

Nomad

Contents:

	Quick Start

	Acquiring URLs

	Basic tests

	URL acquiring tests

Note

Right now only SQL databases are supported (SQLite/MySQL/PgSQL through
DB API or anything what SQLAlchemy supports), but whole architecture is
structured so that it is easy to add support for NoSQL dbs.

Layout

Nomad’s migration store is a directory with nomad.ini and directories with
migrations inside. Each such directory must contain migration.ini to be
recognized as a migration and this directory name is an unique identifier of a
migration.

Your directory tree thus will look like this:

migrations/
 nomad.ini
 2011-11-11-first-migration/
 migration.ini
 up.sql
 2011-11-12-second-migration/
 migration.ini
 1-pre.py
 2-up.sql
 3-post.py
 2011-11-13-third-migration/
 migration.ini
 1-pre.py
 2-up.sql
 3-post.sql.j2

Nomad uses table called nomad to track what was applied already. It’s just a
list of applied migrations and dates when they were applied.

Interface

To start working, create nomad.ini, and initialize your database (I assume
it already exists):

$ nomad init

Then you can start creating your first migration:

$ nomad create 0-initial

Put your ALTERs and CREATEs in 0-initial/up.sql and apply a migration:

$ nomad apply -a # or nomad apply 0-initial

Nomad should report which migrations it applied successfully, but you can check
status of that with nomad ls -a (or nomad ls to see only unapplied
migrations).

I guess it’s time to create new migration:

$ nomad create 1-next -d 0-initial

-d 0-initial means you want your 1-next to depend on 0-initial. This
means Nomad will never apply 1-next without applying 0-initial
first. You usually want to depend on migrations which created tables you’re
going to alter, or just to make it easier - on the latest available migration.

Usage

There are three types of migration files that nomad supports:

	Plain SQL files with the extension .sql. Just put SQL commands you need
to execute in the migration folder and they will be executed.

	Executable files. All file extensions are supported as long as the file
is executable. These files must contain everything necessary to migrate
your data, including setting up a database connection. nomad will pass
all of the Configuration variables as environmental variables, prefixed
with their section.

	Template files with the extension .j2. These templates will be
passed through the Jinja2 templating library. You must install the
jinja2 library for this functionality. The entire Configuration is
available to the template files as a single dictionary. These could be
useful if you are distributing an application where the end user needs to
control some aspects of the migrations (ie. additional database users and
passwords, additonal database names, etc.).

nomad.ini
[db]
another_user = reader
another_pass = pass

migrations/0001-initial/up.sql.j2
CREATE ROLE {{ db.another_user }};
ALTER ROLE {{ db.another_user }} WITH NOSUPERUSER LOGIN PASSWORD '{{ db.another_pass }}' VALID UNTIL 'infinity';

Files inside of each migration folder are executed in lexographical order.

Configuration

Nomad reads database connection information from the [nomad] section of the
nomad.ini file.

[nomad]
engine = sqla
url = pgsql://user:password@host:port/db

Possible configuration options:

	engine (required) - SQL engine to use, possible options:

	sqla - use SQLAlchemy as an adapter, supports everything SQLAlchemy supports

	dbapi - use regular DB API, supports sqlite, mysql and pgsql

	url (required) - URL to database, takes multiple options, see format below

	path - path to migrations (default: directory with nomad.ini)

Each migration has its own migration.ini file, which, by default, has a
single configuration option, nomad.dependencies, defining which migration
(or migrations) this one depends.

You may add your own configuration variables to either the nomad.ini or
migration.ini files and they will be available in your jinja2 templates
as a single dictionary and your executable files as environmental
variables.

Note that ini-files are parsed with extended interpolation (use it like
${var} or ${section.var}).

A few predefined variables are provided to every migration:

	confpath - path to nomad.ini

	confdir - path to directory, containing nomad.ini

	dir - path to directory of migration

Example configuration:

	configration

	executable

	template

	[nomad]
engine = sqla
url = someurl

[foo]
bar = zeta

	NOMAD_ENGINE = sqla
NOMAD_URL = someurl

FOO_BAR = zeta

NOMAD_CONFPATH = path
NOMAD_CONFDIR = dir1
NOMAD_DIR = dir2

	nomad.engine = sqla
nomad.url = someurl

foo.bar = zeta

nomad.confpath = path
nomad.confdir = dir1
nomad.dir = dir2

URL format

Nomad can read connection url to database in a few various ways. nomad.url
configuration option is a space separated list of descriptions of how Nomad can
obtain database connection url.

The easiest one is simply an url (like in config example). The others are:

	file:<path-to-file> - a path to file containing connection url

	env:<var-name> - an environment variable (do not prefix with $)

	py:<python.mod>:<variable.name> - a Python path to a module,
containing a variable with connection url

	cmd:<cmd-to-execute> - command to execute to get connection url

	json:<path-to-file>:key.0.key - path to file with JSON and then path
to a connection url within JSON object

	yaml:<path-to-file>:key.0.key - path to file with YAML and then path
to a connection url within YAML object

	ini:<path-to-file>:<section.key> - path to INI file (parsed by
configparser with extended interpolation) and then path to a connection url
within this file

An example:

[nomad]
url =
 ini:${confdir}/../settings.ini:db.url
 json:${confdir}/../settings.json:db.url
 sqlite:///${confdir}/../local.db

Notice that in all cases in the end you have to return URL to a database in
normal format, i.e. dbtype://user:pass@host:port/dbname?options.

options are supported only by pgsql right now, whatever you put there, nomad
will do set ... before every migration. Note that if you do not supply
anything there, nomad sets statement_timeout to 1000 ms and lock_timeout
to 500 ms by default.

Main ideas

	There are no downgrades - nobody ever tests them, and they are rarely
necessary. Just write an upgrade if you need to cancel something.

	You can write migration in whatever language you want, Nomad only helps you
track applied migrations and dependencies.

	.sql is treated differently and executed against database, configured in
nomad.ini.

	Only .sql, .j2, and executable files (sorry, Windows! - though I am eager to
hear ideas how to support it) are executed. You can put READMEs, pieces of
documentation, whatever you want alongside your migrations.

	Name matters - everything is executed in order. Order is determined by using
human sort (so that x-1.sql is earlier than x-10.sql, you can always
check sorting with ls --sort=version).

Indices and tables

	Index

	Module Index

	Search Page

Quick Start

To use nomad, you’ll have to supply some basic configuration, in ini
format:

[nomad]
engine = sqla
url = sqlite:///test.db

Note

See Acquiring URLs about ways you can use to specify url of database.

Save this in a file named nomad.ini. The directory, containing this file, will
be your nomad environment. You can store file under any other name, but then
you’ll have to supply it as an option to nomad calls (like nomad -c myconf.ini).

Then initialize your database to be used with nomad:

$ nomad init

This will create a table in your database with 2 fields - name and
date. This table is used then for tracking which migrations have been
applied already to this database.

And then you can create a migration:

$ nomad create 2012-09-21-first

This will create directory with name 2012-09-21-first and two files inside:
migration.ini and up.sql. Name of first file matters - it contains
information about dependencies of a migration (which can be passed as -d
option to create command). Name of second file doesn’t matter - any
*.sql, *.j2, or executable files (file with executable bit set) will be
run. *.sql files are applied to database, *.j2 files are applied to
the database after being passed through the jinja2 template system, and
executable files (which can be your script to do something before or after
migration, or even migration itself) are just executed.

You can then list or apply migrations - just read help about them (nomad help
ls or nomad help apply). Also, reading Basic nomad tests can be helpful as
well.

Acquiring URLs

Nomad supports few different ways of specification how it should connect to
database.

There are two parameters it has to acquire: engine and url.

Engine is specified as a string. Supported engines right now consist of
dbapi and sqla. Both of them support SQLite, MySQL and PostgreSQL
databases, the first one requiring only db api modules and second one requiring
SQLAlchemy library.

URL can be specified in few different ways:

	url - just a string, path like sqlite:///test.db or
mysql://user:pass@host/db

	url-python - taking variable from Python module, has two approaches to
fetching python module:

	From sys.path, when it looks like one: yourapp.settings:dburl

	From filesystem, when it looks like path to file: ../settings.py:dburl

	url-file - taking contents of a file: ../dburl.txt

	url-command - taking output of a command: grep mysql ../settings.txt

Note

Look at URL acquiring test to see how various options are used.

Basic nomad tests

First, set up environment:

$ NOMAD=${NOMAD:-nomad}
$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = sqlite:///test.db
> [foo]
> bar = zeta
> EOF

First, initialize migrations repository:

$ $NOMAD init
Versioning table initialized successfully
$ sqlite3 test.db '.schema'
CREATE TABLE nomad (
 name varchar(255) NOT NULL,
 date datetime NOT NULL
);

First migration:

$ $NOMAD create 0-first
$ echo "create table test (value varchar(10));" > 0-first/up.sql
$ $NOMAD ls
\x1b[32m0-first\x1b[0m (esc)

Upgrading:

$ $NOMAD apply -a
applying migration 0-first:
 sql migration applied: up.sql
$ sqlite3 test.db '.schema test'
CREATE TABLE test (value varchar(10));
$ sqlite3 test.db 'select name from nomad'
0-first

Dependencies:

$ $NOMAD create 1-second
$ $NOMAD create 2-third -d 1-second
$ $NOMAD ls
\x1b[32m1-second\x1b[0m (esc)
\x1b[32m2-third\x1b[0m (1-second) (esc)
$ $NOMAD apply 2-third
applying migration 1-second:
 sql migration applied: up.sql
applying migration 2-third:
 sql migration applied: up.sql

Natural sorting works:

$ $NOMAD create 3-fourth
$ $NOMAD create 10-eleventh
$ $NOMAD ls
\x1b[32m3-fourth\x1b[0m (esc)
\x1b[32m10-eleventh\x1b[0m (esc)

No problems with trailing slash that can easily occur from autocomplete:

$ $NOMAD apply 3-fourth/
applying migration 3-fourth:
 sql migration applied: up.sql
$ $NOMAD apply 3-fourth
\x1b[31mError: migration 3-fourth is already applied\x1b[0m (esc)
[1]

Dependencies should not break when applying all migrations:

$ $NOMAD create 11-twelfth -d 10-eleventh
$ $NOMAD apply -a
applying migration 10-eleventh:
 sql migration applied: up.sql
applying migration 11-twelfth:
 sql migration applied: up.sql

	It’s possible to insert % into a db::

	$ $NOMAD create 12-thirteen
$ echo “insert into test values (‘test%’);” > 12-thirteen/up.sql
$ $NOMAD apply -a
applying migration 12-thirteen:

sql migration applied: up.sql

$ sqlite3 test.db ‘select * from test’
test%

	Using configuration templates

	$ $NOMAD create 13-fourteen
$ mv 13-fourteen/up.sql 13-fourteen/up.sql.j2
$ echo “create table {{ foo.bar }} (value varchar(10));” > 13-fourteen/up.sql.j2
$ $NOMAD create 14-fifteen
$ mv 14-fifteen/up.sql 14-fifteen/up.sql.j2
$ echo “insert into {{ foo.bar }} values (‘test’);” >> 14-fifteen/up.sql.j2
$ $NOMAD apply -a
applying migration 13-fourteen:

sql template migration applied: up.sql.j2

	applying migration 14-fifteen:

	sql template migration applied: up.sql.j2

$ sqlite3 test.db ‘select value from zeta’
test

URL acquiring test

Test different methods to acquire URLs.

Directly specified URL:

$ NOMAD=${NOMAD:-nomad}
$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = sqlite:///test.db
> EOF
$ $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test.db>
 Uninitialized repository

Setup for Python object tests:

$ cat > somemod.py <<EOF
> dburl = 'sqlite:///test-py.db'
> EOF

URL from Python object from sys.path:

$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = python:somemod:dburl
> EOF
$ PYTHONPATH=.:$PYTHONPATH $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test-py.db>
 Uninitialized repository

URL from Python object using path:

$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = python:\${confdir}/somemod.py:dburl
> EOF
$ $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test-py.db>
 Uninitialized repository

URL from Python package:

$ mkdir package
$ mv somemod.py package/__init__.py
$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = python:\${confdir}/package:dburl
> EOF
$ $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test-py.db>
 Uninitialized repository

URL from a file:

$ echo 'sqlite:///test-file.db' > url
$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = file:url
> EOF
$ $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test-file.db>
 Uninitialized repository

URL from a command:

$ echo 'sqlite:///test-cmd.db' > url
$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = command:"cat url"
> EOF
$ $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test-cmd.db>
 Uninitialized repository

URL from JSON file:

$ echo '{"db": [{"url": "sqlite:///test-json.db"}]}' > url.json
$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = json:url.json:db.0.url
> EOF
$ $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test-json.db>
 Uninitialized repository

URL from INI file:

$ echo '[db]\nurl = sqlite:///test-ini.db' > url.ini
$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = ini:url.ini:db.url
> EOF
$ $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test-ini.db>
 Uninitialized repository

URL from YAML file:

$ echo 'db:\n - url: sqlite:///test-yaml.db' > url.yaml
$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = yaml:url.yaml:db.0.url
> EOF
$ $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test-yaml.db>
 Uninitialized repository

Nothing defined:

$ echo '[nomad]\nengine=sqla' > nomad.ini
$ $NOMAD info
\x1b[31mError: database url was not found in the nomad Configuration\x1b[0m (esc)
[1]

MultiURL:

$ rm url.ini
$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = ini:url.ini:db.url sqlite:///test.db
> EOF
$ $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test.db>
 Uninitialized repository
$ echo '[db]\nurl = sqlite:///test-multi.db' > url.ini
$ $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test-multi.db>
 Uninitialized repository

Environment variable:

$ cat > nomad.ini <<EOF
> [nomad]
> engine = sqla
> url = env:DATABASE_URL
> EOF
$ DATABASE_URL=sqlite:///test.db $NOMAD info
<Repository: .>:
 <SAEngine: sqlite:///test.db>
 Uninitialized repository

Index

 nav.xhtml

 Table of Contents

 		
 Nomad

 		
 Quick Start

 		
 Acquiring URLs

 		
 Basic tests

 		
 URL acquiring tests

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

