4]
>>> atuple[2] = 4
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> alist.append(1)
>>> atuple.append(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'append'

Lists also have a number of other useful methods. More on Lists [http://docs.python.org/tutorial/datastructures.html#more-on-lists].

Similar to a List is the set. A set is mutable, but has no specific ordering, and like the set in mathematics, contains only one copy of element. It’s faster to test membership (in) with a set, so a set is a good choice if the order of the elements isn’t important or you don’t care about duplicates.

>>> prepositions = set(["to", "from", "on", "of"])
>>> 'dog' in prepositions
False
>>> prepositions.add('at')
>>> 'at' in prepositions
True

Strings

Strings in Python are actually just immutable sequences of characters. Python has a ton of built-in functions [http://docs.python.org/release/3.1.5/library/stdtypes.html#string-methods] to work with strings. Remember, because Strings are immutable, you cannot modify them - instead, functions that work on strings return new strings.

You can concatenate (join) strings in python using the + operator. However, it is much preferred to use interpolation with % instead [1]. This method will allow you to provide named “arguments” to the string, which will be invaluable when it comes time to internationalize your game.

Compare the difference between concatenation:

>>> "Welcome, " + user + ", you are visitor #" + visitor + "."
"Welcome, Bob, you are visitor #3 to Platipy"

And interpolation:

>>> "Welcome, %(user)s, you are visitor #%(visitor)d to Platipy." %
... {'user' : user, 'visitor' : visitor}
"Welcome, Bob, you are visitor #3 to Platipy"

You can use escape sequences inside of string literals. To prevent them from being escaped, you can prefix the string with an ‘r’ (great for dealing with regular expressions and windows file systems). You can also specify that the string should be unicode with a ‘u’ prefix.

>>> print "New\nLine"
New
Line
>>> print r"New\nLine"
New\nLine
>>> print u"Unicode"
Unicode

Sequence Unpacking

A useful Python feature is the ability to unpack a sequence, allowing for multiple assignment. You can unpack a tuple as follows:

>>> position = (5, 10)
>>> x, y = position
>>> x
5
>>> y
10

This also allows swapping without a temporary variable, due to the way evaluation and assignment works in Python.

>>> a,b = b,a
>>> a
2
>>> b
1

It is the comma that determines if an expression is a tuple, not parenthesis.

>>> one_tuple = 5,
>>> not_tuple = (5)
>>> one_tuple
(5,)
>>> not_tuple
5

Tuple unpacking is wonderful, because it allows you to have elegant multiple returns from a function.

>>> x, y, width, height = image.get_dimensions()

Comprehensions

Comprehensions are a very powerful Python idiom that allows looping and filtering of data in a single expression. For a simple list comprehension, we can create a list of the squares of the integers from 0-9.

>>> squares = [x ** 2 for x in range(10)]
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

This is shorter than the equivalent loop

>>> squares = []
>>> for x in range(10):
... squares.append(x ** 2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

and also the preferred way of doing much of functional programming in Python. You may notice that this is the same as

>>> map(lambda x : x ** 2, range(10))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

In addition to mapping over sequences, comprehensions also support filtering

>>> odd_squares = [x ** 2 for x in range(10) if x % 2 == 1]
>>> odd_squares
[1, 9, 25, 49, 81]

Comprehensions also support iteration over multiple sequences simultaneously.

>>> [(x,y) for x in range(3) for y in range(4)]
[(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)]

The rule of thumb is that evaluation happens right to left in the for sequences, as the last for sequence would be like the innermost for loop.

Generator expressions are also a form of comprehension that does not have the same speed and memory overhead as list comprehensions up front. You’ll see more about them in Generators and Iterators. If you’re using Python 2.7, you also have access to dict and set comprehensions, which we won’t talk about here.

Dictionaries

A dictionary, or a dict, is the standard mapping type in Python. Dicts can be created a few ways:

>>> {'key1' : 'value1', 'key2' : 'value2'}
{'key2': 'value2', 'key1': 'value1'}
>>> dict([('key1', 'value1'), ('key2', 'value2')])
{'key2': 'value2', 'key1': 'value1'}
>>> dict(key1 = 'value1', key2 = 'value2')
{'key2': 'value2', 'key1': 'value1'}

The keys in a dictionary can be any hashable [http://docs.python.org/glossary.html#term-hashable] object.

>>> a = { (0,1) : 1, 'a' : 4, 5 : 'test', (0, 'test') : 7 }
>>> a
{(0, 1): 1, 'a': 4, (0, 'test'): 7, 5: 'test'}

Note

While it is possible to include different data types in lists and dicts due to Python’s loose-typing, it is almost always a bad practice and should be used with extreme care.

To retrieve values from a dictionary, you access them in the same way as lists and tuples.

>>> a[(0,1)]
1
>>> a[5]
'test'

You can also test if a key is in a dictionary using the in keyword:

>>> 'a' in a
True
>>> 4 in a
False

You can also add new members to the dictionary:

>>> a[7] = 12
>>> a
{(0, 1): 1, 'a': 4, (0, 'test'): 7, 5: 'test', 7: 12}

Dictionaries, like lists, provide many more useful features. See the Python tutorial’s section on dicts [http://docs.python.org/library/stdtypes.html#typesmapping].

Iterating Over Sequences

Back in Control Flow, we mentioned the for loop, and how it was used to iterate over sequences. It’s very convenient!

>>> for a_dog_breed in ['Labrador', 'Corgi', 'Golden Retriever']:
... print a_dog_breed
'Labrador'
'Corgi'
'Golden Retriever'

A very common use case is for iterating over a list of numbers. One way is to use range and it’s generator equivalent xrange (we’ll talk about how they are different in generators; for now, just use xrange).

>>> for x in xrange(3):
... print x
0
1
2

The best way to iterate over a list and keep track of indices is to use the enumerate [http://docs.python.org/library/functions.html#enumerate] function.

>>> for index, name in enumerate(seasons)
... print index, name
0 spring
1 summer
2 fall
3 winter

You can even iterate over dictionaries if you use the items function.
>>> for key, value in {1: ‘a’, 2: ‘b’, 3: ‘c’}.items()
... print key, value
1 a
2 b
3 c

Truth-Testing

There is no boolean type in Python. Anything can be evaluated for Truthiness in a conditional, however. Some things are always true, and some things are always false. You can test truthiness with the bool function.

>>> bool(True) # True are special keywords
True
>>> bool(5) # non-zero numbers are true
True
>>> bool(-5) # only zero is false!
True
>>> bool([1,2,3]) # A non-empty sequence is true
True
>>> bool("Hello World") # A non-empty string is true
True
>>> bool(bool) # functions are first-order things!
True

Often, if you can think of it as “nothing”, then it will evaluate to False.

>>> bool(False) # False is a special keyword
False
>>> bool(0) # zero is false
False
>>> bool([]) # empty list is false
False
>>> bool("") # empty strings are false!
False
>>> bool(None) # The special keyword None is false
False

There are quite a few built-in operators to test conditions. There are the usual suspects defined for most types (including non-numerics!): <, <=, >, >=, ==, and !=.

An unusual operator is is, which tests reference equality, meaning that both operands are identical objects (refer to the exact same thing). == is a value equality comparison (whether the two objects compute to the same thing). You will only use is for testing against None and testing object identity. Otherwise, use ==. Otherwise, you will find yourself in strange situations:

>>> 10 == 10
True
>>> 10 is 10 # accidentally works because of an internal python detail
True
>>> 1000 == 10**3
True
>>> 1000 is 10**3 # behaves unexpectedly!
False

Additionally, Python does contain boolean operators, but they are not &&, ||, and ! like many other languages, they are and, or, and not. They are short-circuit operators [http://en.wikipedia.org/wiki/Short-circuit_evaluation] like most other languages.

Finally, you can use in to test membership.

>>> 5 in [1,2,3,4]
False
>>> 3 in [1,2,3,4]
True

Typing in Python

There are many types in Python, and you can always find out an expression’s type by using the type(x) function.

>>> type(5)
<type 'int'>
>>> type(5.0)
<type 'float'>
>>> type("Hello World")
<type 'str'>
>>> type(u"Hello Unicode World")
<type 'unicode'>
>>> type([1,2,3])
<type 'list'>
>>> type(None)
<type 'NoneType'>
>>> type(type(None))
<type 'type'>

For more information on built-in types and truth value testing, see the Python tutorial’s section on Built-in Types [http://docs.python.org/library/stdtypes.html].

Functions

Defining a function is simple in python.

>>> def my_function(argument1, argument2):
... statement

You usually want to return something.

>>> def mean(first, second):
... return (first + second) / 2

You can also have default arguments for your parameters.

>>> def mean(first= 0, second= 9):
... return (first + second) / 2
>>> mean()
5

Be wary, however, of mutable default arguments. You should almost always use None instead of mutable types, and check against None to set the actual default argument.
>>> def foo(l=[]):
... l.append(1)
... return l
...
>>> foo()
[1]
>>> foo()
[1, 1]

And you can even have arbitrary arguments.

>>> def mean(*numbers): #numbers will be a tuple!
... return sum(numbers) / len(numbers)
>>> mean(1, 8, 10, 15)
8

You can use named parameters when calling a function.

>>> mean(first= 10, second= 14)
12

And you can also accept arbitrary named parameters.

>>> def foo(*args, **kwargs):
... print args
... print kwargs
...
>>> foo(1,2,3, a=4, b=5)
(1, 2, 3)
{'a': 4, 'b': 5}

Python treats functions as first-class objects, which means you can pass them around like anything else:

>>> average = mean
>>> average
<function mean at 0x000000000>
>>> mean(5,9)
7
>>> average(5,9)
7
>>> bool(mean)
True

Closures

Functions in Python have access to names which are in their calling scope.

>>> def make_incrementor(start = 0):
... def inc(amount):
... return start + amount
... return inc
...
>>> i = make_incrementor()
>>> i(5)
5
>>> i2 = make_incrementor(5)
>>> i2(5)
10

Exceptions

Python’s exceptions are the same as most other languages

>>> try:
... dangerous_statement
... except NameError, e: # accept a specific type of exception
... print e
... except Exception, e: # accept all exceptions. You should almost never do this
... print "Oh no!"
... finally: # cleanup code that should run regardless of exception, even when there wasn't one
... print 'Always run this bit'

Don’t use the as keyword, it was introduced in Python 3.

Generators and Iterators

Iterators are objects which define how iterating, or looping, over a sequence goes, but can also be used for general iteration purposes. To get an iterator of an object, you call iter(obj). The returned object will have a next() method which will return the next item in the sequence or iterator. When there are no more items to iterate over, it will throw a StopIteration exception.

>>> l = [1,2]
>>> alist = [1,2]
>>> i = iter(alist)
>>> i.next()
1
>>> i.next()
2
>>> i.next()

Generator is the name of the pattern used to create iterators, but also refers to two convenient ways to create iterators. First, as an example of an iterator, let’s write a simplified version of the xrange generator that takes only one argument and always starts from 0.

>>> class xrange(object):
... def __init__(self, n):
... self.n = n
... self.cur = 0
...
... def __iter__(self):
... return self
...
... def next(self):
... if self.cur < self.n:
... ret = self.cur
... self.cur += 1
... return ret
... else:
... raise StopIteration()
...
>>> xrange(5)
<__main__.xrange object at 0x10b130cd0>
>>> list(xrange(5))
[0, 1, 2, 3, 4]

We see immediately that this is a bit cumbersome and has a lot of boilerplate. Generator functions are a much simpler way to write this generator. In a generator function, the yield keyword returns a value, an the Python interpreter remembers where evaluation stopped when yield was called. On subsequent calls to the function, control returns to where yield was called. xrange now looks like the following.

>>> def xrange(n):
... cur = 0
... while cur < n:
... yield cur
... cur += 1
...
>>> list(xrange(5))
[0, 1, 2, 3, 4]

You can even call yield in more than one place in the code, if you wish. This simplifies the creation of generators quite a bit.

Generator expressions are also commonplace. They use the same syntax as list comprehensions, but use () in place of []. This allows for memory efficient use of generators and iterators for manipulating data.

>>> gen = (x ** 2 for x in range(6))
>>> gen
<generator object <genexpr> at 0x10b11deb0>
>>> list(gen)
[0, 1, 4, 9, 16, 25]

For more advanced tricks with generators and iterators, see the itertools module.

Object Oriented Programming

Python has classes!

>>> class <name>(object):
... <body>

After you have a class, you can make instances of it:

>>> class Dog(object):
... pass
>>> my_dog = Dog()

Classes usually have methods. Methods are functions which always take an instance of the class as the first argument. By convention, this is always named self. Accessing methods or member variables is done by using self.<name>

>>> class Dog(object):
... def sniff(self):
... print "Smells funny"
>>> Spot = Dog()

The constructor for a class is named __init__.

>>> class Dog(object):
... def __init__(self):
... self.breed = "Labrador"
... def paint_it_black(self):
... self.breed = "Black Lab"

Don’t try and put properties outside of the __init__ or other function, unless you want them to be class properties instead of instance attributes. Read about the distinction here [http://stackoverflow.com/questions/207000/python-difference-between-class-and-instance-attributes]

>>> class Animal(object):
... def breathe(self):
... print "*Gasp*"
>>> class Dog(Animal):
... pass
>>> my_dog = Dog()
>>> my_dog.breathe()
Gasp

There are lots of other details about Classes that you should read up about on the Python Docs [http://docs.python.org/tutorial/classes.html].

If __name__ == “__main__”:

If you want to see if a script is being called as main, you can use the foloowing at the bottom of your file:

>>> if __name__ == "__main__":
... pass # main stuff

In this class, we’ll be using the launcher. So don’t bother using this!

Assertions

Python has assertions, which are useful for verifying argument types, data structure invariants, and generally making assumptions explicit in your programs. The syntax is straightforward.

>>> assert 1 == True
>>> assert 0 == True
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

The Python Wiki has a good article on using assertions effectively [http://wiki.python.org/moin/UsingAssertionsEffectively]

Built-in Documentation and Docstrings

In the interpreter, it is often useful to quickly check and see some documentation on objects you’re working with. The built-in help function can quickly provide some information and a list of methods on both Python’s built-in classes, and user-defined classes which are documented properly.

>>> a = [1,2,3]
>>> help(a)
Help on list object:
class list(object)
 | list() -> new empty list
 | list(iterable) -> new list initialized from iterable's items
 |
 | Methods defined here:
 |
 | __add__(...)
 | x.__add__(y) <==> x+y

For your own classes and functions, you should provide docstrings so that this functionality works, and also so that anyone reading your code has this information available. If a class, function, or method definition has a string before any other code, that string is interpreted as the docstring, and stored in .__doc__ for that object. By convention, docstrings are written as triple-quoted strings ("""string""")

Help on function bake_bread in module __main__:

>>> def bake_bread(self, ingredients):
... """
... This function bakes a loaf of bread given an iterable of ingredients.
... """
... pass
...
>>> bake_bread.__doc__
'\n This function bakes a loaf of bread given an iterable of ingredients.\n '
>>> help(bake_bread)
bake_bread(self, ingredients)
 This function bakes a loaf of bread given an iterable of ingredients.

Importing, Modules, and Packages

This article [http://effbot.org/zone/import-confusion.htm] does a good job describing importing in Python.

Advanced Concepts

There are a large number of advanced concepts in python. Most of them will not be necessary to achieve success in this course, so feel free to skip the rest of this chapter.

New- and Old- Style Classes

For more information, consult this page [http://stackoverflow.com/a/54873/1718155] .

Decorators

Decorators are a tricky but useful feature that require you to really know how functions exist in Python. For a quick introduction, consult this 12-step guide [http://simeonfranklin.com/blog/2012/jul/1/python-decorators-in-12-steps/] .

Sadly, Python 2.5 does not support decorators.

Metaclasses

Metaclasses are a complicated subject that get at the heart of how classes work in python. For a lengthy explanation, consult this page [http://stackoverflow.com/a/6581949/1718155] .

Context Managers

Context Managers are not natively built into Python 2.5, but can be enabled with the use of a future import. To read more about them, consult this page [http://www.itmaybeahack.com/book/python-2.6/html/p03/p03c07_contexts.html] .

Descriptors

Spyral uses Descriptors extensively in order to make magic properties that behave more like functions. If you’re curious how setting the x property of a spyral.Sprite affects its pos property, then read the following documentation on Descriptors [http://docs.python.org/2/howto/descriptor.html] .

Additional Reading

Important Modules

itertools

Itertools provides many useful functions for manipulating iterables (e.g., lists, sets). Often, if you find yourself writing a complicated list handling routine, there will be an existing solution in this module [http://docs.python.org/release/2.5/lib/module-itertools.html] .

random

Most interesting games will require extensive knowledge of how randomness works in computers. To read more about how this is done in Python, refer to this page [http://docs.python.org/2/library/random.html] .

operator

In a functional programming course, you often pass common operators as arguments (e.g., + in (foldr + 0 my-list)). This can be done in Python by using the operator [http://docs.python.org/2/library/operator.html] module. Every operation in Python maps to a function in this class.

logging

Python has some built-in utilities for logging [http://docs.python.org/2.6/library/logging.html] , although eventually the Dev launcher will provide these mechanisms.

collections

Although the built-in Python datatypes (set, list, tuple, etc.) are very useful, sometimes you need something else. Read over the extra collections [http://docs.python.org/2/library/collections.html] available, and pay particular attention to defaultdict and Counter.

os and sys

Python uses two modules for connecting to your OS [http://docs.python.org/2/library/os.html] and interpreter [http://docs.python.org/2/library/sys.html] . You’ll wish you had these modules when you take Operating Systems and have to write your own shell.

pdb

The Python Debugger [http://docs.python.org/2/library/pdb.html] is a useful tool for post-mortem analysis of why your program crashed. Eventually, this will be integrated into the Dev Launcher.

json

JSON is a brillantly simple format for exchanging data between applications, and it has functionally replaced XML for most of the web’s communication. XML is almost never the answer when you need to transmit or store data; JSON almost always is. Although later version of python bundle a module for manipulating JSON, you will need SimpleJson [https://pypi.python.org/pypi/simplejson/] (which uses the same interface) for the XO laptop.

JSON is a better alternative for saving and restoring state than Pickling, which can lead to security vulnerabilities. This tutorial [http://pymotw.com/2/json/] on the Python JSON library covers some of the differences, and is a useful guide for someone starting with the library.

Additional Reading

http://www.doughellmann.com/PyMOTW/py-modindex.html

Third-Party Modules

Requests

Requests [http://requests.readthedocs.org/en/latest/] is often considered one of the most beautiful Python libraries, and makes accessing web-based resources trivial. If your game requires connection to the internet (which is not recommended given the spotty internet with XO laptops), this is a requirement.

BeautifulSoup

If you need to get data out of an HTML page, the BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/] library is your friend.

Additional Reading

	Hidden Features of Python on StackOverflow [http://stackoverflow.com/questions/101268/hidden-features-of-python?sort=votes#sort-top] is a great QA that just details some of Python’s great features. Many of them have been listed here, a few haven’t.

Footnotes

	[1]	In reality, string.format is more preferred for string interpolation, but is a feature not available in Python 2.5, so we suggest not getting accustomed to using it when targetting the OLPC XO.

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

Complete API Reference

The following is complete documentation on all public functions and classes
within Spyral. If you need further information on how the internals of a class
work, please consider checking the source code attached.

Actors

	
class spyral.Actor

	Actors are a powerful mechanism for quickly adding multiprocessing behavior
to your game through Greenlets [http://greenlet.readthedocs.org/] .
Any object that subclasses the Actor
mixin can implement a main method that will run concurrently. You can put
a non-terminating loop into it, and it will work like magic, allowing
other actors and the main game itself to keep processing:

class MyActor(spyral.Actor):
 def main(self, delta):
 while True:
 print "Acting!"

When an instance of the above class is created in a scene, it will
continuously print “Acting!” until the scene ends. Like a Sprite, An Actor
belongs to the Scene that was currently active when it was created.

	
main(delta)

	The main function is executed continuously until either the program
ends or the main function ends. While the Actor’s scene is not on the
top of the stack, the Actor is paused; it will continue when the Scene
is back on the top of the Directory’s stack.

	Parameters:	delta (float) – The amount of time that has passed since this
method was last invoked.

	
run_animation(animation)

	Run this animation, without blocking other Actors, until the animation
completes.

	
wait(delta=0)

	Switches execution from this Actor for delta frames to the other
Actors. Returns the amount of time that this actor was left waiting.

	Parameters:	delta (number) – the number of frames(?) to wait.

	Return type:	float

Animations

	
class spyral.Animation(property, easing, duration=1.0, absolute=True, shift=None, loop=False)

	Creates an animation on property, with the specified
easing, to last duration in seconds.

The following example shows a Sprite with an animation that will linearly
change its ‘x’ property from 0 to 100 over 2 seconds.:

from spyral import Sprite, Animation, easing
...
my_sprite = Sprite(my_scene)
my_animation = Animation('x', easing.Linear(0, 100), 2.0)
my_sprite.animate(my_animation)

Animations can be appended one after another with the +
operator, and can be run in parallel with the & operator.

>>> from spyral import Animation, easing
>>> first = Animation('x', easing.Linear(0, 100), 2.0)
>>> second = Animation('y', easing.Linear(0, 100), 2.0)
Sequential animations
>>> right_angle = first + second
Parallel animations
>>> diagonal = first & second

	Parameters:	
	property (string) – The property of the sprite to change (e.g., ‘x’)

	easing (Easing) – The easing (rate of change) of the property.

	duration (float) – How many seconds to play the animation

	absolute (boolean) – (Unimplemented?) Whether to position this relative
to the sprite’s offset, or to absolutely position it on the
screen.

	shift (None, a Vec2D, or a number) – How much to offset the animation (a number if the property is
scalar, a Vec2D if the property is
“pos”, and None if there is no offset.

	loop (boolean) – Whether to loop indefinitely

	
evaluate(sprite, progress)

	For a given sprite, complete progress‘s worth of this animation.
Basically, complete a step of the animation. Returns a dictionary
representing the changed property and its new value, e.g.:
{"x": 100}. Typically, you will use the sprite’s animate function instead of calling
this directly.

	Parameters:	
	sprite (Sprite) – The Sprite that will be manipulated.

	progress (float) – The amount of progress to make on this animation.

	Return type:	dict

Director

The director handles initializing and running your game. It is also
responsible for keeping track of the game’s scenes. If you are not using
the Example.Activity, then you will need to call
init at the very start of your game, before you try
to run run your first scene.

spyral.director.init((640, 480))
Scene and sprite creation
spyral.director.run(scene=MyScene())

Note that the director provides three ways to change the current scene:

	Pushing new Scenes on top of old ones.

	Popping the current Scene, revealing the one
underneath (or ending the game if this is the only scene on the stack)

	Replacing the current Scene with a new one.

	
spyral.director.get_scene()[source]

	Returns the currently running scene; this will be the Scene on the top of
the director’s stack.

	Return type:	Scene

	Returns:	The currently running Scene, or None.

	
spyral.director.get_tick()[source]

	Returns the current tick number, where ticks happen on each update,
not on each frame. A tick is a “tick of the clock”, and will happen many
(usually 30) times per second.

	Return type:	int

	Returns:	The current number of ticks since the start of the game.

	
spyral.director.init(size=(0, 0), max_ups=30, max_fps=30, fullscreen=False, caption='My Spyral Game')[source]

	Initializes the director. This should be called at the very beginning of
your game.

	Parameters:	
	size (Vec2D) – The resolution of the display window. (0,0) uses the screen
resolution

	max_fps (int) – The number of times that the director.update event will
occur per frame. This will remain the same, even if fps
drops.

	max_ups (int) – The number of frames per second that should occur when
your game is run.

	fullscreen (bool) – Whether your game should start in fullscreen mode.

	caption (str) – The caption that will be displayed in the window.
Typically the name of your game.

	
spyral.director.pop()[source]

	Pop the top scene off the stack, returning control to the next scene
on the stack. If the stack is empty, the program will quit.
This does return control, so remember to return immediately after
calling it.

	
spyral.director.push(scene)[source]

	Place scene on the top of the stack, and move control to it. This does
return control, so remember to return immediately after calling it.

	Parameters:	scene (Scene) – The new scene.

	
spyral.director.quit()[source]

	Cleanly quits out of spyral by emptying the stack.

	
spyral.director.replace(scene)[source]

	Replace the currently running scene on the stack with scene.
Execution will continue after this is called, so make sure you return;
otherwise you may find unexpected behavior:

spyral.director.replace(Scene())
print "This will be printed!"
return

	Parameters:	scene (Scene) – The new scene.

	
spyral.director.run(sugar=False, profiling=False, scene=None)[source]

	Begins running the game, starting with the scene on top of the stack. You
can also pass in a scene to push that scene on top of the stack. This
function will run until your game ends, at which point execution will end
too.

	Parameters:	
	sugar (bool) – Whether to run the game for Sugar. This is only
to the special XO Launcher; it is safe to ignore.

	profiling (bool) – Whether to enable profiling mode, where this function
will return on every scene change so that scenes can
be profiled independently.

	scene (Scene) – The first scene.

Easings

This module provides a set of built-in easings which can be used by any
game. Additionally, custom easings can be built. An easing should be a
function (or callable) which takes in a sprite, and a time delta which
is normalized to [0,1], and returns the state of easing at that time.
See the source code of this module for some example implementations.
Built-in easings are stateless, so the same animation can be used many
times or on many different objects. Custom easings do not have to be
stateless.

Visualizations of these easings are available at
http://easings.net .

	
spyral.easing.Arc(center=(0, 0), radius=1, theta_start=0, theta_end=6.283185307179586)[source]

	Increasing according to a circular curve for two properties.

	
spyral.easing.CubicIn(start=0.0, finish=1.0)[source]

	Cubically increasing, starts very slow : f(x) = x^3

	
spyral.easing.CubicInOut(start=0.1, finish=1.0)[source]

	Cubically increasing, starts and ends very slowly but very fast in the
middle.

	
spyral.easing.CubicOut(start=0.0, finish=1.0)[source]

	Cubically increasing, starts very fast : f(x) = 1 + (x-1)^3

	
spyral.easing.Iterate(items, times=1)[source]

	Iterate over a list of items. This particular easing is very useful
for creating image animations, e.g.:

walk_images = [spyral.Image('f1.png'), spyral.Image('f2.png'), spyral.Image('f3.png')]
walking_animation = Animation('image', easing.Iterate(walk_images), 2.0, loop=True)
my_sprite.animate(walking_animation)

	Parameters:	
	items (list) – A list of items (e.g., a list of
Images).

	times (int) – The number of times to iterate through the list.

	
spyral.easing.Linear(start=0.0, finish=1.0)[source]

	Linearly increasing: f(x) = x

	
spyral.easing.LinearTuple(start=(0, 0), finish=(0, 0))[source]

	Linearly increasing, but with two properites instead of one.

	
spyral.easing.Polar(center=(0, 0), radius=<function <lambda> at 0x7f39a363d8c0>, theta_start=0, theta_end=6.283185307179586)[source]

	Similar to an Arc, except the radius should be a function of time.

	
spyral.easing.QuadraticIn(start=0.0, finish=1.0)[source]

	Quadratically increasing, starts slower : f(x) = x ^ 2

	
spyral.easing.QuadraticInOut(start=0.0, finish=1.0)[source]

	Quadratically increasing, starts and ends slowly but fast in the middle.

	
spyral.easing.QuadraticOut(start=0.0, finish=1.0)[source]

	Quadratically increasing, starts faster : f(x) = 2x - x^2

	
spyral.easing.Sine(amplitude=1.0, phase=0, end_phase=6.283185307179586)[source]

	Depending on the arguments, moves at a different pace according to the sine
function.

Events

This module contains functions and classes for creating and issuing events.
For a list of the events that are built into Spyral, check the
Event List.

	
spyral.event.keys

	A special attribute for accessing the constants associated with a given
key. For instance, spyral.keys.down and spyral.keys.f. This is
useful for testing for keyboard events. A complete list of all the key
constants can be found in the
Keyboard Keys appendix.

	
spyral.event.mods

	A special attribute for accessing the constants associated with a given
mod key. For instance, spyral.mods.lshift (left shift) and
spyral.mods.ralt (Right alt). This is useful for testing for keyboard
events. A complete list of all the key
constants can be found in the
Keyboard Modifiers appendix.

	
class spyral.event.Event(**kwargs)[source]

	A class for building for attaching data to an event.
Keyword arguments will be named attributes of the Event when it is passed
into queue:

collision_event = Event(ball=ball, paddle=paddle)
spyral.event.queue("ball.collides.paddle", collision_event)

	
spyral.event.clear_namespace(namespace, scene=None)[source]

	Clears all handlers from namespaces that are at least as specific as the
provided namespace.

	Parameters:	
	namespace (str) – The complete namespace.

	scene (Scene or None) – The scene to clear the namespace of; if it is None, then
it will be attached to the currently running scene.

	
spyral.event.handle(event_name, event=None, scene=None)[source]

	Instructs spyral to execute the handlers for this event right now. When you
have a custom event, this is the function you call to have the event occur.

	Parameters:	
	event_name (str) – The type of event (e.g., "system.quit",
"input.mouse.up", or "pong.score".

	event (Event) – An Event object that holds properties for the event.

	scene (Scene or None.) – The scene to queue this event on; if None is given, the
currently executing scene will be used.

	
spyral.event.queue(event_name, event=None, scene=None)[source]

	Queues a new event in the system, meaning that it will be run at the next
available opportunity.

	Parameters:	
	event_name (str) – The type of event (e.g., "system.quit",
"input.mouse.up", or "pong.score".

	event (Event) – An Event object that holds properties for the event.

	scene (Scene or None.) – The scene to queue this event on; if None is given, the
currently executing scene will be used.

	
spyral.event.register(event_namespace, handler, args=None, kwargs=None, priority=0, scene=None)[source]

	Registers an event handler to a namespace. Whenever an event in that
event_namespace is fired, the event handler will execute with that
event.

	Parameters:	
	event_namespace (str) – the namespace of the event, e.g.
"input.mouse.left.click" or "pong.score".

	handler (function) – A function that will handle the event. The first
argument to the function will be the event.

	args (sequence) – any additional arguments that need to be passed in
to the handler.

	kwargs (dict) – any additional keyword arguments that need to be
passed into the handler.

	priority (int) – the higher the priority, the sooner this handler will
be called in reaction to the event, relative to the
other event handlers registered.

	scene (Scene or None) – The scene to register this event on; if it is None, then
it will be attached to the currently running scene.

	
spyral.event.register_dynamic(event_namespace, handler_string, args=None, kwargs=None, priority=0, scene=None)[source]

	Similar to spyral.event.register() function, except that instead
of passing in a function, you pass in the name of a property of this
scene that holds a function.

Example:

class MyScene(Scene):
 def __init__(self):
 ...
 self.register_dynamic("orc.dies", "future_function")
 ...

	Parameters:	
	event_namespace (str) – The namespace of the event, e.g.
"input.mouse.left.click" or "pong.score".

	handler (str) – The name of an attribute on this scene that will hold
a function. The first argument to the function will be
the event.

	args (sequence) – any additional arguments that need to be passed in
to the handler.

	kwargs (dict) – any additional keyword arguments that need to be
passed into the handler.

	priority (int) – the higher the priority, the sooner this handler will
be called in reaction to the event, relative to the
other event handlers registered.

	scene (Scene or None) – The scene to register this event on; if it is None, then
it will be attached to the currently running scene.

	
spyral.event.register_multiple(event_namespace, handlers, args=None, kwargs=None, priority=0, scene=None)[source]

	Similar to spyral.event.register() function, except a sequence of
handlers are be given instead of just one.

	Parameters:	
	event_namespace (string) – the namespace of the event, e.g.
"input.mouse.left.click" or "pong.score".

	handler (list of functions) – A list of functions that will be run on this event.

	args (sequence) – any additional arguments that need to be passed in
to the handler.

	kwargs (dict) – any additional keyword arguments that need to be
passed into the handler.

	priority (int) – the higher the priority, the sooner this handler will
be called in reaction to the event, relative to the
other event handlers registered.

	scene (Scene or None) – The scene to register this event on; if it is None, then
it will be attached to the currently running scene.

	
spyral.event.register_multiple_dynamic(event_namespace, handler_strings, args=None, kwargs=None, priority=0, scene=None)[source]

	Similar to spyral.Scene.register() function, except a sequence of
strings representing handlers can be given instead of just one.

	Parameters:	
	event_namespace (string) – the namespace of the event, e.g.
"input.mouse.left.click" or "pong.score".

	handler (list of strings) – A list of names of an attribute on this scene that will
hold a function. The first argument to the function will
be the event.

	args (sequence) – any additional arguments that need to be passed in
to the handler.

	kwargs (dict) – any additional keyword arguments that need to be
passed into the handler.

	priority (int) – the higher the priority, the sooner this handler will
be called in reaction to the event, relative to the
other event handlers registered.

	scene (Scene or None) – The scene to register this event on; if it is None, then
it will be attached to the currently running scene.

	
spyral.event.unregister(event_namespace, handler, scene=None)[source]

	Unregisters a registered handler for that namespace. Dynamic handler
strings are supported as well.

	Parameters:	
	event_namespace (str) – An event namespace

	handler (a function or string.) – The handler to unregister.

	scene (Scene or None) – The scene to unregister the event; if it is None, then
it will be attached to the currently running scene.

Event Handlers

Event Handlers are used to process events from the system and pass them into
Spyral. In addition to the default EventHandler, there are other event handlers
for recording and restoring events to a file; using these events, you could
generate demos or functional tests of your game. EventHandlers are an
advanced feature that can be set through a private attribute of scenes:
spyral.Scene._event_source

Note

Eventually, these event handlers will be set through the
dev launcher.

	
class spyral.event.EventHandler[source]

	Base event handler class.

	
get(types=[])[source]

	Gets events from the event handler. Types is an optional
iterable which has types which you would like to get.

	
tick()[source]

	Should be called at the beginning of update cycle. For the
event handler which is part of a scene, this function will be
called automatically. For any additional event handlers, you
must call this function manually.

	
class spyral.event.LiveEventHandler(output_file=None)[source]

	An event handler which pulls events from the operating system.

The optional output_file argument specifies the path to a file
where the event handler will save a custom json file that can
be used with the ReplayEventHandler to show replays of a
game in action, or be used for other clever purposes.

Note

If you use the output_file parameter, this function will
reseed the random number generator, save the seed used. It
will then be restored by the ReplayEventHandler.

	
class spyral.event.ReplayEventHandler(input_file)[source]

	An event handler which replays the events from a custom json
file saved by the LiveEventHandler.

	
pause()[source]

	Pauses the replay of the events, making tick() a noop until
resume is called.

	
resume()[source]

	Resumes the replay of events.

Fonts

	
class spyral.Font(font_path, size, default_color=(0, 0, 0))

	Font objects are how you get text onto the screen. They are loaded from
TrueType Font files (*.ttf); system fonts are not supported for asthetic
reasons. If you need direction on what the different size-related
properties of a Font object, check out the Font example.

	Parameters:	
	font_path (str) – The location of the *.ttf file.

	size (int) – The size of the font; font sizes refer to the height of the
font in pixels.

	color (A three-tuple.) – A three-tuple of RGB values ranging from 0-255. Defaults to
black (0, 0, 0).

	
ascent

	The height in pixels from the font baseline to the top of the font.
Read-only.

	
descent

	The height in pixels from the font baseline to the bottom of the font.
Read-only.

	
get_metrics(text)

	Returns a list containing the font metrics for each character
in the text. The metrics is a tuple containing the
minimum x offset, maximum x offset, minimum y offset, maximum
y offset, and the advance offset of the character. [(minx, maxx, miny,
maxy, advance), (minx, maxx, miny, maxy, advance), ...]

	Parameters:	text (str) – The text to gather metrics on.

	Return type:	list of tuples.

	
get_size(text)

	Returns the size needed to render the text without actually
rendering the text. Useful for word-wrapping. Remember to
keep in mind font kerning may be used.

	Parameters:	text (str) – The text to get the size of.

	Returns:	The size (width and height) of the text as it would be
rendered.

	Return type:	Vec2D

	
height

	The average height in pixels for each glyph in the font. Read-only.

	
linesize

	The height in pixels for a line of text rendered with the font.
Read-only.

	
render(text, color=None, underline=False, italic=False, bold=False)

	Renders the given text. Italicizing and bolding are artificially
added, and may not look good for many fonts. It is preferable to load a
bold or italic font where possible instead of using these options.

	Parameters:	
	text (str) – The text to render. Some characters might not be able
to be rendered (e.g., “\n”).

	color (A three-tuple.) – A three-tuple of RGB values ranging from 0-255. Defaults
to the default Font color.

	underline (bool) – Whether to underline this text. Note that the
line will always be 1 pixel wide, no matter the
font size.

	italic (bool) – Whether to artificially italicize this font by
angling it.

	bold (bool) – Whether to artificially embolden this font by
stretching it.

	Return type:	Image

Forms

	
class spyral.Form(scene)

	Bases: spyral.view.View

Forms are a subclass of Views that hold a set of
Widgets. Forms will manage focus and event delegation between the widgets,
ensuring that only one widget is active at a given time. Forms are defined
using a special class-based syntax:

class MyForm(spyral.Form):
 name = spyral.widgets.TextInput(100, "Current Name")
 remember_me = spyral.widgets.Checkbox()
 save = spyral.widgets.ToggleButton("Save")

my_form = MyForm()

When referencing widgets in this way, the “Widget” part of the widget’s name
is dropped: spyral.widgets.ButtonWidget becomes spyral.widgets.Button.
Every widget in a form is accessible as an attribute of the form:

>>> print my_form.remember_me.value
"up"

	Parameters:	scene (Scene or View.) – The Scene or View that this Form belongs to.

	
add_widget(name, widget, tab_order=None)

	Adds a new widget to this form. When this method is used to add a Widget
to a Form, you create the Widget as you would create a normal Sprite. It
is preferred to use the class-based method instead of this; consider
carefully whether you can achieve dynamicity through visibility and
disabling.

>>> my_widget = spyral.widgets.ButtonWidget(my_form, "save")
>>> my_form.add_widget("save", my_widget)

	Parameters:	
	name (str) – A unique name for this widget.

	widget (Widget) – The new Widget.

	tab_order (int) – Sets the tab order for this widget explicitly. If
tab-order is None, it is set to one higher than
the highest tab order.

	
blur()

	Defocuses the entire form.

	
focus(widget=None)

	Sets the focus to be on a specific widget. Focus by default goes
to the first widget added to the form.

	Parameters:	widget (Widget) – The widget that is gaining focus; if None, then the first
widget gains focus.

	
next(wrap=True)

	Focuses on the next widget in tab order.

	Parameters:	wrap (bool) – Whether to continue to the first widget when the end
of the tab order is reached.

	
previous(wrap=True)

	Focuses the previous widget in tab order.

	Parameters:	wrap (bool) – Whether to continue to the last widget when the first
of the tab order is reached.

	
values

	A dictionary of the values for all the fields, mapping the name
of each widget with the value associated with that widget. Read-only.

Images

A module for manipulating Images, which are specially wrapped Pygame
surfaces.

	
class spyral.image.Image(filename=None, size=None)[source]

	The image is the basic drawable item in spyral. They can be created
either by loading from common file formats, or by creating a new
image and using some of the draw methods. Images are not drawn on
their own, they are placed as the image attribute on Sprites to
be drawn.

Almost all of the methods of an Image instance return the Image itself,
enabling commands to be chained in a
fluent interface [http://en.wikipedia.org/wiki/Fluent_interface].

	Parameters:	
	size (Vec2D) – If size is passed, creates a new blank image of that size to
draw on. If you do not specify a size, you must pass in a
filename.

	filename (str) – If filename is set, the file with that name is loaded.
The appendix has a list of the
valid image formats. If you do
not specify a filename, you must pass in a size.

	
copy()[source]

	Returns a copy of this image that can be changed while preserving the
original.

	Returns:	A new image.

	
crop(position, size=None)[source]

	Removes the edges of an image, keeping the internal rectangle specified
by position and size.

	Parameters:	
	position (a Vec2D or a
Rect.) – The upperleft corner of the internal rectangle that
will be preserved.

	size (Vec2D or None.) – The size of the internal rectangle to preserve. If a Rect
was passed in for position, this should be None.

	Returns:	This image.

	
draw_arc(color, start_angle, end_angle, position, size=None, border_width=0, anchor='topleft')[source]

	Draws an elliptical arc on this image.

	Parameters:	
	color (a three-tuple of ints.) – a three-tuple of RGB values ranging from 0-255. Example:
(255, 128, 0) is orange.

	start_angle (float) – The starting angle, in radians, of the arc.

	end_angle (float) – The ending angle, in radians, of the arc.

	position (Vec2D or
Rect) – The starting position of the ellipse (top-left corner).
If position is a Rect, then size should be None.

	size (Vec2D) – The size of the ellipse; should not be given if position is
a rect.

	border_width (int) – The width of the ellipse. If it is 0, the
ellipse is filled with the color specified.

	anchor (str) – The anchor parameter is an
anchor position.

	Returns:	This image.

	
draw_circle(color, position, radius, width=0, anchor='topleft')[source]

	Draws a circle on this image.

	Parameters:	
	color (a three-tuple of ints.) – a three-tuple of RGB values ranging from 0-255. Example:
(255, 128, 0) is orange.

	position (Vec2D) – The center of this circle

	radius (int) – The radius of this circle

	width (int) – The width of the circle. If it is 0, the circle is
filled with the color specified.

	anchor (str) – The anchor parameter is an
anchor position.

	Returns:	This image.

	
draw_ellipse(color, position, size=None, border_width=0, anchor='topleft')[source]

	Draws an ellipse on this image.

	Parameters:	
	color (a three-tuple of ints.) – a three-tuple of RGB values ranging from 0-255. Example:
(255, 128, 0) is orange.

	position (Vec2D or
Rect) – The starting position of the ellipse (top-left corner).
If position is a Rect, then size should be None.

	size (Vec2D) – The size of the ellipse; should not be given if position is
a rect.

	border_width (int) – The width of the ellipse. If it is 0, the
ellipse is filled with the color specified.

	anchor (str) – The anchor parameter is an
anchor position.

	Returns:	This image.

	
draw_image(image, position=(0, 0), anchor='topleft')[source]

	Draws another image over this one.

	Parameters:	
	image (Image) – The image to overlay on top of this one.

	position (Vec2D) – The position of this image.

	anchor (str) – The anchor parameter is an
anchor position.

	Returns:	This image.

	
draw_lines(color, points, width=1, closed=False)[source]

	Draws a series of connected lines on a image, with the
vertices specified by points. This does not draw any sort of
end caps on lines.

	Parameters:	
	color (a three-tuple of ints.) – a three-tuple of RGB values ranging from 0-255. Example:
(255, 128, 0) is orange.

	points (A list of Vec2D s.) – A list of points that will be connected, one to another.

	width (int) – The width of the lines.

	closed (bool) – If closed is True, the first and last point will be
connected. If closed is True and width is 0, the
shape will be filled.

	Returns:	This image.

	
draw_point(color, position, anchor='topleft')[source]

	Draws a point on this image.

	Parameters:	
	color (a three-tuple of ints.) – a three-tuple of RGB values ranging from 0-255. Example:
(255, 128, 0) is orange.

	position (Vec2D) – The position of this point.

	anchor (str) – The anchor parameter is an
anchor position.

	Returns:	This image.

	
draw_rect(color, position, size=None, border_width=0, anchor='topleft')[source]

	Draws a rectangle on this image.

	Parameters:	
	color (a three-tuple of ints.) – a three-tuple of RGB values ranging from 0-255. Example:
(255, 128, 0) is orange.

	position (Vec2D or
Rect) – The starting position of the rect (top-left corner). If
position is a Rect, then size should be None.

	size (Vec2D) – The size of the rectangle; should not be given if position
is a rect.

	border_width (int) – The width of the border to draw. If it is 0,
the rectangle is filled with the color
specified.

	anchor (str) – The anchor parameter is an
anchor position.

	Returns:	This image.

	
fill(color)[source]

	Fills the entire image with the specified color.

	Parameters:	color (a three-tuple of ints.) – a three-tuple of RGB values ranging from 0-255. Example:
(255, 128, 0) is orange.

	Returns:	This image.

	
flip(flip_x=True, flip_y=True)[source]

	Flips the image horizontally, vertically, or both.

	Parameters:	
	flip_x (bool) – whether to flip horizontally.

	flip_y (bool) – whether to flip vertically.

	Returns:	This image.

	
height

	The height of this image in pixels (int). Read-only.

	
rotate(angle)[source]

	Rotates the image by angle degrees clockwise. This may change the image
dimensions if the angle is not a multiple of 90.

Successive rotations degrate image quality. Save a copy of the
original if you plan to do many rotations.

	Parameters:	angle (float) – The number of degrees to rotate.

	Returns:	This image.

	
scale(size)[source]

	Scales the image to the destination size.

	Parameters:	size (Vec2D) – The new size of the image.

	Returns:	This image.

	
size

	The (width, height) of the image (Vec2D <spyral.Vec2D).
Read-only.

	
width

	The width of this image in pixels (int). Read-only.

	
spyral.image.from_conglomerate(sequence)[source]

	A function that generates a new image from a sequence of
(image, position) pairs. These images will be placed onto a singe image
large enough to hold all of them. More explicit and less convenient than
from_seqeuence.

	Parameters:	sequence (List of image, position pairs.) – A list of (image, position) pairs, where the positions
are Vec2D s.

	Returns:	A new Image

	
spyral.image.from_sequence(images, orientation='right', padding=0)[source]

	A function that returns a new Image from a list of images by
placing them next to each other.

	Parameters:	
	images (List of Image) – A list of images to lay out.

	orientation (str) – Either ‘left’, ‘right’, ‘above’, ‘below’, or
‘square’ (square images will be placed in a grid
shape, like a chess board).

	padding (int or a list of ints.) – The padding between each image. Can be specified as a
scalar number (for constant padding between all images)
or a list (for different paddings between each image).

	Returns:	A new Image

	
spyral.image.render_nine_slice(image, size)[source]

	Creates a new image by dividing the given image into a 3x3 grid, and stretching
the sides and center while leaving the corners the same size. This is ideal
for buttons and other rectangular shapes.

	Parameters:	
	image (Image) – The image to stretch.

	size (Vec2D) – The new (width, height) of this image.

	Returns:	A new Image similar to the old one.

Keyboard

The keyboard modules provides an interface to adjust the keyboard’s repeat
rate.

	
spyral.keyboard.repeat

	When the keyboard repeat is enabled, keys that are held down will keep
generating new events over time. Defaults to False.

	
spyral.keyboard.delay

	int to control how many milliseconds before the repeats start.

	
spyral.keyboard.interval

	int to control how many milliseconds to wait between repeated events.

Mouse

The mouse modules provides an interface to adjust the mouse cursor.

	
spyral.mouse.visible

	Bool that adjust whether the mouse cursor should be shown. This is useful
if you want to, for example, use a Sprite instead of the regular mouse
cursor.

	
spyral.mouse.cursor

	str value that lets you choose from among the built-in options for
cursors. The options are:

	"arrow" : the regular arrow-shaped cursor

	"diamond" : a diamond shaped cursor

	"x" : a broken X, useful for indicating disabled states.

	"left": a triangle pointing to the left

	"right": a triangle pointing to the right

Warning

Custom non-Sprite mouse cursors are currently not supported.

Rects

	
class spyral.Rect(*args)

	Rect represents a rectangle and provides some useful features. Rects can
be specified 3 ways in the constructor:

	Four numbers, x, y, width, height

	Two tuples, (x, y) and (width, height)

	Another rect, which is copied

>>> rect1 = spyral.Rect(10, 10, 64, 64) # Method 1
>>> rect2 = spyral.Rect((10, 10), (64, 64)) # Method 2
>>> rect3 = spyral.Rect(rect1.topleft, rect1.size) # Method 2
>>> rect4 = spyral.Rect(rect3) # Method 3

Rects support all the usual anchor points as
attributes, so you can both get rect.center and assign to it.
Rects also support attributes of right, left, top, bottom,
x, and y.

>>> rect1.x
10
>>> rect1.centerx
42.0
>>> rect1.width
64
>>> rect1.topleft
Vec2D(10, 10)
>>> rect1.bottomright
Vec2D(74, 74)
>>> rect1.center
Vec2D(42.0, 42.0)
>>> rect1.size
Vec2D(64, 64)

	
clip(other)

	Returns a Rect which is cropped to be completely inside of other.
If the other does not overlap with this rect, a rect of size 0 is
returned.

	Parameters:	other (Rect) – The other Rect.

	Returns:	A new Rect

	
clip_ip(other)

	Modifies this rect to be cropped completely inside of other.
If the other does not overlap with this rect, this rect will have a size
of 0.

	Parameters:	other (Rect) – The other Rect.

	
collide_point(point)

	

	Parameters:	point (Vec2D) – The point.

	Returns:	A bool indicating whether the point is contained within this
rect.

	
collide_rect(other)

	Returns True if this rect collides with the other rect.

	Parameters:	other (Rect) – The other Rect.

	Returns:	A bool indicating whether this rect is contained within
another.

	
contains(other)

	Returns True if the other rect is contained inside this rect.

	Parameters:	other (Rect) – The other Rect.

	Returns:	A bool indicating whether this rect is contained within
another.

	
copy()

	Returns a copy of this rect

	Returns:	A new Rect

	
inflate(width, height)

	Returns a copy of this rect inflated by width and height.

	Parameters:	
	width (float) – The amount to add horizontally.

	height (float) – The amount to add vertically.

	Returns:	A new Rect

	
inflate_ip(width, height)

	Inflates this rect by width, height.

	Parameters:	
	width (float) – The amount to add horizontally.

	height (float) – The amount to add vertically.

	
move(x, y)

	Returns a copy of this rect offset by x and y.

	Parameters:	
	x (float) – The horizontal offset.

	y (float) – The vertical offset.

	Returns:	A new Rect

	
move_ip(x, y)

	Moves this rect by x and y.

	Parameters:	
	x (float) – The horizontal offset.

	y (float) – The vertical offset.

	
union(other)

	Returns a new rect which represents the union of this rect
with other – in other words, a new rect is created that can fit both
original rects.

	Parameters:	other (Rect) – The other Rect.

	Returns:	A new Rect

	
union_ip(other)

	Modifies this rect to be the union of it and the other – in other
words, this rect will expand to include the other rect.

	Parameters:	other (Rect) – The other Rect.

Scenes

	
class spyral.Scene(size=None, max_ups=None, max_fps=None)

	Creates a new Scene. When a scene is not active, no events will be processed
for it. Scenes are the basic units that are executed by spyral for your game,
and should be subclassed and filled in with code which is relevant to your
game. The Director, is a manager for Scenes,
which maintains a stacks and actually executes the code.

	Parameters:	
	size (width, height) – The size of the scene internally (or “virtually”). This is
the coordinate space that you place Sprites in, but it does
not have to match up 1:1 to the window (which could be scaled).

	max_ups (int) – Maximum updates to process per second. By default,
max_ups is pulled from the director.

	max_fps (int) – Maximum frames to draw per second. By default,
max_fps is pulled from the director.

	
add_style_function(name, function)

	Adds a new function that will then be available to be used in a
stylesheet file.

Example:

import random
class MyScene(spyral.Scene):
 def __init__(self):
 ...
 self.load_style("my_style.spys")
 self.add_style_function("randint", random.randint)
 # inside of style file you can now use the randint function!
 ...

	Parameters:	
	name (string) – The name the function will go by in the style file.

	function (function) – The actual function to add to the style file.

	
background

	The background of this scene. The given Image
must be the same size as the Scene. A background will be handled
intelligently by Spyral; it knows to only redraw portions of it rather
than the whole thing, unlike a Sprite.

	
collide_point(sprite, point)

	Returns whether the sprite is colliding with the point.

	Parameters:	
	sprite (Sprite) – A sprite

	point (Vec2D) – A point

	Returns:	A bool

	
collide_rect(sprite, rect)

	Returns whether the sprite is colliding with the rect.

	Parameters:	
	sprite (Sprite) – A sprite

	rect (Rect) – A rect

	Returns:	A bool

	
collide_sprites(first, second)

	Returns whether the first sprite is colliding with the second.

	Parameters:	
	first (Sprite or a
View) – A sprite or view

	second (Sprite or a
View) – Another sprite or view

	Returns:	A bool

	
height

	The height of this scene. Read-only number.

	
layers

	A list of strings representing the layers that are available for this
scene. The first layer is at the bottom, and the last is at the top.

Note that the layers can only be set once.

	
load_style(path)

	Loads the style file in path and applies it to this Scene and any
Sprites and Views that it contains. Most properties are stylable.

	Parameters:	path (str) – The location of the style file to load. Should have the
extension ”.spys”.

	
parent

	Returns this scene. Read-only.

	
rect

	Returns a Rect representing the position (0, 0)
and size of this Scene.

	
redraw()

	Force the entire visible window to be completely redrawn.

This is particularly useful for Sugar, which loves to put artifacts over
our window.

	
scene

	Returns this scene. Read-only.

	
size

	Read-only property that returns a Vec2D of the
width and height of the Scene’s size. This is the coordinate space that
you place Sprites in, but it does not have to match up 1:1 to the window
(which could be scaled). This property can only be set once.

	
width

	The width of this scene. Read-only number.

Sprites

	
class spyral.Sprite(parent)

	Sprites are how images are positioned and drawn onto the screen.
They aggregate together information such as where to be drawn,
layering information, and more.

	Parameters:	parent (View or Scene) – The parent that this Sprite will belong to.

	
anchor

	Defines an anchor point where coordinates are relative to
on the image. String.

	
angle

	An angle to rotate the image by. Rotation is computed after scaling and
flipping, and keeps the center of the original image aligned with the
center of the rotated image.

	
animate(animation)

	Animates this sprite given an animation. Read more about
animation.

	Parameters:	animation (Animation) – The animation to run.

	
collide_point(point)

	Returns whether this sprite is currently colliding with the position.
This uses the appropriate offsetting for the sprite within its views.

	Parameters:	point (Vec2D) – The point (relative to the window dimensions).

	Returns:	bool indicating whether this sprite is colliding with the
position.

	
collide_rect(rect)

	Returns whether this sprite is currently colliding with the rect. This
uses the appropriate offsetting for the sprite within its views.

	Parameters:	rect (Rect) – The rect (relative to the window dimensions).

	Returns:	bool indicating whether this sprite is colliding with the
rect.

	
collide_sprite(other)

	Returns whether this sprite is currently colliding with the other
sprite. This collision will be computed correctly regarding the sprites
offsetting and scaling within their views.

	Parameters:	other (Sprite) – The other sprite

	Returns:	bool indicating whether this sprite is colliding with the
other sprite.

	
flip_x

	A boolean that determines whether the image should be flipped
horizontally.

	
flip_y

	A boolean that determines whether the image should be flipped
vertically.

	
height

	The height of the image after all transforms. Number.

	
image

	The Image for this sprite.

	
kill()

	When you no longer need a Sprite, you can call this method to have it
removed from the Scene. This will not remove the sprite entirely from
memory if there are other references to it; if you need to do that,
remember to del the reference to it.

	
layer

	String. The name of the layer this sprite belongs to. See
layering for more.

	
mask

	A Rect to use instead of the current image’s rect
for computing collisions. None if the image’s rect should be used.

	
parent

	The parent of this sprite, either a View or a
Scene. Read-only.

	
pos

	The position of a sprite in 2D coordinates, represented as a
Vec2D

	
rect

	Returns a Rect representing the position and size
of this Sprite’s image. Note that if you change a property of this rect
that it will not actually update this sprite’s properties:

>>> my_sprite.rect.top = 10

Does not adjust the y coordinate of my_sprite. Changing the rect will
adjust the sprite however

>>> my_sprite.rect = spyral.Rect(10, 10, 64, 64)

	
scale

	A scale factor for resizing the image. When read, it will always contain
a spyral.Vec2D with an x factor and a y factor, but it can be
set to a numeric value which wil ensure identical scaling along both
axes.

	
scale_x

	The x factor of the scaling that’s kept in sync with scale. Number.

	
scale_y

	The y factor of the scaling that’s kept in sync with scale. Number.

	
scene

	The top-level scene that this sprite belongs to. Read-only.

	
size

	The size of the image after all transforms (Vec2D).

	
stop_all_animations()

	Stops all animations currently running on this sprite.

	
stop_animation(animation)

	Stops a given animation currently running on this sprite.

	Parameters:	animation (Animation) – The animation to stop.

	
visible

	A boolean indicating whether this sprite should be drawn.

	
width

	The width of the image after all transforms. Number.

	
x

	The x coordinate of the sprite, which will remain synced with the
position. Number.

	
y

	The y coordinate of the sprite, which will remain synced with the
position. Number

Vec2Ds

	
class spyral.Vec2D(*args)

	Vec2D is a class that behaves like a 2-tuple, but with a number
of convenient methods for vector calculation and manipulation.
It can be created with two arguments for x,y, or by passing a
2-tuple.

In addition to the methods documented below, Vec2D supports
the following:

>>> from spyral import Vec2D
>>> v1 = Vec2D(1,0)
>>> v2 = Vec2D((0,1)) # Note 2-tuple argument!

Tuple access, or x,y attribute access

>>> v1.x
1
>>> v1.y
0
>>> v1[0]
1
>>> v1[1]
0

Addition, subtraction, and multiplication

>>> v1 + v2
Vec2D(1, 1)
>>> v1 - v2
Vec2D(1, -1)
>>> 3 * v1
Vec2D(3, 0)
>>> (3, 4) * (v1+v2)
Vec2D(3, 4)

Compatibility with standard tuples

>>> v1 + (1,1)
Vec2D(2, 1)
>>> (1,1) + v1
Vec2D(2, 1)

	
angle(other)

	Returns the angle between this point and another point.

	Parameters:	other (2-tuple or Vec2D) – the other point

	Return type:	float

	
distance(other)

	Returns the distance from this Vec2D to the
other point.

	Parameters:	other (2-tuple or Vec2D) – the other point

	Return type:	float

	
dot(other)

	Returns the dot product [http://en.wikipedia.org/wiki/Dot_product]
of this point with another.

	Parameters:	other (2-tuple or Vec2D) – the other point

	Return type:	int

	
floor()

	Converts the components of this vector into ints, discarding anything
past the decimal place.

	Returns:	this Vec2D

	
static from_polar(*args)

	Takes in radius, theta or (radius, theta) and returns rectangular
Vec2D.

	Return type:	Vec2D

	
get_angle()

	Return the angle this vector makes with the positive x axis.

	Return type:	float

	
get_length()

	Return the length of this vector.

	Return type:	float

	
get_length_squared()

	Return the squared length of this vector.

	Return type:	int

	
normalized()

	Returns a new vector based on this one, normalized to length 1. That is,
it keeps the same angle, but its length is now 1.

	Return type:	Vec2D

	
perpendicular()

	Returns a new Vec2D perpendicular to this one.

	Return type:	Vec2D

	
projection(other)

	Returns the
projection [http://en.wikipedia.org/wiki/Vector_projection]
of this Vec2D onto another point.

	Parameters:	other (2-tuple or Vec2D) – the other point

	Return type:	float

	
rotated(angle, center=(0, 0))

	Returns a new vector from the old point rotated by angle radians about
the optional center.

	Parameters:	
	angle (float) – angle in radians.

	center (2-tuple or Vec2D) – an optional center

	Return type:	Vec2D

	
to_polar()

	Returns Vec2D(radius, theta) for this vector, where radius is the
length and theta is the angle.

	Return type:	Vec2D

Views

	
class spyral.View(parent)

	Creates a new view with a scene or view as a parent. A view is a collection
of Sprites and Views that can be collectively transformed - e.g., flipped,
cropped, scaled, offset, hidden, etc. A View can also have a mask, in
order to treat it as a single collidable object. Like a Sprite, a View cannot
be moved between Scenes.

	Parameters:	parent (View or Scene) – The view or scene that this View belongs in.

	
anchor

	Defines an anchor point where coordinates are relative to
on the view. String.

	
collide_point(pos)

	Returns whether this view is colliding with the point.

	Parameters:	point (Vec2D) – A point

	Returns:	A bool

	
collide_rect(rect)

	Returns whether this view is colliding with the rect.

	Parameters:	rect (Rect) – A rect

	Returns:	A bool

	
collide_sprite(other)

	Returns whether this view is colliding with the sprite or view.

	Parameters:	other (Sprite or a
View) – A sprite or a view

	Returns:	A bool

	
crop

	A bool that determines whether the view should crop anything
outside of it’s size (default: True).

	
crop_height

	The height of the cropped area. Number.

	
crop_size

	The (width, height) of the area that will be cropped; anything outside
of this region will be removed when the crop is active.

	
crop_width

	The width of the cropped area. Number.

	
height

	The height of the view. Number.

	
kill()

	Completely remove any parent’s links to this view. When you want to
remove a View, you should call this function.

	
layer

	The layer (a str) that this View is on, within its parent.

	
layers

	A list of strings representing the layers that are available for this
view. The first layer is at the bottom, and the last is at the top. For
more information on layers, check out the layers
appendix.

	
mask

	Return this View’s mask, a spyral.Rect representing the collidable area.

	Return type:	Rect if this value has been set,
otherwise it will be None.

	
output_height

	The height of this view when drawn on the parent. Number.

	
output_size

	The (width, height) of this view when drawn on the parent
(Vec2D). Defaults to size of the parent.

	
output_width

	The width of this view when drawn on the parent. Number.

	
parent

	The first parent View or
Scene that this View belongs to. Read-only.

	
pos

	Returns the position (Vec2D) of this View within its
parent.

	
rect

	A Rect representing the position and size of
this View. Can be set through a Rect, a 2-tuple of position and
size, or a 4-tuple.

	
scale

	A scale factor from the size to the output_size for the view. It will
always contain a Vec2D with an x factor and a
y factor, but it can be set to a numeric value which will be set for
both coordinates.

	
scale_x

	The x factor of the scaling. Kept in sync with scale. Number.

	
scale_y

	The y factor of the scaling. Kept in sync with scale. Number.

	
scene

	The top-most parent Scene that this View
belongs to. Read-only.

	
size

	The (width, height) of this view’s coordinate space
(Vec2D). Defaults to size of the parent.

	
visible

	Whether or not this View and its children will be drawn (bool).
Defaults to False.

	
width

	The width of the view. Number.

	
x

	The x coordinate of the view, which will remain synced with the
position. Number.

	
y

	The y coordinate of the view, which will remain synced with the
position. Number.

Widgets

	
class spyral.widgets.ButtonWidget(form, name, text='Okay')[source]

	A ButtonWidget is a simple button that can be pressed. It can have some
text. If you don’t specify an explicit width, then it will be sized
according to it’s text.

	Parameters:	
	form (Form) – The parent form that this Widget belongs to.

	name (str) – The name of this widget.

	text (str) – The text that will be rendered on this button.

	
text

	The text rendered on this button (str).

	
value

	Whether or not this widget is currently "up" or "down".

	
class spyral.widgets.CheckboxWidget(form, name)[source]

	A CheckboxWidget is identical to a ToggleButtonWidget, only it doesn’t have
any text.

	
class spyral.widgets.ToggleButtonWidget(form, name, text='Okay')[source]

	A ToggleButtonWidget is similar to a Button, except that it will stay down
after it’s been clicked, until it is clicked again.

	Parameters:	
	form (Form) – The parent form that this Widget belongs to.

	name (str) – The name of this widget.

	text (str) – The text that will be rendered on this button.

	
class spyral.widgets.TextInputWidget(form, name, width, value='', default_value=True, text_length=None, validator=None)[source]

	The TextInputWidget is used to get text data from the user, through an
editable textbox.

	Parameters:	
	form (Form) – The parent form that this Widget belongs to.

	name (str) – The name of this widget.

	width (int) – The rendered width in pixels of this widget.

	value (str) – The initial value of this widget.

	default_value (bool) – Whether to clear the text of this widget the
first time it gains focus.

	text_length (int) – The maximum number of characters that can be entered
into this box. If None, then there is no
maximum.

	validator (set) – A set of characters that are allowed to be printed.
Defaults to all regularly printable characters (which
does not include tab and newlines).

	
anchor

	Defines an anchor point <anchors> where coordinates are relative to
on the view. String.

	
cursor_pos

	The current index of the text cursor within this widget. A int.

	
nine_slice

	The Image used to build the internal nine-slice
image.

	
padding

	A single int representing both the vertical and horizontal padding
within this widget.

	
value

	The current value of this widget, i.e, the text the user has input. When
this value is changed, it triggers a form.<name>.<widget>.changed
event. A str.

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

Spyral API Appendices

Appendices

	Event List
	Director

	Animations

	User Input

	System

	Forms

Anchors

There are several anchor points available, each given by a different string. The image below shows their locations on an image.

[image: _images/anchors.png]

Keyboard Keys

Keyboard Modifiers

Layering

Rects

Rects can be accessed in a number of ways. The diagram below demonstrates the possibel properties.

[image: _images/rect.png]

Styleable properties

Valid Image Formats

	JPG

	PNG

	GIF (non animated)

	BMP

	PCX

	TGA (uncompressed)

	TIF

	LBM (and PBM)

	PBM (and PGM, PPM)

	XPM

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

 	Spyral API Appendices

Event List

There are many events that are built into Spyral. The following is a complete
lists of them. You can register a handler
for an event, and even queue your own
custom events.

Director

	
"director.update" : Event(delta)

	

	Parameters:	delta (float) – The amount of time progressed since the last tick

	Triggered by:	Every tick of the clock

	
"director.pre_update" : Event()

	

	Triggered by:	Every tick of the clock, before "director.update"

	
"director.post_update" : Event()

	

	Triggered by:	Every tick of the clock, after "director.update"

	
"director.render" : Event()

	

	Triggered by:	Every time the director draws the scene

	
"director.pre_render" : Event()

	

	Triggered by:	Directly before "director.render"

	
"director.post_render" : Event()

	

	Triggered by:	Directly after "director.render"

	
"director.redraw" : Event()

	

	Triggered by:	Every time the Director is forced to redraw the screen (e.g., if the window regains focus after being minimized).

	
"director.scene.enter" : Event(scene)

	

	Parameters:	scene (Scene) – The new scene

	Triggered by:	Whenever a new scene is on top of the stack, e.g., a new scene is pushed, another scene is popped

	
"director.scene.exit" : Event(scene)

	

	Parameters:	scene (Scene) – The old scene

	Triggered by:	Whenever a scene is slips off the stack, e.g., a new scene is pushed on top, a scene is popped

Animations

	
"<sprite>.<attribute>.animation.start" : Event(animation, sprite)

	

	Parameters:	
	animation (Animation) – The animation that is starting

	sprite (Sprite) – The sprite the animation is being played on

	Triggered by:	A new animation starting on a sprite.

	
"<sprite>.<attribute>.animation.end" : Event(animation, sprite)

	

	Parameters:	
	animation (Animation) – The animation that is starting

	sprite (Sprite) – The sprite the animation is being played on

	Triggered by:	An animation on a sprite ending.

User Input

	
"input.mouse.down[.left | .right | .middle | .scroll_up | .scroll_down]" : Event(pos, button)

	

	Parameters:	
	pos (2-tuple) – The location of the mouse cursor

	button (str) – Either "left", "right", "middle", "scroll_up", or "scroll_down".

	Triggered by:	Either any mouse button being pressed, or a specific mouse button being pressed

	
"input.mouse.up[.left | .right | .middle | .scroll_up | .scroll_down]" : Event(pos, button)

	

	Parameters:	
	pos (2-tuple) – The location of the mouse cursor

	button (str) – Either "left", "right", "middle", "scroll_up", or "scroll_down".

	Triggered by:	Either any mouse button being released, or a specific mouse button being released

	
"input.mouse.motion" : Event(pos, rel, buttons, left, right, middle)

	

	Parameters:	
	pos (2-tuple) – The location of the mouse cursor

	rel (2-tuple) – The relative change in the location of the mouse cursor

	buttons (3-tuple) – a 3-tuple of boolean values corresponding to whether the left, middle, and right buttons are being pressed

	left (bool) – whether the left button is being pressed

	middle (bool) – whether the middle button is being pressed

	right (bool) – whether the right button is being pressed

	Triggered by:	The mouse being moved

	
"input.keyboard.up[.* | .f | .down | etc...]" : Event(unicode, key, mod)

	

	Parameters:	
	unicode (unicode) – A printable representation of this key

	key (int) – A keycode for this key, comparable to one found in Keys

	mod (int) – A keycode for this modifier, comparable to one found in Mods

	Triggered by:	A key being released

	
"input.keyboard.down[.* | .f | .down | etc...]" : Event(key, mod)

	

	Parameters:	
	key (int) – A keycode for this key, comparable to one found in Keys

	mod (int) – A keycode for this modifier, comparable to one found in Mods

	Triggered by:	A key being pressed

System

	
"system.quit" : Event()

	

	Triggered by:	The OS killing this program, e.g., by pressing the exit button the window handle.

	
"system.video_resize" : Event(size, width, height)

	

	Parameters:	
	size (2-tuple) – The new size of the window

	width (int) – The new width of the window

	height (int) – The new height of the window

	Triggered by:	Your game loses focus in the OS, e.g., by the window being minimized

	
"system.video_expose" : Event()

	

	Triggered by:	The OS requests that a portion of the display be redrawn.

	
"system.focus_change" : Event(gain, state)

	

	Parameters:	
	gain (???) – ???

	state (???) – ???

	Triggered by:	Your game loses focus in the OS, e.g., by the window being minimized

Forms

	
"form.<form name>.<widget name>.changed" : Event(widget, form, value)

	

	Parameters:	
	widget (Widget) – The widget being changed

	form (Form) – The form that this widget belongs to

	value (str) – The value of this widget

	Triggered by:	The widget having its value changed (e.g., Button being pressed or released, TextInput being edited)

	
"form.<form name>.<widget name>.clicked" : Event(widget, form, value)

	
Note

Only Button‘s trigger this event.

	Parameters:	
	widget (Widget) – The widget being clicked

	form (Form) – The form that this widget belongs to

	value (str) – The value of this widget

	Triggered by:	The widget being pressed and then released.

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

Spyral API Cheat Sheets

The following are convenient listings of the attributes and methods of some of
the more common classes and modules.

Sprites

	Attribute
	Type
	Description

	pos
	Vec2D
	Sprite’s position within the parent

	x
	int
	Sprite’s horizontal position within the parent

	y
	int
	Sprite’s vertical position within the parent

	anchor
	str (anchor point)
	Where to offset this sprite

	image
	Image
	The image to display

	visible
	bool
	Whether or not to render this sprite

	layer
	str (layering)
	Which layer of the parent to place this sprite in

	width
	float
	Width of the sprite after all transforms

	height
	float
	Height of the sprite after all transforms

	size
	Vec2D
	Size of the sprite after all transforms

	rect
	Rect
	A rect describing size and position

	scale
	Vec2D (can be set to float)
	Scale factor for resizing the image

	scale_x
	float
	Scale factor for horizontally resizing the image

	scale_y
	float
	Scale factor for vertically resizing the image

	flip_x
	bool
	Whether the image should be flipped horizontally

	flip_y
	bool
	Whether the image should be flipped vertically

	angle
	float
	How much to rotate the image

	mask
	Rect or None
	Alternate size of collision box

	parent*
	View or Scene
	The immediate parent View or Scene

	scene*
	Scene
	The top-most parent Scene

*Read-only

Scenes

	Attribute
	Type
	Description

	background
	Image
	The image to display as the static background

	layers**
	list of str (layering)
	The layers for this scene

	width*
	int
	Width of this scene internally (not the window).

	height*
	int
	Height of this scene internally (not the window).

	size*
	Vec2D
	Size of this scene internally (not the window).

	rect
	Rect
	A rect stretching from (0, 0) to the size of the window.

	parent*
	Scene
	This Scene

	scene*
	Scene
	This Scene

*Read-only

** Can only be set once

Views

	Attribute
	Type
	Description

	pos
	Vec2D
	View’s position within the parent

	x
	int
	View’s horizontal position within the parent

	y
	int
	View’s vertical position within the parent

	width
	float
	Internal width of the view

	height
	float
	Internal height of the view

	size
	Vec2D
	Internal size of the view

	rect
	Rect
	A rect describing size and position

	anchor
	str (anchor point)
	Where to offset this view

	visible
	bool
	Whether or not to render this view

	layer
	str (layering)
	Which layer of the parent to place this view in

	layers**
	list of str (layering)
	The layers for this view

	scale
	Vec2D (can be set to float)
	Scale factor for resizing the view

	scale_x
	float
	Scale factor for horizontally resizing the view

	scale_y
	float
	Scale factor for vertically resizing the view

	output_width
	float
	Width of the view after all transforms

	output_height
	float
	Height of the view after all transforms

	output_size
	Vec2D
	Size of the sprite after all transforms

	crop
	bool
	Whether this View should be cropped

	crop_width
	float
	Horizontal amount to keep uncropped

	crop_height
	float
	Vertical amount to keep uncropped

	crop_size
	Vec2D
	Size of the uncropped region within the View

	mask
	Rect or None
	Alternate size of collision box

	parent*
	View or Scene
	The immediate parent View or Scene

	scene*
	Scene
	The top-most parent Scene

*Read-only

** Can only be set once

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

Game Development Resources

General

	Amit’s Game Programming Information [http://www-cs-students.stanford.edu/~amitp/gameprog.html]

	A mix of links to other content, and some great original content, make this a great resource when working on games. The sections on AI and Path Finding have been useful to many game developers.

Art and Design

	2D Game Art For Programmers [http://gamasutra.com/blogs/ChrisHildenbrand/20111015/8669/2D_Game_Art_For_Programmers__Part_1_updated.php]

	A great series on creating 2D artwork for games. If you enjoy the first post, be sure to read the blog, it contains many more articles than are on Gamasutra.

	OpenGameArt [http://opengameart.org/]

	A fantastic, on-going work to collect open source, public domain

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

Educational Game Design

I do a lot of research on Educational Game Design, so I’ll be posting interesting papers along with summaries. Please read and comment!

Research

	Digital Math Activity: Diagnostic Feedback
	Results

	My Thoughts

	Formal Abstract

	References

	Gender in Middle School Educational Games
	Results

	My Thoughts

	Formal Abstract

	References

	Commercial Games in Schools
	Results

	My Thoughts

	References

	Endogenous vs. Exogenous Games
	Results

	My Thoughts

	Formal Abstract

	References

Queued Research Papers

	Evidence-Centered Design

	Acquisition vs. Participation Metaphors for Knowledge

	Game Development Design Principles (Gelderblom’s Masters thesis)

	TPACK: Technological, Content, and Pedagogical Knowledge

	What is Constructivism?

	What is Situated Learning?

	Motivation & Engagement: MUSIC model

	Hanging Out, Messing Around, and Geeking Out

	Next-generation Learning

	Simulations vs. Games

	Use - Modify - Create

	Socio-Cognitive Learning

	Informal vs. Formal Learning Environments

	Connected Learning

	How People Learn

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

 	Educational Game Design

Digital Math Activity: Diagnostic Feedback

Title: “Embedding diagnostic mechanisms in a digital game for learning mathematics” (Huang, 2014)

Summary: This is a study where they made a multiple-choice activity with diagnostic feedback, and then did an assessment. They used the ARCS model of motivational design [http://www.learning-theories.com/kellers-arcs-model-of-motivational-design.html] , which is pretty helpful from a design point of view:

	Gain the student’s attention

	Establish relevance

	Increase student’s confidence

	Give the student satisfaction

[image: Embedding diagnostic mechanisms in a digital game for learning mathematics]
 [http://dx.doi.org/10.1007/s11423-013-9315-4]As I previously said, this is not a game: it’s a multiple-choice activity. It isn’t meant to teach, it’s meant to be a low-stakes assessment with diagnostic feedback. They put some good work into identifying and diagnosing the mistakes that a student could make when doing addition. When they choose the wrong answer, they give feedback targeted to that student. Think of it like really good compiler errors - it can make or break your understanding of the error when you’re just starting out!

Results

They assessed 56-2nd graders (45% female) (Southern Taiwan). One group had the diagnostic element, the other was basically just answering multiple choice questions. Their results for their measures:

	Learning achievement questions from accredited textbooks : students given the diagnostic feedback performed better than the students who didn’t, both in comprehension and application type of questions.

	Mathematical anxiety : diagnostic feedback students were a little less anxious

	Learning motivation based on ARCS : Feedback was positive, except some learners felt that the material was too simple.

	Qualitative interviews : Results confirm ARCS data

My Thoughts

Weaknesses :

	Relatively small sample size.

	Although this activity is more fun than a quiz, it is still not as much fun as a regular game - multiple-choice is a pretty boring

	Only intended for assessment rather than actual learning.

The biggest take-away : Feedback is key in designing both software and instruction!

Formal Abstract

Mathematics is closely related to daily life, but it is also one of the lessons which often cause anxiety to primary school students. Digital game-based learning (DGBL) has been regarded as a sound learning strategy in raising learner willingness and interest in many disciplines. Thus, ways of designing a DGBL system to mitigate anxiety are well worth studying. This study adopts an Input–Process–Outcome DGBL model to develop a DGBL system with a diagnostic mechanism strategy for a primary school mathematics course. In addition to exploring the impact of different learning methods on learning performance, this study further analyzes the learning methods in terms of learner anxiety about mathematics, learning motivation and learning satisfaction from the perspective of Attention, Relevance, Confidence-building, and Satisfaction (ARCS) motivation theory. The diagnostic mechanism strategy demonstrates the advantages of the DGBL system for mathematics learning. During the learning process, the ARCS questionnaire revealed that students who engage in learning through the DGBL method are positively motivated. The findings of this study suggest that centering on the daily life experiences of learners, integrating a proper game model into mathematics learning and providing a diagnostic mechanism prompt can effectively enhance interest in learning mathematics and reduce anxiety. When anxiety is mitigated, both learning motivation and learning performance are enhanced.

References

	Huang, Y. M., Huang, S. H., & Wu, T. T. (2013). Embedding diagnostic mechanisms in a digital game for learning mathematics. Educational Technology Research and Development, 1-21.

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

 	Educational Game Design

Gender in Middle School Educational Games

Title : Gender differences in game activity preferences of middle school children: implications for educational game design (Kinzie, 2008)

Summary : This is one of my favorite papers. It describes a survey of 42 middle schoolers on their interest in game mechanics and elements. Demographic details:

	Average age: 12-years old

	Grade: 60% in sixth, 14% in seventh, and 21% in eighth

	Ethncity: 64% white, 12% asian american, 10% african american, 2% hispanic, 12% other

	Most regularly played video games

Results

	Gender of their character :
	7% students wanted a “genderless alien”

	The rest wanted their own gender.

	Age of their character:
	64% wanted a slightly older character (13-20 years old)

	30% wanted a 20-30 year old

	8% wanted less than 13 years old

	No one wanted older than 30 years

	Build of male characters:
	61% wanted a “muscular” build

	34% wanted a “fit” build

	5% wanted a “slight” build

	Build of female characters:
	61% wanted a “fit” build

	24% wanted a “slight” build

	14% wanted a “muscular” build

	Girls were significantly more likely than boys to want a “slight” build

	Ethnicity:
	81% of White students wanted a white character

	Insufficient data to draw conclusions from other ethnicity, but they seemed to have more variability

	Choice of opponent:
	“Evil Overlord”: 50% of the students overall (66% of the boys)

	“Rival group of kids”: 29% of the students overall (50% of the girls)

	“Powerful government”, “Neighborhood Bully”: Appealed to no one

	Who would you want to save?:
	“People your own age”: 43% overall (46% of boys)

	“Young children”: 33% overall (56% of boys)

	“Adults”: 14% overall

	“Senior Citizens”: 10% overall

	What do you want to save?:
	“All living things on the planet”: 51% overall (63% of boys)

	“Individual animals”, “Individual people”, “All the people in a city”: otherwise evenly distributed

	Where do you want the game to take place?:
	“Street Scene”: 48%

	“Sports playing field”: 21%

	“Shopping Mall”: 17%

	“Large meadow with pond”: 14%

	What do you do when you’re stuck?:
	“Methodically try different ways to solve the problem”: 50%

	“Hints from a guide”: 21%

	“Discovering the answer through trial and error”: 14%

	“Being given the answer”: 14%

Beyond these simple questions, they also asked students about activity modes (e.g., Explorative, Social, Creative, etc.,). They were looking at students general preferences between the modes and specific attitudes towards individual modes.

	To appeal to both genders: emphasize Explorative and Problem-Solving play

	To appeal more to girls: emphasize Creative play

	To appeal more to boys: emphasize Active and Strategic play

My Thoughts

Weaknesses :

	Relatively small population size

	Relied entirely on self-report

	This kind of survey is highly susceptible to cultural normalization

The biggest take-away : Boys and girls have some things in common, but they definitely don’t look at the world the same. Ask your opposite-gendered friends if your game idea appeals to them. Of course, keep in mind that appealing to existing social norms might also reinforce negative ones; you might try pushing student’s expectations a little.

Formal Abstract

Educators and learning theorists suggest that play is one of the most important venues for learning, and games a useful educational tool. This study considers game activity preferences of middle school-aged children, so that educational games might be made more appealing to them. Based on children’s activity modes identified in our prior research, we developed the Educational Game Preferences Survey, which collects information on children’s preferences for play activity modes, their attitudes about each activity mode, and their preferences for game characters, settings, and forms of help. Survey results suggest the appeal of the Explorative mode of play for all children, especially girls. Gender differences in children’s preferences and attitudes for Active, Strategic, and Creative play modes were also found. We close with recommendations for game design to appeal to both boys and girls, as well as for boys and girls individually, to build engagement and hopefully lead to learning.

References

	Kinzie, M. B., & Joseph, D. R. (2008). Gender differences in game activity preferences of middle school children: implications for educational game design. Educational Technology Research and Development, 56(5-6), 643-663.

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

 	Educational Game Design

Commercial Games in Schools

Title : Integrating Commercial Off-the-Shelf Video Games into School Curriculums (Charsky & Mims, 2008)

Summary : This one was just too much fun not to write about. They take off-the-shelf games (e.g., Civilization III, SimCity) and bring them into real classrooms. Note that this isn’t really a research study (although off-the-shelf games have been studied in this context), it’s just describing how to do this effectively.

Results

The big contribution that they make is three guidelines for introducing games. These guidelines act as a sequence.

	Learn the Game: The reverse of gamification. For a given game, you analyze and report on the components. For instance, in a history game you create a timeline, or in a simulation game like Rollercoaster Tycoon, you make a budget. This gives students the chance to get used to the game, while still retaining the fun context.

	Cross-over: Use the games as a comparison tool to teach misconceptions by explicitly pointing out where the game falls short. Their example is that in the game SimCity, your mayor avatar has absolute control to raise and lower taxes. Obviously, real mayors don’t have this ability, but it’s an opportunity to discuss the problems that mayors do have.

	Game as a Theory of the Content: This goes beyond teaching misconceptions by asking students to propose changes that make the game more realistic.

My Thoughts

Weaknesses :

	Not a rigorous study, just a series of guidelines.

	They chose games that were easier to educationalize; how could other games be used for educational purposes, e.g., Final Fantasy or Call of Duty?

The biggest take-away : Just because a game wasn’t built with education in mind, doesn’t mean it won’t have potential to teach!

References

	Charsky, D., & Mims, C. (2008). Integrating commercial off-the-shelf video games into school curriculums. TechTrends, 52(5), 38-44.

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

 	Educational Game Design

Endogenous vs. Exogenous Games

Title : From Content to Context: Videogames as Designed Experience (Squire, 2006)

Summary : Kurt Squire is a big name in educational video games, and a paper by him is always worth reading. This paper is about games as a designed experience [1] , but I wanted to focus on his discussion of Endogenous vs. Exogenous games. If you have the time, though, you should skim the entire article!

Results

In Exogenous games, the learning context is external to the gameplay, as opposed to internalized like in Endogenous games. The article breaks this down further by contrasting the two terms:

	Learner is...

	Exogenous: An empty receptacle. An example is Math Blaster, where the learner is “motivated” to learn a prescribed set of skills and facts.

	Endogenous: An active, sense-making, social organism. An example is Grand Theft Auto, where the learner brings existing identities and experiences that color interpretations of the game experience.

	Knowledge is...

	Exogenous: Knowledge of discrete facts. The facts are “true” by authority (generally the authority of the game designer).

	Endogenous: Tool set used to solve problems. The right answer in Civilization is that which is efficacious for solving problems in the game world.

	Learning is...

	Exogenous: Memorizing. Learners reproduce a set of prescribed facts, such as mathematics tables.

	Endogenous: Doing, experimenting, discovering for the purposes of action in the world. Players learn in role-playing games for the purposes of acting within an identity.

	Instruction is...

	Exogenous: Transmission. The goal of a drill and practice game is to transmit information effectively and to “train” a set of desired responses.

	Endogenous: Making meaning/construction, discovery, social negotiation process. Instruction in Supercharged! involves creating a set of well designed experiences that elicit identities and encourage learners to confront existing beliefs, perform skills in context, and reflect on their understandings.

	Social model is...

	Exogenous: “Claustrophobic.” Players are expected to solve problems alone; using outside resources is generally “cheating.”

	Endogenous: Fundamentally group oriented. Games are designed to be played collectively, in affinity groups, and distributed across multiple media. They are designed with complexity to spawn affinity groups and communities that support game play.

	Pre-knowledge is...

	Exogenous: Set of facts, knowledge, and skills to be assessed for proper pacing. In Math Blaster, players’ self-efficacy in mathematics is not addressed.

	Endogenous: Knowledge to be leveraged, played upon. Pre-knowledge is expected to color perception, ideas, and strategies. In Environmental Detectives, challenges are structured so that players become increasingly competent and learn to see the value of mathematics.

	Identity is...

	Exogenous: Something to be cajoled. If players are not “motivated” to do math, the game developer’s job is to create an “exciting” context for the learner.

	Endogenous: Something to be recruited, managed, built over time. In Environmental Detectives, learners develop identities as scientists.

	Context is...

	Exogenous: A motivational wrapper. The context in Math Blaster is something to make learning more palatable

	Endogenous: The “content” of the experience. In Civilization, the geographical-materialist game model is the argument that situates activity and drives learning.

My Thoughts

The biggest take-away : If you’re making a game, seriously ask yourself if it’s Endo- or Exo-. Any programmer can make an Exogenous game; a real Educational Game Developer makes Endogenous games!

Formal Abstract

Interactive immersive entertainment, or videogame playing, has emerged as a major entertainment and educational medium. As research and development initiatives proliferate, educational researchers might benefit by developing more grounded theories about them. This article argues for framing game play as a designed experience. Players’ understandings are developed through cycles of performance within the gameworlds, which instantiate particular theories of the world (ideological worlds). Players develop new identities both through game play and through the gaming communities in which these identities are enacted. Thus research that examines game-based learning needs to account for both kinds of interactions within the game-world and in broader social contexts. Examples from curriculum developed for Civilization III and Supercharged! show how games can communicate powerful ideas and open new identity trajectories for learners.

References

	Squire, K. (2006). From content to context: Videogames as designed experience. Educational researcher, 35(8), 19-29.

Footnotes

	[1]	Designed Experiences are semi-controlled experiences for students that fits with the “learning by doing” metaphor - that is, people learn when they actively are doing something. The text gives a great example of this phenomenon when teaching students history via Civilization III. The students were playing as land-starved European countries that needed more resources in order to fight their wars; the natural solution was to develop colonies in the Africas and Americas and exploiting those resources. These gameplay decisions mimic the same route that history took, and launched some neat class discussions on the motivations of colonization. Designed Experiences are a very cool way to teach, so this article might get a follow-up blog post to really explore the concept!

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

OLPC Contributor Application

Project Title & Shipment Detail

Name of Project :

Platipy (http://platipy.org)

Shipping Address You’ve Verified :

REDACTED

Number of Laptops (or other hardware) You Request to Borrow :

	3 XO laptops

	
	1 XO 1.0

	1 XO 1.5

	1 XO 1.75

Loan Length:

1 year

Team Participants

Name(s) & Contact Info:

	Austin Cory Bart (acbart@vt.edu, REDACTED)

	Robert Deaton (rdeaton@udel.edu, REDACTED)

	Eric McGinnis (ericmcg@udel.edu, REDACTED)

Employer and/or School:

	Austin Cory Bart: Graduate student at Virginia Tech

	Robert Deaton: Software Engineer at Quizlet.com

	Eric McGinnis: Graduate student at University of Delaware

Past Experience/Qualifications:

	Austin Cory Bart (http://www.acbart.com):

	Honors Bachelor of Science Degree in Computer Science with Distinction from the University of Delaware

	PhD Student in Computer Science at Virginia Tech (in-progress)

	Graduate Certificate in Learning Sciences at Virginia Tech (in-progress)

	Two semesters of CISC-374 (Educational Game Design)

	Author of Broadway [http://wiki.laptop.org/go/Broadway] and Wacky Writer [https://sites.google.com/a/vt.edu/acbart-eportfolio/completed-projects#TOC-Wacky-Writer] .

	Secondary developer of Spyral

	Robert Deaton:

	Bachelor of Science Mathematics, Computer Science, University of Delaware

	Teaching Assistant for CISC-374 (Educational Game Design)

	Primary developer of Spyral

	Eric McGinnis:

	Bachelor of Science Degree in Computer Science from the University of Delaware

	Teaching Assistant for CISC-374 (Educational Game Design)

	Experience teaching Scratch

Objectives

Project Objectives:

The overarching objective of the Platipy project is to provide tools and guides to develop educational games for the XO laptop. Our team wants to provide not just an educational experience for programmers, but also spur developers to create new, useful activities for children. Specifically, our goals for this project are to develop and/or create the following tools:

	Spyral: A pure-Pygame game development library. Offers a number of very powerful features, including automatic dirty rendering, actor-oriented programming (using greenlets), and a convenient API. Sits on top of Pygame completely, insulating the user from its intricacies.

Status: Most of the interface and core functionality is established, although some smaller details need to be fleshed out, such as extending the Style system and more Widgets. Some additional work needs to be done to make it a full Pygame replacement, e.g. replacing the audio modules. Progress can be tracked on Spyral’s Github.

	Example.Activity: A template activity that greatly simplifies XO activity development. Contains powerful features for developing Spyral-based activities off the XO, including handling translations, game scaling for non-XO resolutions, and packaging the game for the XO and other platforms such as Windows and Mac.

Status: Most core functionality is complete, including profiling and scaling. However, non-XO packaging still needs work.

	Platipy Docs: A complete guide for Python, XO activity, and Spyral development. Will also include a curated gallery of completed Spyral-based XO activities.

Status: The first version of the Python guide is roughly 90%, but needs editing. The XO Activity development is mostly finished. Spyral documentation is out of date. There is currently no gallery.

	Conspyre: A networking server framework and client library for school-based XO distributions that provides data persistence (in case of students not being allowed to own XOs) and student/teacher communication (especially with bad network connections) with minimal developer work. Designed to work directly with Spyral.

Status: The current version needs to be rewritten, and the client-side front-end needs work. Consideration for network outages needs to be added to its core functionality. Lot’s of work needs to be done with this.

Plan of Action

Plan and Procedure for Achieving the Stated Objectives:

Our plan of action is to iteratively develop our tools and deploy them in classroom settings and to the greater Python and OLPC communities. Using feedback from users we’ll continually improve our systems with greater stability and innovative features.

Needs

Why is this project needed?

Presently, XO game development can be a harrowing task for beginners. Although true novices have Scratch, when they want to move onto more complicated programming their options are limited. PyGTK is more suitable for complicated applications, and neither Flash or Java has gained traction on the platform. HTML/Javascript game development is progressing, but suffers from speed and internet connectivity issues. Efforts to create a new language (KAGE) seem to have stalled, and the utility of teaching children a completely artificial game development language could be considered controversial. Pygame has historically been a favorite choice for game development.

However, Pygame is still an unnecessarily complicated system; for instance, do beginners need to comprehend the difference between the six different kinds of Groups that are available in Pygame? And the software engineering principles engendered by Pygame are very weak, with most games completely breaking from Model-View-Controller. Finally, most Pygame games suffer from being highly unoptimized, due to the high learning curve associated with understanding how best to optimize a Pygame game. XO activity development itself is also a difficult prospect, with XO files having a very precise and unforgiving structure. This can be a discouraging barrier for novice programmers from contributing to the program.

Locally?

Locally, the University of Delaware works with the Chester Community Charter School by teaching a course to undergraduate Computer Science majors about educational game development. Early iterations of the class suffered from spending an inordinate amount of time teaching how to program in Pygame, severely detracting from the quality of the games produced. After several iterations of the class, Robert Deaton created Spyral to simplify many of the common difficulties encountered and to provide a number of optimizations to the platform (e.g. automatic dirty sprite updating). At present, Spyral is used extensively in the class as a full Pygame replacement. Although still not in it’s complete form, Spyral has already had an improvement on the games produced in the classroom, as evidenced by a small research study we’ve conducted where we compared games created pre- and post- Spyral in the Delaware class (http://platipy.org/publications/CHEP_2013.pdf). The games produced post-spyral are also available on our website.

As Spyral will be used for the foreseeable future in this class, it is very important that it continues to be developed along with its associated tools Conspyre, Platipy Docs, and Spur.

In the greater OLPC/Sugar community?

The tools being generated as a result of this project have great potential to be used by the broader Sugar community to develop games; they are open-source, free, powerful, and flexible tools for game development and thus can be used by anyone to make any kind of game.

Outside the community?

Spyral and its associated tools have great potential to be used outside of the project. In fact, Spyral is compatible with any system that provides Pygame, including the Raspberry Pi and Android (using the Pygame for Android Subset).

Why can’t this project be done in emulation using non-XO machines?

Ultimately, rigorous testing is required in order to gauge the performance of our systems. Developing on a modern desktop computer will not give realistic information about the speed, reliability, etc. of a program on the XO. For that reason, we need XO laptops to develop on and test our examples and conduct unit/integration tests on.

Why are you requesting the number of machines you are asking for?

Although one of our members (Eric McGinnis) has direct access to the University of Delaware’s XO Laptop library, our other two members do not. For their sake, we need XO laptops on which to test and develop Spyral.

Will you consider (1) salvaged/rebuilt or (2) damaged XO Laptops?

We can consider them, but damaged XOs might affect the results of our performance tests. Using them would be potentially suboptimal.

Sharing Deliverables

Project URL where you’ll Blog specific ongoing progress:

http://platipy.org

how will you convey tentative ideas & results back to the OLPC/Sugar community, prior to completion?

Our primary form of communication will be through the official Platipy blog. However, as a natural consequence of our development process, we’ll be keeping all of our respective githubs up-to-date. Additionally, we will contact the OLPC listservs, news outlets, and relevant online communities at important milestones.

How will the final fruits of your labor be distributed to children or community members worldwide?

All resources generated by this project will be available on public facing websites. Additionally, we will update official resources such as the Laptop Wiki with links and information pertaining to using our tools. Finally, we will notify the relevant blogs and news sources after each important release.

Will your work have any possible application or use outside our community?

Yes, our work will have extensive application outside of the OLPC community as previously described. We will use similar means to reach out to external communities, including contacting news sources, posting on sites like r/python, etc.

Have you investigated working with nearby XO Lending Libraries or Project Groups?

We will be working with the Project Group at the University of Delaware and the XO distribution at Chester Community Charter School. Austin will be investigating establishing a Project Group at Virginia Tech, as there are no groups local to that area.

Quality/Mentoring

Would your Project benefit from Support, Documentation and/or Testing people?

Yes. Software should always be tested, and we can benefit from having external eyes.

Teachers’ input into Usability?

Minimally. Most of our work is oriented towards developers, not teachers.

How will you promote your work?

Through an official blog, online technology communities such as Hacker News, r/python, etc., and the official OLPC listservs.

Can we help you with an experienced mentor from the OLPC/Sugar community?

Yes, an experienced mentor could be useful, who would be knowledgeable about the ways that our project could be fit into the OLPC/Sugar community.

Timeline (Start to Finish)

Please include a Proposed timeline for your Project life-cycle. (this can be in the form of Month 1, Month 2, etc rather than specific dates)

	Month
	Goal

	1
	Finished version 1.0 of Spyral

	2
	Finished version 1.0 of Platipy Docs

	3
	Finished version 1.0 of Example.Activity

	4
	Finished version 1.0 of Conspyre

	5-12
	Iteratively improve the products

Specify how you prefer to communicate your ongoing progress and obstacles:

Through our official site (http://platipy.org)

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

Games Gallery

Educational

Coming soon!

General

Coming soon!

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Platipy 0.9.6 documentation

Open Tasks

Although our github [https://github.com/platipy/] is the canonical source for new issues, we wanted a nicely curated list of the “Big Issues” still present in our tools. If you are interested in contributing to an open-source project to support education of disadvantaged youth, please get involved!

Spyral

	Advanced physics through Box2D

	Audio API (perhaps even just exposing Pygame’s)

	More widgets (e.g., radio button, drop-down menus, multi-line textbox)

	Unit tests

	Absolute positioning: Sprites currently report their position within parents, not an absolute position on the screen

	Static sprites: sprites that will always be static, emulating part of the background

	Hex-grids: Currently, only square regions are intelligently handled by Spyral, it’d be nice to have Hex

	Widget disabling

	Finalize actors

	Creating and destroying widgets on the fly

	Clipboard functionality

	Caption and Icon API

Example.Activity

	Live/Recorded Event handling integration

	PyqVer checking

	Application freezing: Exporting runnable games to windows, mac

Platipy

	Tutorial on layering

	Tutorial on forms

	Tutorial on events

	Tutorial on Actors

	Tutorial on Animations

	Tutorial on Views

Advanced tutorials on

Conspyre

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Platipy 0.9.6 documentation

Latest Versions

The latest version of Example.activity is v0.3.
The latest version of spyral is v0.9.6

Downloads

To update spyral to a newer version than the one included with your launcher, remove libraries/spyral and replace with the downloaded version.

	Download Pong.v2 (includes spyral)

	Download Spyral.v0.9.6

Old Versions

	Download Spyral v0.9.6

	Download Spyral v0.9.5

	Download Spyral v0.9.4

	Download Spyral v0.9.3

	Download Spyral v0.9.2

	Download Spyral v0.9.1

	Download spyral v0.2 [https://github.com/rdeaton/spyral/zipball/v0.2]

	Download spyral v0.1.1 [https://github.com/rdeaton/spyral/zipball/v0.1.1]

	Download spyral v0.1 [https://github.com/rdeaton/spyral/zipball/v0.1]

	Download Example.activity v0.2 (Includes spyral v0.2)

	Download Example.activity v0.1 (Includes spyral v0.1)

Git Repositories

The repositories are hosted on github:

	spyral [http://github.com/platipy/spyral]

	Example.activity [http://github.com/platipy/Example.activity]

Changelogs

Spyral

v0.9.6

	[sprites] Fixed killing a sprite clobbering other events

	[animations] Fixed animations not firing the right events

	[core] Fixed error message being triggered when game ends (“spyral.quit cannot be found”)

v0.9.5

	[collision] Fixed collision detection for forms (e.g., buttons, text input) and sprites when the dev-launcher is scaled

	[forms] Fixed using tabs to navigate forms crashing the game

	[mouse] Fixed mouse motion reporting the accurately scaled position

	[forms] Enhanced error message for declaring forms.

v0.9.4

	[mouse] Fix mouse coordinates in mouse events being incorrect with dev-launcher’s scaling

	[scene] Fix background image not updating on the screen even after it’s been initially set

	[events] Fix Minimizing your window and then maximizing no longer crashes with an event error

v0.9.0

	Massive, massive changes to the Spyral API

	New classes like Views, Actors, etc.

	Basicallly, it’s a whole new system

v0.2.1

	[animation] Fix a logic bug in animations that would cause them to not catch an exception they should

	[camera] Fix a broken return value on camera.get_rect()

	[docs] Fix a documentation bug which used the wrong terminology

	[image] Fix image.get_size() to return a Vec2D instead of a 2-tuple

	[image] Fix image.draw_lines() not respecting the width parameter

	[image] Fix an issue where changes to images would not be rendered to the screen

	[image] Fix color channels being swapped on certain systems, in particular under scaling

	[rect] Fix a bug which didn’t allow rects properly in the constructor to rects

	[rect] Fix a bug with rect.inflate and rect.inflate_ip which would cause a crash

	[sprite] Fix sprite.width and sprite.height

	[sprite] Fix sprite.visible not hiding sprites which were marked as static

	[sprite] Fix AggregateSprites only rendering some children

	[sprite] Fix AggregateSprites requiring a group be passed on their creation

	[sprite] Fix AggregateSprites not being able to have AggregateSprites as children

	[vector] Fix Vec2D’s support for being tested inside containers based on hashes (i.e. sets)

	[vector] Fix Vec2D’s support for being divided by a constant or another 2-tuple/Vec2D

New Features

	Add spyral.Image.draw_arc()

	spyral is now compatible with pypi and available in the cheeseshop

	Add support for object-attribute access for built-in event types

	A new rendering backend which is easier to maintain

	:above and :below modifiers for layers

	Add a more complete spyral.event.keys object

	Add official support for LiveEventHandler and ReplayEventHandler, with documentation

v0.2 - 10/02/2012

Backwards Incompatible Changes

	spyral.Sprite and spyral.Group now must have dt passed in as their first argument. (This was in the examples anyways)

	Remove sprite.blend_flags, was broken anyways. May be back in future release

New Features

	Add spyral.Vec2D, sprite.pos and sprite.scale are now Vec2D automatically

	Add spyral.Signal to spyral, as well as a number of useful signals in the docs

	Add draw_image, rotate, copy, scale, crop, flip to spyral.Image

	Add support for anchor-based positioning in spyral.Image methods

	Add sprite.scale, sprite.scale_x, sprite.scale_y, and sprite.angle, with animation support

	Add sprite.flip_x and sprite.flip_y

	Animations no longer require AnimationSprite or AnimationGroup objects, they work on standard sprites and groups

	Add spyral.Font

	Add AggregateSprite

Bug Fixes

	Fix VIDEORESIZE events crashing spyral

	Fix a bug with parallel animations not evaluating their ending condition

	Fix a bug with group.empty calling remove on sprites

	Fix a bug where sprites were being set static even when they weren’t

	Fix a bug where static sprites were redrawn without clearing behind them

	Fix a frame count bug in the Iteration animator, making it more smooth

	Fix the import system, allowing the import of spyral’s submodules again

	Fix a bug in rect.move_ip, previously the offsets would become the new coordinates

	Fix a limitation on the number of layers which a game could have

Miscellaneous

	Remove the legacy spyral.util module

	Remove spyral/docs in favor of documentation in platipy

	Remove sprite.blend_flags, was broken anyways. May be back in future release

	Remove the antiquated and broken examples/pong.py

	Major revisions to built-in documentation.

v0.1.1 - 09/19/2012

	Fix group.remove() to ensure sprites are no longer drawn upon removal

	Fix rect.collide_rect(), results were previously inverted.

v0.1 - 09/18/2012

	First release

Example.activity

v0.2 - 10/02/2012

	Fix generation of PNGs for profiling paths with spaces in them

	Fix activity.py launcher loading games before the directory was initialized

	Bump spyral to v0.2

v0.1 - 09/18/2012

	First release

Contact Developers / Submit Changes

If there is a bug in spyral or Example.activity, please do one of the following:

	open a ticket [https://github.com/platipy/spyral/issues/new] on our github,

	e-mail rdeaton@platipy.org and acbart@vt.edu to notify the authors directly, or

	send a pull request

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Platipy 0.9.6 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 spyral	

 	
 	
 spyral.director	

 	
 	
 spyral.easing	

 	
 	
 spyral.event	

 	
 	
 spyral.image	

 	
 	
 spyral.keyboard	

 	
 	
 spyral.mouse	

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Platipy 0.9.6 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	

 	Actor (class in spyral)

 	add_style_function() (spyral.Scene method)

 	add_widget() (spyral.Form method)

 	anchor (spyral.Sprite attribute)

 	

 	(spyral.View attribute)

 	(spyral.widgets.TextInputWidget attribute)

 	angle (spyral.Sprite attribute)

 	

 	angle() (spyral.Vec2D method)

 	animate() (spyral.Sprite method)

 	Animation (class in spyral)

 	Arc() (in module spyral.easing)

 	ascent (spyral.Font attribute)

B

 	

 	background (spyral.Scene attribute)

 	blur() (spyral.Form method)

 	

 	ButtonWidget (class in spyral.widgets)

C

 	

 	CheckboxWidget (class in spyral.widgets)

 	clear_namespace() (in module spyral.event)

 	clip() (spyral.Rect method)

 	clip_ip() (spyral.Rect method)

 	collide_point() (spyral.Rect method)

 	

 	(spyral.Scene method)

 	(spyral.Sprite method)

 	(spyral.View method)

 	collide_rect() (spyral.Rect method)

 	

 	(spyral.Scene method)

 	(spyral.Sprite method)

 	(spyral.View method)

 	collide_sprite() (spyral.Sprite method)

 	

 	(spyral.View method)

 	collide_sprites() (spyral.Scene method)

 	contains() (spyral.Rect method)

 	copy() (spyral.image.Image method)

 	

 	(spyral.Rect method)

 	

 	crop (spyral.View attribute)

 	crop() (spyral.image.Image method)

 	crop_height (spyral.View attribute)

 	crop_size (spyral.View attribute)

 	crop_width (spyral.View attribute)

 	CubicIn() (in module spyral.easing)

 	CubicInOut() (in module spyral.easing)

 	CubicOut() (in module spyral.easing)

 	cursor (in module spyral.mouse)

 	cursor_pos (spyral.widgets.TextInputWidget attribute)

D

 	

 	delay (in module spyral.keyboard)

 	descent (spyral.Font attribute)

 	distance() (spyral.Vec2D method)

 	dot() (spyral.Vec2D method)

 	draw_arc() (spyral.image.Image method)

 	draw_circle() (spyral.image.Image method)

 	

 	draw_ellipse() (spyral.image.Image method)

 	draw_image() (spyral.image.Image method)

 	draw_lines() (spyral.image.Image method)

 	draw_point() (spyral.image.Image method)

 	draw_rect() (spyral.image.Image method)

E

 	

 	evaluate() (spyral.Animation method)

 	Event (class in spyral.event)

 	

 	EventHandler (class in spyral.event)

F

 	

 	fill() (spyral.image.Image method)

 	flip() (spyral.image.Image method)

 	flip_x (spyral.Sprite attribute)

 	flip_y (spyral.Sprite attribute)

 	floor() (spyral.Vec2D method)

 	focus() (spyral.Form method)

 	

 	Font (class in spyral)

 	Form (class in spyral)

 	from_conglomerate() (in module spyral.image)

 	from_polar() (spyral.Vec2D static method)

 	from_sequence() (in module spyral.image)

G

 	

 	get() (spyral.event.EventHandler method)

 	get_angle() (spyral.Vec2D method)

 	get_length() (spyral.Vec2D method)

 	get_length_squared() (spyral.Vec2D method)

 	

 	get_metrics() (spyral.Font method)

 	get_scene() (in module spyral.director)

 	get_size() (spyral.Font method)

 	get_tick() (in module spyral.director)

H

 	

 	handle() (in module spyral.event)

 	

 	height (spyral.Font attribute)

 	

 	(spyral.Scene attribute)

 	(spyral.Sprite attribute)

 	(spyral.View attribute)

 	(spyral.image.Image attribute)

I

 	

 	Image (class in spyral.image)

 	image (spyral.Sprite attribute)

 	inflate() (spyral.Rect method)

 	inflate_ip() (spyral.Rect method)

 	

 	init() (in module spyral.director)

 	interval (in module spyral.keyboard)

 	Iterate() (in module spyral.easing)

K

 	

 	keys (in module spyral.event)

 	

 	kill() (spyral.Sprite method)

 	

 	(spyral.View method)

L

 	

 	layer (spyral.Sprite attribute)

 	

 	(spyral.View attribute)

 	layers (spyral.Scene attribute)

 	

 	(spyral.View attribute)

 	Linear() (in module spyral.easing)

 	LinearTuple() (in module spyral.easing)

 	

 	linesize (spyral.Font attribute)

 	LiveEventHandler (class in spyral.event)

 	load_style() (spyral.Scene method)

M

 	

 	main() (spyral.Actor method)

 	mask (spyral.Sprite attribute)

 	

 	(spyral.View attribute)

 	mods (in module spyral.event)

 	

 	move() (spyral.Rect method)

 	move_ip() (spyral.Rect method)

N

 	

 	next() (spyral.Form method)

 	nine_slice (spyral.widgets.TextInputWidget attribute)

 	

 	normalized() (spyral.Vec2D method)

O

 	

 	output_height (spyral.View attribute)

 	output_size (spyral.View attribute)

 	

 	output_width (spyral.View attribute)

P

 	

 	padding (spyral.widgets.TextInputWidget attribute)

 	parent (spyral.Scene attribute)

 	

 	(spyral.Sprite attribute)

 	(spyral.View attribute)

 	pause() (spyral.event.ReplayEventHandler method)

 	perpendicular() (spyral.Vec2D method)

 	Polar() (in module spyral.easing)

 	

 	pop() (in module spyral.director)

 	pos (spyral.Sprite attribute)

 	

 	(spyral.View attribute)

 	previous() (spyral.Form method)

 	projection() (spyral.Vec2D method)

 	push() (in module spyral.director)

Q

 	

 	QuadraticIn() (in module spyral.easing)

 	QuadraticInOut() (in module spyral.easing)

 	QuadraticOut() (in module spyral.easing)

 	

 	queue() (in module spyral.event)

 	quit() (in module spyral.director)

R

 	

 	Rect (class in spyral)

 	rect (spyral.Scene attribute)

 	

 	(spyral.Sprite attribute)

 	(spyral.View attribute)

 	redraw() (spyral.Scene method)

 	register() (in module spyral.event)

 	register_dynamic() (in module spyral.event)

 	register_multiple() (in module spyral.event)

 	register_multiple_dynamic() (in module spyral.event)

 	render() (spyral.Font method)

 	render_nine_slice() (in module spyral.image)

 	

 	repeat (in module spyral.keyboard)

 	replace() (in module spyral.director)

 	ReplayEventHandler (class in spyral.event)

 	resume() (spyral.event.ReplayEventHandler method)

 	rotate() (spyral.image.Image method)

 	rotated() (spyral.Vec2D method)

 	run() (in module spyral.director)

 	run_animation() (spyral.Actor method)

S

 	

 	scale (spyral.Sprite attribute)

 	

 	(spyral.View attribute)

 	scale() (spyral.image.Image method)

 	scale_x (spyral.Sprite attribute)

 	

 	(spyral.View attribute)

 	scale_y (spyral.Sprite attribute)

 	

 	(spyral.View attribute)

 	Scene (class in spyral)

 	scene (spyral.Scene attribute)

 	

 	(spyral.Sprite attribute)

 	(spyral.View attribute)

 	Sine() (in module spyral.easing)

 	size (spyral.image.Image attribute)

 	

 	(spyral.Scene attribute)

 	(spyral.Sprite attribute)

 	(spyral.View attribute)

 	Sprite (class in spyral)

 	

 	spyral.director (module)

 	spyral.easing (module)

 	spyral.event (module)

 	spyral.image (module)

 	spyral.keyboard (module)

 	spyral.mouse (module)

 	stop_all_animations() (spyral.Sprite method)

 	stop_animation() (spyral.Sprite method)

T

 	

 	text (spyral.widgets.ButtonWidget attribute)

 	TextInputWidget (class in spyral.widgets)

 	tick() (spyral.event.EventHandler method)

 	

 	to_polar() (spyral.Vec2D method)

 	ToggleButtonWidget (class in spyral.widgets)

U

 	

 	union() (spyral.Rect method)

 	union_ip() (spyral.Rect method)

 	

 	unregister() (in module spyral.event)

V

 	

 	value (spyral.widgets.ButtonWidget attribute)

 	

 	(spyral.widgets.TextInputWidget attribute)

 	values (spyral.Form attribute)

 	Vec2D (class in spyral)

 	

 	View (class in spyral)

 	visible (in module spyral.mouse)

 	

 	(spyral.Sprite attribute)

 	(spyral.View attribute)

W

 	

 	wait() (spyral.Actor method)

 	

 	width (spyral.image.Image attribute)

 	

 	(spyral.Scene attribute)

 	(spyral.Sprite attribute)

 	(spyral.View attribute)

X

 	

 	x (spyral.Sprite attribute)

 	

 	(spyral.View attribute)

Y

 	

 	y (spyral.Sprite attribute)

 	

 	(spyral.View attribute)

 Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

snake.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

Spyral by Example

This chapter is a tutorial-style introduction to spyral, pygame, and some of the utilities provided for building games for the XO. In this tutorial, we will be creating a simple game. The first stage of every project should be to discuss and plan the features of our game.

The game we are going to create is inspired by a game created in a previous semester of the course, Math Adder [http://todo/]. The Math Adder is a game based on the classic game snake, where the objective is to create expressions which evaluate to a certain number. We are going to create a similar game, but focused instead on spelling and vocabulary.

The Game Specification

Game Modes

		Practice Mode - flashes the word on screen, and then asks you to spell the word (showing the definition at the bottom still)

		Quiz Mode - shows only the definition at the bottom, and asks you to spell the word

		Marathon Mode - Goes through the list of words multiple times, getting progressively more difficult (see game difficulties below)

		Learning Mode - need a simple way to introduce students to the new lists of words. I have a few ideas for this that will come later. Perhaps Marathon mode, starting as practice as the first round, then going Quiz Easy, Quiz Medium, Quiz Hard would be a suitable option? This needs more consideration.

Game Difficulty

		Easy - Along with the definition, shows the first (and perhaps last) letter of each word. The only collectable letters are a part of the word

		Medium - Shows only the definition, and the only collectible letters are part of the word

		Hard - Shows only the definition, and the board contains duplicate letters which are in the word, and other letters which may not be in the word

		Expert - The hard difficulty, but the snake is continuously in motion. In Marathon mode, if the player completes the expert difficulty, the snake can move progressively faster.

In Game Mechanics

		You start the game with 3 lives, and you have a certain number of words you must solve

		Arrow keys move the snake around the board. Letters will be on top of apples, and they will be added to the end of the snake when you move on to the apple.

		Once your attempt at spelling the word is completed, press a key (We have 4) will lock the guess in. An incorrect guess loses a life (egg), shows clearly that you were incorrect, and moves you to a new word. A correct guess gives you bonus points and moves you to a new word.

		Running into the wall or back into the snake causes you to lose a life and brings up a new word.

		(Good idea?) A mistake key can exist which causes you to lose 1/2 or 1/4 of a life if you’ve realized you’ve eaten the wrong apple. Each press of the button will return the last letter you ate back to the board.

		A hint key will hilight the next letter in the word (assuming you’re correct so far, not sure what to do if the spelling is wrong so far). Hints can either subtract a 1/2 or 1/4 life, like the mistake key, or there can be a small fixed number of hints per game, with a score bonus at the end for each hint remaining.

Scoring

		Points are awarded for the successful spelling of any word.

		Bonus multipler awarded for successful spelling of more than one word in a row.

		
		End of game bonuses for:

		
		Lives remaining

		Hints (?) remaining (If they don’t cost lives)

		Perfect round (no hints or lives used)

		In game scores should translate into an out of game gold system

Achievements

		Completing an achievement should notify you of completion (XBLA-style)

		There should be an achievements page which shows all the achievements you can unlock, with a summary of them

		Achievements should give out of game gold, more for more difficulty achievements

		
		Example achievements include

		
		Completing a round of easy, medium, hard, etc.

		Perfect rounds of easy, medium, hard, etc.

		Making it to certain rounds of marathon mode

Unlockables

		Using the out of game gold system, the user should be able to unlock upgrades to the game

		Upgrades include different backgrounds, snake styles, apple styles, etc.

Usability

		It is important that the game have a consistent interface and controls

		Controls should be obvious and unambiguous at all times

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

 All modules for which code is available

		spyral

		spyral.director

		spyral.easing

		spyral.event

		spyral.image

		spyral.keyboard

		spyral.mouse

		spyral.widgets

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

_modules/spyral/keyboard.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

 		Module code »

 		spyral »

 Source code for spyral.keyboard

"""The keyboard modules provides an interface to adjust the keyboard's repeat
rate.

.. attribute:: repeat

 When the keyboard repeat is enabled, keys that are held down will keep
 generating new events over time. Defaults to `False`.

.. attribute:: delay

 `int` to control how many milliseconds before the repeats start.

.. attribute:: interval

 `int` to control how many milliseconds to wait between repeated events.

"""

import sys
import types
import pygame

old = sys.modules[__name__]

class _KeyboardModule(types.ModuleType):
 def __init__(self, *args):
 types.ModuleType.__init__(self, *args)
 self._repeat = False
 self._delay = 600
 self._interval = 100

 def _update_repeat_status(self):
 if self._repeat:
 pygame.key.set_repeat(self._delay, self._interval)
 else:
 pygame.key.set_repeat()

 def _set_repeat(self, repeat):
 self._repeat = repeat
 self._update_repeat_status()

 def _get_repeat(self):
 return self._repeat

 def _set_interval(self, interval):
 self._interval = interval
 self._update_repeat_status()

 def _get_interval(self):
 return self._interval

 def _set_delay(self, delay):
 self._delay = delay
 if delay == 0:
 self._repeat = False
 self._update_repeat_status()

 def _get_delay(self):
 return self._delay

 repeat = property(_get_repeat, _set_repeat)
 delay = property(_get_delay, _set_delay)
 interval = property(_get_interval, _set_interval)

Keep the refcount from going to 0
keyboard = _KeyboardModule(__name__)
sys.modules[__name__] = keyboard
keyboard.__dict__.update(old.__dict__)

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

spyral/README.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

Spyral

Spyral is a library/engine for developing 2D games in Python, with a focus in rapid development and clean design.

Currently, spyral’s main source of documentation comes from docstrings in the source code. Some additional documentation and examples can be found at the Platipy project, which documents Spyral in the context of a university course for which it was developed.

Visit the Platipy Project [http://platipy.readthedocs.org]

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

_modules/spyral.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

 		Module code »

 Source code for spyral

"""
Spyral, an awesome library for making games.
"""

__version__ = '0.9'
__license__ = 'MIT'
__author__ = 'Robert Deaton'

from types import ModuleType
import sys

import spyral.compat
import pygame

import mapping to objects in other modules
ALL_BY_MODULE = {
 'spyral.debug' : ['DebugText'],
 'spyral.sprite' : ['Sprite'],
 'spyral.scene' : ['Scene'],
 'spyral.image' : ['Image'],
 'spyral.vector' : ['Vec2D'],
 'spyral.rect' : ['Rect'],
 'spyral.animation' : ['Animation'],
 'spyral.core' : ['_init', '_quit', '_get_executing_scene'],
 'spyral.font' : ['Font'],
 'spyral.clock' : ['GameClock'],
 'spyral.event' : ['keys', 'mods', 'queue', 'Event',
 'EventHandler', 'LiveEventHandler'],
 'spyral.form' : ['Form'],
 'spyral.dev' : ['_get_spyral_path'],
 'spyral.actor' : ['Actor'],
 'spyral.util' : ['anchor_offset'],
 'spyral.exceptions': ['SceneHasNoSizeError', 'NotStylableError',
 'NoImageError', 'BackgroundSizeError',
 'LayersAlreadySetError', 'UnusedStyleWarning'],
 'spyral.view': ['View']
}

ATTRIBUTE_MODULES = frozenset(['memoize', 'point', 'exceptions', 'easing',
 'mouse', 'event', '_lib', 'font', 'form',
 'director', 'sprite', '_style', 'widgets',
 'util', 'keyboard', 'image'])

OBJECT_ORIGINS = {}
for module, items in ALL_BY_MODULE.iteritems():
 for item in items:
 OBJECT_ORIGINS[item] = module

class SpyralModule(ModuleType):
 """Automatically import objects from the modules."""

 def __getattr__(self, name):
 if name in OBJECT_ORIGINS:
 sub_module = __import__(OBJECT_ORIGINS[name], None, None, [name])
 for extra_name in ALL_BY_MODULE[sub_module.__name__]:
 setattr(self, extra_name, getattr(sub_module, extra_name))
 return getattr(sub_module, name)
 elif name in ATTRIBUTE_MODULES:
 __import__('spyral.' + name)
 return ModuleType.__getattribute__(self, name)

 def __dir__(self):
 """Just show what we want to show."""
 result = list(NEW_MODULE.__all__)
 result.extend(('__file__', '__path__', '__doc__', '__all__',
 '__docformat__', '__name__', '__path__',
 '__package__', '__version__'))
 return result

keep a reference to this module so that it's not garbage collected
OLD_MODULE = sys.modules['spyral']

setup the new module and patch it into the dict of loaded modules
NEW_MODULE = sys.modules['spyral'] = SpyralModule('spyral')
NEW_MODULE.__dict__.update({
 '__file__': __file__,
 '__package__': 'spyral',
 '__path__': __path__,
 '__doc__': __doc__,
 '__version__': __version__,
 '__all__': tuple(OBJECT_ORIGINS) + tuple(ATTRIBUTE_MODULES),
 '__docformat__': 'restructuredtext en'
})

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

_modules/spyral/event.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

 		Module code »

 		spyral »

 Source code for spyral.event

"""This module contains functions and classes for creating and issuing events.
For a list of the events that are built into Spyral, check the
:ref:`Event List<ref.events>`.

 .. attribute:: keys

 A special attribute for accessing the constants associated with a given
 key. For instance, ``spyral.keys.down`` and ``spyral.keys.f``. This is
 useful for testing for keyboard events. A complete list of all the key
 constants can be found in the
 :ref:`Keyboard Keys <ref.keys>` appendix.

 .. attribute:: mods

 A special attribute for accessing the constants associated with a given
 mod key. For instance, ``spyral.mods.lshift`` (left shift) and
 ``spyral.mods.ralt`` (Right alt). This is useful for testing for keyboard
 events. A complete list of all the key
 constants can be found in the
 :ref:`Keyboard Modifiers <ref.mods>` appendix.

"""

import pygame
try:
 import json
except ImportError:
 import simplejson as json
import spyral
import os
import random
import base64
from weakmethod import WeakMethod as _wm

def WeakMethod(func):
 try:
 return _wm(func)
 except TypeError:
 return func

_TYPE_TO_ATTRS = None
_TYPE_TO_TYPE = None

[docs]class Event(object):
 """
 A class for building for attaching data to an event.
 Keyword arguments will be named attributes of the Event when it is passed
 into :func:`queue <spyral.event.queue>`::

 collision_event = Event(ball=ball, paddle=paddle)
 spyral.event.queue("ball.collides.paddle", collision_event)
 """
 def __init__(self, **kwargs):
 self.__dict__.update(kwargs)

This might actually be unused!

_EVENT_NAMES = ['QUIT', 'ACTIVEEVENT', 'KEYDOWN', 'KEYUP', 'MOUSEMOTION',
 'MOUSEBUTTONUP', 'VIDEORESIZE', 'VIDEOEXPOSE', 'USEREVENT',
 'MOUSEBUTTONDOWN']
MOUSE_MAP = ['left', 'middle', 'right', 'scroll_up', 'scroll_down']

def _init():
 """
 Initializes the Event system, which requires mapping the Pygame event
 constants to Spyral strings.
 """
 global _TYPE_TO_ATTRS
 global _TYPE_TO_TYPE

 _TYPE_TO_ATTRS = {
 pygame.QUIT: tuple(),
 pygame.ACTIVEEVENT: ('gain', 'state'),
 pygame.KEYDOWN: ('unicode', 'key', 'mod'),
 pygame.KEYUP: ('key', 'mod'),
 pygame.MOUSEMOTION: ('pos', 'rel', 'buttons'),
 pygame.MOUSEBUTTONUP: ('pos', 'button'),
 pygame.MOUSEBUTTONDOWN: ('pos', 'button'),
 pygame.VIDEORESIZE: ('size', 'w', 'h'),
 pygame.VIDEOEXPOSE: ('none'),
 }
 _TYPE_TO_TYPE = {
 pygame.QUIT: "system.quit",
 pygame.ACTIVEEVENT: "system.focus_change",
 pygame.KEYDOWN: "input.keyboard.down",
 pygame.KEYUP: "input.keyboard.up",
 pygame.MOUSEMOTION: "input.mouse.motion",
 pygame.MOUSEBUTTONUP: "input.mouse.up",
 pygame.MOUSEBUTTONDOWN: "input.mouse.down",
 pygame.VIDEORESIZE: "system.video_resize",
 pygame.VIDEOEXPOSE: "system.video_expose",
 }

[docs]def queue(event_name, event=None, scene=None):
 """
 Queues a new event in the system, meaning that it will be run at the next
 available opportunity.

 :param str event_name: The type of event (e.g., ``"system.quit"``,
 ``"input.mouse.up"``, or ``"pong.score"``.
 :param event: An Event object that holds properties for the event.
 :type event: :class:`Event <spyral.event.Event>`
 :param scene: The scene to queue this event on; if `None` is given, the
 currently executing scene will be used.
 :type scene: :class:`Scene <spyral.Scene>` or `None`.
 """
 if scene is None:
 scene = spyral._get_executing_scene()
 scene._queue_event(event_name, event)

[docs]def handle(event_name, event=None, scene=None):
 """
 Instructs spyral to execute the handlers for this event right now. When you
 have a custom event, this is the function you call to have the event occur.

 :param str event_name: The type of event (e.g., ``"system.quit"``,
 ``"input.mouse.up"``, or ``"pong.score"``.
 :param event: An Event object that holds properties for the event.
 :type event: :class:`Event <spyral.event.Event>`
 :param scene: The scene to queue this event on; if ``None`` is given, the
 currently executing scene will be used.
 :type scene: :class:`Scene <spyral.Scene>` or ``None``.
 """
 if scene is None:
 scene = spyral._get_executing_scene()
 scene._handle_event(event_name, event)

[docs]def register(event_namespace, handler,
 args=None, kwargs=None, priority=0, scene=None):
 """
 Registers an event `handler` to a namespace. Whenever an event in that
 `event_namespace` is fired, the event `handler` will execute with that
 event.

 :param event_namespace: the namespace of the event, e.g.
 ``"input.mouse.left.click"`` or ``"pong.score"``.
 :type event_namespace: str
 :param handler: A function that will handle the event. The first
 argument to the function will be the event.
 :type handler: function
 :param args: any additional arguments that need to be passed in
 to the handler.
 :type args: sequence
 :param kwargs: any additional keyword arguments that need to be
 passed into the handler.
 :type kwargs: dict
 :param int priority: the higher the `priority`, the sooner this handler will
 be called in reaction to the event, relative to the
 other event handlers registered.
 :param scene: The scene to register this event on; if it is ``None``, then
 it will be attached to the currently running scene.
 :type scene: :class:`Scene <spyral.Scene>` or ``None``
 """
 if scene is None:
 scene = spyral._get_executing_scene()
 scene._reg_internal(event_namespace, (WeakMethod(handler),),
 args, kwargs, priority, False)

[docs]def register_dynamic(event_namespace, handler_string,
 args=None, kwargs=None, priority=0, scene=None):
 """
 Similar to :func:`spyral.event.register` function, except that instead
 of passing in a function, you pass in the name of a property of this
 scene that holds a function.

 Example::

 class MyScene(Scene):
 def __init__(self):
 ...
 self.register_dynamic("orc.dies", "future_function")
 ...

 :param str event_namespace: The namespace of the event, e.g.
 ``"input.mouse.left.click"`` or ``"pong.score"``.
 :param str handler: The name of an attribute on this scene that will hold
 a function. The first argument to the function will be
 the event.
 :param args: any additional arguments that need to be passed in
 to the handler.
 :type args: sequence
 :param kwargs: any additional keyword arguments that need to be
 passed into the handler.
 :type kwargs: dict
 :param int priority: the higher the `priority`, the sooner this handler will
 be called in reaction to the event, relative to the
 other event handlers registered.
 :param scene: The scene to register this event on; if it is ``None``, then
 it will be attached to the currently running scene.
 :type scene: :class:`Scene <spyral.Scene>` or ``None``
 """
 if scene is None:
 scene = spyral._get_executing_scene()
 scene._reg_internal(event_namespace, (handler_string,),
 args, kwargs, priority, True)

[docs]def register_multiple(event_namespace, handlers, args=None,
 kwargs=None, priority=0, scene=None):
 """
 Similar to :func:`spyral.event.register` function, except a sequence of
 `handlers` are be given instead of just one.

 :param str event_namespace: the namespace of the event, e.g.
 ``"input.mouse.left.click"`` or ``"pong.score"``.
 :type event_namespace: string
 :param handler: A list of functions that will be run on this event.
 :type handler: list of functions
 :param args: any additional arguments that need to be passed in
 to the handler.
 :type args: sequence
 :param kwargs: any additional keyword arguments that need to be
 passed into the handler.
 :type kwargs: dict
 :param int priority: the higher the `priority`, the sooner this handler will
 be called in reaction to the event, relative to the
 other event handlers registered.
 :param scene: The scene to register this event on; if it is ``None``, then
 it will be attached to the currently running scene.
 :type scene: :class:`Scene <spyral.Scene>` or ``None``
 """
 if scene is None:
 scene = spyral._get_executing_scene()
 scene._reg_internal(event_namespace, map(WeakMethod, handlers),
 args, kwargs, priority, False)

[docs]def register_multiple_dynamic(event_namespace, handler_strings, args=None,
 kwargs=None, priority=0, scene=None):
 """
 Similar to :func:`spyral.Scene.register` function, except a sequence of
 strings representing handlers can be given instead of just one.

 :param event_namespace: the namespace of the event, e.g.
 ``"input.mouse.left.click"`` or ``"pong.score"``.
 :type event_namespace: string
 :param handler: A list of names of an attribute on this scene that will
 hold a function. The first argument to the function will
 be the event.
 :type handler: list of strings
 :param args: any additional arguments that need to be passed in
 to the handler.
 :type args: sequence
 :param kwargs: any additional keyword arguments that need to be
 passed into the handler.
 :type kwargs: dict
 :param int priority: the higher the `priority`, the sooner this handler will
 be called in reaction to the event, relative to the
 other event handlers registered.
 :param scene: The scene to register this event on; if it is ``None``, then
 it will be attached to the currently running scene.
 :type scene: :class:`Scene <spyral.Scene>` or ``None``
 """
 if scene is None:
 scene = spyral._get_executing_scene()
 scene._reg_internal(event_namespace, handler_strings,
 args, kwargs, priority, True)

[docs]def unregister(event_namespace, handler, scene=None):
 """
 Unregisters a registered handler for that namespace. Dynamic handler
 strings are supported as well.

 :param str event_namespace: An event namespace
 :param handler: The handler to unregister.
 :type handler: a function or string.
 :param scene: The scene to unregister the event; if it is ``None``, then
 it will be attached to the currently running scene.
 :type scene: :class:`Scene <spyral.Scene>` or ``None``
 """
 if scene is None:
 scene = spyral._get_executing_scene()
 if not isinstance(handler, str):
 handler = WeakMethod(handler)
 scene._unregister(event_namespace, handler)

[docs]def clear_namespace(namespace, scene=None):
 """
 Clears all handlers from namespaces that are at least as specific as the
 provided `namespace`.

 :param str namespace: The complete namespace.
 :param scene: The scene to clear the namespace of; if it is ``None``, then
 it will be attached to the currently running scene.
 :type scene: :class:`Scene <spyral.Scene>` or ``None``
 """
 if scene is None:
 scene = spyral._get_executing_scene()
 scene._clear_namespace(namespace)

def _pygame_to_spyral(event):
 """
 Convert a Pygame event to a Spyral event, correctly converting arguments to
 attributes.
 """
 event_attrs = _TYPE_TO_ATTRS[event.type]
 event_type = _TYPE_TO_TYPE[event.type]
 e = Event()
 for attr in event_attrs:
 setattr(e, attr, getattr(event, attr))
 if event_type.startswith("input"):
 setattr(e, "type", event_type.split(".")[-1])
 if event_type.startswith('input.keyboard'):
 k = keys.reverse_map.get(event.key, 'unknown')
 event_type += '.' + k
 if event_type.startswith('input.mouse.motion'):
 e.left, e.middle, e.right = map(bool, event.buttons)
 elif event_type.startswith('input.mouse'):
 try:
 m = MOUSE_MAP[event.button-1]
 setattr(e, "button", m)
 except IndexError:
 m = str(event.button)
 event_type += '.' + m

 return (event_type, e)

[docs]class EventHandler(object):
 """
 Base event handler class.
 """
 def __init__(self):
 self._events = []
 self._mouse_pos = (0, 0)

[docs] def tick(self):
 """
 Should be called at the beginning of update cycle. For the
 event handler which is part of a scene, this function will be
 called automatically. For any additional event handlers, you
 must call this function manually.
 """
 pass

[docs] def get(self, types=[]):
 """
 Gets events from the event handler. Types is an optional
 iterable which has types which you would like to get.
 """
 try:
 types[0]
 except IndexError:
 pass
 except TypeError:
 types = (types,)

 if types == []:
 ret = self._events
 self._events = []
 return ret

 ret = [e for e in self._events if e['type'] in types]
 self._events = [e for e in self._events if e['type'] not in types]
 return ret

[docs]class LiveEventHandler(EventHandler):
 """
 An event handler which pulls events from the operating system.

 The optional output_file argument specifies the path to a file
 where the event handler will save a custom json file that can
 be used with the `ReplayEventHandler` to show replays of a
 game in action, or be used for other clever purposes.

 .. note::

 If you use the output_file parameter, this function will
 reseed the random number generator, save the seed used. It
 will then be restored by the ReplayEventHandler.
 """
 def __init__(self, output_file=None):
 EventHandler.__init__(self)
 self._save = output_file is not None
 if self._save:
 self._file = open(output_file, 'w')
 seed = os.urandom(4)
 info = {'random_seed': base64.encodestring(seed)}
 random.seed(seed)
 self._file.write(json.dumps(info) + "\n")

 def tick(self):
 mouse = pygame.mouse.get_pos()
 events = pygame.event.get()
 self._mouse_pos = mouse
 self._events.extend(events)
 # if self._save:
 # d = {'mouse': mouse, 'events': events}
 # self._file.write(json.dumps(d) + "\n")

 def __del__(self):
 if self._save:
 self._file.close()

[docs]class ReplayEventHandler(EventHandler):
 """
 An event handler which replays the events from a custom json
 file saved by the `LiveEventHandler`.
 """
 def __init__(self, input_file):
 EventHandler.__init__(self)
 self._file = open(input_file)
 info = json.loads(self._file.readline())
 random.seed(base64.decodestring(info['random_seed']))
 self.paused = False

[docs] def pause(self):
 """
 Pauses the replay of the events, making tick() a noop until
 resume is called.
 """
 self.paused = True

[docs] def resume(self):
 """
 Resumes the replay of events.
 """
 self.paused = False

 def tick(self):
 if self.paused:
 return
 try:
 d = json.loads(self._file.readline())
 except ValueError:
 spyral.director.pop()
 events = d['events']
 events = [EventDict(e) for e in events]
 self._mouse_pos = d['mouse']
 self._events.extend(events)

class Mods(object):
 def __init__(self):
 self.none = pygame.KMOD_NONE
 self.lshift = pygame.KMOD_LSHIFT
 self.rshift = pygame.KMOD_RSHIFT
 self.shift = pygame.KMOD_SHIFT
 self.caps = pygame.KMOD_CAPS
 self.ctrl = pygame.KMOD_CTRL
 self.lctrl = pygame.KMOD_LCTRL
 self.rctrl = pygame.KMOD_RCTRL
 self.lalt = pygame.KMOD_LALT
 self.ralt = pygame.KMOD_RALT
 self.alt = pygame.KMOD_ALT

class Keys(object):

 def __init__(self):
 self.reverse_map = {}
 self.load_keys_from_file(spyral._get_spyral_path() +
 'resources/default_key_mappings.txt')
 self._fix_bad_names([("return", "enter"),
 ("break", "brk")])

 def _fix_bad_names(self, renames):
 """
 Used to replace any binding names with non-python keywords.
 """
 for original, new in renames:
 setattr(self, new, getattr(self, original))
 delattr(self, original)

 def load_keys_from_file(self, filename):
 fp = open(filename)
 key_maps = fp.readlines()
 fp.close()
 for single_mapping in key_maps:
 mapping = single_mapping[:-1].split(' ')
 if len(mapping) == 2:
 if mapping[1][0:2] == '0x':
 setattr(self, mapping[0], int(mapping[1], 16))
 self.reverse_map[int(mapping[1], 16)] = mapping[0]
 else:
 setattr(self, mapping[0], int(mapping[1]))
 self.reverse_map[int(mapping[1])] = mapping[0]

 def add_key_mapping(self, name, number):
 setattr(self, name, number)

keys = Keys()
mods = Mods()

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

_modules/spyral/widgets.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

 		Module code »

 		spyral »

 Source code for spyral.widgets

import spyral
import types
import sys
import functools
import math
import string
import pygame
from bisect import bisect_right

class BaseWidget(spyral.View):
 """
 The BaseWidget is the simplest possible widget that all other widgets
 must subclass. It handles tracking its owning form and the styling that
 should be applied.
 """
 def __init__(self, form, name):
 self.__style__ = form.__class__.__name__ + '.' + name
 self.name = name
 self.form = form
 spyral.View.__init__(self, form)
 self.mask = spyral.Rect(self.pos, self.size)

 def _changed(self):
 """
 Called when the Widget is changed; since Widget's masks are a function
 of their component widgets, it needs to be notified.
 """
 self._recalculate_mask()
 spyral.View._changed(self)

 def _recalculate_mask(self):
 """
 Recalculate this widget's mask based on its size, position, and padding.
 """
 self.mask = spyral.Rect(self.pos, self.size + self.padding)

Widget Implementations

class MultiStateWidget(BaseWidget):
 """
 The MultiStateWidget is an abstract widget with multiple states. It should
 be subclassed and implemented to have different behavior based on its
 states.

 In addition, it supports having a Nine Slice image; it will cut a given
 image into a 3x3 grid of images that can be stretched into a button. This
 is a boolean property.

 :param form: The parent form that this Widget belongs to.
 :type form: :class:`Form <spyral.Form>`
 :param str name: The name of this widget.
 :param states: A list of the possible states that the widget can be in.
 :type states: A ``list`` of ``str``.
 """
 def __init__(self, form, name, states):
 self._states = states
 self._state = self._states[0]
 self.button = None # Hack for now; TODO need to be able to set properties on it even though it doesn't exist yet

 BaseWidget.__init__(self, form, name)
 self.layers = ["base", "content"]

 self._images = {}
 self._content_size = (0, 0)
 self.button = spyral.Sprite(self)
 self.button.layer = "base"

 def _render_images(self):
 """
 Recreates the cached images of this widget (based on the
 self._image_locations internal variabel) and sets the widget's image
 based on its current state.
 """
 for state in self._states:
 if self._nine_slice:
 size = self._padding + self._content_size
 nine_slice_image = spyral.Image(self._image_locations[state])
 self._images[state] = spyral.image.render_nine_slice(nine_slice_image, size)
 else:
 self._images[state] = spyral.Image(self._image_locations[state])
 self.button.image = self._images[self._state]
 self.mask = spyral.Rect(self.pos, self.button.size)
 self._on_state_change()

 def _set_state(self, state):
 old_value = self.value
 self._state = state
 if self.value != old_value:
 e = spyral.Event(name="changed", widget=self, form=self.form, value=self._get_value())
 self.scene._queue_event("form.%(form_name)s.%(widget)s.changed" %
 {"form_name": self.form.__class__.__name__,
 "widget": self.name},
 e)
 self.button.image = self._images[state]
 self.mask = spyral.Rect(self.pos, self.button.size)
 self._on_state_change()

 def _get_value(self):
 """
 Returns the current value of this widget; defaults to the ``state`` of
 the widget.
 """
 return self._state

 def _get_state(self):
 """
 This widget's state; when changed, a form.<name>.<widget>.changed
 event will be triggered. Represented as a ``str``.
 """
 return self._state

 def _set_nine_slice(self, nine_slice):
 self._nine_slice = nine_slice
 self._render_images()

 def _get_nine_slice(self):
 """
 The :class:`Image <spyral.Image>` that will be nine-sliced into this
 widget's background.
 """
 return self._nine_slice

 def _set_padding(self, padding):
 if isinstance(padding, spyral.Vec2D):
 self._padding = padding
 else:
 self._padding = spyral.Vec2D(padding, padding)
 self._render_images()

 def _get_padding(self):
 """
 A :class:`Vec2D <spyral.Vec2D>` that represents the horizontal and
 vertical padding associated with this button. Can also be set with a
 ``int`` for equal amounts of padding, although it will always return a
 :class:`Vec2D <spyral.Vec2D>`.
 """
 return self._padding

 def _set_content_size(self, size):
 """
 The size of the content within this button, used to calculate the mask.
 A :class:`Vec2D <spyral.Vec2D>`

 ..todo:: It's most likely the case that this needs to be refactored into
 the mask property, since they're probably redundant with each other.
 """
 self._content_size = size
 self._render_images()

 def _get_content_size(self):
 return self._get_content_size

 def _on_size_change(self):
 """
 A function triggered whenever this widget changes size.
 """
 pass

 def _get_anchor(self):
 """
 Defines an `anchor point <anchors>` where coordinates are relative to
 on the widget. ``str``.
 """
 return self._anchor

 def _set_anchor(self, anchor):
 if self.button is not None:
 self.button.anchor = anchor
 self._text_sprite.anchor = anchor
 BaseWidget._set_anchor(self, anchor)

 anchor = property(_get_anchor, _set_anchor)
 value = property(_get_value)
 padding = property(_get_padding, _set_padding)
 nine_slice = property(_get_nine_slice, _set_nine_slice)
 state = property(_get_state, _set_state)
 content_size = property(_get_content_size, _set_content_size)

 def __stylize__(self, properties):
 """
 Applies the *properties* to this scene. This is called when a style
 is applied.

 :param properties: a mapping of property names (strings) to values.
 :type properties: ``dict``
 """
 self._padding = properties.pop('padding', 4)
 if not isinstance(self._padding, spyral.Vec2D):
 self._padding = spyral.Vec2D(self._padding, self._padding)
 self._nine_slice = properties.pop('nine_slice', False)
 self._image_locations = {}
 for state in self._states:
 # TODO: try/catch to ensure that the property is set?
 self._image_locations[state] = properties.pop('image_%s' % (state,))
 spyral.View.__stylize__(self, properties)

[docs]class ButtonWidget(MultiStateWidget):
 """
 A ButtonWidget is a simple button that can be pressed. It can have some
 text. If you don't specify an explicit width, then it will be sized
 according to it's text.

 :param form: The parent form that this Widget belongs to.
 :type form: :class:`Form <spyral.Form>`
 :param str name: The name of this widget.
 :param str text: The text that will be rendered on this button.
 """
 def __init__(self, form, name, text = "Okay"):
 MultiStateWidget.__init__(self, form, name,
 ['up', 'down', 'down_focused', 'down_hovered',
 'up_focused', 'up_hovered'])

 self._text_sprite = spyral.Sprite(self)
 self._text_sprite.layer = "content"

 self.text = text

 def _get_value(self):
 """
 Whether or not this widget is currently ``"up"`` or ``"down"``.
 """
 if "up" in self._state:
 return "up"
 else:
 return "down"

 def _get_text(self):
 """
 The text rendered on this button (``str``).
 """
 return self._text

 def _set_text(self, text):
 self._text = text
 self._text_sprite.image = self.font.render(self._text)
 self._content_size = self._text_sprite.image.size
 self._render_images()

 def _on_state_change(self):
 """
 A function triggered whenever this widget changes size.
 """
 self._text_sprite.pos = spyral.util._anchor_offset(self._anchor,
 self._padding[0] / 2,
 self._padding[1] / 2)

 value = property(_get_value)
 text = property(_get_text, _set_text)

 def _handle_mouse_up(self, event):
 """
 The function called when the mouse is released while on this widget.
 """
 if self.state.startswith('down'):
 self.state = self.state.replace('down', 'up')
 e = spyral.Event(name="clicked", widget=self, form=self.form, value=self._get_value())
 self.scene._queue_event("form.%(form_name)s.%(widget)s.clicked" %
 {"form_name": self.form.__class__.__name__,
 "widget": self.name},
 e)

 def _handle_mouse_down(self, event):
 """
 The function called when the mouse is pressed while on this widget.
 Fires a ``clicked`` event.
 """
 if self.state.startswith('up'):
 self.state = self.state.replace('up', 'down')

 def _handle_mouse_out(self, event):
 """
 The function called when this button is no longer being hovered over.
 """
 if "_hovered" in self.state:
 self.state = self.state.replace('_hovered', '')

 def _handle_mouse_over(self, event):
 """
 The function called when the mouse starts hovering over this button.
 """
 if not "_hovered" in self.state:
 self.state = self.state.replace('_focused', '') + "_hovered"

 def _handle_mouse_motion(self, event):
 """
 The function called when the mouse moves while over this button.
 """
 pass

 def _handle_focus(self, event):
 """
 Applies the focus state to this widget
 """
 if self.state in ('up', 'down'):
 self.state+= '_focused'

 def _handle_blur(self, event):
 """
 Removes the focused state from this widget.
 """
 if self.state in ('up_focused', 'down_focused'):
 self.state = self.state.replace('_focused', '')

 def _handle_key_down(self, event):
 """
 When the enter or space key is pressed, triggers this button being
 pressed.
 """
 if event.key in (spyral.keys.enter, spyral.keys.space):
 self.handle_mouse_down(event)

 def _handle_key_up(self, event):
 """
 When the enter or space key is pressed, triggers this button being
 released.
 """
 if event.key in (spyral.keys.enter, spyral.keys.space):
 self.handle_mouse_up(event)

 def __stylize__(self, properties):
 """
 Applies the *properties* to this scene. This is called when a style
 is applied.

 :param properties: a mapping of property names (strings) to values.
 :type properties: ``dict``
 """
 self.font = spyral.Font(*properties.pop('font'))
 self._text = properties.pop('text', "Button")
 MultiStateWidget.__stylize__(self, properties)

[docs]class ToggleButtonWidget(ButtonWidget):
 """
 A ToggleButtonWidget is similar to a Button, except that it will stay down
 after it's been clicked, until it is clicked again.

 :param form: The parent form that this Widget belongs to.
 :type form: :class:`Form <spyral.Form>`
 :param str name: The name of this widget.
 :param str text: The text that will be rendered on this button.
 """
 def __init__(self, form, name, text = "Okay"):
 ButtonWidget.__init__(self, form, name, text)

 def _handle_mouse_up(self, event):
 """
 The function called when the mouse is released while on this widget.
 """
 pass

 def _handle_mouse_down(self, event):
 """
 Triggers the mouse to change states.
 """
 if self.state.startswith('down'):
 self.state = self.state.replace('down', 'up')
 elif self.state.startswith('up'):
 self.state = self.state.replace('up', 'down')

[docs]class CheckboxWidget(ToggleButtonWidget):
 """
 A CheckboxWidget is identical to a ToggleButtonWidget, only it doesn't have
 any text.
 """
 def __init__(self, form, name):
 ToggleButtonWidget.__init__(self, form, name, "")

class RadioButtonWidget(ToggleButtonWidget):
 """
 A RadioButton is similar to a CheckBox, except it is to be placed into a
 RadioGroup, which will ensure that only one RadioButton in it's group is
 selected at a time.

 ..warning:: This widget is incomplete.
 """
 def __init__(self, form, name, group):
 ToggleButtonWidget.__init__(self, form, name, _view_x)

class RadioGroupWidget(object):
 """
 Only one RadioButton in a RadioGroup can be selected at a time.

 ..warning:: This widget is incomplete.
 """
 def __init__(self, buttons, selected = None):
 pass

[docs]class TextInputWidget(BaseWidget):
 """
 The TextInputWidget is used to get text data from the user, through an
 editable textbox.

 :param form: The parent form that this Widget belongs to.
 :type form: :class:`Form <spyral.Form>`
 :param str name: The name of this widget.
 :param int width: The rendered width in pixels of this widget.
 :param str value: The initial value of this widget.
 :param bool default_value: Whether to clear the text of this widget the
 first time it gains focus.
 :param int text_length: The maximum number of characters that can be entered
 into this box. If ``None``, then there is no
 maximum.
 :param set validator: A set of characters that are allowed to be printed.
 Defaults to all regularly printable characters (which
 does not include tab and newlines).
 """
 def __init__(self, form, name, width, value='', default_value=True,
 text_length=None, validator=None):
 self.box_width, self._box_height = 0, 0
 BaseWidget.__init__(self, form, name)

 self.layers = ["base", "content"]

 child_anchor = (self._padding, self._padding)
 self._back = spyral.Sprite(self)
 self._back.layer = "base"
 self._cursor = spyral.Sprite(self)
 self._cursor.anchor = child_anchor
 self._cursor.layer = "content:above"
 self._text = spyral.Sprite(self)
 self._text.pos = child_anchor
 self._text.layer = "content"

 self._focused = False
 self._cursor.visible = False
 self._selection_pos = 0
 self._selecting = False
 self._shift_was_down = False
 self._mouse_is_down = False

 self._cursor_time = 0.
 self._cursor_blink_interval = self._cursor_blink_interval

 self.default_value = default_value
 self._default_value_permanant = default_value

 self._view_x = 0
 self.box_width = width - 2*self._padding
 self.text_length = text_length

 self._box_height = int(math.ceil(self.font.linesize))
 self._recalculate_mask()

 self._cursor.image = spyral.Image(size=(2,self._box_height))
 self._cursor.image.fill(self._cursor_color)

 if validator is None:
 self.validator = str(set(string.printable).difference("\n\t"))
 else:
 self.validator = validator

 if text_length is not None and len(value) < text_length:
 value = value[:text_length]
 self._value = None
 self.value = value

 self._render_backs()
 self._back.image = self._image_plain

 spyral.event.register("director.update", self._update, scene=self.scene)

 def _recalculate_mask(self):
 """
 Forces a recomputation of the widget's mask, based on the position,
 internal boxes size, and the padding.
 """
 self.mask = spyral.Rect(self.x+self.padding, self.y+self.padding,
 self.box_width+self.padding,
 self._box_height+self.padding)

 def _render_backs(self):
 """
 Recreates the nine-slice box used to back this widget.
 """
 padding = self._padding
 width = self.box_width + 2*padding + 2
 height = self._box_height + 2*padding + 2
 self._image_plain = spyral.Image(self._image_locations['focused'])
 self._image_focused = spyral.Image(self._image_locations['unfocused'])
 if self._nine_slice:
 render_nine_slice = spyral.image.render_nine_slice
 self._image_plain = render_nine_slice(self._image_plain,
 (width, height))
 self._image_focused = render_nine_slice(self._image_focused,
 (width, height))

 def __stylize__(self, properties):
 """
 Applies the *properties* to this scene. This is called when a style
 is applied.

 :param properties: a mapping of property names (strings) to values.
 :type properties: ``dict``
 """
 pop = properties.pop
 self._padding = pop('padding', 4)
 self._nine_slice = pop('nine_slice', False)
 self._image_locations = {}
 self._image_locations['focused'] = pop('image_focused')
 self._image_locations['unfocused'] = pop('image_unfocused')
 self._cursor_blink_interval = pop('cursor_blink_interval', .5)
 self._cursor_color = pop('cursor_color', (0, 0, 0))
 self._highlight_color = pop('highlight_color', (0, 140, 255))
 self._highlight_background_color = pop('highlight_background_color',
 (0, 140, 255))
 self.font = spyral.Font(*pop('font'))
 spyral.View.__stylize__(self, properties)

 def _compute_letter_widths(self):
 """
 Compute and store the width for each substring in text. I.e., the first
 character, the first two characters, the first three characters, etc.
 """
 self._letter_widths = []
 running_sum = 0
 for index in range(len(self._value)+1):
 running_sum= self.font.get_size(self._value[:index])[0]
 self._letter_widths.append(running_sum)

 def _insert_char(self, position, char):
 """
 Insert the given *char* into the text at *position*.

 Also triggers a form.<name>.<widget>.changed event.
 """
 if position == len(self._value):
 self._value += char
 new_width= self.font.get_size(self._value)[0]
 self._letter_widths.append(new_width)
 else:
 self._value = self._value[:position] + char + self._value[position:]
 self._compute_letter_widths()
 self._render_text()
 e = spyral.Event(name="changed", widget=self,
 form=self.form, value=self._value)
 self.scene._queue_event("form.%(form_name)s.%(widget)s.changed" %
 {"form_name": self.form.__class__.__name__,
 "widget": self.name},
 e)

 def _remove_char(self, position, end=None):
 """
 Remove the characters from *position* to *end* within the text. If *end*
 is None, it removes only a single character.

 Also triggers a form.<name>.<widget>.changed event.
 """
 if end is None:
 end = position+1
 if position == len(self._value):
 pass
 else:
 self._value = self._value[:position]+self._value[end:]
 self._compute_letter_widths()
 self._render_text()
 self._render_cursor()
 e = spyral.Event(name="changed", widget=self, form=self.form, value=self._value)
 self.scene._queue_event("form.%(form_name)s.%(widget)s.changed" %
 {"form_name": self.form.__class__.__name__,
 "widget": self.name},
 e)

 def _compute_cursor_pos(self, mouse_pos):
 """
 Given a mouse position, computes the closest index in the string.

 :returns: The index in the string (an ``int).
 """
 x = mouse_pos[0] + self._view_x - self.x - self._padding
 index = bisect_right(self._letter_widths, x)
 if index >= len(self._value):
 return len(self._value)
 elif index:
 diff = self._letter_widths[index] - self._letter_widths[index-1]
 x -= self._letter_widths[index-1]
 if diff > x*2:
 return index-1
 else:
 return index
 else:
 return 0

 def _stop_blinking(self):
 """
 Stops the cursor from blinking.
 """
 self._cursor_time = 0
 self._cursor.visible = True

 def _get_value(self):
 """
 The current value of this widget, i.e, the text the user has input. When
 this value is changed, it triggers a ``form.<name>.<widget>.changed``
 event. A ``str``.
 """
 return self._value

 def _set_value(self, value):
 if self._value is not None:
 e = spyral.Event(name="changed", widget=self,
 form=self.form, value=value)
 self.scene._queue_event("form.%(form_name)s.%(widget)s.changed" %
 {"form_name": self.form.__class__.__name__,
 "widget": self.name},
 e)
 self._value = value
 self._compute_letter_widths()
 self._cursor_pos = 0#len(value)
 self._render_text()
 self._render_cursor()

 def _get_cursor_pos(self):
 """
 The current index of the text cursor within this widget. A ``int``.
 """
 return self._cursor_pos

 def _set_cursor_pos(self, position):
 self._cursor_pos = position
 self._move_rendered_text()
 self._render_cursor()

 def _validate(self, char):
 """
 Tests whether the given character is a valid one and that there is room
 for the character within the textbox.
 """
 valid_length = (self.text_length is None or
 (self.text_length is not None
 and len(self._value) < self.text_length))
 valid_char = str(char) in self.validator
 return valid_length and valid_char

 def _set_nine_slice(self, nine_slice):
 self._nine_slice = nine_slice
 self._render_backs()

 def _get_nine_slice(self):
 """
 The :class:`Image <spyral.Image>` used to build the internal nine-slice
 image.
 """
 return self._nine_slice

 def _set_padding(self, padding):
 self._padding = padding
 self._render_backs()

 def _get_padding(self):
 """
 A single ``int`` representing both the vertical and horizontal padding
 within this widget.
 """
 return self._padding

 def _get_anchor(self):
 """
 Defines an `anchor point <anchors>` where coordinates are relative to
 on the view. String.
 """
 return self._anchor

 def _set_anchor(self, anchor):
 self._back.anchor = anchor
 self._text.anchor = anchor
 self._cursor.anchor = anchor
 BaseWidget._set_anchor(self, anchor)

 anchor = property(_get_anchor, _set_anchor)
 value = property(_get_value, _set_value)
 cursor_pos = property(_get_cursor_pos, _set_cursor_pos)
 padding = property(_get_padding, _set_padding)
 nine_slice = property(_get_nine_slice, _set_nine_slice)

 def _render_text(self):
 """
 Causes the text to be redrawn on the internal image.
 """
 if self._selecting and (self._cursor_pos != self._selection_pos):
 start, end = sorted((self._cursor_pos, self._selection_pos))

 pre = self.font.render(self._value[:start])
 highlight = self.font.render(self._value[start:end], color=self._highlight_color)
 post = self.font.render(self._value[end:])

 pre_missed = self.font.get_size(self._value[:end])[0] - pre.width - highlight.width + 1
 if self._value[:start]:
 post_missed = self.font.get_size(self._value)[0] - post.width - pre.width - highlight.width - 1
 self._rendered_text = spyral.image.from_sequence((pre, highlight, post), 'right', [pre_missed, post_missed])
 else:
 post_missed = self.font.get_size(self._value)[0] - post.width - highlight.width
 self._rendered_text = spyral.image.from_sequence((highlight, post), 'right', [post_missed])

 else:
 self._rendered_text = self.font.render(self._value)
 self._move_rendered_text()

 def _move_rendered_text(self):
 """
 Offsets the text within the image. This could probably be reimplemented
 using the new cropping mechanism within Views.
 """
 width = self._letter_widths[self.cursor_pos]
 max_width = self._letter_widths[len(self._value)]
 cursor_width = 2
 x = width - self._view_x
 if x < 0:
 self._view_x += x
 if x+cursor_width > self.box_width:
 self._view_x += x + cursor_width - self.box_width
 if self._view_x+self.box_width> max_width and max_width > self.box_width:
 self._view_x = max_width - self.box_width
 image = self._rendered_text.copy()
 image.crop((self._view_x, 0),
 (self.box_width, self._box_height))
 self._text.image = image

 def _render_cursor(self):
 """
 Moves the text cursor to the right position.
 """
 self._cursor.x = min(max(self._letter_widths[self.cursor_pos] - self._view_x, 0), self.box_width)
 self._cursor.y = 0

 _non_insertable_keys =(spyral.keys.up, spyral.keys.down,
 spyral.keys.left, spyral.keys.right,
 spyral.keys.home, spyral.keys.end,
 spyral.keys.pageup, spyral.keys.pagedown,
 spyral.keys.numlock, spyral.keys.capslock,
 spyral.keys.scrollock, spyral.keys.rctrl,
 spyral.keys.rshift, spyral.keys.lshift,
 spyral.keys.lctrl, spyral.keys.rmeta,
 spyral.keys.ralt, spyral.keys.lalt,
 spyral.keys.lmeta, spyral.keys.lsuper,
 spyral.keys.rsuper, spyral.keys.mode)
 _non_skippable_keys = (' ', '.', '?', '!', '@', '#', '$',
 '%', '^', '&', '*', '(', ')', '+',
 '=', '{', '}', '[', ']', ';', ':',
 '<', '>', ',', '/', '\\', '|', '"',
 "'", '~', '`')
 _non_printable_keys = ('\t', '')+_non_insertable_keys

 def _find_next_word(self, text, start=0, end=None):
 """
 Returns the index of the next word in the given text.
 """
 if end is None:
 end = len(text)
 for index, letter in enumerate(text[start:end]):
 if letter in self._non_skippable_keys:
 return start+(index+1)
 return end

 def _find_previous_word(self, text, start=0, end=None):
 """
 Returns the index of the previous word in the given text.
 """
 if end is None:
 end = len(text)
 for index, letter in enumerate(reversed(text[start:end])):
 if letter in self._non_skippable_keys:
 return end-(index+1)
 return start

 def _delete(self, by_word = False):
 """
 Deletes the currently selected text, or the text at the current
 cursor position. If *by_word* is specified, the rest of the word is
 deleted too.
 """
 if self._selecting:
 start, end = sorted((self.cursor_pos, self._selection_pos))
 self.cursor_pos = start
 self._remove_char(start, end)
 elif by_word:
 start = self.cursor_pos
 end = self._find_next_word(self.value, self.cursor_pos, len(self._value))
 self._remove_char(start, end)
 else:
 self._remove_char(self.cursor_pos)

 def _backspace(self, by_word = False):
 """
 Deletes the currently selected text, or the character behind the current
 cursor position. If *by_word* is specified, the beginning of the word is
 deleted too.
 """
 if self._selecting:
 start, end = sorted((self.cursor_pos, self._selection_pos))
 self.cursor_pos = start
 self._remove_char(start, end)
 elif not self._cursor_pos:
 pass
 elif by_word:
 start = self._find_previous_word(self.value, 0, self.cursor_pos-1)
 end = self.cursor_pos
 self.cursor_pos= start
 self._remove_char(start, end)
 elif self._cursor_pos:
 self.cursor_pos-= 1
 self._remove_char(self.cursor_pos)

 def _move_cursor_left(self, by_word = False):
 """
 Moves the cursor left one character; if *by_word* is selected, then the
 cursor is moved to the start of the current word.
 """
 if by_word:
 self.cursor_pos = self._find_previous_word(self.value, 0, self.cursor_pos)
 else:
 self.cursor_pos= max(self.cursor_pos-1, 0)

 def _move_cursor_right(self, by_word = False):
 """
 Moves the cursor right one character; if *by_word* is selected, then the
 cursor is moved to the end of the current word.
 """
 if by_word:
 self.cursor_pos = self._find_next_word(self.value, self.cursor_pos, len(self.value))
 else:
 self.cursor_pos= min(self.cursor_pos+1, len(self.value))

 def _update(self, delta):
 """
 Make the cursor blink every blink_interval.
 """
 if self._focused:
 self._cursor_time += delta
 if self._cursor_time > self._cursor_blink_interval:
 self._cursor_time -= self._cursor_blink_interval
 self._cursor.visible = not self._cursor.visible

 def _handle_key_down(self, event):
 """
 Process a key input.
 """
 key = event.key
 mods = event.mod
 shift_is_down= (mods & spyral.mods.shift) or (key in (spyral.keys.lshift, spyral.keys.rshift))
 shift_clicked = not self._shift_was_down and shift_is_down
 self._shift_was_down = shift_is_down

 if shift_clicked or (shift_is_down and not
 self._selecting and
 key in TextInputWidget._non_insertable_keys):
 self._selection_pos = self.cursor_pos
 self._selecting = True

 if key == spyral.keys.left:
 self._move_cursor_left(mods & spyral.mods.ctrl)
 elif key == spyral.keys.right:
 self._move_cursor_right(mods & spyral.mods.ctrl)
 elif key == spyral.keys.home:
 self.cursor_pos = 0
 elif key == spyral.keys.end:
 self.cursor_pos = len(self.value)
 elif key == spyral.keys.delete:
 self._delete(mods & spyral.mods.ctrl)
 elif key == spyral.keys.backspace:
 self._backspace(mods & spyral.mods.ctrl)
 else:
 if key not in TextInputWidget._non_printable_keys:
 if self._selecting:
 self._delete()
 unicode = chr(event.key)
 if self._validate(unicode):
 self._insert_char(self.cursor_pos, unicode)
 self.cursor_pos+= 1

 if not shift_is_down or (shift_is_down and key not in TextInputWidget._non_insertable_keys):
 self._selecting = False
 self._render_text()
 if self._selecting:
 self._render_text()

 # TODO: This is old style event handling, very clumsy!
 def _handle_mouse_over(self, event): pass
 def _handle_mouse_out(self, event): pass
 def _handle_key_up(self, event): pass

 def _handle_mouse_up(self, event):
 """
 Update the position of the text cursor when the mouse is released.
 """
 self.cursor_pos = self._compute_cursor_pos(event.pos)

 def _handle_mouse_down(self, event):
 """
 Handle mouse being pressed: start or stop selecting text, update the
 text cursor, and halt blinking.
 """
 if not self._selecting:
 if pygame.key.get_mods() & pygame.KMOD_SHIFT:
 self._selection_pos = self.cursor_pos
 self._selecting = True
 elif not (pygame.key.get_mods() & pygame.KMOD_SHIFT):
 self._selecting = False
 self.cursor_pos = self._compute_cursor_pos(event.pos)
 # set cursor position to mouse position
 if self.default_value:
 self.value = ''
 self.default_value = False
 self._render_text()
 self._stop_blinking()

 def _handle_mouse_motion(self, event):
 """
 Handle the text cursor being dragged.
 """
 left, center, right = event.buttons
 if left:
 if not self._selecting:
 self._selecting = True
 self._selection_pos = self.cursor_pos
 self.cursor_pos = self._compute_cursor_pos(event.pos)
 self._render_text()
 self._stop_blinking()

 def _handle_focus(self, event):
 """
 Handle this widget receiving focus.
 """
 self._focused = True
 self._back.image = self._image_focused
 if self.default_value:
 self._selecting = True
 self._selection_pos = 0
 else:
 self._selecting = False
 self.cursor_pos= len(self._value)
 self._render_text()

 def _handle_blur(self, event):
 """
 Handle this widget losing focus.
 """
 self._back.image = self._image_plain
 self._focused = False
 self._cursor.visible = False
 self.default_value = self._default_value_permanant

Module Magic

old = sys.modules[__name__]

class _WidgetWrapper(object):
 creation_counter = 0
 def __init__(self, cls, *args, **kwargs):
 _WidgetWrapper.creation_counter += 1
 self.cls = cls
 self.args = args
 self.kwargs = kwargs

 def __call__(self, form, name):
 return self.cls(form, name, *self.args, **self.kwargs)

class module(types.ModuleType):
 def register(self, name, cls):
 setattr(self, name, functools.partial(_WidgetWrapper, cls))

Keep the refcount from going to 0
widgets = module(__name__)
sys.modules[__name__] = widgets
widgets.__dict__.update(old.__dict__)

widgets.register('TextInput', TextInputWidget)
widgets.register('RadioButton', RadioButtonWidget)
widgets.register('Checkbox', CheckboxWidget)
widgets.register('ToggleButton', ToggleButtonWidget)
widgets.register('Button', ButtonWidget)

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

_modules/spyral/image.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

 		Module code »

 		spyral »

 Source code for spyral.image

"""A module for manipulating Images, which are specially wrapped Pygame
surfaces.
"""

import pygame
import spyral
import copy

def _new_spyral_surface(size):
 """
 Internal method for creating a new Spyral-compliant Pygame surface.
 """
 return pygame.Surface((int(size[0]),
 int(size[1])),
 pygame.SRCALPHA, 32).convert_alpha()

[docs]def from_sequence(images, orientation="right", padding=0):
 """
 A function that returns a new Image from a list of images by
 placing them next to each other.

 :param images: A list of images to lay out.
 :type images: List of :class:`Image <spyral.Image>`
 :param str orientation: Either 'left', 'right', 'above', 'below', or
 'square' (square images will be placed in a grid
 shape, like a chess board).
 :param padding: The padding between each image. Can be specified as a
 scalar number (for constant padding between all images)
 or a list (for different paddings between each image).
 :type padding: int or a list of ints.
 :returns: A new :class:`Image <spyral.Image>`
 """
 if orientation == 'square':
 length = int(math.ceil(math.sqrt(len(images))))
 max_height = 0
 for index, image in enumerate(images):
 if index % length == 0:
 x = 0
 y += max_height
 max_height = 0
 else:
 x += image.width
 max_height = max(max_height, image.height)
 sequence.append((image, (x, y)))
 else:
 if orientation in ('left', 'right'):
 selector = spyral.Vec2D(1, 0)
 else:
 selector = spyral.Vec2D(0, 1)

 if orientation in ('left', 'above'):
 reversed(images)

 if type(padding) in (float, int, long):
 padding = [padding] * len(images)
 else:
 padding = list(padding)
 padding.append(0)
 base = spyral.Vec2D(0, 0)
 sequence = []
 for image, padding in zip(images, padding):
 sequence.append((image, base))
 base = base + selector * (image.size + (padding, padding))
 return from_conglomerate(sequence)

[docs]def from_conglomerate(sequence):
 """
 A function that generates a new image from a sequence of
 (image, position) pairs. These images will be placed onto a singe image
 large enough to hold all of them. More explicit and less convenient than
 :func:`from_seqeuence <spyral.image.from_sequence>`.

 :param sequence: A list of (image, position) pairs, where the positions
 are :class:`Vec2D <spyral.Vec2D>` s.
 :type sequence: List of image, position pairs.
 :returns: A new :class:`Image <spyral.Image>`
 """
 width, height = 0, 0
 for image, (x, y) in sequence:
 width = max(width, x+image.width)
 height = max(height, y+image.height)
 new = Image(size=(width, height))
 for image, (x, y) in sequence:
 new.draw_image(image, (x, y))
 return new

[docs]def render_nine_slice(image, size):
 """
 Creates a new image by dividing the given image into a 3x3 grid, and stretching
 the sides and center while leaving the corners the same size. This is ideal
 for buttons and other rectangular shapes.

 :param image: The image to stretch.
 :type image: :class:`Image <spyral.Image>`
 :param size: The new (width, height) of this image.
 :type size: :class:`Vec2D <spyral.Vec2D>`
 :returns: A new :class:`Image <spyral.Image>` similar to the old one.
 """
 bs = spyral.Vec2D(size)
 bw = size[0]
 bh = size[1]
 ps = image.size / 3
 pw = int(ps[0])
 ph = int(ps[1])
 surf = image._surf
 # Hack: If we don't make it one px large things get cut
 image = spyral.Image(size=bs + (1, 1))
 s = image._surf
 # should probably fix the math instead, but it works for now

 topleft = surf.subsurface(pygame.Rect((0, 0), ps))
 left = surf.subsurface(pygame.Rect((0, ph), ps))
 bottomleft = surf.subsurface(pygame.Rect((0, 2*pw), ps))
 top = surf.subsurface(pygame.Rect((pw, 0), ps))
 mid = surf.subsurface(pygame.Rect((pw, ph), ps))
 bottom = surf.subsurface(pygame.Rect((pw, 2*ph), ps))
 topright = surf.subsurface(pygame.Rect((2*pw, 0), ps))
 right = surf.subsurface(pygame.Rect((2*ph, pw), ps))
 bottomright = surf.subsurface(pygame.Rect((2*ph, 2*pw), ps))

 # corners
 s.blit(topleft, (0, 0))
 s.blit(topright, (bw - pw, 0))
 s.blit(bottomleft, (0, bh - ph))
 s.blit(bottomright, bs - ps)

 # left and right border
 for y in range(ph, bh - ph - ph, ph):
 s.blit(left, (0, y))
 s.blit(right, (bw - pw, y))
 s.blit(left, (0, bh - ph - ph))
 s.blit(right, (bw - pw, bh - ph - ph))
 # top and bottom border
 for x in range(pw, bw - pw - pw, pw):
 s.blit(top, (x, 0))
 s.blit(bottom, (x, bh - ph))
 s.blit(top, (bw - pw - pw, 0))
 s.blit(bottom, (bw - pw - pw, bh - ph))

 # center
 for x in range(pw, bw - pw - pw, pw):
 for y in range(ph, bh - ph - ph, ph):
 s.blit(mid, (x, y))

 for x in range(pw, bw - pw - pw, pw):
 s.blit(mid, (x, bh - ph - ph))
 for y in range(ph, bh - ph - ph, ph):
 s.blit(mid, (bw - pw - pw, y))
 s.blit(mid, (bw - pw - pw, bh - ph - ph))
 return image

[docs]class Image(object):
 """
 The image is the basic drawable item in spyral. They can be created
 either by loading from common file formats, or by creating a new
 image and using some of the draw methods. Images are not drawn on
 their own, they are placed as the *image* attribute on Sprites to
 be drawn.

 Almost all of the methods of an Image instance return the Image itself,
 enabling commands to be chained in a
 `fluent interface <http://en.wikipedia.org/wiki/Fluent_interface>`_.

 :param size: If size is passed, creates a new blank image of that size to
 draw on. If you do not specify a size, you *must* pass in a
 filename.
 :type size: :class:`Vec2D <spyral.Vec2D>`
 :param str filename: If filename is set, the file with that name is loaded.
 The appendix has a list of the
 :ref:`valid image formats<ref.image_formats>`. If you do
 not specify a filename, you *must* pass in a size.

 """

 def __init__(self, filename=None, size=None):
 if size is not None and filename is not None:
 raise ValueError("Must specify exactly one of size and filename.")
 if size is None and filename is None:
 raise ValueError("Must specify exactly one of size and filename.")

 if size is not None:
 self._surf = _new_spyral_surface(size)
 self._name = None
 else:
 self._surf = pygame.image.load(filename).convert_alpha()
 self._name = filename
 self._version = 1

 def _get_width(self):
 return self._surf.get_width()

 #: The width of this image in pixels (int). Read-only.
 width = property(_get_width)

 def _get_height(self):
 return self._surf.get_height()

 #: The height of this image in pixels (int). Read-only.
 height = property(_get_height)

 def _get_size(self):
 return spyral.Vec2D(self._surf.get_size())

 #: The (width, height) of the image (:class:`Vec2D <spyral.Vec2D`).
 #: Read-only.
 size = property(_get_size)

[docs] def fill(self, color):
 """
 Fills the entire image with the specified color.

 :param color: a three-tuple of RGB values ranging from 0-255. Example:
 (255, 128, 0) is orange.
 :type color: a three-tuple of ints.
 :returns: This image.
 """
 self._surf.fill(color)
 self._version += 1
 spyral.util.scale_surface.clear(self._surf)
 return self

[docs] def draw_rect(self, color, position, size=None,
 border_width=0, anchor='topleft'):
 """
 Draws a rectangle on this image.

 :param color: a three-tuple of RGB values ranging from 0-255. Example:
 (255, 128, 0) is orange.
 :type color: a three-tuple of ints.
 :param position: The starting position of the rect (top-left corner). If
 position is a Rect, then size should be `None`.
 :type position: :class:`Vec2D <spyral.Vec2D>` or
 :class:`Rect <spyral.Rect>`
 :param size: The size of the rectangle; should not be given if position
 is a rect.
 :type size: :class:`Vec2D <spyral.Vec2D>`
 :param int border_width: The width of the border to draw. If it is 0,
 the rectangle is filled with the color
 specified.
 :param str anchor: The anchor parameter is an
 :ref:`anchor position <ref.anchors>`.
 :returns: This image.
 """
 if size is None:
 rect = spyral.Rect(position)
 else:
 rect = spyral.Rect(position, size)
 offset = self._calculate_offset(anchor, rect.size)
 pygame.draw.rect(self._surf, color,
 (rect.pos + offset, rect.size), border_width)
 self._version += 1
 spyral.util.scale_surface.clear(self._surf)
 return self

[docs] def draw_lines(self, color, points, width=1, closed=False):
 """
 Draws a series of connected lines on a image, with the
 vertices specified by points. This does not draw any sort of
 end caps on lines.

 :param color: a three-tuple of RGB values ranging from 0-255. Example:
 (255, 128, 0) is orange.
 :type color: a three-tuple of ints.
 :param points: A list of points that will be connected, one to another.
 :type points: A list of :class:`Vec2D <spyral.Vec2D>` s.
 :param int width: The width of the lines.
 :param bool closed: If closed is True, the first and last point will be
 connected. If closed is True and width is 0, the
 shape will be filled.
 :returns: This image.
 """
 if width == 1:
 pygame.draw.aalines(self._surf, color, closed, points)
 else:
 pygame.draw.lines(self._surf, color, closed, points, width)
 self._version += 1
 spyral.util.scale_surface.clear(self._surf)
 return self

[docs] def draw_circle(self, color, position, radius, width=0, anchor='topleft'):
 """
 Draws a circle on this image.

 :param color: a three-tuple of RGB values ranging from 0-255. Example:
 (255, 128, 0) is orange.
 :type color: a three-tuple of ints.
 :param position: The center of this circle
 :type position: :class:`Vec2D <spyral.Vec2D>`
 :param int radius: The radius of this circle
 :param int width: The width of the circle. If it is 0, the circle is
 filled with the color specified.
 :param str anchor: The anchor parameter is an
 :ref:`anchor position <ref.anchors>`.
 :returns: This image.
 """
 offset = self._calculate_offset(anchor)
 pygame.draw.circle(self._surf, color, (position + offset).floor(),
 radius, width)
 self._version += 1
 spyral.util.scale_surface.clear(self._surf)
 return self

[docs] def draw_ellipse(self, color, position, size=None,
 border_width=0, anchor='topleft'):
 """
 Draws an ellipse on this image.

 :param color: a three-tuple of RGB values ranging from 0-255. Example:
 (255, 128, 0) is orange.
 :type color: a three-tuple of ints.
 :param position: The starting position of the ellipse (top-left corner).
 If position is a Rect, then size should be `None`.
 :type position: :class:`Vec2D <spyral.Vec2D>` or
 :class:`Rect <spyral.Rect>`
 :param size: The size of the ellipse; should not be given if position is
 a rect.
 :type size: :class:`Vec2D <spyral.Vec2D>`
 :param int border_width: The width of the ellipse. If it is 0, the
 ellipse is filled with the color specified.
 :param str anchor: The anchor parameter is an
 :ref:`anchor position <ref.anchors>`.
 :returns: This image.
 """
 if size is None:
 rect = spyral.Rect(position)
 else:
 rect = spyral.Rect(position, size)
 offset = self._calculate_offset(anchor, rect.size)
 pygame.draw.ellipse(self._surf, color,
 (rect.pos + offset, rect.size), border_width)
 self._version += 1
 spyral.util.scale_surface.clear(self._surf)
 return self

[docs] def draw_point(self, color, position, anchor='topleft'):
 """
 Draws a point on this image.

 :param color: a three-tuple of RGB values ranging from 0-255. Example:
 (255, 128, 0) is orange.
 :type color: a three-tuple of ints.
 :param position: The position of this point.
 :type position: :class:`Vec2D <spyral.Vec2D>`
 :param str anchor: The anchor parameter is an
 :ref:`anchor position <ref.anchors>`.
 :returns: This image.
 """
 offset = self._calculate_offset(anchor)
 self._surf.set_at(position + offset, color)
 self._version += 1
 spyral.util.scale_surface.clear(self._surf)
 return self

[docs] def draw_arc(self, color, start_angle, end_angle,
 position, size=None, border_width=0, anchor='topleft'):
 """
 Draws an elliptical arc on this image.

 :param color: a three-tuple of RGB values ranging from 0-255. Example:
 (255, 128, 0) is orange.
 :type color: a three-tuple of ints.
 :param float start_angle: The starting angle, in radians, of the arc.
 :param float end_angle: The ending angle, in radians, of the arc.
 :param position: The starting position of the ellipse (top-left corner).
 If position is a Rect, then size should be `None`.
 :type position: :class:`Vec2D <spyral.Vec2D>` or
 :class:`Rect <spyral.Rect>`
 :param size: The size of the ellipse; should not be given if position is
 a rect.
 :type size: :class:`Vec2D <spyral.Vec2D>`
 :param int border_width: The width of the ellipse. If it is 0, the
 ellipse is filled with the color specified.
 :param str anchor: The anchor parameter is an
 :ref:`anchor position <ref.anchors>`.
 :returns: This image.
 """
 if size is None:
 rect = spyral.Rect(position)
 else:
 rect = spyral.Rect(position, size)
 offset = self._calculate_offset(anchor, rect.size)
 pygame.draw.arc(self._surf, color, (rect.pos + offset, rect.size),
 start_angle, end_angle, border_width)
 self._version += 1
 spyral.util.scale_surface.clear(self._surf)
 return self

[docs] def draw_image(self, image, position=(0, 0), anchor='topleft'):
 """
 Draws another image over this one.

 :param image: The image to overlay on top of this one.
 :type image: :class:`Image <spyral.Image>`
 :param position: The position of this image.
 :type position: :class:`Vec2D <spyral.Vec2D>`
 :param str anchor: The anchor parameter is an
 :ref:`anchor position <ref.anchors>`.
 :returns: This image.
 """
 offset = self._calculate_offset(anchor, image._surf.get_size())
 self._surf.blit(image._surf, position + offset)
 self._version += 1
 spyral.util.scale_surface.clear(self._surf)
 return self

[docs] def rotate(self, angle):
 """
 Rotates the image by angle degrees clockwise. This may change the image
 dimensions if the angle is not a multiple of 90.

 Successive rotations degrate image quality. Save a copy of the
 original if you plan to do many rotations.

 :param float angle: The number of degrees to rotate.
 :returns: This image.
 """
 self._surf = pygame.transform.rotate(self._surf, angle).convert_alpha()
 self._version += 1
 return self

[docs] def scale(self, size):
 """
 Scales the image to the destination size.

 :param size: The new size of the image.
 :type size: :class:`Vec2D <spyral.Vec2D>`
 :returns: This image.
 """
 self._surf = pygame.transform.smoothscale(self._surf,
 size).convert_alpha()
 self._version += 1
 return self

[docs] def flip(self, flip_x=True, flip_y=True):
 """
 Flips the image horizontally, vertically, or both.

 :param bool flip_x: whether to flip horizontally.
 :param bool flip_y: whether to flip vertically.
 :returns: This image.
 """
 self._version += 1
 self._surf = pygame.transform.flip(self._surf,
 flip_x, flip_y).convert_alpha()
 return self

[docs] def copy(self):
 """
 Returns a copy of this image that can be changed while preserving the
 original.

 :returns: A new image.
 """
 new = copy.copy(self)
 new._surf = self._surf.copy()
 return new

[docs] def crop(self, position, size=None):
 """
 Removes the edges of an image, keeping the internal rectangle specified
 by position and size.

 :param position: The upperleft corner of the internal rectangle that
 will be preserved.
 :type position: a :class:`Vec2D <spyral.Vec2D>` or a
 :class:`Rect <spyral.Rect>`.
 :param size: The size of the internal rectangle to preserve. If a Rect
 was passed in for position, this should be None.
 :type size: :class:`Vec2D <spyral.Vec2D>` or None.
 :returns: This image.
 """
 if size is None:
 rect = spyral.Rect(position)
 else:
 rect = spyral.Rect(position, size)
 new = _new_spyral_surface(size)
 new.blit(self._surf, (0, 0), (rect.pos, rect.size))
 self._surf = new
 self._version += 1
 return self

 def _calculate_offset(self, anchor_type, size=(0, 0)):
 """
 Internal method for calculating the offset associated with an
 anchor type.

 :param anchor_type: A string indicating the position of the anchor,
 taken from :ref:`anchor position <ref.anchors>`. A
 numerical offset can also be specified.
 :type anchor_type: str or a :class:`Vec2D <spyral.Vec2D>`.
 :param size: The size of the region to offset in.
 :type size: :class:`Vec2D <spyral.Vec2D>`.
 """
 w, h = self._surf.get_size()
 w2, h2 = size

 if anchor_type == 'topleft':
 return spyral.Vec2D(0, 0)
 elif anchor_type == 'topright':
 return spyral.Vec2D(w - w2, 0)
 elif anchor_type == 'midtop':
 return spyral.Vec2D((w - w2) / 2., 0)
 elif anchor_type == 'bottomleft':
 return spyral.Vec2D(0, h - h2)
 elif anchor_type == 'bottomright':
 return spyral.Vec2D(w - w2, h - h2)
 elif anchor_type == 'midbottom':
 return spyral.Vec2D((w - w2) / 2., h - h2)
 elif anchor_type == 'midleft':
 return spyral.Vec2D(0, (h - h2) / 2.)
 elif anchor_type == 'midright':
 return spyral.Vec2D(w - w2, (h - h2) / 2.)
 elif anchor_type == 'center':
 return spyral.Vec2D((w - w2) / 2., (h - h2) / 2.)
 else:
 return spyral.Vec2D(anchor_type) - spyral.Vec2D(w2, h2)

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

_modules/spyral/easing.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

 		Module code »

 		spyral »

 Source code for spyral.easing

"""
This module provides a set of built-in easings which can be used by any
game. Additionally, custom easings can be built. An easing should be a
function (or callable) which takes in a sprite, and a time delta which
is normalized to [0,1], and returns the state of easing at that time.
See the source code of this module for some example implementations.
Built-in easings are stateless, so the same animation can be used many
times or on many different objects. Custom easings do not have to be
stateless.

Visualizations of these easings are available at
`http://easings.net <http://easings.net>`_ .
"""

import math

[docs]def Linear(start=0.0, finish=1.0):
 """
 Linearly increasing: f(x) = x
 """
 def linear_easing(sprite, delta):
 return (finish - start) * (delta) + start
 return linear_easing

[docs]def QuadraticIn(start=0.0, finish=1.0):
 """
 Quadratically increasing, starts slower : f(x) = x ^ 2
 """
 def quadratic_easing(sprite, delta):
 return start + (finish - start) * delta * delta
 return quadratic_easing

[docs]def QuadraticOut(start=0.0, finish=1.0):
 """
 Quadratically increasing, starts faster : f(x) = 2x - x^2
 """
 def quadratic_out_easing(sprite, delta):
 return start + (finish - start) * (2.0 * delta - delta * delta)
 return quadratic_out_easing

[docs]def QuadraticInOut(start=0.0, finish=1.0):
 """
 Quadratically increasing, starts and ends slowly but fast in the middle.
 """
 def quadratic_in_out_easing(sprite, delta):
 delta *= 2
 if delta < 1:
 return start + 0.5 * delta * delta * (finish - start)
 delta -= 1
 return start + (delta - 0.5 * delta * delta + 0.5) * (finish - start)
 return quadratic_in_out_easing

[docs]def CubicIn(start=0.0, finish=1.0):
 """
 Cubically increasing, starts very slow : f(x) = x^3
 """
 def cubic_in_easing(sprite, delta):
 return start + (delta * delta * delta) * (finish - start)
 return cubic_in_easing

[docs]def CubicOut(start=0.0, finish=1.0):
 """
 Cubically increasing, starts very fast : f(x) = 1 + (x-1)^3
 """
 def cubic_out_easing(sprite, delta):
 delta -= 1.0
 return start + (delta * delta * delta + 1.0) * (finish - start)
 return cubic_out_easing

[docs]def CubicInOut(start=0.1, finish=1.0):
 """
 Cubically increasing, starts and ends very slowly but very fast in the
 middle.
 """
 def cubic_in_out_easing(sprite, delta):
 delta *= 2.0
 if delta < 1.0:
 return start + 0.5 * delta * delta * delta * (finish - start)
 delta -= 2.0
 return ((1.0 + 0.5 * delta * delta * delta) *
 (finish - start) +
 2.0 * start)
 return cubic_in_out_easing

[docs]def Iterate(items, times=1):
 """
 Iterate over a list of items. This particular easing is very useful
 for creating image animations, e.g.::

 walk_images = [spyral.Image('f1.png'), spyral.Image('f2.png'), spyral.Image('f3.png')]
 walking_animation = Animation('image', easing.Iterate(walk_images), 2.0, loop=True)
 my_sprite.animate(walking_animation)

 :param list items: A list of items (e.g., a list of
 :class:`Images <spyral.Image>`).
 :param int times: The number of times to iterate through the list.
 """
 def iterate_easing(sprite, delta):
 # We preturb the result slightly negative so that it ends on
 # the last frame instead of looping back to the first
 i = round(delta * len(items) * times)
 return items[int(i % len(items))]
 return iterate_easing

[docs]def Sine(amplitude=1.0, phase=0, end_phase=2.0 * math.pi):
 """
 Depending on the arguments, moves at a different pace according to the sine
 function.
 """
 def sin_easing(sprite, delta):
 return amplitude * math.sin(phase + delta * (2.0 * math.pi - phase))
 return sin_easing

[docs]def LinearTuple(start=(0, 0), finish=(0, 0)):
 """
 Linearly increasing, but with two properites instead of one.
 """
 def linear_easing(sprite, delta):
 return ((finish[0] - start[0]) * delta + start[0],
 (finish[1] - start[1]) * delta + start[1])
 return linear_easing

[docs]def Arc(center=(0, 0), radius=1, theta_start=0, theta_end=2 * math.pi):
 """
 Increasing according to a circular curve for two properties.
 """
 def arc_easing(sprite, delta):
 theta = (theta_end - theta_start) * delta
 return (center[0] + radius * math.cos(theta),
 center[1] + radius * math.sin(theta))
 return arc_easing

[docs]def Polar(center=(0, 0),
 radius=lambda theta: 1.0,
 theta_start=0,
 theta_end=2 * math.pi):
 """
 Similar to an Arc, except the radius should be a function of time.
 """
 def arc_easing(sprite, delta):
 theta = (theta_end - theta_start) * delta
 return (center[0] + radius(theta) * math.cos(theta),
 center[1] + radius(theta) * math.sin(theta))
 return arc_easing

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

_modules/spyral/mouse.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

 		Module code »

 		spyral »

 Source code for spyral.mouse

"""The mouse modules provides an interface to adjust the mouse cursor.

.. attribute:: visible

 `Bool` that adjust whether the mouse cursor should be shown. This is useful
 if you want to, for example, use a Sprite instead of the regular mouse
 cursor.

.. attribute:: cursor

 `str` value that lets you choose from among the built-in options for
 cursors. The options are:

 * ``"arrow"`` : the regular arrow-shaped cursor
 * ``"diamond"`` : a diamond shaped cursor
 * ``"x"`` : a broken X, useful for indicating disabled states.
 * ``"left"``: a triangle pointing to the left
 * ``"right"``: a triangle pointing to the right

 .. warning:: Custom non-Sprite mouse cursors are currently not supported.

"""

import sys
import types
import pygame

old = sys.modules[__name__]

cursors = {"arrow": pygame.cursors.arrow,
 "diamond": pygame.cursors.diamond,
 "x": pygame.cursors.broken_x,
 "left": pygame.cursors.tri_left,
 "right": pygame.cursors.tri_right}

class _MouseModule(types.ModuleType):
 def __init__(self, *args):
 types.ModuleType.__init__(self, *args)
 self._visible = True
 def _get_cursor(self):
 return pygame.mouse.get_cursor()
 def _set_cursor(self, cursor):
 if cursor in cursors:
 pygame.mouse.set_cursor(*cursors[cursor])
 else:
 pygame.mouse.set_cursor(*cursor)
 def _get_visible(self):
 return self._visible
 def _set_visible(self, visiblity):
 pygame.mouse.set_visible(visiblity)
 self._visible = visiblity
 cursor = property(_get_cursor, _set_cursor)
 visible = property(_get_visible, _set_visible)

Keep the refcount from going to 0
mouse = _MouseModule(__name__)
sys.modules[__name__] = mouse
mouse.__dict__.update(old.__dict__)

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

_modules/spyral/director.html

 Navigation

 		
 index

 		
 modules |

 		Platipy 0.9.6 documentation »

 		Module code »

 		spyral »

 Source code for spyral.director

import spyral
import pygame

_initialized = False
_stack = []
_screen = None
_tick = 0
_max_fps = 30
_max_ups = 30

[docs]def quit():
 """
 Cleanly quits out of spyral by emptying the stack.
 """
 spyral._quit()

[docs]def init(size=(0, 0),
 max_ups=30,
 max_fps=30,
 fullscreen=False,
 caption="My Spyral Game"):
 """
 Initializes the director. This should be called at the very beginning of
 your game.

 :param size: The resolution of the display window. (0,0) uses the screen
 resolution
 :type size: :class:`Vec2D <spyral.Vec2D>`
 :param max_fps: The number of times that the director.update event will
 occur per frame. This will remain the same, even if fps
 drops.
 :type max_fps: ``int``
 :param max_ups: The number of frames per second that should occur when
 your game is run.
 :type max_ups: ``int``
 :param fullscreen: Whether your game should start in fullscreen mode.
 :type fullscreen: ``bool``
 :param caption: The caption that will be displayed in the window.
 Typically the name of your game.
 :type caption: ``str``
 """
 global _initialized
 global _screen
 global _max_fps
 global _max_ups

 if _initialized:
 print 'Warning: Tried to initialize the director twice. Ignoring.'
 spyral._init()

 flags = 0
 # These flags are going to be managed better or elsewhere later
 resizable = False
 noframe = False

 if resizable:
 flags |= pygame.RESIZABLE
 if noframe:
 flags |= pygame.NOFRAME
 if fullscreen:
 flags |= pygame.FULLSCREEN
 _screen = pygame.display.set_mode(size, flags)

 _initialized = True
 pygame.display.set_caption(caption)

 _max_ups = max_ups
 _max_fps = max_fps

[docs]def get_scene():
 """
 Returns the currently running scene; this will be the Scene on the top of
 the director's stack.

 :rtype: :class:`Scene <spyral.Scene>`
 :returns: The currently running Scene, or `None`.
 """
 try:
 return _stack[-1]
 except IndexError:
 return None

[docs]def get_tick():
 """
 Returns the current tick number, where ticks happen on each update,
 not on each frame. A tick is a "tick of the clock", and will happen many
 (usually 30) times per second.

 :rtype: int
 :returns: The current number of ticks since the start of the game.
 """
 return _tick

[docs]def replace(scene):
 """
 Replace the currently running scene on the stack with *scene*.
 Execution will continue after this is called, so make sure you return;
 otherwise you may find unexpected behavior::

 spyral.director.replace(Scene())
 print "This will be printed!"
 return

 :param scene: The new scene.
 :type scene: :class:`Scene <spyral.Scene>`
 """
 if _stack:
 spyral.event.handle('director.scene.exit', scene=_stack[-1])
 old = _stack.pop()
 spyral.sprite._switch_scene()
 _stack.append(scene)
 spyral.event.handle('director.scene.enter',
 event=spyral.Event(scene=scene),
 scene=scene)
 # Empty all events!
 pygame.event.get()

[docs]def pop():
 """
 Pop the top scene off the stack, returning control to the next scene
 on the stack. If the stack is empty, the program will quit.
 This does return control, so remember to return immediately after
 calling it.
 """
 if len(_stack) < 1:
 return
 spyral.event.handle('director.scene.exit', scene=_stack[-1])
 scene = _stack.pop()
 spyral.sprite._switch_scene()
 if _stack:
 scene = _stack[-1]
 spyral.event.handle('director.scene.enter', scene=scene)
 else:
 exit(0)
 pygame.event.get()

[docs]def push(scene):
 """
 Place *scene* on the top of the stack, and move control to it. This does
 return control, so remember to return immediately after calling it.

 :param scene: The new scene.
 :type scene: :class:`Scene <spyral.Scene>`
 """
 if _stack:
 spyral.event.handle('director.scene.exit', scene=_stack[-1])
 old = _stack[-1]
 spyral.sprite._switch_scene()
 _stack.append(scene)
 spyral.event.handle('director.scene.enter', scene=scene)
 # Empty all events!
 pygame.event.get()

[docs]def run(sugar=False, profiling=False, scene=None):
 """
 Begins running the game, starting with the scene on top of the stack. You
 can also pass in a *scene* to push that scene on top of the stack. This
 function will run until your game ends, at which point execution will end
 too.

 :param bool sugar: Whether to run the game for Sugar. This is only
 to the special XO Launcher; it is safe to ignore.
 :param bool profiling: Whether to enable profiling mode, where this function
 will return on every scene change so that scenes can
 be profiled independently.
 :param scene: The first scene.
 :type scene: :class:`Scene <spyral.Scene>`
 """
 if scene is not None:
 push(scene)
 if sugar:
 import gtk
 if not _stack:
 return
 old_scene = None
 scene = get_scene()
 clock = scene.clock
 stack = _stack
 while True:
 scene = stack[-1]
 if scene is not old_scene:
 if profiling and old_scene is not None:
 return
 clock = scene.clock
 old_scene = scene

 def frame_callback(interpolation):
 """
 A closure for handling drawing, which includes forcing the
 rendering-related events to be fired.
 """
 scene._handle_event("director.pre_render")
 scene._handle_event("director.render")
 scene._draw()
 scene._handle_event("director.post_render")

 def update_callback(delta):
 """
 A closure for handling events, which includes firing the update
 related events (e.g., pre_update, update, and post_update).
 """
 global _tick
 if sugar:
 while gtk.events_pending():
 gtk.main_iteration()
 if len(pygame.event.get([pygame.VIDEOEXPOSE])) > 0:
 scene.redraw()
 scene._handle_event("director.redraw")

 scene._event_source.tick()
 events = scene._event_source.get()
 for event in events:
 scene._queue_event(*spyral.event._pygame_to_spyral(event))
 scene._handle_event("director.pre_update")
 scene._handle_event("director.update",
 spyral.Event(delta=delta))
 _tick += 1
 scene._handle_event("director.post_update")
 clock.frame_callback = frame_callback
 clock.update_callback = update_callback
 clock.tick()

 © Copyright 2014, Robert Deaton, Austin Bart.
 Created using Sphinx 1.2.2.

_images/icon-terminal.png

_images/platipy-big.png

_images/icon-browse.png

_images/anchors.png
topleft midtop topright

midleft midright

bottomleft midbottom bottomright

_images/rect.png
topleft

(x, y)
(left, top) top topright
left right
bottomleft bottom (bottom, right)
bottomright
—>

width

height

_images/icon-log.png

_images/huang2014.png
Wrong answer!
arry to wrong value]
add tens value

X 88 T !

(€T D
o A B A

instruction

Remedial
H

_images/icon-maze.png

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up.png

_static/plus.png

