

Pillow

Pillow is the friendly PIL fork by Alex Clark and Contributors [https://github.com/python-pillow/Pillow/graphs/contributors]. PIL is the Python Imaging Library by Fredrik Lundh and Contributors.

[image: _images/Pillow.svg]
 [https://zenodo.org/badge/latestdoi/17549/python-pillow/Pillow][image: Documentation Status]
 [https://pillow.readthedocs.io/?badge=latest][image: Travis CI build status (Linux)]
 [https://travis-ci.org/python-pillow/Pillow][image: Travis CI build status (macOS)]
 [https://travis-ci.org/python-pillow/pillow-wheels][image: AppVeyor CI build status (Windows)]
 [https://ci.appveyor.com/project/python-pillow/Pillow][image: Latest PyPI version]
 [https://pypi.org/project/Pillow/][image: Code coverage]
 [https://coveralls.io/github/python-pillow/Pillow?branch=master]

	Installation
	Warnings

	Notes

	Basic Installation

	Building From Source

	Platform Support

	Old Versions

	Handbook
	Overview

	Tutorial

	Concepts

	Appendices

	Reference
	Image Module

	ImageChops (“Channel Operations”) Module

	ImageColor Module

	ImageCms Module

	ImageDraw Module

	ImageEnhance Module

	ImageFile Module

	ImageFilter Module

	ImageFont Module

	ImageGrab Module (macOS and Windows only)

	ImageMath Module

	ImageMorph Module

	ImageOps Module

	ImagePalette Module

	ImagePath Module

	ImageQt Module

	ImageSequence Module

	ImageStat Module

	ImageTk Module

	ImageWin Module (Windows-only)

	ExifTags Module

	TiffTags Module

	PSDraw Module

	PixelAccess Class

	PyAccess Module

	PIL Package (autodoc of remaining modules)

	Plugin reference

	Internal Reference Docs

	Porting

	About
	Goals

	License

	Why a fork?

	What about PIL?

	Release Notes
	5.2.0

	5.1.0

	5.0.0

	4.3.0

	4.2.1

	4.2.0

	4.1.1

	4.1.0

	4.0.0

	3.4.0

	3.3.2

	3.3.0

	3.2.0

	3.1.2

	3.1.1

	3.1.0

	3.0.0

	2.8.0

	2.7.0

Indices and tables

	Index

	Module Index

	Search Page

Installation

Warnings

Warning

Pillow and PIL cannot co-exist in the same environment. Before installing Pillow, please uninstall PIL.

Warning

Pillow >= 1.0 no longer supports “import Image”. Please use “from PIL import Image” instead.

Warning

Pillow >= 2.1.0 no longer supports “import _imaging”. Please use “from PIL.Image import core as _imaging” instead.

Notes

Note

Pillow < 2.0.0 supports Python versions 2.4, 2.5, 2.6, 2.7.

Note

Pillow >= 2.0.0 < 4.0.0 supports Python versions 2.6, 2.7, 3.2, 3.3, 3.4, 3.5

Note

Pillow >= 4.0.0 < 5.0.0 supports Python versions 2.7, 3.3, 3.4, 3.5, 3.6

Note

Pillow >= 5.0.0 < 5.2.0 supports Python versions 2.7, 3.4, 3.5, 3.6

Note

Pillow >= 5.2.0 supports Python versions 2.7, 3.4, 3.5, 3.6, 3.7

Basic Installation

Note

The following instructions will install Pillow with support for
most common image formats. See External Libraries for a
full list of external libraries supported.

Install Pillow with pip:

$ pip install Pillow

Windows Installation

We provide Pillow binaries for Windows compiled for the matrix of
supported Pythons in both 32 and 64-bit versions in wheel, egg, and
executable installers. These binaries have all of the optional
libraries included except for raqm and libimagequant:

> pip install Pillow

macOS Installation

We provide binaries for macOS for each of the supported Python
versions in the wheel format. These include support for all optional
libraries except libimagequant. Raqm support requires libraqm,
fribidi, and harfbuzz to be installed separately:

$ pip install Pillow

Linux Installation

We provide binaries for Linux for each of the supported Python
versions in the manylinux wheel format. These include support for all
optional libraries except libimagequant. Raqm support requires
libraqm, fribidi, and harfbuzz to be installed separately:

$ pip install Pillow

Most major Linux distributions, including Fedora, Debian/Ubuntu and
ArchLinux also include Pillow in packages that previously contained
PIL e.g. python-imaging.

FreeBSD Installation

Pillow can be installed on FreeBSD via the official Ports or Packages systems:

Ports:

$ cd /usr/ports/graphics/py-pillow && make install clean

Packages:

$ pkg install py27-pillow

Note

The Pillow FreeBSD port [https://www.freshports.org/graphics/py-pillow/] and packages
are tested by the ports team with all supported FreeBSD versions
and against Python 2.7 and 3.x.

Building From Source

Download and extract the compressed archive from PyPI [https://pypi.org/project/Pillow/].

External Libraries

Note

You do not need to install all supported external libraries to
use Pillow’s basic features. Zlib and libjpeg are required
by default.

Note

There are scripts to install the dependencies for some operating
systems included in the depends directory. Also see the
Dockerfiles in our docker images repo [https://github.com/python-pillow/docker-images].

Many of Pillow’s features require external libraries:

	libjpeg provides JPEG functionality.

	Pillow has been tested with libjpeg versions 6b, 8, 9, 9a,
and 9b and libjpeg-turbo version 8.

	Starting with Pillow 3.0.0, libjpeg is required by default, but
may be disabled with the --disable-jpeg flag.

	zlib provides access to compressed PNGs

	Starting with Pillow 3.0.0, zlib is required by default, but may
be disabled with the --disable-zlib flag.

	libtiff provides compressed TIFF functionality

	Pillow has been tested with libtiff versions 3.x and 4.0

	libfreetype provides type related services

	littlecms provides color management

	Pillow version 2.2.1 and below uses liblcms1, Pillow 2.3.0 and
above uses liblcms2. Tested with 1.19 and 2.7.

	libwebp provides the WebP format.

	Pillow has been tested with version 0.1.3, which does not read
transparent WebP files. Versions 0.3.0 and above support
transparency.

	tcl/tk provides support for tkinter bitmap and photo images.

	openjpeg provides JPEG 2000 functionality.

	Pillow has been tested with openjpeg 2.0.0 and 2.1.0.

	Pillow does not support the earlier 1.5 series which ships
with Ubuntu <= 14.04 and Debian Jessie.

	libimagequant provides improved color quantization

	Pillow has been tested with libimagequant 2.6-2.11

	Libimagequant is licensed GPLv3, which is more restrictive than
the Pillow license, therefore we will not be distributing binaries
with libimagequant support enabled.

	Windows support: Libimagequant requires VS2013/MSVC 18 to compile,
so it is unlikely to work with any Python prior to 3.5 on Windows.

	libraqm provides complex text layout support.

	libraqm provides bidirectional text support (using FriBiDi),
shaping (using HarfBuzz), and proper script itemization. As a
result, Raqm can support most writing systems covered by Unicode.

	libraqm depends on the following libraries: FreeType, HarfBuzz,
FriBiDi, make sure that you install them before install libraqm
if not available as package in your system.

	setting text direction or font features is not supported without
libraqm.

	libraqm is dynamically loaded in Pillow 5.0.0 and above, so support
is available if all the libraries are installed.

	Windows support: Raqm support is currently unsupported on Windows.

Once you have installed the prerequisites, run:

$ pip install Pillow

If the prerequisites are installed in the standard library locations
for your machine (e.g. /usr or /usr/local), no
additional configuration should be required. If they are installed in
a non-standard location, you may need to configure setuptools to use
those locations by editing setup.py or
setup.cfg, or by adding environment variables on the command
line:

$ CFLAGS="-I/usr/pkg/include" pip install pillow

If Pillow has been previously built without the required
prerequisites, it may be necessary to manually clear the pip cache or
build without cache using the --no-cache-dir option to force a
build with newly installed external libraries.

Build Options

	Environment variable: MAX_CONCURRENCY=n. By default, Pillow will
use multiprocessing to build the extension on all available CPUs,
but not more than 4. Setting MAX_CONCURRENCY to 1 will disable
parallel building.

	Build flags: --disable-zlib, --disable-jpeg,
--disable-tiff, --disable-freetype, --disable-tcl,
--disable-tk, --disable-lcms, --disable-webp,
--disable-webpmux, --disable-jpeg2000,
--disable-imagequant.
Disable building the corresponding feature even if the development
libraries are present on the building machine.

	Build flags: --enable-zlib, --enable-jpeg,
--enable-tiff, --enable-freetype, --enable-tcl,
--enable-tk, --enable-lcms, --enable-webp,
--enable-webpmux, --enable-jpeg2000,
--enable-imagequant.
Require that the corresponding feature is built. The build will raise
an exception if the libraries are not found. Webpmux (WebP metadata)
relies on WebP support. Tcl and Tk also must be used together.

	Build flag: --disable-platform-guessing. Skips all of the
platform dependent guessing of include and library directories for
automated build systems that configure the proper paths in the
environment variables (e.g. Buildroot).

	Build flag: --debug. Adds a debugging flag to the include and
library search process to dump all paths searched for and found to
stdout.

Sample usage:

$ MAX_CONCURRENCY=1 python setup.py build_ext --enable-[feature] install

or using pip:

$ pip install pillow --global-option="build_ext" --global-option="--enable-[feature]"

Building on macOS

The Xcode command line tools are required to compile portions of
Pillow. The tools are installed by running xcode-select --install
from the command line. The command line tools are required even if you
have the full Xcode package installed. It may be necessary to run
sudo xcodebuild -license to accept the license prior to using the
tools.

The easiest way to install external libraries is via Homebrew [https://brew.sh/]. After you install Homebrew, run:

$ brew install libtiff libjpeg webp little-cms2

To install libraqm on macOS use Homebrew to install its dependencies:

$ brew install freetype harfbuzz fribidi

Then see depends/install_raqm_cmake.sh to install libraqm.

Now install Pillow with:

$ pip install Pillow

or from within the uncompressed source directory:

$ python setup.py install

Building on Windows

We don’t recommend trying to build on Windows. It is a maze of twisty
passages, mostly dead ends. There are build scripts and notes for the
Windows build in the winbuild directory.

Building on FreeBSD

Note

Only FreeBSD 10 and 11 tested

Make sure you have Python’s development libraries installed.:

$ sudo pkg install python2

Or for Python 3:

$ sudo pkg install python3

Prerequisites are installed on FreeBSD 10 or 11 with:

$ sudo pkg install jpeg-turbo tiff webp lcms2 freetype2 openjpeg harfbuzz fribidi

Then see depends/install_raqm_cmake.sh to install libraqm.

Building on Linux

If you didn’t build Python from source, make sure you have Python’s
development libraries installed.

In Debian or Ubuntu:

$ sudo apt-get install python-dev python-setuptools

Or for Python 3:

$ sudo apt-get install python3-dev python3-setuptools

In Fedora, the command is:

$ sudo dnf install python-devel redhat-rpm-config

Or for Python 3:

$ sudo dnf install python3-devel redhat-rpm-config

Note

redhat-rpm-config is required on Fedora 23, but not earlier versions.

Prerequisites are installed on Ubuntu 14.04 LTS with:

$ sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev \
 libfreetype6-dev liblcms2-dev libwebp-dev libharfbuzz-dev libfribidi-dev \
 tcl8.6-dev tk8.6-dev python-tk

Then see depends/install_raqm.sh to install libraqm.

Prerequisites are installed on recent RedHat Centos or Fedora with:

$ sudo dnf install libtiff-devel libjpeg-devel zlib-devel freetype-devel \
 lcms2-devel libwebp-devel tcl-devel tk-devel libraqm-devel \
 libimagequant-devel

Note that the package manager may be yum or dnf, depending on the
exact distribution.

See also the Dockerfiles in the Test Infrastructure repo
(https://github.com/python-pillow/docker-images) for a known working
install process for other tested distros.

Building on Android

Basic Android support has been added for compilation within the Termux
environment. The dependencies can be installed by:

$ pkg -y install python python-dev ndk-sysroot clang make \
 libjpeg-turbo-dev

This has been tested within the Termux app on ChromeOS, on x86.

Platform Support

Current platform support for Pillow. Binary distributions are
contributed for each release on a volunteer basis, but the source
should compile and run everywhere platform support is listed. In
general, we aim to support all current versions of Linux, macOS, and
Windows.

Continuous Integration Targets

These platforms are built and tested for every change.

	Operating system

	Tested Python versions

	Tested Architecture

	Alpine

	2.7

	x86-64

	Arch

	2.7

	x86-64

	Amazon

	2.7

	x86-64

	Centos 6

	2.7

	x86-64

	Centos 7

	2.7

	x86-64

	Debian Stretch

	2.7

	x86

	Fedora 25

	2.7

	x86-64

	Fedora 26

	2.7

	x86-64

	Mac OS X 10.10 Yosemite*

	2.7, 3.4, 3.5, 3.6

	x86-64

	Ubuntu Linux 16.04 LTS

	2.7

	x86-64

	Ubuntu Linux 14.04 LTS

	2.7, 3.4, 3.5, 3.6, 3.7,
pypy, pypy3

	x86-64

	2.7

	x86

	Windows Server 2012 R2

	2.7, 3.4

	x86, x86-64

	pypy, 3.5/mingw

	x86

* Mac OS X CI is not run for every commit, but is run for every release.

Other Platforms

These platforms have been reported to work at the versions mentioned.

Note

Contributors please test Pillow on your platform then update this
document and send a pull request.

	Operating system

	Tested Python versions

	Latest tested Pillow version

	Tested processors

	macOS 10.13 High Sierra

	2.7, 3.4, 3.5, 3.6

	4.2.1

	x86-64

	macOS 10.12 Sierra

	2.7, 3.4, 3.5, 3.6

	4.1.1

	x86-64

	Mac OS X 10.11 El Capitan

	2.7, 3.3, 3.4, 3.5

	4.1.0

	x86-64

	Mac OS X 10.9 Mavericks

	2.7, 3.2, 3.3, 3.4

	3.0.0

	x86-64

	Mac OS X 10.8 Mountain Lion

	2.6, 2.7, 3.2, 3.3

	
	x86-64

	Redhat Linux 6

	2.6

	
	x86

	CentOS 6.3

	2.7, 3.3

	
	x86

	Fedora 23

	2.7, 3.4

	3.1.0

	x86-64

	Ubuntu Linux 12.04 LTS

	2.6, 3.2, 3.3, 3.4, 3.5
PyPy5.3.1, PyPy3 v2.4.0

	3.4.1

	x86,x86-64

	2.7

	4.3.0

	x86-64

	2.7, 3.2

	3.4.1

	ppc

	Ubuntu Linux 10.04 LTS

	2.6

	2.3.0

	x86,x86-64

	Debian 8.2 Jessie

	2.7, 3.4

	3.1.0

	x86-64

	Raspbian Jessie

	2.7, 3.4

	3.1.0

	arm

	Raspbian Stretch

	2.7, 3.5

	4.0.0

	arm

	Gentoo Linux

	2.7, 3.2

	2.1.0

	x86-64

	FreeBSD 11.1

	2.7, 3.4, 3.5, 3.6

	4.3.0

	x86-64

	FreeBSD 10.3

	2.7, 3.4, 3.5

	4.2.0

	x86-64

	FreeBSD 10.2

	2.7, 3.4

	3.1.0

	x86-64

	Windows 8.1 Pro

	2.6, 2.7, 3.2, 3.3, 3.4

	2.4.0

	x86,x86-64

	Windows 8 Pro

	2.6, 2.7, 3.2, 3.3, 3.4a3

	2.2.0

	x86,x86-64

	Windows 7 Pro

	2.7, 3.2, 3.3

	3.4.1

	x86-64

	Windows Server 2008 R2 Enterprise

	3.3

	
	x86-64

Old Versions

You can download old distributions from PyPI [https://pypi.org/project/Pillow/]. Only the latest major
releases for Python 2.x and 3.x are visible, but all releases are
available by direct URL access
e.g. https://pypi.org/project/Pillow/1.0/.

Handbook

	Overview
	Image Archives

	Image Display

	Image Processing

	Tutorial
	Using the Image class

	Reading and writing images

	Cutting, pasting, and merging images

	Geometrical transforms

	Color transforms

	Image enhancement

	Image sequences

	Postscript printing

	More on reading images

	Controlling the decoder

	Concepts
	Bands

	Modes

	Size

	Coordinate System

	Palette

	Info

	Filters

	Appendices
	Image file formats

	Writing Your Own Image Plugin

	Decoders

	Writing Your Own File Decoder in C

	Writing Your Own File Decoder in Python

Overview

The Python Imaging Library adds image processing capabilities to your
Python interpreter.

This library provides extensive file format support, an efficient internal
representation, and fairly powerful image processing capabilities.

The core image library is designed for fast access to data stored in a few
basic pixel formats. It should provide a solid foundation for a general image
processing tool.

Let’s look at a few possible uses of this library.

Image Archives

The Python Imaging Library is ideal for image archival and batch processing
applications. You can use the library to create thumbnails, convert between
file formats, print images, etc.

The current version identifies and reads a large number of formats. Write
support is intentionally restricted to the most commonly used interchange and
presentation formats.

Image Display

The current release includes Tk PhotoImage and
BitmapImage interfaces, as well as a Windows
DIB interface that can be used with PythonWin and other
Windows-based toolkits. Many other GUI toolkits come with some kind of PIL
support.

For debugging, there’s also a show() method which saves an image to
disk, and calls an external display utility.

Image Processing

The library contains basic image processing functionality, including point operations, filtering with a set of built-in convolution kernels, and colour space conversions.

The library also supports image resizing, rotation and arbitrary affine transforms.

There’s a histogram method allowing you to pull some statistics out of an image. This can be used for automatic contrast enhancement, and for global statistical analysis.

Tutorial

Using the Image class

The most important class in the Python Imaging Library is the
Image class, defined in the module with the same name.
You can create instances of this class in several ways; either by loading
images from files, processing other images, or creating images from scratch.

To load an image from a file, use the open() function
in the Image module:

>>> from PIL import Image
>>> im = Image.open("hopper.ppm")

If successful, this function returns an Image object.
You can now use instance attributes to examine the file contents:

>>> from __future__ import print_function
>>> print(im.format, im.size, im.mode)
PPM (512, 512) RGB

The format attribute identifies the source of an
image. If the image was not read from a file, it is set to None. The size
attribute is a 2-tuple containing width and height (in pixels). The
mode attribute defines the number and names of the
bands in the image, and also the pixel type and depth. Common modes are “L”
(luminance) for greyscale images, “RGB” for true color images, and “CMYK” for
pre-press images.

If the file cannot be opened, an IOError exception is raised.

Once you have an instance of the Image class, you can use
the methods defined by this class to process and manipulate the image. For
example, let’s display the image we just loaded:

>>> im.show()

Note

The standard version of show() is not very
efficient, since it saves the image to a temporary file and calls the
xv utility to display the image. If you don’t have xv
installed, it won’t even work. When it does work though, it is very handy
for debugging and tests.

The following sections provide an overview of the different functions provided in this library.

Reading and writing images

The Python Imaging Library supports a wide variety of image file formats. To
read files from disk, use the open() function in the
Image module. You don’t have to know the file format to open a
file. The library automatically determines the format based on the contents of
the file.

To save a file, use the save() method of the
Image class. When saving files, the name becomes
important. Unless you specify the format, the library uses the filename
extension to discover which file storage format to use.

Convert files to JPEG

from __future__ import print_function
import os, sys
from PIL import Image

for infile in sys.argv[1:]:
 f, e = os.path.splitext(infile)
 outfile = f + ".jpg"
 if infile != outfile:
 try:
 Image.open(infile).save(outfile)
 except IOError:
 print("cannot convert", infile)

A second argument can be supplied to the save()
method which explicitly specifies a file format. If you use a non-standard
extension, you must always specify the format this way:

Create JPEG thumbnails

from __future__ import print_function
import os, sys
from PIL import Image

size = (128, 128)

for infile in sys.argv[1:]:
 outfile = os.path.splitext(infile)[0] + ".thumbnail"
 if infile != outfile:
 try:
 im = Image.open(infile)
 im.thumbnail(size)
 im.save(outfile, "JPEG")
 except IOError:
 print("cannot create thumbnail for", infile)

It is important to note that the library doesn’t decode or load the raster data
unless it really has to. When you open a file, the file header is read to
determine the file format and extract things like mode, size, and other
properties required to decode the file, but the rest of the file is not
processed until later.

This means that opening an image file is a fast operation, which is independent
of the file size and compression type. Here’s a simple script to quickly
identify a set of image files:

Identify Image Files

from __future__ import print_function
import sys
from PIL import Image

for infile in sys.argv[1:]:
 try:
 with Image.open(infile) as im:
 print(infile, im.format, "%dx%d" % im.size, im.mode)
 except IOError:
 pass

Cutting, pasting, and merging images

The Image class contains methods allowing you to
manipulate regions within an image. To extract a sub-rectangle from an image,
use the crop() method.

Copying a subrectangle from an image

box = (100, 100, 400, 400)
region = im.crop(box)

The region is defined by a 4-tuple, where coordinates are (left, upper, right,
lower). The Python Imaging Library uses a coordinate system with (0, 0) in the
upper left corner. Also note that coordinates refer to positions between the
pixels, so the region in the above example is exactly 300x300 pixels.

The region could now be processed in a certain manner and pasted back.

Processing a subrectangle, and pasting it back

region = region.transpose(Image.ROTATE_180)
im.paste(region, box)

When pasting regions back, the size of the region must match the given region
exactly. In addition, the region cannot extend outside the image. However, the
modes of the original image and the region do not need to match. If they don’t,
the region is automatically converted before being pasted (see the section on
Color transforms below for details).

Here’s an additional example:

Rolling an image

def roll(image, delta):
 """Roll an image sideways."""
 xsize, ysize = image.size

 delta = delta % xsize
 if delta == 0: return image

 part1 = image.crop((0, 0, delta, ysize))
 part2 = image.crop((delta, 0, xsize, ysize))
 part1.load()
 part2.load()
 image.paste(part2, (0, 0, xsize-delta, ysize))
 image.paste(part1, (xsize-delta, 0, xsize, ysize))

 return image

Note that when pasting it back from the crop()
operation, load() is called first. This is because
cropping is a lazy operation. If load() was not
called, then the crop operation would not be performed until the images were
used in the paste commands. This would mean that part1 would be cropped from
the version of image already modified by the first paste.

For more advanced tricks, the paste method can also take a transparency mask as
an optional argument. In this mask, the value 255 indicates that the pasted
image is opaque in that position (that is, the pasted image should be used as
is). The value 0 means that the pasted image is completely transparent. Values
in-between indicate different levels of transparency. For example, pasting an
RGBA image and also using it as the mask would paste the opaque portion
of the image but not its transparent background.

The Python Imaging Library also allows you to work with the individual bands of
an multi-band image, such as an RGB image. The split method creates a set of
new images, each containing one band from the original multi-band image. The
merge function takes a mode and a tuple of images, and combines them into a new
image. The following sample swaps the three bands of an RGB image:

Splitting and merging bands

r, g, b = im.split()
im = Image.merge("RGB", (b, g, r))

Note that for a single-band image, split() returns
the image itself. To work with individual color bands, you may want to convert
the image to “RGB” first.

Geometrical transforms

The PIL.Image.Image class contains methods to
resize() and rotate() an
image. The former takes a tuple giving the new size, the latter the angle in
degrees counter-clockwise.

Simple geometry transforms

out = im.resize((128, 128))
out = im.rotate(45) # degrees counter-clockwise

To rotate the image in 90 degree steps, you can either use the
rotate() method or the
transpose() method. The latter can also be used to
flip an image around its horizontal or vertical axis.

Transposing an image

out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)

transpose(ROTATE) operations can also be performed identically with
rotate() operations, provided the expand flag is
true, to provide for the same changes to the image’s size.

A more general form of image transformations can be carried out via the
transform() method.

Color transforms

The Python Imaging Library allows you to convert images between different pixel
representations using the convert() method.

Converting between modes

from PIL import Image
im = Image.open("hopper.ppm").convert("L")

The library supports transformations between each supported mode and the “L”
and “RGB” modes. To convert between other modes, you may have to use an
intermediate image (typically an “RGB” image).

Image enhancement

The Python Imaging Library provides a number of methods and modules that can be
used to enhance images.

Filters

The ImageFilter module contains a number of pre-defined
enhancement filters that can be used with the
filter() method.

Applying filters

from PIL import ImageFilter
out = im.filter(ImageFilter.DETAIL)

Point Operations

The point() method can be used to translate the pixel
values of an image (e.g. image contrast manipulation). In most cases, a
function object expecting one argument can be passed to this method. Each
pixel is processed according to that function:

Applying point transforms

multiply each pixel by 1.2
out = im.point(lambda i: i * 1.2)

Using the above technique, you can quickly apply any simple expression to an
image. You can also combine the point() and
paste() methods to selectively modify an image:

Processing individual bands

split the image into individual bands
source = im.split()

R, G, B = 0, 1, 2

select regions where red is less than 100
mask = source[R].point(lambda i: i < 100 and 255)

process the green band
out = source[G].point(lambda i: i * 0.7)

paste the processed band back, but only where red was < 100
source[G].paste(out, None, mask)

build a new multiband image
im = Image.merge(im.mode, source)

Note the syntax used to create the mask:

imout = im.point(lambda i: expression and 255)

Python only evaluates the portion of a logical expression as is necessary to
determine the outcome, and returns the last value examined as the result of the
expression. So if the expression above is false (0), Python does not look at
the second operand, and thus returns 0. Otherwise, it returns 255.

Enhancement

For more advanced image enhancement, you can use the classes in the
ImageEnhance module. Once created from an image, an enhancement
object can be used to quickly try out different settings.

You can adjust contrast, brightness, color balance and sharpness in this way.

Enhancing images

from PIL import ImageEnhance

enh = ImageEnhance.Contrast(im)
enh.enhance(1.3).show("30% more contrast")

Image sequences

The Python Imaging Library contains some basic support for image sequences
(also called animation formats). Supported sequence formats include FLI/FLC,
GIF, and a few experimental formats. TIFF files can also contain more than one
frame.

When you open a sequence file, PIL automatically loads the first frame in the
sequence. You can use the seek and tell methods to move between different
frames:

Reading sequences

from PIL import Image

im = Image.open("animation.gif")
im.seek(1) # skip to the second frame

try:
 while 1:
 im.seek(im.tell()+1)
 # do something to im
except EOFError:
 pass # end of sequence

As seen in this example, you’ll get an EOFError exception when the
sequence ends.

Note that most drivers in the current version of the library only allow you to
seek to the next frame (as in the above example). To rewind the file, you may
have to reopen it.

The following class lets you use the for-statement to loop over the sequence:

Using the ImageSequence Iterator class

from PIL import ImageSequence
for frame in ImageSequence.Iterator(im):
 # ...do something to frame...

Postscript printing

The Python Imaging Library includes functions to print images, text and
graphics on Postscript printers. Here’s a simple example:

Drawing Postscript

from PIL import Image
from PIL import PSDraw

im = Image.open("hopper.ppm")
title = "hopper"
box = (1*72, 2*72, 7*72, 10*72) # in points

ps = PSDraw.PSDraw() # default is sys.stdout
ps.begin_document(title)

draw the image (75 dpi)
ps.image(box, im, 75)
ps.rectangle(box)

draw title
ps.setfont("HelveticaNarrow-Bold", 36)
ps.text((3*72, 4*72), title)

ps.end_document()

More on reading images

As described earlier, the open() function of the
Image module is used to open an image file. In most cases, you
simply pass it the filename as an argument:

from PIL import Image
im = Image.open("hopper.ppm")

If everything goes well, the result is an PIL.Image.Image object.
Otherwise, an IOError exception is raised.

You can use a file-like object instead of the filename. The object must
implement read(), seek() and
tell() methods, and be opened in binary mode.

Reading from an open file

from PIL import Image
with open("hopper.ppm", "rb") as fp:
 im = Image.open(fp)

To read an image from string data, use the StringIO
class:

Reading from a string

import StringIO

im = Image.open(StringIO.StringIO(buffer))

Note that the library rewinds the file (using seek(0)) before reading the
image header. In addition, seek will also be used when the image data is read
(by the load method). If the image file is embedded in a larger file, such as a
tar file, you can use the ContainerIO or
TarIO modules to access it.

Reading from a tar archive

from PIL import Image, TarIO

fp = TarIO.TarIO("Tests/images/hopper.tar", "hopper.jpg")
im = Image.open(fp)

Controlling the decoder

Some decoders allow you to manipulate the image while reading it from a file.
This can often be used to speed up decoding when creating thumbnails (when
speed is usually more important than quality) and printing to a monochrome
laser printer (when only a greyscale version of the image is needed).

The draft() method manipulates an opened but not yet
loaded image so it as closely as possible matches the given mode and size. This
is done by reconfiguring the image decoder.

Reading in draft mode

This is only available for JPEG and MPO files.

from PIL import Image
from __future__ import print_function
im = Image.open(file)
print("original =", im.mode, im.size)

im.draft("L", (100, 100))
print("draft =", im.mode, im.size)

This prints something like:

original = RGB (512, 512)
draft = L (128, 128)

Note that the resulting image may not exactly match the requested mode and
size. To make sure that the image is not larger than the given size, use the
thumbnail method instead.

Concepts

The Python Imaging Library handles raster images; that is, rectangles of
pixel data.

Bands

An image can consist of one or more bands of data. The Python Imaging Library
allows you to store several bands in a single image, provided they all have the
same dimensions and depth. For example, a PNG image might have ‘R’, ‘G’, ‘B’,
and ‘A’ bands for the red, green, blue, and alpha transparency values. Many
operations act on each band separately, e.g., histograms. It is often useful to
think of each pixel as having one value per band.

To get the number and names of bands in an image, use the
getbands() method.

Modes

The mode of an image defines the type and depth of a pixel in the
image. The current release supports the following standard modes:

	1 (1-bit pixels, black and white, stored with one pixel per byte)

	L (8-bit pixels, black and white)

	P (8-bit pixels, mapped to any other mode using a color palette)

	RGB (3x8-bit pixels, true color)

	RGBA (4x8-bit pixels, true color with transparency mask)

	CMYK (4x8-bit pixels, color separation)

	YCbCr (3x8-bit pixels, color video format)

	Note that this refers to the JPEG, and not the ITU-R BT.2020, standard

	LAB (3x8-bit pixels, the L*a*b color space)

	HSV (3x8-bit pixels, Hue, Saturation, Value color space)

	I (32-bit signed integer pixels)

	F (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including LA (L
with alpha), RGBX (true color with padding) and RGBa (true color with
premultiplied alpha). However, PIL doesn’t support user-defined modes; if you
need to handle band combinations that are not listed above, use a sequence of
Image objects.

You can read the mode of an image through the mode
attribute. This is a string containing one of the above values.

Size

You can read the image size through the size
attribute. This is a 2-tuple, containing the horizontal and vertical size in
pixels.

Coordinate System

The Python Imaging Library uses a Cartesian pixel coordinate system, with (0,0)
in the upper left corner. Note that the coordinates refer to the implied pixel
corners; the centre of a pixel addressed as (0, 0) actually lies at (0.5, 0.5).

Coordinates are usually passed to the library as 2-tuples (x, y). Rectangles
are represented as 4-tuples, with the upper left corner given first. For
example, a rectangle covering all of an 800x600 pixel image is written as (0,
0, 800, 600).

Palette

The palette mode (P) uses a color palette to define the actual color for
each pixel.

Info

You can attach auxiliary information to an image using the
info attribute. This is a dictionary object.

How such information is handled when loading and saving image files is up to
the file format handler (see the chapter on Image file formats). Most
handlers add properties to the info attribute when
loading an image, but ignore it when saving images.

Filters

For geometry operations that may map multiple input pixels to a single output
pixel, the Python Imaging Library provides different resampling filters.

	NEAREST

	Pick one nearest pixel from the input image. Ignore all other input pixels.

	BOX

	Each pixel of source image contributes to one pixel of the
destination image with identical weights.
For upscaling is equivalent of NEAREST.
This filter can only be used with the resize()
and thumbnail() methods.

New in version 3.4.0.

	BILINEAR

	For resize calculate the output pixel value using linear interpolation
on all pixels that may contribute to the output value.
For other transformations linear interpolation over a 2x2 environment
in the input image is used.

	HAMMING

	Produces a sharper image than BILINEAR, doesn’t have dislocations
on local level like with BOX.
This filter can only be used with the resize()
and thumbnail() methods.

New in version 3.4.0.

	BICUBIC

	For resize calculate the output pixel value using cubic interpolation
on all pixels that may contribute to the output value.
For other transformations cubic interpolation over a 4x4 environment
in the input image is used.

	LANCZOS

	Calculate the output pixel value using a high-quality Lanczos filter (a
truncated sinc) on all pixels that may contribute to the output value.
This filter can only be used with the resize()
and thumbnail() methods.

New in version 1.1.3.

Filters comparison table

	Filter

	Downscaling
quality

	Upscaling
quality

	Performance

	NEAREST

	
	
	⭐⭐⭐⭐⭐

	BOX

	⭐

	
	⭐⭐⭐⭐

	BILINEAR

	⭐

	⭐

	⭐⭐⭐

	HAMMING

	⭐⭐

	
	⭐⭐⭐

	BICUBIC

	⭐⭐⭐

	⭐⭐⭐

	⭐⭐

	LANCZOS

	⭐⭐⭐⭐

	⭐⭐⭐⭐

	⭐

Appendices

Note

Contributors please include appendices as needed or appropriate with your bug fixes, feature additions and tests.

	Image file formats
	Fully supported formats

	Read-only formats

	Write-only formats

	Identify-only formats

	Writing Your Own Image Plugin
	Example

	The tile attribute

	Decoders
	The raw decoder

	Decoding floating point data

	The bit decoder

	Writing Your Own File Decoder in C
	Setup

	Decoding

	Cleanup

	Writing Your Own File Decoder in Python

Image file formats

The Python Imaging Library supports a wide variety of raster file formats.
Over 30 different file formats can be identified and read by the library.
Write support is less extensive, but most common interchange and presentation
formats are supported.

The open() function identifies files from their
contents, not their names, but the save() method
looks at the name to determine which format to use, unless the format is given
explicitly.

Fully supported formats

Contents

	Image file formats

	Fully supported formats

	BMP

	EPS

	GIF

	Reading sequences

	Saving

	Reading local images

	ICNS

	ICO

	IM

	JPEG

	JPEG 2000

	MSP

	PCX

	PNG

	PPM

	SGI

	SPIDER

	Writing files in SPIDER format

	TGA

	TIFF

	Saving Tiff Images

	WebP

	Saving sequences

	XBM

	Read-only formats

	BLP

	CUR

	DCX

	DDS

	FLI, FLC

	FPX

	FTEX

	GBR

	GD

	IMT

	IPTC/NAA

	MCIDAS

	MIC

	MPO

	PCD

	PIXAR

	PSD

	WAL

	XPM

	Write-only formats

	PALM

	PDF

	XV Thumbnails

	Identify-only formats

	BUFR

	FITS

	GRIB

	HDF5

	MPEG

	WMF

BMP

PIL reads and writes Windows and OS/2 BMP files containing 1, L, P,
or RGB data. 16-colour images are read as P images. Run-length encoding
is not supported.

The open() method sets the following
info properties:

	compression

	Set to bmp_rle if the file is run-length encoded.

EPS

PIL identifies EPS files containing image data, and can read files that contain
embedded raster images (ImageData descriptors). If Ghostscript is available,
other EPS files can be read as well. The EPS driver can also write EPS
images. The EPS driver can read EPS images in L, LAB, RGB and
CMYK mode, but Ghostscript may convert the images to RGB mode rather
than leaving them in the original color space. The EPS driver can write images
in L, RGB and CMYK modes.

If Ghostscript is available, you can call the load()
method with the following parameter to affect how Ghostscript renders the EPS

	scale

	Affects the scale of the resultant rasterized image. If the EPS suggests
that the image be rendered at 100px x 100px, setting this parameter to
2 will make the Ghostscript render a 200px x 200px image instead. The
relative position of the bounding box is maintained:

im = Image.open(...)
im.size #(100,100)
im.load(scale=2)
im.size #(200,200)

GIF

PIL reads GIF87a and GIF89a versions of the GIF file format. The library writes
run-length encoded files in GIF87a by default, unless GIF89a features
are used or GIF89a is already in use.

Note that GIF files are always read as grayscale (L)
or palette mode (P) images.

The open() method sets the following
info properties:

	background

	Default background color (a palette color index).

	transparency

	Transparency color index. This key is omitted if the image is not
transparent.

	version

	Version (either GIF87a or GIF89a).

	duration

	May not be present. The time to display the current frame
of the GIF, in milliseconds.

	loop

	May not be present. The number of times the GIF should loop.

Reading sequences

The GIF loader supports the seek() and tell()
methods. You can seek to the next frame (im.seek(im.tell() + 1)), or rewind
the file by seeking to the first frame. Random access is not supported.

im.seek() raises an EOFError if you try to seek after the last frame.

Saving

When calling save(), the following options
are available:

im.save(out, save_all=True, append_images=[im1, im2, ...])

	save_all

	If present and true, all frames of the image will be saved. If
not, then only the first frame of a multiframe image will be saved.

	append_images

	A list of images to append as additional frames. Each of the
images in the list can be single or multiframe images.
This is currently supported for GIF, PDF, TIFF, and WebP.

It is also supported for ICNS. If images are passed in of relevant sizes,
they will be used instead of scaling down the main image.

	duration

	The display duration of each frame of the multiframe gif, in
milliseconds. Pass a single integer for a constant duration, or a
list or tuple to set the duration for each frame separately.

	loop

	Integer number of times the GIF should loop.

	optimize

	If present and true, attempt to compress the palette by
eliminating unused colors. This is only useful if the palette can
be compressed to the next smaller power of 2 elements.

	palette

	Use the specified palette for the saved image. The palette should
be a bytes or bytearray object containing the palette entries in
RGBRGB… form. It should be no more than 768 bytes. Alternately,
the palette can be passed in as an
PIL.ImagePalette.ImagePalette object.

	disposal

	Indicates the way in which the graphic is to be treated after being displayed.

	0 - No disposal specified.

	1 - Do not dispose.

	2 - Restore to background color.

	3 - Restore to previous content.

Pass a single integer for a constant disposal, or a list or tuple
to set the disposal for each frame separately.

Reading local images

The GIF loader creates an image memory the same size as the GIF file’s logical
screen size, and pastes the actual pixel data (the local image) into this
image. If you only want the actual pixel rectangle, you can manipulate the
size and tile
attributes before loading the file:

im = Image.open(...)

if im.tile[0][0] == "gif":
 # only read the first "local image" from this GIF file
 tag, (x0, y0, x1, y1), offset, extra = im.tile[0]
 im.size = (x1 - x0, y1 - y0)
 im.tile = [(tag, (0, 0) + im.size, offset, extra)]

ICNS

PIL reads and (macOS only) writes macOS .icns files. By default, the
largest available icon is read, though you can override this by setting the
size property before calling
load(). The open() method
sets the following info property:

	sizes

	A list of supported sizes found in this icon file; these are a
3-tuple, (width, height, scale), where scale is 2 for a retina
icon and 1 for a standard icon. You are permitted to use this 3-tuple
format for the size property if you set it
before calling load(); after loading, the size
will be reset to a 2-tuple containing pixel dimensions (so, e.g. if you
ask for (512, 512, 2), the final value of
size will be (1024, 1024)).

The save() method can take the following keyword arguments:

	append_images

	A list of images to replace the scaled down versions of the image.
The order of the images does not matter, as their use is determined by
the size of each image.

New in version 5.1.0.

ICO

ICO is used to store icons on Windows. The largest available icon is read.

The save() method supports the following options:

	sizes

	A list of sizes including in this ico file; these are a 2-tuple,
(width, height); Default to [(16, 16), (24, 24), (32, 32), (48, 48),
(64, 64), (128, 128), (256, 256)]. Any sizes bigger than the original
size or 256 will be ignored.

IM

IM is a format used by LabEye and other applications based on the IFUNC image
processing library. The library reads and writes most uncompressed interchange
versions of this format.

IM is the only format that can store all internal PIL formats.

JPEG

PIL reads JPEG, JFIF, and Adobe JPEG files containing L, RGB, or
CMYK data. It writes standard and progressive JFIF files.

Using the draft() method, you can speed things up by
converting RGB images to L, and resize images to 1/2, 1/4 or 1/8 of
their original size while loading them.

The open() method may set the following
info properties if available:

	jfif

	JFIF application marker found. If the file is not a JFIF file, this key is
not present.

	jfif_version

	A tuple representing the jfif version, (major version, minor version).

	jfif_density

	A tuple representing the pixel density of the image, in units specified
by jfif_unit.

	jfif_unit

	Units for the jfif_density:

	0 - No Units

	1 - Pixels per Inch

	2 - Pixels per Centimeter

	dpi

	A tuple representing the reported pixel density in pixels per inch, if
the file is a jfif file and the units are in inches.

	adobe

	Adobe application marker found. If the file is not an Adobe JPEG file, this
key is not present.

	adobe_transform

	Vendor Specific Tag.

	progression

	Indicates that this is a progressive JPEG file.

	icc_profile

	The ICC color profile for the image.

	exif

	Raw EXIF data from the image.

The save() method supports the following options:

	quality

	The image quality, on a scale from 1 (worst) to 95 (best). The default is
75. Values above 95 should be avoided; 100 disables portions of the JPEG
compression algorithm, and results in large files with hardly any gain in
image quality.

	optimize

	If present and true, indicates that the encoder should make an extra pass
over the image in order to select optimal encoder settings.

	progressive

	If present and true, indicates that this image should be stored as a
progressive JPEG file.

	dpi

	A tuple of integers representing the pixel density, (x,y).

	icc_profile

	If present and true, the image is stored with the provided ICC profile.
If this parameter is not provided, the image will be saved with no profile
attached. To preserve the existing profile:

im.save(filename, 'jpeg', icc_profile=im.info.get('icc_profile'))

	exif

	If present, the image will be stored with the provided raw EXIF data.

	subsampling

	If present, sets the subsampling for the encoder.

	keep: Only valid for JPEG files, will retain the original image setting.

	4:4:4, 4:2:2, 4:2:0: Specific sampling values

	-1: equivalent to keep

	0: equivalent to 4:4:4

	1: equivalent to 4:2:2

	2: equivalent to 4:2:0

	qtables

	If present, sets the qtables for the encoder. This is listed as an
advanced option for wizards in the JPEG documentation. Use with
caution. qtables can be one of several types of values:

	a string, naming a preset, e.g. keep, web_low, or web_high

	a list, tuple, or dictionary (with integer keys =
range(len(keys))) of lists of 64 integers. There must be
between 2 and 4 tables.

New in version 2.5.0.

Note

To enable JPEG support, you need to build and install the IJG JPEG library
before building the Python Imaging Library. See the distribution README for
details.

JPEG 2000

New in version 2.4.0.

PIL reads and writes JPEG 2000 files containing L, LA, RGB or
RGBA data. It can also read files containing YCbCr data, which it
converts on read into RGB or RGBA depending on whether or not there is
an alpha channel. PIL supports JPEG 2000 raw codestreams (.j2k files), as
well as boxed JPEG 2000 files (.j2p or .jpx files). PIL does not
support files whose components have different sampling frequencies.

When loading, if you set the mode on the image prior to the
load() method being invoked, you can ask PIL to
convert the image to either RGB or RGBA rather than choosing for
itself. It is also possible to set reduce to the number of resolutions to
discard (each one reduces the size of the resulting image by a factor of 2),
and layers to specify the number of quality layers to load.

The save() method supports the following options:

	offset

	The image offset, as a tuple of integers, e.g. (16, 16)

	tile_offset

	The tile offset, again as a 2-tuple of integers.

	tile_size

	The tile size as a 2-tuple. If not specified, or if set to None, the
image will be saved without tiling.

	quality_mode

	Either “rates” or “dB” depending on the units you want to use to
specify image quality.

	quality_layers

	A sequence of numbers, each of which represents either an approximate size
reduction (if quality mode is “rates”) or a signal to noise ratio value
in decibels. If not specified, defaults to a single layer of full quality.

	num_resolutions

	The number of different image resolutions to be stored (which corresponds
to the number of Discrete Wavelet Transform decompositions plus one).

	codeblock_size

	The code-block size as a 2-tuple. Minimum size is 4 x 4, maximum is 1024 x
1024, with the additional restriction that no code-block may have more
than 4096 coefficients (i.e. the product of the two numbers must be no
greater than 4096).

	precinct_size

	The precinct size as a 2-tuple. Must be a power of two along both axes,
and must be greater than the code-block size.

	irreversible

	If True, use the lossy Irreversible Color Transformation
followed by DWT 9-7. Defaults to False, which means to use the
Reversible Color Transformation with DWT 5-3.

	progression

	Controls the progression order; must be one of "LRCP", "RLCP",
"RPCL", "PCRL", "CPRL". The letters stand for Component,
Position, Resolution and Layer respectively and control the order of
encoding, the idea being that e.g. an image encoded using LRCP mode can
have its quality layers decoded as they arrive at the decoder, while one
encoded using RLCP mode will have increasing resolutions decoded as they
arrive, and so on.

	cinema_mode

	Set the encoder to produce output compliant with the digital cinema
specifications. The options here are "no" (the default),
"cinema2k-24" for 24fps 2K, "cinema2k-48" for 48fps 2K, and
"cinema4k-24" for 24fps 4K. Note that for compliant 2K files,
at least one of your image dimensions must match 2048 x 1080, while
for compliant 4K files, at least one of the dimensions must match
4096 x 2160.

Note

To enable JPEG 2000 support, you need to build and install the OpenJPEG
library, version 2.0.0 or higher, before building the Python Imaging
Library.

Windows users can install the OpenJPEG binaries available on the
OpenJPEG website, but must add them to their PATH in order to use PIL (if
you fail to do this, you will get errors about not being able to load the
_imaging DLL).

MSP

PIL identifies and reads MSP files from Windows 1 and 2. The library writes
uncompressed (Windows 1) versions of this format.

PCX

PIL reads and writes PCX files containing 1, L, P, or RGB data.

PNG

PIL identifies, reads, and writes PNG files containing 1, L, P,
RGB, or RGBA data. Interlaced files are supported as of v1.1.7.

The open() method sets the following
info properties, when appropriate:

	chromaticity

	The chromaticity points, as an 8 tuple of floats. (White Point
X, White Point Y, Red X, Red Y, Green X, Green
Y, Blue X, Blue Y)

	gamma

	Gamma, given as a floating point number.

	srgb

	The sRGB rendering intent as an integer.

	0 Perceptual

	1 Relative Colorimetric

	2 Saturation

	3 Absolute Colorimetric

	transparency

	For P images: Either the palette index for full transparent pixels,
or a byte string with alpha values for each palette entry.

For L and RGB images, the color that represents full transparent
pixels in this image.

This key is omitted if the image is not a transparent palette image.

Open also sets Image.text to a list of the values of the
tEXt, zTXt, and iTXt chunks of the PNG image. Individual
compressed chunks are limited to a decompressed size of
PngImagePlugin.MAX_TEXT_CHUNK, by default 1MB, to prevent
decompression bombs. Additionally, the total size of all of the text
chunks is limited to PngImagePlugin.MAX_TEXT_MEMORY, defaulting to
64MB.

The save() method supports the following options:

	optimize

	If present and true, instructs the PNG writer to make the output file as
small as possible. This includes extra processing in order to find optimal
encoder settings.

	transparency

	For P, L, and RGB images, this option controls what
color image to mark as transparent.

For P images, this can be a either the palette index,
or a byte string with alpha values for each palette entry.

	dpi

	A tuple of two numbers corresponding to the desired dpi in each direction.

	pnginfo

	A PIL.PngImagePlugin.PngInfo instance containing text tags.

	compress_level

	ZLIB compression level, a number between 0 and 9: 1 gives best speed,
9 gives best compression, 0 gives no compression at all. Default is 6.
When optimize option is True compress_level has no effect
(it is set to 9 regardless of a value passed).

	icc_profile

	The ICC Profile to include in the saved file.

	bits (experimental)

	For P images, this option controls how many bits to store. If omitted,
the PNG writer uses 8 bits (256 colors).

	dictionary (experimental)

	Set the ZLIB encoder dictionary.

Note

To enable PNG support, you need to build and install the ZLIB compression
library before building the Python Imaging Library. See the installation
documentation for details.

PPM

PIL reads and writes PBM, PGM and PPM files containing 1, L or RGB
data.

SGI

Pillow reads and writes uncompressed L, RGB, and RGBA files.

SPIDER

PIL reads and writes SPIDER image files of 32-bit floating point data
(“F;32F”).

PIL also reads SPIDER stack files containing sequences of SPIDER images. The
seek() and tell() methods are supported, and
random access is allowed.

The open() method sets the following attributes:

	format

	Set to SPIDER

	istack

	Set to 1 if the file is an image stack, else 0.

	nimages

	Set to the number of images in the stack.

A convenience method, convert2byte(), is provided for
converting floating point data to byte data (mode L):

im = Image.open('image001.spi').convert2byte()

Writing files in SPIDER format

The extension of SPIDER files may be any 3 alphanumeric characters. Therefore
the output format must be specified explicitly:

im.save('newimage.spi', format='SPIDER')

For more information about the SPIDER image processing package, see the
SPIDER homepage [https://spider.wadsworth.org/spider_doc/spider/docs/spider.html] at Wadsworth Center [https://www.wadsworth.org/].

TGA

PIL reads and writes TGA images containing L, LA, P,
RGB, and RGBA data. PIL can read and write both uncompressed and
run-length encoded TGAs.

TIFF

Pillow reads and writes TIFF files. It can read both striped and tiled
images, pixel and plane interleaved multi-band images. If you have
libtiff and its headers installed, PIL can read and write many kinds
of compressed TIFF files. If not, PIL will only read and write
uncompressed files.

Note

Beginning in version 5.0.0, Pillow requires libtiff to read or
write compressed files. Prior to that release, Pillow had buggy
support for reading Packbits, LZW and JPEG compressed TIFFs
without using libtiff.

The open() method sets the following
info properties:

	compression

	Compression mode.

New in version 2.0.0.

	dpi

	Image resolution as an (xdpi, ydpi) tuple, where applicable. You can use
the tag attribute to get more detailed
information about the image resolution.

New in version 1.1.5.

	resolution

	Image resolution as an (xres, yres) tuple, where applicable. This is a
measurement in whichever unit is specified by the file.

New in version 1.1.5.

The tag_v2 attribute contains a dictionary
of TIFF metadata. The keys are numerical indexes from
TAGS_V2. Values are strings or numbers for single
items, multiple values are returned in a tuple of values. Rational
numbers are returned as a IFDRational
object.

New in version 3.0.0.

For compatibility with legacy code, the
tag attribute contains a dictionary of
decoded TIFF fields as returned prior to version 3.0.0. Values are
returned as either strings or tuples of numeric values. Rational
numbers are returned as a tuple of (numerator, denominator).

Deprecated since version 3.0.0.

Saving Tiff Images

The save() method can take the following keyword arguments:

	save_all

	If true, Pillow will save all frames of the image to a multiframe tiff document.

New in version 3.4.0.

	append_images

	A list of images to append as additional frames. Each of the
images in the list can be single or multiframe images. Note however, that for
correct results, all the appended images should have the same
encoderinfo and encoderconfig properties.

New in version 4.2.0.

	tiffinfo

	
A ImageFileDirectory_v2 object or dict
object containing tiff tags and values. The TIFF field type is
autodetected for Numeric and string values, any other types
require using an ImageFileDirectory_v2
object and setting the type in
tagtype with
the appropriate numerical value from
TiffTags.TYPES.

New in version 2.3.0.

Metadata values that are of the rational type should be passed in
using a IFDRational object.

New in version 3.1.0.

For compatibility with legacy code, a
ImageFileDirectory_v1 object may
be passed in this field. However, this is deprecated.

New in version 3.0.0.

Note

Only some tags are currently supported when writing using
libtiff. The supported list is found in
LIBTIFF_CORE.

	compression

	A string containing the desired compression method for the
file. (valid only with libtiff installed) Valid compression
methods are: None, "tiff_ccitt", "group3",
"group4", "tiff_jpeg", "tiff_adobe_deflate",
"tiff_thunderscan", "tiff_deflate", "tiff_sgilog",
"tiff_sgilog24", "tiff_raw_16"

These arguments to set the tiff header fields are an alternative to
using the general tags available through tiffinfo.

description

software

date_time

artist

	copyright

	Strings

	resolution_unit

	A string of “inch”, “centimeter” or “cm”

resolution

x_resolution

y_resolution

	dpi

	Either a Float, 2 tuple of (numerator, denominator) or a
IFDRational. Resolution implies
an equal x and y resolution, dpi also implies a unit of inches.

WebP

PIL reads and writes WebP files. The specifics of PIL’s capabilities with this
format are currently undocumented.

The save() method supports the following options:

	lossless

	If present and true, instructs the WebP writer to use lossless compression.

	quality

	Integer, 1-100, Defaults to 80. For lossy, 0 gives the smallest
size and 100 the largest. For lossless, this parameter is the amount
of effort put into the compression: 0 is the fastest, but gives larger
files compared to the slowest, but best, 100.

	method

	Quality/speed trade-off (0=fast, 6=slower-better). Defaults to 0.

	icc_procfile

	The ICC Profile to include in the saved file. Only supported if
the system WebP library was built with webpmux support.

	exif

	The exif data to include in the saved file. Only supported if
the system WebP library was built with webpmux support.

Saving sequences

Note

Support for animated WebP files will only be enabled if the system WebP
library is v0.5.0 or later. You can check webp animation support at
runtime by calling features.check(“webp_anim”).

When calling save(), the following options
are available when the save_all argument is present and true.

	append_images

	A list of images to append as additional frames. Each of the
images in the list can be single or multiframe images.

	duration

	The display duration of each frame, in milliseconds. Pass a single
integer for a constant duration, or a list or tuple to set the
duration for each frame separately.

	loop

	Number of times to repeat the animation. Defaults to [0 = infinite].

	background

	Background color of the canvas, as an RGBA tuple with values in
the range of (0-255).

	minimize_size

	If true, minimize the output size (slow). Implicitly disables
key-frame insertion.

	kmin, kmax

	Minimum and maximum distance between consecutive key frames in
the output. The library may insert some key frames as needed
to satisfy this criteria. Note that these conditions should
hold: kmax > kmin and kmin >= kmax / 2 + 1. Also, if kmax <= 0,
then key-frame insertion is disabled; and if kmax == 1, then all
frames will be key-frames (kmin value does not matter for these
special cases).

	allow_mixed

	If true, use mixed compression mode; the encoder heuristically
chooses between lossy and lossless for each frame.

XBM

PIL reads and writes X bitmap files (mode 1).

Read-only formats

BLP

BLP is the Blizzard Mipmap Format, a texture format used in World of
Warcraft. Pillow supports reading JPEG Compressed or raw BLP1
images, and all types of BLP2 images.

CUR

CUR is used to store cursors on Windows. The CUR decoder reads the largest
available cursor. Animated cursors are not supported.

DCX

DCX is a container file format for PCX files, defined by Intel. The DCX format
is commonly used in fax applications. The DCX decoder can read files containing
1, L, P, or RGB data.

When the file is opened, only the first image is read. You can use
seek() or ImageSequence to read other images.

DDS

DDS is a popular container texture format used in video games and natively
supported by DirectX.
Currently, DXT1, DXT3, and DXT5 pixel formats are supported and only in RGBA
mode.

New in version 3.4.0: DXT3

FLI, FLC

PIL reads Autodesk FLI and FLC animations.

The open() method sets the following
info properties:

	duration

	The delay (in milliseconds) between each frame.

FPX

PIL reads Kodak FlashPix files. In the current version, only the highest
resolution image is read from the file, and the viewing transform is not taken
into account.

Note

To enable full FlashPix support, you need to build and install the IJG JPEG
library before building the Python Imaging Library. See the distribution
README for details.

FTEX

New in version 3.2.0.

The FTEX decoder reads textures used for 3D objects in
Independence War 2: Edge Of Chaos. The plugin reads a single texture
per file, in the compressed and uncompressed formats.

GBR

The GBR decoder reads GIMP brush files, version 1 and 2.

The open() method sets the following
info properties:

	comment

	The brush name.

	spacing

	The spacing between the brushes, in pixels. Version 2 only.

GD

PIL reads uncompressed GD2 files. Note that you must use
PIL.GdImageFile.open() to read such a file.

The open() method sets the following
info properties:

	transparency

	Transparency color index. This key is omitted if the image is not
transparent.

IMT

PIL reads Image Tools images containing L data.

IPTC/NAA

PIL provides limited read support for IPTC/NAA newsphoto files.

MCIDAS

PIL identifies and reads 8-bit McIdas area files.

MIC

PIL identifies and reads Microsoft Image Composer (MIC) files. When opened, the
first sprite in the file is loaded. You can use seek() and
tell() to read other sprites from the file.

Note that there may be an embedded gamma of 2.2 in MIC files.

MPO

Pillow identifies and reads Multi Picture Object (MPO) files, loading the primary
image when first opened. The seek() and tell()
methods may be used to read other pictures from the file. The pictures are
zero-indexed and random access is supported.

PCD

PIL reads PhotoCD files containing RGB data. This only reads the 768x512
resolution image from the file. Higher resolutions are encoded in a proprietary
encoding.

PIXAR

PIL provides limited support for PIXAR raster files. The library can identify
and read “dumped” RGB files.

The format code is PIXAR.

PSD

PIL identifies and reads PSD files written by Adobe Photoshop 2.5 and 3.0.

WAL

New in version 1.1.4.

PIL reads Quake2 WAL texture files.

Note that this file format cannot be automatically identified, so you must use
the open function in the WalImageFile module to read files in
this format.

By default, a Quake2 standard palette is attached to the texture. To override
the palette, use the putpalette method.

XPM

PIL reads X pixmap files (mode P) with 256 colors or less.

The open() method sets the following
info properties:

	transparency

	Transparency color index. This key is omitted if the image is not
transparent.

Write-only formats

PALM

PIL provides write-only support for PALM pixmap files.

The format code is Palm, the extension is .palm.

PDF

PIL can write PDF (Acrobat) images. Such images are written as binary PDF 1.4
files, using either JPEG or HEX encoding depending on the image mode (and
whether JPEG support is available or not).

The save() method can take the following keyword arguments:

	save_all

	If a multiframe image is used, by default, only the first image will be saved.
To save all frames, each frame to a separate page of the PDF, the save_all
parameter must be present and set to True.

New in version 3.0.0.

	append_images

	A list of images to append as additional pages. Each of the
images in the list can be single or multiframe images.

New in version 4.2.0.

	append

	Set to True to append pages to an existing PDF file. If the file doesn’t
exist, an IOError will be raised.

New in version 5.1.0.

	resolution

	Image resolution in DPI. This, together with the number of pixels in the
image, will determine the physical dimensions of the page that will be
saved in the PDF.

	title

	The document’s title.

New in version 5.1.0.

	author

	The name of the person who created the document.

New in version 5.1.0.

	subject

	The subject of the document.

New in version 5.1.0.

	keywords

	Keywords associated with the document.

New in version 5.1.0.

	creator

	If the document was converted to PDF from another format, the name of the
conforming product that created the original document from which it was
converted.

New in version 5.1.0.

	producer

	If the document was converted to PDF from another format, the name of the
conforming product that converted it to PDF.

New in version 5.1.0.

XV Thumbnails

PIL can read XV thumbnail files.

Identify-only formats

BUFR

New in version 1.1.3.

PIL provides a stub driver for BUFR files.

To add read or write support to your application, use
PIL.BufrStubImagePlugin.register_handler().

FITS

New in version 1.1.5.

PIL provides a stub driver for FITS files.

To add read or write support to your application, use
PIL.FitsStubImagePlugin.register_handler().

GRIB

New in version 1.1.5.

PIL provides a stub driver for GRIB files.

The driver requires the file to start with a GRIB header. If you have files
with embedded GRIB data, or files with multiple GRIB fields, your application
has to seek to the header before passing the file handle to PIL.

To add read or write support to your application, use
PIL.GribStubImagePlugin.register_handler().

HDF5

New in version 1.1.5.

PIL provides a stub driver for HDF5 files.

To add read or write support to your application, use
PIL.Hdf5StubImagePlugin.register_handler().

MPEG

PIL identifies MPEG files.

WMF

PIL can identify playable WMF files.

In PIL 1.1.4 and earlier, the WMF driver provides some limited rendering
support, but not enough to be useful for any real application.

In PIL 1.1.5 and later, the WMF driver is a stub driver. To add WMF read or
write support to your application, use
PIL.WmfImagePlugin.register_handler() to register a WMF handler.

from PIL import Image
from PIL import WmfImagePlugin

class WmfHandler:
 def open(self, im):
 ...
 def load(self, im):
 ...
 return image
 def save(self, im, fp, filename):
 ...

wmf_handler = WmfHandler()

WmfImagePlugin.register_handler(wmf_handler)

im = Image.open("sample.wmf")

Writing Your Own Image Plugin

The Pillow uses a plug-in model which allows you to add your own
decoders to the library, without any changes to the library
itself. Such plug-ins usually have names like
XxxImagePlugin.py, where Xxx is a unique format name
(usually an abbreviation).

Warning

Pillow >= 2.1.0 no longer automatically imports any file
in the Python path with a name ending in
ImagePlugin.py. You will need to import your
image plugin manually.

Pillow decodes files in 2 stages:

	It loops over the available image plugins in the loaded order, and
calls the plugin’s accept function with the first 16 bytes of
the file. If the accept function returns true, the plugin’s
_open method is called to set up the image metadata and image
tiles. The _open method is not for decoding the actual image
data.

	When the image data is requested, the ImageFile.load method is
called, which sets up a decoder for each tile and feeds the data to
it.

An image plug-in should contain a format handler derived from the
PIL.ImageFile.ImageFile base class. This class should
provide an _open() method, which reads the file header and
sets up at least the mode and
size attributes. To be able to load the
file, the method must also create a list of tile
descriptors, which contain a decoder name, extents of the tile, and
any decoder-specific data. The format handler class must be explicitly
registered, via a call to the Image module.

Note

For performance reasons, it is important that the
_open() method quickly rejects files that do not have the
appropriate contents.

Example

The following plug-in supports a simple format, which has a 128-byte header
consisting of the words “SPAM” followed by the width, height, and pixel size in
bits. The header fields are separated by spaces. The image data follows
directly after the header, and can be either bi-level, greyscale, or 24-bit
true color.

SpamImagePlugin.py:

from PIL import Image, ImageFile
import string

class SpamImageFile(ImageFile.ImageFile):

 format = "SPAM"
 format_description = "Spam raster image"

 def _open(self):

 # check header
 header = self.fp.read(128)
 if header[:4] != "SPAM":
 raise SyntaxError, "not a SPAM file"

 header = string.split(header)

 # size in pixels (width, height)
 self.size = int(header[1]), int(header[2])

 # mode setting
 bits = int(header[3])
 if bits == 1:
 self.mode = "1"
 elif bits == 8:
 self.mode = "L"
 elif bits == 24:
 self.mode = "RGB"
 else:
 raise SyntaxError, "unknown number of bits"

 # data descriptor
 self.tile = [
 ("raw", (0, 0) + self.size, 128, (self.mode, 0, 1))
]

Image.register_open(SpamImageFile.format, SpamImageFile)

Image.register_extension(SpamImageFile.format, ".spam")
Image.register_extension(SpamImageFile.format, ".spa") # dos version

The format handler must always set the
size and mode
attributes. If these are not set, the file cannot be opened. To
simplify the plugin, the calling code considers exceptions like
SyntaxError, KeyError, IndexError,
EOFError and struct.error as a failure to identify
the file.

Note that the image plugin must be explicitly registered using
PIL.Image.register_open(). Although not required, it is also a good
idea to register any extensions used by this format.

The tile attribute

To be able to read the file as well as just identifying it, the tile
attribute must also be set. This attribute consists of a list of tile
descriptors, where each descriptor specifies how data should be loaded to a
given region in the image. In most cases, only a single descriptor is used,
covering the full image.

The tile descriptor is a 4-tuple with the following contents:

(decoder, region, offset, parameters)

The fields are used as follows:

	decoder

	Specifies which decoder to use. The raw decoder used here supports
uncompressed data, in a variety of pixel formats. For more information on
this decoder, see the description below.

	region

	A 4-tuple specifying where to store data in the image.

	offset

	Byte offset from the beginning of the file to image data.

	parameters

	Parameters to the decoder. The contents of this field depends on the
decoder specified by the first field in the tile descriptor tuple. If the
decoder doesn’t need any parameters, use None for this field.

Note that the tile attribute contains a list of tile descriptors,
not just a single descriptor.

Decoders

The raw decoder

The raw decoder is used to read uncompressed data from an image file. It
can be used with most uncompressed file formats, such as PPM, BMP, uncompressed
TIFF, and many others. To use the raw decoder with the
PIL.Image.frombytes() function, use the following syntax:

image = Image.frombytes(
 mode, size, data, "raw",
 raw mode, stride, orientation
)

When used in a tile descriptor, the parameter field should look like:

(raw mode, stride, orientation)

The fields are used as follows:

	raw mode

	The pixel layout used in the file, and is used to properly convert data to
PIL’s internal layout. For a summary of the available formats, see the
table below.

	stride

	The distance in bytes between two consecutive lines in the image. If 0, the
image is assumed to be packed (no padding between lines). If omitted, the
stride defaults to 0.

orientation

Whether the first line in the image is the top line on the screen (1), or
the bottom line (-1). If omitted, the orientation defaults to 1.

The raw mode field is used to determine how the data should be unpacked to
match PIL’s internal pixel layout. PIL supports a large set of raw modes; for a
complete list, see the table in the Unpack.c module. The following
table describes some commonly used raw modes:

	mode

	description

	1

	1-bit bilevel, stored with the leftmost pixel in the most
significant bit. 0 means black, 1 means white.

	1;I

	1-bit inverted bilevel, stored with the leftmost pixel in the
most significant bit. 0 means white, 1 means black.

	1;R

	1-bit reversed bilevel, stored with the leftmost pixel in the
least significant bit. 0 means black, 1 means white.

	L

	8-bit greyscale. 0 means black, 255 means white.

	L;I

	8-bit inverted greyscale. 0 means white, 255 means black.

	P

	8-bit palette-mapped image.

	RGB

	24-bit true colour, stored as (red, green, blue).

	BGR

	24-bit true colour, stored as (blue, green, red).

	RGBX

	24-bit true colour, stored as (red, green, blue, pad).

	RGB;L

	24-bit true colour, line interleaved (first all red pixels, the
all green pixels, finally all blue pixels).

Note that for the most common cases, the raw mode is simply the same as the mode.

The Python Imaging Library supports many other decoders, including JPEG, PNG,
and PackBits. For details, see the decode.c source file, and the
standard plug-in implementations provided with the library.

Decoding floating point data

PIL provides some special mechanisms to allow you to load a wide variety of
formats into a mode F (floating point) image memory.

You can use the raw decoder to read images where data is packed in any
standard machine data type, using one of the following raw modes:

	mode

	description

	F

	32-bit native floating point.

	F;8

	8-bit unsigned integer.

	F;8S

	8-bit signed integer.

	F;16

	16-bit little endian unsigned integer.

	F;16S

	16-bit little endian signed integer.

	F;16B

	16-bit big endian unsigned integer.

	F;16BS

	16-bit big endian signed integer.

	F;16N

	16-bit native unsigned integer.

	F;16NS

	16-bit native signed integer.

	F;32

	32-bit little endian unsigned integer.

	F;32S

	32-bit little endian signed integer.

	F;32B

	32-bit big endian unsigned integer.

	F;32BS

	32-bit big endian signed integer.

	F;32N

	32-bit native unsigned integer.

	F;32NS

	32-bit native signed integer.

	F;32F

	32-bit little endian floating point.

	F;32BF

	32-bit big endian floating point.

	F;32NF

	32-bit native floating point.

	F;64F

	64-bit little endian floating point.

	F;64BF

	64-bit big endian floating point.

	F;64NF

	64-bit native floating point.

The bit decoder

If the raw decoder cannot handle your format, PIL also provides a special “bit”
decoder that can be used to read various packed formats into a floating point
image memory.

To use the bit decoder with the frombytes function, use the following syntax:

image = frombytes(
 mode, size, data, "bit",
 bits, pad, fill, sign, orientation
)

When used in a tile descriptor, the parameter field should look like:

(bits, pad, fill, sign, orientation)

The fields are used as follows:

	bits

	Number of bits per pixel (2-32). No default.

	pad

	Padding between lines, in bits. This is either 0 if there is no padding, or
8 if lines are padded to full bytes. If omitted, the pad value defaults to
8.

	fill

	Controls how data are added to, and stored from, the decoder bit buffer.

	fill=0

	Add bytes to the LSB end of the decoder buffer; store pixels from the MSB
end.

	fill=1

	Add bytes to the MSB end of the decoder buffer; store pixels from the MSB
end.

	fill=2

	Add bytes to the LSB end of the decoder buffer; store pixels from the LSB
end.

	fill=3

	Add bytes to the MSB end of the decoder buffer; store pixels from the LSB
end.

If omitted, the fill order defaults to 0.

	sign

	If non-zero, bit fields are sign extended. If zero or omitted, bit fields
are unsigned.

	orientation

	Whether the first line in the image is the top line on the screen (1), or
the bottom line (-1). If omitted, the orientation defaults to 1.

Writing Your Own File Decoder in C

There are 3 stages in a file decoder’s lifetime:

	Setup: Pillow looks for a function in the decoder registry, falling
back to a function named [decodername]_decoder on the internal
core image object. That function is called with the args tuple
from the tile setup in the _open method.

	Decoding: The decoder’s decode function is repeatedly called with
chunks of image data.

	Cleanup: If the decoder has registered a cleanup function, it will
be called at the end of the decoding process, even if there was an
exception raised.

Setup

The current conventions are that the decoder setup function is named
PyImaging_[Decodername]DecoderNew and defined in decode.c. The
python binding for it is named [decodername]_decoder and is setup
from within the _imaging.c file in the codecs section of the
function array.

The setup function needs to call PyImaging_DecoderNew and at the
very least, set the decode function pointer. The fields of
interest in this object are:

	decode

	Function pointer to the decode function, which has access to
im, state, and the buffer of data to be added to the image.

	cleanup

	Function pointer to the cleanup function, has access to state.

	im

	The target image, will be set by Pillow.

	state

	An ImagingCodecStateInstance, will be set by Pillow. The context
member is an opaque struct that can be used by the decoder to store
any format specific state or options.

	pulls_fd

	EXPERIMENTAL – WARNING, interface may change. If set to 1,
state->fd will be a pointer to the Python file like object. The
decoder may use the functions in codec_fd.c to read directly
from the file like object rather than have the data pushed through a
buffer. Note that this implementation may be refactored until this
warning is removed.

New in version 3.3.0.

Decoding

The decode function is called with the target (core) image, the
decoder state structure, and a buffer of data to be decoded.

Experimental – If pulls_fd is set, then the decode function
is called once, with an empty buffer. It is the decoder’s
responsibility to decode the entire tile in that one call. The rest of
this section only applies if pulls_fd is not set.

It is the decoder’s responsibility to pull as much data as possible
out of the buffer and return the number of bytes consumed. The next
call to the decoder will include the previous unconsumed tail. The
decoder function will be called multiple times as the data is read
from the file like object.

If an error occurs, set state->errcode and return -1.

Return -1 on success, without setting the errcode.

Cleanup

The cleanup function is called after the decoder returns a negative
value, or if there is a read error from the file. This function should
free any allocated memory and release any resources from external
libraries.

Writing Your Own File Decoder in Python

Python file decoders should derive from
PIL.ImageFile.PyDecoder and should at least override the
decode method. File decoders should be registered using
PIL.Image.register_decoder(). As in the C implementation of
the file decoders, there are three stages in the lifetime of a
Python-based file decoder:

	Setup: Pillow looks for the decoder in the registry, then
instantiates the class.

	Decoding: The decoder instance’s decode method is repeatedly
called with a buffer of data to be interpreted.

	Cleanup: The decoder instance’s cleanup method is called.

Reference

	Image Module
	Examples

	Functions

	The Image Class

	Attributes

	ImageChops (“Channel Operations”) Module
	Functions

	ImageColor Module
	Color Names

	Functions

	ImageCms Module
	CmsProfile

	ImageDraw Module
	Example: Draw a gray cross over an image

	Concepts

	Example: Draw Partial Opacity Text

	Functions

	Methods

	ImageEnhance Module
	Example: Vary the sharpness of an image

	Classes

	ImageFile Module
	Example: Parse an image

	Parser

	PyDecoder

	ImageFilter Module
	Example: Filter an image

	Filters

	ImageFont Module
	Example

	Functions

	Methods

	ImageGrab Module (macOS and Windows only)

	ImageMath Module
	Example: Using the ImageMath module

	Expression syntax

	ImageMorph Module

	ImageOps Module

	ImagePalette Module

	ImagePath Module

	ImageQt Module

	ImageSequence Module
	Extracting frames from an animation

	The Iterator class

	ImageStat Module

	ImageTk Module

	ImageWin Module (Windows-only)

	ExifTags Module

	TiffTags Module

	PSDraw Module

	PixelAccess Class
	Example

	PixelAccess Class

	PyAccess Module
	Example

	PyAccess Class

	PIL Package (autodoc of remaining modules)
	BdfFontFile Module

	ContainerIO Module

	FontFile Module

	GdImageFile Module

	GimpGradientFile Module

	GimpPaletteFile Module

	ImageDraw2 Module

	ImageShow Module

	ImageTransform Module

	JpegPresets Module

	PaletteFile Module

	PcfFontFile Module

	PngImagePlugin.iTXt Class

	PngImagePlugin.PngInfo Class

	TarIO Module

	WalImageFile Module

	_binary Module

	Plugin reference
	BmpImagePlugin Module

	BufrStubImagePlugin Module

	CurImagePlugin Module

	DcxImagePlugin Module

	EpsImagePlugin Module

	FitsStubImagePlugin Module

	FliImagePlugin Module

	FpxImagePlugin Module

	GbrImagePlugin Module

	GifImagePlugin Module

	GribStubImagePlugin Module

	Hdf5StubImagePlugin Module

	IcnsImagePlugin Module

	IcoImagePlugin Module

	ImImagePlugin Module

	ImtImagePlugin Module

	IptcImagePlugin Module

	JpegImagePlugin Module

	Jpeg2KImagePlugin Module

	McIdasImagePlugin Module

	MicImagePlugin Module

	MpegImagePlugin Module

	MspImagePlugin Module

	PalmImagePlugin Module

	PcdImagePlugin Module

	PcxImagePlugin Module

	PdfImagePlugin Module

	PixarImagePlugin Module

	PngImagePlugin Module

	PpmImagePlugin Module

	PsdImagePlugin Module

	SgiImagePlugin Module

	SpiderImagePlugin Module

	SunImagePlugin Module

	TgaImagePlugin Module

	TiffImagePlugin Module

	WebPImagePlugin Module

	WmfImagePlugin Module

	XVThumbImagePlugin Module

	XbmImagePlugin Module

	XpmImagePlugin Module

	Internal Reference Docs
	File Handling in Pillow

	Limits

	Block Allocator

Image Module

The Image module provides a class with the same name which is
used to represent a PIL image. The module also provides a number of factory
functions, including functions to load images from files, and to create new
images.

Examples

Open, rotate, and display an image (using the default viewer)

The following script loads an image, rotates it 45 degrees, and displays it
using an external viewer (usually xv on Unix, and the paint program on
Windows).

from PIL import Image
im = Image.open("bride.jpg")
im.rotate(45).show()

Create thumbnails

The following script creates nice thumbnails of all JPEG images in the
current directory preserving aspect ratios with 128x128 max resolution.

from PIL import Image
import glob, os

size = 128, 128

for infile in glob.glob("*.jpg"):
 file, ext = os.path.splitext(infile)
 im = Image.open(infile)
 im.thumbnail(size)
 im.save(file + ".thumbnail", "JPEG")

Functions

	
PIL.Image.open(fp, mode='r')

	Opens and identifies the given image file.

This is a lazy operation; this function identifies the file, but
the file remains open and the actual image data is not read from
the file until you try to process the data (or call the
load() method). See
new(). See File Handling in Pillow.

	Parameters

	
	fp – A filename (string), pathlib.Path object or a file object.
The file object must implement read(),
seek(), and tell() methods,
and be opened in binary mode.

	mode – The mode. If given, this argument must be “r”.

	Returns

	An Image object.

	Raises

	IOError – If the file cannot be found, or the image cannot be
opened and identified.

Warning

To protect against potential DOS attacks caused by “decompression bombs [https://en.wikipedia.org/wiki/Zip_bomb]” (i.e. malicious files
which decompress into a huge amount of data and are designed to crash or cause disruption by using up
a lot of memory), Pillow will issue a DecompressionBombWarning if the image is over a certain
limit. If desired, the warning can be turned into an error with
warnings.simplefilter('error', Image.DecompressionBombWarning) or suppressed entirely with
warnings.simplefilter('ignore', Image.DecompressionBombWarning). See also the logging
documentation [https://docs.python.org/3/library/logging.html#integration-with-the-warnings-module] to have warnings output to the logging facility instead of stderr.

Image processing

	
PIL.Image.alpha_composite(im1, im2)

	Alpha composite im2 over im1.

	Parameters

	
	im1 – The first image. Must have mode RGBA.

	im2 – The second image. Must have mode RGBA, and the same size as
the first image.

	Returns

	An Image object.

	
PIL.Image.blend(im1, im2, alpha)

	Creates a new image by interpolating between two input images, using
a constant alpha.:

out = image1 * (1.0 - alpha) + image2 * alpha

	Parameters

	
	im1 – The first image.

	im2 – The second image. Must have the same mode and size as
the first image.

	alpha – The interpolation alpha factor. If alpha is 0.0, a
copy of the first image is returned. If alpha is 1.0, a copy of
the second image is returned. There are no restrictions on the
alpha value. If necessary, the result is clipped to fit into
the allowed output range.

	Returns

	An Image object.

	
PIL.Image.composite(image1, image2, mask)

	Create composite image by blending images using a transparency mask.

	Parameters

	
	image1 – The first image.

	image2 – The second image. Must have the same mode and
size as the first image.

	mask – A mask image. This image can have mode
“1”, “L”, or “RGBA”, and must have the same size as the
other two images.

	
PIL.Image.eval(image, *args)

	Applies the function (which should take one argument) to each pixel
in the given image. If the image has more than one band, the same
function is applied to each band. Note that the function is
evaluated once for each possible pixel value, so you cannot use
random components or other generators.

	Parameters

	
	image – The input image.

	function – A function object, taking one integer argument.

	Returns

	An Image object.

	
PIL.Image.merge(mode, bands)

	Merge a set of single band images into a new multiband image.

	Parameters

	
	mode – The mode to use for the output image. See:
Modes.

	bands – A sequence containing one single-band image for
each band in the output image. All bands must have the
same size.

	Returns

	An Image object.

Constructing images

	
PIL.Image.new(mode, size, color=0)

	Creates a new image with the given mode and size.

	Parameters

	
	mode – The mode to use for the new image. See:
Modes.

	size – A 2-tuple, containing (width, height) in pixels.

	color – What color to use for the image. Default is black.
If given, this should be a single integer or floating point value
for single-band modes, and a tuple for multi-band modes (one value
per band). When creating RGB images, you can also use color
strings as supported by the ImageColor module. If the color is
None, the image is not initialised.

	Returns

	An Image object.

	
PIL.Image.fromarray(obj, mode=None)

	Creates an image memory from an object exporting the array interface
(using the buffer protocol).

If obj is not contiguous, then the tobytes method is called
and frombuffer() is used.

	Parameters

	
	obj – Object with array interface

	mode – Mode to use (will be determined from type if None)
See: Modes.

	Returns

	An image object.

New in version 1.1.6.

	
PIL.Image.frombytes(mode, size, data, decoder_name='raw', *args)

	Creates a copy of an image memory from pixel data in a buffer.

In its simplest form, this function takes three arguments
(mode, size, and unpacked pixel data).

You can also use any pixel decoder supported by PIL. For more
information on available decoders, see the section
Writing Your Own File Decoder.

Note that this function decodes pixel data only, not entire images.
If you have an entire image in a string, wrap it in a
BytesIO object, and use open() to load
it.

	Parameters

	
	mode – The image mode. See: Modes.

	size – The image size.

	data – A byte buffer containing raw data for the given mode.

	decoder_name – What decoder to use.

	args – Additional parameters for the given decoder.

	Returns

	An Image object.

	
PIL.Image.fromstring(*args, **kw)

	

	
PIL.Image.frombuffer(mode, size, data, decoder_name='raw', *args)

	Creates an image memory referencing pixel data in a byte buffer.

This function is similar to frombytes(), but uses data
in the byte buffer, where possible. This means that changes to the
original buffer object are reflected in this image). Not all modes can
share memory; supported modes include “L”, “RGBX”, “RGBA”, and “CMYK”.

Note that this function decodes pixel data only, not entire images.
If you have an entire image file in a string, wrap it in a
BytesIO object, and use open() to load it.

In the current version, the default parameters used for the “raw” decoder
differs from that used for frombytes(). This is a
bug, and will probably be fixed in a future release. The current release
issues a warning if you do this; to disable the warning, you should provide
the full set of parameters. See below for details.

	Parameters

	
	mode – The image mode. See: Modes.

	size – The image size.

	data – A bytes or other buffer object containing raw
data for the given mode.

	decoder_name – What decoder to use.

	args – Additional parameters for the given decoder. For the
default encoder (“raw”), it’s recommended that you provide the
full set of parameters:

frombuffer(mode, size, data, "raw", mode, 0, 1)

	Returns

	An Image object.

New in version 1.1.4.

Registering plugins

Note

These functions are for use by plugin authors. Application authors can
ignore them.

	
PIL.Image.register_open(id, factory, accept=None)

	Register an image file plugin. This function should not be used
in application code.

	Parameters

	
	id – An image format identifier.

	factory – An image file factory method.

	accept – An optional function that can be used to quickly
reject images having another format.

	
PIL.Image.register_decoder(name, decoder)

	Registers an image decoder. This function should not be
used in application code.

	Parameters

	
	name – The name of the decoder

	decoder – A callable(mode, args) that returns an
ImageFile.PyDecoder object

New in version 4.1.0.

	
PIL.Image.register_mime(id, mimetype)

	Registers an image MIME type. This function should not be used
in application code.

	Parameters

	
	id – An image format identifier.

	mimetype – The image MIME type for this format.

	
PIL.Image.register_save(id, driver)

	Registers an image save function. This function should not be
used in application code.

	Parameters

	
	id – An image format identifier.

	driver – A function to save images in this format.

	
PIL.Image.register_encoder(name, encoder)

	Registers an image encoder. This function should not be
used in application code.

	Parameters

	
	name – The name of the encoder

	encoder – A callable(mode, args) that returns an
ImageFile.PyEncoder object

New in version 4.1.0.

	
PIL.Image.register_extension(id, extension)

	Registers an image extension. This function should not be
used in application code.

	Parameters

	
	id – An image format identifier.

	extension – An extension used for this format.

The Image Class

	
class PIL.Image.Image

	This class represents an image object. To create
Image objects, use the appropriate factory
functions. There’s hardly ever any reason to call the Image constructor
directly.

	open()

	new()

	frombytes()

An instance of the Image class has the following
methods. Unless otherwise stated, all methods return a new instance of the
Image class, holding the resulting image.

	
Image.alpha_composite(im, dest=(0, 0), source=(0, 0))

	‘In-place’ analog of Image.alpha_composite. Composites an image
onto this image.

	Parameters

	
	im – image to composite over this one

	dest – Optional 2 tuple (left, top) specifying the upper
left corner in this (destination) image.

	source – Optional 2 (left, top) tuple for the upper left
corner in the overlay source image, or 4 tuple (left, top, right,
bottom) for the bounds of the source rectangle

Performance Note: Not currently implemented in-place in the core layer.

	
Image.convert(mode=None, matrix=None, dither=None, palette=0, colors=256)

	Returns a converted copy of this image. For the “P” mode, this
method translates pixels through the palette. If mode is
omitted, a mode is chosen so that all information in the image
and the palette can be represented without a palette.

The current version supports all possible conversions between
“L”, “RGB” and “CMYK.” The matrix argument only supports “L”
and “RGB”.

When translating a color image to black and white (mode “L”),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

The default method of converting a greyscale (“L”) or “RGB”
image into a bilevel (mode “1”) image uses Floyd-Steinberg
dither to approximate the original image luminosity levels. If
dither is NONE, all non-zero values are set to 255 (white). To
use other thresholds, use the point()
method.

	Parameters

	
	mode – The requested mode. See: Modes.

	matrix – An optional conversion matrix. If given, this
should be 4- or 12-tuple containing floating point values.

	dither – Dithering method, used when converting from
mode “RGB” to “P” or from “RGB” or “L” to “1”.
Available methods are NONE or FLOYDSTEINBERG (default).

	palette – Palette to use when converting from mode “RGB”
to “P”. Available palettes are WEB or ADAPTIVE.

	colors – Number of colors to use for the ADAPTIVE palette.
Defaults to 256.

	Return type

	Image

	Returns

	An Image object.

The following example converts an RGB image (linearly calibrated according to
ITU-R 709, using the D65 luminant) to the CIE XYZ color space:

rgb2xyz = (
 0.412453, 0.357580, 0.180423, 0,
 0.212671, 0.715160, 0.072169, 0,
 0.019334, 0.119193, 0.950227, 0)
out = im.convert("RGB", rgb2xyz)

	
Image.copy()

	Copies this image. Use this method if you wish to paste things
into an image, but still retain the original.

	Return type

	Image

	Returns

	An Image object.

	
Image.crop(box=None)

	Returns a rectangular region from this image. The box is a
4-tuple defining the left, upper, right, and lower pixel
coordinate. See Coordinate System.

Note: Prior to Pillow 3.4.0, this was a lazy operation.

	Parameters

	box – The crop rectangle, as a (left, upper, right, lower)-tuple.

	Return type

	Image

	Returns

	An Image object.

	
Image.draft(mode, size)

	Configures the image file loader so it returns a version of the
image that as closely as possible matches the given mode and
size. For example, you can use this method to convert a color
JPEG to greyscale while loading it, or to extract a 128x192
version from a PCD file.

Note that this method modifies the Image object
in place. If the image has already been loaded, this method has no
effect.

Note: This method is not implemented for most images. It is
currently implemented only for JPEG and PCD images.

	Parameters

	
	mode – The requested mode.

	size – The requested size.

	
Image.filter(filter)

	Filters this image using the given filter. For a list of
available filters, see the ImageFilter module.

	Parameters

	filter – Filter kernel.

	Returns

	An Image object.

	
Image.getbands()

	Returns a tuple containing the name of each band in this image.
For example, getbands on an RGB image returns (“R”, “G”, “B”).

	Returns

	A tuple containing band names.

	Return type

	tuple

	
Image.getbbox()

	Calculates the bounding box of the non-zero regions in the
image.

	Returns

	The bounding box is returned as a 4-tuple defining the
left, upper, right, and lower pixel coordinate. See
Coordinate System. If the image is completely empty, this
method returns None.

	
Image.getcolors(maxcolors=256)

	Returns a list of colors used in this image.

	Parameters

	maxcolors – Maximum number of colors. If this number is
exceeded, this method returns None. The default limit is
256 colors.

	Returns

	An unsorted list of (count, pixel) values.

	
Image.getdata(band=None)

	Returns the contents of this image as a sequence object
containing pixel values. The sequence object is flattened, so
that values for line one follow directly after the values of
line zero, and so on.

Note that the sequence object returned by this method is an
internal PIL data type, which only supports certain sequence
operations. To convert it to an ordinary sequence (e.g. for
printing), use list(im.getdata()).

	Parameters

	band – What band to return. The default is to return
all bands. To return a single band, pass in the index
value (e.g. 0 to get the “R” band from an “RGB” image).

	Returns

	A sequence-like object.

	
Image.getextrema()

	Gets the the minimum and maximum pixel values for each band in
the image.

	Returns

	For a single-band image, a 2-tuple containing the
minimum and maximum pixel value. For a multi-band image,
a tuple containing one 2-tuple for each band.

	
Image.getpalette()

	Returns the image palette as a list.

	Returns

	A list of color values [r, g, b, …], or None if the
image has no palette.

	
Image.getpixel(xy)

	Returns the pixel value at a given position.

	Parameters

	xy – The coordinate, given as (x, y). See
Coordinate System.

	Returns

	The pixel value. If the image is a multi-layer image,
this method returns a tuple.

	
Image.histogram(mask=None, extrema=None)

	Returns a histogram for the image. The histogram is returned as
a list of pixel counts, one for each pixel value in the source
image. If the image has more than one band, the histograms for
all bands are concatenated (for example, the histogram for an
“RGB” image contains 768 values).

A bilevel image (mode “1”) is treated as a greyscale (“L”) image
by this method.

If a mask is provided, the method returns a histogram for those
parts of the image where the mask image is non-zero. The mask
image must have the same size as the image, and be either a
bi-level image (mode “1”) or a greyscale image (“L”).

	Parameters

	mask – An optional mask.

	Returns

	A list containing pixel counts.

	
Image.offset(xoffset, yoffset=None)

	

	
Image.paste(im, box=None, mask=None)

	Pastes another image into this image. The box argument is either
a 2-tuple giving the upper left corner, a 4-tuple defining the
left, upper, right, and lower pixel coordinate, or None (same as
(0, 0)). See Coordinate System. If a 4-tuple is given, the size
of the pasted image must match the size of the region.

If the modes don’t match, the pasted image is converted to the mode of
this image (see the convert() method for
details).

Instead of an image, the source can be a integer or tuple
containing pixel values. The method then fills the region
with the given color. When creating RGB images, you can
also use color strings as supported by the ImageColor module.

If a mask is given, this method updates only the regions
indicated by the mask. You can use either “1”, “L” or “RGBA”
images (in the latter case, the alpha band is used as mask).
Where the mask is 255, the given image is copied as is. Where
the mask is 0, the current value is preserved. Intermediate
values will mix the two images together, including their alpha
channels if they have them.

See alpha_composite() if you want to
combine images with respect to their alpha channels.

	Parameters

	
	im – Source image or pixel value (integer or tuple).

	box – An optional 4-tuple giving the region to paste into.
If a 2-tuple is used instead, it’s treated as the upper left
corner. If omitted or None, the source is pasted into the
upper left corner.

If an image is given as the second argument and there is no
third, the box defaults to (0, 0), and the second argument
is interpreted as a mask image.

	mask – An optional mask image.

	
Image.point(lut, mode=None)

	Maps this image through a lookup table or function.

	Parameters

	
	lut – A lookup table, containing 256 (or 65536 if
self.mode==”I” and mode == “L”) values per band in the
image. A function can be used instead, it should take a
single argument. The function is called once for each
possible pixel value, and the resulting table is applied to
all bands of the image.

	mode – Output mode (default is same as input). In the
current version, this can only be used if the source image
has mode “L” or “P”, and the output has mode “1” or the
source image mode is “I” and the output mode is “L”.

	Returns

	An Image object.

	
Image.putalpha(alpha)

	Adds or replaces the alpha layer in this image. If the image
does not have an alpha layer, it’s converted to “LA” or “RGBA”.
The new layer must be either “L” or “1”.

	Parameters

	alpha – The new alpha layer. This can either be an “L” or “1”
image having the same size as this image, or an integer or
other color value.

	
Image.putdata(data, scale=1.0, offset=0.0)

	Copies pixel data to this image. This method copies data from a
sequence object into the image, starting at the upper left
corner (0, 0), and continuing until either the image or the
sequence ends. The scale and offset values are used to adjust
the sequence values: pixel = value*scale + offset.

	Parameters

	
	data – A sequence object.

	scale – An optional scale value. The default is 1.0.

	offset – An optional offset value. The default is 0.0.

	
Image.putpalette(data, rawmode='RGB')

	Attaches a palette to this image. The image must be a “P” or
“L” image, and the palette sequence must contain 768 integer
values, where each group of three values represent the red,
green, and blue values for the corresponding pixel
index. Instead of an integer sequence, you can use an 8-bit
string.

	Parameters

	
	data – A palette sequence (either a list or a string).

	rawmode – The raw mode of the palette.

	
Image.putpixel(xy, value)

	Modifies the pixel at the given position. The color is given as
a single numerical value for single-band images, and a tuple for
multi-band images.

Note that this method is relatively slow. For more extensive changes,
use paste() or the ImageDraw
module instead.

See:

	paste()

	putdata()

	ImageDraw

	Parameters

	
	xy – The pixel coordinate, given as (x, y). See
Coordinate System.

	value – The pixel value.

	
Image.quantize(colors=256, method=None, kmeans=0, palette=None)

	Convert the image to ‘P’ mode with the specified number
of colors.

	Parameters

	
	colors – The desired number of colors, <= 256

	method – 0 = median cut
1 = maximum coverage
2 = fast octree
3 = libimagequant

	kmeans – Integer

	palette – Quantize to the palette of given PIL.Image.Image.

	Returns

	A new image

	
Image.resize(size, resample=0, box=None)

	Returns a resized copy of this image.

	Parameters

	
	size – The requested size in pixels, as a 2-tuple:
(width, height).

	resample – An optional resampling filter. This can be
one of PIL.Image.NEAREST, PIL.Image.BOX,
PIL.Image.BILINEAR, PIL.Image.HAMMING,
PIL.Image.BICUBIC or PIL.Image.LANCZOS.
If omitted, or if the image has mode “1” or “P”, it is
set PIL.Image.NEAREST.
See: Filters.

	box – An optional 4-tuple of floats giving the region
of the source image which should be scaled.
The values should be within (0, 0, width, height) rectangle.
If omitted or None, the entire source is used.

	Returns

	An Image object.

	
Image.remap_palette(dest_map, source_palette=None)

	Rewrites the image to reorder the palette.

	Parameters

	
	dest_map – A list of indexes into the original palette.
e.g. [1,0] would swap a two item palette, and list(range(255))
is the identity transform.

	source_palette – Bytes or None.

	Returns

	An Image object.

	
Image.rotate(angle, resample=0, expand=0, center=None, translate=None, fillcolor=None)

	Returns a rotated copy of this image. This method returns a
copy of this image, rotated the given number of degrees counter
clockwise around its centre.

	Parameters

	
	angle – In degrees counter clockwise.

	resample – An optional resampling filter. This can be
one of PIL.Image.NEAREST (use nearest neighbour),
PIL.Image.BILINEAR (linear interpolation in a 2x2
environment), or PIL.Image.BICUBIC
(cubic spline interpolation in a 4x4 environment).
If omitted, or if the image has mode “1” or “P”, it is
set PIL.Image.NEAREST. See Filters.

	expand – Optional expansion flag. If true, expands the output
image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the
input image. Note that the expand flag assumes rotation around
the center and no translation.

	center – Optional center of rotation (a 2-tuple). Origin is
the upper left corner. Default is the center of the image.

	translate – An optional post-rotate translation (a 2-tuple).

	fillcolor – An optional color for area outside the rotated image.

	Returns

	An Image object.

	
Image.save(fp, format=None, **params)

	Saves this image under the given filename. If no format is
specified, the format to use is determined from the filename
extension, if possible.

Keyword options can be used to provide additional instructions
to the writer. If a writer doesn’t recognise an option, it is
silently ignored. The available options are described in the
image format documentation for each writer.

You can use a file object instead of a filename. In this case,
you must always specify the format. The file object must
implement the seek, tell, and write
methods, and be opened in binary mode.

	Parameters

	
	fp – A filename (string), pathlib.Path object or file object.

	format – Optional format override. If omitted, the
format to use is determined from the filename extension.
If a file object was used instead of a filename, this
parameter should always be used.

	params – Extra parameters to the image writer.

	Returns

	None

	Raises

	
	KeyError – If the output format could not be determined
from the file name. Use the format option to solve this.

	IOError – If the file could not be written. The file
may have been created, and may contain partial data.

	
Image.seek(frame)

	Seeks to the given frame in this sequence file. If you seek
beyond the end of the sequence, the method raises an
EOFError exception. When a sequence file is opened, the
library automatically seeks to frame 0.

Note that in the current version of the library, most sequence
formats only allows you to seek to the next frame.

See tell().

	Parameters

	frame – Frame number, starting at 0.

	Raises

	EOFError – If the call attempts to seek beyond the end
of the sequence.

	
Image.show(title=None, command=None)

	Displays this image. This method is mainly intended for
debugging purposes.

On Unix platforms, this method saves the image to a temporary
PPM file, and calls either the xv utility or the display
utility, depending on which one can be found.

On macOS, this method saves the image to a temporary BMP file, and
opens it with the native Preview application.

On Windows, it saves the image to a temporary BMP file, and uses
the standard BMP display utility to show it (usually Paint).

	Parameters

	
	title – Optional title to use for the image window,
where possible.

	command – command used to show the image

	
Image.split()

	Split this image into individual bands. This method returns a
tuple of individual image bands from an image. For example,
splitting an “RGB” image creates three new images each
containing a copy of one of the original bands (red, green,
blue).

If you need only one band, getchannel()
method can be more convenient and faster.

	Returns

	A tuple containing bands.

	
Image.getchannel(channel)

	Returns an image containing a single channel of the source image.

	Parameters

	channel – What channel to return. Could be index
(0 for “R” channel of “RGB”) or channel name
(“A” for alpha channel of “RGBA”).

	Returns

	An image in “L” mode.

New in version 4.3.0.

	
Image.tell()

	Returns the current frame number. See seek().

	Returns

	Frame number, starting with 0.

	
Image.thumbnail(size, resample=3)

	Make this image into a thumbnail. This method modifies the
image to contain a thumbnail version of itself, no larger than
the given size. This method calculates an appropriate thumbnail
size to preserve the aspect of the image, calls the
draft() method to configure the file reader
(where applicable), and finally resizes the image.

Note that this function modifies the Image
object in place. If you need to use the full resolution image as well,
apply this method to a copy() of the original
image.

	Parameters

	
	size – Requested size.

	resample – Optional resampling filter. This can be one
of PIL.Image.NEAREST, PIL.Image.BILINEAR,
PIL.Image.BICUBIC, or PIL.Image.LANCZOS.
If omitted, it defaults to PIL.Image.BICUBIC.
(was PIL.Image.NEAREST prior to version 2.5.0)

	Returns

	None

	
Image.tobitmap(name='image')

	Returns the image converted to an X11 bitmap.

Note

This method only works for mode “1” images.

	Parameters

	name – The name prefix to use for the bitmap variables.

	Returns

	A string containing an X11 bitmap.

	Raises

	ValueError – If the mode is not “1”

	
Image.tobytes(encoder_name='raw', *args)

	Return image as a bytes object.

Warning

This method returns the raw image data from the internal
storage. For compressed image data (e.g. PNG, JPEG) use
save(), with a BytesIO parameter for in-memory
data.

	Parameters

	
	encoder_name – What encoder to use. The default is to
use the standard “raw” encoder.

	args – Extra arguments to the encoder.

	Return type

	A bytes object.

	
Image.tostring(*args, **kw)

	

	
Image.transform(size, method, data=None, resample=0, fill=1, fillcolor=None)

	Transforms this image. This method creates a new image with the
given size, and the same mode as the original, and copies data
to the new image using the given transform.

	Parameters

	
	size – The output size.

	method – The transformation method. This is one of
PIL.Image.EXTENT (cut out a rectangular subregion),
PIL.Image.AFFINE (affine transform),
PIL.Image.PERSPECTIVE (perspective transform),
PIL.Image.QUAD (map a quadrilateral to a rectangle), or
PIL.Image.MESH (map a number of source quadrilaterals
in one operation).

It may also be an ImageTransformHandler
object:

class Example(Image.ImageTransformHandler):
 def transform(size, method, data, resample, fill=1):
 # Return result

It may also be an object with a getdata() method
that returns a tuple supplying new method and data values:

class Example(object):
 def getdata(self):
 method = Image.EXTENT
 data = (0, 0, 100, 100)
 return method, data

	data – Extra data to the transformation method.

	resample – Optional resampling filter. It can be one of
PIL.Image.NEAREST (use nearest neighbour),
PIL.Image.BILINEAR (linear interpolation in a 2x2
environment), or PIL.Image.BICUBIC (cubic spline
interpolation in a 4x4 environment). If omitted, or if the image
has mode “1” or “P”, it is set to PIL.Image.NEAREST.

	fill – If method is an
ImageTransformHandler object, this is one of
the arguments passed to it. Otherwise, it is unused.

	fillcolor – Optional fill color for the area outside the transform
in the output image.

	Returns

	An Image object.

	
Image.transpose(method)

	Transpose image (flip or rotate in 90 degree steps)

	Parameters

	method – One of PIL.Image.FLIP_LEFT_RIGHT,
PIL.Image.FLIP_TOP_BOTTOM, PIL.Image.ROTATE_90,
PIL.Image.ROTATE_180, PIL.Image.ROTATE_270,
PIL.Image.TRANSPOSE or PIL.Image.TRANSVERSE.

	Returns

	Returns a flipped or rotated copy of this image.

	
Image.verify()

	Verifies the contents of a file. For data read from a file, this
method attempts to determine if the file is broken, without
actually decoding the image data. If this method finds any
problems, it raises suitable exceptions. If you need to load
the image after using this method, you must reopen the image
file.

	
Image.fromstring(*args, **kw)

	

	
Image.load()

	Allocates storage for the image and loads the pixel data. In
normal cases, you don’t need to call this method, since the
Image class automatically loads an opened image when it is
accessed for the first time.

This method will close the file associated with the image. See
File Handling in Pillow for more information.

	Returns

	An image access object.

	Return type

	PixelAccess Class or PIL.PyAccess

	
Image.close()

	Closes the file pointer, if possible.

This operation will destroy the image core and release its memory.
The image data will be unusable afterward.

This function is only required to close images that have not
had their file read and closed by the
load() method. See
File Handling in Pillow for more information.

Attributes

Instances of the Image class have the following attributes:

	
PIL.Image.filename

	The filename or path of the source file. Only images created with the
factory function open have a filename attribute. If the input is a
file like object, the filename attribute is set to an empty string.

	Type

	:py:class: string

	
PIL.Image.format

	The file format of the source file. For images created by the library
itself (via a factory function, or by running a method on an existing
image), this attribute is set to None.

	Type

	string or None

	
PIL.Image.mode

	Image mode. This is a string specifying the pixel format used by the image.
Typical values are “1”, “L”, “RGB”, or “CMYK.” See
Modes for a full list.

	Type

	string

	
PIL.Image.size

	Image size, in pixels. The size is given as a 2-tuple (width, height).

	Type

	(width, height)

	
PIL.Image.width

	Image width, in pixels.

	Type

	int

	
PIL.Image.height

	Image height, in pixels.

	Type

	int

	
PIL.Image.palette

	Colour palette table, if any. If mode is “P”, this should be an instance of
the ImagePalette class. Otherwise, it should
be set to None.

	Type

	ImagePalette or None

	
PIL.Image.info

	A dictionary holding data associated with the image. This dictionary is
used by file handlers to pass on various non-image information read from
the file. See documentation for the various file handlers for details.

Most methods ignore the dictionary when returning new images; since the
keys are not standardized, it’s not possible for a method to know if the
operation affects the dictionary. If you need the information later on,
keep a reference to the info dictionary returned from the open method.

Unless noted elsewhere, this dictionary does not affect saving files.

	Type

	dict

ImageChops (“Channel Operations”) Module

The ImageChops module contains a number of arithmetical image
operations, called channel operations (“chops”). These can be used for various
purposes, including special effects, image compositions, algorithmic painting,
and more.

For more pre-made operations, see ImageOps.

At this time, most channel operations are only implemented for 8-bit images
(e.g. “L” and “RGB”).

Functions

Most channel operations take one or two image arguments and returns a new
image. Unless otherwise noted, the result of a channel operation is always
clipped to the range 0 to MAX (which is 255 for all modes supported by the
operations in this module).

	
PIL.ImageChops.add(image1, image2, scale=1.0, offset=0)

	Adds two images, dividing the result by scale and adding the
offset. If omitted, scale defaults to 1.0, and offset to 0.0.

out = ((image1 + image2) / scale + offset)

	Return type

	Image

	
PIL.ImageChops.add_modulo(image1, image2)

	Add two images, without clipping the result.

out = ((image1 + image2) % MAX)

	Return type

	Image

	
PIL.ImageChops.blend(image1, image2, alpha)

	Blend images using constant transparency weight. Alias for
PIL.Image.Image.blend().

	Return type

	Image

	
PIL.ImageChops.composite(image1, image2, mask)

	Create composite using transparency mask. Alias for
PIL.Image.Image.composite().

	Return type

	Image

	
PIL.ImageChops.constant(image, value)

	Fill a channel with a given grey level.

	Return type

	Image

	
PIL.ImageChops.darker(image1, image2)

	Compares the two images, pixel by pixel, and returns a new image
containing the darker values.

out = min(image1, image2)

	Return type

	Image

	
PIL.ImageChops.difference(image1, image2)

	Returns the absolute value of the pixel-by-pixel difference between the two
images.

out = abs(image1 - image2)

	Return type

	Image

	
PIL.ImageChops.duplicate(image)

	Copy a channel. Alias for PIL.Image.Image.copy().

	Return type

	Image

	
PIL.ImageChops.invert(image)

	Invert an image (channel).

out = MAX - image

	Return type

	Image

	
PIL.ImageChops.lighter(image1, image2)

	Compares the two images, pixel by pixel, and returns a new image containing
the lighter values.

out = max(image1, image2)

	Return type

	Image

	
PIL.ImageChops.logical_and(image1, image2)

	Logical AND between two images.

out = ((image1 and image2) % MAX)

	Return type

	Image

	
PIL.ImageChops.logical_or(image1, image2)

	Logical OR between two images.

out = ((image1 or image2) % MAX)

	Return type

	Image

	
PIL.ImageChops.multiply(image1, image2)

	Superimposes two images on top of each other.

If you multiply an image with a solid black image, the result is black. If
you multiply with a solid white image, the image is unaffected.

out = image1 * image2 / MAX

	Return type

	Image

	
PIL.ImageChops.offset(image, xoffset, yoffset=None)

	Returns a copy of the image where data has been offset by the given
distances. Data wraps around the edges. If yoffset is omitted, it
is assumed to be equal to xoffset.

	
PIL.ImageChops.screen(image1, image2)

	Superimposes two inverted images on top of each other.

out = MAX - ((MAX - image1) * (MAX - image2) / MAX)

	Return type

	Image

	
PIL.ImageChops.subtract(image1, image2, scale=1.0, offset=0)

	Subtracts two images, dividing the result by scale and adding the
offset. If omitted, scale defaults to 1.0, and offset to 0.0.

out = ((image1 - image2) / scale + offset)

	Return type

	Image

	
PIL.ImageChops.subtract_modulo(image1, image2)

	Subtract two images, without clipping the result.

out = ((image1 - image2) % MAX)

	Return type

	Image

ImageColor Module

The ImageColor module contains color tables and converters from
CSS3-style color specifiers to RGB tuples. This module is used by
PIL.Image.new() and the ImageDraw module, among
others.

Color Names

The ImageColor module supports the following string formats:

	Hexadecimal color specifiers, given as #rgb or #rrggbb. For example,
#ff0000 specifies pure red.

	RGB functions, given as rgb(red, green, blue) where the color values are
integers in the range 0 to 255. Alternatively, the color values can be given
as three percentages (0% to 100%). For example, rgb(255,0,0) and
rgb(100%,0%,0%) both specify pure red.

	Hue-Saturation-Lightness (HSL) functions, given as hsl(hue, saturation%,
lightness%) where hue is the color given as an angle between 0 and 360
(red=0, green=120, blue=240), saturation is a value between 0% and 100%
(gray=0%, full color=100%), and lightness is a value between 0% and 100%
(black=0%, normal=50%, white=100%). For example, hsl(0,100%,50%) is pure
red.

	Hue-Saturation-Value (HSV) functions, given as hsv(hue, saturation%,
value%) where hue and saturation are the same as HSL, and value is between
0% and 100% (black=0%, normal=100%). For example, hsv(0,100%,100%) is
pure red. This format is also known as Hue-Saturation-Brightness (HSB), and
can be given as hsb(hue, saturation%, brightness%), where each of the
values are used as they are in HSV.

	Common HTML color names. The ImageColor module provides some
140 standard color names, based on the colors supported by the X Window
system and most web browsers. color names are case insensitive. For example,
red and Red both specify pure red.

Functions

	
PIL.ImageColor.getrgb(color)

	Convert a color string to an RGB tuple. If the string cannot be parsed,
this function raises a ValueError exception.

New in version 1.1.4.

	
PIL.ImageColor.getcolor(color, mode)

	Same as getrgb(), but converts the RGB value to a
greyscale value if the mode is not color or a palette image. If the string
cannot be parsed, this function raises a ValueError exception.

New in version 1.1.4.

ImageCms Module

The ImageCms module provides color profile management
support using the LittleCMS2 color management engine, based on Kevin
Cazabon’s PyCMS library.

	
class PIL.ImageCms.ImageCmsTransform(input, output, input_mode, output_mode, intent=0, proof=None, proof_intent=3, flags=0)

	Transform. This can be used with the procedural API, or with the standard
Image.point() method.

Will return the output profile in the output.info[‘icc_profile’].

	
exception PIL.ImageCms.PyCMSError

	(pyCMS) Exception class.
This is used for all errors in the pyCMS API.

	
PIL.ImageCms.applyTransform(im, transform, inPlace=0)

	(pyCMS) Applies a transform to a given image.

If im.mode != transform.inMode, a PyCMSError is raised.

If inPlace == TRUE and transform.inMode != transform.outMode, a
PyCMSError is raised.

If im.mode, transfer.inMode, or transfer.outMode is not supported by
pyCMSdll or the profiles you used for the transform, a PyCMSError is
raised.

If an error occurs while the transform is being applied, a PyCMSError
is raised.

This function applies a pre-calculated transform (from
ImageCms.buildTransform() or ImageCms.buildTransformFromOpenProfiles())
to an image. The transform can be used for multiple images, saving
considerable calculation time if doing the same conversion multiple times.

If you want to modify im in-place instead of receiving a new image as
the return value, set inPlace to TRUE. This can only be done if
transform.inMode and transform.outMode are the same, because we can’t
change the mode in-place (the buffer sizes for some modes are
different). The default behavior is to return a new Image object of
the same dimensions in mode transform.outMode.

	Parameters

	
	im – A PIL Image object, and im.mode must be the same as the inMode
supported by the transform.

	transform – A valid CmsTransform class object

	inPlace – Bool (1 == True, 0 or None == False). If True, im is
modified in place and None is returned, if False, a new Image object
with the transform applied is returned (and im is not changed). The
default is False.

	Returns

	Either None, or a new PIL Image object, depending on the value of
inPlace. The profile will be returned in the image’s
info[‘icc_profile’].

	Raises

	PyCMSError –

	
PIL.ImageCms.buildProofTransform(inputProfile, outputProfile, proofProfile, inMode, outMode, renderingIntent=0, proofRenderingIntent=3, flags=16384)

	(pyCMS) Builds an ICC transform mapping from the inputProfile to the
outputProfile, but tries to simulate the result that would be
obtained on the proofProfile device.

If the input, output, or proof profiles specified are not valid
filenames, a PyCMSError will be raised.

If an error occurs during creation of the transform, a PyCMSError will
be raised.

If inMode or outMode are not a mode supported by the outputProfile
(or by pyCMS), a PyCMSError will be raised.

This function builds and returns an ICC transform from the inputProfile
to the outputProfile, but tries to simulate the result that would be
obtained on the proofProfile device using renderingIntent and
proofRenderingIntent to determine what to do with out-of-gamut
colors. This is known as “soft-proofing”. It will ONLY work for
converting images that are in inMode to images that are in outMode
color format (PIL mode, i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Usage of the resulting transform object is exactly the same as with
ImageCms.buildTransform().

Proof profiling is generally used when using an output device to get a
good idea of what the final printed/displayed image would look like on
the proofProfile device when it’s quicker and easier to use the
output device for judging color. Generally, this means that the
output device is a monitor, or a dye-sub printer (etc.), and the simulated
device is something more expensive, complicated, or time consuming
(making it difficult to make a real print for color judgement purposes).

Soft-proofing basically functions by adjusting the colors on the
output device to match the colors of the device being simulated. However,
when the simulated device has a much wider gamut than the output
device, you may obtain marginal results.

	Parameters

	
	inputProfile – String, as a valid filename path to the ICC input
profile you wish to use for this transform, or a profile object

	outputProfile – String, as a valid filename path to the ICC output
(monitor, usually) profile you wish to use for this transform, or a
profile object

	proofProfile – String, as a valid filename path to the ICC proof
profile you wish to use for this transform, or a profile object

	inMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	outMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	renderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for the input->proof (simulated) transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	proofRenderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for proof->output transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	flags – Integer (0-…) specifying additional flags

	Returns

	A CmsTransform class object.

	Raises

	PyCMSError –

	
PIL.ImageCms.buildProofTransformFromOpenProfiles(inputProfile, outputProfile, proofProfile, inMode, outMode, renderingIntent=0, proofRenderingIntent=3, flags=16384)

	(pyCMS) Builds an ICC transform mapping from the inputProfile to the
outputProfile, but tries to simulate the result that would be
obtained on the proofProfile device.

If the input, output, or proof profiles specified are not valid
filenames, a PyCMSError will be raised.

If an error occurs during creation of the transform, a PyCMSError will
be raised.

If inMode or outMode are not a mode supported by the outputProfile
(or by pyCMS), a PyCMSError will be raised.

This function builds and returns an ICC transform from the inputProfile
to the outputProfile, but tries to simulate the result that would be
obtained on the proofProfile device using renderingIntent and
proofRenderingIntent to determine what to do with out-of-gamut
colors. This is known as “soft-proofing”. It will ONLY work for
converting images that are in inMode to images that are in outMode
color format (PIL mode, i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Usage of the resulting transform object is exactly the same as with
ImageCms.buildTransform().

Proof profiling is generally used when using an output device to get a
good idea of what the final printed/displayed image would look like on
the proofProfile device when it’s quicker and easier to use the
output device for judging color. Generally, this means that the
output device is a monitor, or a dye-sub printer (etc.), and the simulated
device is something more expensive, complicated, or time consuming
(making it difficult to make a real print for color judgement purposes).

Soft-proofing basically functions by adjusting the colors on the
output device to match the colors of the device being simulated. However,
when the simulated device has a much wider gamut than the output
device, you may obtain marginal results.

	Parameters

	
	inputProfile – String, as a valid filename path to the ICC input
profile you wish to use for this transform, or a profile object

	outputProfile – String, as a valid filename path to the ICC output
(monitor, usually) profile you wish to use for this transform, or a
profile object

	proofProfile – String, as a valid filename path to the ICC proof
profile you wish to use for this transform, or a profile object

	inMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	outMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	renderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for the input->proof (simulated) transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	proofRenderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for proof->output transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	flags – Integer (0-…) specifying additional flags

	Returns

	A CmsTransform class object.

	Raises

	PyCMSError –

	
PIL.ImageCms.buildTransform(inputProfile, outputProfile, inMode, outMode, renderingIntent=0, flags=0)

	(pyCMS) Builds an ICC transform mapping from the inputProfile to the
outputProfile. Use applyTransform to apply the transform to a given
image.

If the input or output profiles specified are not valid filenames, a
PyCMSError will be raised. If an error occurs during creation of the
transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or
by pyCMS), a PyCMSError will be raised.

This function builds and returns an ICC transform from the inputProfile
to the outputProfile using the renderingIntent to determine what to do
with out-of-gamut colors. It will ONLY work for converting images that
are in inMode to images that are in outMode color format (PIL mode,
i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Building the transform is a fair part of the overhead in
ImageCms.profileToProfile(), so if you’re planning on converting multiple
images using the same input/output settings, this can save you time.
Once you have a transform object, it can be used with
ImageCms.applyProfile() to convert images without the need to re-compute
the lookup table for the transform.

The reason pyCMS returns a class object rather than a handle directly
to the transform is that it needs to keep track of the PIL input/output
modes that the transform is meant for. These attributes are stored in
the “inMode” and “outMode” attributes of the object (which can be
manually overridden if you really want to, but I don’t know of any
time that would be of use, or would even work).

	Parameters

	
	inputProfile – String, as a valid filename path to the ICC input
profile you wish to use for this transform, or a profile object

	outputProfile – String, as a valid filename path to the ICC output
profile you wish to use for this transform, or a profile object

	inMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	outMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	renderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for the transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	flags – Integer (0-…) specifying additional flags

	Returns

	A CmsTransform class object.

	Raises

	PyCMSError –

	
PIL.ImageCms.buildTransformFromOpenProfiles(inputProfile, outputProfile, inMode, outMode, renderingIntent=0, flags=0)

	(pyCMS) Builds an ICC transform mapping from the inputProfile to the
outputProfile. Use applyTransform to apply the transform to a given
image.

If the input or output profiles specified are not valid filenames, a
PyCMSError will be raised. If an error occurs during creation of the
transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or
by pyCMS), a PyCMSError will be raised.

This function builds and returns an ICC transform from the inputProfile
to the outputProfile using the renderingIntent to determine what to do
with out-of-gamut colors. It will ONLY work for converting images that
are in inMode to images that are in outMode color format (PIL mode,
i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Building the transform is a fair part of the overhead in
ImageCms.profileToProfile(), so if you’re planning on converting multiple
images using the same input/output settings, this can save you time.
Once you have a transform object, it can be used with
ImageCms.applyProfile() to convert images without the need to re-compute
the lookup table for the transform.

The reason pyCMS returns a class object rather than a handle directly
to the transform is that it needs to keep track of the PIL input/output
modes that the transform is meant for. These attributes are stored in
the “inMode” and “outMode” attributes of the object (which can be
manually overridden if you really want to, but I don’t know of any
time that would be of use, or would even work).

	Parameters

	
	inputProfile – String, as a valid filename path to the ICC input
profile you wish to use for this transform, or a profile object

	outputProfile – String, as a valid filename path to the ICC output
profile you wish to use for this transform, or a profile object

	inMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	outMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	renderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for the transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	flags – Integer (0-…) specifying additional flags

	Returns

	A CmsTransform class object.

	Raises

	PyCMSError –

	
PIL.ImageCms.createProfile(colorSpace, colorTemp=-1)

	(pyCMS) Creates a profile.

If colorSpace not in [“LAB”, “XYZ”, “sRGB”], a PyCMSError is raised

If using LAB and colorTemp != a positive integer, a PyCMSError is raised.

If an error occurs while creating the profile, a PyCMSError is raised.

Use this function to create common profiles on-the-fly instead of
having to supply a profile on disk and knowing the path to it. It
returns a normal CmsProfile object that can be passed to
ImageCms.buildTransformFromOpenProfiles() to create a transform to apply
to images.

	Parameters

	
	colorSpace – String, the color space of the profile you wish to
create.
Currently only “LAB”, “XYZ”, and “sRGB” are supported.

	colorTemp – Positive integer for the white point for the profile, in
degrees Kelvin (i.e. 5000, 6500, 9600, etc.). The default is for D50
illuminant if omitted (5000k). colorTemp is ONLY applied to LAB
profiles, and is ignored for XYZ and sRGB.

	Returns

	A CmsProfile class object

	Raises

	PyCMSError –

	
PIL.ImageCms.getDefaultIntent(profile)

	(pyCMS) Gets the default intent name for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the default intent, a
PyCMSError is raised.

Use this function to determine the default (and usually best optimized)
rendering intent for this profile. Most profiles support multiple
rendering intents, but are intended mostly for one type of conversion.
If you wish to use a different intent than returned, use
ImageCms.isIntentSupported() to verify it will work first.

	Parameters

	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns

	Integer 0-3 specifying the default rendering intent for this
profile.

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

	see the pyCMS documentation for details on rendering intents and what

	they do.

	Raises

	PyCMSError –

	
PIL.ImageCms.getOpenProfile(profileFilename)

	(pyCMS) Opens an ICC profile file.

The PyCMSProfile object can be passed back into pyCMS for use in creating
transforms and such (as in ImageCms.buildTransformFromOpenProfiles()).

If profileFilename is not a valid filename for an ICC profile, a PyCMSError
will be raised.

	Parameters

	profileFilename – String, as a valid filename path to the ICC profile
you wish to open, or a file-like object.

	Returns

	A CmsProfile class object.

	Raises

	PyCMSError –

	
PIL.ImageCms.getProfileCopyright(profile)

	(pyCMS) Gets the copyright for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the copyright tag, a PyCMSError
is raised

Use this function to obtain the information stored in the profile’s
copyright tag.

	Parameters

	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns

	A string containing the internal profile information stored in
an ICC tag.

	Raises

	PyCMSError –

	
PIL.ImageCms.getProfileDescription(profile)

	(pyCMS) Gets the description for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the description tag, a PyCMSError
is raised

Use this function to obtain the information stored in the profile’s
description tag.

	Parameters

	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns

	A string containing the internal profile information stored in an
ICC tag.

	Raises

	PyCMSError –

	
PIL.ImageCms.getProfileInfo(profile)

	(pyCMS) Gets the internal product information for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the info tag, a PyCMSError
is raised

Use this function to obtain the information stored in the profile’s
info tag. This often contains details about the profile, and how it
was created, as supplied by the creator.

	Parameters

	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns

	A string containing the internal profile information stored in
an ICC tag.

	Raises

	PyCMSError –

	
PIL.ImageCms.getProfileManufacturer(profile)

	(pyCMS) Gets the manufacturer for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the manufacturer tag, a
PyCMSError is raised

Use this function to obtain the information stored in the profile’s
manufacturer tag.

	Parameters

	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns

	A string containing the internal profile information stored in
an ICC tag.

	Raises

	PyCMSError –

	
PIL.ImageCms.getProfileModel(profile)

	(pyCMS) Gets the model for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the model tag, a PyCMSError
is raised

Use this function to obtain the information stored in the profile’s
model tag.

	Parameters

	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns

	A string containing the internal profile information stored in
an ICC tag.

	Raises

	PyCMSError –

	
PIL.ImageCms.getProfileName(profile)

	(pyCMS) Gets the internal product name for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised If an error occurs while trying to obtain the
name tag, a PyCMSError is raised.

Use this function to obtain the INTERNAL name of the profile (stored
in an ICC tag in the profile itself), usually the one used when the
profile was originally created. Sometimes this tag also contains
additional information supplied by the creator.

	Parameters

	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns

	A string containing the internal name of the profile as stored
in an ICC tag.

	Raises

	PyCMSError –

	
PIL.ImageCms.get_display_profile(handle=None)

	(experimental) Fetches the profile for the current display device.
:returns: None if the profile is not known.

	
PIL.ImageCms.isIntentSupported(profile, intent, direction)

	(pyCMS) Checks if a given intent is supported.

Use this function to verify that you can use your desired
renderingIntent with profile, and that profile can be used for the
input/output/proof profile as you desire.

Some profiles are created specifically for one “direction”, can cannot
be used for others. Some profiles can only be used for certain
rendering intents… so it’s best to either verify this before trying
to create a transform with them (using this function), or catch the
potential PyCMSError that will occur if they don’t support the modes
you select.

	Parameters

	
	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	intent – Integer (0-3) specifying the rendering intent you wish to
use with this profile

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

	see the pyCMS documentation for details on rendering intents and what

	they do.

	direction – Integer specifying if the profile is to be used for input,
output, or proof

INPUT = 0 (or use ImageCms.DIRECTION_INPUT)
OUTPUT = 1 (or use ImageCms.DIRECTION_OUTPUT)
PROOF = 2 (or use ImageCms.DIRECTION_PROOF)

	Returns

	1 if the intent/direction are supported, -1 if they are not.

	Raises

	PyCMSError –

	
PIL.ImageCms.profileToProfile(im, inputProfile, outputProfile, renderingIntent=0, outputMode=None, inPlace=0, flags=0)

	(pyCMS) Applies an ICC transformation to a given image, mapping from
inputProfile to outputProfile.

If the input or output profiles specified are not valid filenames, a
PyCMSError will be raised. If inPlace == TRUE and outputMode != im.mode,
a PyCMSError will be raised. If an error occurs during application of
the profiles, a PyCMSError will be raised. If outputMode is not a mode
supported by the outputProfile (or by pyCMS), a PyCMSError will be
raised.

This function applies an ICC transformation to im from inputProfile’s
color space to outputProfile’s color space using the specified rendering
intent to decide how to handle out-of-gamut colors.

OutputMode can be used to specify that a color mode conversion is to
be done using these profiles, but the specified profiles must be able
to handle that mode. I.e., if converting im from RGB to CMYK using
profiles, the input profile must handle RGB data, and the output
profile must handle CMYK data.

	Parameters

	
	im – An open PIL image object (i.e. Image.new(…) or
Image.open(…), etc.)

	inputProfile – String, as a valid filename path to the ICC input
profile you wish to use for this image, or a profile object

	outputProfile – String, as a valid filename path to the ICC output
profile you wish to use for this image, or a profile object

	renderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for the transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	outputMode – A valid PIL mode for the output image (i.e. “RGB”,
“CMYK”, etc.). Note: if rendering the image “inPlace”, outputMode
MUST be the same mode as the input, or omitted completely. If
omitted, the outputMode will be the same as the mode of the input
image (im.mode)

	inPlace – Boolean (1 = True, None or 0 = False). If True, the
original image is modified in-place, and None is returned. If False
(default), a new Image object is returned with the transform applied.

	flags – Integer (0-…) specifying additional flags

	Returns

	Either None or a new PIL image object, depending on value of
inPlace

	Raises

	PyCMSError –

	
PIL.ImageCms.versions()

	(pyCMS) Fetches versions.

CmsProfile

The ICC color profiles are wrapped in an instance of the class
CmsProfile. The specification ICC.1:2010 contains more
information about the meaning of the values in ICC profiles.

For convenience, all XYZ-values are also given as xyY-values (so they
can be easily displayed in a chromaticity diagram, for example).

	
class PIL.ImageCms.CmsProfile

	
	
creation_date

	Date and time this profile was first created (see 7.2.1 of ICC.1:2010).

	Type

	datetime.datetime or None

	
version

	The version number of the ICC standard that this profile follows
(e.g. 2.0).

	Type

	float

	
icc_version

	Same as version, but in encoded format (see 7.2.4 of ICC.1:2010).

	
device_class

	4-character string identifying the profile class. One of
scnr, mntr, prtr, link, spac, abst,
nmcl (see 7.2.5 of ICC.1:2010 for details).

	Type

	string

	
xcolor_space

	4-character string (padded with whitespace) identifying the color
space, e.g. XYZ␣, RGB␣ or CMYK (see 7.2.6 of
ICC.1:2010 for details).

Note that the deprecated attribute color_space contains an
interpreted (non-padded) variant of this (but can be empty on
unknown input).

	Type

	string

	
connection_space

	4-character string (padded with whitespace) identifying the color
space on the B-side of the transform (see 7.2.7 of ICC.1:2010 for
details).

Note that the deprecated attribute pcs contains an interpreted
(non-padded) variant of this (but can be empty on unknown input).

	Type

	string

	
header_flags

	The encoded header flags of the profile (see 7.2.11 of ICC.1:2010
for details).

	Type

	int

	
header_manufacturer

	4-character string (padded with whitespace) identifying the device
manufacturer, which shall match the signature contained in the
appropriate section of the ICC signature registry found at
www.color.org (see 7.2.12 of ICC.1:2010).

	Type

	string

	
header_model

	4-character string (padded with whitespace) identifying the device
model, which shall match the signature contained in the
appropriate section of the ICC signature registry found at
www.color.org (see 7.2.13 of ICC.1:2010).

	Type

	string

	
attributes

	Flags used to identify attributes unique to the particular device
setup for which the profile is applicable (see 7.2.14 of
ICC.1:2010 for details).

	Type

	int

	
rendering_intent

	The rendering intent to use when combining this profile with
another profile (usually overridden at run-time, but provided here
for DeviceLink and embedded source profiles, see 7.2.15 of ICC.1:2010).

One of ImageCms.INTENT_ABSOLUTE_COLORIMETRIC, ImageCms.INTENT_PERCEPTUAL,
ImageCms.INTENT_RELATIVE_COLORIMETRIC and ImageCms.INTENT_SATURATION.

	Type

	int

	
profile_id

	A sequence of 16 bytes identifying the profile (via a specially
constructed MD5 sum), or 16 binary zeroes if the profile ID has
not been calculated (see 7.2.18 of ICC.1:2010).

	Type

	bytes

	
copyright

	The text copyright information for the profile (see 9.2.21 of ICC.1:2010).

	Type

	unicode or None

	
manufacturer

	The (english) display string for the device manufacturer (see
9.2.22 of ICC.1:2010).

	Type

	unicode or None

	
model

	The (english) display string for the device model of the device
for which this profile is created (see 9.2.23 of ICC.1:2010).

	Type

	unicode or None

	
profile_description

	The (english) display string for the profile description (see
9.2.41 of ICC.1:2010).

	Type

	unicode or None

	
target

	The name of the registered characterization data set, or the
measurement data for a characterization target (see 9.2.14 of
ICC.1:2010).

	Type

	unicode or None

	
red_colorant

	The first column in the matrix used in matrix/TRC transforms (see 9.2.44 of ICC.1:2010).

	Type

	((X, Y, Z), (x, y, Y)) or None

	
green_colorant

	The second column in the matrix used in matrix/TRC transforms (see 9.2.30 of ICC.1:2010).

	Type

	((X, Y, Z), (x, y, Y)) or None

	
blue_colorant

	The third column in the matrix used in matrix/TRC transforms (see 9.2.4 of ICC.1:2010).

	Type

	((X, Y, Z), (x, y, Y)) or None

	
luminance

	The absolute luminance of emissive devices in candelas per square
metre as described by the Y channel (see 9.2.32 of ICC.1:2010).

	Type

	((X, Y, Z), (x, y, Y)) or None

	
chromaticity

	The data of the phosphor/colorant chromaticity set used (red,
green and blue channels, see 9.2.16 of ICC.1:2010).

	Type

	((x, y, Y), (x, y, Y), (x, y, Y)) or None

	
chromatic_adaption

	The chromatic adaption matrix converts a color measured using the
actual illumination conditions and relative to the actual adopted
white, to an color relative to the PCS adopted white, with
complete adaptation from the actual adopted white chromaticity to
the PCS adopted white chromaticity (see 9.2.15 of ICC.1:2010).

Two matrices are returned, one in (X, Y, Z) space and one in (x, y, Y) space.

	Type

	2-tuple of 3-tuple, the first with (X, Y, Z) and the second with (x, y, Y) values

	
colorant_table

	This tag identifies the colorants used in the profile by a unique
name and set of PCSXYZ or PCSLAB values (see 9.2.19 of
ICC.1:2010).

	Type

	list of strings

	
colorant_table_out

	This tag identifies the colorants used in the profile by a unique
name and set of PCSLAB values (for DeviceLink profiles only, see
9.2.19 of ICC.1:2010).

	Type

	list of strings

	
colorimetric_intent

	4-character string (padded with whitespace) identifying the image
state of PCS colorimetry produced using the colorimetric intent
transforms (see 9.2.20 of ICC.1:2010 for details).

	Type

	string or None

	
perceptual_rendering_intent_gamut

	4-character string (padded with whitespace) identifying the (one)
standard reference medium gamut (see 9.2.37 of ICC.1:2010 for
details).

	Type

	string or None

	
saturation_rendering_intent_gamut

	4-character string (padded with whitespace) identifying the (one)
standard reference medium gamut (see 9.2.37 of ICC.1:2010 for
details).

	Type

	string or None

	
technology

	4-character string (padded with whitespace) identifying the device
technology (see 9.2.47 of ICC.1:2010 for details).

	Type

	string or None

	
media_black_point

	This tag specifies the media black point and is used for
generating absolute colorimetry.

This tag was available in ICC 3.2, but it is removed from
version 4.

	Type

	((X, Y, Z), (x, y, Y)) or None

	
media_white_point_temperature

	Calculates the white point temperature (see the LCMS documentation
for more information).

	Type

	float or None

	
viewing_condition

	The (english) display string for the viewing conditions (see
9.2.48 of ICC.1:2010).

	Type

	unicode or None

	
screening_description

	The (english) display string for the screening conditions.

This tag was available in ICC 3.2, but it is removed from
version 4.

	Type

	unicode or None

	
red_primary

	The XYZ-transformed of the RGB primary color red (1, 0, 0).

	Type

	((X, Y, Z), (x, y, Y)) or None

	
green_primary

	The XYZ-transformed of the RGB primary color green (0, 1, 0).

	Type

	((X, Y, Z), (x, y, Y)) or None

	
blue_primary

	The XYZ-transformed of the RGB primary color blue (0, 0, 1).

	Type

	((X, Y, Z), (x, y, Y)) or None

	
is_matrix_shaper

	True if this profile is implemented as a matrix shaper (see
documentation on LCMS).

	Type

	bool

	
clut

	Returns a dictionary of all supported intents and directions for
the CLUT model.

The dictionary is indexed by intents
(ImageCms.INTENT_ABSOLUTE_COLORIMETRIC,
ImageCms.INTENT_PERCEPTUAL,
ImageCms.INTENT_RELATIVE_COLORIMETRIC and
ImageCms.INTENT_SATURATION).

The values are 3-tuples indexed by directions
(ImageCms.DIRECTION_INPUT, ImageCms.DIRECTION_OUTPUT,
ImageCms.DIRECTION_PROOF).

The elements of the tuple are booleans. If the value is True,
that intent is supported for that direction.

	Type

	dict of boolean 3-tuples

	
intent_supported

	Returns a dictionary of all supported intents and directions.

The dictionary is indexed by intents
(ImageCms.INTENT_ABSOLUTE_COLORIMETRIC,
ImageCms.INTENT_PERCEPTUAL,
ImageCms.INTENT_RELATIVE_COLORIMETRIC and
ImageCms.INTENT_SATURATION).

The values are 3-tuples indexed by directions
(ImageCms.DIRECTION_INPUT, ImageCms.DIRECTION_OUTPUT,
ImageCms.DIRECTION_PROOF).

The elements of the tuple are booleans. If the value is True,
that intent is supported for that direction.

	Type

	dict of boolean 3-tuples

	
color_space

	Deprecated but retained for backwards compatibility.
Interpreted value of xcolor_space. May be the
empty string if value could not be decoded.

	Type

	string

	
pcs

	Deprecated but retained for backwards compatibility.
Interpreted value of connection_space. May be
the empty string if value could not be decoded.

	Type

	string

	
product_model

	Deprecated but retained for backwards compatibility.
ASCII-encoded value of model.

	Type

	string

	
product_manufacturer

	Deprecated but retained for backwards compatibility.
ASCII-encoded value of manufacturer.

	Type

	string

	
product_copyright

	Deprecated but retained for backwards compatibility.
ASCII-encoded value of copyright.

	Type

	string

	
product_description

	Deprecated but retained for backwards compatibility.
ASCII-encoded value of profile_description.

	Type

	string

	
product_desc

	Deprecated but retained for backwards compatibility.
ASCII-encoded value of profile_description.

This alias of product_description used to
contain a derived informative string about the profile,
depending on the value of the description, copyright,
manufacturer and model fields).

	Type

	string

There is one function defined on the class:

	
is_intent_supported(intent, direction)

	Returns if the intent is supported for the given direction.

Note that you can also get this information for all intents and directions
with intent_supported.

	Parameters

	
	intent – One of ImageCms.INTENT_ABSOLUTE_COLORIMETRIC,
ImageCms.INTENT_PERCEPTUAL,
ImageCms.INTENT_RELATIVE_COLORIMETRIC
and ImageCms.INTENT_SATURATION.

	direction – One of ImageCms.DIRECTION_INPUT,
ImageCms.DIRECTION_OUTPUT
and ImageCms.DIRECTION_PROOF

	Returns

	Boolean if the intent and direction is supported.

ImageDraw Module

The ImageDraw module provides simple 2D graphics for
Image objects. You can use this module to create new
images, annotate or retouch existing images, and to generate graphics on the
fly for web use.

For a more advanced drawing library for PIL, see the aggdraw module [https://github.com/pytroll/aggdraw].

Example: Draw a gray cross over an image

from PIL import Image, ImageDraw

im = Image.open("hopper.jpg")

draw = ImageDraw.Draw(im)
draw.line((0, 0) + im.size, fill=128)
draw.line((0, im.size[1], im.size[0], 0), fill=128)

write to stdout
im.save(sys.stdout, "PNG")

Concepts

Coordinates

The graphics interface uses the same coordinate system as PIL itself, with (0,
0) in the upper left corner.

Colors

To specify colors, you can use numbers or tuples just as you would use with
PIL.Image.new() or PIL.Image.Image.putpixel(). For “1”,
“L”, and “I” images, use integers. For “RGB” images, use a 3-tuple containing
integer values. For “F” images, use integer or floating point values.

For palette images (mode “P”), use integers as color indexes. In 1.1.4 and
later, you can also use RGB 3-tuples or color names (see below). The drawing
layer will automatically assign color indexes, as long as you don’t draw with
more than 256 colors.

Color Names

See Color Names for the color names supported by Pillow.

Fonts

PIL can use bitmap fonts or OpenType/TrueType fonts.

Bitmap fonts are stored in PIL’s own format, where each font typically consists
of two files, one named .pil and the other usually named .pbm. The former
contains font metrics, the latter raster data.

To load a bitmap font, use the load functions in the ImageFont
module.

To load a OpenType/TrueType font, use the truetype function in the
ImageFont module. Note that this function depends on third-party
libraries, and may not available in all PIL builds.

Example: Draw Partial Opacity Text

from PIL import Image, ImageDraw, ImageFont
get an image
base = Image.open('Pillow/Tests/images/hopper.png').convert('RGBA')

make a blank image for the text, initialized to transparent text color
txt = Image.new('RGBA', base.size, (255,255,255,0))

get a font
fnt = ImageFont.truetype('Pillow/Tests/fonts/FreeMono.ttf', 40)
get a drawing context
d = ImageDraw.Draw(txt)

draw text, half opacity
d.text((10,10), "Hello", font=fnt, fill=(255,255,255,128))
draw text, full opacity
d.text((10,60), "World", font=fnt, fill=(255,255,255,255))

out = Image.alpha_composite(base, txt)

out.show()

Functions

	
class PIL.ImageDraw.Draw(im, mode=None)

	Creates an object that can be used to draw in the given image.

Note that the image will be modified in place.

	Parameters

	
	im – The image to draw in.

	mode – Optional mode to use for color values. For RGB
images, this argument can be RGB or RGBA (to blend the
drawing into the image). For all other modes, this argument
must be the same as the image mode. If omitted, the mode
defaults to the mode of the image.

Methods

	
PIL.ImageDraw.ImageDraw.getfont()

	Get the current default font.

	Returns

	An image font.

	
PIL.ImageDraw.ImageDraw.arc(xy, start, end, fill=None)

	Draws an arc (a portion of a circle outline) between the start and end
angles, inside the given bounding box.

	Parameters

	
	xy – Two points to define the bounding box. Sequence of
[(x0, y0), (x1, y1)] or [x0, y0, x1, y1],

where x1 >= x0 and y1 >= y0.

	start – Starting angle, in degrees. Angles are measured from
3 o’clock, increasing clockwise.

	end – Ending angle, in degrees.

	fill – Color to use for the arc.

	
PIL.ImageDraw.ImageDraw.bitmap(xy, bitmap, fill=None)

	Draws a bitmap (mask) at the given position, using the current fill color
for the non-zero portions. The bitmap should be a valid transparency mask
(mode “1”) or matte (mode “L” or “RGBA”).

This is equivalent to doing image.paste(xy, color, bitmap).

To paste pixel data into an image, use the
paste() method on the image itself.

	
PIL.ImageDraw.ImageDraw.chord(xy, start, end, fill=None, outline=None)

	Same as arc(), but connects the end points
with a straight line.

	Parameters

	
	xy – Two points to define the bounding box. Sequence of
[(x0, y0), (x1, y1)] or [x0, y0, x1, y1],

where x1 >= x0 and y1 >= y0.

	outline – Color to use for the outline.

	fill – Color to use for the fill.

	
PIL.ImageDraw.ImageDraw.ellipse(xy, fill=None, outline=None)

	Draws an ellipse inside the given bounding box.

	Parameters

	
	xy – Two points to define the bounding box. Sequence of either
[(x0, y0), (x1, y1)] or [x0, y0, x1, y1],

where x1 >= x0 and y1 >= y0.

	outline – Color to use for the outline.

	fill – Color to use for the fill.

	
PIL.ImageDraw.ImageDraw.line(xy, fill=None, width=0)

	Draws a line between the coordinates in the xy list.

	Parameters

	
	xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or
numeric values like [x, y, x, y, ...].

	fill – Color to use for the line.

	width – The line width, in pixels. Note that line
joins are not handled well, so wide polylines will not look good.

New in version 1.1.5.

Note

This option was broken until version 1.1.6.

	
PIL.ImageDraw.ImageDraw.pieslice(xy, start, end, fill=None, outline=None)

	Same as arc, but also draws straight lines between the end points and the
center of the bounding box.

	Parameters

	
	xy – Two points to define the bounding box. Sequence of
[(x0, y0), (x1, y1)] or [x0, y0, x1, y1],

where x1 >= x0 and y1 >= y0.

	start – Starting angle, in degrees. Angles are measured from
3 o’clock, increasing clockwise.

	end – Ending angle, in degrees.

	fill – Color to use for the fill.

	outline – Color to use for the outline.

	
PIL.ImageDraw.ImageDraw.point(xy, fill=None)

	Draws points (individual pixels) at the given coordinates.

	Parameters

	
	xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or
numeric values like [x, y, x, y, ...].

	fill – Color to use for the point.

	
PIL.ImageDraw.ImageDraw.polygon(xy, fill=None, outline=None)

	Draws a polygon.

The polygon outline consists of straight lines between the given
coordinates, plus a straight line between the last and the first
coordinate.

	Parameters

	
	xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or
numeric values like [x, y, x, y, ...].

	outline – Color to use for the outline.

	fill – Color to use for the fill.

	
PIL.ImageDraw.ImageDraw.rectangle(xy, fill=None, outline=None)

	Draws a rectangle.

	Parameters

	
	xy – Two points to define the bounding box. Sequence of either
[(x0, y0), (x1, y1)] or [x0, y0, x1, y1]. The second point
is just outside the drawn rectangle.

	outline – Color to use for the outline.

	fill – Color to use for the fill.

	
PIL.ImageDraw.ImageDraw.shape(shape, fill=None, outline=None)

	
Warning

This method is experimental.

Draw a shape.

	
PIL.ImageDraw.ImageDraw.text(xy, text, fill=None, font=None, anchor=None, spacing=0, align="left", direction=None, features=None)

	Draws the string at the given position.

	Parameters

	
	xy – Top left corner of the text.

	text – Text to be drawn. If it contains any newline characters,
the text is passed on to multiline_text()

	fill – Color to use for the text.

	font – An ImageFont instance.

	spacing – If the text is passed on to multiline_text(),
the number of pixels between lines.

	align – If the text is passed on to multiline_text(),
“left”, “center” or “right”.

	direction – Direction of the text. It can be ‘rtl’ (right to
left), ‘ltr’ (left to right), ‘ttb’ (top to
bottom) or ‘btt’ (bottom to top). Requires
libraqm.

New in version 4.2.0.

	features – A list of OpenType font features to be used during text
layout. This is usually used to turn on optional
font features that are not enabled by default,
for example ‘dlig’ or ‘ss01’, but can be also
used to turn off default font features for
example ‘-liga’ to disable ligatures or ‘-kern’
to disable kerning. To get all supported
features, see
https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist
Requires libraqm.

New in version 4.2.0.

	
PIL.ImageDraw.ImageDraw.multiline_text(xy, text, fill=None, font=None, anchor=None, spacing=0, align="left", direction=None, features=None)

	Draws the string at the given position.

	Parameters

	
	xy – Top left corner of the text.

	text – Text to be drawn.

	fill – Color to use for the text.

	font – An ImageFont instance.

	spacing – The number of pixels between lines.

	align – “left”, “center” or “right”.

	direction – Direction of the text. It can be ‘rtl’ (right to
left), ‘ltr’ (left to right), ‘ttb’ (top to
bottom) or ‘btt’ (bottom to top). Requires
libraqm.

New in version 4.2.0.

	features – A list of OpenType font features to be used during text
layout. This is usually used to turn on optional
font features that are not enabled by default,
for example ‘dlig’ or ‘ss01’, but can be also
used to turn off default font features for
example ‘-liga’ to disable ligatures or ‘-kern’
to disable kerning. To get all supported
features, see
https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist
Requires libraqm.

New in version 4.2.0.

	
PIL.ImageDraw.ImageDraw.textsize(text, font=None, spacing=4, direction=None, features=None)

	Return the size of the given string, in pixels.

	Parameters

	
	text – Text to be measured. If it contains any newline characters,
the text is passed on to multiline_textsize()

	font – An ImageFont instance.

	spacing – If the text is passed on to multiline_textsize(),
the number of pixels between lines.

	direction – Direction of the text. It can be ‘rtl’ (right to
left), ‘ltr’ (left to right), ‘ttb’ (top to
bottom) or ‘btt’ (bottom to top). Requires
libraqm.

New in version 4.2.0.

	features – A list of OpenType font features to be used during text
layout. This is usually used to turn on optional
font features that are not enabled by default,
for example ‘dlig’ or ‘ss01’, but can be also
used to turn off default font features for
example ‘-liga’ to disable ligatures or ‘-kern’
to disable kerning. To get all supported
features, see
https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist
Requires libraqm.

New in version 4.2.0.

	
PIL.ImageDraw.ImageDraw.multiline_textsize(text, font=None, spacing=4, direction=None, features=None)

	Return the size of the given string, in pixels.

	Parameters

	
	text – Text to be measured.

	font – An ImageFont instance.

	spacing – The number of pixels between lines.

	direction – Direction of the text. It can be ‘rtl’ (right to
left), ‘ltr’ (left to right), ‘ttb’ (top to
bottom) or ‘btt’ (bottom to top). Requires
libraqm.

New in version 4.2.0.

	features – A list of OpenType font features to be used during text
layout. This is usually used to turn on optional
font features that are not enabled by default,
for example ‘dlig’ or ‘ss01’, but can be also
used to turn off default font features for
example ‘-liga’ to disable ligatures or ‘-kern’
to disable kerning. To get all supported
features, see
https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist
Requires libraqm.

New in version 4.2.0.

	
PIL.ImageDraw.getdraw(im=None, hints=None)

	
Warning

This method is experimental.

A more advanced 2D drawing interface for PIL images,
based on the WCK interface.

	Parameters

	
	im – The image to draw in.

	hints – An optional list of hints.

	Returns

	A (drawing context, drawing resource factory) tuple.

	
PIL.ImageDraw.floodfill(image, xy, value, border=None, thresh=0)

	
Warning

This method is experimental.

Fills a bounded region with a given color.

	Parameters

	
	image – Target image.

	xy – Seed position (a 2-item coordinate tuple).

	value – Fill color.

	border – Optional border value. If given, the region consists of
pixels with a color different from the border color. If not given,
the region consists of pixels having the same color as the seed
pixel.

	thresh – Optional threshold value which specifies a maximum
tolerable difference of a pixel value from the ‘background’ in
order for it to be replaced. Useful for filling regions of non-
homogeneous, but similar, colors.

ImageEnhance Module

The ImageEnhance module contains a number of classes that can be used
for image enhancement.

Example: Vary the sharpness of an image

from PIL import ImageEnhance

enhancer = ImageEnhance.Sharpness(image)

for i in range(8):
 factor = i / 4.0
 enhancer.enhance(factor).show("Sharpness %f" % factor)

Also see the enhancer.py demo program in the Scripts/
directory.

Classes

All enhancement classes implement a common interface, containing a single
method:

	
class PIL.ImageEnhance._Enhance

	
.. py:method:: enhance(factor)

	
Returns an enhanced image.

	param factor

	A floating point value controlling the enhancement.
Factor 1.0 always returns a copy of the original image,
lower factors mean less color (brightness, contrast,
etc), and higher values more. There are no restrictions
on this value.

	
class PIL.ImageEnhance.Color(image)

	Adjust image color balance.

This class can be used to adjust the colour balance of an image, in
a manner similar to the controls on a colour TV set. An enhancement
factor of 0.0 gives a black and white image. A factor of 1.0 gives
the original image.

	
class PIL.ImageEnhance.Contrast(image)

	Adjust image contrast.

This class can be used to control the contrast of an image, similar
to the contrast control on a TV set. An enhancement factor of 0.0
gives a solid grey image. A factor of 1.0 gives the original image.

	
class PIL.ImageEnhance.Brightness(image)

	Adjust image brightness.

This class can be used to control the brightness of an image. An
enhancement factor of 0.0 gives a black image. A factor of 1.0 gives the
original image.

	
class PIL.ImageEnhance.Sharpness(image)

	Adjust image sharpness.

This class can be used to adjust the sharpness of an image. An
enhancement factor of 0.0 gives a blurred image, a factor of 1.0 gives the
original image, and a factor of 2.0 gives a sharpened image.

ImageFile Module

The ImageFile module provides support functions for the image open
and save functions.

In addition, it provides a Parser class which can be used to decode
an image piece by piece (e.g. while receiving it over a network connection).
This class implements the same consumer interface as the standard sgmllib
and xmllib modules.

Example: Parse an image

from PIL import ImageFile

fp = open("hopper.pgm", "rb")

p = ImageFile.Parser()

while 1:
 s = fp.read(1024)
 if not s:
 break
 p.feed(s)

im = p.close()

im.save("copy.jpg")

Parser

	
class PIL.ImageFile.Parser

	Incremental image parser. This class implements the standard
feed/close consumer interface.

	
close()

	(Consumer) Close the stream.

	Returns

	An image object.

	Raises

	IOError – If the parser failed to parse the image file either
because it cannot be identified or cannot be
decoded.

	
feed(data)

	(Consumer) Feed data to the parser.

	Parameters

	data – A string buffer.

	Raises

	IOError – If the parser failed to parse the image file.

	
reset()

	(Consumer) Reset the parser. Note that you can only call this
method immediately after you’ve created a parser; parser
instances cannot be reused.

PyDecoder

	
class PIL.ImageFile.PyDecoder

	Python implementation of a format decoder. Override this class and
add the decoding logic in the decode method.

See Writing Your Own File Decoder in Python

	
cleanup()

	Override to perform decoder specific cleanup

	Returns

	None

	
decode(buffer)

	Override to perform the decoding process.

	Parameters

	buffer – A bytes object with the data to be decoded. If handles_eof
is set, then buffer will be empty and self.fd will be set.

	Returns

	A tuple of (bytes consumed, errcode). If finished with decoding
return <0 for the bytes consumed. Err codes are from ERRORS

	
init(args)

	Override to perform decoder specific initialization

	Parameters

	args – Array of args items from the tile entry

	Returns

	None

	
set_as_raw(data, rawmode=None)

	Convenience method to set the internal image from a stream of raw data

	Parameters

	
	data – Bytes to be set

	rawmode – The rawmode to be used for the decoder. If not specified,
it will default to the mode of the image

	Returns

	None

	
setfd(fd)

	Called from ImageFile to set the python file-like object

	Parameters

	fd – A python file-like object

	Returns

	None

	
setimage(im, extents=None)

	Called from ImageFile to set the core output image for the decoder

	Parameters

	
	im – A core image object

	extents – a 4 tuple of (x0, y0, x1, y1) defining the rectangle
for this tile

	Returns

	None

ImageFilter Module

The ImageFilter module contains definitions for a pre-defined set of
filters, which can be be used with the Image.filter() method.

Example: Filter an image

from PIL import ImageFilter

im1 = im.filter(ImageFilter.BLUR)

im2 = im.filter(ImageFilter.MinFilter(3))
im3 = im.filter(ImageFilter.MinFilter) # same as MinFilter(3)

Filters

The current version of the library provides the following set of predefined
image enhancement filters:

	BLUR

	CONTOUR

	DETAIL

	EDGE_ENHANCE

	EDGE_ENHANCE_MORE

	EMBOSS

	FIND_EDGES

	SHARPEN

	SMOOTH

	SMOOTH_MORE

	
class PIL.ImageFilter.Color3DLUT(size, table, channels=3, target_mode=None, **kwargs)

	Three-dimensional color lookup table.

Transforms 3-channel pixels using the values of the channels as coordinates
in the 3D lookup table and interpolating the nearest elements.

This method allows you to apply almost any color transformation
in constant time by using pre-calculated decimated tables.

New in version 5.2.0.

	Parameters

	
	size – Size of the table. One int or tuple of (int, int, int).
Minimal size in any dimension is 2, maximum is 65.

	table – Flat lookup table. A list of channels * size**3
float elements or a list of size**3 channels-sized
tuples with floats. Channels are changed first,
then first dimension, then second, then third.
Value 0.0 corresponds lowest value of output, 1.0 highest.

	channels – Number of channels in the table. Could be 3 or 4.
Default is 3.

	target_mode – A mode for the result image. Should have not less
than channels channels. Default is None,
which means that mode wouldn’t be changed.

	
class PIL.ImageFilter.BoxBlur(radius)

	Blurs the image by setting each pixel to the average value of the pixels
in a square box extending radius pixels in each direction.
Supports float radius of arbitrary size. Uses an optimized implementation
which runs in linear time relative to the size of the image
for any radius value.

	Parameters

	radius – Size of the box in one direction. Radius 0 does not blur,
returns an identical image. Radius 1 takes 1 pixel
in each direction, i.e. 9 pixels in total.

	
class PIL.ImageFilter.GaussianBlur(radius=2)

	Gaussian blur filter.

	Parameters

	radius – Blur radius.

	
class PIL.ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3)

	Unsharp mask filter.

See Wikipedia’s entry on digital unsharp masking [https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking] for an explanation of
the parameters.

	Parameters

	
	radius – Blur Radius

	percent – Unsharp strength, in percent

	threshold – Threshold controls the minimum brightness change that
will be sharpened

	
class PIL.ImageFilter.Kernel(size, kernel, scale=None, offset=0)

	Create a convolution kernel. The current version only
supports 3x3 and 5x5 integer and floating point kernels.

In the current version, kernels can only be applied to
“L” and “RGB” images.

	Parameters

	
	size – Kernel size, given as (width, height). In the current
version, this must be (3,3) or (5,5).

	kernel – A sequence containing kernel weights.

	scale – Scale factor. If given, the result for each pixel is
divided by this value. the default is the sum of the
kernel weights.

	offset – Offset. If given, this value is added to the result,
after it has been divided by the scale factor.

	
class PIL.ImageFilter.RankFilter(size, rank)

	Create a rank filter. The rank filter sorts all pixels in
a window of the given size, and returns the rank’th value.

	Parameters

	
	size – The kernel size, in pixels.

	rank – What pixel value to pick. Use 0 for a min filter,
size * size / 2 for a median filter, size * size - 1
for a max filter, etc.

	
class PIL.ImageFilter.MedianFilter(size=3)

	Create a median filter. Picks the median pixel value in a window with the
given size.

	Parameters

	size – The kernel size, in pixels.

	
class PIL.ImageFilter.MinFilter(size=3)

	Create a min filter. Picks the lowest pixel value in a window with the
given size.

	Parameters

	size – The kernel size, in pixels.

	
class PIL.ImageFilter.MaxFilter(size=3)

	Create a max filter. Picks the largest pixel value in a window with the
given size.

	Parameters

	size – The kernel size, in pixels.

	
class PIL.ImageFilter.ModeFilter(size=3)

	Create a mode filter. Picks the most frequent pixel value in a box with the
given size. Pixel values that occur only once or twice are ignored; if no
pixel value occurs more than twice, the original pixel value is preserved.

	Parameters

	size – The kernel size, in pixels.

ImageFont Module

The ImageFont module defines a class with the same name. Instances of
this class store bitmap fonts, and are used with the
PIL.ImageDraw.Draw.text() method.

PIL uses its own font file format to store bitmap fonts. You can use the
pilfont utility to convert BDF and PCF font descriptors (X window
font formats) to this format.

Starting with version 1.1.4, PIL can be configured to support TrueType and
OpenType fonts (as well as other font formats supported by the FreeType
library). For earlier versions, TrueType support is only available as part of
the imToolkit package

Example

from PIL import ImageFont, ImageDraw

draw = ImageDraw.Draw(image)

use a bitmap font
font = ImageFont.load("arial.pil")

draw.text((10, 10), "hello", font=font)

use a truetype font
font = ImageFont.truetype("arial.ttf", 15)

draw.text((10, 25), "world", font=font)

Functions

	
PIL.ImageFont.load(filename)

	Load a font file. This function loads a font object from the given
bitmap font file, and returns the corresponding font object.

	Parameters

	filename – Name of font file.

	Returns

	A font object.

	Raises

	IOError – If the file could not be read.

	
PIL.ImageFont.load_path(filename)

	Load font file. Same as load(), but searches for a
bitmap font along the Python path.

	Parameters

	filename – Name of font file.

	Returns

	A font object.

	Raises

	IOError – If the file could not be read.

	
PIL.ImageFont.truetype(font=None, size=10, index=0, encoding='', layout_engine=None)

	Load a TrueType or OpenType font from a file or file-like object,
and create a font object.
This function loads a font object from the given file or file-like
object, and creates a font object for a font of the given size.

This function requires the _imagingft service.

	Parameters

	
	font – A filename or file-like object containing a TrueType font.
Under Windows, if the file is not found in this filename,
the loader also looks in Windows fonts/ directory.

	size – The requested size, in points.

	index – Which font face to load (default is first available face).

	encoding – Which font encoding to use (default is Unicode). Common
encodings are “unic” (Unicode), “symb” (Microsoft
Symbol), “ADOB” (Adobe Standard), “ADBE” (Adobe Expert),
and “armn” (Apple Roman). See the FreeType documentation
for more information.

	layout_engine – Which layout engine to use, if available:
ImageFont.LAYOUT_BASIC or ImageFont.LAYOUT_RAQM.

	Returns

	A font object.

	Raises

	IOError – If the file could not be read.

	
PIL.ImageFont.load_default()

	Load a “better than nothing” default font.

New in version 1.1.4.

	Returns

	A font object.

Methods

	
PIL.ImageFont.ImageFont.getsize(text)

	
	Returns

	(width, height)

	
PIL.ImageFont.ImageFont.getmask(text, mode='', direction=None, features=[])

	Create a bitmap for the text.

If the font uses antialiasing, the bitmap should have mode “L” and use a
maximum value of 255. Otherwise, it should have mode “1”.

	Parameters

	
	text – Text to render.

	mode – Used by some graphics drivers to indicate what mode the
driver prefers; if empty, the renderer may return either
mode. Note that the mode is always a string, to simplify
C-level implementations.

New in version 1.1.5.

	direction – Direction of the text. It can be ‘rtl’ (right to
left), ‘ltr’ (left to right), ‘ttb’ (top to
bottom) or ‘btt’ (bottom to top). Requires
libraqm.

New in version 4.2.0.

	features – A list of OpenType font features to be used during text
layout. This is usually used to turn on optional
font features that are not enabled by default,
for example ‘dlig’ or ‘ss01’, but can be also
used to turn off default font features for
example ‘-liga’ to disable ligatures or ‘-kern’
to disable kerning. To get all supported
features, see
https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist
Requires libraqm.

New in version 4.2.0.

	Returns

	An internal PIL storage memory instance as defined by the
PIL.Image.core interface module.

ImageGrab Module (macOS and Windows only)

The ImageGrab module can be used to copy the contents of the screen
or the clipboard to a PIL image memory.

Note

The current version works on macOS and Windows only.

New in version 1.1.3.

	
PIL.ImageGrab.grab(bbox=None)

	Take a snapshot of the screen. The pixels inside the bounding box are
returned as an “RGB” image on Windows or “RGBA” on macOS.
If the bounding box is omitted, the entire screen is copied.

New in version 1.1.3: (Windows), 3.0.0 (macOS)

	Parameters

	bbox – What region to copy. Default is the entire screen.

	Returns

	An image

	
PIL.ImageGrab.grabclipboard()

	Take a snapshot of the clipboard image, if any.

New in version 1.1.4: (Windows), 3.3.0 (macOS)

	Returns

	On Windows, an image, a list of filenames,
or None if the clipboard does not contain image data or filenames.
Note that if a list is returned, the filenames may not represent image files.

On Mac, an image,
or None if the clipboard does not contain image data.

ImageMath Module

The ImageMath module can be used to evaluate “image expressions”. The
module provides a single eval function, which takes an expression string and
one or more images.

Example: Using the ImageMath module

from PIL import Image, ImageMath

im1 = Image.open("image1.jpg")
im2 = Image.open("image2.jpg")

out = ImageMath.eval("convert(min(a, b), 'L')", a=im1, b=im2)
out.save("result.png")

	
PIL.ImageMath.eval(expression, environment)

	Evaluate expression in the given environment.

In the current version, ImageMath only supports
single-layer images. To process multi-band images, use the
split() method or merge()
function.

	Parameters

	
	expression – A string which uses the standard Python expression
syntax. In addition to the standard operators, you can
also use the functions described below.

	environment – A dictionary that maps image names to Image instances.
You can use one or more keyword arguments instead of a
dictionary, as shown in the above example. Note that
the names must be valid Python identifiers.

	Returns

	An image, an integer value, a floating point value,
or a pixel tuple, depending on the expression.

Expression syntax

Expressions are standard Python expressions, but they’re evaluated in a
non-standard environment. You can use PIL methods as usual, plus the following
set of operators and functions:

Standard Operators

You can use standard arithmetical operators for addition (+), subtraction (-),
multiplication (*), and division (/).

The module also supports unary minus (-), modulo (%), and power (**) operators.

Note that all operations are done with 32-bit integers or 32-bit floating
point values, as necessary. For example, if you add two 8-bit images, the
result will be a 32-bit integer image. If you add a floating point constant to
an 8-bit image, the result will be a 32-bit floating point image.

You can force conversion using the convert(),
float(), and int() functions
described below.

Bitwise Operators

The module also provides operations that operate on individual bits. This
includes and (&), or (|), and exclusive or (^). You can also invert (~) all
pixel bits.

Note that the operands are converted to 32-bit signed integers before the
bitwise operation is applied. This means that you’ll get negative values if
you invert an ordinary greyscale image. You can use the and (&) operator to
mask off unwanted bits.

Bitwise operators don’t work on floating point images.

Logical Operators

Logical operators like and, or, and not work
on entire images, rather than individual pixels.

An empty image (all pixels zero) is treated as false. All other images are
treated as true.

Note that and and or return the last evaluated operand,
while not always returns a boolean value.

Built-in Functions

These functions are applied to each individual pixel.

	
abs(image)

	Absolute value.

	
convert(image, mode)

	Convert image to the given mode. The mode must be given as a string
constant.

	
float(image)

	Convert image to 32-bit floating point. This is equivalent to
convert(image, “F”).

	
int(image)

	Convert image to 32-bit integer. This is equivalent to convert(image, “I”).

Note that 1-bit and 8-bit images are automatically converted to 32-bit
integers if necessary to get a correct result.

	
max(image1, image2)

	Maximum value.

	
min(image1, image2)

	Minimum value.

ImageMorph Module

The ImageMorph module provides morphology operations on images.

	
class PIL.ImageMorph.LutBuilder(patterns=None, op_name=None)

	Bases: object

A class for building a MorphLut from a descriptive language

The input patterns is a list of a strings sequences like these:

4:(...
 .1.
 111)->1

(whitespaces including linebreaks are ignored). The option 4
describes a series of symmetry operations (in this case a
4-rotation), the pattern is described by:

	. or X - Ignore

	1 - Pixel is on

	0 - Pixel is off

The result of the operation is described after “->” string.

The default is to return the current pixel value, which is
returned if no other match is found.

Operations:

	4 - 4 way rotation

	N - Negate

	1 - Dummy op for no other operation (an op must always be given)

	M - Mirroring

Example:

lb = LutBuilder(patterns = ["4:(... .1. 111)->1"])
lut = lb.build_lut()

	
add_patterns(patterns)

	

	
build_default_lut()

	

	
build_lut()

	Compile all patterns into a morphology lut.

TBD :Build based on (file) morphlut:modify_lut

	
get_lut()

	

	
class PIL.ImageMorph.MorphOp(lut=None, op_name=None, patterns=None)

	Bases: object

A class for binary morphological operators

	
apply(image)

	Run a single morphological operation on an image

Returns a tuple of the number of changed pixels and the
morphed image

	
get_on_pixels(image)

	Get a list of all turned on pixels in a binary image

Returns a list of tuples of (x,y) coordinates
of all matching pixels. See Coordinate System.

	
load_lut(filename)

	Load an operator from an mrl file

	
match(image)

	Get a list of coordinates matching the morphological operation on
an image.

Returns a list of tuples of (x,y) coordinates
of all matching pixels. See Coordinate System.

	
save_lut(filename)

	Save an operator to an mrl file

	
set_lut(lut)

	Set the lut from an external source

ImageOps Module

The ImageOps module contains a number of ‘ready-made’ image
processing operations. This module is somewhat experimental, and most operators
only work on L and RGB images.

Only bug fixes have been added since the Pillow fork.

New in version 1.1.3.

	
PIL.ImageOps.autocontrast(image, cutoff=0, ignore=None)

	Maximize (normalize) image contrast. This function calculates a
histogram of the input image, removes cutoff percent of the
lightest and darkest pixels from the histogram, and remaps the image
so that the darkest pixel becomes black (0), and the lightest
becomes white (255).

	Parameters

	
	image – The image to process.

	cutoff – How many percent to cut off from the histogram.

	ignore – The background pixel value (use None for no background).

	Returns

	An image.

	
PIL.ImageOps.colorize(image, black, white)

	Colorize grayscale image. The black and white
arguments should be RGB tuples; this function calculates a color
wedge mapping all black pixels in the source image to the first
color, and all white pixels to the second color.

	Parameters

	
	image – The image to colorize.

	black – The color to use for black input pixels.

	white – The color to use for white input pixels.

	Returns

	An image.

	
PIL.ImageOps.crop(image, border=0)

	Remove border from image. The same amount of pixels are removed
from all four sides. This function works on all image modes.

See also

crop()

	Parameters

	
	image – The image to crop.

	border – The number of pixels to remove.

	Returns

	An image.

	
PIL.ImageOps.deform(image, deformer, resample=2)

	Deform the image.

	Parameters

	
	image – The image to deform.

	deformer – A deformer object. Any object that implements a
getmesh method can be used.

	resample – An optional resampling filter. Same values possible as
in the PIL.Image.transform function.

	Returns

	An image.

	
PIL.ImageOps.equalize(image, mask=None)

	Equalize the image histogram. This function applies a non-linear
mapping to the input image, in order to create a uniform
distribution of grayscale values in the output image.

	Parameters

	
	image – The image to equalize.

	mask – An optional mask. If given, only the pixels selected by
the mask are included in the analysis.

	Returns

	An image.

	
PIL.ImageOps.expand(image, border=0, fill=0)

	Add border to the image

	Parameters

	
	image – The image to expand.

	border – Border width, in pixels.

	fill – Pixel fill value (a color value). Default is 0 (black).

	Returns

	An image.

	
PIL.ImageOps.fit(image, size, method=0, bleed=0.0, centering=(0.5, 0.5))

	Returns a sized and cropped version of the image, cropped to the
requested aspect ratio and size.

This function was contributed by Kevin Cazabon.

	Parameters

	
	image – The image to size and crop.

	size – The requested output size in pixels, given as a
(width, height) tuple.

	method – What resampling method to use. Default is
PIL.Image.NEAREST.

	bleed – Remove a border around the outside of the image (from all
four edges. The value is a decimal percentage (use 0.01 for
one percent). The default value is 0 (no border).

	centering – Control the cropping position. Use (0.5, 0.5) for
center cropping (e.g. if cropping the width, take 50% off
of the left side, and therefore 50% off the right side).
(0.0, 0.0) will crop from the top left corner (i.e. if
cropping the width, take all of the crop off of the right
side, and if cropping the height, take all of it off the
bottom). (1.0, 0.0) will crop from the bottom left
corner, etc. (i.e. if cropping the width, take all of the
crop off the left side, and if cropping the height take
none from the top, and therefore all off the bottom).

	Returns

	An image.

	
PIL.ImageOps.flip(image)

	Flip the image vertically (top to bottom).

	Parameters

	image – The image to flip.

	Returns

	An image.

	
PIL.ImageOps.grayscale(image)

	Convert the image to grayscale.

	Parameters

	image – The image to convert.

	Returns

	An image.

	
PIL.ImageOps.invert(image)

	Invert (negate) the image.

	Parameters

	image – The image to invert.

	Returns

	An image.

	
PIL.ImageOps.mirror(image)

	Flip image horizontally (left to right).

	Parameters

	image – The image to mirror.

	Returns

	An image.

	
PIL.ImageOps.posterize(image, bits)

	Reduce the number of bits for each color channel.

	Parameters

	
	image – The image to posterize.

	bits – The number of bits to keep for each channel (1-8).

	Returns

	An image.

	
PIL.ImageOps.solarize(image, threshold=128)

	Invert all pixel values above a threshold.

	Parameters

	
	image – The image to solarize.

	threshold – All pixels above this greyscale level are inverted.

	Returns

	An image.

ImagePalette Module

The ImagePalette module contains a class of the same name to
represent the color palette of palette mapped images.

Note

This module was never well-documented. It hasn’t changed since 2001,
though, so it’s probably safe for you to read the source code and puzzle
out the internals if you need to.

The ImagePalette class has several methods,
but they are all marked as “experimental.” Read that as you will. The
[source] link is there for a reason.

	
class PIL.ImagePalette.ImagePalette(mode='RGB', palette=None, size=0)

	Color palette for palette mapped images

	Parameters

	
	mode – The mode to use for the Palette. See:
Modes. Defaults to “RGB”

	palette – An optional palette. If given, it must be a bytearray,
an array or a list of ints between 0-255 and of length size
times the number of colors in mode. The list must be aligned
by channel (All R values must be contiguous in the list before G
and B values.) Defaults to 0 through 255 per channel.

	size – An optional palette size. If given, it cannot be equal to
or greater than 256. Defaults to 0.

	
getcolor(color)

	Given an rgb tuple, allocate palette entry.

Warning

This method is experimental.

	
getdata()

	Get palette contents in format suitable # for the low-level
im.putpalette primitive.

Warning

This method is experimental.

	
save(fp)

	Save palette to text file.

Warning

This method is experimental.

	
tobytes()

	Convert palette to bytes.

Warning

This method is experimental.

	
tostring()

	Convert palette to bytes.

Warning

This method is experimental.

ImagePath Module

The ImagePath module is used to store and manipulate 2-dimensional
vector data. Path objects can be passed to the methods on the
ImageDraw module.

	
class PIL.ImagePath.Path

	A path object. The coordinate list can be any sequence object containing
either 2-tuples [(x, y), …] or numeric values [x, y, …].

You can also create a path object from another path object.

In 1.1.6 and later, you can also pass in any object that implements
Python’s buffer API. The buffer should provide read access, and contain C
floats in machine byte order.

The path object implements most parts of the Python sequence interface, and
behaves like a list of (x, y) pairs. You can use len(), item access, and
slicing as usual. However, the current version does not support slice
assignment, or item and slice deletion.

	Parameters

	xy – A sequence. The sequence can contain 2-tuples [(x, y), …]
or a flat list of numbers [x, y, …].

	
PIL.ImagePath.Path.compact(distance=2)

	Compacts the path, by removing points that are close to each other. This
method modifies the path in place, and returns the number of points left in
the path.

distance is measured as Manhattan distance [https://en.wikipedia.org/wiki/Manhattan_distance] and defaults to two
pixels.

	
PIL.ImagePath.Path.getbbox()

	Gets the bounding box of the path.

	Returns

	(x0, y0, x1, y1)

	
PIL.ImagePath.Path.map(function)

	Maps the path through a function.

	
PIL.ImagePath.Path.tolist(flat=0)

	Converts the path to a Python list [(x, y), …].

	Parameters

	flat – By default, this function returns a list of 2-tuples
[(x, y), …]. If this argument is True, it
returns a flat list [x, y, …] instead.

	Returns

	A list of coordinates. See flat.

	
PIL.ImagePath.Path.transform(matrix)

	Transforms the path in place, using an affine transform. The matrix is a
6-tuple (a, b, c, d, e, f), and each point is mapped as follows:

xOut = xIn * a + yIn * b + c
yOut = xIn * d + yIn * e + f

ImageQt Module

The ImageQt module contains support for creating PyQt4, PyQt5 or
PySide QImage objects from PIL images.

New in version 1.1.6.

	
class ImageQt.ImageQt(image)

	Creates an ImageQt object from a PIL
Image object. This class is a subclass of
QtGui.QImage, which means that you can pass the resulting objects directly
to PyQt4/PyQt5/PySide API functions and methods.

This operation is currently supported for mode 1, L, P, RGB, and RGBA
images. To handle other modes, you need to convert the image first.

ImageSequence Module

The ImageSequence module contains a wrapper class that lets you
iterate over the frames of an image sequence.

Extracting frames from an animation

from PIL import Image, ImageSequence

im = Image.open("animation.fli")

index = 1
for frame in ImageSequence.Iterator(im):
 frame.save("frame%d.png" % index)
 index += 1

The Iterator class

	
class PIL.ImageSequence.Iterator(im)

	This class implements an iterator object that can be used to loop
over an image sequence.

You can use the [] operator to access elements by index. This operator
will raise an IndexError if you try to access a nonexistent
frame.

	Parameters

	im – An image object.

ImageStat Module

The ImageStat module calculates global statistics for an image, or
for a region of an image.

	
class PIL.ImageStat.Stat(image_or_list, mask=None)

	Calculate statistics for the given image. If a mask is included,
only the regions covered by that mask are included in the
statistics. You can also pass in a previously calculated histogram.

	Parameters

	
	image – A PIL image, or a precalculated histogram.

	mask – An optional mask.

	
extrema

	Min/max values for each band in the image.

	
count

	Total number of pixels for each band in the image.

	
sum

	Sum of all pixels for each band in the image.

	
sum2

	Squared sum of all pixels for each band in the image.

	
mean

	Average (arithmetic mean) pixel level for each band in the image.

	
median

	Median pixel level for each band in the image.

	
rms

	RMS (root-mean-square) for each band in the image.

	
var

	Variance for each band in the image.

	
stddev

	Standard deviation for each band in the image.

ImageTk Module

The ImageTk module contains support to create and modify Tkinter
BitmapImage and PhotoImage objects from PIL images.

For examples, see the demo programs in the Scripts directory.

	
class PIL.ImageTk.BitmapImage(image=None, **kw)

	A Tkinter-compatible bitmap image. This can be used everywhere Tkinter
expects an image object.

The given image must have mode “1”. Pixels having value 0 are treated as
transparent. Options, if any, are passed on to Tkinter. The most commonly
used option is foreground, which is used to specify the color for the
non-transparent parts. See the Tkinter documentation for information on
how to specify colours.

	Parameters

	image – A PIL image.

	
height()

	Get the height of the image.

	Returns

	The height, in pixels.

	
width()

	Get the width of the image.

	Returns

	The width, in pixels.

	
class PIL.ImageTk.PhotoImage(image=None, size=None, **kw)

	A Tkinter-compatible photo image. This can be used
everywhere Tkinter expects an image object. If the image is an RGBA
image, pixels having alpha 0 are treated as transparent.

The constructor takes either a PIL image, or a mode and a size.
Alternatively, you can use the file or data options to initialize
the photo image object.

	Parameters

	
	image – Either a PIL image, or a mode string. If a mode string is
used, a size must also be given.

	size – If the first argument is a mode string, this defines the size
of the image.

	file – A filename to load the image from (using
Image.open(file)).

	data – An 8-bit string containing image data (as loaded from an
image file).

	
height()

	Get the height of the image.

	Returns

	The height, in pixels.

	
paste(im, box=None)

	Paste a PIL image into the photo image. Note that this can
be very slow if the photo image is displayed.

	Parameters

	
	im – A PIL image. The size must match the target region. If the
mode does not match, the image is converted to the mode of
the bitmap image.

	box – A 4-tuple defining the left, upper, right, and lower pixel
coordinate. See Coordinate System. If None is given
instead of a tuple, all of the image is assumed.

	
width()

	Get the width of the image.

	Returns

	The width, in pixels.

ImageWin Module (Windows-only)

The ImageWin module contains support to create and display images on
Windows.

ImageWin can be used with PythonWin and other user interface toolkits that
provide access to Windows device contexts or window handles. For example,
Tkinter makes the window handle available via the winfo_id method:

from PIL import ImageWin

dib = ImageWin.Dib(...)

hwnd = ImageWin.HWND(widget.winfo_id())
dib.draw(hwnd, xy)

	
class PIL.ImageWin.Dib(image, size=None)

	A Windows bitmap with the given mode and size. The mode can be one of “1”,
“L”, “P”, or “RGB”.

If the display requires a palette, this constructor creates a suitable
palette and associates it with the image. For an “L” image, 128 greylevels
are allocated. For an “RGB” image, a 6x6x6 colour cube is used, together
with 20 greylevels.

To make sure that palettes work properly under Windows, you must call the
palette method upon certain events from Windows.

	Parameters

	
	image – Either a PIL image, or a mode string. If a mode string is
used, a size must also be given. The mode can be one of “1”,
“L”, “P”, or “RGB”.

	size – If the first argument is a mode string, this
defines the size of the image.

	
draw(handle, dst, src=None)

	Same as expose, but allows you to specify where to draw the image, and
what part of it to draw.

The destination and source areas are given as 4-tuple rectangles. If
the source is omitted, the entire image is copied. If the source and
the destination have different sizes, the image is resized as
necessary.

	
expose(handle)

	Copy the bitmap contents to a device context.

	Parameters

	handle – Device context (HDC), cast to a Python integer, or an
HDC or HWND instance. In PythonWin, you can use the
CDC.GetHandleAttrib() to get a suitable handle.

	
frombytes(buffer)

	Load display memory contents from byte data.

	Parameters

	buffer – A buffer containing display data (usually
data returned from tobytes)

	
paste(im, box=None)

	Paste a PIL image into the bitmap image.

	Parameters

	
	im – A PIL image. The size must match the target region.
If the mode does not match, the image is converted to the
mode of the bitmap image.

	box – A 4-tuple defining the left, upper, right, and
lower pixel coordinate. See Coordinate System. If
None is given instead of a tuple, all of the image is
assumed.

	
query_palette(handle)

	Installs the palette associated with the image in the given device
context.

This method should be called upon QUERYNEWPALETTE and
PALETTECHANGED events from Windows. If this method returns a
non-zero value, one or more display palette entries were changed, and
the image should be redrawn.

	Parameters

	handle – Device context (HDC), cast to a Python integer, or an
HDC or HWND instance.

	Returns

	A true value if one or more entries were changed (this
indicates that the image should be redrawn).

	
tobytes()

	Copy display memory contents to bytes object.

	Returns

	A bytes object containing display data.

	
class PIL.ImageWin.HDC(dc)

	Wraps an HDC integer. The resulting object can be passed to the
draw() and expose()
methods.

	
class PIL.ImageWin.HWND(wnd)

	Wraps an HWND integer. The resulting object can be passed to the
draw() and expose()
methods, instead of a DC.

ExifTags Module

The ExifTags module exposes two dictionaries which
provide constants and clear-text names for various well-known EXIF tags.

	
class PIL.ExifTags.TAGS

	The TAG dictionary maps 16-bit integer EXIF tag enumerations to
descriptive string names. For instance:

>>> from PIL.ExifTags import TAGS
>>> TAGS[0x010e]
'ImageDescription'

	
class PIL.ExifTags.GPSTAGS

	The GPSTAGS dictionary maps 8-bit integer EXIF gps enumerations to
descriptive string names. For instance:

>>> from PIL.ExifTags import GPSTAGS
>>> GPSTAGS[20]
'GPSDestLatitude'

TiffTags Module

The TiffTags module exposes many of the standard TIFF
metadata tag numbers, names, and type information.

	
PIL.TiffTags.lookup(tag)

	
	Parameters

	tag – Integer tag number

	Returns

	Taginfo namedtuple, From the TAGS_V2 info if possible,
otherwise just populating the value and name from TAGS.
If the tag is not recognized, “unknown” is returned for the name

New in version 3.1.0.

	
class PIL.TiffTags.TagInfo

	
	
__init__(self, value=None, name="unknown", type=None, length=0, enum=None)

	
	Parameters

	
	value – Integer Tag Number

	name – Tag Name

	type – Integer type from PIL.TiffTags.TYPES

	length – Array length: 0 == variable, 1 == single value, n = fixed

	enum – Dict of name:integer value options for an enumeration

	
cvt_enum(self, value)

	
	Parameters

	value – The enumerated value name

	Returns

	The integer corresponding to the name.

New in version 3.0.0.

	
PIL.TiffTags.TAGS_V2

	The TAGS_V2 dictionary maps 16-bit integer tag numbers to
PIL.TagTypes.TagInfo tuples for metadata fields defined in the TIFF
spec.

New in version 3.0.0.

	
PIL.TiffTags.TAGS

	The TAGS dictionary maps 16-bit integer TIFF tag number to
descriptive string names. For instance:

>>> from PIL.TiffTags import TAGS
>>> TAGS[0x010e]
'ImageDescription'

This dictionary contains a superset of the tags in TAGS_V2, common
EXIF tags, and other well known metadata tags.

	
PIL.TiffTags.TYPES

	The TYPES dictionary maps the TIFF type short integer to a
human readable type name.

PSDraw Module

The PSDraw module provides simple print support for Postscript
printers. You can print text, graphics and images through this module.

	
class PIL.PSDraw.PSDraw(fp=None)

	Sets up printing to the given file. If fp is omitted,
sys.stdout is assumed.

	
begin_document(id=None)

	Set up printing of a document. (Write Postscript DSC header.)

	
end_document()

	Ends printing. (Write Postscript DSC footer.)

	
image(box, im, dpi=None)

	Draw a PIL image, centered in the given box.

	
line(xy0, xy1)

	Draws a line between the two points. Coordinates are given in
Postscript point coordinates (72 points per inch, (0, 0) is the lower
left corner of the page).

	
rectangle(box)

	Draws a rectangle.

	Parameters

	box – A 4-tuple of integers whose order and function is currently
undocumented.

Hint: the tuple is passed into this format string:

%d %d M %d %d 0 Vr

	
setfont(font, size)

	Selects which font to use.

	Parameters

	
	font – A Postscript font name

	size – Size in points.

	
text(xy, text)

	Draws text at the given position. You must use
setfont() before calling this method.

PixelAccess Class

The PixelAccess class provides read and write access to
PIL.Image data at a pixel level.

Note

Accessing individual pixels is fairly slow. If you are looping over all of the pixels in an image, there is likely a faster way using other parts of the Pillow API.

Example

The following script loads an image, accesses one pixel from it, then
changes it.

from PIL import Image
im = Image.open('hopper.jpg')
px = im.load()
print (px[4,4])
px[4,4] = (0,0,0)
print (px[4,4])

Results in the following:

(23, 24, 68)
(0, 0, 0)

PixelAccess Class

	
class PixelAccess

	
	
__setitem__(self, xy, color):

	Modifies the pixel at x,y. The color is given as a single
numerical value for single band images, and a tuple for
multi-band images

	Parameters

	
	xy – The pixel coordinate, given as (x, y).

	color – The pixel value according to its mode. e.g. tuple (r, g, b) for RGB mode)

	
__getitem__(self, xy):

	
	Returns the pixel at x,y. The pixel is returned as a single

	value for single band images or a tuple for multiple band
images

	param xy

	The pixel coordinate, given as (x, y).

	returns

	a pixel value for single band images, a tuple of
pixel values for multiband images.

	
putpixel(self, xy, color):

	Modifies the pixel at x,y. The color is given as a single
numerical value for single band images, and a tuple for
multi-band images

	Parameters

	
	xy – The pixel coordinate, given as (x, y).

	color – The pixel value according to its mode. e.g. tuple (r, g, b) for RGB mode)

	
getpixel(self, xy):

	
	Returns the pixel at x,y. The pixel is returned as a single

	value for single band images or a tuple for multiple band
images

	param xy

	The pixel coordinate, given as (x, y).

	returns

	a pixel value for single band images, a tuple of
pixel values for multiband images.

PyAccess Module

The PyAccess module provides a CFFI/Python implementation of the PixelAccess Class. This implementation is far faster on PyPy than the PixelAccess version.

Note

Accessing individual pixels is fairly slow. If you are
looping over all of the pixels in an image, there is likely
a faster way using other parts of the Pillow API.

Example

The following script loads an image, accesses one pixel from it, then changes it.

from PIL import Image
im = Image.open('hopper.jpg')
px = im.load()
print (px[4,4])
px[4,4] = (0,0,0)
print (px[4,4])

Results in the following:

(23, 24, 68)
(0, 0, 0)

PyAccess Class

PIL Package (autodoc of remaining modules)

Reference for modules whose documentation has not yet been ported or written
can be found here.

BdfFontFile Module

	
class PIL.BdfFontFile.BdfFontFile(fp)

	Bases: PIL.FontFile.FontFile

	
PIL.BdfFontFile.bdf_char(f)

	

ContainerIO Module

	
class PIL.ContainerIO.ContainerIO(file, offset, length)

	Bases: object

	
isatty()

	

	
read(n=0)

	Read data.

	Parameters

	n – Number of bytes to read. If omitted or zero,
read until end of region.

	Returns

	An 8-bit string.

	
readline()

	Read a line of text.

	Returns

	An 8-bit string.

	
readlines()

	Read multiple lines of text.

	Returns

	A list of 8-bit strings.

	
seek(offset, mode=0)

	Move file pointer.

	Parameters

	
	offset – Offset in bytes.

	mode – Starting position. Use 0 for beginning of region, 1
for current offset, and 2 for end of region. You cannot move
the pointer outside the defined region.

	
tell()

	Get current file pointer.

	Returns

	Offset from start of region, in bytes.

FontFile Module

	
class PIL.FontFile.FontFile

	Bases: object

	
bitmap = None

	

	
compile()

	Create metrics and bitmap

	
save(filename)

	Save font

	
PIL.FontFile.puti16(fp, values)

	

GdImageFile Module

	
class PIL.GdImageFile.GdImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'GD'

	

	
format_description = 'GD uncompressed images'

	

	
PIL.GdImageFile.open(fp, mode='r')

	Load texture from a GD image file.

	Parameters

	
	filename – GD file name, or an opened file handle.

	mode – Optional mode. In this version, if the mode argument
is given, it must be “r”.

	Returns

	An image instance.

	Raises

	IOError – If the image could not be read.

GimpGradientFile Module

	
class PIL.GimpGradientFile.GimpGradientFile(fp)

	Bases: PIL.GimpGradientFile.GradientFile

	
class PIL.GimpGradientFile.GradientFile

	Bases: object

	
getpalette(entries=256)

	

	
gradient = None

	

	
PIL.GimpGradientFile.curved(middle, pos)

	

	
PIL.GimpGradientFile.linear(middle, pos)

	

	
PIL.GimpGradientFile.sine(middle, pos)

	

	
PIL.GimpGradientFile.sphere_decreasing(middle, pos)

	

	
PIL.GimpGradientFile.sphere_increasing(middle, pos)

	

GimpPaletteFile Module

	
class PIL.GimpPaletteFile.GimpPaletteFile(fp)

	Bases: object

	
getpalette()

	

	
rawmode = 'RGB'

	

ImageDraw2 Module

	
class PIL.ImageDraw2.Brush(color, opacity=255)

	Bases: object

	
class PIL.ImageDraw2.Draw(image, size=None, color=None)

	Bases: object

	
arc(xy, start, end, *options)

	

	
chord(xy, start, end, *options)

	

	
ellipse(xy, *options)

	

	
flush()

	

	
line(xy, *options)

	

	
pieslice(xy, start, end, *options)

	

	
polygon(xy, *options)

	

	
rectangle(xy, *options)

	

	
render(op, xy, pen, brush=None)

	

	
settransform(offset)

	

	
text(xy, text, font)

	

	
textsize(text, font)

	

	
class PIL.ImageDraw2.Font(color, file, size=12)

	Bases: object

	
class PIL.ImageDraw2.Pen(color, width=1, opacity=255)

	Bases: object

ImageShow Module

	
class PIL.ImageShow.DisplayViewer

	Bases: PIL.ImageShow.UnixViewer

	
get_command_ex(file, **options)

	

	
class PIL.ImageShow.EogViewer

	Bases: PIL.ImageShow.UnixViewer

	
get_command_ex(file, **options)

	

	
class PIL.ImageShow.UnixViewer

	Bases: PIL.ImageShow.Viewer

	
format = 'PNG'

	

	
options = {'compress_level': 1}

	

	
show_file(file, **options)

	Display given file

	
class PIL.ImageShow.Viewer

	Bases: object

Base class for viewers.

	
format = None

	

	
get_command(file, **options)

	

	
get_format(image)

	Return format name, or None to save as PGM/PPM

	
options = {}

	

	
save_image(image)

	Save to temporary file, and return filename

	
show(image, **options)

	

	
show_file(file, **options)

	Display given file

	
show_image(image, **options)

	Display given image

	
class PIL.ImageShow.XVViewer

	Bases: PIL.ImageShow.UnixViewer

	
get_command_ex(file, title=None, **options)

	

	
PIL.ImageShow.register(viewer, order=1)

	

	
PIL.ImageShow.show(image, title=None, **options)

	Display a given image.

	Parameters

	
	image – An image object.

	title – Optional title. Not all viewers can display the title.

	**options – Additional viewer options.

	Returns

	True if a suitable viewer was found, false otherwise.

	
PIL.ImageShow.which(executable)

	

ImageTransform Module

	
class PIL.ImageTransform.AffineTransform(data)

	Bases: PIL.ImageTransform.Transform

Define an affine image transform.

This function takes a 6-tuple (a, b, c, d, e, f) which contain the first
two rows from an affine transform matrix. For each pixel (x, y) in the
output image, the new value is taken from a position (a x + b y + c,
d x + e y + f) in the input image, rounded to nearest pixel.

This function can be used to scale, translate, rotate, and shear the
original image.

See transform()

	Parameters

	matrix – A 6-tuple (a, b, c, d, e, f) containing the first two rows
from an affine transform matrix.

	
method = 0

	

	
class PIL.ImageTransform.ExtentTransform(data)

	Bases: PIL.ImageTransform.Transform

Define a transform to extract a subregion from an image.

Maps a rectangle (defined by two corners) from the image to a rectangle of
the given size. The resulting image will contain data sampled from between
the corners, such that (x0, y0) in the input image will end up at (0,0) in
the output image, and (x1, y1) at size.

This method can be used to crop, stretch, shrink, or mirror an arbitrary
rectangle in the current image. It is slightly slower than crop, but about
as fast as a corresponding resize operation.

See transform()

	Parameters

	bbox – A 4-tuple (x0, y0, x1, y1) which specifies two points in the
input image’s coordinate system. See Coordinate System.

	
method = 1

	

	
class PIL.ImageTransform.MeshTransform(data)

	Bases: PIL.ImageTransform.Transform

Define a mesh image transform. A mesh transform consists of one or more
individual quad transforms.

See transform()

	Parameters

	data – A list of (bbox, quad) tuples.

	
method = 4

	

	
class PIL.ImageTransform.QuadTransform(data)

	Bases: PIL.ImageTransform.Transform

Define a quad image transform.

Maps a quadrilateral (a region defined by four corners) from the image to a
rectangle of the given size.

See transform()

	Parameters

	xy – An 8-tuple (x0, y0, x1, y1, x2, y2, x3, y3) which contain the
upper left, lower left, lower right, and upper right corner of the
source quadrilateral.

	
method = 3

	

	
class PIL.ImageTransform.Transform(data)

	Bases: PIL.Image.ImageTransformHandler

	
getdata()

	

	
transform(size, image, **options)

	

JpegPresets Module

JPEG quality settings equivalent to the Photoshop settings.

More presets can be added to the presets dict if needed.

Can be use when saving JPEG file.

To apply the preset, specify:

quality="preset_name"

To apply only the quantization table:

qtables="preset_name"

To apply only the subsampling setting:

subsampling="preset_name"

Example:

im.save("image_name.jpg", quality="web_high")

Subsampling

Subsampling is the practice of encoding images by implementing less resolution
for chroma information than for luma information.
(ref.: https://en.wikipedia.org/wiki/Chroma_subsampling)

Possible subsampling values are 0, 1 and 2 that correspond to 4:4:4, 4:2:2 and
4:2:0.

You can get the subsampling of a JPEG with the
JpegImagePlugin.get_subsampling(im) function.

Quantization tables

They are values use by the DCT (Discrete cosine transform) to remove
unnecessary information from the image (the lossy part of the compression).
(ref.: https://en.wikipedia.org/wiki/Quantization_matrix#Quantization_matrices,
https://en.wikipedia.org/wiki/JPEG#Quantization)

You can get the quantization tables of a JPEG with:

im.quantization

This will return a dict with a number of arrays. You can pass this dict
directly as the qtables argument when saving a JPEG.

The tables format between im.quantization and quantization in presets differ in
3 ways:

	The base container of the preset is a list with sublists instead of dict.
dict[0] -> list[0], dict[1] -> list[1], …

	Each table in a preset is a list instead of an array.

	The zigzag order is remove in the preset (needed by libjpeg >= 6a).

You can convert the dict format to the preset format with the
JpegImagePlugin.convert_dict_qtables(dict_qtables) function.

Libjpeg ref.: https://web.archive.org/web/20120328125543/http://www.jpegcameras.com/libjpeg/libjpeg-3.html

PaletteFile Module

	
class PIL.PaletteFile.PaletteFile(fp)

	Bases: object

	
getpalette()

	

	
rawmode = 'RGB'

	

PcfFontFile Module

	
class PIL.PcfFontFile.PcfFontFile(fp)

	Bases: PIL.FontFile.FontFile

	
name = 'name'

	

	
PIL.PcfFontFile.sz(s, o)

	

PngImagePlugin.iTXt Class

	
class PIL.PngImagePlugin.iTXt

	Bases: str

Subclass of string to allow iTXt chunks to look like strings while
keeping their extra information

	
__new__(cls, text, lang, tkey)

	
	Parameters

	
	value – value for this key

	lang – language code

	tkey – UTF-8 version of the key name

PngImagePlugin.PngInfo Class

	
class PIL.PngImagePlugin.PngInfo

	Bases: object

PNG chunk container (for use with save(pnginfo=))

	
add(cid, data)

	Appends an arbitrary chunk. Use with caution.

	Parameters

	
	cid – a byte string, 4 bytes long.

	data – a byte string of the encoded data

	
add_itxt(key, value, lang='', tkey='', zip=False)

	Appends an iTXt chunk.

	Parameters

	
	key – latin-1 encodable text key name

	value – value for this key

	lang – language code

	tkey – UTF-8 version of the key name

	zip – compression flag

	
add_text(key, value, zip=False)

	Appends a text chunk.

	Parameters

	
	key – latin-1 encodable text key name

	value – value for this key, text or an
PIL.PngImagePlugin.iTXt instance

	zip – compression flag

TarIO Module

	
class PIL.TarIO.TarIO(tarfile, file)

	Bases: PIL.ContainerIO.ContainerIO

WalImageFile Module

	
PIL.WalImageFile.open(filename)

	Load texture from a Quake2 WAL texture file.

By default, a Quake2 standard palette is attached to the texture.
To override the palette, use the putpalette method.

	Parameters

	filename – WAL file name, or an opened file handle.

	Returns

	An image instance.

_binary Module

	
PIL._binary.i16be(c, o=0)

	

	
PIL._binary.i16le(c, o=0)

	Converts a 2-bytes (16 bits) string to an unsigned integer.

c: string containing bytes to convert
o: offset of bytes to convert in string

	
PIL._binary.i32be(c, o=0)

	

	
PIL._binary.i32le(c, o=0)

	Converts a 4-bytes (32 bits) string to an unsigned integer.

c: string containing bytes to convert
o: offset of bytes to convert in string

	
PIL._binary.i8(c)

	

	
PIL._binary.o16be(i)

	

	
PIL._binary.o16le(i)

	

	
PIL._binary.o32be(i)

	

	
PIL._binary.o32le(i)

	

	
PIL._binary.o8(i)

	

	
PIL._binary.si16le(c, o=0)

	Converts a 2-bytes (16 bits) string to a signed integer.

c: string containing bytes to convert
o: offset of bytes to convert in string

	
PIL._binary.si32le(c, o=0)

	Converts a 4-bytes (32 bits) string to a signed integer.

c: string containing bytes to convert
o: offset of bytes to convert in string

Plugin reference

BmpImagePlugin Module

	
class PIL.BmpImagePlugin.BmpImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

Image plugin for the Windows Bitmap format (BMP)

	
BITFIELDS = 3

	

	
COMPRESSIONS = {'BITFIELDS': 3, 'JPEG': 4, 'PNG': 5, 'RAW': 0, 'RLE4': 2, 'RLE8': 1}

	

	
JPEG = 4

	

	
PNG = 5

	

	
RAW = 0

	

	
RLE4 = 2

	

	
RLE8 = 1

	

	
format = 'BMP'

	

	
format_description = 'Windows Bitmap'

	

	
class PIL.BmpImagePlugin.DibImageFile(fp=None, filename=None)

	Bases: PIL.BmpImagePlugin.BmpImageFile

	
format = 'DIB'

	

	
format_description = 'Windows Bitmap'

	

BufrStubImagePlugin Module

	
class PIL.BufrStubImagePlugin.BufrStubImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.StubImageFile

	
format = 'BUFR'

	

	
format_description = 'BUFR'

	

	
PIL.BufrStubImagePlugin.register_handler(handler)

	Install application-specific BUFR image handler.

	Parameters

	handler – Handler object.

CurImagePlugin Module

	
class PIL.CurImagePlugin.CurImageFile(fp=None, filename=None)

	Bases: PIL.BmpImagePlugin.BmpImageFile

	
format = 'CUR'

	

	
format_description = 'Windows Cursor'

	

DcxImagePlugin Module

	
class PIL.DcxImagePlugin.DcxImageFile(fp=None, filename=None)

	Bases: PIL.PcxImagePlugin.PcxImageFile

	
format = 'DCX'

	

	
format_description = 'Intel DCX'

	

	
is_animated

	

	
n_frames

	

	
seek(frame)

	Seeks to the given frame in this sequence file. If you seek
beyond the end of the sequence, the method raises an
EOFError exception. When a sequence file is opened, the
library automatically seeks to frame 0.

Note that in the current version of the library, most sequence
formats only allows you to seek to the next frame.

See tell().

	Parameters

	frame – Frame number, starting at 0.

	Raises

	EOFError – If the call attempts to seek beyond the end
of the sequence.

	
tell()

	Returns the current frame number. See seek().

	Returns

	Frame number, starting with 0.

EpsImagePlugin Module

	
class PIL.EpsImagePlugin.EpsImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

EPS File Parser for the Python Imaging Library

	
format = 'EPS'

	

	
format_description = 'Encapsulated Postscript'

	

	
load(scale=1)

	Load image data based on tile list

	
load_seek(*args, **kwargs)

	

	
mode_map = {1: 'L', 2: 'LAB', 3: 'RGB', 4: 'CMYK'}

	

	
PIL.EpsImagePlugin.Ghostscript(tile, size, fp, scale=1)

	Render an image using Ghostscript

	
class PIL.EpsImagePlugin.PSFile(fp)

	Bases: object

Wrapper for bytesio object that treats either CR or LF as end of line.

	
readline()

	

	
seek(offset, whence=0)

	

	
PIL.EpsImagePlugin.has_ghostscript()

	

FitsStubImagePlugin Module

	
class PIL.FitsStubImagePlugin.FITSStubImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.StubImageFile

	
format = 'FITS'

	

	
format_description = 'FITS'

	

	
PIL.FitsStubImagePlugin.register_handler(handler)

	Install application-specific FITS image handler.

	Parameters

	handler – Handler object.

FliImagePlugin Module

	
class PIL.FliImagePlugin.FliImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'FLI'

	

	
format_description = 'Autodesk FLI/FLC Animation'

	

	
is_animated

	

	
n_frames

	

	
seek(frame)

	Seeks to the given frame in this sequence file. If you seek
beyond the end of the sequence, the method raises an
EOFError exception. When a sequence file is opened, the
library automatically seeks to frame 0.

Note that in the current version of the library, most sequence
formats only allows you to seek to the next frame.

See tell().

	Parameters

	frame – Frame number, starting at 0.

	Raises

	EOFError – If the call attempts to seek beyond the end
of the sequence.

	
tell()

	Returns the current frame number. See seek().

	Returns

	Frame number, starting with 0.

FpxImagePlugin Module

	
class PIL.FpxImagePlugin.FpxImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'FPX'

	

	
format_description = 'FlashPix'

	

	
load()

	Load image data based on tile list

GbrImagePlugin Module

	
class PIL.GbrImagePlugin.GbrImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'GBR'

	

	
format_description = 'GIMP brush file'

	

	
load()

	Load image data based on tile list

GifImagePlugin Module

	
class PIL.GifImagePlugin.GifImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
data()

	

	
format = 'GIF'

	

	
format_description = 'Compuserve GIF'

	

	
global_palette = None

	

	
is_animated

	

	
load_end()

	

	
n_frames

	

	
seek(frame)

	Seeks to the given frame in this sequence file. If you seek
beyond the end of the sequence, the method raises an
EOFError exception. When a sequence file is opened, the
library automatically seeks to frame 0.

Note that in the current version of the library, most sequence
formats only allows you to seek to the next frame.

See tell().

	Parameters

	frame – Frame number, starting at 0.

	Raises

	EOFError – If the call attempts to seek beyond the end
of the sequence.

	
tell()

	Returns the current frame number. See seek().

	Returns

	Frame number, starting with 0.

	
PIL.GifImagePlugin.get_interlace(im)

	

	
PIL.GifImagePlugin.getdata(im, offset=(0, 0), **params)

	Legacy Method

Return a list of strings representing this image.
The first string is a local image header, the rest contains
encoded image data.

	Parameters

	
	im – Image object

	offset – Tuple of (x, y) pixels. Defaults to (0,0)

	**params – E.g. duration or other encoder info parameters

	Returns

	List of Bytes containing gif encoded frame data

	
PIL.GifImagePlugin.getheader(im, palette=None, info=None)

	Legacy Method to get Gif data from image.

Warning:: May modify image data.

	Parameters

	
	im – Image object

	palette – bytes object containing the source palette, or ….

	info – encoderinfo

	Returns

	tuple of(list of header items, optimized palette)

GribStubImagePlugin Module

	
class PIL.GribStubImagePlugin.GribStubImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.StubImageFile

	
format = 'GRIB'

	

	
format_description = 'GRIB'

	

	
PIL.GribStubImagePlugin.register_handler(handler)

	Install application-specific GRIB image handler.

	Parameters

	handler – Handler object.

Hdf5StubImagePlugin Module

	
class PIL.Hdf5StubImagePlugin.HDF5StubImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.StubImageFile

	
format = 'HDF5'

	

	
format_description = 'HDF5'

	

	
PIL.Hdf5StubImagePlugin.register_handler(handler)

	Install application-specific HDF5 image handler.

	Parameters

	handler – Handler object.

IcnsImagePlugin Module

	
class PIL.IcnsImagePlugin.IcnsFile(fobj)

	Bases: object

	
SIZES = {(16, 16, 1): [(b'icp4', <function read_png_or_jpeg2000 at 0x7fe4d677bae8>), (b'is32', <function read_32 at 0x7fe4d677b9d8>), (b's8mk', <function read_mk at 0x7fe4d677ba60>)], (16, 16, 2): [(b'ic11', <function read_png_or_jpeg2000 at 0x7fe4d677bae8>)], (32, 32, 1): [(b'icp5', <function read_png_or_jpeg2000 at 0x7fe4d677bae8>), (b'il32', <function read_32 at 0x7fe4d677b9d8>), (b'l8mk', <function read_mk at 0x7fe4d677ba60>)], (32, 32, 2): [(b'ic12', <function read_png_or_jpeg2000 at 0x7fe4d677bae8>)], (48, 48, 1): [(b'ih32', <function read_32 at 0x7fe4d677b9d8>), (b'h8mk', <function read_mk at 0x7fe4d677ba60>)], (64, 64, 1): [(b'icp6', <function read_png_or_jpeg2000 at 0x7fe4d677bae8>)], (128, 128, 1): [(b'ic07', <function read_png_or_jpeg2000 at 0x7fe4d677bae8>), (b'it32', <function read_32t at 0x7fe4d677b950>), (b't8mk', <function read_mk at 0x7fe4d677ba60>)], (128, 128, 2): [(b'ic13', <function read_png_or_jpeg2000 at 0x7fe4d677bae8>)], (256, 256, 1): [(b'ic08', <function read_png_or_jpeg2000 at 0x7fe4d677bae8>)], (256, 256, 2): [(b'ic14', <function read_png_or_jpeg2000 at 0x7fe4d677bae8>)], (512, 512, 1): [(b'ic09', <function read_png_or_jpeg2000 at 0x7fe4d677bae8>)], (512, 512, 2): [(b'ic10', <function read_png_or_jpeg2000 at 0x7fe4d677bae8>)]}

	

	
bestsize()

	

	
dataforsize(size)

	Get an icon resource as {channel: array}. Note that
the arrays are bottom-up like windows bitmaps and will likely
need to be flipped or transposed in some way.

	
getimage(size=None)

	

	
itersizes()

	

	
class PIL.IcnsImagePlugin.IcnsImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

PIL image support for Mac OS .icns files.
Chooses the best resolution, but will possibly load
a different size image if you mutate the size attribute
before calling ‘load’.

The info dictionary has a key ‘sizes’ that is a list
of sizes that the icns file has.

	
format = 'ICNS'

	

	
format_description = 'Mac OS icns resource'

	

	
load()

	Load image data based on tile list

	
PIL.IcnsImagePlugin.nextheader(fobj)

	

	
PIL.IcnsImagePlugin.read_32(fobj, start_length, size)

	Read a 32bit RGB icon resource. Seems to be either uncompressed or
an RLE packbits-like scheme.

	
PIL.IcnsImagePlugin.read_32t(fobj, start_length, size)

	

	
PIL.IcnsImagePlugin.read_mk(fobj, start_length, size)

	

	
PIL.IcnsImagePlugin.read_png_or_jpeg2000(fobj, start_length, size)

	

IcoImagePlugin Module

	
class PIL.IcoImagePlugin.IcoFile(buf)

	Bases: object

	
frame(idx)

	Get an image from frame idx

	
getimage(size, bpp=False)

	Get an image from the icon

	
sizes()

	Get a list of all available icon sizes and color depths.

	
class PIL.IcoImagePlugin.IcoImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

PIL read-only image support for Microsoft Windows .ico files.

By default the largest resolution image in the file will be loaded. This
can be changed by altering the ‘size’ attribute before calling ‘load’.

The info dictionary has a key ‘sizes’ that is a list of the sizes available
in the icon file.

Handles classic, XP and Vista icon formats.

This plugin is a refactored version of Win32IconImagePlugin by Bryan Davis
<casadebender@gmail.com>.
https://code.google.com/archive/p/casadebender/wikis/Win32IconImagePlugin.wiki

	
format = 'ICO'

	

	
format_description = 'Windows Icon'

	

	
load()

	Load image data based on tile list

	
load_seek()

	

ImImagePlugin Module

	
class PIL.ImImagePlugin.ImImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'IM'

	

	
format_description = 'IFUNC Image Memory'

	

	
is_animated

	

	
n_frames

	

	
seek(frame)

	Seeks to the given frame in this sequence file. If you seek
beyond the end of the sequence, the method raises an
EOFError exception. When a sequence file is opened, the
library automatically seeks to frame 0.

Note that in the current version of the library, most sequence
formats only allows you to seek to the next frame.

See tell().

	Parameters

	frame – Frame number, starting at 0.

	Raises

	EOFError – If the call attempts to seek beyond the end
of the sequence.

	
tell()

	Returns the current frame number. See seek().

	Returns

	Frame number, starting with 0.

	
PIL.ImImagePlugin.number(s)

	

ImtImagePlugin Module

	
class PIL.ImtImagePlugin.ImtImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'IMT'

	

	
format_description = 'IM Tools'

	

IptcImagePlugin Module

	
class PIL.IptcImagePlugin.IptcImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
field()

	

	
format = 'IPTC'

	

	
format_description = 'IPTC/NAA'

	

	
getint(key)

	

	
load()

	Load image data based on tile list

	
PIL.IptcImagePlugin.dump(c)

	

	
PIL.IptcImagePlugin.getiptcinfo(im)

	Get IPTC information from TIFF, JPEG, or IPTC file.

	Parameters

	im – An image containing IPTC data.

	Returns

	A dictionary containing IPTC information, or None if
no IPTC information block was found.

	
PIL.IptcImagePlugin.i(c)

	

JpegImagePlugin Module

	
PIL.JpegImagePlugin.APP(self, marker)

	

	
PIL.JpegImagePlugin.COM(self, marker)

	

	
PIL.JpegImagePlugin.DQT(self, marker)

	

	
class PIL.JpegImagePlugin.JpegImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
draft(mode, size)

	Set draft mode

	
format = 'JPEG'

	

	
format_description = 'JPEG (ISO 10918)'

	

	
load_djpeg()

	

	
load_read(read_bytes)

	internal: read more image data
For premature EOF and LOAD_TRUNCATED_IMAGES adds EOI marker
so libjpeg can finish decoding

	
PIL.JpegImagePlugin.SOF(self, marker)

	

	
PIL.JpegImagePlugin.Skip(self, marker)

	

	
PIL.JpegImagePlugin.convert_dict_qtables(qtables)

	

	
PIL.JpegImagePlugin.get_sampling(im)

	

	
PIL.JpegImagePlugin.jpeg_factory(fp=None, filename=None)

	

Jpeg2KImagePlugin Module

	
class PIL.Jpeg2KImagePlugin.Jpeg2KImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'JPEG2000'

	

	
format_description = 'JPEG 2000 (ISO 15444)'

	

	
load()

	Load image data based on tile list

McIdasImagePlugin Module

	
class PIL.McIdasImagePlugin.McIdasImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'MCIDAS'

	

	
format_description = 'McIdas area file'

	

MicImagePlugin Module

	
class PIL.MicImagePlugin.MicImageFile(fp=None, filename=None)

	Bases: PIL.TiffImagePlugin.TiffImageFile

	
format = 'MIC'

	

	
format_description = 'Microsoft Image Composer'

	

	
is_animated

	

	
n_frames

	

	
seek(frame)

	Select a given frame as current image

	
tell()

	Return the current frame number

MpegImagePlugin Module

	
class PIL.MpegImagePlugin.BitStream(fp)

	Bases: object

	
next()

	

	
peek(bits)

	

	
read(bits)

	

	
skip(bits)

	

	
class PIL.MpegImagePlugin.MpegImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'MPEG'

	

	
format_description = 'MPEG'

	

MspImagePlugin Module

	
class PIL.MspImagePlugin.MspDecoder(mode, *args)

	Bases: PIL.ImageFile.PyDecoder

	
decode(buffer)

	Override to perform the decoding process.

	Parameters

	buffer – A bytes object with the data to be decoded. If handles_eof
is set, then buffer will be empty and self.fd will be set.

	Returns

	A tuple of (bytes consumed, errcode). If finished with decoding
return <0 for the bytes consumed. Err codes are from ERRORS

	
class PIL.MspImagePlugin.MspImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'MSP'

	

	
format_description = 'Windows Paint'

	

PalmImagePlugin Module

	
PIL.PalmImagePlugin.build_prototype_image()

	

PcdImagePlugin Module

	
class PIL.PcdImagePlugin.PcdImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'PCD'

	

	
format_description = 'Kodak PhotoCD'

	

	
load_end()

	

PcxImagePlugin Module

	
class PIL.PcxImagePlugin.PcxImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'PCX'

	

	
format_description = 'Paintbrush'

	

PdfImagePlugin Module

PixarImagePlugin Module

	
class PIL.PixarImagePlugin.PixarImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'PIXAR'

	

	
format_description = 'PIXAR raster image'

	

PngImagePlugin Module

	
class PIL.PngImagePlugin.PngImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
load_end()

	internal: finished reading image data

	
load_prepare()

	internal: prepare to read PNG file

	
load_read(read_bytes)

	internal: read more image data

	
verify()

	Verify PNG file

	
PIL.PngImagePlugin.getchunks(im, **params)

	Return a list of PNG chunks representing this image.

	
PIL.PngImagePlugin.is_cid()

	Matches zero or more characters at the beginning of the string.

	
PIL.PngImagePlugin.putchunk(fp, cid, *data)

	Write a PNG chunk (including CRC field)

	
class PIL.PngImagePlugin.ChunkStream(fp)

	Bases: object

	
call(cid, pos, length)

	Call the appropriate chunk handler

	
close()

	

	
crc(cid, data)

	Read and verify checksum

	
crc_skip(cid, data)

	Read checksum. Used if the C module is not present

	
push(cid, pos, length)

	

	
read()

	Fetch a new chunk. Returns header information.

	
verify(endchunk=b'IEND')

	

	
class PIL.PngImagePlugin.PngImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'PNG'

	

	
format_description = 'Portable network graphics'

	

	
load_end()

	internal: finished reading image data

	
load_prepare()

	internal: prepare to read PNG file

	
load_read(read_bytes)

	internal: read more image data

	
verify()

	Verify PNG file

	
class PIL.PngImagePlugin.PngStream(fp)

	Bases: PIL.PngImagePlugin.ChunkStream

	
check_text_memory(chunklen)

	

	
chunk_IDAT(pos, length)

	

	
chunk_IEND(pos, length)

	

	
chunk_IHDR(pos, length)

	

	
chunk_PLTE(pos, length)

	

	
chunk_cHRM(pos, length)

	

	
chunk_gAMA(pos, length)

	

	
chunk_iCCP(pos, length)

	

	
chunk_iTXt(pos, length)

	

	
chunk_pHYs(pos, length)

	

	
chunk_sRGB(pos, length)

	

	
chunk_tEXt(pos, length)

	

	
chunk_tRNS(pos, length)

	

	
chunk_zTXt(pos, length)

	

PpmImagePlugin Module

	
class PIL.PpmImagePlugin.PpmImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'PPM'

	

	
format_description = 'Pbmplus image'

	

PsdImagePlugin Module

	
class PIL.PsdImagePlugin.PsdImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'PSD'

	

	
format_description = 'Adobe Photoshop'

	

	
is_animated

	

	
load_prepare()

	

	
n_frames

	

	
seek(layer)

	Seeks to the given frame in this sequence file. If you seek
beyond the end of the sequence, the method raises an
EOFError exception. When a sequence file is opened, the
library automatically seeks to frame 0.

Note that in the current version of the library, most sequence
formats only allows you to seek to the next frame.

See tell().

	Parameters

	frame – Frame number, starting at 0.

	Raises

	EOFError – If the call attempts to seek beyond the end
of the sequence.

	
tell()

	Returns the current frame number. See seek().

	Returns

	Frame number, starting with 0.

SgiImagePlugin Module

	
class PIL.SgiImagePlugin.SGI16Decoder(mode, *args)

	Bases: PIL.ImageFile.PyDecoder

	
decode(buffer)

	Override to perform the decoding process.

	Parameters

	buffer – A bytes object with the data to be decoded. If handles_eof
is set, then buffer will be empty and self.fd will be set.

	Returns

	A tuple of (bytes consumed, errcode). If finished with decoding
return <0 for the bytes consumed. Err codes are from ERRORS

	
class PIL.SgiImagePlugin.SgiImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'SGI'

	

	
format_description = 'SGI Image File Format'

	

SpiderImagePlugin Module

	
class PIL.SpiderImagePlugin.SpiderImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
convert2byte(depth=255)

	

	
format = 'SPIDER'

	

	
format_description = 'Spider 2D image'

	

	
is_animated

	

	
n_frames

	

	
seek(frame)

	Seeks to the given frame in this sequence file. If you seek
beyond the end of the sequence, the method raises an
EOFError exception. When a sequence file is opened, the
library automatically seeks to frame 0.

Note that in the current version of the library, most sequence
formats only allows you to seek to the next frame.

See tell().

	Parameters

	frame – Frame number, starting at 0.

	Raises

	EOFError – If the call attempts to seek beyond the end
of the sequence.

	
tell()

	Returns the current frame number. See seek().

	Returns

	Frame number, starting with 0.

	
tkPhotoImage()

	

	
PIL.SpiderImagePlugin.isInt(f)

	

	
PIL.SpiderImagePlugin.isSpiderHeader(t)

	

	
PIL.SpiderImagePlugin.isSpiderImage(filename)

	

	
PIL.SpiderImagePlugin.loadImageSeries(filelist=None)

	create a list of Image.images for use in montage

	
PIL.SpiderImagePlugin.makeSpiderHeader(im)

	

SunImagePlugin Module

	
class PIL.SunImagePlugin.SunImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'SUN'

	

	
format_description = 'Sun Raster File'

	

TgaImagePlugin Module

	
class PIL.TgaImagePlugin.TgaImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'TGA'

	

	
format_description = 'Targa'

	

TiffImagePlugin Module

	
class PIL.TiffImagePlugin.AppendingTiffWriter(fn, new=False)

	Bases: object

	
Tags = {288, 324, 519, 520, 521, 273}

	

	
close()

	

	
fieldSizes = [0, 1, 1, 2, 4, 8, 1, 1, 2, 4, 8, 4, 8]

	

	
finalize()

	

	
fixIFD()

	

	
fixOffsets(count, isShort=False, isLong=False)

	

	
goToEnd()

	

	
newFrame()

	

	
readLong()

	

	
readShort()

	

	
rewriteLastLong(value)

	

	
rewriteLastShort(value)

	

	
rewriteLastShortToLong(value)

	

	
seek(offset, whence)

	

	
setEndian(endian)

	

	
setup()

	

	
skipIFDs()

	

	
tell()

	

	
write(data)

	

	
writeLong(value)

	

	
writeShort(value)

	

	
class PIL.TiffImagePlugin.IFDRational(value, denominator=1)

	Bases: numbers.Rational

Implements a rational class where 0/0 is a legal value to match
the in the wild use of exif rationals.

e.g., DigitalZoomRatio - 0.00/0.00 indicates that no digital zoom was used

	
denominator

	

	
limit_rational(max_denominator)

	
	Parameters

	max_denominator – Integer, the maximum denominator value

	Returns

	Tuple of (numerator, denominator)

	
numerator

	

	
PIL.TiffImagePlugin.ImageFileDirectory

	alias of PIL.TiffImagePlugin.ImageFileDirectory_v1

	
class PIL.TiffImagePlugin.ImageFileDirectory_v1(*args, **kwargs)

	Bases: PIL.TiffImagePlugin.ImageFileDirectory_v2

This class represents the legacy interface to a TIFF tag directory.

Exposes a dictionary interface of the tags in the directory:

ifd = ImageFileDirectory_v1()
ifd[key] = 'Some Data'
ifd.tagtype[key] = 2
print(ifd[key])
('Some Data',)

Also contains a dictionary of tag types as read from the tiff image file,
~PIL.TiffImagePlugin.ImageFileDirectory_v1.tagtype.

Values are returned as a tuple.

Deprecated since version 3.0.0.

	
classmethod from_v2(original)

	Returns an
ImageFileDirectory_v1
instance with the same data as is contained in the original
ImageFileDirectory_v2
instance.

	Returns

	ImageFileDirectory_v1

	
tagdata

	

	
tags

	

	
to_v2()

	Returns an
ImageFileDirectory_v2
instance with the same data as is contained in the original
ImageFileDirectory_v1
instance.

	Returns

	ImageFileDirectory_v2

	
class PIL.TiffImagePlugin.ImageFileDirectory_v2(ifh=b'II*x00x00x00x00x00', prefix=None)

	Bases: collections.abc.MutableMapping

This class represents a TIFF tag directory. To speed things up, we
don’t decode tags unless they’re asked for.

Exposes a dictionary interface of the tags in the directory:

ifd = ImageFileDirectory_v2()
ifd[key] = 'Some Data'
ifd.tagtype[key] = 2
print(ifd[key])
'Some Data'

Individual values are returned as the strings or numbers, sequences are
returned as tuples of the values.

The tiff metadata type of each item is stored in a dictionary of
tag types in
~PIL.TiffImagePlugin.ImageFileDirectory_v2.tagtype. The types
are read from a tiff file, guessed from the type added, or added
manually.

Data Structures:

	self.tagtype = {}

	Key: numerical tiff tag number

	Value: integer corresponding to the data type from ~PIL.TiffTags.TYPES

New in version 3.0.0.

	
legacy_api

	

	
load(fp)

	

	
load_byte(data, legacy_api=True)

	

	
load_double(data, legacy_api=True)

	

	
load_float(data, legacy_api=True)

	

	
load_long(data, legacy_api=True)

	

	
load_rational(data, legacy_api=True)

	

	
load_short(data, legacy_api=True)

	

	
load_signed_byte(data, legacy_api=True)

	

	
load_signed_long(data, legacy_api=True)

	

	
load_signed_rational(data, legacy_api=True)

	

	
load_signed_short(data, legacy_api=True)

	

	
load_string(data, legacy_api=True)

	

	
load_undefined(data, legacy_api=True)

	

	
named()

	
	Returns

	dict of name|key: value

Returns the complete tag dictionary, with named tags where possible.

	
offset

	

	
prefix

	

	
reset()

	

	
save(fp)

	

	
write_byte(data)

	

	
write_double(*values)

	

	
write_float(*values)

	

	
write_long(*values)

	

	
write_rational(*values)

	

	
write_short(*values)

	

	
write_signed_byte(*values)

	

	
write_signed_long(*values)

	

	
write_signed_rational(*values)

	

	
write_signed_short(*values)

	

	
write_string(value)

	

	
write_undefined(value)

	

	
class PIL.TiffImagePlugin.TiffImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'TIFF'

	

	
format_description = 'Adobe TIFF'

	

	
is_animated

	

	
load()

	Load image data based on tile list

	
load_end()

	

	
n_frames

	

	
seek(frame)

	Select a given frame as current image

	
tell()

	Return the current frame number

WebPImagePlugin Module

	
class PIL.WebPImagePlugin.WebPImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'WEBP'

	

	
format_description = 'WebP image'

	

	
is_animated

	

	
load()

	Load image data based on tile list

	
n_frames

	

	
seek(frame)

	Seeks to the given frame in this sequence file. If you seek
beyond the end of the sequence, the method raises an
EOFError exception. When a sequence file is opened, the
library automatically seeks to frame 0.

Note that in the current version of the library, most sequence
formats only allows you to seek to the next frame.

See tell().

	Parameters

	frame – Frame number, starting at 0.

	Raises

	EOFError – If the call attempts to seek beyond the end
of the sequence.

	
tell()

	Returns the current frame number. See seek().

	Returns

	Frame number, starting with 0.

WmfImagePlugin Module

	
class PIL.WmfImagePlugin.WmfStubImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.StubImageFile

	
format = 'WMF'

	

	
format_description = 'Windows Metafile'

	

	
PIL.WmfImagePlugin.register_handler(handler)

	Install application-specific WMF image handler.

	Parameters

	handler – Handler object.

XVThumbImagePlugin Module

	
class PIL.XVThumbImagePlugin.XVThumbImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'XVThumb'

	

	
format_description = 'XV thumbnail image'

	

XbmImagePlugin Module

	
class PIL.XbmImagePlugin.XbmImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'XBM'

	

	
format_description = 'X11 Bitmap'

	

XpmImagePlugin Module

	
class PIL.XpmImagePlugin.XpmImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'XPM'

	

	
format_description = 'X11 Pixel Map'

	

	
load_read(bytes)

	

Internal Reference Docs

	File Handling in Pillow
	Issues

	Image Lifecycle

	Complications

	Proposed File Handling

	Limits
	Internal Limits

	Format Size Limits

	Block Allocator
	Previous Design

	New Design

	Memory Pools

File Handling in Pillow

When opening a file as an image, Pillow requires a filename,
pathlib.Path object, or a file-like object. Pillow uses the filename
or Path to open a file, so for the rest of this article, they will all
be treated as a file-like object.

The first four of these items are equivalent, the last is dangerous
and may fail:

from PIL import Image
import io
import pathlib

im = Image.open('test.jpg')

im2 = Image.open(pathlib.Path('test.jpg'))

f = open('test.jpg', 'rb')
im3 = Image.open(f)

with open('test.jpg', 'rb') as f:
 im4 = Image.open(io.BytesIO(f.read()))

Dangerous FAIL:
with open('test.jpg', 'rb') as f:
 im5 = Image.open(f)
im5.load() # FAILS, closed file

The documentation specifies that the file will be closed after the
Image.Image.load() method is called. This is an aspirational
specification rather than an accurate reflection of the state of the
code.

Pillow cannot in general close and reopen a file, so any access to
that file needs to be prior to the close.

Issues

The current open file handling is inconsistent at best:

	Most of the image plugins do not close the input file.

	Multi-frame images behave badly when seeking through the file, as
it’s legal to seek backward in the file until the last image is
read, and then it’s not.

	Using the file context manager to provide a file-like object to
Pillow is dangerous unless the context of the image is limited to
the context of the file.

Image Lifecycle

	Image.open() called. Path-like objects are opened as a
file. Metadata is read from the open file. The file is left open for
further usage.

	Image.Image.load() when the pixel data from the image is
required, load() is called. The current frame is read into
memory. The image can now be used independently of the underlying
image file.

	Image.Image.seek() in the case of multi-frame images
(e.g. multipage TIFF and animated GIF) the image file left open so
that seek can load the appropriate frame. When the last frame is
read, the image file is closed (at least in some image plugins), and
no more seeks can occur.

	Image.Image.close() Closes the file pointer and destroys the
core image object. This is used in the Pillow context manager
support. e.g.:

with Image.open('test.jpg') as img:
 ... # image operations here.

The lifecycle of a single frame image is relatively simple. The file
must remain open until the load() or close() function is
called.

Multi-frame images are more complicated. The load() method is not
a terminal method, so it should not close the underlying file. The
current behavior of seek() closing the underlying file on
accessing the last frame is presumably a heuristic for closing the
file after iterating through the entire sequence. In general, Pillow
does not know if there are going to be any requests for additional
data until the caller has explicitly closed the image.

Complications

	TiffImagePlugin has some code to pass the underlying file descriptor
into libtiff (if working on an actual file). Since libtiff closes
the file descriptor internally, it is duplicated prior to passing it
into libtiff.

	decoder.handles_eof This slightly misnamed flag indicates that
the decoder wants to be called with a 0 length buffer when reads are
done. Despite the comments in ImageFile.load(), the only decoder
that actually uses this flag is the Jpeg2K decoder. The use of this
flag in Jpeg2K predated the change to the decoder that added the
pulls_fd flag, and is therefore not used.

	I don’t think that there’s any way to make this safe without
changing the lazy loading:

Dangerous FAIL:
with open('test.jpg', 'rb') as f:
 im5 = Image.open(f)
im5.load() # FAILS, closed file

Proposed File Handling

	Image.Image.load() should close the image file, unless there are
multiple frames.

	Image.Image.seek() should never close the image file.

	Users of the library should call Image.Image.close() on any
multi-frame image to ensure that the underlying file is closed.

Limits

This page is documentation to the various fundamental size limits in
the Pillow implementation.

Internal Limits

	Image sizes cannot be negative. These are checked both in
Storage.c and Image.py

	Image sizes may be 0. (Although not in 3.4)

	Maximum pixel dimensions are limited to INT32, or 2^31 by the sizes
in the image header.

	Individual allocations are limited to 2GB in Storage.c

	The 2GB allocation puts an upper limit to the xsize of the image of
either 2^31 for ‘L’ or 2^29 for ‘RGB’

	Individual memory mapped segments are limited to 2GB in map.c based
on the overflow checks. This requires that any memory mapped image
is smaller than 2GB, as calculated by y*stride (so 2Gpx for ‘L’
images, and .5Gpx for ‘RGB’

	Any call to internal python size functions for buffers or strings
are currently returned as int32, not py_ssize_t. This limits the
maximum buffer to 2GB for operations like frombytes and frombuffer.

	This also limits the size of buffers converted using a
decoder. (decode.c:127)

Format Size Limits

	ICO: Max size is 256x256

	Webp: 16383x16383 (underlying library size limit:
https://developers.google.com/speed/webp/docs/api)

Block Allocator

Previous Design

Historically there have been two image allocators in Pillow:
ImagingAllocateBlock and ImagingAllocateArray. The first works
for images smaller than 16MB of data and allocates one large chunk of
memory of im->linesize * im->ysize bytes. The second works for
large images and make one allocation for each scan line of size
im->linesize bytes. This makes for a very sharp transition
between one allocation and potentially thousands of small allocations,
leading to unpredictable performance penalties around the transition.

New Design

ImagingAllocateArray now allocates space for images as a chain of
blocks with a maximum size of 16MB. If there is a memory allocation
error, it falls back to allocating a 4KB block, or at least one scan
line. This is now the default for all internal allocations.

ImagingAllocateBlock is now only used for those cases when we are
specifically requesting a single segment of memory for sharing with
other code.

Memory Pools

There is now a memory pool to contain a supply of recently freed
blocks, which can then be reused without going back to the OS for a
fresh allocation. This caching of free blocks is currently disabled by
default, but can be enabled and tweaked using three environment
variables:

	PILLOW_ALIGNMENT, in bytes. Specifies the alignment of memory
allocations. Valid values are powers of 2 between 1 and
128, inclusive. Defaults to 1.

	PILLOW_BLOCK_SIZE, in bytes, K, or M. Specifies the maximum
block size for ImagingAllocateArray. Valid values are
integers, with an optional k or m suffix. Defaults to 16M.

	PILLOW_BLOCKS_MAX Specifies the number of freed blocks to
retain to fill future memory requests. Any freed blocks over this
threshold will be returned to the OS immediately. Defaults to 0.

Porting

Porting existing PIL-based code to Pillow

Pillow is a functional drop-in replacement for the Python Imaging Library. To
run your existing PIL-compatible code with Pillow, it needs to be modified to
import the Image module from the PIL namespace instead of the
global namespace. Change this:

import Image

to this:

from PIL import Image

The _imaging module has been moved. You can now import it like this:

from PIL.Image import core as _imaging

The image plugin loading mechanism has changed. Pillow no longer
automatically imports any file in the Python path with a name ending
in ImagePlugin.py. You will need to import your image plugin
manually.

Pillow will raise an exception if the core extension can’t be loaded
for any reason, including a version mismatch between the Python and
extension code. Previously PIL allowed Python only code to run if the
core extension was not available.

About

Goals

The fork author’s goal is to foster and support active development of PIL through:

	Continuous integration testing via Travis CI [https://travis-ci.org/python-pillow/Pillow] and AppVeyor [https://ci.appveyor.com/project/Python-pillow/pillow]

	Publicized development activity on GitHub [https://github.com/python-pillow/Pillow]

	Regular releases to the Python Package Index [https://pypi.org/project/Pillow/]

License

Like PIL, Pillow is licensed under the open source PIL Software License [https://raw.githubusercontent.com/python-pillow/Pillow/master/LICENSE]

Why a fork?

PIL is not setuptools compatible. Please see this Image-SIG post [https://mail.python.org/pipermail/image-sig/2010-August/006480.html] for a more detailed explanation. Also, PIL’s current bi-yearly (or greater) release schedule is too infrequent to accommodate the large number and frequency of issues reported.

What about PIL?

Note

Prior to Pillow 2.0.0, very few image code changes were made. Pillow 2.0.0
added Python 3 support and includes many bug fixes from many contributors.

As more time passes since the last PIL release (1.1.7 in 2009), the likelihood of a new PIL release decreases. However, we’ve yet to hear an official “PIL is dead” announcement. So if you still want to support PIL, please report issues here first [https://bitbucket.org/effbot/pil-2009-raclette/issues], then open corresponding Pillow tickets here [https://github.com/python-pillow/Pillow/issues].

Please provide a link to the first ticket so we can track the issue(s) upstream.

Release Notes

Note

Contributors please include release notes as needed or appropriate with your bug fixes, feature additions and tests.

	5.2.0
	API Changes

	API Additions

	Other Changes

	5.1.0
	New File Format

	API Changes

	Other Changes

	5.0.0
	Backwards Incompatible Changes

	API Changes

	API Additions

	Other Changes

	4.3.0
	API Changes

	API Additions

	Other Changes

	4.2.1
	Fixed Windows PyPy Build

	4.2.0
	Added Complex Text Rendering

	New Optional Parameters

	New DecompressionBomb Warning

	Removed Deprecated Items

	Removed Core Image Function

	4.1.1
	Fix Regression with reading DPI from EXIF data

	Incompatibility between 3.6.0 and 3.6.1

	4.1.0
	Removed Deprecated Items

	Closing Files When Opening Images

	Changes to GIF Handling When Saving

	New Method: Image.remap_palette

	Added Decoder Registry and Support for Python Based Decoders

	Tests

	4.0.0
	Python 2.6 and 3.2 Dropped

	Support added for Python 3.6

	OleFileIO.py

	SGI image save

	Zero sized images

	Internal handles_eof flag

	Image.core.stretch removed

	3.4.0
	New resizing filters

	Deprecation Warning when Saving JPEGs

	New DDS Decoders

	Append images to GIF

	Save multiple frame TIFF

	Image.core.open_ppm removed

	3.3.2
	Integer overflow in Map.c

	Sign Extension in Storage.c

	3.3.0
	Libimagequant support

	New Setup.py options

	Resizing

	Rotation

	Image Metadata

	3.2.0
	New DDS and FTEX Image Plugins

	Updates to the GbrImagePlugin

	Passthrough Parameters for ImageDraw.text

	ImageSequence.Iterator changes

	3.1.2
	CVE-2016-3076 – Buffer overflow in Jpeg2KEncode.c

	3.1.1
	CVE-2016-0740 – Buffer overflow in TiffDecode.c

	CVE-2016-0775 – Buffer overflow in FliDecode.c

	CVE-2016-2533 – Buffer overflow in PcdDecode.c

	Integer overflow in Resample.c

	3.1.0
	ImageDraw arc, chord and pieslice can now use floats

	Consistent multiline text spacing

	Exif, Jpeg and Tiff Metadata

	3.0.0
	Saving Multipage Images

	Tiff ImageFileDirectory Rewrite

	Deprecated Methods

	LibJpeg and Zlib are Required by Default

	2.8.0
	Open HTTP response objects with Image.open

	2.7.0
	Sane Plugin

	Png text chunk size limits

	Image resizing filters

	Image transposition

	Gaussian blur and unsharp mask

	TIFF Parameter Changes

5.2.0

API Changes

Deprecations

These version constants have been deprecated. VERSION will be removed in
Pillow 6.0.0, and PILLOW_VERSION will be removed after that.

	PIL.VERSION (old PIL version 1.1.7)

	PIL.PILLOW_VERSION

	PIL.Image.VERSION

	PIL.Image.PILLOW_VERSION

Use PIL.__version__ instead.

API Additions

3D color lookup tables

Support for 3D color lookup table transformations has been added.

	https://en.wikipedia.org/wiki/3D_lookup_table

Color3DLUT.generate transforms 3-channel pixels using the values of the
channels as coordinates in the 3D lookup table and interpolating the nearest
elements.

It allows you to apply almost any color transformation in constant time by
using pre-calculated decimated tables.

Color3DLUT.transform() allows altering table values with a callback.

If NumPy is installed, the performance of argument conversion is dramatically
improved when a source table supports buffer interface (NumPy && arrays in
Python >= 3).

ImageColor.getrgb

Previously Image.rotate only supported HSL color strings. Now HSB and HSV
strings are also supported, as well as float values. For example,
ImageColor.getrgb("hsv(180,100%,99.5%)").

ImageFile.get_format_mimetype

ImageFile.get_format_mimetype has been added to return the MIME type of an
image file, where available. For example,
Image.open("hopper.jpg").get_format_mimetype() returns "image/jpeg".

ImageFont.getsize_multiline

A new method to return the size of multiline text, for example
font.getsize_multiline("ABC\nAaaa")

Image.rotate

A new named parameter, fillcolor, has been added to Image.rotate. This
color specifies the background color to use in the area outside the rotated
image. This parameter takes the same color specifications as used in
Image.new.

TGA file format

Pillow can now read and write LA data (in addition to L, P, RGB and RGBA), and
write RLE data (in addition to uncompressed).

Other Changes

Support added for Python 3.7

Pillow 5.2 supports Python 3.7.

Build macOS wheels with Xcode 6.4, supporting older macOS versions

The macOS wheels for Pillow 5.1.0 were built with Xcode 9.2, meaning 10.12
Sierra was the lowest supported version.

Prior to Pillow 5.1.0, Xcode 8 was used, supporting El Capitan 10.11.

Instead, Pillow 5.2.0 is built with the oldest available Xcode 6.4 to support
at least 10.10 Yosemite.

Fix _i2f compilation with some GCC versions

For example, this allows compilation with GCC 4.8 on NetBSD.

Resolve confusion getting PIL / Pillow version string

Re: “version constants deprecated” listed above, as user gnbl notes in #3082:

	it’s confusing that PIL.VERSION returns the version string of the former PIL instead of Pillow’s

	there does not seem to be documentation on this version number (why this, will it ever change, ..) e.g. at https://pillow.readthedocs.io/en/5.1.x/about.html#why-a-fork

	it’s confusing that PIL.version is a module and does not return the version information directly or hints on how to get it

	the package information header is essentially useless (placeholder, does not even mention Pillow, nor the version)

	PIL._version module documentation comment could explain how to access the version information

We have attempted to resolve these issues in #3083, #3090 and #3218.

5.1.0

New File Format

BLP File Format

Pillow now supports reading the BLP “Blizzard Mipmap” file format used
for tiles in Blizzard’s engine.

API Changes

Optional channels for TIFF files

Pillow can now open TIFF files with base modes of RGB, YCbCr,
and CMYK with up to 6 8-bit channels, discarding any extra
channels if the content is tagged as UNSPECIFIED. Pillow still does
not store more than 4 8-bit channels of image data.

Append to PDF Files

Images can now be appended to PDF files in place by passing in
append=True when saving the image.

Other Changes

WebP memory leak

A memory leak when opening WebP files has been fixed.

5.0.0

Backwards Incompatible Changes

Python 3.3 Dropped

Python 3.3 is EOL and no longer supported due to moving testing from nose,
which is deprecated, to pytest, which doesn’t support Python 3.3. We will not
be creating binaries, testing, or retaining compatibility with this version.
The final version of Pillow for Python 3.3 is 4.3.0.

Decompression Bombs now raise Exceptions

Pillow has previously emitted warnings for images that are
unexpectedly large and may be a denial of service. These warnings are
now upgraded to DecompressionBombErrors for images that are twice
the size of images that trigger the DecompressionBombWarning. The
default threshold is 128Mpx, or 0.5GB for an RGB or RGBA
image. This can be disabled or changed by setting
Image.MAX_IMAGE_PIXELS = None.

Scripts

The scripts formerly installed by Pillow have been split into a
separate package, pillow-scripts, living at
https://github.com/python-pillow/pillow-scripts .

API Changes

OleFileIO.py

The olefile module is no longer a required dependency when installing Pillow.
Support for plugins requiring olefile will not be loaded if it is not
installed. This allows library consumers to avoid installing this dependency
if they choose. Some library consumers have little interest in the format
support and would like to keep dependencies to a minimum.

Further, the vendored version was removed in Pillow 4.0.0 and replaced with a
deprecation warning that PIL.OleFileIO would be removed in a future version.
This warning has been upgraded to an import error pending future removal.

Check parameter on _save

Several image plugins supported a named check parameter on their
nominally private _save method to preflight if the image could be
saved in that format. That parameter has been removed.

API Additions

Image.transform

A new named parameter, fillcolor, has been added to
Image.transform. This color specifies the background color to use in
the area outside the transformed area in the output image. This
parameter takes the same color specifications as used in Image.new.

GIF Disposal

Multiframe GIF images now take an optional disposal parameter to
specify the disposal option for changed pixels.

Other Changes

Compressed TIFF Images

Previously, there were some compression modes (JPEG, Packbits, and
LZW) that were supported with Pillow’s internal TIFF decoder. All
compressed TIFFs are now read using the libtiff decoder, as it
implements the compression schemes more correctly.

Libraqm is now Dynamically Linked

The libraqm dependency for complex text scripts is now linked
dynamically at runtime rather than at packaging time. This allows us
to release binaries with support for libraqm if it is installed on the
user’s machine.

Source Layout Changes

The Pillow source is now stored within the src directory of the
distribution. This prevents accidental imports of the PIL directory
when running Python from the project directory.

Setup.py Changes

Multiarch support on Linux should be more robust, especially on Debian
derivatives on ARM platforms. Debian’s multiarch platform
configuration is run in preference to the sniffing of machine platform
and architecture.

4.3.0

API Changes

Deprecations

Several undocumented functions in ImageOps have been deprecated:
gaussian_blur, gblur, unsharp_mask, usm and
box_blur. Use the equivalent operations in ImageFilter
instead. These functions will be removed in a future release.

TIFF Metadata Changes

	TIFF tags with unknown type/quantity now default to being bare
values if they are 1 element, where previously they would be a
single element tuple. This is only with the new api, not the legacy
api. This normalizes the handling of fields, so that the metadata
with inferred or image specified counts are handled the same as
metadata with count specified in the TIFF spec.

	The PhotoshopInfo, XMP, and JPEGTables tags now have a
defined type (bytes) and a count of 1.

	The ImageJMetaDataByteCounts tag now has an arbitrary number of
items, as there can be multiple items, one for UTF-8, and one for
UTF-16.

Core Image API Changes

These are internal functions that should not have been used by user
code, but they were accessible from the python layer.

Debugging code within Image.core.grabclipboard was removed. It had been
marked as will be removed in future versions since PIL. When enabled, it
identified the format of the clipboard data.

The PIL.Image.core.copy and PIL.Image.Image.im.copy2 methods
have been removed.

The PIL.Image.core.getcount methods have been removed, use
PIL.Image.core.get_stats()['new_count'] property instead.

API Additions

Get One Channel From Image

A new method PIL.Image.Image.getchannel() has been added to
return a single channel by index or name. For example,
image.getchannel("A") will return alpha channel as separate image.
getchannel should work up to 6 times faster than
image.split()[0] in previous Pillow versions.

Box Blur

A new filter, PIL.ImageFilter.BoxBlur, has been
added. This is a filter with similar results to a Gaussian blur, but
is much faster.

Partial Resampling

Added new argument box for PIL.Image.Image.resize(). This
argument defines a source rectangle from within the source image to be
resized. This is very similar to the image.crop(box).resize(size)
sequence except that box can be specified with subpixel accuracy.

New Transpose Operation

The Image.TRANSVERSE operation has been added to
PIL.Image.Image.transpose(). This is equivalent to a transpose
operation about the opposite diagonal.

Multiband Filters

There is a new PIL.ImageFilter.MultibandFilter base class
for image filters that can run on all channels of an image in one
operation. The original PIL.ImageFilter.Filter class
remains for image filters that can process only single band images, or
require splitting of channels prior to filtering.

Other Changes

Loading 16-bit TIFF Images

Pillow now can read 16-bit multichannel TIFF files including files
with alpha transparency. The image data is truncated to 8-bit
precision.

Pillow now can read 16-bit signed integer single channel TIFF
files. The image data is promoted to 32-bit for storage and
processing.

SGI Images

Pillow can now read and write uncompressed 16-bit multichannel SGI
images to and from RGB and RGBA formats. The image data is truncated
to 8-bit precision.

Pillow can now read RLE encoded SGI images in both 8 and 16-bit
precision.

Performance

This release contains several performance improvements:

	Many memory bandwidth-bounded operations such as crop, image allocation,
conversion, split into bands and merging from bands are up to 2x faster.

	Upscaling of multichannel images (such as RGB) is accelerated by 5-10%

	JPEG loading is accelerated up to 15% and JPEG saving up to 20% when
using a recent version of libjpeg-turbo.

	Image.transpose has been accelerated 15% or more by using a cache
friendly algorithm.

	ImageFilters based on Kernel convolution are significantly faster
due to the new MultibandFilter feature.

	All memory allocation for images is now done in blocks, rather than
falling back to an allocation for each scan line for images larger
than the block size.

CMYK Conversion

The basic CMYK->RGB conversion has been tweaked to match the formula
from Google Chrome. This produces an image that is generally lighter
than the previous formula, and more in line with what color managed
applications produce.

4.2.1

There are no functional changes in this release.

Fixed Windows PyPy Build

A change in the 4.2.0 cycle broke the Windows PyPy build. This has
been fixed, and PyPy is now part of the Windows CI matrix.

4.2.0

Added Complex Text Rendering

Pillow now supports complex text rendering for scripts requiring glyph
composition and bidirectional flow. This optional feature adds three
dependencies: harfbuzz, fribidi, and raqm. See the install
documentation for further details. This feature is tested and works on
Unix and Mac, but has not yet been built on Windows platforms.

New Optional Parameters

	PIL.ImageDraw.floodfill() has a new optional parameter:
threshold. This specifies a tolerance for the color to replace with
the flood fill.

	The TIFF and PDF image writers now support the append_images
optional parameter for specifying additional images to create
multipage outputs.

New DecompressionBomb Warning

PIL.Image.Image.crop() now may raise a DecompressionBomb
warning if the crop region enlarges the image over the threshold
specified by PIL.Image.MAX_PIXELS.

Removed Deprecated Items

Several deprecated items have been removed.

	The methods PIL.ImageWin.Dib.fromstring(),
PIL.ImageWin.Dib.tostring() and
PIL.TiffImagePlugin.ImageFileDirectory_v2.as_dict() have
been removed.

	Before Pillow 4.2.0, attempting to save an RGBA image as JPEG would
discard the alpha channel. From Pillow 3.4.0, a deprecation warning
was shown. From Pillow 4.2.0, the deprecation warning is removed and
an IOError is raised.

Removed Core Image Function

The unused function Image.core.new_array was removed. This is an
internal function that should not have been used by user code, but it
was accessible from the python layer.

4.1.1

Fix Regression with reading DPI from EXIF data

Some JPEG images don’t contain DPI information in the image metadata,
but do contain it in the EXIF data. A patch was added in 4.1.0 to read
from the EXIF data, but it did not accept all possible types that
could be included there. This fix adds the ability to read ints as
well as rational values.

Incompatibility between 3.6.0 and 3.6.1

CPython 3.6.1 added a new symbol, PySlice_GetIndicesEx, which was not
present in 3.6.0. This had the effect of causing binaries compiled on
CPython 3.6.1 to not work on installations of C-Python 3.6.0. This fix
undefines PySlice_GetIndicesEx if it exists to restore compatibility
with both 3.6.0 and 3.6.1. See https://bugs.python.org/issue29943 for
more details.

4.1.0

Removed Deprecated Items

Several deprecated items have been removed.

	Support for spaces in tiff kwargs in the parameters for ‘x resolution’, ‘y
resolution’, ‘resolution unit’, and ‘date time’ has been
removed. Underscores should be used instead.

	The methods PIL.ImageDraw.ImageDraw.setink(),
PIL.ImageDraw.ImageDraw.setfill(), and
PIL.ImageDraw.ImageDraw.setfont() have been removed.

Closing Files When Opening Images

The file handling when opening images has been overhauled. Previously,
Pillow would attempt to close some, but not all image formats
after loading the image data. Now, the following behavior
is specified:

	For images where an open file is passed in, it is the
responsibility of the calling code to close the file.

	For images where Pillow opens the file and the file is known to have
only one frame, the file is closed after loading.

	If the file has more than one frame, or if it can’t be determined,
then the file is left open to permit seeking to subsequent
frames. It will be closed, eventually, in the close or
__del__ methods.

	If the image is memory mapped, then we can’t close the mapping to
the underlying file until we are done with the image. The mapping
will be closed in the close or __del__ method.

Changes to GIF Handling When Saving

The PIL.GifImagePlugin code has been refactored to fix the flow when
saving images. There are two external changes that arise from this:

	An PIL.ImagePalette.ImagePalette object is now accepted
as a specified palette argument in PIL.Image.Image.save().

	The image to be saved is no longer modified in place by any of the
operations of the save function. Previously it was modified when
optimizing the image palette.

This refactor fixed some bugs with palette handling when saving
multiple frame GIFs.

New Method: Image.remap_palette

The method PIL.Image.Image.remap_palette() has been
added. This method was hoisted from the GifImagePlugin code used to
optimize the palette.

Added Decoder Registry and Support for Python Based Decoders

There is now a decoder registry similar to the image plugin
registries. Image plugins can register a decoder, and it will be
called when the decoding is requested. This allows for the creation of
pure Python decoders. While the Python decoders will not be as fast as
their C based counterparts, they may be easier and quicker to develop
or safer to run.

Tests

Many tests have been added, including correctness tests for image
formats that have been previously untested.

We are now running automated tests in Docker containers against more
Linux versions than are provided on Travis CI, which is currently
Ubuntu 14.04 x64. This Pillow release is tested on 64-bit Alpine,
Arch, Ubuntu 12.04 and 16.04, and 32-bit Debian Stretch and Ubuntu
14.04. This also covers a wider range of dependency versions than are
provided on Travis natively.

4.0.0

Python 2.6 and 3.2 Dropped

Pillow 4.0 no longer supports Python 2.6 and 3.2. We will not be
creating binaries, testing, or retaining compatibility with these
releases. This release removes some workarounds for those Python
releases, so the final working version of Pillow on 2.6 or 3.2 is 3.4.2.

Support added for Python 3.6

Pillow 4.0 supports Python 3.6.

OleFileIO.py

OleFileIO.py has been removed as a vendored file and is now installed
from the upstream olefile pypi package. All internal dependencies are
redirected to the olefile package. Direct accesses to
PIL.OlefileIO raises a deprecation warning, then patches the
upstream olefile into sys.modules in its place.

SGI image save

It is now possible to save images in modes L, RGB, and
RGBA to the uncompressed SGI image format.

Zero sized images

Pillow 3.4.0 removed support for creating images with (0,0) size. This
has been reenabled, restoring pre 3.4 behavior.

Internal handles_eof flag

The handles_eof flag for decoding images has been removed, as there
were no internal users of the flag. Anyone maintaining image decoders
outside of the Pillow source tree should consider using the cleanup
function pointers instead.

Image.core.stretch removed

The stretch function on the core image object has been removed. This
used to be for enlarging the image, but has been aliased to resize
recently.

3.4.0

New resizing filters

Two new filters available for Image.resize() and Image.thumbnail()
functions: BOX and HAMMING. BOX is the high-performance filter with
two times shorter window than BILINEAR. It can be used for image reduction
3 and more times and produces a sharper result than BILINEAR.

HAMMING filter has the same performance as BILINEAR filter while
providing the image downscaling quality comparable to BICUBIC.
Both new filters don’t show good quality for the image upscaling.

Deprecation Warning when Saving JPEGs

JPEG images cannot contain an alpha channel. Pillow prior to 3.4.0
silently drops the alpha channel. With this release Pillow will now
issue a DeprecationWarning when attempting to save a RGBA mode
image as a JPEG. This will become an error in Pillow 4.2.

New DDS Decoders

Pillow can now decode DXT3 images, as well as the previously supported
DXT1 and DXT5 formats. All three formats are now decoded in C code for
better performance.

Append images to GIF

Additional frames can now be appended when saving a GIF file, through the
append_images argument. The new frames are passed in as a list of images,
which may be have multiple frames themselves.

Note that the append_images argument is only used if save_all is also
in effect, e.g.:

im.save(out, save_all=True, append_images=[im1, im2, ...])

Save multiple frame TIFF

Multiple frames can now be saved in a TIFF file by using the save_all option.
e.g.:

im.save("filename.tiff", format="TIFF", save_all=True)

Image.core.open_ppm removed

The nominally private/debugging function Image.core.open_ppm has
been removed. If you were using this function, please use
Image.open instead.

3.3.2

Integer overflow in Map.c

Pillow prior to 3.3.2 may experience integer overflow errors in map.c
when reading specially crafted image files. This may lead to memory
disclosure or corruption.

Specifically, when parameters from the image are passed into
Image.core.map_buffer, the size of the image was calculated with
xsize * ysize * bytes_per_pixel. This will overflow if the
result is larger than SIZE_MAX. This is possible on a 32-bit system.

Furthermore this size value was added to a potentially attacker
provided offset value and compared to the size of the buffer
without checking for overflow or negative values.

These values were then used for creating pointers, at which point
Pillow could read the memory and include it in other images. The image
was marked readonly, so Pillow would not ordinarily write to that
memory without duplicating the image first.

This issue was found by Cris Neckar at Divergent Security.

Sign Extension in Storage.c

Pillow prior to 3.3.2 and PIL 1.1.7 (at least) do not check for
negative image sizes in ImagingNew in Storage.c. A negative
image size can lead to a smaller allocation than expected, leading to
arbitrary writes.

This issue was found by Cris Neckar at Divergent Security.

3.3.0

Libimagequant support

There is now support for using libimagequant as a higher quality
quantization option in Image.quantize() on Unix-like
platforms. This support requires building Pillow from source against
libimagequant. We cannot distribute binaries due to licensing
differences.

New Setup.py options

There are two new options to control the build_ext task in setup.py:

	--debug dumps all of the directories and files that are
checked when searching for libraries or headers when building the
extensions.

	--disable-platform-guessing removes many of the directories
that are checked for libraries and headers for build systems or
cross compilers that specify that information in via environment
variables.

Resizing

Image resampling for 8-bit per channel images was rewritten using only integer
computings. This is faster on most platforms and doesn’t introduce precision
errors on the wide range of scales. With other performance improvements, this
makes resampling 60% faster on average.

Color calculation for images in the LA mode on semitransparent pixels
was fixed.

Rotation

Rotation for angles divisible by 90 degrees now always uses transposition.
This greatly improves both quality and performance in this case.
Also, the bug with wrong image size calculation when rotating by 90 degrees
was fixed.

Image Metadata

The return type for binary data in version 2 Exif and Tiff metadata
has been changed from a tuple of integers to bytes. This is a change
from the behavior since 3.0.0.

3.2.0

New DDS and FTEX Image Plugins

The DdsImagePlugin reading DXT1 and DXT5 encoded .dds images was
added. DXT3 images are not currently supported.

The FtexImagePlugin reads textures used for 3D objects in
Independence War 2: Edge Of Chaos. The plugin reads a single texture
per file, in the .ftc (compressed) and .ftu (uncompressed)
formats.

Updates to the GbrImagePlugin

The GbrImagePlugin (GIMP brush format) has been updated to fix
support for version 1 files and add support for version 2 files.

Passthrough Parameters for ImageDraw.text

ImageDraw.multiline_text and ImageDraw.multiline_size take extra
spacing parameters above what are used in ImageDraw.text and
ImageDraw.size. These parameters can now be passed into
ImageDraw.text and ImageDraw.size and they will be passed through
to the corresponding multiline functions.

ImageSequence.Iterator changes

ImageSequence.Iterator is now an actual iterator implementing the
Iterator protocol. It is also now possible to seek to the first image
of the file when using direct indexing.

3.1.2

CVE-2016-3076 – Buffer overflow in Jpeg2KEncode.c

Pillow between 2.5.0 and 3.1.1 may overflow a buffer when writing
large Jpeg2000 files, allowing for code execution or other memory
corruption.

This occurs specifically in the function j2k_encode_entry, at the line:

state->buffer = malloc (tile_width * tile_height * components * prec / 8);

This vulnerability requires a particular value for height * width
such that height * width * components * precision overflows, at
which point the malloc will be for a smaller value than expected. The
buffer that is allocated will be ((height * width * components *
precision) mod (2^31) / 8), where components is 1-4 and precision is
either 8 or
16. Common values would be 4 components at precision 8 for a standard
RGBA image.

The unpackers then split an image that is laid out:

RGBARGBARGBA....

into:

RRR.
GGG.
BBB.
AAA.

If this buffer is smaller than expected, the jpeg2k unpacker functions
will write outside the allocation and onto the heap, corrupting
memory.

This issue was found by Alyssa Besseling at Atlassian.

3.1.1

CVE-2016-0740 – Buffer overflow in TiffDecode.c

Pillow 3.1.0 and earlier when linked against libtiff >= 4.0.0 on x64
may overflow a buffer when reading a specially crafted tiff file.

Specifically, libtiff >= 4.0.0 changed the return type of
TIFFScanlineSize from int32 to machine dependent
int32|64. If the scanline is sized so that it overflows an
int32, it may be interpreted as a negative number, which will then
pass the size check in TiffDecode.c line 236. To do this, the
logical scanline size has to be > 2gb, and for the test file, the
allocated buffer size is 64k against a roughly 4gb scan line size. Any
image data over 64k is written over the heap, causing a segfault.

This issue was found by security researcher FourOne.

CVE-2016-0775 – Buffer overflow in FliDecode.c

In all versions of Pillow, dating back at least to the last PIL 1.1.7
release, FliDecode.c has a buffer overflow error.

Around line 192:

case 16:
 /* COPY chunk */
 for (y = 0; y < state->ysize; y++) {
 UINT8* buf = (UINT8*) im->image[y];
 memcpy(buf+x, data, state->xsize);
 data += state->xsize;
 }
 break;

The memcpy has error where x is added to the target buffer
address. X is used in several internal temporary variable roles,
but can take a value up to the width of the image. Im->image[y]
is a set of row pointers to segments of memory that are the size of
the row. At the max y, this will write the contents of the line
off the end of the memory buffer, causing a segfault.

This issue was found by Alyssa Besseling at Atlassian

CVE-2016-2533 – Buffer overflow in PcdDecode.c

In all versions of Pillow, dating back at least to the last PIL 1.1.7
release, PcdDecode.c has a buffer overflow error.

The state.buffer for PcdDecode.c is allocated based on a 3
bytes per pixel sizing, where PcdDecode.c wrote into the buffer
assuming 4 bytes per pixel. This writes 768 bytes beyond the end of
the buffer into other Python object storage. In some cases, this
causes a segfault, in others an internal Python malloc error.

Integer overflow in Resample.c

If a large value was passed into the new size for an image, it is
possible to overflow an int32 value passed into malloc.

kk = malloc(xsize * kmax * sizeof(float));
…
xbounds = malloc(xsize * 2 * sizeof(int));

xsize is trusted user input. These multiplications can overflow,
leading the malloc’d buffer to be undersized. These allocations are
followed by a loop that writes out of bounds. This can lead to
corruption on the heap of the Python process with attacker controlled
float data.

This issue was found by Ned Williamson.

3.1.0

ImageDraw arc, chord and pieslice can now use floats

There is no longer a need to ensure that the start and end arguments for arc,
chord and pieslice are integers.

Note that these numbers are not simply rounded internally, but are actually
utilised in the drawing process.

Consistent multiline text spacing

When using the ImageDraw multiline methods, the spacing between
lines was inconsistent, based on the combination on ascenders and
descenders.

This has now been fixed, so that lines are offset by their baselines,
not the absolute height of each line.

There is also now a default spacing of 4px between lines.

Exif, Jpeg and Tiff Metadata

There were major changes in the TIFF ImageFileDirectory support in
Pillow 3.0 that led to a number of regressions. Some of them have been
fixed in Pillow 3.1, and some of them have been extended to have
different behavior.

TiffImagePlugin.IFDRational

Pillow 3.0 changed rational metadata to use a float. In Pillow 3.1,
this has changed to allow the expression of 0/0 as a valid piece of
rational metadata to reflect usage in the wild.

Rational metadata is now encapsulated in an IFDRational
instance. This class extends the Rational class to allow a denominator
of 0. It compares as a float or a number, but does allow access to the
raw numerator and denominator values through attributes.

When used in a ImageFileDirectory_v1, a 2 item tuple is returned
of the numerator and denominator, as was done previously.

This class should be used when adding a rational value to an
ImageFileDirectory for saving to image metadata.

JpegImagePlugin._getexif

In Pillow 3.0, the dictionary returned from the private, experimental,
but generally widely used _getexif function changed to reflect the
ImageFileDirectory_v2 format, without a fallback to the previous format.

In Pillow 3.1, _getexif now returns a dictionary compatible with
Pillow 2.9 and earlier, built with
ImageFileDirectory_v1 instances. Additionally, any
single item tuples have been unwrapped and return a bare element.

The format returned by Pillow 3.0 has been abandoned. A more fully
featured interface for EXIF is anticipated in a future release.

Out of Spec Metadata

In Pillow 3.0 and 3.1, images that contain metadata that is internally
consistent, but not in agreement with the TIFF spec, may cause an
exception when reading the metadata. This can happen when a tag that
is specified to have a single value is stored with an array of values.

It is anticipated that this behavior will change in future releases.

3.0.0

Saving Multipage Images

There is now support for saving multipage images in the GIF and
PDF formats. To enable this functionality, pass in save_all=True
as a keyword argument to the save:

im.save('test.pdf', save_all=True)

Tiff ImageFileDirectory Rewrite

The Tiff ImageFileDirectory metadata code has been rewritten. Where
previously it returned a somewhat arbitrary set of values and tuples,
it now returns bare values where appropriate and tuples when the
metadata item is a sequence or collection.

The original metadata is still available in the TiffImage.tags, the
new values are available in the TiffImage.tags_v2 member. The old
structures will be deprecated at some point in the future. When
saving Tiff metadata, new code should use the
TiffImagePlugin.ImageFileDirectory_v2 class.

Deprecated Methods

Several methods that have been marked as deprecated for many releases
have been removed in this release:

Image.tostring()
Image.fromstring()
Image.offset()
ImageDraw.setink()
ImageDraw.setfill()
The ImageFileIO module
The ImageFont.FreeTypeFont and ImageFont.truetype `file` keyword arg
The ImagePalette private _make functions
ImageWin.fromstring()
ImageWin.tostring()

LibJpeg and Zlib are Required by Default

The external dependencies on libjpeg and zlib are now required by default.
If the headers or libraries are not found, then installation will abort
with an error. This behaviour can be disabled with the --disable-libjpeg
and --disable-zlib flags.

2.8.0

Open HTTP response objects with Image.open

HTTP response objects returned from urllib2.urlopen(url) or requests.get(url, stream=True).raw are ‘file-like’ but do not support .seek() operations. As a result PIL was unable to open them as images, requiring a wrap in cStringIO or BytesIO.

Now new functionality has been added to Image.open() by way of an .seek(0) check and catch on exception AttributeError or io.UnsupportedOperation. If this is caught we attempt to wrap the object using io.BytesIO (which will only work on buffer-file-like objects).

This allows opening of files using both urllib2 and requests, e.g.:

Image.open(urllib2.urlopen(url))
Image.open(requests.get(url, stream=True).raw)

If the response uses content-encoding (compression, either gzip or deflate) then this will fail as both the urllib2 and requests raw file object will produce compressed data in that case. Using Content-Encoding on images is rather non-sensical as most images are already compressed, but it can still happen.

For requests the work-around is to set the decode_content attribute on the raw object to True:

response = requests.get(url, stream=True)
response.raw.decode_content = True
image = Image.open(response.raw)

2.7.0

Sane Plugin

The Sane plugin has now been split into its own repo:
https://github.com/python-pillow/Sane .

Png text chunk size limits

To prevent potential denial of service attacks using compressed text
chunks, there are now limits to the decompressed size of text chunks
decoded from PNG images. If the limits are exceeded when opening a PNG
image a ValueError will be raised.

Individual text chunks are limited to
PIL.PngImagePlugin.MAX_TEXT_CHUNK, set to 1MB by
default. The total decompressed size of all text chunks is limited to
PIL.PngImagePlugin.MAX_TEXT_MEMORY, which defaults to
64MB. These values can be changed prior to opening PNG images if you
know that there are large text blocks that are desired.

Image resizing filters

Image resizing methods resize() and
thumbnail() take a resample argument, which tells
which filter should be used for resampling. Possible values are:
PIL.Image.NEAREST, PIL.Image.BILINEAR,
PIL.Image.BICUBIC and PIL.Image.ANTIALIAS.
Almost all of them were changed in this version.

Bicubic and bilinear downscaling

From the beginning BILINEAR and
BICUBIC filters were based on affine transformations
and used a fixed number of pixels from the source image for every destination
pixel (2x2 pixels for BILINEAR and 4x4 for
BICUBIC). This gave an unsatisfactory result for
downscaling. At the same time, a high quality convolutions-based algorithm with
flexible kernel was used for ANTIALIAS filter.

Starting from Pillow 2.7.0, a high quality convolutions-based algorithm is used
for all of these three filters.

If you have previously used any tricks to maintain quality when downscaling with
BILINEAR and BICUBIC filters
(for example, reducing within several steps), they are unnecessary now.

Antialias renamed to Lanczos

A new PIL.Image.LANCZOS constant was added instead of
ANTIALIAS.

When ANTIALIAS was initially added, it was the only
high-quality filter based on convolutions. It’s name was supposed to reflect
this. Starting from Pillow 2.7.0 all resize method are based on convolutions.
All of them are antialias from now on. And the real name of the
ANTIALIAS filter is Lanczos filter.

The ANTIALIAS constant is left for backward compatibility
and is an alias for LANCZOS.

Lanczos upscaling quality

The image upscaling quality with LANCZOS filter was
almost the same as BILINEAR due to bug. This has been fixed.

Bicubic upscaling quality

The BICUBIC filter for affine transformations produced
sharp, slightly pixelated image for upscaling. Bicubic for convolutions is
more soft.

Resize performance

In most cases, convolution is more a expensive algorithm for downscaling
because it takes into account all the pixels of source image. Therefore
BILINEAR and BICUBIC filters’
performance can be lower than before. On the other hand the quality of
BILINEAR and BICUBIC was close to
NEAREST. So if such quality is suitable for your tasks
you can switch to NEAREST filter for downscaling,
which will give a huge improvement in performance.

At the same time performance of convolution resampling for downscaling has been
improved by around a factor of two compared to the previous version.
The upscaling performance of the LANCZOS filter has
remained the same. For BILINEAR filter it has improved by
1.5 times and for BICUBIC by four times.

Default filter for thumbnails

In Pillow 2.5 the default filter for thumbnail() was
changed from NEAREST to ANTIALIAS.
Antialias was chosen because all the other filters gave poor quality for
reduction. Starting from Pillow 2.7.0, ANTIALIAS has been
replaced with BICUBIC, because it’s faster and
ANTIALIAS doesn’t give any advantages after
downscaling with libjpeg, which uses supersampling internally, not convolutions.

Image transposition

A new method PIL.Image.TRANSPOSE has been added for the
transpose() operation in addition to
FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM,
ROTATE_90, ROTATE_180,
ROTATE_270. TRANSPOSE is an algebra
transpose, with an image reflected across its main diagonal.

The speed of ROTATE_90, ROTATE_270
and TRANSPOSE has been significantly improved for large
images which don’t fit in the processor cache.

Gaussian blur and unsharp mask

The GaussianBlur() implementation has been replaced
with a sequential application of box filters. The new implementation is based on
“Theoretical foundations of Gaussian convolution by extended box filtering” from
the Mathematical Image Analysis Group. As UnsharpMask()
implementations use Gaussian blur internally, all changes from this chapter
are also applicable to it.

Blur radius

There was an error in the previous version of Pillow, where blur radius (the
standard deviation of Gaussian) actually meant blur diameter. For example, to
blur an image with actual radius 5 you were forced to use value 10. This has
been fixed. Now the meaning of the radius is the same as in other software.

If you used a Gaussian blur with some radius value, you need to divide this
value by two.

Blur performance

Box filter computation time is constant relative to the radius and depends
on source image size only. Because the new Gaussian blur implementation
is based on box filter, its computation time also doesn’t depend on the blur
radius.

For example, previously, if the execution time for a given test image was 1
second for radius 1, 3.6 seconds for radius 10 and 17 seconds for 50, now blur
with any radius on same image is executed for 0.2 seconds.

Blur quality

The previous implementation takes into account only source pixels within
2 * standard deviation radius for every destination pixel. This was not enough,
so the quality was worse compared to other Gaussian blur software.

The new implementation does not have this drawback.

TIFF Parameter Changes

Several kwarg parameters for saving TIFF images were previously
specified as strings with included spaces (e.g. ‘x resolution’). This
was difficult to use as kwargs without constructing and passing a
dictionary. These parameters now use the underscore character instead
of space. (e.g. ‘x_resolution’)

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 PIL	

 	
 	
 PIL._binary	

 	
 	
 PIL.BdfFontFile	

 	
 	
 PIL.BmpImagePlugin	

 	
 	
 PIL.BufrStubImagePlugin	

 	
 	
 PIL.ContainerIO	

 	
 	
 PIL.CurImagePlugin	

 	
 	
 PIL.DcxImagePlugin	

 	
 	
 PIL.EpsImagePlugin	

 	
 	
 PIL.ExifTags	

 	
 	
 PIL.FitsStubImagePlugin	

 	
 	
 PIL.FliImagePlugin	

 	
 	
 PIL.FontFile	

 	
 	
 PIL.FpxImagePlugin	

 	
 	
 PIL.GbrImagePlugin	

 	
 	
 PIL.GdImageFile	

 	
 	
 PIL.GifImagePlugin	

 	
 	
 PIL.GimpGradientFile	

 	
 	
 PIL.GimpPaletteFile	

 	
 	
 PIL.GribStubImagePlugin	

 	
 	
 PIL.Hdf5StubImagePlugin	

 	
 	
 PIL.IcnsImagePlugin	

 	
 	
 PIL.IcoImagePlugin	

 	
 	
 PIL.Image	

 	
 	
 PIL.ImageChops	

 	
 	
 PIL.ImageCms	

 	
 	
 PIL.ImageColor	

 	
 	
 PIL.ImageDraw	

 	
 	
 PIL.ImageDraw2	

 	
 	
 PIL.ImageEnhance	

 	
 	
 PIL.ImageFile	

 	
 	
 PIL.ImageFilter	

 	
 	
 PIL.ImageFont	

 	
 	
 PIL.ImageGrab	

 	
 	
 PIL.ImageMath	

 	
 	
 PIL.ImageMorph	

 	
 	
 PIL.ImageOps	

 	
 	
 PIL.ImagePalette	

 	
 	
 PIL.ImagePath	

 	
 	
 PIL.ImageQt	

 	
 	
 PIL.ImageSequence	

 	
 	
 PIL.ImageShow	

 	
 	
 PIL.ImageStat	

 	
 	
 PIL.ImageTk	

 	
 	
 PIL.ImageTransform	

 	
 	
 PIL.ImageWin	

 	
 	
 PIL.ImImagePlugin	

 	
 	
 PIL.ImtImagePlugin	

 	
 	
 PIL.IptcImagePlugin	

 	
 	
 PIL.Jpeg2KImagePlugin	

 	
 	
 PIL.JpegImagePlugin	

 	
 	
 PIL.JpegPresets	

 	
 	
 PIL.McIdasImagePlugin	

 	
 	
 PIL.MicImagePlugin	

 	
 	
 PIL.MpegImagePlugin	

 	
 	
 PIL.MspImagePlugin	

 	
 	
 PIL.PaletteFile	

 	
 	
 PIL.PalmImagePlugin	

 	
 	
 PIL.PcdImagePlugin	

 	
 	
 PIL.PcfFontFile	

 	
 	
 PIL.PcxImagePlugin	

 	
 	
 PIL.PdfImagePlugin	

 	
 	
 PIL.PixarImagePlugin	

 	
 	
 PIL.PngImagePlugin	

 	
 	
 PIL.PpmImagePlugin	

 	
 	
 PIL.PsdImagePlugin	

 	
 	
 PIL.PSDraw	

 	
 	
 PIL.PyAccess	

 	
 	
 PIL.SgiImagePlugin	

 	
 	
 PIL.SpiderImagePlugin	

 	
 	
 PIL.SunImagePlugin	

 	
 	
 PIL.TarIO	

 	
 	
 PIL.TgaImagePlugin	

 	
 	
 PIL.TiffImagePlugin	

 	
 	
 PIL.TiffTags	

 	
 	
 PIL.WalImageFile	

 	
 	
 PIL.WebPImagePlugin	

 	
 	
 PIL.WmfImagePlugin	

 	
 	
 PIL.XbmImagePlugin	

 	
 	
 PIL.XpmImagePlugin	

 	
 	
 PIL.XVThumbImagePlugin	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	__init__() (PIL.TiffTags.TagInfo method)

 	
 	__new__() (PIL.PngImagePlugin.iTXt method)

A

 	
 	abs() (built-in function)

 	add() (in module PIL.ImageChops)

 	(PIL.PngImagePlugin.PngInfo method)

 	add_itxt() (PIL.PngImagePlugin.PngInfo method)

 	add_modulo() (in module PIL.ImageChops)

 	add_text() (PIL.PngImagePlugin.PngInfo method)

 	AffineTransform (class in PIL.ImageTransform)

 	
 	alpha_composite() (in module PIL.Image)

 	(PIL.Image.Image method)

 	APP() (in module PIL.JpegImagePlugin)

 	AppendingTiffWriter (class in PIL.TiffImagePlugin)

 	arc() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	(PIL.ImageDraw2.Draw method)

 	attributes (PIL.ImageCms.CmsProfile attribute)

 	autocontrast() (in module PIL.ImageOps)

B

 	
 	bdf_char() (in module PIL.BdfFontFile)

 	BdfFontFile (class in PIL.BdfFontFile)

 	begin_document() (PIL.PSDraw.PSDraw method)

 	bestsize() (PIL.IcnsImagePlugin.IcnsFile method)

 	BITFIELDS (PIL.BmpImagePlugin.BmpImageFile attribute)

 	bitmap (PIL.FontFile.FontFile attribute)

 	bitmap() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	BitmapImage (class in PIL.ImageTk)

 	BitStream (class in PIL.MpegImagePlugin)

 	
 	blend() (in module PIL.Image)

 	(in module PIL.ImageChops)

 	blue_colorant (PIL.ImageCms.CmsProfile attribute)

 	blue_primary (PIL.ImageCms.CmsProfile attribute)

 	BmpImageFile (class in PIL.BmpImagePlugin)

 	BoxBlur (class in PIL.ImageFilter)

 	Brush (class in PIL.ImageDraw2)

 	BufrStubImageFile (class in PIL.BufrStubImagePlugin)

 	build_prototype_image() (in module PIL.PalmImagePlugin)

C

 	
 	call() (PIL.PngImagePlugin.ChunkStream method)

 	check_text_memory() (PIL.PngImagePlugin.PngStream method)

 	chord() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	(PIL.ImageDraw2.Draw method)

 	chromatic_adaption (PIL.ImageCms.CmsProfile attribute)

 	chromaticity (PIL.ImageCms.CmsProfile attribute)

 	chunk_cHRM() (PIL.PngImagePlugin.PngStream method)

 	chunk_gAMA() (PIL.PngImagePlugin.PngStream method)

 	chunk_iCCP() (PIL.PngImagePlugin.PngStream method)

 	chunk_IDAT() (PIL.PngImagePlugin.PngStream method)

 	chunk_IEND() (PIL.PngImagePlugin.PngStream method)

 	chunk_IHDR() (PIL.PngImagePlugin.PngStream method)

 	chunk_iTXt() (PIL.PngImagePlugin.PngStream method)

 	chunk_pHYs() (PIL.PngImagePlugin.PngStream method)

 	chunk_PLTE() (PIL.PngImagePlugin.PngStream method)

 	chunk_sRGB() (PIL.PngImagePlugin.PngStream method)

 	chunk_tEXt() (PIL.PngImagePlugin.PngStream method)

 	chunk_tRNS() (PIL.PngImagePlugin.PngStream method)

 	chunk_zTXt() (PIL.PngImagePlugin.PngStream method)

 	ChunkStream (class in PIL.PngImagePlugin)

 	cleanup() (PIL.ImageFile.PyDecoder method)

 	close() (PIL.Image.Image method)

 	(PIL.ImageFile.Parser method)

 	(PIL.PngImagePlugin.ChunkStream method)

 	(PIL.TiffImagePlugin.AppendingTiffWriter method)

 	clut (PIL.ImageCms.CmsProfile attribute)

 	CmsProfile (class in PIL.ImageCms)

 	Color3DLUT (class in PIL.ImageFilter)

 	
 	color_space (PIL.ImageCms.CmsProfile attribute)

 	colorant_table (PIL.ImageCms.CmsProfile attribute)

 	colorant_table_out (PIL.ImageCms.CmsProfile attribute)

 	colorimetric_intent (PIL.ImageCms.CmsProfile attribute)

 	colorize() (in module PIL.ImageOps)

 	COM() (in module PIL.JpegImagePlugin)

 	compact() (PIL.ImagePath.PIL.ImagePath.Path method)

 	compile() (PIL.FontFile.FontFile method)

 	composite() (in module PIL.Image)

 	(in module PIL.ImageChops)

 	COMPRESSIONS (PIL.BmpImagePlugin.BmpImageFile attribute)

 	connection_space (PIL.ImageCms.CmsProfile attribute)

 	constant() (in module PIL.ImageChops)

 	ContainerIO (class in PIL.ContainerIO)

 	convert() (built-in function)

 	(PIL.Image.Image method)

 	convert2byte() (PIL.SpiderImagePlugin.SpiderImageFile method)

 	convert_dict_qtables() (in module PIL.JpegImagePlugin)

 	copy() (PIL.Image.Image method)

 	copyright (PIL.ImageCms.CmsProfile attribute)

 	count (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	crc() (PIL.PngImagePlugin.ChunkStream method)

 	crc_skip() (PIL.PngImagePlugin.ChunkStream method)

 	creation_date (PIL.ImageCms.CmsProfile attribute)

 	crop() (in module PIL.ImageOps)

 	(PIL.Image.Image method)

 	CurImageFile (class in PIL.CurImagePlugin)

 	curved() (in module PIL.GimpGradientFile)

 	cvt_enum() (PIL.TiffTags.TagInfo method)

D

 	
 	darker() (in module PIL.ImageChops)

 	data() (PIL.GifImagePlugin.GifImageFile method)

 	dataforsize() (PIL.IcnsImagePlugin.IcnsFile method)

 	DcxImageFile (class in PIL.DcxImagePlugin)

 	decode() (PIL.ImageFile.PyDecoder method)

 	(PIL.MspImagePlugin.MspDecoder method)

 	(PIL.SgiImagePlugin.SGI16Decoder method)

 	deform() (in module PIL.ImageOps)

 	denominator (PIL.TiffImagePlugin.IFDRational attribute)

 	device_class (PIL.ImageCms.CmsProfile attribute)

 	
 	Dib (class in PIL.ImageWin)

 	DibImageFile (class in PIL.BmpImagePlugin)

 	difference() (in module PIL.ImageChops)

 	DisplayViewer (class in PIL.ImageShow)

 	DQT() (in module PIL.JpegImagePlugin)

 	draft() (PIL.Image.Image method)

 	(PIL.JpegImagePlugin.JpegImageFile method)

 	Draw (class in PIL.ImageDraw2)

 	draw() (PIL.ImageWin.Dib method)

 	dump() (in module PIL.IptcImagePlugin)

 	duplicate() (in module PIL.ImageChops)

E

 	
 	ellipse() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	(PIL.ImageDraw2.Draw method)

 	end_document() (PIL.PSDraw.PSDraw method)

 	EogViewer (class in PIL.ImageShow)

 	EpsImageFile (class in PIL.EpsImagePlugin)

 	equalize() (in module PIL.ImageOps)

 	
 	eval() (in module PIL.Image)

 	(in module PIL.ImageMath)

 	expand() (in module PIL.ImageOps)

 	expose() (PIL.ImageWin.Dib method)

 	ExtentTransform (class in PIL.ImageTransform)

 	extrema (PIL.ImageStat.PIL.ImageStat.Stat attribute)

F

 	
 	feed() (PIL.ImageFile.Parser method)

 	field() (PIL.IptcImagePlugin.IptcImageFile method)

 	fieldSizes (PIL.TiffImagePlugin.AppendingTiffWriter attribute)

 	filename (in module PIL.Image)

 	filter() (PIL.Image.Image method)

 	finalize() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	fit() (in module PIL.ImageOps)

 	FITSStubImageFile (class in PIL.FitsStubImagePlugin)

 	fixIFD() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	fixOffsets() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	FliImageFile (class in PIL.FliImagePlugin)

 	flip() (in module PIL.ImageOps)

 	float() (built-in function)

 	floodfill() (PIL.ImageDraw.PIL.ImageDraw method)

 	flush() (PIL.ImageDraw2.Draw method)

 	Font (class in PIL.ImageDraw2)

 	FontFile (class in PIL.FontFile)

 	format (in module PIL.Image)

 	(PIL.BmpImagePlugin.BmpImageFile attribute)

 	(PIL.BmpImagePlugin.DibImageFile attribute)

 	(PIL.BufrStubImagePlugin.BufrStubImageFile attribute)

 	(PIL.CurImagePlugin.CurImageFile attribute)

 	(PIL.DcxImagePlugin.DcxImageFile attribute)

 	(PIL.EpsImagePlugin.EpsImageFile attribute)

 	(PIL.FitsStubImagePlugin.FITSStubImageFile attribute)

 	(PIL.FliImagePlugin.FliImageFile attribute)

 	(PIL.FpxImagePlugin.FpxImageFile attribute)

 	(PIL.GbrImagePlugin.GbrImageFile attribute)

 	(PIL.GdImageFile.GdImageFile attribute)

 	(PIL.GifImagePlugin.GifImageFile attribute)

 	(PIL.GribStubImagePlugin.GribStubImageFile attribute)

 	(PIL.Hdf5StubImagePlugin.HDF5StubImageFile attribute)

 	(PIL.IcnsImagePlugin.IcnsImageFile attribute)

 	(PIL.IcoImagePlugin.IcoImageFile attribute)

 	(PIL.ImImagePlugin.ImImageFile attribute)

 	(PIL.ImageShow.UnixViewer attribute)

 	(PIL.ImageShow.Viewer attribute)

 	(PIL.ImtImagePlugin.ImtImageFile attribute)

 	(PIL.IptcImagePlugin.IptcImageFile attribute)

 	(PIL.Jpeg2KImagePlugin.Jpeg2KImageFile attribute)

 	(PIL.JpegImagePlugin.JpegImageFile attribute)

 	(PIL.McIdasImagePlugin.McIdasImageFile attribute)

 	(PIL.MicImagePlugin.MicImageFile attribute)

 	(PIL.MpegImagePlugin.MpegImageFile attribute)

 	(PIL.MspImagePlugin.MspImageFile attribute)

 	(PIL.PcdImagePlugin.PcdImageFile attribute)

 	(PIL.PcxImagePlugin.PcxImageFile attribute)

 	(PIL.PixarImagePlugin.PixarImageFile attribute)

 	(PIL.PngImagePlugin.PngImageFile attribute)

 	(PIL.PpmImagePlugin.PpmImageFile attribute)

 	(PIL.PsdImagePlugin.PsdImageFile attribute)

 	(PIL.SgiImagePlugin.SgiImageFile attribute)

 	(PIL.SpiderImagePlugin.SpiderImageFile attribute)

 	(PIL.SunImagePlugin.SunImageFile attribute)

 	(PIL.TgaImagePlugin.TgaImageFile attribute)

 	(PIL.TiffImagePlugin.TiffImageFile attribute)

 	(PIL.WebPImagePlugin.WebPImageFile attribute)

 	(PIL.WmfImagePlugin.WmfStubImageFile attribute)

 	(PIL.XVThumbImagePlugin.XVThumbImageFile attribute)

 	(PIL.XbmImagePlugin.XbmImageFile attribute)

 	(PIL.XpmImagePlugin.XpmImageFile attribute)

 	
 	format_description (PIL.BmpImagePlugin.BmpImageFile attribute)

 	(PIL.BmpImagePlugin.DibImageFile attribute)

 	(PIL.BufrStubImagePlugin.BufrStubImageFile attribute)

 	(PIL.CurImagePlugin.CurImageFile attribute)

 	(PIL.DcxImagePlugin.DcxImageFile attribute)

 	(PIL.EpsImagePlugin.EpsImageFile attribute)

 	(PIL.FitsStubImagePlugin.FITSStubImageFile attribute)

 	(PIL.FliImagePlugin.FliImageFile attribute)

 	(PIL.FpxImagePlugin.FpxImageFile attribute)

 	(PIL.GbrImagePlugin.GbrImageFile attribute)

 	(PIL.GdImageFile.GdImageFile attribute)

 	(PIL.GifImagePlugin.GifImageFile attribute)

 	(PIL.GribStubImagePlugin.GribStubImageFile attribute)

 	(PIL.Hdf5StubImagePlugin.HDF5StubImageFile attribute)

 	(PIL.IcnsImagePlugin.IcnsImageFile attribute)

 	(PIL.IcoImagePlugin.IcoImageFile attribute)

 	(PIL.ImImagePlugin.ImImageFile attribute)

 	(PIL.ImtImagePlugin.ImtImageFile attribute)

 	(PIL.IptcImagePlugin.IptcImageFile attribute)

 	(PIL.Jpeg2KImagePlugin.Jpeg2KImageFile attribute)

 	(PIL.JpegImagePlugin.JpegImageFile attribute)

 	(PIL.McIdasImagePlugin.McIdasImageFile attribute)

 	(PIL.MicImagePlugin.MicImageFile attribute)

 	(PIL.MpegImagePlugin.MpegImageFile attribute)

 	(PIL.MspImagePlugin.MspImageFile attribute)

 	(PIL.PcdImagePlugin.PcdImageFile attribute)

 	(PIL.PcxImagePlugin.PcxImageFile attribute)

 	(PIL.PixarImagePlugin.PixarImageFile attribute)

 	(PIL.PngImagePlugin.PngImageFile attribute)

 	(PIL.PpmImagePlugin.PpmImageFile attribute)

 	(PIL.PsdImagePlugin.PsdImageFile attribute)

 	(PIL.SgiImagePlugin.SgiImageFile attribute)

 	(PIL.SpiderImagePlugin.SpiderImageFile attribute)

 	(PIL.SunImagePlugin.SunImageFile attribute)

 	(PIL.TgaImagePlugin.TgaImageFile attribute)

 	(PIL.TiffImagePlugin.TiffImageFile attribute)

 	(PIL.WebPImagePlugin.WebPImageFile attribute)

 	(PIL.WmfImagePlugin.WmfStubImageFile attribute)

 	(PIL.XVThumbImagePlugin.XVThumbImageFile attribute)

 	(PIL.XbmImagePlugin.XbmImageFile attribute)

 	(PIL.XpmImagePlugin.XpmImageFile attribute)

 	FpxImageFile (class in PIL.FpxImagePlugin)

 	frame() (PIL.IcoImagePlugin.IcoFile method)

 	from_v2() (PIL.TiffImagePlugin.ImageFileDirectory_v1 class method)

 	fromarray() (in module PIL.Image)

 	frombuffer() (in module PIL.Image)

 	frombytes() (in module PIL.Image)

 	(PIL.ImageWin.Dib method)

 	fromstring() (in module PIL.Image)

 	(PIL.Image.Image method)

G

 	
 	GaussianBlur (class in PIL.ImageFilter)

 	GbrImageFile (class in PIL.GbrImagePlugin)

 	GdImageFile (class in PIL.GdImageFile)

 	get_command() (PIL.ImageShow.Viewer method)

 	get_command_ex() (PIL.ImageShow.DisplayViewer method)

 	(PIL.ImageShow.EogViewer method)

 	(PIL.ImageShow.XVViewer method)

 	get_format() (PIL.ImageShow.Viewer method)

 	get_interlace() (in module PIL.GifImagePlugin)

 	get_sampling() (in module PIL.JpegImagePlugin)

 	getbands() (PIL.Image.Image method)

 	getbbox() (PIL.Image.Image method)

 	(PIL.ImagePath.PIL.ImagePath.Path method)

 	getchannel() (PIL.Image.Image method)

 	getchunks() (in module PIL.PngImagePlugin)

 	getcolor() (in module PIL.ImageColor)

 	(PIL.ImagePalette.ImagePalette method)

 	getcolors() (PIL.Image.Image method)

 	getdata() (in module PIL.GifImagePlugin)

 	(PIL.Image.Image method)

 	(PIL.ImagePalette.ImagePalette method)

 	(PIL.ImageTransform.Transform method)

 	getdraw() (PIL.ImageDraw.PIL.ImageDraw method)

 	getextrema() (PIL.Image.Image method)

 	getfont() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	
 	getheader() (in module PIL.GifImagePlugin)

 	getimage() (PIL.IcnsImagePlugin.IcnsFile method)

 	(PIL.IcoImagePlugin.IcoFile method)

 	getint() (PIL.IptcImagePlugin.IptcImageFile method)

 	getiptcinfo() (in module PIL.IptcImagePlugin)

 	getmask() (PIL.ImageFont.PIL.ImageFont.ImageFont method)

 	getpalette() (PIL.GimpGradientFile.GradientFile method)

 	(PIL.GimpPaletteFile.GimpPaletteFile method)

 	(PIL.Image.Image method)

 	(PIL.PaletteFile.PaletteFile method)

 	getpixel() (PIL.Image.Image method)

 	getrgb() (in module PIL.ImageColor)

 	getsize() (PIL.ImageFont.PIL.ImageFont.ImageFont method)

 	Ghostscript() (in module PIL.EpsImagePlugin)

 	GifImageFile (class in PIL.GifImagePlugin)

 	GimpGradientFile (class in PIL.GimpGradientFile)

 	GimpPaletteFile (class in PIL.GimpPaletteFile)

 	global_palette (PIL.GifImagePlugin.GifImageFile attribute)

 	goToEnd() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	gradient (PIL.GimpGradientFile.GradientFile attribute)

 	GradientFile (class in PIL.GimpGradientFile)

 	grayscale() (in module PIL.ImageOps)

 	green_colorant (PIL.ImageCms.CmsProfile attribute)

 	green_primary (PIL.ImageCms.CmsProfile attribute)

 	GribStubImageFile (class in PIL.GribStubImagePlugin)

H

 	
 	has_ghostscript() (in module PIL.EpsImagePlugin)

 	HDC (class in PIL.ImageWin)

 	HDF5StubImageFile (class in PIL.Hdf5StubImagePlugin)

 	header_flags (PIL.ImageCms.CmsProfile attribute)

 	header_manufacturer (PIL.ImageCms.CmsProfile attribute)

 	
 	header_model (PIL.ImageCms.CmsProfile attribute)

 	height (in module PIL.Image)

 	height() (PIL.ImageTk.BitmapImage method)

 	(PIL.ImageTk.PhotoImage method)

 	histogram() (PIL.Image.Image method)

 	HWND (class in PIL.ImageWin)

I

 	
 	i() (in module PIL.IptcImagePlugin)

 	i16be() (in module PIL._binary)

 	i16le() (in module PIL._binary)

 	i32be() (in module PIL._binary)

 	i32le() (in module PIL._binary)

 	i8() (in module PIL._binary)

 	icc_version (PIL.ImageCms.CmsProfile attribute)

 	IcnsFile (class in PIL.IcnsImagePlugin)

 	IcnsImageFile (class in PIL.IcnsImagePlugin)

 	IcoFile (class in PIL.IcoImagePlugin)

 	IcoImageFile (class in PIL.IcoImagePlugin)

 	IFDRational (class in PIL.TiffImagePlugin)

 	Image (class in PIL.Image)

 	image() (PIL.PSDraw.PSDraw method)

 	ImageFileDirectory (in module PIL.TiffImagePlugin)

 	ImageFileDirectory_v1 (class in PIL.TiffImagePlugin)

 	ImageFileDirectory_v2 (class in PIL.TiffImagePlugin)

 	ImagePalette (class in PIL.ImagePalette)

 	ImageQt.ImageQt (class in PIL.ImageQt)

 	ImImageFile (class in PIL.ImImagePlugin)

 	ImtImageFile (class in PIL.ImtImagePlugin)

 	info (in module PIL.Image)

 	init() (PIL.ImageFile.PyDecoder method)

 	
 	int() (built-in function)

 	intent_supported (PIL.ImageCms.CmsProfile attribute)

 	invert() (in module PIL.ImageChops)

 	(in module PIL.ImageOps)

 	IptcImageFile (class in PIL.IptcImagePlugin)

 	is_animated (PIL.DcxImagePlugin.DcxImageFile attribute)

 	(PIL.FliImagePlugin.FliImageFile attribute)

 	(PIL.GifImagePlugin.GifImageFile attribute)

 	(PIL.ImImagePlugin.ImImageFile attribute)

 	(PIL.MicImagePlugin.MicImageFile attribute)

 	(PIL.PsdImagePlugin.PsdImageFile attribute)

 	(PIL.SpiderImagePlugin.SpiderImageFile attribute)

 	(PIL.TiffImagePlugin.TiffImageFile attribute)

 	(PIL.WebPImagePlugin.WebPImageFile attribute)

 	is_cid() (in module PIL.PngImagePlugin)

 	is_intent_supported() (PIL.ImageCms.CmsProfile method)

 	is_matrix_shaper (PIL.ImageCms.CmsProfile attribute)

 	isatty() (PIL.ContainerIO.ContainerIO method)

 	isInt() (in module PIL.SpiderImagePlugin)

 	isSpiderHeader() (in module PIL.SpiderImagePlugin)

 	isSpiderImage() (in module PIL.SpiderImagePlugin)

 	Iterator (class in PIL.ImageSequence)

 	itersizes() (PIL.IcnsImagePlugin.IcnsFile method)

 	iTXt (class in PIL.PngImagePlugin)

J

 	
 	JPEG (PIL.BmpImagePlugin.BmpImageFile attribute)

 	Jpeg2KImageFile (class in PIL.Jpeg2KImagePlugin)

 	
 	jpeg_factory() (in module PIL.JpegImagePlugin)

 	JpegImageFile (class in PIL.JpegImagePlugin)

K

 	
 	Kernel (class in PIL.ImageFilter)

L

 	
 	legacy_api (PIL.TiffImagePlugin.ImageFileDirectory_v2 attribute)

 	lighter() (in module PIL.ImageChops)

 	limit_rational() (PIL.TiffImagePlugin.IFDRational method)

 	line() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	(PIL.ImageDraw2.Draw method)

 	(PIL.PSDraw.PSDraw method)

 	linear() (in module PIL.GimpGradientFile)

 	load() (in module PIL.ImageFont)

 	(PIL.EpsImagePlugin.EpsImageFile method)

 	(PIL.FpxImagePlugin.FpxImageFile method)

 	(PIL.GbrImagePlugin.GbrImageFile method)

 	(PIL.IcnsImagePlugin.IcnsImageFile method)

 	(PIL.IcoImagePlugin.IcoImageFile method)

 	(PIL.Image.Image method)

 	(PIL.IptcImagePlugin.IptcImageFile method)

 	(PIL.Jpeg2KImagePlugin.Jpeg2KImageFile method)

 	(PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	(PIL.TiffImagePlugin.TiffImageFile method)

 	(PIL.WebPImagePlugin.WebPImageFile method)

 	load_byte() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	load_default() (in module PIL.ImageFont)

 	load_djpeg() (PIL.JpegImagePlugin.JpegImageFile method)

 	load_double() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	load_end() (PIL.GifImagePlugin.GifImageFile method)

 	(PIL.PcdImagePlugin.PcdImageFile method)

 	(PIL.PngImagePlugin.PngImageFile method), [1]

 	(PIL.TiffImagePlugin.TiffImageFile method)

 	
 	load_float() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	load_long() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	load_path() (in module PIL.ImageFont)

 	load_prepare() (PIL.PngImagePlugin.PngImageFile method), [1]

 	(PIL.PsdImagePlugin.PsdImageFile method)

 	load_rational() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	load_read() (PIL.JpegImagePlugin.JpegImageFile method)

 	(PIL.PngImagePlugin.PngImageFile method), [1]

 	(PIL.XpmImagePlugin.XpmImageFile method)

 	load_seek() (PIL.EpsImagePlugin.EpsImageFile method)

 	(PIL.IcoImagePlugin.IcoImageFile method)

 	load_short() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	load_signed_byte() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	load_signed_long() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	load_signed_rational() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	load_signed_short() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	load_string() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	load_undefined() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	loadImageSeries() (in module PIL.SpiderImagePlugin)

 	logical_and() (in module PIL.ImageChops)

 	logical_or() (in module PIL.ImageChops)

 	lookup() (in module PIL.TiffTags)

 	luminance (PIL.ImageCms.CmsProfile attribute)

M

 	
 	makeSpiderHeader() (in module PIL.SpiderImagePlugin)

 	manufacturer (PIL.ImageCms.CmsProfile attribute)

 	map() (PIL.ImagePath.PIL.ImagePath.Path method)

 	max() (built-in function)

 	MaxFilter (class in PIL.ImageFilter)

 	McIdasImageFile (class in PIL.McIdasImagePlugin)

 	mean (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	media_black_point (PIL.ImageCms.CmsProfile attribute)

 	media_white_point_temperature (PIL.ImageCms.CmsProfile attribute)

 	median (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	MedianFilter (class in PIL.ImageFilter)

 	merge() (in module PIL.Image)

 	MeshTransform (class in PIL.ImageTransform)

 	method (PIL.ImageTransform.AffineTransform attribute)

 	(PIL.ImageTransform.ExtentTransform attribute)

 	(PIL.ImageTransform.MeshTransform attribute)

 	(PIL.ImageTransform.QuadTransform attribute)

 	
 	MicImageFile (class in PIL.MicImagePlugin)

 	min() (built-in function)

 	MinFilter (class in PIL.ImageFilter)

 	mirror() (in module PIL.ImageOps)

 	mode (in module PIL.Image)

 	mode_map (PIL.EpsImagePlugin.EpsImageFile attribute)

 	ModeFilter (class in PIL.ImageFilter)

 	model (PIL.ImageCms.CmsProfile attribute)

 	MpegImageFile (class in PIL.MpegImagePlugin)

 	MspDecoder (class in PIL.MspImagePlugin)

 	MspImageFile (class in PIL.MspImagePlugin)

 	multiline_text() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	multiline_textsize() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	multiply() (in module PIL.ImageChops)

N

 	
 	n_frames (PIL.DcxImagePlugin.DcxImageFile attribute)

 	(PIL.FliImagePlugin.FliImageFile attribute)

 	(PIL.GifImagePlugin.GifImageFile attribute)

 	(PIL.ImImagePlugin.ImImageFile attribute)

 	(PIL.MicImagePlugin.MicImageFile attribute)

 	(PIL.PsdImagePlugin.PsdImageFile attribute)

 	(PIL.SpiderImagePlugin.SpiderImageFile attribute)

 	(PIL.TiffImagePlugin.TiffImageFile attribute)

 	(PIL.WebPImagePlugin.WebPImageFile attribute)

 	
 	name (PIL.PcfFontFile.PcfFontFile attribute)

 	named() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	new() (in module PIL.Image)

 	newFrame() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	next() (PIL.MpegImagePlugin.BitStream method)

 	nextheader() (in module PIL.IcnsImagePlugin)

 	number() (in module PIL.ImImagePlugin)

 	numerator (PIL.TiffImagePlugin.IFDRational attribute)

O

 	
 	o16be() (in module PIL._binary)

 	o16le() (in module PIL._binary)

 	o32be() (in module PIL._binary)

 	o32le() (in module PIL._binary)

 	o8() (in module PIL._binary)

 	offset (PIL.TiffImagePlugin.ImageFileDirectory_v2 attribute)

 	
 	offset() (PIL.Image.Image method)

 	(PIL.ImageChops.PIL.ImageChops method)

 	open() (in module PIL.GdImageFile)

 	(in module PIL.Image)

 	(in module PIL.WalImageFile)

 	options (PIL.ImageShow.UnixViewer attribute)

 	(PIL.ImageShow.Viewer attribute)

P

 	
 	palette (in module PIL.Image)

 	PaletteFile (class in PIL.PaletteFile)

 	Parser (class in PIL.ImageFile)

 	paste() (PIL.Image.Image method)

 	(PIL.ImageTk.PhotoImage method)

 	(PIL.ImageWin.Dib method)

 	PcdImageFile (class in PIL.PcdImagePlugin)

 	PcfFontFile (class in PIL.PcfFontFile)

 	pcs (PIL.ImageCms.CmsProfile attribute)

 	PcxImageFile (class in PIL.PcxImagePlugin)

 	peek() (PIL.MpegImagePlugin.BitStream method)

 	Pen (class in PIL.ImageDraw2)

 	perceptual_rendering_intent_gamut (PIL.ImageCms.CmsProfile attribute)

 	PhotoImage (class in PIL.ImageTk)

 	pieslice() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	(PIL.ImageDraw2.Draw method)

 	PIL._binary (module)

 	PIL.BdfFontFile (module)

 	PIL.BmpImagePlugin (module)

 	PIL.BufrStubImagePlugin (module)

 	PIL.ContainerIO (module)

 	PIL.CurImagePlugin (module)

 	PIL.DcxImagePlugin (module)

 	PIL.EpsImagePlugin (module)

 	PIL.ExifTags (module)

 	PIL.ExifTags.GPSTAGS (class in PIL.ExifTags)

 	PIL.ExifTags.TAGS (class in PIL.ExifTags)

 	PIL.FitsStubImagePlugin (module)

 	PIL.FliImagePlugin (module)

 	PIL.FontFile (module)

 	PIL.FpxImagePlugin (module)

 	PIL.GbrImagePlugin (module)

 	PIL.GdImageFile (module)

 	PIL.GifImagePlugin (module)

 	PIL.GimpGradientFile (module)

 	PIL.GimpPaletteFile (module)

 	PIL.GribStubImagePlugin (module)

 	PIL.Hdf5StubImagePlugin (module)

 	PIL.IcnsImagePlugin (module)

 	PIL.IcoImagePlugin (module)

 	PIL.Image (module)

 	PIL.ImageChops (module)

 	PIL.ImageCms (module)

 	PIL.ImageColor (module)

 	PIL.ImageDraw (module)

 	PIL.ImageDraw.Draw (class in PIL.ImageDraw)

 	PIL.ImageDraw2 (module)

 	PIL.ImageEnhance (module)

 	PIL.ImageEnhance._Enhance (class in PIL.ImageEnhance)

 	PIL.ImageEnhance.Brightness (class in PIL.ImageEnhance)

 	PIL.ImageEnhance.Color (class in PIL.ImageEnhance)

 	PIL.ImageEnhance.Contrast (class in PIL.ImageEnhance)

 	PIL.ImageEnhance.Sharpness (class in PIL.ImageEnhance)

 	PIL.ImageFile (module)

 	PIL.ImageFilter (module)

 	PIL.ImageFont (module)

 	PIL.ImageGrab (module)

 	PIL.ImageGrab.grab() (in module PIL.ImageGrab)

 	PIL.ImageGrab.grabclipboard() (in module PIL.ImageGrab)

 	PIL.ImageMath (module)

 	PIL.ImageMorph (module)

 	PIL.ImageOps (module)

 	PIL.ImagePalette (module)

 	PIL.ImagePath (module)

 	PIL.ImagePath.Path (class in PIL.ImagePath)

 	PIL.ImageQt (module)

 	PIL.ImageSequence (module)

 	PIL.ImageShow (module)

 	PIL.ImageStat (module)

 	
 	PIL.ImageStat.Stat (class in PIL.ImageStat)

 	PIL.ImageTk (module)

 	PIL.ImageTransform (module)

 	PIL.ImageWin (module)

 	PIL.ImImagePlugin (module)

 	PIL.ImtImagePlugin (module)

 	PIL.IptcImagePlugin (module)

 	PIL.Jpeg2KImagePlugin (module)

 	PIL.JpegImagePlugin (module)

 	PIL.JpegPresets (module)

 	PIL.McIdasImagePlugin (module)

 	PIL.MicImagePlugin (module)

 	PIL.MpegImagePlugin (module)

 	PIL.MspImagePlugin (module)

 	PIL.PaletteFile (module)

 	PIL.PalmImagePlugin (module)

 	PIL.PcdImagePlugin (module)

 	PIL.PcfFontFile (module)

 	PIL.PcxImagePlugin (module)

 	PIL.PdfImagePlugin (module)

 	PIL.PixarImagePlugin (module)

 	PIL.PngImagePlugin (module)

 	PIL.PpmImagePlugin (module)

 	PIL.PsdImagePlugin (module)

 	PIL.PSDraw (module)

 	PIL.PyAccess (module)

 	PIL.SgiImagePlugin (module)

 	PIL.SpiderImagePlugin (module)

 	PIL.SunImagePlugin (module)

 	PIL.TarIO (module)

 	PIL.TgaImagePlugin (module)

 	PIL.TiffImagePlugin (module)

 	PIL.TiffTags (module)

 	PIL.WalImageFile (module)

 	PIL.WebPImagePlugin (module)

 	PIL.WmfImagePlugin (module)

 	PIL.XbmImagePlugin (module)

 	PIL.XpmImagePlugin (module)

 	PIL.XVThumbImagePlugin (module)

 	PixarImageFile (class in PIL.PixarImagePlugin)

 	PixelAccess (built-in class)

 	PNG (PIL.BmpImagePlugin.BmpImageFile attribute)

 	PngImageFile (class in PIL.PngImagePlugin), [1]

 	PngInfo (class in PIL.PngImagePlugin)

 	PngStream (class in PIL.PngImagePlugin)

 	point() (PIL.Image.Image method)

 	(PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	polygon() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	(PIL.ImageDraw2.Draw method)

 	posterize() (in module PIL.ImageOps)

 	PpmImageFile (class in PIL.PpmImagePlugin)

 	prefix (PIL.TiffImagePlugin.ImageFileDirectory_v2 attribute)

 	product_copyright (PIL.ImageCms.CmsProfile attribute)

 	product_desc (PIL.ImageCms.CmsProfile attribute)

 	product_description (PIL.ImageCms.CmsProfile attribute)

 	product_manufacturer (PIL.ImageCms.CmsProfile attribute)

 	product_model (PIL.ImageCms.CmsProfile attribute)

 	profile_description (PIL.ImageCms.CmsProfile attribute)

 	profile_id (PIL.ImageCms.CmsProfile attribute)

 	PsdImageFile (class in PIL.PsdImagePlugin)

 	PSDraw (class in PIL.PSDraw)

 	PSFile (class in PIL.EpsImagePlugin)

 	push() (PIL.PngImagePlugin.ChunkStream method)

 	putalpha() (PIL.Image.Image method)

 	putchunk() (in module PIL.PngImagePlugin)

 	putdata() (PIL.Image.Image method)

 	puti16() (in module PIL.FontFile)

 	putpalette() (PIL.Image.Image method)

 	putpixel() (PIL.Image.Image method)

 	PyDecoder (class in PIL.ImageFile)

Q

 	
 	QuadTransform (class in PIL.ImageTransform)

 	
 	quantize() (PIL.Image.Image method)

 	query_palette() (PIL.ImageWin.Dib method)

R

 	
 	RankFilter (class in PIL.ImageFilter)

 	RAW (PIL.BmpImagePlugin.BmpImageFile attribute)

 	rawmode (PIL.GimpPaletteFile.GimpPaletteFile attribute)

 	(PIL.PaletteFile.PaletteFile attribute)

 	read() (PIL.ContainerIO.ContainerIO method)

 	(PIL.MpegImagePlugin.BitStream method)

 	(PIL.PngImagePlugin.ChunkStream method)

 	read_32() (in module PIL.IcnsImagePlugin)

 	read_32t() (in module PIL.IcnsImagePlugin)

 	read_mk() (in module PIL.IcnsImagePlugin)

 	read_png_or_jpeg2000() (in module PIL.IcnsImagePlugin)

 	readline() (PIL.ContainerIO.ContainerIO method)

 	(PIL.EpsImagePlugin.PSFile method)

 	readlines() (PIL.ContainerIO.ContainerIO method)

 	readLong() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	readShort() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	rectangle() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	(PIL.ImageDraw2.Draw method)

 	(PIL.PSDraw.PSDraw method)

 	red_colorant (PIL.ImageCms.CmsProfile attribute)

 	red_primary (PIL.ImageCms.CmsProfile attribute)

 	register() (in module PIL.ImageShow)

 	register_decoder() (in module PIL.Image)

 	
 	register_encoder() (in module PIL.Image)

 	register_extension() (in module PIL.Image)

 	register_handler() (in module PIL.BufrStubImagePlugin)

 	(in module PIL.FitsStubImagePlugin)

 	(in module PIL.GribStubImagePlugin)

 	(in module PIL.Hdf5StubImagePlugin)

 	(in module PIL.WmfImagePlugin)

 	register_mime() (in module PIL.Image)

 	register_open() (in module PIL.Image)

 	register_save() (in module PIL.Image)

 	remap_palette() (PIL.Image.Image method)

 	render() (PIL.ImageDraw2.Draw method)

 	rendering_intent (PIL.ImageCms.CmsProfile attribute)

 	reset() (PIL.ImageFile.Parser method)

 	(PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	resize() (PIL.Image.Image method)

 	rewriteLastLong() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	rewriteLastShort() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	rewriteLastShortToLong() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	RLE4 (PIL.BmpImagePlugin.BmpImageFile attribute)

 	RLE8 (PIL.BmpImagePlugin.BmpImageFile attribute)

 	rms (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	rotate() (PIL.Image.Image method)

S

 	
 	saturation_rendering_intent_gamut (PIL.ImageCms.CmsProfile attribute)

 	save() (PIL.FontFile.FontFile method)

 	(PIL.Image.Image method)

 	(PIL.ImagePalette.ImagePalette method)

 	(PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	save_image() (PIL.ImageShow.Viewer method)

 	screen() (in module PIL.ImageChops)

 	screening_description (PIL.ImageCms.CmsProfile attribute)

 	seek() (PIL.ContainerIO.ContainerIO method)

 	(PIL.DcxImagePlugin.DcxImageFile method)

 	(PIL.EpsImagePlugin.PSFile method)

 	(PIL.FliImagePlugin.FliImageFile method)

 	(PIL.GifImagePlugin.GifImageFile method)

 	(PIL.ImImagePlugin.ImImageFile method)

 	(PIL.Image.Image method)

 	(PIL.MicImagePlugin.MicImageFile method)

 	(PIL.PsdImagePlugin.PsdImageFile method)

 	(PIL.SpiderImagePlugin.SpiderImageFile method)

 	(PIL.TiffImagePlugin.AppendingTiffWriter method)

 	(PIL.TiffImagePlugin.TiffImageFile method)

 	(PIL.WebPImagePlugin.WebPImageFile method)

 	set_as_raw() (PIL.ImageFile.PyDecoder method)

 	setEndian() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	setfd() (PIL.ImageFile.PyDecoder method)

 	setfont() (PIL.PSDraw.PSDraw method)

 	setimage() (PIL.ImageFile.PyDecoder method)

 	settransform() (PIL.ImageDraw2.Draw method)

 	setup() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	SGI16Decoder (class in PIL.SgiImagePlugin)

 	
 	SgiImageFile (class in PIL.SgiImagePlugin)

 	shape() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	show() (in module PIL.ImageShow)

 	(PIL.Image.Image method)

 	(PIL.ImageShow.Viewer method)

 	show_file() (PIL.ImageShow.UnixViewer method)

 	(PIL.ImageShow.Viewer method)

 	show_image() (PIL.ImageShow.Viewer method)

 	si16le() (in module PIL._binary)

 	si32le() (in module PIL._binary)

 	sine() (in module PIL.GimpGradientFile)

 	size (in module PIL.Image)

 	SIZES (PIL.IcnsImagePlugin.IcnsFile attribute)

 	sizes() (PIL.IcoImagePlugin.IcoFile method)

 	Skip() (in module PIL.JpegImagePlugin)

 	skip() (PIL.MpegImagePlugin.BitStream method)

 	skipIFDs() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	SOF() (in module PIL.JpegImagePlugin)

 	solarize() (in module PIL.ImageOps)

 	sphere_decreasing() (in module PIL.GimpGradientFile)

 	sphere_increasing() (in module PIL.GimpGradientFile)

 	SpiderImageFile (class in PIL.SpiderImagePlugin)

 	split() (PIL.Image.Image method)

 	stddev (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	subtract() (in module PIL.ImageChops)

 	subtract_modulo() (in module PIL.ImageChops)

 	sum (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	sum2 (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	SunImageFile (class in PIL.SunImagePlugin)

 	sz() (in module PIL.PcfFontFile)

T

 	
 	tagdata (PIL.TiffImagePlugin.ImageFileDirectory_v1 attribute)

 	TagInfo (class in PIL.TiffTags)

 	Tags (PIL.TiffImagePlugin.AppendingTiffWriter attribute)

 	tags (PIL.TiffImagePlugin.ImageFileDirectory_v1 attribute)

 	TAGS (PIL.TiffTags.PIL.TiffTags attribute)

 	TAGS_V2 (PIL.TiffTags.PIL.TiffTags attribute)

 	target (PIL.ImageCms.CmsProfile attribute)

 	TarIO (class in PIL.TarIO)

 	technology (PIL.ImageCms.CmsProfile attribute)

 	tell() (PIL.ContainerIO.ContainerIO method)

 	(PIL.DcxImagePlugin.DcxImageFile method)

 	(PIL.FliImagePlugin.FliImageFile method)

 	(PIL.GifImagePlugin.GifImageFile method)

 	(PIL.ImImagePlugin.ImImageFile method)

 	(PIL.Image.Image method)

 	(PIL.MicImagePlugin.MicImageFile method)

 	(PIL.PsdImagePlugin.PsdImageFile method)

 	(PIL.SpiderImagePlugin.SpiderImageFile method)

 	(PIL.TiffImagePlugin.AppendingTiffWriter method)

 	(PIL.TiffImagePlugin.TiffImageFile method)

 	(PIL.WebPImagePlugin.WebPImageFile method)

 	text() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	(PIL.ImageDraw2.Draw method)

 	(PIL.PSDraw.PSDraw method)

 	
 	textsize() (PIL.ImageDraw.PIL.ImageDraw.ImageDraw method)

 	(PIL.ImageDraw2.Draw method)

 	TgaImageFile (class in PIL.TgaImagePlugin)

 	thumbnail() (PIL.Image.Image method)

 	TiffImageFile (class in PIL.TiffImagePlugin)

 	tkPhotoImage() (PIL.SpiderImagePlugin.SpiderImageFile method)

 	to_v2() (PIL.TiffImagePlugin.ImageFileDirectory_v1 method)

 	tobitmap() (PIL.Image.Image method)

 	tobytes() (PIL.Image.Image method)

 	(PIL.ImagePalette.ImagePalette method)

 	(PIL.ImageWin.Dib method)

 	tolist() (PIL.ImagePath.PIL.ImagePath.Path method)

 	tostring() (PIL.Image.Image method)

 	(PIL.ImagePalette.ImagePalette method)

 	Transform (class in PIL.ImageTransform)

 	transform() (PIL.Image.Image method)

 	(PIL.ImagePath.PIL.ImagePath.Path method)

 	(PIL.ImageTransform.Transform method)

 	transpose() (PIL.Image.Image method)

 	truetype() (in module PIL.ImageFont)

 	TYPES (PIL.TiffTags.PIL.TiffTags attribute)

U

 	
 	UnixViewer (class in PIL.ImageShow)

 	
 	UnsharpMask (class in PIL.ImageFilter)

V

 	
 	var (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	verify() (PIL.Image.Image method)

 	(PIL.PngImagePlugin.ChunkStream method)

 	(PIL.PngImagePlugin.PngImageFile method), [1]

 	
 	version (PIL.ImageCms.CmsProfile attribute)

 	Viewer (class in PIL.ImageShow)

 	viewing_condition (PIL.ImageCms.CmsProfile attribute)

W

 	
 	WebPImageFile (class in PIL.WebPImagePlugin)

 	which() (in module PIL.ImageShow)

 	width (in module PIL.Image)

 	width() (PIL.ImageTk.BitmapImage method)

 	(PIL.ImageTk.PhotoImage method)

 	WmfStubImageFile (class in PIL.WmfImagePlugin)

 	write() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	write_byte() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	write_double() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	write_float() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	
 	write_long() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	write_rational() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	write_short() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	write_signed_byte() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	write_signed_long() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	write_signed_rational() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	write_signed_short() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	write_string() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	write_undefined() (PIL.TiffImagePlugin.ImageFileDirectory_v2 method)

 	writeLong() (PIL.TiffImagePlugin.AppendingTiffWriter method)

 	writeShort() (PIL.TiffImagePlugin.AppendingTiffWriter method)

X

 	
 	XbmImageFile (class in PIL.XbmImagePlugin)

 	xcolor_space (PIL.ImageCms.CmsProfile attribute)

 	
 	XpmImageFile (class in PIL.XpmImagePlugin)

 	XVThumbImageFile (class in PIL.XVThumbImagePlugin)

 	XVViewer (class in PIL.ImageShow)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Pillow

 		
 Installation

 		
 Warnings

 		
 Notes

 		
 Basic Installation

 		
 Windows Installation

 		
 macOS Installation

 		
 Linux Installation

 		
 FreeBSD Installation

 		
 Building From Source

 		
 External Libraries

 		
 Build Options

 		
 Building on macOS

 		
 Building on Windows

 		
 Building on FreeBSD

 		
 Building on Linux

 		
 Building on Android

 		
 Platform Support

 		
 Continuous Integration Targets

 		
 Other Platforms

 		
 Old Versions

 		
 Handbook

 		
 Overview

 		
 Image Archives

 		
 Image Display

 		
 Image Processing

 		
 Tutorial

 		
 Using the Image class

 		
 Reading and writing images

 		
 Cutting, pasting, and merging images

 		
 Geometrical transforms

 		
 Color transforms

 		
 Image enhancement

 		
 Image sequences

 		
 Postscript printing

 		
 More on reading images

 		
 Controlling the decoder

 		
 Concepts

 		
 Bands

 		
 Modes

 		
 Size

 		
 Coordinate System

 		
 Palette

 		
 Info

 		
 Filters

 		
 Appendices

 		
 Image file formats

 		
 Writing Your Own Image Plugin

 		
 Decoders

 		
 Writing Your Own File Decoder in C

 		
 Writing Your Own File Decoder in Python

 		
 Reference

 		
 Image Module

 		
 Examples

 		
 Functions

 		
 The Image Class

 		
 Attributes

 		
 ImageChops (“Channel Operations”) Module

 		
 Functions

 		
 ImageColor Module

 		
 Color Names

 		
 Functions

 		
 ImageCms Module

 		
 CmsProfile

 		
 ImageDraw Module

 		
 Example: Draw a gray cross over an image

 		
 Concepts

 		
 Example: Draw Partial Opacity Text

 		
 Functions

 		
 Methods

 		
 ImageEnhance Module

 		
 Example: Vary the sharpness of an image

 		
 Classes

 		
 ImageFile Module

 		
 Example: Parse an image

 		
 Parser

 		
 PyDecoder

 		
 ImageFilter Module

 		
 Example: Filter an image

 		
 Filters

 		
 ImageFont Module

 		
 Example

 		
 Functions

 		
 Methods

 		
 ImageGrab Module (macOS and Windows only)

 		
 ImageMath Module

 		
 Example: Using the ImageMath module

 		
 Expression syntax

 		
 ImageMorph Module

 		
 ImageOps Module

 		
 ImagePalette Module

 		
 ImagePath Module

 		
 ImageQt Module

 		
 ImageSequence Module

 		
 Extracting frames from an animation

 		
 The Iterator class

 		
 ImageStat Module

 		
 ImageTk Module

 		
 ImageWin Module (Windows-only)

 		
 ExifTags Module

 		
 TiffTags Module

 		
 PSDraw Module

 		
 PixelAccess Class

 		
 Example

 		
 PixelAccess Class

 		
 PyAccess Module

 		
 Example

 		
 PyAccess Class

 		
 PIL Package (autodoc of remaining modules)

 		
 BdfFontFile Module

 		
 ContainerIO Module

 		
 FontFile Module

 		
 GdImageFile Module

 		
 GimpGradientFile Module

 		
 GimpPaletteFile Module

 		
 ImageDraw2 Module

 		
 ImageShow Module

 		
 ImageTransform Module

 		
 JpegPresets Module

 		
 PaletteFile Module

 		
 PcfFontFile Module

 		
 PngImagePlugin.iTXt Class

 		
 PngImagePlugin.PngInfo Class

 		
 TarIO Module

 		
 WalImageFile Module

 		
 _binary Module

 		
 Plugin reference

 		
 BmpImagePlugin Module

 		
 BufrStubImagePlugin Module

 		
 CurImagePlugin Module

 		
 DcxImagePlugin Module

 		
 EpsImagePlugin Module

 		
 FitsStubImagePlugin Module

 		
 FliImagePlugin Module

 		
 FpxImagePlugin Module

 		
 GbrImagePlugin Module

 		
 GifImagePlugin Module

 		
 GribStubImagePlugin Module

 		
 Hdf5StubImagePlugin Module

 		
 IcnsImagePlugin Module

 		
 IcoImagePlugin Module

 		
 ImImagePlugin Module

 		
 ImtImagePlugin Module

 		
 IptcImagePlugin Module

 		
 JpegImagePlugin Module

 		
 Jpeg2KImagePlugin Module

 		
 McIdasImagePlugin Module

 		
 MicImagePlugin Module

 		
 MpegImagePlugin Module

 		
 MspImagePlugin Module

 		
 PalmImagePlugin Module

 		
 PcdImagePlugin Module

 		
 PcxImagePlugin Module

 		
 PdfImagePlugin Module

 		
 PixarImagePlugin Module

 		
 PngImagePlugin Module

 		
 PpmImagePlugin Module

 		
 PsdImagePlugin Module

 		
 SgiImagePlugin Module

 		
 SpiderImagePlugin Module

 		
 SunImagePlugin Module

 		
 TgaImagePlugin Module

 		
 TiffImagePlugin Module

 		
 WebPImagePlugin Module

 		
 WmfImagePlugin Module

 		
 XVThumbImagePlugin Module

 		
 XbmImagePlugin Module

 		
 XpmImagePlugin Module

 		
 Internal Reference Docs

 		
 File Handling in Pillow

 		
 Limits

 		
 Block Allocator

 		
 Porting

 		
 About

 		
 Goals

 		
 License

 		
 Why a fork?

 		
 What about PIL?

 		
 Release Notes

 		
 5.2.0

 		
 API Changes

 		
 API Additions

 		
 Other Changes

 		
 5.1.0

 		
 New File Format

 		
 API Changes

 		
 Other Changes

 		
 5.0.0

 		
 Backwards Incompatible Changes

 		
 API Changes

 		
 API Additions

 		
 Other Changes

 		
 4.3.0

 		
 API Changes

 		
 API Additions

 		
 Other Changes

 		
 4.2.1

 		
 Fixed Windows PyPy Build

 		
 4.2.0

 		
 Added Complex Text Rendering

 		
 New Optional Parameters

 		
 New DecompressionBomb Warning

 		
 Removed Deprecated Items

 		
 Removed Core Image Function

 		
 4.1.1

 		
 Fix Regression with reading DPI from EXIF data

 		
 Incompatibility between 3.6.0 and 3.6.1

 		
 4.1.0

 		
 Removed Deprecated Items

 		
 Closing Files When Opening Images

 		
 Changes to GIF Handling When Saving

 		
 New Method: Image.remap_palette

 		
 Added Decoder Registry and Support for Python Based Decoders

 		
 Tests

 		
 4.0.0

 		
 Python 2.6 and 3.2 Dropped

 		
 Support added for Python 3.6

 		
 OleFileIO.py

 		
 SGI image save

 		
 Zero sized images

 		
 Internal handles_eof flag

 		
 Image.core.stretch removed

 		
 3.4.0

 		
 New resizing filters

 		
 Deprecation Warning when Saving JPEGs

 		
 New DDS Decoders

 		
 Append images to GIF

 		
 Save multiple frame TIFF

 		
 Image.core.open_ppm removed

 		
 3.3.2

 		
 Integer overflow in Map.c

 		
 Sign Extension in Storage.c

 		
 3.3.0

 		
 Libimagequant support

 		
 New Setup.py options

 		
 Resizing

 		
 Rotation

 		
 Image Metadata

 		
 3.2.0

 		
 New DDS and FTEX Image Plugins

 		
 Updates to the GbrImagePlugin

 		
 Passthrough Parameters for ImageDraw.text

 		
 ImageSequence.Iterator changes

 		
 3.1.2

 		
 CVE-2016-3076 – Buffer overflow in Jpeg2KEncode.c

 		
 3.1.1

 		
 CVE-2016-0740 – Buffer overflow in TiffDecode.c

 		
 CVE-2016-0775 – Buffer overflow in FliDecode.c

 		
 CVE-2016-2533 – Buffer overflow in PcdDecode.c

 		
 Integer overflow in Resample.c

 		
 3.1.0

 		
 ImageDraw arc, chord and pieslice can now use floats

 		
 Consistent multiline text spacing

 		
 Exif, Jpeg and Tiff Metadata

 		
 3.0.0

 		
 Saving Multipage Images

 		
 Tiff ImageFileDirectory Rewrite

 		
 Deprecated Methods

 		
 LibJpeg and Zlib are Required by Default

 		
 2.8.0

 		
 Open HTTP response objects with Image.open

 		
 2.7.0

 		
 Sane Plugin

 		
 Png text chunk size limits

 		
 Image resizing filters

 		
 Image transposition

 		
 Gaussian blur and unsharp mask

 		
 TIFF Parameter Changes

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

