

Network Interchange for Neuroscience Modeling Language (NineML) Specification v1.1

	About
	NineML Committee

	Licence

	Website

	Introduction
	Scope

	Design considerations

	Identifiers

	General Elements
	Document Layout

	Units and Dimensions

	Annotating Elements

	Abstraction Layer
	Component Classes and Parameters

	Mathematical Expressions

	Ports

	Dynamic Regimes

	Transitions

	Random Distributions

	Network Connectivity

	User Layer
	Components and Properties

	Values

	Populations

	Projections

	Selections: combining populations and subsets

	Serialization

	Examples
	Single Cell Models

	Network Models

	Acknowledgments

About

The NineML specification is edited by the NineML Committee.

NineML Committee

	Thomas G. Close

	Alexander J. Cope

	Andrew P. Davison

	Jochen M. Eppler

	Erik De Schutter

	Ivan Raikov

	Paul Richmond

Licence

This document is under the Common Creative license BY-NC-SA:
http://creativecommons.org/licenses/by-nc-sa/3.0/

[image: cc_logo]

Website

See http://nineml.net for more information on the committee and NineML
developments.

Last Updated: May 23, 2018

Introduction

The increasing diversity of neuronal network models and the
software/hardware platforms used to simulate them presents a significant
challenge for sharing, replicability and reusability of models in
computational neuroscience. To address this problem, we propose a common
description language, Network Interchange for Neuroscience Modeling
Language (NineML), to facilitate the exchange neuronal network models
between researchers and simulator platforms.

NineML is based on a common object model describing the different
elements of neuronal network models. It was initiated and supported by
the International Neuroinformatics Coordinating Facility (INCF)
(http://www.incf.org) as part of the
Multiscale Modeling
Program [https://www.incf.org/activities/our-programs/modeling/people],
and has benefitted from wide-ranging input from computational
neuroscientists, simulator developers and developers of
simulator-independent languages (e.g. NeuroML, PyNN) (see
Acknowledgements)
[Goddard2001], [Gleeson2010], [Davison2008].

Scope

The purpose of NineML is to provide a computer language for succinct and
unambiguous description of computational neuroscience models of neuronal
networks. NineML is intended to describe the network architecture,
parameters and equations that govern the dynamics of a neuronal network,
without taking into account model implementation details such as
numerical integration methods.

The following neuronal network objects can be described in NineML,

	spiking and non-spiking neurons

	synapses

	Post-synaptic membrane current mechanisms

	Short-term synaptic dynamics (depression, facilitation)

	Long-term synaptic modifications (STDP, learning, etc.)

	Gap-junctions

	populations of neurons

	synaptic projections between populations of neurons

Design considerations

As one of the goals of NineML is to provide a means to exchange models
between simulator platforms, it is important to maintain a clear
distinction between the role of NineML and the role of a simulator.
Therefore, NineML only contains the necessary information to describe
the model not how to simulate it, although suggestions can be supplied
in annotations to the model (see [sec:Annotations_Section]). For example,
NineML should specify the neuron membrane equation to solve, but not how
to solve it. In addition, for implementation and performance reasons, it
is important to keep the language layer “close” to the simulator – such
that the language layer is not responsible for maintaining separate
representations of all the instantiated elements in the network.

A NineML object model representation can take multiple forms. A program
can employ a concrete representation of the NineML objects in a specific
programming language, convert an internal model representation to and
from hierarchical data formats (see Serialization), or use code
generation to produce a model representation for a target simulation
environment.

The design of NineML is divided into two semantic layers:

	An Abstraction Layer that provides the core concepts and
mathematical descriptions with which model variables and state update
rules are explicitly described in parametrized form, and

	A User Layer that provides a syntax to specify the instantiation
and the value of parameters of all these components of a network
model.

Since the User Layer provides the instantiation and parametrization of
model elements that have been defined in the Abstraction Layer, the two
layers should share a complementary and compatible design philosophy.
Which aspects of a model are defined in the Abtraction Layer and which
are in the User Layer Layer are clearly defined (each element type
belongs to only one layer with the exception of units and dimensions).
In order to simplify their interpretation and maintain compatibility
with a wide range of data formats (e.g. JSON, Python objects), NineML
documents are not sensitive to the order that objects appear in.

Identifiers

Elements are identified by names, which are unique in the scope they
are enclosed by (either within a component class or in the document
scope of the file). For a name to be a valid NineML identifier, it must
meet the requirements for a ANSI C89
identifiers [http://msdn.microsoft.com/en-us/library/e7f8y25b.aspx].
Additionally, identifiers are not permitted to begin or end with an
underscore character (i.e. ‘_’) to allow special variables to be
defined in the same scope as identified variables/objects in generated
code.

NineML identifiers are case-sensitive in the sense that they must be
referred to with the same case as they are defined. However, two
identifiers that are identical with the exception of case, e.g.
‘v_threshold’ and ‘v_Threshold’, are not permitted within the same
scope. Identifiers used within component classes also cannot be the same
(case-insensitive) as one of the built-in symbols or functions (see
MathInline).

	Davison2008

	Davison, A.~P., Br”{u}derle, D., Eppler, J., Kremkow, J.,
Muller, E., Pecevski, D., Perrinet, L., and Yger, P. (2008).
PyNN: A Common Interface for Neuronal Network Simulators.
Frontiers in neuroinformatics, 2(January):11.

	Gleeson2010

	Gleeson, P., Crook, S., Cannon, R.~C., Hines, M.~L.,
Billings, G.~O., Farinella, M., Morse, T.~M., Davison, A.~P., Ray, S.,
Bhalla, U.~S., Barnes, S.~R., Dimitrova, Y.~D., and Silver, R.~A. (2010).
Neuroml: A language for describing data driven models of neurons and
networks with a high degree of biological detail.
PLoS Comput Biol, 6(6).

	Goddard2001

	Goddard, N. and Hucka, M. (2001).
Towards NeuroML: model description methods for collaborative modelling in
neuroscience. Philosophical Transactions of the Royal Society B: Biological
Sciences, 356(1412):1209–28.

General Elements

Document Layout

NineML documents must be enclosed within an NineML element, which should
be in the ’http://nineml.net/9ML/1.0’ namespace.

NineML

	Attribute

	Type/Format

	Required

	namespace (i.e. xmlns in XML)

	‘http://nineml.net/9ML/1.0’

	yes

	Children

	Multiplicity

	Required

	Component

	set

	no

	ComponentClass

	set

	no

	Unit

	set

	no

	Dimension

	set

	no

	Population

	set

	no

	Projection

	set

	no

	Selection

	set

	no

Seven document-level elements are allowed to reside directly within
NineML elements: Component, ComponentClass, Unit, Dimension,
Population, Projection and Selection. Each element
should be uniquely identified by its name attribute within the scope of the
document (see).

Unit and Dimension elements must be defined within the document they are
referenced, whereas the remaining element types can also be referenced
from other NineML documents (see Reference and Definition).

Namespace attribute

The namespace attribute (xmlns in XML) is required and should refer to the
URL [http://en.wikipedia.org/wiki/Uniform_resource_locator] corresponding to the correct NineML version, which for version 1.0 is
‘http://nineml.net/9ML/1.0’ (see http://www.w3.org/TR/REC-xml-names/).

Units and Dimensions

Dimensions are associated with parameters, analog ports and state
variables in component class definitions. Each dimension can give rise
to a family of unit declarations, each of which has the same
dimensionality but a different multiplier. For example, typical units
for a quantity with dimensionality voltage include millivolts
(multiplier = \(10^{-3}\)), microvolts (multiplier =
\(10^{-6}\)) and volts (multiplier = 1). To express a dimensional
quantity both a numerical factor and a unit are required.

Except where physical constants are required, abstraction layer
definitions generally only contain references to dimensions and are
independent of any particular choice of units. Conversely, the user
layer only refers to units. Internally, dimensional quantities are to be
understood as rich types with a numerical factor and exponents for each
of the base dimensions. They are independent of the particular choice of
units by which they are assigned.

Note

The format for units and dimensions is the same as is used for LEMS/NeuroML
v2.0 (http://www.neuroml.org) [Cannon2014].

Dimension

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	m

	integer

	no

	l

	integer

	no

	t

	integer

	no

	i

	integer

	no

	n

	integer

	no

	k

	integer

	no

	j

	integer

	no

Dimension objects are constructed values from the powers for each of the
seven SI base units: length (l), mass (m), time (t), electric
current (i), temperature (k), luminous intensity (l) and amount of
substance (n). For example, acceleration has dimension \(lt^{-2}\)
and voltage is \(ml^2t^3i^{-1}\). Dimension objects must be declared
in the top-level scope of the NineML document where they are referenced.

Name attribute

Each Dimension requires a name attribute, which should be a valid and
uniquely identify the Dimension in current the scope.

M attribute

The m attribute specifies the power of the mass dimension in the
Dimension. If omitted the power is zero.

L attribute

The l attribute specifies the power of the length dimension in the
Dimension. If omitted the power is zero.

T attribute

The t attribute specifies the power of the time dimension in the
Dimension. If omitted the power is zero.

I attribute

The i attribute specifies the power of the current dimension in the
Dimension. If omitted the power is zero.

N attribute

The n attribute specifies the power of the amount-of-substance
dimension in the Dimension. If omitted the power is zero.

K attribute

The k attribute specifies the power of the temperature dimension in
the Dimension. If omitted the power is zero.

J attribute

The j attribute specifies the power of the luminous-intensity
dimension in the Dimension. If omitted the power is zero.

Unit

	Attribute

	Type/Format

	Required

	symbol

	string

	yes

	dimension

	Dimension.name

	yes

	power

	integer

	no

	offset

	integer

	no

Unit objects specify the dimension multiplier and the offset of a unit
with respect to a defined Dimension object. Unit objects must be
declared in the top-level scope of the NineML documents where they are
referenced.

Symbol attribute

Each Unit requires a symbol attribute, which should be a valid and
uniquely identify the Unit in current the scope.

Dimension attribute

Each Unit requires a dimension attribute. This attribute specifies the
dimension of the units and should refer to the name of a Dimension
element in the document scope.

Power attribute

Each Unit requires a power attribute. This attribute specifies the
relative scale of the units compared to the equivalent SI units in
powers of ten. If omitted the power is zero.

Offset attribute

A Unit can optionally have an offset attribute. This attribute
specifies the zero offset of the unit scale. For example,

<Unit name="degC" dimension="temperature" power="0" offset="273.15"/>

If omitted, the offset is zero.

Annotating Elements

Annotations are provided to add semantic information about the model,
preserving structure that is lost during conversion from an extended
format to core NineML, and provide suggestions for the simulation of the
model. It is highly recommended to add references to all publications on
which the model or property values are based in the annotations. For
adding semantic structure to the model it is recommended to use the
Resource Description Framework (RDF) [http://www.w3.org/RDF/]
although it is not a strict requirement.

In order to be compliant with the NineML specification any tool handling
NineML descriptions must preserve all existing annotations, except where
a user explicitly edits/deletes them. In future versions of this section
will be expanded to include suggested formats for commonly used
annotations.

Annotations

	Children

	Multiplicity

	Required

	*

	set

	no

The Annotations element is the top-level of the annotations attached to
a NineML element. They can be included at the top level of a document and
within any NineML element (User Layer or Abstraction Layer), and may contain
any object hierarchy that can be serialized to valid XML (although other
hierarchical formats are supported, see Serialization).

	Cannon2014

	Cannon, R.~C., Gleeson, P., Crook, S., Ganapathy, G.,
Marin, B., Piasini, E., and Silver, R.~A. (2014).
LEMS: a language for expressing complex biological models in concise
and hierarchical form and its use in underpinning NeuroML 2.
Frontiers in neuroinformatics, 8(September):79.

Abstraction Layer

Component Classes and Parameters

The main building block of the Abstraction Layer is the ComponentClass.
The ComponentClass is intended to package together a collection of
objects that relate to the definition of a model (e.g. cells, synapses,
synaptic plasticity rules, random spike trains, inputs). All equations
and event declarations that are part of particular entity model, such as
neuron model, belong in a single ComponentClass. A ComponentClass can be
used to represent either a specific model of a neuron or a composite
model, including synaptic mechanisms.

The interface is the external view of the ComponentClass that defines
what inputs and outputs the component exposes to other ComponentClass
elements and the parameters that can be set for the ComponentClass. The
interface consists of instances of ports and Parameter (see
[fig:component_class_overview]).

[image: ComponentClass Overview]
ComponentClass Overview

As well as being able to specify the communication of continuous values,
ComponentClass elements are also able to specify the emission and the
reception of events. Events are discrete notifications that are
transmitted over event ports. Since Event ports have names, saying that
we transmit ‘event1’ for example would mean transmitting an event on the
EventPort called ‘event1’. Events can be used for example to signal
action potential firing.

ComponentClass

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	Children

	Multiplicity

	Required

	Parameter

	set

	no

	AnalogSendPort

	set

	no

	AnalogReceivePort

	set

	no

	AnalogReducePort

	set

	no

	EventSendPort

	set

	no

	EventReceivePort

	set

	no

	[Dynamics,ConnectionRule,RandomDistribution]

	singleton

	yes

A ComponentClass is composed of:

	Parameter objects for the ComponentClass, which specify which values
are required to be provided in the User Layer.

	An unordered collection of port objects, which either publish or read
state variables or derived values published from other components in
the case of analog send and receive ports, or emit events or listen
for events emitted from components. EventSendPort and
EventReceivePort objects raise and listen for events passed between
dynamic components.

	A ‘main’ block, which specifies the nature of the component class:

	Dynamics, the component class defines a dynamic element such as
neutron or post-synaptic response.

	ConnectionRule, the component class defines a rule by which
populations are connected in projections.

	RandomDistribution, the component class defines random
distribution.

Name attribute

Each ComponentClass requires a name attribute, which should be a valid
and uniquely identify the ComponentClass in the document scope.

Parameter

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	dimension

	Dimension.name

	yes

Parameter objects are placeholders for numerical values within a
ComponentClass. They define particular qualities of the model, such as
the firing threshold, reset voltage or the decay time constant of a
synapse model. By definition, Parameters are set at the start of the
simulation, and remain constant throughout.

Name attribute

Each Parameter requires a name attribute, which is a valid and
uniquely identifies the Parameter within the ComponentClass.

Dimension attribute

Parameter elements must have a dimension attribute. This attribute
specifies the dimension of the units of the quantity that is expected to
be passed to the Parameter and should refer to the name of a Dimension
element in the document scope. For a dimensionless parameters a
Dimension with all attributes of power 0 can be used.

Mathematical Expressions

As of NineML version 1.0, only inline mathematical expressions, which
have similar syntax to the ANSI C89 standard, are supported. In future
versions it is envisaged that inline expressions will be either
augmented or replaced with MathML (http://mathml.org) expressions.

MathInline

	Body format

	Required

	Inline-maths expression

	yes

MathInline blocks are used to specify mathematical expressions.
Depending on the context, MathInline blocks should return an expression
that evaluates to either a bool (when used as the trigger for OnCondition
objects) or a real number (when used as a right-hand-side for Alias, TimeDerivative
and StateAssignment objects). All numbers/variables in inline maths
expressions are assumed to be real numbers.

Body

The following arithmetic operators are supported in all inline maths
expressions and have the same interpretation and precedence levels as in
the ANSI C89 standard,

	Addition +

	Subtraction -

	Division /

	Multiplication *

The following inequality and logical operators are only supported in
inline maths expressions within Trigger elements. They also have the
same interpretation and precedence levels as in ANSI C89 standard.

	Greater than >

	Lesser than <

	Logical And: &&

	Logical Or: ||

	Logical Not: !

The following functions are built in and are defined as per ANSI C89:

	exp(x)

	sin(x)

	cos(x)

	log(x)

	log10(x)

	pow(x, p)

	sinh(x)

	cosh(x)

	tanh(x)

	sqrt(x)

	atan(x)

	asin(x)

	acos(x)

	asinh(x)

	acosh(x)

	atanh(x)

	atan2(y, x)

The following symbols are built in, and cannot be redefined,

	pi

	t

where \(pi\) is the mathematical constant \(\pi\), and \(t\)
is the elapsed simulation time within a Dynamics block.

The following random distributions are available in StateAssignment
elements via the random namespace, :

	random.uniform (see http://uncertml.org/distributions/uniform)

	random.normal (see http://uncertml.org/distributions/normal)

	random.binomial(N,P) (see
http://uncertml.org/distributions/binomial)

	random.poisson(L) (see http://uncertml.org/distributions/poisson)

	random.exponential(L) (see
http://uncertml.org/distributions/exponential)

Alias

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	Children

	Multiplicity

	Required

	MathInline

	singleton

	yes

An alias corresponds to an alternative name for a variable or part of an
expression.

Aliases are motivated by two use cases:

	substitution: rather than writing long expressions for functions
of state variables, we can split the expressions into a chain of
Alias objects, e.g.:

m_alpha = (alphaA + alphaB * V)/(alphaC + exp((alphaD + V / alphaE)))
m_beta = (betaA + betaB * V)/(betaC + exp((betaD + V / betaE)))
minf = m_alpha / (m_alpha + m_beta)
mtau = 1.0 / (m_alpha + m_beta)
dm/dt = (1 / C) * (minf - m) / mtau

In this case, m_alpha, m_beta, minf and mtau are all
alias definitions. There is no reason we couldn’t expand our
\(\mathrm{d}m/\mathrm{d}t\) description out to eliminate these
intermediate Alias objects, but the expression would be very long and
difficult to read.

	Accessing intermediate variables: if we would like to communicate
a value other than a simple StateVariable to another ComponentClass.
For example, if we have a component representing a neuron, which has
an internal StateVariable, ‘V’, we may be interested in transmitting
a current, for example \(i=g*(E-V)\).

Name attribute

Each Alias requires a name attribute, which is a valid and uniquely
identifies the Alias from all other elements in the ComponentClass.

Constant

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	units

	Unit.symbol

	yes

	Body format

	Required

	float

	yes

Constant objects are used to specify physical constants such as the
Ideal Gas Constant (i.e. 8.314462175
JK\(^{-1}\)mol\(^{-1}\)) or Avogadro’s number (i.e.
6.0221412927\(\times\)10\(^{23}\)mol\(^{-1}\)),
and to convert unit dimensions between abstract mathematical quantities.

The use of Constant elements to hold fixed model parameters is strongly
discouraged since this breaks the division of semantic layers
(abstraction and user), which is a key feature of NineML (see
[sec:scope]).

Name attribute

Each Constant requires a name attribute, which should be a valid and
uniquely identify the Dimension in current the scope.

Units attribute

Each Constant requires a units attribute. The units attribute
specifies the units of the property and should refer to the name of a
Unit element in the document scope.

Body

Any valid numeric value, including shorthand scientific notation e.g.
1e-5 (\(1\times10^{-5}\)).

Ports

Ports allow components to communicate with each other during a
simulation. Ports can either transmit discrete events or continuous
streams of analog data. Events are typically used to transmit and
receive spikes between neutron model, whereas analog ports can be used
to model injected current and gap junctions between neuron models.

Ports are divided into sending, EventSendPort and AnalogSendPort, and
receiving objects, EventReceivePort, AnalogReceivePort and
AnalogReducePort. With the exception of AnalogReducePort objects, each
receive port must be connected to exactly one matching (i.e.
analog\(\to\)analog, event\(\to\)event) send port, where
as a send port can be connected any number of receive ports.
AnalogReducePort objects can be connected to any number of
AnalogSendPort objects; the values of the connected ports are then
“reduced” to a single data stream using the operator provided to the
AnalogReducePort.

AnalogSendPort

	Attribute

	Type/Format

	Required

	name

	[StateVariable,Alias].name

	yes

	dimension

	Dimension.name

	yes

AnalogSendPort objects allow variables from the current component to be
published externally so they can be read by other ComponentClass
objects. Each AnalogSendPort can be connected to multiple
AnalogReceivePort and AnalogReducePort objects.

Name attribute

Each AnalogSendPort requires a name attribute, which should refer to a
StateVariable or Alias within the current ComponentClass.

Dimension attribute

Each AnalogSendPort requires a dimension attribute. This attribute
specifies the dimension of the units of the quantity that is expected to
be passed through the AnalogSendPort and should refer to the name of a
Dimension element in the document scope.

AnalogReceivePort

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	dimension

	Dimension.name

	yes

AnalogReceivePorts allow variables that have been published externally
to be used within the current component. Each AnalogReceivePort must be
connected to exactly one AnalogSendPort.

Name attribute

Each AnalogReceivePort requires a name attribute, which is a valid and
uniquely identifies the AnalogReceivePort from all other elements in the
ComponentClass.

Dimension attribute

Each AnalogReceivePort requires a dimension attribute. This attribute
specifies the dimension of the units of the quantity that is expected to
be passed through the AnalogReceivePort and should refer to the name of
a Dimension element in the document scope.

AnalogReducePort

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	dimension

	Dimension.name

	yes

	operator

	+

	yes

Reduce ports can receive data from any number of AnalogSendPort objects
(including none). An AnalogReducePort takes an additional operator
compared to an AnalogReceivePort, operator, which specifies how the data
from multiple analog send ports should be combined to produce a single
value. Currently, the only supported operation is \(+\), which
calculates the sum of the incoming port values.

The motivation for AnalogReducePort is that it allows us to make our
ComponentClass definitions more general. For example, if we are defining
a neuron, we would define an AnalogReducePort called InjectedCurrent.
This allows us to write the membrane equation for that neuron as

\(\mathrm{d}V/\mathrm{d}t = (1/C) * InjectedCurrent\).

Then, when we connect this neuron to synapses, current-clamps, etc, we
simply need to connect the send ports containing the currents of these
ComponentClass_es to the InjectedCurrent reduce port, without having to
change our original ComponentClass definitions.

Name attribute

Each AnalogReducePort requires a name attribute, which is a valid and
uniquely identifies the AnalogReducePort from all other elements in the
ComponentClass.

Dimension attribute

Each AnalogReducePort requires a dimension attribute. This attribute
specifies the dimension of the units of the quantity that is expected to
be communicated through the AnalogReducePort and should refer to the
name of a Dimension element in the document scope.

Operator attribute

Each AnalogReducePort requires an operator attribute. The operator
reduces the connected inputs to a single value at each time point. For
example the following port,

<AnalogReducePort name="total_membrane_current" dimension="current" operator="+"/>

will take all of the electrical currents that have been connected to it
via AnalogSendPorts and sum them to get the total current passing
through the membrane.

EventSendPort

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

An EventSendPort specifies a channel over which events can be
transmitted from a component. Each EventSendPort can be connected any
number of EventReceivePort objects.

Name attribute

Each EventSendPort requires a name attribute, which is a valid and
uniquely identifies the EventSendPort from all other elements in the
ComponentClass.

EventReceivePort

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

An EventReceivePort specifies a channel over which events can be
received by a component. Each EventReceivePort must be connected to
exactly one EventSendPort.

Name attribute

Each EventReceivePort requires a name attribute, which is a valid and
uniquely identifies the EventReceivePort from all other elements in the
ComponentClass.

Dynamic Regimes

Dynamics blocks define the dynamic equations of models such as neurons,
post-synaptic responses or plasticity of synaptic weights. In Dynamics
blocks, state variables are evolved by one or more sets of ordinary
differential equations (ODE). Each set of equations is called a regime,
and only one regime can be active at a particular point in time. The
currently active regime can be changed by a transition event, which is
represented as a logical expression on the state variables. When the
logical expression evaluates to true, the transition must occur.

[fig:simple_regime_graph] illustrates a hypothetical transition graph
for a system with three state variables, \(X\), \(Y\) and
\(Z\), which transitions between three ODE regimes, regime1,
regime2 and regime3. At any time, the model will be in one and only
one of these regimes, and the state variables will evolve according to
the ODE of that regime.

[image: The dynamics block for an example component.]
The dynamics block for an example component.

Dynamics

	Children

	Multiplicity

	Required

	StateVariable

	set

	no

	Regime

	set

	yes

	Alias

	set

	no

	Constant

	set

	no

The Dynamics block represents the internal mechanisms governing the
behaviour of the component. These dynamics are based on ordinary
differential equations (ODE) but may contain non-linear transitions
between different ODE regimes. The regime graph (e.g.
[fig:simple_regime_graph]) must contain at least one Regime element,
and contain no regime islands. At any given time, a component will be in
a single regime, and can change which regime it is in through
transitions.

Note

Alias objects are defined in Dynamics blocks, not Regime blocks. This means
that aliases are the same across all regimes.

StateVariable

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	dimension

	Dimension.name

	yes

The state of the model is defined by a set of StateVariable objects. The
value of a StateVariable can change in two ways:

	continuously through TimeDerivative elements (in Regime
elements), which define how the StateVariable evolves over time,
e.g. \(dX/dt=1-X\).

	discretely through StateAssignment (in OnCondition or OnEvent
transition elements), which make discrete changes to a
StateVariable value, e.g. \(X = X + 1\).

Name attribute

Each StateVariable requires a name attribute, which is a valid and
uniquely identifies the StateVariable from all other elements in the
ComponentClass.

Dimension attribute

Each StateVariable requires a dimension attribute. This attribute
specifies the dimension of the units of the quantities that
StateVariable is expected to be initialised and updated with and should
refer to the name of a Dimension element in the document scope.

Regime

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	Children

	Multiplicity

	Required

	TimeDerivative

	set

	no

	OnCondition

	set

	no

	OnEvent

	set

	no

A Regime element represents a system of ODEs in time on StateVariable.
As such, Regime defines how the state variables change (propagate in
time) between subsequent transitions.

Name attribute

Each Regime requires a name attribute, which is a valid and uniquely
identifies the Regime from all other elements in the ComponentClass.

TimeDerivative

	Attribute

	Type/Format

	Required

	variable

	StateVariable.name

	yes

	Children

	Multiplicity

	Required

	MathInline

	singleton

	yes

TimeDerivative elements contain a mathematical expression for the
right-hand side of the ODE

\[\frac{\mathrm{d} variable}{\mathrm{d} t} = expression\]

which can contain of references to any combination of StateVariable,
Parameter, AnalogReceivePort, AnalogReducePort and Alias elements with
the exception of aliases that are derived from RandomDistribution
components. Therefore, only one TimeDerivative element is allowed per
StateVariable per Regime. If a TimeDerivative for a StateVariable is not
defined in a Regime, it is assumed to be zero.

Variable attribute

Each TimeDerivative requires a variable attribute. This should refer
to the name of a StateVariable in the ComponentClass. Only one
TimeDerivative is allowed per variable in each Regime.

Transitions

The currently active dynamic regime can be changed via transitions.
Transitions have instantaneous temporal extent (i.e. they are
event-like). There are two types of transitions, condition-triggered
transitions (see OnCondition), which are evoked when an associated
trigger expression becomes true, or event-triggered transitions (see
OnEvent), which are evoked when an associated event port receives an
event from an external component. Multiple state assignments can be
defined and multiple events can be sent within a single transition
block.

During either type of transition three instantaneous actions can occur:

	The component transitions to a target regime (can be the same as the
current regime)

	State variables can be assigned new values (see StateAssignment)

	The component can send events (see OutputEvent).

There is no order defined in transitions; this means that the order of
resolution of state assignments can be ambiguous. If, for example, we
have two transitions, T1 and T2, originating from the same Regime, in
which T1 contains the state assignment V=V+1 and T2 contains the
assignment V=V*V, and both transitions are triggered simultaneously,
then there is no guarantee about the value of V. It is left to the user
to ensure such situations do not occur. Implementations should emit a
warning when they are detected.

OnCondition

	Attribute

	Type/Format

	Required

	target_regime

	Regime.name

	no

	Children

	Multiplicity

	Required

	Trigger

	singleton

	yes

	StateAssignment

	set

	no

	OutputEvent

	set

	no

OnCondition blocks are activated when the mathematical expression in the
Trigger block becomes true. They are typically used to model spikes in
spiking neuron models, potentially emitting spike events and/or
transitioning to an explicit refractory regime.

Target_regime attribute

An OnEvent can have a target_regime attribute, which should refer to
the name of a Regime element in the ComponentClass that the dynamics
block will transition to when the trigger condition is met. If the
target_regime attribute is omitted the regime will transition to
itself.

OnEvent

	Attribute

	Type/Format

	Required

	target_regime

	Regime.name

	no

	port

	EventReceivePort.name

	yes

	Children

	Multiplicity

	Required

	StateAssignment

	set

	no

	OutputEvent

	set

	no

OnEvent blocks are activated when the dynamics component receives an
event from an external component on the port the OnEvent element is
“listening” to. They are typically used to model the transient response
to spike events from incoming synaptic connections.

Cascading of events, i.e. events triggering subsequent events, are
permitted, which in theory could be recursive through components
depending on their connectivity. It is the user’s responsibility to
ensure that infinite recursion does not occur with zero delay.
Implementations may decide to terminate after a given number of
recursive cascades of zero delay (say 1000) to prevent infinite loops,
but such limits should be modifiable by the user.

Port attribute

Each OnEvent requires a port attribute. This should refer to the name
of an EventReceivePort in the ComponentClass interface.

Target_regime attribute

OnEvent can have a targetRegime attribute, which should refer to the
name of a Regime element in the ComponentClass that the dynamics block
will transition to when the OnEvent block is triggered by an incoming
event. If the targetRegime attribute is omitted the regime will
transition to itself.

Trigger

	Children

	Multiplicity

	Required

	MathInline

	singleton

	yes

Trigger objects define when an OnCondition transition should occur. The
MathInline block of a Trigger can contain any arbitrary combination of
‘and’, ‘or’ and ‘negation’ logical operations (‘\(\&\&\)’,
‘\(||\)’ and ‘\(!\)’ respectively) on the result of pure
inequality relational operations (‘\(>\)’ and ‘\(<\)’), which
follow the syntax and semantics of ANSI C89. The inequality expression
may contain references to StateVariable, AnalogReceivePort,
AnalogReducePort, Parameter and Alias elements, with the exception of
Alias elements derived from random distributions. The OnCondition block
is triggered when the boolean result of the Trigger statement changes
from false to true.

StateAssignment

	Attribute

	Type/Format

	Required

	variable

	StateVariable.name

	yes

	Children

	Multiplicity

	Required

	MathInline

	singleton

	yes

StateAssignment elements allow discontinuous changes in the value of
state variables. Only one state assignment is allowed per variable per
transition block. The assignment expression may contain references to
StateVariable, AnalogReceivePort, AnalogReducePort, Parameter and Alias
elements, including Alias elements derived from random distributions.
State assignments are typically used to reset the membrane voltage after
an outgoing spike event or update post-synaptic response states after an
incoming spike event.

Variable attribute

Each StateAssignment requires a variable attribute. This should refer
to the name of a StateVariable in the ComponentClass. Only one
StateAssignment is allow per variable in each OnEvent or OnCondition
block.

OutputEvent

	Attribute

	Type/Format

	Required

	port

	EventSendPort.name

	yes

OutputEvent elements specify events to be raised during a transition.
They are typically used to raise spike events from within OnCondition
elements.

Port attribute

Each OutputEvent requires a port attribute. This should refer to the
name of an EventSendPort in the ComponentClass interface.

Random Distributions

Values for a property across all elements in a container (e.g. cells in
a population, post-synaptic responses, plasticity rules or delays in a
projection) can be defined as a random distribution by a Component
within a RandomDistribution_Value element. A random distribution component must
parameterize a ComponentClass with a RandomDistribution block; the
component class defines the random distribution family (e.g. normal,
cauchy, gamma, etc…). As of version 1.0, the only random distributions
available to the user are those defined in the standard library,
however, derived distributions are planned for future versions.

RandomDistribution

	Attribute

	Type/Format

	Required

	standard_library

	URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]

	yes

The names and parameters of the random distribution in the standard
library match the UncertML definitions that can be found at
http://www.uncertml.org/distributions. The subset of the UncertML
distributions that should be implemented are by NineML compliant
packages are,

	BernoulliDistribution

	BetaDistribution

	BinomialDistribution

	CauchyDistribution

	ChiSquareDistribution

	DirichletDistribution

	ExponentialDistribution

	FDistribution

	GammaDistribution

	GeometricDistribution

	HypergeometricDistribution

	LaplaceDistribution

	LogisticDistribution

	LogNormalDistribution

	MultinomialDistribution

	NegativeBinomialDistribution

	NormalDistribution

	ParetoDistribution

	PoissonDistribution

	UniformDistribution

	WeibullDistribution

Note

Note: C implementations of these distributions are available in the
GNU Scientific Library, http://www.gnu.org/software/gsl/

Standard_library attribute

The standard_library attribute is required and should point to a
URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]in the
http://www.uncertml.org/distributions/ directory.

Network Connectivity

The connection rule for cells in the source and destination populations
of a Projection (i.e. the rule that determines which source cells are
connected to which destination cells) is defined by a connection-rule
component within the Connectivity element of the Projection. This
component must parameterize a ComponentClass with a ConnectionRule
block, which describes the connection algorithm. As of version 1.0, the
only connection rules available to the user are those defined in the
standard library (e.g. all-to-all, one-to-one, probabilistic, etc…),
however, custom connectivity rules are planned for future versions.

ConnectionRule

	Attribute

	Type/Format

	Required

	standard_library

	URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]

	yes

Connection rules must be one of 6 standard library types,
all-to-all, one-to-one, probabilistic, explicit,
random-fan-out and random-fan-in, provided to the
standard_libarary attribute.

Note

In future versions, built-in connectivity rules are to be replaced with
mathematically expressed connection rules.

Standard_library attribute

The standard_library attribute is required and should point to the
URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]in
the
http://nineml.net/9ML/1.0/connectionrules/ [http://nineml.net/9ML/1.0/-connectionrules/]directory that corresponds to the desired connection rule.

All cells in the source population are connected to all cells in the
destination population.

Each cell in the source population is connected to the cell in the
destination population with the corresponding index. Note that this
requires that the source and destination populations be the same size.

All cells in the source population are connected to cells in the
destination population with a probability defined by a parameter, which
should be named probability. The properties supplied to the
probability parameter should either be a SingleValue representing the
probability of a connection between all source and destination cell
pairs, or a ArrayValue or ExternalArrayValue of size \(M{\times}N\),
where \(M\) and \(N\) are the size of the source and destination
populations respectively. For array probabilities, the data in the
ArrayValue or ExternalArrayValue are ordered by the indices

\[i_{\mathrm{prob}} = i_{\mathrm{source}} * N_{\mathrm{dest}} + i_{\mathrm{dest}}\]

where \(i_{\mathrm{prob}}\), \(i_{\mathrm{source}}\) and
\(i_{\mathrm{dest}}\) are the indices of the probability entry, and
the source and destination cells respectively, and
\(N_{\mathrm{dest}}\) is the size of the destination population.

Cells in the source population are connected to cells in the destination
population as specified by an explicit arrays. The source and
destination are defined via parameters, which should be named
sourceIndicies and destinationIndicies parameters respectively.

The properties supplied to the sourceIndicies parameter should be a
ArrayValue or ExternalArrayValue drawn from the set
\(\{1,\ldots,M\}\) where \(M\) is the size of the source
population and be the same length as the property supplied to the
target-indices parameter.

The properties supplied to the destinationIndicies parameter should be
a ArrayValue or ExternalArrayValue drawn from the set
\(\{1,\ldots,N\}\) where \(N\) is the size of the source
population and be the same length as the property supplied to the
source-indices parameter.

Each cell in the source population is connected to a fixed number of
randomly selected cells in the destination population. The number of
cells is specified by the parameter number. The property supplied to
the number parameter should be a SingleValue.

Each cell in the destination population is connected to a fixed number
of randomly selected cells in the source population. The number of cells
is specified by the parameter number. The property supplied to the
number parameter should be a SingleValue.

User Layer

Components and Properties

Component

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	Children

	Multiplicity

	Required

	[Definition,Prototype]

	singleton

	yes

	Property

	set

	no

Component elements instantiate Abstraction Layer component classes by
providing properties for each of the parameters defined the class. Each
Component is linked to a ComponentClass class by a Definition element,
which locates the component class. A Component that instantiates a
ComponentClass directly must supply matching Property elements for each
Parameter in the ComponentClass. Alternatively, a Component can inherit
a ComponentClass and set of Property elements from an existing component
by substituting the Definition for a Prototype element, which locates
the reference Component. In this case, only the properties that differ
from the reference component need to be specified.

Name attribute

Each Component requires a name attribute, which should be a valid and
uniquely identify the Component from all other elements in the document
scope.

Definition

	Attribute

	Type/Format

	Required

	url

	URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]

	no

	Body format

	Required

	ComponentClass.name

	yes

The Definition element establishes a link between a User Layer component
and Abstraction Layer ComponentClass. This ComponentClass can be located
either in the current document or in another file if a url attribute
is provided.

Url attribute

If the ComponentClass referenced by the definition element is defined
outside the current document, the url attribute specifies a
URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]for the
file which contains the ComponentClass definition. If the url
attribute is omitted the ComponentClass is referenced from the current
document.

Body

The name of the ComponentClass to be referenced ComponentClass needs to
be provided in the body of the Definition element.

Prototype

	Attribute

	Type/Format

	Required

	url

	URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]

	no

	Body format

	Required

	Component.name

	yes

The Prototype element establishes a link to an existing User Layer
Component, which defines the ComponentClass and default properties of
the Component. The reference Component can be located either in the
current document or in another file if a url attribute is provided.

Url attribute

If the prototype Component is defined outside the current file, the
URL attribute specifies a
URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]for the
file which contains the prototype Component. If the url attribute is
omitted the Component is referenced from the current document.

Body

The name of the Component to be referenced Component needs to be
provided in the body of the Prototype element.

Property

	Attribute

	Type/Format

	Required

	name

	Parameter.name

	yes

	units

	Unit.symbol

	yes

	Children

	Multiplicity

	Required

	[SingleValue,ArrayValue,ExternalArrayValue,RandomDistributionValue]

	singleton

	yes

Property elements provide values for the parameters defined in the
ComponentClass of the Component. Their name attribute should match the
name of the corresponding Parameter element in the ComponentClass. The
Property should be provided units that match the dimensionality of the
corresponding Parameter definition.

Name attribute

Each Property requires a name attribute. This should refer to the name
of a Parameter in the corresponding ComponentClass of the Component.

Units attribute

Each Property element requires a units attribute. The units
attribute specifies the units of the quantity and should refer to the
name of a Unit element in the document scope. For a dimensionless units
a Unit with no SI dimensions can be used. The SI dimensions of the
Unit should match the SI dimensions of the corresponding Parameter.

Note

“Dimensionless” parameters can be defined by referring to an empty
Dimension object, i.e. one without any power or offset attributes

Reference

	Attribute

	Type/Format

	Required

	url

	URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]

	no

	Body format

	Required

	*.name

	yes

Reference elements are used to locate User Layer elements in the
document scope of the current separate documents. In most cases, User
Layer elements (with the exception of Population elements supplied to
Projection) can be specified inline, i.e. within the element they are
required. However, it is often convenient to define a component in the
document scope as this allows it to be reused at different places within
the model. The url attribute can be used to reference a component in a
separate document, potentially one published online in a public
repository (e.g.
ModelDB [http://senselab.med.yale.edu/modeldb/ListByModelName.asp?c=19&lin=-1]
or Open Source Brain [http://www.opensourcebrain.org/]).

Url attribute

The url attribute specifies a
URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]for the
file which contains the User Layer element to be referenced. If the
url attribute is omitted the element is referenced from the current
document.

Body

The name of the User Layer element to be referenced should be included
in the body of the Reference element.

Values

In NineML, “values” are arrays that implicitly grow to fill the size of
the container (i.e. Population or Projection) they are located within.
Values can be one of four types

	SingleValue, a consistent value across the container

	ArrayValue, an explicit array defined in NineML

	ExternalArrayValue, an explicit array defined in text (space
delimited) or HDF5 format.

	RandomDistributionValue, an array of values derived from a random distribution.

SingleValue

	Body format

	Required

	integer

	yes

A SingleValue element represents an array filled with a single value.

Body

Any valid numeric value in ANSI
C89 [http://en.wikipedia.org/wiki/ANSI_C], including shorthand
scientific notation e.g. 1e-5 (\(1\times10^{-5}\)).

ArrayValue

	Children

	Multiplicity

	Required

	ArrayValueRow

	set

	no

ArrayValue elements are used to represent an explicit array of values.
ArrayValue elements contain a set of ArrayValue_Row elements (i.e.
unordered, since they are explicitly ordered by their index
attribute) in hierarchical data formats (see Serialization).
Since is significantly slower to parse than plain text
and binary formats it is not recommended to use ArrayValue for large
arrays, preferring ExternalArrayValue instead.

ArrayValueRow

	Attribute

	Type/Format

	Required

	index

	integer

	yes

	Body format

	Required

	integer

	yes

ArrayValue_Row elements represent the numerical values of the explicit
ArrayValue element.

Index attribute

The index attribute specifies the index of the ArrayValue_Row in the
ArrayValue. It must be non-negative, unique amongst the set of
ArrayValue_Row.index in the list, and the set of indices must be
contiguous for a single ArrayValue.

Body

Any valid numeric value in ANSI
C89 [http://en.wikipedia.org/wiki/ANSI_C], including shorthand
scientific notation e.g. 1e-5 (\(1\times10^{-5}\)).

Note

The order of ArrayValue_Row elements within an ArrayValue element does not
effect the interpreted order of the values in the array in keeping with the
order non-specific design philosophy of NineML.

ExternalArrayValue

	Attribute

	Type/Format

	Required

	url

	URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]

	yes

	mimeType

	MIME type [http://en.wikipedia.org/wiki/Internet_media_type]

	yes

	columnName

	Data column name in external file

	yes

ExternalArrayValue elements are used to explicitly define large arrays
of values. The array data are not stored within the hierarchical data format
but more efficient text or binary HDF5
(http://www.hdfgroup.org/HDF5/)
formats. As of version 1.0, the data in the external files are stored as
dense float or integer arrays. However, sparse-array formats are planned for future
versions.

The columnName attribute of the ExternalArrayValue elements allows
multiple arrays of equal length (and therefore typically relating to the
same container) to be stored in the same external file.

Url attribute

The url attribute specifies the
URL [http://en.wikipedia.org/wiki/Uniform_resource_locator]of the
external data file.

MimeType attribute

The mimetype attribute specifies the data format for the external
value list in the MIME
type [http://en.wikipedia.org/wiki/Internet_media_type] syntax.
Currently, only two formats are supported
application/vnd.nineml.valuelist.text and
application/vnd.nineml.valuelist.hdf5.

	application/vnd.nineml.externalvaluearray.text - an ASCII text
file with a single row of white-space separated column names,
followed by arbitrarily many white-space separated data rows of
numeric values. Each numeric value is associated with the column name
corresponding to the same index the along the row. Therefore, the
number of items in each row must be the same.

	application/vnd.nineml.externalvaluearray.hdf5 - a
HDF5 [http://www.hdfgroup.org/HDF5/] data file containing a
single level of named members of array->float or array->int type.

ColumnName attribute

Each ExternalArrayValue must have a columnName attribute, which refers
to a column header in the external data file.

RandomDistributionValue

	Children

	Multiplicity

	Required

	[Component,Reference]

	singleton

	yes

RandomDistributionValue elements represent arrays of values drawn from random
distributions, which are defined by a Component elements. The size of the
generated array is determined by the size of the container (i.e.
Population or Projection) the RandomDistributionValue is nested within.

Populations

Population

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	Children

	Multiplicity

	Required

	Size

	singleton

	yes

	Cell

	singleton

	yes

A Population defines a set of dynamic components of the same class. The
size of the set is specified by the Size element. The properties of the
dynamic components are generated from value types, which can be constant
across the population, randomly distributed or individually specified
(see Values).

Name attribute

Each Population requires a name attribute, which should be a valid and
uniquely identify the Population from all other elements in the document
scope.

Cell

	Children

	Multiplicity

	Required

	[Component,Reference]

	singleton

	yes

The Cell element specifies the dynamic components that will make up the
population. The Component can be defined inline or via a Reference
element.

Size

	Body format

	Required

	int

	yes

The number of cells in the population is specified by the integer
provided in the body of the Size element. In future versions this may be
extended to allow the size of a population to be derived from other
features of the Population.

Body

The text of the Size element contains an integer representing the size of the
population.

Projections

Projections define the synaptic connectivity between two populations,
the post-synaptic response of the connections, the plasticity rules that
modulate the post-synaptic response and the transmission delays.
Synaptic and plasticity dynamic components are created if the connection
rule determines there is a connection between a particular source and
destination cell pair. The synaptic and plasticity components are then
connected to and from explicitly defined ports of the cell components in
the source and projection populations

SingleValue and RandomDistributionValue elements used in properties of a projection
(in the Connectivity, Response, Plasticity and Delay elements) take the
size of the number of connections made. Explicitly array values,
ArrayValue and ExternalArrayValue, are only permitted with connection
rules (as defined by the Connectivity element) where the number of
connections is predetermined (i.e. one-to-one, all-to-all and
explicit). Explicit arrays are ordered by the indices

\[i_{\mathrm{value}} = i_{\mathrm{source}} * N_{\mathrm{dest}} + i_{\mathrm{dest}}\]

where \(i_{\mathrm{value}}\), \(i_{\mathrm{source}}\) and
\(i_{\mathrm{dest}}\) are the indices of the array entry, and the
source and destination cells respectively, and \(N_{\mathrm{dest}}\)
is the size of the destination population. Value indices that do not
correspond to connected pairs are omitted, and therefore the arrays are
the same size as the number of connections.

Projection

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	Children

	Multiplicity

	Required

	Source

	singleton

	yes

	Destination

	singleton

	yes

	Connectivity

	singleton

	yes

	Response

	singleton

	yes

	Plasticity

	singleton

	no

	Delay

	singleton

	yes

The Projection element contains all the elements that define a
projection between two populations and should be uniquely identified in
the scope of the document.

Name attribute

Each Projection requires a name attribute, which should be a valid and
uniquely identify the Projection from all other elements in the document
scope.

Connectivity

	Children

	Multiplicity

	Required

	Component

	singleton

	yes

Each Connectivity element contains a Component, which defines the
connection pattern of the cells in the source population to cells in the
destination population (i.e. binary ‘connected’ or ‘not connected’
decisions). For each connection that is specified, a synapse, consisting
of a post-synaptic response and plasticity dynamic components, is
created to model the synaptic interaction between the cells.

Source

	Children

	Multiplicity

	Required

	[Component,Reference]

	singleton

	yes

	FromDestination

	set

	no

	FromPlasticity

	set

	no

	FromResponse

	set

	no

The Source element specifies the pre-synaptic population or selection
(see Selection) of the projection and all the port connections it
receives. The source population is specified via a Reference element
since it should not be defined within the Projection. The source
population can receive incoming port connections from the post-synaptic
response (see FromResponse), the plasticity rule (see FromPlasticity) or
the post-synaptic population directly (see FromDestination). Connections
with these ports are only made if the Connectivity_determines that the
source and destination cells should be connected.

Destination

	Children

	Multiplicity

	Required

	[Component,Reference]

	singleton

	yes

	FromSource

	set

	no

	FromPlasticity

	set

	no

	FromResponse

	set

	no

The Destination element specifies the post-synaptic or selection (see
Selection) population of the projection and all the port connections it
receives. The destination population is specified via a Reference
element since it should not be defined within the Projection. The source
population can receive incoming port connections from the post-synaptic
response (see FromResponse), the plasticity rule (see FromPlasticity) or
the pre-synaptic population directly (see FromSource). Connections with
these ports are only made if the Connectivity_determines that the source
and destination cells should be connected.

Response

	Children

	Multiplicity

	Required

	[Component,Reference]

	singleton

	yes

	FromSource

	set

	no

	FromDestination

	set

	no

	FromPlasticity

	set

	no

The Response defines the effect on the post-synaptic cell dynamics of an
incoming synaptic input. The additional dynamics are defined by a
Component element, which can be defined inline or referenced. For static
connections (i.e. those without a Plasticity element), the magnitude of
the response (i.e. synaptic weight) is typically passed as a property of
the Response element.

The post-synaptic response dynamics can receive incoming port
connections from the plasticity rule (see FromPlasticity) or the pre or
post synaptic populations (see FromSource and FromDestination). The
post-synaptic response object is implicitly created and connected to
these ports if the Connectivity_determines that the source and
destination cells should be connected.

Plasticity

	Children

	Multiplicity

	Required

	[Component,Reference]

	singleton

	yes

	FromSource

	set

	no

	FromDestination

	set

	no

	FromResponse

	set

	no

The Plasticity element describes the dynamic processes that modulate the
dynamics of the post-synaptic response, typically the magnitude of the
response (see Response). If the synapse is not plastic the
Plasticity element can be omitted.

The plasticity dynamics can receive incoming port connections from the
post-synaptic response rule (see FromResponse) or the pre or post
synaptic populations (see FromSource and FromDestination). The
plasticity object is implicitly created and connected to these ports if
the Connectivity_determines that the source and destination cells should
be connected.

FromSource

	Attribute

	Type/Format

	Required

	sender

	[AnalogSendPort,EventSendPort].name

	yes

	receiver

	[AnalogReceivePort,EventReceivePort,AnalogReducePort].name

	yes

The FromSource element specifies a port connection to the projection
component (either the destination cell, post-synaptic response or
plasticity dynamics) inside which it is inserted from the source cell
dynamics.

Sender attribute

Each FromSource element requires a sender attribute. This should refer
to the name of a AnalogSendPort or EventSendPort in the Cell_of the
source population. The transmission mode of the port (i.e. analog or
event) should match that of the port referenced by the receiver
attribute.

Receiver attribute

Each FromSource element requires a receiver attribute. This should
refer to the name of a AnalogReceivePort, EventReceivePort or
AnalogReducePort in the Component in the enclosing
Source/Destination/Plasticity/Response element. The transmission mode
of the port (i.e. analog or event) should match that of the port
referenced by the sender attribute.

FromDestination

	Attribute

	Type/Format

	Required

	sender

	[AnalogSendPort,EventSendPort].name

	yes

	receiver

	[AnalogReceivePort,EventReceivePort,AnalogReducePort].name

	yes

The FromDestination element specifies a port connection to the
projection component (either the source cell, post-synaptic response or
plasticity dynamics) inside which it is inserted from the destination
cell dynamics.

Sender attribute

Each FromDestination element requires a sender attribute. This should
refer to the name of a AnalogSendPort or EventSendPort in the Cell_of the
source population. The transmission mode of the port (i.e. analog or
event) should match that of the port referenced by the receiver
attribute.

Receiver attribute

Each FromDestination element requires a receiver attribute. This
should refer to the name of a AnalogReceivePort, EventReceivePort or
AnalogReducePort in the Component in the enclosing
Source/Destination/Plasticity/Response element. The transmission mode
of the port (i.e. analog or event) should match that of the port
referenced by the sender attribute.

FromPlasticity

	Attribute

	Type/Format

	Required

	sender

	[AnalogSendPort,EventSendPort].name

	yes

	receiver

	[AnalogReceivePort,EventReceivePort,AnalogReducePort].name

	yes

The FromPlasticity element specifies a port connection to the projection
component (either the source cell, destination cell or post-synaptic
response dynamics) inside which it is inserted from the plasticity
dynamics.

Sender attribute

Each FromPlasticity element requires a sender attribute. This should
refer to the name of a AnalogSendPort or EventSendPort in the
Cell->Component_ of the source population. The transmission mode of the
port (i.e. analog or event) should match that of the port referenced by
the receiver attribute.

Receiver attribute

Each FromPlasticity element requires a receiver attribute. This should
refer to the name of a AnalogReceivePort, EventReceivePort or
AnalogReducePort in the Component in the enclosing Source/Destination/
Plasticity/Response element. The transmission mode of the port (i.e.
analog or event) should match that of the port referenced by the
sender attribute.

FromResponse

	Attribute

	Type/Format

	Required

	sender

	[AnalogSendPort,EventSendPort].name

	yes

	receiver

	[AnalogReceivePort,EventReceivePort,AnalogReducePort].name

	yes

The FromResponse element specifies a port connection to the projection
component (either the source cell, destination cell or plasticity
dynamics) inside which it is inserted from the post-synaptic response
dynamics.

Sender attribute

Each FromResponse element requires a sender attribute. This should
refer to the name of a AnalogSendPort or EventSendPort in the
Cell->Component_ of the source population. The transmission mode of the
port (i.e. analog or event) should match that of the port referenced by
the receiver attribute.

Receiver attribute

Each FromResponse element requires a receiver attribute. This should
refer to the name of a AnalogReceivePort, EventReceivePort or
AnalogReducePort in the Component in the enclosing Source/Destination/
Plasticity/Response element. The transmission mode of the port (i.e.
analog or event) should match that of the port referenced by the
sender attribute.

Delay

	Attribute

	Type/Format

	Required

	units

	Unit.symbol

	yes

	Children

	Multiplicity

	Required

	[SingleValue,ArrayValue,ExternalArrayValue,RandomDistributionValue]

	singleton

	yes

In version 1.0, the Delay element specifies the delay between the
pre-synaptic cell port and both the Plasticity_and Response. In future
versions, it is planned to include the delay directly into the
port-connection objects (i.e. FromSource, FromDestination, etc…) to
allow finer control of the delay between the different components.

Units attribute

The units attribute specifies the units of the delay and should refer
to the name of a Unit element in the document scope. The units should be
temporal, i.e. have \(t=1\) and all other SI dimensions set to 0.

Selections: combining populations and subsets

Selections are designed to allow sub and super-sets of cell populations
to be projected to/from other populations (or selections thereof). In
version 1.0, the only supported operation is the concatenation of
multiple populations into super-sets but in future versions it is
planned to provide “slicing” operations to select sub sets of
populations.

Selection

	Attribute

	Type/Format

	Required

	name

	identifier

	yes

	Children

	Multiplicity

	Required

	Concatenate

	singleton

	yes

The Selection element contains the operations that are used to select
the cells to add to the selection.

Name attribute

Each Selection requires a name attribute, which should be a valid and
uniquely identify the Selection from all other elements in the document
scope.

Concatenate

	Children

	Multiplicity

	Required

	Item

	set

	yes

The Concatenate element is used to add populations to a selection. It
contains a set of Item elements which reference the Population elements
to be concatenated. The order of the Item elements does not effect the
order of the concatenation, which is determined by the index attribute
of the Item elements. The set of Item_@index attributes must be
non-negative, contiguous, not contain any duplicates and contain the
index 0 (i.e. \(i=0,\ldots,N-1\)).

Item

	Attribute

	Type/Format

	Required

	index

	integer

	yes

	Children

	Multiplicity

	Required

	Reference([Population,Selection])

	singleton

	yes

Each Item element references as a Population or Selection element and
specifies their order in the concatenation.

Index attribute

Each Item requires a index attribute. This attribute specifies the
order in which the Populations in the Selection are concatenated and
thereby the indices of the cells within the combined Selection.

Note

This preserves the order non-specific nature of elements in NineML

Serialization

There are four officially supported data formats for serializing NineML:
XML [http://www.w3.org/XML/], JSON [http://www.json.org/], YAML [http://yaml.org], and HDF5 [http://www.hdfgroup.org/HDF5/] (although it is possible to use other data
formats). When referenced from another NineML document, the format of a NineML
file is recognised by the extension of its filename, i.e:

	Format

	Extension

	XML [http://www.w3.org/XML/]

	.xml

	JSON [http://www.json.org/]

	.json

	YAML [http://yaml.org]

	.yml

	HDF5 [http://www.hdfgroup.org/HDF5/]

	.h5

Note

Tools that plan to support NineML only need to support one data
format since the officially supported NineML Python Library [http://github.com/INCF/nineml-python] can
be used to convert between the data formats listed above.

NineML is intended to be an abstract object model that is independent of the
choice of hierarchical data format used to serialize it. However, some aspects
of NineML were designed with XML in mind and there are some subtle differences
between hierarchical data formats that prevent general mappings from XML.
Therefore, in order to map the NineML object model onto non-XML data formats
some additional conventions are required.

Several features of XML that are used in the NineML specification and are not
present in JSON [http://www.json.org/]/YAML [http://yaml.org] (JSON [http://www.json.org/] and YAML [http://yaml.org] are equivalent representations),
and/or HDF5 [http://www.hdfgroup.org/HDF5/] are:

	Namespaces (xmlns):

	There is no concept of namespaces in JSON [http://www.json.org/]/YAML [http://yaml.org] or HDF5 [http://www.hdfgroup.org/HDF5/], which are used
in NineML to distinguish the document version and annotations.

	Attributes:

	In JSON [http://www.json.org/]/YAML [http://yaml.org] there is no concept of attributes. This does not pose a
problem if a given NineML type does not have body text as attributes can
be treated as separate children. However, for NineML types that do, such as
Constant and Definition, both the body text and attributes
can’t be represented without additional conventions.

	Sets of child elements:

	While there are list structures in JSON [http://www.json.org/]/YAML [http://yaml.org], which can be used to
represent arbitrarily sized sets of child elements (e.g. parameters,
properties, regimes), HDF5 [http://www.hdfgroup.org/HDF5/] does not have an equivalent structure for
storing sets of objects of the same type.

Fortunately, JSON [http://www.json.org/], YAML [http://yaml.org] and HDF5 [http://www.hdfgroup.org/HDF5/] all permit arbitrary strings as
field names, whereas element/attribute names in XML must start with
an alphabetic character. Therefore we can use non alphanumeric characters, in
this case the ‘@’ symbol, to escape the following special fields.

	@namespace:

	Holds the namespace of the element as the special attribute xmlns does in
XML [http://www.w3.org/XML/].

	@body:

	Used to differentiate body text from other attributes in JSON [http://www.json.org/]/YAML [http://yaml.org] and
HDF5 [http://www.hdfgroup.org/HDF5/] iff there are other attributes (Datasets could technically be used as
body elements in HDF5 but they are designed to hold array data not single
values). Note that for JSON [http://www.json.org/]/YAML [http://yaml.org] and HDF5 [http://www.hdfgroup.org/HDF5/] if the serial form of an
element only contains body text (e.g. MathInline) then this is
“flattened” to be the sole value of the element.

	@multiple:

	A HDF5 [http://www.hdfgroup.org/HDF5/] group that has a @multiple attribute equal to ‘true’,
contains multiple child elements of the given NineML type, which are stored
as sub-groups named by arbitrary integer indices. Note that this is not
strictly required for elements in the NineML specification (although it
simplifies code to read them), where the multiplicity of children of a
given type is defined, but is for parsing arbitrary object hierarchies in
annotations.

Note

Future versions of NineML will be designed to minimise the need for
the the @body field within the NineML object model. However,
it will still be required to represent arbitrary annotations and
language extensions designed in XML [http://www.w3.org/XML/].

ArrayValues should also be stored within native data array structures
of the format (e.g. HDF5 [http://www.hdfgroup.org/HDF5/] datasets) instead of within ArrayValueRow
elements.

The following model of a Izhikevich neuron uses both shows an example of
how namespaces and body elements are represented natively in XML [http://www.w3.org/XML/].

<?xml version='1.0' encoding='UTF-8'?>
<NineML xmlns="http://nineml.net/9ML/1.0">
 <ComponentClass name="Izhikevich">
 <Parameter name="C_m" dimension="capacitance"/>
 <Parameter name="a" dimension="per_time"/>
 <Parameter name="alpha" dimension="per_time_voltage"/>
 <Parameter name="b" dimension="per_time"/>
 <Parameter name="beta" dimension="per_time"/>
 <Parameter name="c" dimension="voltage"/>
 <Parameter name="d" dimension="voltage_per_time"/>
 <Parameter name="theta" dimension="voltage"/>
 <Parameter name="zeta" dimension="voltage_per_time"/>
 <AnalogReducePort name="Isyn" dimension="current" operator="+"/>
 <EventSendPort name="spike"/>
 <AnalogSendPort name="V" dimension="voltage"/>
 <Dynamics>
 <StateVariable name="U" dimension="voltage_per_time"/>
 <StateVariable name="V" dimension="voltage"/>
 <Regime name="subthreshold_regime">
 <TimeDerivative variable="U">
 <MathInline>a*(-U + V*b)</MathInline>
 </TimeDerivative>
 <TimeDerivative variable="V">
 <MathInline>-U + V*beta + alpha*(V*V) + zeta + Isyn/C_m</MathInline>
 </TimeDerivative>
 <OnCondition target_regime="subthreshold_regime">
 <Trigger>
 <MathInline>V > theta</MathInline>
 </Trigger>
 <StateAssignment variable="U">
 <MathInline>U + d</MathInline>
 </StateAssignment>
 <StateAssignment variable="V">
 <MathInline>c</MathInline>
 </StateAssignment>
 <OutputEvent port="spike"/>
 </OnCondition>
 </Regime>
 </Dynamics>
 <Annotations>
 <Validation xmlns="http://github.com/INCF/nineml-python" dimensionality="True"/>
 </Annotations>
 </ComponentClass>
 <Component name="SampleIzhikevich">
 <Definition url="./izhikevich.xml">Izhikevich</Definition>
 <Property name="C_m" units="pF">
 <SingleValue>1.0</SingleValue>
 </Property>
 <Property name="a" units="per_ms">
 <SingleValue>0.2</SingleValue>
 </Property>
 <Property name="alpha" units="per_mV_ms">
 <SingleValue>0.04</SingleValue>
 </Property>
 <Property name="b" units="per_ms">
 <SingleValue>0.025</SingleValue>
 </Property>
 <Property name="beta" units="per_ms">
 <SingleValue>5.0</SingleValue>
 </Property>
 <Property name="c" units="mV">
 <SingleValue>-75.0</SingleValue>
 </Property>
 <Property name="d" units="mV_per_ms">
 <SingleValue>0.2</SingleValue>
 </Property>
 <Property name="theta" units="mV">
 <SingleValue>-50.0</SingleValue>
 </Property>
 <Property name="zeta" units="mV_per_ms">
 <SingleValue>140.0</SingleValue>
 </Property>
 <Initial name="U" units="mV_per_ms">
 <SingleValue>-1.625</SingleValue>
 </Initial>
 <Initial name="V" units="mV">
 <SingleValue>-70.0</SingleValue>
 </Initial>
 </Component>
 <Dimension name="capacitance" m="-1" l="-2" t="4" i="2"/>
 <Dimension name="current" i="1"/>
 <Unit symbol="mV" dimension="voltage" power="-3"/>
 <Unit symbol="mV_per_ms" dimension="voltage_per_time" power="0"/>
 <Unit symbol="pF" dimension="capacitance" power="-12"/>
 <Unit symbol="per_mV_ms" dimension="per_time_voltage" power="6"/>
 <Unit symbol="per_ms" dimension="per_time" power="3"/>
 <Dimension name="per_time" t="-1"/>
 <Dimension name="per_time_voltage" m="-1" l="-2" t="2" i="1"/>
 <Dimension name="voltage" m="1" l="2" t="-3" i="-1"/>
 <Dimension name="voltage_per_time" m="1" l="2" t="-4" i="-1"/>
</NineML>

whereas in YAML [http://yaml.org] the @namespace and @body fields must be used in place
of the xmlns attribute and body text.

NineML:
 '@namespace': http://nineml.net/9ML/1.0
 ComponentClass:
 - name: Izhikevich
 Parameter:
 - {name: C_m, dimension: capacitance}
 - {name: a, dimension: per_time}
 - {name: alpha, dimension: per_time_voltage}
 - {name: b, dimension: per_time}
 - {name: beta, dimension: per_time}
 - {name: c, dimension: voltage}
 - {name: d, dimension: voltage_per_time}
 - {name: theta, dimension: voltage}
 - {name: zeta, dimension: voltage_per_time}
 AnalogReducePort:
 - {name: Isyn, dimension: current, operator: +}
 EventSendPort:
 - {name: spike}
 AnalogSendPort:
 - {name: V, dimension: voltage}
 Dynamics:
 StateVariable:
 - {name: U, dimension: voltage_per_time}
 - {name: V, dimension: voltage}
 Regime:
 - name: subthreshold_regime
 TimeDerivative:
 - {MathInline: a*(-U + V*b), variable: U}
 - {MathInline: -U + V*beta + alpha*(V*V) + zeta + Isyn/C_m, variable: V}
 OnCondition:
 - Trigger: {MathInline: V > theta}
 target_regime: subthreshold_regime
 StateAssignment:
 - {MathInline: U + d, variable: U}
 - {MathInline: c, variable: V}
 OutputEvent:
 - {port: spike}
 Annotations:
 Validation:
 - {'@namespace': 'http://github.com/INCF/nineml-python', dimensionality: 'True'}
 Component:
 - Definition: {'@body': Izhikevich, url="./izhikevich.yml"}
 name: SampleIzhikevich
 Property:
 - {name: C_m, SingleValue: 1.0, units: pF}
 - {name: a, SingleValue: 0.2, units: per_ms}
 - {name: alpha, SingleValue: 0.04, units: per_mV_ms}
 - {name: b, SingleValue: 0.025, units: per_ms}
 - {name: beta, SingleValue: 5.0, units: per_ms}
 - {name: c, SingleValue: -75.0, units: mV}
 - {name: d, SingleValue: 0.2, units: mV_per_ms}
 - {name: theta, SingleValue: -50.0, units: mV}
 - {name: zeta, SingleValue: 140.0, units: mV_per_ms}
 Initial:
 - {name: U, SingleValue: -1.625, units: mV_per_ms}
 - {name: V, SingleValue: -70.0, units: mV}
 Dimension:
 - {name: capacitance, m: -1, l: -2, t: 4, i: 2}
 - {name: current, i: 1}
 - {name: per_time, t: -1}
 - {name: per_time_voltage, m: -1, l: -2, t: 2, i: 1}
 - {name: voltage, m: 1, l: 2, t: -3, i: -1}
 - {name: voltage_per_time, m: 1, l: 2, t: -4, i: -1}
 Unit:
 - {symbol: mV, dimension: voltage, power: -3}
 - {symbol: mV_per_ms, dimension: voltage_per_time, power: 0}
 - {symbol: pF, dimension: capacitance, power: -12}
 - {symbol: per_mV_ms, dimension: per_time_voltage, power: 6}
 - {symbol: per_ms, dimension: per_time, power: 3}

Example representation of sets of Parameter elements in HDF5 format:

/NineML/ComponentClass/Parameter/@multiple = true
/NineML/ComponentClass/Parameter/0/name = 'C_m'
/NineML/ComponentClass/Parameter/0/dimension = 'capacitance'
/NineML/ComponentClass/Parameter/1/name = 'a'
/NineML/ComponentClass/Parameter/1/dimension = 'per_time'
...

Examples

Single Cell Models

Izhikevich Model

In this first example, we are describing how to represent the Izhikevich
model in NineML [Izhikevich2003]. The model is
composed of single ComponentClass, containing a single Regime,
subthresholdRegime, and two state variables, \(U\) & \(V\).

The ODEs defined for the Regime are:

\[\begin{split}\begin{aligned}
\frac{dV}{dt} &= 0.04*V*V + 5*V + 140.0 - U + i_{\mathrm{synapse}} + i_{\mathrm{injected}} \\
\frac{dU}{dt} &= a * (b* V -U)\end{aligned}\end{split}\]

The ComponentClass has a single OnCondition transition, is triggered
when \(V>theta\). When triggered, It causes an Event called
spikeOutput to be emitted, and two StateAssignments to be made:

\[\begin{split}\begin{aligned}
U &\leftarrow U + d \\
V &\leftarrow c\end{aligned}\end{split}\]

The target-regime of the OnCondition transition is not declared
explicitly in the XML, implying that the target-regime is the same as
the source-regime, i.e. subthresholdRegime.

The RegimeGraph is shown in Figure [fig:EX1_RegimeGraph]

[image: RegimeGraph for the XML model in this section.]
RegimeGraph for the XML model in this section.

Using this Abstraction Layer definition, as well as suitable parameters
from the user layer;
\(a=0.02, b=0.2, c=-65, d= 8, i_{\mathrm{injected}}= 5.0\), we can
simulate this, giving output as shown in Figure [fig:Ex1_Output].

In Figure [fig:Ex1_Output], we can see the value of the StateVariable
\(V\) over time. We can also see that when the value of
\(V>theta\) triggers the condition, we emit a spike, and the
StateAssignment of \(V \leftarrow c\) resets the value of \(V\).
The corresponding Abstraction Layer description for this model is:

NineML:
 '@namespace': http://nineml.net/9ML/1.0
 ComponentClass:
 - name: Izhikevich
 Parameter:
 - {name: a, dimension: per_time}
 - {name: b, dimension: per_voltage}
 - {name: c, dimension: voltage}
 - {name: d, dimension: dimensionless}
 - {name: iInj, dimension: current}
 - {name: theta, dimension: voltage}
 AnalogReducePort:
 - {name: iSyn, dimension: current, operator: +}
 EventSendPort:
 - {name: spikeOutput}
 AnalogSendPort:
 - {name: V, dimension: voltage}
 Dynamics:
 StateVariable:
 - {name: U, dimension: dimensionless}
 - {name: V, dimension: voltage}
 Regime:
 - name: subthresholdRegime
 TimeDerivative:
 - {variable: U, MathInline: a*(-U + V*b)}
 - {variable: V, MathInline: (5*V + 0.04*(V*V)/unitV + unitR*(iInj + iSyn)
 + unitV*(-U + 140.0))/unitT}
 OnCondition:
 - Trigger: {MathInline: V > theta}
 target_regime: subthresholdRegime
 StateAssignment:
 - {variable: U, MathInline: U + d}
 - {variable: V, MathInline: c}
 OutputEvent:
 - {port: spikeOutput}
 Constant:
 - {name: unitR, units: Ohm, '@body': 1.0}
 - {name: unitT, units: s, '@body': 1.0}
 - {name: unitV, units: V, '@body': 1.0}
 Dimension:
 - {name: dimensionless}
 - {name: per_time, t: -1}
 - {name: per_voltage, m: -1, l: -2, t: 3, i: 1}
 - {name: voltage, m: 1, l: 2, t: -3, i: -1}
 - {symbol: Ohm, dimension: resistance, power: 0}
 - {symbol: V, dimension: voltage, power: 0}
 - {symbol: s, dimension: time, power: 1}

User Layer description for the above example is:

NineML:
 '@namespace': http://nineml.net/9ML/1.0
 ComponentClass:
 - name: IzhikevichProperties
 Definition: {'@body': Izhikevich}
 Property:
 - {name: a, SingleValue: 0.02, units: per_s}
 - {name: b, SingleValue: 0.2, units: per_V}
 - {name: c, SingleValue: -65.0, units: mV}
 - {name: d, SingleValue: 8.0, units: unitless}
 - {name: iInj, SingleValue: 10.0, units: nA}
 - {name: theta, SingleValue: 50.0, units: mV}
 Unit:
 - {symbol: mV, dimension: voltage, power: -3}
 - {symbol: per_V, dimension: per_voltage, power: 0}
 - {symbol: per_s, dimension: per_time, power: 0}
 - {symbol: unitless, dimension: dimensionless, power: 0}
 Dimension:
 - {name: dimensionless}
 - {name: per_time, t: -1}
 - {name: per_voltage, m: -1, l: -2, t: 3, i: 1}
 - {name: voltage, m: 1, l: 2, t: -3, i: -1}

Here, we show the simulation results of this XML representation with an
initial V=-60mV and U=0.

[image: Result of simulating of the XML model in this section]
Result of simulating of the XML model in this section

Leaky Integrate and Fire model

In this example, we build a representation of a integrate-and-fire
neuron, with an attached input synapse [Abbott1999].
We have a single StateVariable, iaf_V. This time, the neuron has an
absolute refractory period; which is implemented by using 2 regimes.
RegularRegime & RefractoryRegime In RegularRegime, the neuron
voltage evolves as:

\[\begin{aligned}
\frac{d(iaf_V)}{dt} = \frac{ iaf_gl*(iaf_vrest - iaf_V) + iaf_ISyn+cobaExcit_I} {iaf_cm}\end{aligned}\]

In RefractoryRegime, the neuron voltage does not change in response
to any input:

\[\begin{aligned}
\frac{d(iaf_V)}{dt} = 0\end{aligned}\]

In both Regimes, the synapses dynamics evolve as:

\[\begin{aligned}
\frac{d(cobaExcit_g)}{dt} = - \frac{cobaExcit_g}{cobaExcit_tau}\end{aligned}\]

The neuron has two EventPorts, iaf_spikeoutput is a send port, which
sends events when the neuron fires, and cobaExcit_spikeinput is a
recv port, which tells the attached synapse that it should ‘fire’. The
neuron has 4 transitions, 2 OnEvent transitions and 2 OnCondition
transitions. Two of the Transitions are triggered by
cobaExcit_spikeinput events, which cause the conductance of the
synapse to increase by an amount \(q\), These happen in both
Regimes. The other OnConditions:

	One is triggered the voltage being above threshold, which moves the
component from RegularRegime to RefractoryRegime, sets V to the
reset-voltage also emits a spike

	The other is triggered by enough time having passed for the component
to come out of the RefractoryRegime and move back to the
RegularRegime

The corresponding Regime Graph is shown in Figure 5.

[image: RegimeGraph for the XML model in this section]
RegimeGraph for the XML model in this section

The resulting description for the Abstraction Layer is:

NineML:
 '@namespace': http://nineml.net/9ML/1.0
 ComponentClass:
 - name: IafCoba
 Parameter:
 - {name: cobaExcit_q, dimension: conductanceDensity}
 - {name: cobaExcit_tau, dimension: time}
 - {name: cobaExcit_vrev, dimension: voltage}
 - {name: iaf_cm, dimension: capacitance}
 - {name: iaf_gl, dimension: conductanceDensity}
 - {name: iaf_taurefrac, dimension: time}
 - {name: iaf_vreset, dimension: voltage}
 - {name: iaf_vrest, dimension: voltage}
 - {name: iaf_vthresh, dimension: voltage}
 EventReceivePort:
 - {name: cobaExcit_spikeinput}
 AnalogReducePort:
 - {name: iaf_ISyn, dimension: current, operator: +}
 EventSendPort:
 - {name: iaf_spikeoutput}
 AnalogSendPort:
 - {name: cobaExcit_I, dimension: current}
 - {name: iaf_V, dimension: voltage}
 Dynamics:
 StateVariable:
 - {name: cobaExcit_g, dimension: conductanceDensity}
 - {name: iaf_V, dimension: voltage}
 - {name: iaf_tspike, dimension: time}
 Regime:
 - name: RefractoryRegime
 TimeDerivative:
 - {variable: cobaExcit_g, MathInline: -cobaExcit_g/cobaExcit_tau}
 OnEvent:
 - port: cobaExcit_spikeinput
 target_regime: RefractoryRegime
 StateAssignment:
 - {variable: cobaExcit_g, MathInline: cobaExcit_g + cobaExcit_q}
 OnCondition:
 - Trigger: {MathInline: t > iaf_taurefrac + iaf_tspike}
 target_regime: RegularRegime
 - name: RegularRegime
 TimeDerivative:
 - {variable: cobaExcit_g, MathInline: -cobaExcit_g/cobaExcit_tau}
 - {variable: iaf_V, MathInline: (cobaExcit_I + iaf_ISyn + iaf_gl*(-iaf_V +
 iaf_vrest))/iaf_cm}
 OnEvent:
 - port: cobaExcit_spikeinput
 target_regime: RegularRegime
 StateAssignment:
 - {variable: cobaExcit_g, MathInline: cobaExcit_g + cobaExcit_q}
 OnCondition:
 - Trigger: {MathInline: iaf_V > iaf_vthresh}
 target_regime: RefractoryRegime
 StateAssignment:
 - {variable: iaf_V, MathInline: iaf_vreset}
 - {variable: iaf_tspike, MathInline: t}
 OutputEvent:
 - {port: iaf_spikeoutput}
 Alias:
 - {MathInline: cobaExcit_g*(cobaExcit_vrev - iaf_V), name: cobaExcit_I}
 Dimension:
 - {name: capacitance, m: -1, l: -2, t: 4, i: 2}
 - {name: conductanceDensity, m: -1, l: -2, t: 3, i: 2}
 - {name: time, t: 1}
 - {name: voltage, m: 1, l: 2, t: -3, i: -1}

The User Layer description for the above example is:

NineML:
 '@namespace': http://nineml.net/9ML/1.0
 Component:
 name: IaFCobaProperties
 Definition: {'@body': IafCoba}
 Property:
 - {name: cobaExcit_q, SingleValue: 1.0, units: uF_per_cm2}
 - {name: cobaExcit_tau, SingleValue: 2.0, units: ms}
 - {name: cobaExcit_vrev, SingleValue: 0.0, units: mV}
 - {name: iaf_cm, SingleValue: 0.02, units: nF}
 - {name: iaf_gl, SingleValue: 0.1, units: mS}
 - {name: iaf_taurefrac, SingleValue: 3.0, units: ms}
 - {name: iaf_vreset, SingleValue: -70.0, units: mV}
 - {name: iaf_vrest, SingleValue: -60.0, units: mV}
 - {name: iaf_vthresh, SingleValue: 20.0, units: mV}
 Unit:
 - {symbol: mS, dimension: conductanceDensity, power: -3}
 - {symbol: mV, dimension: voltage, power: -3}
 - {symbol: ms, dimension: time, power: -3}
 - {symbol: nF, dimension: capacitance, power: -9}
 Dimension:
 - {name: capacitance, m: -1, l: -2, t: 4, i: 2}
 - {name: conductanceDensity, m: -1, l: -2, t: 3, i: 2}
 - {name: time, t: 1}
 - {name: voltage, m: 1, l: 2, t: -3, i: -1}

The simulation results is presented in Figure 6.

[image: _images/demo2_Coba1_out.pdf]
Result of simulating of the XML model in this section.
cobaExcit_spikeinput is fed events from an external Poisson
generator in this simulation

Network Models

COBA IAF Network example

This example is an implementation of Benchmark 1 from
[Brette2009], which consists of a network of an
excitatory and inhibitory IAF populations randomly connected with COBA
synapses [Vogels2005]. The excitatory and inhibitory
Population elements are created with 3,200 and 800 cells respectively.
Both populations are then concatenated into a single Selection element,
“AllNeurons”, which is used to randomly connect both populations to
every other neuron in the network with a 2% probability.

The abstraction layer description of the IAF input neuron ComponentClass is:

NineML:
 '@namespace': http://nineml.net/9ML/1.0
 ComponentClass:
 - name: IaF
 Parameter:
 - {name: iaf_cm, dimension: capacitance}
 - {name: iaf_gl, dimension: conductanceDensity}
 - {name: iaf_taurefrac, dimension: time}
 - {name: iaf_vreset, dimension: voltage}
 - {name: iaf_vrest, dimension: voltage}
 - {name: iaf_vthresh, dimension: voltage}
 AnalogReducePort:
 - {name: iaf_ISyn, dimension: current, operator: +}
 EventSendPort:
 - {name: iaf_spikeoutput}
 AnalogSendPort:
 - {name: iaf_V, dimension: voltage}
 Dynamics:
 StateVariable:
 - {name: iaf_V, dimension: voltage}
 - {name: iaf_tspike, dimension: time}
 Regime:
 - name: RefractoryRegime
 OnCondition:
 - Trigger: {MathInline: t > iaf_taurefrac + iaf_tspike}
 target_regime: RegularRegime
 - name: RegularRegime
 TimeDerivative:
 - {variable: iaf_V, MathInline: (iaf_ISyn + iaf_gl*(-iaf_V + iaf_vrest))/iaf_cm}
 OnCondition:
 - Trigger: {MathInline: iaf_V > iaf_vthresh}
 target_regime: RefractoryRegime
 StateAssignment:
 - {variable: iaf_V, MathInline: iaf_vreset}
 - {variable: iaf_tspike, MathInline: t}
 OutputEvent:
 - {port: iaf_spikeoutput}

The description of the COBA ComponentClass is:

NineML:
 '@namespace': http://nineml.net/9ML/1.0
 ComponentClass:
 - name: CoBa
 Parameter:
 - {name: coba_q, dimension: conductanceDensity}
 - {name: coba_tau, dimension: time}
 - {name: coba_vrev, dimension: voltage}
 EventReceivePort:
 - {name: coba_spikeinput}
 AnalogReceivePort:
 - {name: iaf_V, dimension: voltage}
 AnalogSendPort:
 - {name: coba_I, dimension: current}
 Dynamics:
 StateVariable:
 - {name: coba_g, dimension: conductanceDensity}
 Regime:
 - name: RegularRegime
 TimeDerivative:
 - {variable: coba_g, MathInline: -coba_g/coba_tau}
 OnEvent:
 - port: coba_spikeinput
 target_regime: RegularRegime
 StateAssignment:
 - {variable: coba_g, MathInline: coba_g + coba_q}
 Alias:
 - {MathInline: coba_g*(coba_vrev - iaf_V), name: coba_I}

The connection probability component class:

NineML:
 '@namespace': http://nineml.net/9ML/1.0
 - name: Probabilistic
 Parameter:
 - {name: probability, dimension: dimensionless}
 ConnectionRule: {standard_library: 'http://nineml.net/9ML/1.0/connectionrules/Probabilistic'}

Note

More complex connection rules are planned for NineML v2.0

The cell Component are parameterized and connected together in the User
Layer via Population, Selection and Projection elements:

NineML:
 '@namespace': http://nineml.net/9ML/1.0
 Component:
 - name: ExcConnectProb
 Definition: {'@body': Probabilistic}
 Property:
 - {name: probability, SingleValue: 0.02, units: unitless}
 - name: IaFProperties
 Definition: {'@body': IaF}
 Property:
 - {name: iaf_cm, SingleValue: 0.2, units: nF}
 - {name: iaf_gl, SingleValue: 0.05, units: mS}
 - {name: iaf_taurefrac, SingleValue: 5.0, units: ms}
 - {name: iaf_vreset, SingleValue: -60.0, units: mV}
 - {name: iaf_vrest, SingleValue: -60.0, units: mV}
 - {name: iaf_vthresh, SingleValue: -50.0, units: mV}
 - name: IaFSynapseExcitatory
 Definition: {'@body': CoBa}
 Property:
 - {name: coba_q, SingleValue: 0.004, units: uF_per_cm2}
 - {name: coba_tau, SingleValue: 5.0, units: ms}
 - {name: coba_vrev, SingleValue: 0.0, units: mV}
 - name: IaFSynapseInhibitory
 Definition: {'@body': CoBa}
 Property:
 - {name: coba_q, SingleValue: 0.051, units: uF_per_cm2}
 - {name: coba_tau, SingleValue: 5.0, units: ms}
 - {name: coba_vrev, SingleValue: -80.0, units: mV}
 - name: InhConnectProb
 Definition: {'@body': Probabilistic}
 Property:
 - {name: probability, SingleValue: 0.02, units: unitless}
 Population:
 - name: Excitatory
 Cell:
 Reference: {'@body': IaFProperties}
 Size: 3200
 - name: Inhibitory
 Cell:
 Reference: {'@body': IaFProperties}
 Size: 800
 Selection:
 - name: AllNeurons
 Concatenate:
 Item:
 - index: 0
 Reference: {'@body': Excitatory}
 - index: 1
 Reference: {'@body': Inhibitory}
 Projection:
 - name: Excitation
 Source:
 Reference: {'@body': Excitatory}
 Destination:
 Reference: {'@body': AllNeurons}
 FromResponse:
 - {send_port: coba_I, receive_port: iaf_ISyn}
 Connectivity:
 Reference: {'@body': ExcConnectProb}
 Response:
 Reference: {'@body': IaFSynapseExcitatory}
 FromSource:
 - {send_port: iaf_spikeoutput, receive_port: coba_spikeinput}
 Delay: {SingleValue: 1.5, units: ms}
 - name: Inhibition
 Source:
 Reference: {'@body': Inhibitory}
 Destination:
 Reference: {'@body': AllNeurons}
 FromResponse:
 - {send_port: coba_I, receive_port: iaf_ISyn}
 Connectivity:
 Reference: {'@body': InhConnectProb}
 Response:
 Reference: {'@body': IaFSynapseInhibitory}
 FromSource:
 - {send_port: iaf_spikeoutput, receive_port: coba_spikeinput}
 Delay: {SingleValue: 1.5, units: ms}
 Unit:
 - {symbol: mS, dimension: conductanceDensity, power: -3}
 - {symbol: mV, dimension: voltage, power: -3}
 - {symbol: nF, dimension: capacitance, power: -9}
 - {symbol: unitless, dimension: dimensionless, power: 0}
 Dimension:
 - {name: capacitance, m: -1, l: -2, t: 4, i: 2}
 - {name: conductanceDensity, m: -1, l: -2, t: 3, i: 2}
 - {name: dimensionless}
 - {name: time, t: 1}
 - {name: voltage, m: 1, l: 2, t: -3, i: -1}

	Abbott1999

	Abbott, L.~F. (1999).
Lapicque’s introduction of the integrate-and-fire model neuron (1907)}.
Brain Research Bulletin, 50(99):303–304.

	Brette2009

	Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman,
D., James, M., Diesmann, M., Morrison, A., Goodman, P.~H., Jr, F. C.~H.,
Zirpe, M., Natschl”{a}ger, T., Pecevski, D., Ermentrout, B., Djurfeldt,
M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.~P.,
El, S., and Destexhe, A. (2009).
Simulation of networks of spiking neurons: A review of tools and strategies.
Journal of computational neuroscience, 23(3):349–398.

	Izhikevich2003

	Izhikevich, E.~M. and Izhikevich, E.~M. (2003).
Simple model of spiking neurons.
IEEE Transactions on Neural Networks, 14(6):1569–72.

	Vogels2005

	Vogels, T.~P. and Abbott, L.~F. (2005).
Signal Propagation and Logic Gating in Networks of Integrate-and-Fire
Neurons. The Journal of Neuroscience, 25(46):10786 –10795.

Acknowledgments

We would like to thank the former INCF NineML Task Force members for
their contributions to the text and the concepts presented in this
document. In particular: A. Gorchetchnikov, M. Hull, Y. Le Franc, P.
Gleeson, E. Muller, R. Cannon, Birgit Kriener, Subhasis Ray and S.
Hill.

Former NineML INCF Task Force members

	Robert Cannon

	Robert Clewley

	Alex Cope

	Hugo Cornelis

	Andrew P. Davison

	Erik De Schutter

	Mikael Djurfeldt

	Damien Drix

	Hans Ekkehard Plesser

	Padraig Gleeson

	Anatoli Gorchetchnikov

	Valentin Haenel

	Sean Hill

	Michael Hull

	Birgit Kriener

	Yann Le Franc

	Chung-Chua Lo

	Abigail Morrison

	Eilif Muller

	Dragan Nikolic

	Ivan Raikov

	Subhasis Ray

	Raphael Ritz

	Malin Sandström

	Lars Schwabe

Index

 _static/ajax-loader.gif

_images/SimpleRegimeGraph.png
State Variables: X, Y, Z
Regime Graph:

Regime: regime1 Transition: t1

Xt = (5-X)/2
A/t = (X-Y)/5
dz/dt = (1-X2) Transition: t2
Transition: t3 Transition: t4

Regime: regime3

dx/dt =0
dY/dt = (X-Y)/5
dz/dt =0

uTransition: t5

Regime: regime2

dX/dt = (5-X)/2

_images/by-nc-sa.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Network Interchange for Neuroscience Modeling Language (NineML) Specification v1.1

 		
 About

 		
 NineML Committee

 		
 Licence

 		
 Website

 		
 Introduction

 		
 Scope

 		
 Design considerations

 		
 Identifiers

 		
 General Elements

 		
 Document Layout

 		
 NineML

 		
 Units and Dimensions

 		
 Dimension

 		
 Unit

 		
 Annotating Elements

 		
 Annotations

 		
 Abstraction Layer

 		
 Component Classes and Parameters

 		
 ComponentClass

 		
 Parameter

 		
 Mathematical Expressions

 		
 MathInline

 		
 Alias

 		
 Constant

 		
 Ports

 		
 AnalogSendPort

 		
 AnalogReceivePort

 		
 AnalogReducePort

 		
 EventSendPort

 		
 EventReceivePort

 		
 Dynamic Regimes

 		
 Dynamics

 		
 StateVariable

 		
 Regime

 		
 TimeDerivative

 		
 Transitions

 		
 OnCondition

 		
 OnEvent

 		
 Trigger

 		
 StateAssignment

 		
 OutputEvent

 		
 Random Distributions

 		
 RandomDistribution

 		
 Network Connectivity

 		
 ConnectionRule

 		
 User Layer

 		
 Components and Properties

 		
 Component

 		
 Definition

 		
 Prototype

 		
 Property

 		
 Reference

 		
 Values

 		
 SingleValue

 		
 ArrayValue

 		
 ArrayValueRow

 		
 ExternalArrayValue

 		
 RandomDistributionValue

 		
 Populations

 		
 Population

 		
 Cell

 		
 Size

 		
 Projections

 		
 Projection

 		
 Connectivity

 		
 Source

 		
 Destination

 		
 Response

 		
 Plasticity

 		
 FromSource

 		
 FromDestination

 		
 FromPlasticity

 		
 FromResponse

 		
 Delay

 		
 Selections: combining populations and subsets

 		
 Selection

 		
 Concatenate

 		
 Item

 		
 Serialization

 		
 Examples

 		
 Single Cell Models

 		
 Izhikevich Model

 		
 Leaky Integrate and Fire model

 		
 Network Models

 		
 COBA IAF Network example

 		
 Acknowledgments

_static/plus.png

_static/incf-logo-html.png
®
41 n cf International Neuroinformatics
Coordinating Facility
B

_static/minus.png

_static/up-pressed.png

_static/up.png

