

Welcome to Pext’s documentation!

General information:

	Pext
	Contents

	Introduction

	How it works

	Installation

	Usage

	Hotkeys

	Community

	License

	Change Log

Module Development:

	Pext module development
	Setting up the environment

	Starting module development

	Additional requirements

	Testing

	Publishing your module

Theme Development:

	Pext theme development
	Setting up the environment

	Starting module development

	Testing

	Publishing your theme

API reference:

	helpers/pext_base.py

	helpers/pext_helpers.py

Indices and tables

	Index

	Module Index

	Search Page

Pext

[image: Packaging status]

 Change Log

Change Log

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/]
and this project adheres to Semantic Versioning [http://semver.org/].

[Unreleased]

Added

	Portable builds for Linux and macOS

	–portable flag to make Pext behave more self-contained

Changed

	–config flag has been renamed to –data-path

	Remember the geometry of the main window

Fixed

	Sizing issues when moving to another monitor

	Window not being resizeable

[0.21] - 2018-11-02

API changes

	Bump API version to 0.9.0

	Commands can now be multiple words and arguments will be given in a new ‘args’ field

	ask_question_default_yes and ask_question_default_no are deprecated in favor of ask_question

Changed

	Better error logging, using dialogs for critical errors

	Pext’s Window is now 800x600 by default and centered on the screen

Fixed

	Module installation issues on Windows and Linux Mint

	Title and tray tooltip are now translatable

[0.20] - 2018-10-12

Added

	Are you sure message when closing Pext normally

	Add installable touch bar quick action service for easier launching on macOS

Changed

	Pick a more reasonable height on wide screens

Fixed

	Minimize normally manually now works as intended

	Autotype now correctly queues up multiple entries to type

	Focus fix on macOS is now fast and reliable again

	Logo background is no longer misaligned

[0.19] - 2018-09-05

Added

	Foreground Pext at any time by pressing Ctrl+`

Changed

	Move upstream URLs to pext.io

Fixed

	Fixed –module flag

	Fixed module install screens (from URL and from repo) failing when redirected

[0.18] - 2018-08-22

Added

	Belarusian translation (thanks, Nelly Simkova!)

Fixed

	Module installation issues in Windows distribution

[0.17] - 2018-07-08

Packaging changes

	New dependency: requests [https://pypi.org/project/requests/]

Added

	Metadata i18n support

	No result text when filtering empties list

Fixed

	Pext on macOS now ignores -psn_0_* arguments

	USE_INTERNAL_UPDATER is now used correctly

	Terminal window opening on Windows

	macOS certificate check failing on update check

	Off-by-one error in git describe version generation

	Installing module fails (rebuild on dulwich 0.9.15)

[0.16] - 2018-06-22

Packaging changes

	New dependency: pynput [https://pypi.org/project/pynput/]

	New macOS dependency: accessibility [https://pypi.org/project/accessibility]

	Dependency removal: notify-send

Added

	Ability to switch output location on runtime

	Ability to type output directly

	Ability to automatically update modules

	Windows installer

	Polish translation

Changed

	Switch to Qt5 for notifications

	Remove delay in showing notifications

	Core and module update checks are now done together

	Critical module errors now create a dialog box

Fixed

	Inconsistent behaviour between clicking or selecting an entry

	MacOS menu not merging on non-English languages

[0.15] - 2018-06-07

Packaging changes

	The macOS .dmg is now officially supported

Changed

	Remove quit without saving option

	Configuration changes are now saved instantly, instead of only on a clean quit

Fixed

	Focus not resetting after Pext hiding on macOS

	Updated PyQt5 to fix some emoji display issues

	macOS .dmg not being able to install all modules

[0.14] - 2018-04-22

Packaging changes

	Packagers can now modify pext/constants.py to more easily control some behaviour

Added

	French translation (thanks, Aurora Yeen!)

Changed

	Modules are now installed by metadata.json, instead of by git URL

	Make pext_dev default to CC-BY-3.0 for themes

Fixed

	Make text properly wrap in the installing from repository dialog

	Crashes on tab completion and minor errors (regression in 0.13)

	Crash on module reloading (regression in 0.13)

	IDs and names are now used more consistently

	Crash when trying to load a theme as a module

	Update pext_dev to be create files compatible with current Pext

	Pext profile locks are now per-user instead of globally (fixes being unable to start if another user is running Pext)

[0.13] - 2018-04-07

Added

	Hindi translation (thanks, Satyam Singh!)

	Add automatic AppImage builds (thanks, TheAssassin!)

Changed

	Tray icon is now always shown when the application is minimized to tray

	Hide minimize to tray on macOS (too broken, can cause crashes)

	The main window now has a minimal size of 500x300

	Versioning now complies with PEP440

	Merge module and theme repo and object selection into a single screen to save a click

	Modules and themes are now saved based on the location of their ID

	Modules and themes being in an incorrect location for their ID are automatically removed

Fixed

	Themes now apply properly on Windows (forcing Fusion styling)

	Properly fix i18n handling and giving i18n to modules

	The name setting in metadata.json is now consistently respected

	Make &Pext translatable

[0.12] - 2018-03-04

Added

	Support renaming profiles

	Switching profile from the GUI

	Opening a second instance with another profile from the GUI

	Basic profile management from the GUI

	Ability to change language through the UI

	--list-locales argument to show supported languages

	The installation screens now tell you if you already have a module or theme installed

	Russian translation (thanks, Ivan Semkin)

Changed

	Profile name is no longer displayed if default

	Trying to create a profile that already exists throws an error

	Trying to delete a profile that is currently in use throws an error

	Use argparse for argument parsing instead of getopt

	Update checking now happens if the last check was over 24 hours, instead of each app launch

	Combine all menu groups in settings for organizational purposes

	Relicensed documentation under CC BY-SA 4.0

Fixed

	Pext crash when module tries to empty context_menu_base

	Inconsistent font sizing

	Improved main screen resizing and logo showing

	Pext passing None as locale to modules in some cases

	–background stealing focus on macOS

	Modules and themes are now sorted correctly in the install from repository lists

Removed

	Removed manpage

[0.11.1] - 2017-12-19

Packaging changes

	Fix missing translation files

[0.11] - 2017-12-19

Packaging changes

	Pext now depends on dulwich

	Pext no longer depends on pygit2

Translation updates

	Added Norwegian Bokmål (thanks, Allan Nordhøy!)

	Update Chinese (Traditional) translation

	Update Spanish translation

	Update Hungarian translation

	Update Dutch translation

Fixed

	Ubuntu/Debian compatibility for git operations over HTTPS

	Install module from URL screen not working (regression from adding theming support for 0.9)

	Theme selector now correctly displays current theme before switching

	Pext no longer creates an empty theme file for the system theme and doesn’t show it in the list of themes

[0.10] - 2017-11-11

Packaging changes

	Pext now depends on pygit2, which uses libgit2, instead of git

API changes

	Bump API version to 0.7.0

	Add set_entry_info queue call

	Add replace_entry_info_dict queue call

	Add set_command_info queue call

	Add replace_command_info_dict queue call

	Add set_base_info queue call

	Add set_entry_context queue call

	Add replace_entry_context_dict queue call

	Add set_command_context queue call

	Add replace_command_context_dict queue call

	Add set_base_context queue call

	Add extra_info_request function

	Add a none SelectionType

	Made more parameters optional

Added

	Add info panels which modules can use to show extra info on the current status on selected entry

	Add context panels for state changes and extra actions for entries/commands

	Traceback is now printing when an exception is triggered

	Last updated info for modules

	Version info for modules

	Windows support

	Support for checking for updates (stable versions only)

Changed

	Command mode no longer locks onto the first entry

	Commands are always displayed in italics, instead of using italics for whatever is unfocused

	Versioning is now more precise

	Check if a module/theme has an update before updating it

	Pext now auto-restarts after changing the theme

	Pext now displays less broken when the height is higher than the width

	Removed tray menu because it can’t be translated due to PyQt limitations

	Make clicking the tray icon toggle visibility on macOS

	Minimizing normally after Pext is done is now the default on all platforms

	Module requesting window hide will only reset the selection of that module instead of all

	The –exit option got removed, Pext now will only start the UI if no options were given or all options were session-related

Fixed

	Regression introduced in 0.9 which could cause selections to trigger wrongly when emptying the search bar

	Page up and down causing QML errors when used too close to the start/end of the list

	Minimizing behaviour didn’t always work

	Git commands are now properly limited to Pext directories

	Desktop notifications now also show when Pext is minimized normally

	Modules no longer lock up Pext while making a selection

	Direct Git URL clone ending in / no longer creates an undeletable module

	Modules now always properly get localization info

	Ugly line between entries and entry info in some themes

	No themes available dialog now correctly shows

	Modules can’t crash Pext by throwing an exception on stopping on Pext exit

[0.9] - 2017-08-23

API changes

	Whenever the state changes (either by the user going back, selecting something or set_selection being called), the queue is now emptied

	ask_input and ask_input_password now ask for a prefill before the identifier

Translation updates

	Added traditional Chinese (thanks, Jeff Huang!)

	Added Spanish (thanks, Emily Lau!)

	Updated Dutch (thanks, Heimen Stoffels!)

Added

	Theming support based on QPalette

	UI option to choose minimizing behaviour

	UI option to choose sorting behaviour

	UI toggle to enable/disable tray icon

	–background command line option to make Pext not launch/foreground the UI

Changed

	The design philosophy is now explained in the empty state screen

	pyqt5 is added as install_requires

	The about dialog now thanks translators

	Info-only CLI parameters will no longer launch Pext as well (–help, –version, –list-styles, –list-modules, –list-themes)

	Closing the main window will now quit Pext and save state

Fixed

	pext_dev’s generated base file now leaves the copyright open for the author to fill in

	Not being able to select an entry until the list is fully loaded

	Selection constantly resetting while items are being added

	Loading and reloading a module while text is in search now applies the filter correctly

	Fix crash in command mode when pressing enter while hovering over a wrong entry

[0.8] - 2017-04-28

API changes

	The settings variable now contains _api_version ([major, minor, patch]) and _locale by default

	Queue requests that cause process_response to be called can now optionally give an identifier to receive when process_response is called

	Modules must now declare their settings in metadata.json

Added

	Simple pext_dev command to help module development

	Support metadata.json for showing info on installed modules

	i18n support

	Dutch translation

Changed

	Move all UI code to QML

	Improved installation dialogs

	Improve load module dialog

	Get rid of update and uninstall dialogs in favor for a central module management dialog

	Check module functions parameter length on module load to prevent some runtime crashes for modules

	Module settings is no longer a freeform input field

	Display “Waiting” instead of “Ready” in the statusbar when not processing and the active module has not sent anything yet

Fixed

	Crash when picking a command while there are also other entries to display

Removed

	config.ini for editing Pext config directory (use $XDG_CONFIG_HOME or $HOME instead)

[0.7] - 2017-04-10

Added

	Clear/back button in the UI

Changed

	Minor UI font size changes

	Pext’s QML now uses StandardKeys in most places

Fixed

	Fix Debian detection (no longer incorrectly detects openSUSE as Debian)

	Fix nonsense load/update/uninstall dialogs if no modules are installed

[0.6.1] - 2017-04-01

Fixed

	Clicking the tray icon no longer toggles visibility on macOS

	XDG_CONFIG_HOME is now correctly used when available

	The environment is no longer cleared when doing the initial git clone (security: the old behaviour would cause a proxy defined in the environment to be ignored)

[0.6] - 2017-03-27

Added

	Install dependencies automatically if the module provides a requirements.txt file

Fixed

	If module installation fails, the module directory is removed, so a subsequent installation doesn’t instantly fail

	Modules are now correctly unloaded when they raise a critical error

	Added workaround for Ubuntu systems running the proprietary nvidia driver (https://github.com/Pext/Pext/issues/11)

[0.5] - 2017-03-22

API changes

	Remove Action.notify_message and Action.notify_error, which are synonyms for add_message and add_error

Added

	Documentation

	Repository for third-party modules

Changed

	Give more information upon installing modules and warn the user that they are code

	User commands will now be auto-completed to the selected command

Fixed

	Files unexpectedly existing in ~/.config/pext/modules/ no longer causes a crash

[0.4.1] - 2017-03-05

Changed

	The default window is no longer explicitly borderless

	The logo now has a white background which improves readability on dark themes

Fixed

	An error occuring when retrieving the list of downloadable modules no longer causes a crash

	Selecting a command entry after the entry list no longer causes a crash

[0.4] - 2017-02-20

Added

	Basic Qt5 theming support using installed system themes

	Allow for a pext/config.ini file to overwrite some default configuration

	Allow the user to disable tray icon creation

	Add entry to open homepage from help menu (so the user can find support)

Changed

	Get list of installable modules from pext.hackerchick.me instead of pext.github.io

[0.3] - 2016-12-29

API changes

	The entry and command list will now be emptied each time just before selection_made is called

Added

	Busy indicator when the list of entries is empty for a more responsive look

	Support for getting a list of installable modules from pext.github.io

Fixed

	All commands now correctly show up after emptying the search bar

	Module lists are now sorted alphabetically

	selection_made is no longer unnecessarily triggered when closing the window

[0.2] - 2016-11-21

Added

	System tray icon

[0.1] - 2016-11-19

Initial release

 Pext module development

Pext module development

Setting up the environment

Setting up the development environment is very easy. Simply installing Pext
as per the README will also install pext_dev, containing all you need
to easily develop modules.

Once you have installed Pext, simply navigate to the directory you want to start
developing in and run pext_dev module init to create the base files in the current
directory or pext_dev module init <directory> to create them in a new directory.

Starting module development

After running pext_dev module init and answering its questions you will have a
directory with the following files in it:

	__init__.py

	metadata.json

	LICENSE

The generated __init__.py file is the main entry point to your Pext module
and the main and in many cases only file to edit. For editing, you can choose
any editor you like, so make sure to choose one that’s comfortable for you to
work in.

If you open this file, you will see a few imports and a class named Module
which contains 4 functions. These are the core of any Pext module and you
need to fill these in with the Python 3 code you want to use. For more
information about the exact purpose of each of these functions, see
helpers/pext_base.py.

The metadata.json file contains general information on your module, used by
Pext to show the user who developed the module, its intended purpose and more,
both when the user is about to install the module and when they already
installed it.

LICENSE contains the license for your project. pext_dev module init puts the
GPLv3 into this file, as it defaults to using the GPLv3+ for generated
projects, because Pext itself is licensed under this license. The GPLv3 is a
copyleft license which is meant to allow people to use, modify and distribute
modified versions, as long as they do so under the same license. This allows
for a healthy ecosystem where Pext modules can be improved by anyone, even if
they are not the original author, and stay Free and Open Source Software.

Additional requirements

Sometimes you may want to use some Python libraries that don’t come with
Python itself. In this case, you may place a file named requirements.txt in
your module’s directory, listing one Python module you want per line. Python
modules can be found on PyPI [https://pypi.python.org/pypi]. Make sure you
check the license of modules you want to use for compatibility with your
module’s license.

More advanced information on using a requirements.txt file can be found on
https://pip.readthedocs.io/en/latest/reference/pip_install/#requirements-file-format.

Testing

To test your module, simply run pext_dev module run in the module directory. This
will launch a completely clean instance of Pext and install your module from
scratch, including dependencies defined in requirements.txt. This way you can
be reasonably sure your module will work for others too. When you’re done
testing, simply close the Pext instance that popped up and pext_dev will clean
everything up again.

Publishing your module

To publish your module, put it on a git hosting site such as
GitHub [https://github.com/]. Make sure to add a README file so users who
find your module online know what it’s about!

Whenever you make a change to your module, you can push it to git and, as long
as it’s on the master branch, Pext will update to the new version as soon as
the user asks for module updates. Simple as that.

If you want your module to be listed in Pext under Other Developers, please
get in touch [https://pext.hackerchick.me/#community].

 Pext theme development

Pext theme development

Setting up the environment

Setting up the development environment is very easy. Simply installing Pext
as per the README will also install pext_dev, containing all you need
to easily develop themes.

Once you have installed Pext, simply navigate to the directory you want to start
developing in and run pext_dev theme init to create the base files in the current
directory or pext_dev theme init <directory> to create them in a new directory.

Starting module development

After running pext_dev theme init and answering its questions you will have a
directory with the following files in it:

	theme.conf

	metadata.json

	LICENSE

The generated theme.conf file is your theme. For editing, you can choose
any editor you like, so make sure to choose one that’s comfortable for you to
work in.

If you open this file, you will see a single line with the text “[All]”. This
is called a Color Group. A Color Group tells the theming engine when to apply
the theming. Valid values are as follows:

	Disabled: when the window can’t be interacted with

	Active (or Normal): the “normal” state

	Inactive: when the window is in the background

	All: A fallback for if no specific Color Rule is defined in another Group

Each Color Group consists of one or more Color Roles. A Color Role tells the
theming engine what UI element to apply the color to. Color Roles are written
as simple key = value lines with the value containing 3 numbers for the amount
of red, green and blue (RGB) ranging from 0 to 255.

For example, to make the window pure red when the window is inactive, you would
write this in theme.conf:

[Inactive]
Window = 255,0,0

For a complete list of all Color Roles, please see
the QPalette docs [https://doc.qt.io/qt-5/qpalette.html#ColorRole-enum].
Please remember to only use the names after ::. So, instead of using
QPalette::Window as key, simply use Window.

One thing to note is that the theming engine automatically processes colors, so
you may not exactly get the color you are looking for, but a close
approximation instead.

The metadata.json file contains general information on your module, used by
Pext to show the user who developed the module, its intended purpose and more,
both when the user is about to install the module and when they already
installed it.

LICENSE contains the license for your project. pext_dev theme init puts the
Creative Commons Attribution 3.0 license into this file, as it is a common Open
Source license for non-code files.

Testing

To test your theme, simply run pext_dev theme run in the theme directory. This
will launch a completely clean instance of Pext running your theme. When you’re done
testing, simply close the Pext instance that popped up and pext_dev will clean
everything up again.

Publishing your theme

To publish your theme, put it on a git hosting site such as
GitHub [https://github.com/]. Make sure to add a README file so users who
find your theme online know what it’s about!

Whenever you make a change to your theme, you can push it to git and, as long
as it’s on the master branch, Pext will update to the new version as soon as
the user asks for theme updates. Simple as that.

If you want your theme to be listed in Pext under Other Developers, please
get in touch [https://pext.hackerchick.me/#community].

 helpers/pext_base.py

helpers/pext_base.py

Pext Module Base.

This file contains the definition of the Pext module base, which all
Pext modules must implement. This is basically the API of Pext.

	
class pext_base.ModuleBase

	Introduced in API version 0.1.0.

The base all Pext modules must implement.

	
extra_info_request(selection: List[Dict[pext_helpers.SelectionType, str]]) → None

	Introduced in API version 0.3.0.

Called when the user selects a different entry.

The syntax of selection is the same as in selection_made.

If desired, this function could be used to update the current entry by
putting a new set_info request in the queue.

	
init(settings: Dict, q: queue.Queue) → None

	Introduced in API version 0.1.0.

Called when the module is first loaded.

In this function, the application should initialize all its data and
use Action.replace_entry_list and Action.replace_command_list to
populate the main list. Please avoid using Action.add_entry and
Action.add_command, especially at initialization time, unless it would
take unreasonably long for the module to load otherwise, as these
methods are significantly slower if there are a lot of entries to add.

The settings variable is a dictionary containing all “module settings”.
For example, if the user enters “foo=bar foobar=fubar” in the custom
module settings dialog, this dictionary will have
{“foo”: “bar”, “foobar”: “fubar”} as values.

The settings variable also contains special Pext settings, starting
with a single underscore:
- _api_version: The API version as [major, minor, patch]
- _locale: The current Pext locale

The q variable contains the queue that actions can be put it. It is
very important to keep a reference to this variable so that you can do
anything on the UI at all.

	
process_response(response: Union[bool, str], identifier: Any)

	Introduced in API version 0.1.0.

Process a response to a requested action.

Called when a response is given as a result of an Action being put into
the queue. Not all Actions return a response.

When no specific identifier was given in a queue request, identifier
is called with None. Otherwise, it is called with the identifier
previously put in the queue.

	
selection_made(selection: List[Dict[pext_helpers.SelectionType, str]]) → None

	Introduced in API version 0.1.0.

Last changed in API version 0.8.0.

Called when the user makes a selection.

The selection variable contains a list of the selection tree and the
type, which can be either entry or command.

For example, if the user chooses the entry “Audio settings” in the main
screen, the value of selection is
[{type: SelectionType.entry, value: “Audio settings”}]. If the user
then runs the command “volume 50”, this function is called again, with
the value of selection being
[{type: SelectionType.entry, value: “Audio settings”},

{type: SelectionType.command, value: “volume”, args: [“50”]}].

	
stop()

	Introduced in API version 0.1.0.

Called when the module gets unloaded.

If necessary, the module should clean itself up nicely.

 helpers/pext_helpers.py

helpers/pext_helpers.py

Pext Helpers.

This file contains various functionality that is relevant to both Pext
and modules and helps keep the API consistent.

	
class pext_helpers.Action

	Introduced in API version 0.1.0.

The list of actions a module can request.

A module can request any of these actions of the core by putting it in the
queue. All of these actions need to be accompanied by a list of arguments.
In these examples, we assume that you have assigned the queue variable to
self.q, a common practice in Pext modules.

	critical_error

	Introduced in API version 0.1.0.

Show an error message on the screen and unload the module.
This function is also called when the module throws an exception.

message – error message to show

Example: self.q.put([Action.critical_error, “Something went wrong!”])

	add_message

	Introduced in API version 0.1.0.

Show a message on the screen.

message – message to show

Example: self.q.put([Action.add_message, “We did a thing”])

	add_error

	Introduced in API version 0.1.0.

Show an error message on the screen.

message – error message to show

Example: self.q.put([Action.add_error, “We did a thing, but it went wrong”])

	add_entry

	Introduced in API version 0.1.0.

Add an entry to the entry list.

entry – the entry

Example: self.q.put([Action.add_entry, “Audio settings”])

	prepend_entry

	Introduced in API version 0.1.0.

Prepend an entry to the entry list.

entry – the entry

Example: self.q.put([Action.prepend_entry, “Audio settings”])

	remove_entry

	Introduced in API version 0.1.0.

Remove an entry from the entry list.

entry – the entry

Example: self.q.put([Action.remove_entry, “Audio settings”])

	replace_entry_list

	Introduced in API version 0.1.0.

Replace the list of entries with the given list.

list – the new list of entries

Example: self.q.put([Action.replace_entry_list, [“Audio settings”, “Video settings”]])

	add_command

	Introduced in API version 0.1.0.

Add an entry to the command list.

entry – the entry

Example: self.q.put([Action.add_command, “download”])

	prepend_command

	Introduced in API version 0.1.0.

Prepend an entry to the command list.

entry – the entry

Example: self.q.put([Action.prepend_command, “download”])

	remove_command

	Introduced in API version 0.1.0.

Remove a command from the entry list.

entry – the entry

Example: self.q.put([Action.remove_command, “download”])

	replace_command_list

	Introduced in API version 0.1.0.

Replace the list of commands with the given list.

list – the new list of entries

Example: self.q.put([Action.replace_command_list, [“download”, “upload”]])

	set_header

	Introduced in API version 0.1.0.

Set or replace the text currently in the header bar.

If header is not given, the header will be removed.

header – the new header text

Example: self.q.put([Action.set_header, “Weather for New York”])

	set_filter

	Introduced in API version 0.1.0.

Replace the text currently in the search bar.

filter – the new text to put in the search bar

Example: self.q.put([Action.set_header, “Weather for New York”])

	ask_question:

	Introduced in API version 0.9.0.

Ask a yes/no question.

question – the question to ask
identifier – an optional identifier which gets passed back to process_response

Example: self.q.put([Action.ask_question, “Are you sure you want to continue?”, 0])

	ask_question_default_yes

	Introduced in API version 0.1.0.
Deprecated in API version 0.9.0.

Ask a yes/no question, with the default value being yes.

question – the question to ask
identifier – an optional identifier which gets passed back to process_response

Example: self.q.put([Action.ask_question_default_yes, “Are you sure you want to continue?”, 0])

	ask_question_default_no

	Introduced in API version 0.1.0.
Deprecated in API version 0.9.0.

Ask a yes/no question, with the default value being no.

question – the question to ask
identifier – an optional identifier which gets passed back to process_response

Example: self.q.put([Action.ask_question_default_no, “Are you sure you want to continue?”, 0])

	ask_input

	Introduced in API version 0.1.0.
Changed in API version 0.2.0.

Ask the user to input a single line of text.

text – the text to show the user
prefill – the text to already put into the input field
identifier – an optional identifier which gets passed back to process_response

Example: self.q.put([Action.ask_input, “Please choose a new name for this entry”, “Example name”, 0])

	ask_input_password:

	Introduced in API version 0.1.0.
Changed in API version 0.2.0.

Ask the user to input a single line of text into a password field.

text – the text to show the user
prefill – the text to already put into the input field (hidden behind asterisks, of course)
identifier – an optional identifier which gets passed back to process_response

Example: self.q.put([Action.ask_input_password, “Please enter your password”, “Current password”, 0])

	ask_input_multi_line

	Introduced in API version 0.1.0.

Ask the user to input one or more lines of text.

text – the text to show the user
prefill – the text to already put into the input field
identifier – an optional identifier which gets passed back to process_response

The prefill may contain newline characters.

Example: self.q.put([Action.ask_input_multi_line, “List your favourite animals”, “Cat and dog”, 0])

	copy_to_clipboard

	Introduced in API version 0.1.0.

Copy data to the clipboard.

text – the text to copy to the clipboard

Example: self.q.put([Action.copy_to_clipboard, “I like Pext”])

	set_selection

	Introduced in API version 0.1.0.

Change the internal Pext selection for this module.

The internal Pext selection contains a list of all options and commands
the user chose and typed since the last time the window was closed and
looks something like this:
[{type: SelectionType.entry, value: “Audio settings”}, {type: SelectionType.command, value: “volume 50”}].

To go a single level up, simply remove the last entry from this list.
To reset to the main screen, use an empty list.

After set_selection is called, selection_made in ModuleBase will be
called with the new values.

list – the selection list

Example: self.q.put([Action.set_selection, [{type: SelectionType.entry, value: “Audio settings”}])

	close:

	Introduced in API version 0.1.0.

Close the window.

Call this when the user is done. For example, when the user made a
selection.

Example: self.q.put([Action.close])

	set_entry_info:

	Introduced in API version 0.3.1.

Set additional info for a certain entry, either in plain text or HTML.

key – the entry to set it for
value – the value to set it to

Example: self.q.put([Action.set_entry_info, “Audio settings”, “Change the audio settings”])

	replace_entry_info_dict:

	Introduced in API version 0.5.

Set all entry info at once by passing a dictionary.

	Example: self.q.put([Action.set_entry_info,

	
	{“Audio settings”: “Change the audio settings”,

	“Video settings”: “Change the video settings”}])

	set_command_info:

	Introduced in API version 0.3.1.

Set additional info for a certain command, either in plain text or HTML.

key – the command to set it for
value – the value to set it to

Example: self.q.put([Action.set_command_info, “volume”, “Set the volume to the desired percentage (0 - 100)”)

	replace_command_info_dict:

	Introduced in API version 0.5.

Set all command info at once by passing a dictionary.

	Example: self.q.put([Action.set_entry_info,

	
	{“volume”: “Set the volume to the desired percentage (0 - 100)”,

	“video”: “Turn video on or off”}])

	set_base_info:

	Introduced in API version 0.6.

Set an info block to always show regardless of the active selection.

Example: self.q.put([Action.set_base_info, “Type stop to stop listening to radio”])

	set_entry_context:

	Introduced in API version 0.4.

Add a context menu to a certain entry.

key – the entry to set it for
value – the list of context entries

	Example: self.q.put([Action.set_entry_context,

	“Audio settings”,
[“Disable”, “Decrease volume”, “Increase volume”])

	replace_entry_context_dict:

	Introduced in API version 0.5.

Set all entry context menu entries at once by passing a dictionary.

	Example: self.q.put([Action.replace_entry_context,

	
	{“Audio settings”: [“Disable”],

	“Video quality”: [“High”, “Low”]}

	set_command_context:

	Introduced in API version 0.4.

Add a context menu to a certain command.

key – the command to set it for
value – the value to set it to

Example: self.q.put([Action.set_command_context, “volume”, [“0%”, “20%”, “40%”, “60%”, “80%”, “100%”])

	replace_command_context_dict:

	Introduced in API version 0.5.

Set all command context menu entries at once by passing a dictionary.

	Example: self.q.put([Action.replace_command_context_dict,

	
	{“volume”: [“0%”, “20%”, “40%”, “60%”, “80%”, “100%”],

	“video”: [“on”, “off”]}])

	set_base_context:

	Introduced in API version 0.6.

Set the base context, reachable by right-clicking the header text or Ctrl+Shift+..

Example: self.q.put([Action.set_base_context, [“Mute”, “Stop”]])

	
class pext_helpers.SelectionType

	Introduced in API version 0.1.0.

A list of possible selection types.

	entry

	Introduced in API version 0.1.0.

An entry in the entry list was chosen.

	command

	Introduced in API version 0.1.0.

A valid command was typed (valid commands start with an entry in the
command list).

	none

	Introduced in API version 0.6.

The selection is not relevant to any entry or command.

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pext_base	

 	
 	
 pext_helpers	

 Index

Index

 A
 | E
 | I
 | M
 | P
 | S

A

 	
 	Action (class in pext_helpers)

E

 	
 	extra_info_request() (pext_base.ModuleBase method)

I

 	
 	init() (pext_base.ModuleBase method)

M

 	
 	ModuleBase (class in pext_base)

P

 	
 	pext_base (module)

 	
 	pext_helpers (module)

 	process_response() (pext_base.ModuleBase method)

S

 	
 	selection_made() (pext_base.ModuleBase method)

 	
 	SelectionType (class in pext_helpers)

 	stop() (pext_base.ModuleBase method)

_static/up-pressed.png

_static/up.png

_images/pext_emoji.png
Pext Module Theme Settings Help

Clear ‘(at smiling| ‘

pass radiobrowser openweathermap emoji
'@ :smiling_cat_face_with_open_mouth:
@ :smiling_cat_face_with_heart-eyes:

Ready

_images/logo.png

_images/workflow_graph.png
A J
Switch to or load the appropriate module (if not already active)

Select a radio station
ta<Enter>idm<Enter>Soma<Enter>

Select password
Gith<Enter>

Select app to launch
pyth<Enter>

_images/pext_openweathermap_contextmenu.png
Pext Module Theme Settings Help

Clear ‘amslerdam\ ‘

pass radiobrowser | openweathermap | emoji

Forecasti Amsterdam (NL)
Amsterdam (US)
Amsterdam-Zuidoost (NL)
Gemeente Amsterdam (NL)
New Amsterdam (GY)
Nieuw Amsterdam (SR)

Ready

_images/pext_radiobrowser_infopanel.png
Pext Module Theme Settings Help

Back ‘\ ‘

pass | radiobrowser
SomaFM clighop idm

jaltehed Bitrate: 128 kby

Psy Chill Zone s

Verdure Station Location: California,
United States of America
Tags: idm
Homepage: http://

somafm.com/clighop/

Ready

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to Pext’s documentation!

 		
 Pext

 		
 Contents

 		
 Introduction

 		
 How it works

 		
 Installation

 		
 GNU/Linux

 		
 macOS

 		
 Windows

 		
 Usage

 		
 Hotkeys

 		
 Entry management

 		
 Tab management

 		
 Session management

 		
 Community

 		
 License

 		
 Change Log

 		
 [Unreleased]

 		
 Added

 		
 Changed

 		
 Fixed

 		
 [0.21] - 2018-11-02

 		
 API changes

 		
 Changed

 		
 Fixed

 		
 [0.20] - 2018-10-12

 		
 Added

 		
 Changed
