

Welcome to Mypy documentation!

Mypy is a static type checker for Python 3 and Python 2.7.

First steps

	Introduction

	Getting started
	Installing mypy

	Running mypy

	Function signatures

	The typing module

	Library stubs and typeshed

	Next steps

	Using mypy with an existing codebase
	Start small

	Mypy runner script

	Continuous Integration

	Annotate widely imported modules

	Write annotations as you go

	Automate annotation of legacy code

	Speed up mypy runs

	Introduce stricter options

Cheat sheets

	Type hints cheat sheet (Python 3)
	Variables

	Built-in types

	Functions

	When you’re puzzled or when things are complicated

	Standard “duck types”

	Classes

	Coroutines and asyncio

	Miscellaneous

	Type hints cheat sheet (Python 2)
	Built-in types

	Functions

	When you’re puzzled or when things are complicated

	Standard “duck types”

	Classes

	Miscellaneous

Type system reference

	Built-in types

	Type inference and type annotations
	Type inference

	Explicit types for variables

	Explicit types for collections

	Compatibility of container types

	Context in type inference

	Declaring multiple variable types at a time

	Starred expressions

	Kinds of types
	Class types

	The Any type

	Tuple types

	Callable types (and lambdas)

	Union types

	Optional types and the None type

	Disabling strict optional checking

	Class name forward references

	Type aliases

	Named tuples

	The type of class objects

	Text and AnyStr

	Generators

	Class basics
	Instance and class attributes

	Annotating __init__ methods

	Class attribute annotations

	Overriding statically typed methods

	Abstract base classes and multiple inheritance

	Protocols and structural subtyping
	Predefined protocols

	Simple user-defined protocols

	Defining subprotocols and subclassing protocols

	Recursive protocols

	Using isinstance() with protocols

	Callback protocols

	Type checking Python 2 code
	Multi-line Python 2 function annotations

	Additional notes

	Dynamically typed code
	Operations on Any values

	Any vs. object

	Casts and type assertions

	Duck type compatibility

	Stub files
	Creating a stub

	Stub file syntax

	Generics
	Defining generic classes

	Generic class internals

	Defining sub-classes of generic classes

	Generic functions

	Generic methods and generic self

	Variance of generic types

	Type variables with value restriction

	Type variables with upper bounds

	Declaring decorators

	Generic protocols

	Generic type aliases

	More types
	The NoReturn type

	NewTypes

	Function overloading

	Typing async/await

	TypedDict

	Final names, methods and classes
	Final names

	Final methods

	Final classes

	Metaclasses
	Defining a metaclass

	Metaclass usage example

	Gotchas and limitations of metaclass support

Configuring and running mypy

	Running mypy and managing imports
	Specifying code to be checked

	Reading a list of files from a file

	How mypy handles imports

	Mapping file paths to modules

	How imports are found

	The mypy command line
	Specifying what to type check

	Config file

	Import discovery

	Platform configuration

	Disallow dynamic typing

	Untyped definitions and calls

	None and Optional handling

	Configuring warnings

	Miscellaneous strictness flags

	Configuring error messages

	Incremental mode

	Advanced flags

	Report generation

	Miscellaneous

	The mypy configuration file
	Config file format

	Examples

	Per-module and global options

	Global-only options

	Mypy daemon (mypy server)
	Basic usage

	Additional features

	Limitations

	Using installed packages
	Using PEP 561 compatible packages with mypy

	Making PEP 561 compatible packages

	Extending and integrating mypy
	Integrating mypy into another Python application

	Extending mypy using plugins

Miscellaneous

	Common issues and solutions
	Can’t install mypy using pip

	No errors reported for obviously wrong code

	Spurious errors and locally silencing the checker

	Unexpected errors about ‘None’ and/or ‘Optional’ types

	Mypy runs are slow

	Types of empty collections

	Redefinitions with incompatible types

	Invariance vs covariance

	Declaring a supertype as variable type

	Complex type tests

	Python version and system platform checks

	Displaying the type of an expression

	Import cycles

	Using classes that are generic in stubs but not at runtime

	Silencing linters

	Covariant subtyping of mutable protocol members is rejected

	Dealing with conflicting names

	I need a mypy bug fix that hasn’t been released yet

	Supported Python features
	Runtime definition of methods and functions

	New features in Python 3.6
	Syntax for variable annotations (PEP 526)

	Asynchronous generators (PEP 525) and comprehensions (PEP 530)

	New named tuple syntax

	Additional features
	Dataclasses

	The attrs package

	Using a remote cache to speed up mypy runs

	Extended Callable types

	Frequently Asked Questions
	Why have both dynamic and static typing?

	Would my project benefit from static typing?

	Can I use mypy to type check my existing Python code?

	Will static typing make my programs run faster?

	How do I type check my Python 2 code?

	Is mypy free?

	Can I use duck typing with mypy?

	I like Python and I have no need for static typing

	How are mypy programs different from normal Python?

	How is mypy different from Cython?

	Mypy is a cool project. Can I help?

Indices and tables

	Index

	Search Page

Introduction

Mypy is a static type checker for Python 3 and Python 2.7. If you sprinkle
your code with type annotations, mypy can type check your code and find common
bugs. As mypy is a static analyzer, or a lint-like tool, the type
annotations are just hints for mypy and don’t interfere when running your program.
You run your program with a standard Python interpreter, and the annotations
are treated effectively as comments.

Using the Python 3 function annotation syntax (using the
PEP 484 [https://www.python.org/dev/peps/pep-0484/] notation) or
a comment-based annotation syntax for Python 2 code, you will be able to
efficiently annotate your code and use mypy to check the code for common
errors. Mypy has a powerful and easy-to-use type system with modern features
such as type inference, generics, callable types, tuple types,
union types, and structural subtyping.

As a developer, you decide how to use mypy in your workflow. You can always
escape to dynamic typing as mypy’s approach to static typing doesn’t restrict
what you can do in your programs. Using mypy will make your programs easier to
understand, debug, and maintain.

This documentation provides a short introduction to mypy. It will help you
get started writing statically typed code. Knowledge of Python and a
statically typed object-oriented language, such as Java, are assumed.

Note

Mypy is used in production by many companies and projects, but mypy is
officially beta software. There will be occasional changes
that break backward compatibility. The mypy development team tries to
minimize the impact of changes to user code.

Getting started

This chapter introduces some core concepts of mypy, including function
annotations, the typing module and library stubs. Read it carefully,
as the rest of documentation may not make much sense otherwise.

Installing mypy

Mypy requires Python 3.4 or later to run. Once you’ve
installed Python 3 [https://www.python.org/downloads/],
you can install mypy using pip:

python3 -m pip install mypy

Note that even though you need Python 3 to run mypy, type checking
Python 2 code is fully supported, as discussed later in Type checking Python 2 code.

Running mypy

You can type check a program by using the mypy tool, which is
basically a linter – it checks your program for errors without actually
running it:

$ mypy program.py

All errors reported by mypy are essentially warnings that you are free
to ignore, if you so wish.

Note

Depending on how mypy is configured, you may have to run mypy like
this:

$ python3 -m mypy program.py

If you haven’t added any type annotations to your program yet, you
should add some first, as mypy won’t report many errors in unannotated
functions. Don’t worry if you aren’t familiar with type annotations –
we’ll discuss them in detail in much of the rest of this guide.

Mypy supports many command line options that you can use to tweak how
mypy behaves. They are documented in The mypy command line.

Function signatures

A function without a type annotation is considered dynamically typed by
mypy:

def greeting(name):
 return 'Hello, {}'.format(name)

You can declare the signature of a function using the Python 3
annotation syntax (Python 2 is discussed later in Type checking Python 2 code).
This makes the function statically typed, which causes mypy to
report type errors within the function.

Here’s a version of the above function that is statically typed and
will be type checked:

def greeting(name: str) -> str:
 return 'Hello, {}'.format(name)

Now mypy will reject the following call, since the argument has an
incompatible type:

def greeting(name: str) -> str:
 return 'Hello, {}'.format(name)

greeting(b'Alice') # Argument 1 to "greeting" has incompatible type "bytes"; expected "str"

If a function does not explicitly return a value we give the return
type as None. Using a None result in a statically typed
context results in a type check error:

def p() -> None:
 print('hello')

a = p() # Error: "p" does not return a value

Arguments with default values can be annotated as follows:

def greeting(name: str, excited: bool = False) -> str:
 message = 'Hello, {}'.format(name)
 if excited:
 message += '!!!'
 return message

Mixing dynamic and static typing within a single file is often
useful. For example, if you are migrating existing Python code to
static typing, it may be easiest to do this incrementally, such as by
migrating a few functions at a time. Also, when prototyping a new
feature, you may decide to first implement the relevant code using
dynamic typing and only add type signatures later, when the code is
more stable.

def f():
 1 + 'x' # No static type error (dynamically typed)

def g() -> None:
 1 + 'x' # Type check error (statically typed)

Note

The earlier stages of mypy, known as the semantic analysis, may
report errors even for dynamically typed functions. However, you
should not rely on this, as this may change in the future.

The typing module

The typing module contains many definitions that are useful in
statically typed code. You typically use from ... import to import
them (we’ll explain Iterable later in this document):

from typing import Iterable

def greet_all(names: Iterable[str]) -> None:
 for name in names:
 print('Hello, {}'.format(name))

For brevity, we often omit the typing import in code examples, but
mypy will give an error if you use definitions such as Iterable
without first importing them.

Library stubs and typeshed

Mypy uses library stubs to type check code interacting with library
modules, including the Python standard library. A library stub defines
a skeleton of the public interface of the library, including classes,
variables and functions, and their types. Mypy ships with stubs from
the typeshed [https://github.com/python/typeshed] project, which
contains library stubs for the Python builtins, the standard library,
and selected third-party packages.

For example, consider this code:

x = chr(4)

Without a library stub, mypy would have no way of inferring the type of x
and checking that the argument to chr has a valid type.

Mypy complains if it can’t find a stub (or a real module) for a
library module that you import. Some modules ship with stubs that mypy
can automatically find, or you can install a 3rd party module with
additional stubs (see Using installed packages for details). You can
also create stubs easily. We discuss ways of
silencing complaints about missing stubs in Using mypy with an existing codebase.

Next steps

If you are in a hurry and don’t want to read lots of documentation
before getting started, here are some pointers to quick learning
resources:

	Read the mypy cheatsheet (also for
Python 2).

	Read Using mypy with an existing codebase if you have a significant existing
codebase without many type annotations.

	Read the blog post [https://blog.zulip.org/2016/10/13/static-types-in-python-oh-mypy/]
about the Zulip project’s experiences with adopting mypy.

	If you prefer watching talks instead of reading, here are
some ideas:

	Carl Meyer:
Type Checked Python in the Real World [https://www.youtube.com/watch?v=pMgmKJyWKn8]
(PyCon 2018)

	Greg Price:
Clearer Code at Scale: Static Types at Zulip and Dropbox [https://www.youtube.com/watch?v=0c46YHS3RY8]
(PyCon 2018)

	Look at solutions to common issues with mypy if
you encounter problems.

	You can ask questions about mypy in the
mypy issue tracker [https://github.com/python/mypy/issues] and
typing Gitter chat [https://gitter.im/python/typing].

You can also continue reading this document and skip sections that
aren’t relevant for you. You don’t need to read sections in order.

Using mypy with an existing codebase

This section explains how to get started using mypy with an existing,
significant codebase that has little or no type annotations. If you are
a beginner, you can skip this section.

These steps will get you started with mypy on an existing codebase:

	Start small – get a clean mypy build for some files, with few
annotations

	Write a mypy runner script to ensure consistent results

	Run mypy in Continuous Integration to prevent type errors

	Gradually annotate commonly imported modules

	Write annotations as you modify existing code and write new code

	Use MonkeyType or PyAnnotate to automatically annotate legacy code

We discuss all of these points in some detail below, and a few optional
follow-up steps.

Start small

If your codebase is large, pick a subset of your codebase (say, 5,000
to 50,000 lines) and run mypy only on this subset at first,
without any annotations. This shouldn’t take more than a day or two
to implement, so you start enjoying benefits soon.

You’ll likely need to fix some mypy errors, either by inserting
annotations requested by mypy or by adding # type: ignore
comments to silence errors you don’t want to fix now.

In particular, mypy often generates errors about modules that it can’t
find or that don’t have stub files:

core/config.py:7: error: Cannot find module named 'frobnicate'
core/model.py:9: error: Cannot find module named 'acme'
...

This is normal, and you can easily ignore these errors. For example,
here we ignore an error about a third-party module frobnicate that
doesn’t have stubs using # type: ignore:

import frobnicate # type: ignore
...
frobnicate.initialize() # OK (but not checked)

You can also use a mypy configuration file, which is convenient if
there are a large number of errors to ignore. For example, to disable
errors about importing frobnicate and acme everywhere in your
codebase, use a config like this:

[mypy-frobnicate.*]
ignore_missing_imports = True

[mypy-acme.*]
ignore_missing_imports = True

You can add multiple sections for different modules that should be
ignored.

If your config file is named mypy.ini, this is how you run mypy:

mypy --config-file mypy.ini mycode/

If you get a large number of errors, you may want to ignore all errors
about missing imports. This can easily cause problems later on and
hide real errors, and it’s only recommended as a last resort.
For more details, look here.

Mypy follows imports by default. This can result in a few files passed
on the command line causing mypy to process a large number of imported
files, resulting in lots of errors you don’t want to deal with at the
moment. There is a config file option to disable this behavior, but
since this can hide errors, it’s not recommended for most users.

Mypy runner script

Introduce a mypy runner script that runs mypy, so that every developer
will use mypy consistently. Here are some things you may want to do in
the script:

	Ensure that the correct version of mypy is installed.

	Specify mypy config file or command-line options.

	Provide set of files to type check. You may want to implement
inclusion and exclusion filters for full control of the file
list.

Continuous Integration

Once you have a clean mypy run and a runner script for a part
of your codebase, set up your Continuous Integration (CI) system to
run mypy to ensure that developers won’t introduce bad annotations.
A simple CI script could look something like this:

python3 -m pip install mypy==0.600 # Pinned version avoids surprises
scripts/mypy # Runs with the correct options

Annotate widely imported modules

Most projects have some widely imported modules, such as utilities or
model classes. It’s a good idea to annotate these pretty early on,
since this allows code using these modules to be type checked more
effectively. Since mypy supports gradual typing, it’s okay to leave
some of these modules unannotated. The more you annotate, the more
useful mypy will be, but even a little annotation coverage is useful.

Write annotations as you go

Now you are ready to include type annotations in your development
workflows. Consider adding something like these in your code style
conventions:

	Developers should add annotations for any new code.

	It’s also encouraged to write annotations when you modify existing code.

This way you’ll gradually increase annotation coverage in your
codebase without much effort.

Automate annotation of legacy code

There are tools for automatically adding draft annotations
based on type profiles collected at runtime. Tools include
MonkeyType [https://github.com/Instagram/MonkeyType]
(Python 3) and PyAnnotate [https://github.com/dropbox/pyannotate]
(type comments only).

A simple approach is to collect types from test runs. This may work
well if your test coverage is good (and if your tests aren’t very
slow).

Another approach is to enable type collection for a small, random
fraction of production network requests. This clearly requires more
care, as type collection could impact the reliability or the
performance of your service.

Speed up mypy runs

You can use mypy daemon to get much faster
incremental mypy runs. The larger your project is, the more useful
this will be. If your project has at least 100,000 lines of code or
so, you may also want to set up remote caching
for further speedups.

Introduce stricter options

Mypy is very configurable. Once you get started with static typing,
you may want to explore the various
strictness options mypy provides to
catch more bugs. For example, you can ask mypy to require annotations
for all functions in certain modules to avoid accidentally introducing
code that won’t be type checked. Refer to The mypy command line for the
details.

Type hints cheat sheet (Python 3)

This document is a quick cheat sheet showing how the
PEP 484 [https://www.python.org/dev/peps/pep-0484/] type
annotation notation represents various common types in Python 3.

Note

Technically many of the type annotations shown below are redundant,
because mypy can derive them from the type of the expression. So
many of the examples have a dual purpose: show how to write the
annotation, and show the inferred types.

Variables

Python 3.6 introduced a syntax for annotating variables in
PEP 526 [https://www.python.org/dev/peps/pep-0526/] and
we use it in most examples.

This is how you declare the type of a variable type in Python 3.6
age: int = 1

In Python 3.5 and earlier you can use a type comment instead
(equivalent to the previous definition)
age = 1 # type: int

You don't need to initialize a variable to annotate it
a: int # Ok (no value at runtime until assigned)

The latter is useful in conditional branches
child: bool
if age < 18:
 child = True
else:
 child = False

Built-in types

from typing import List, Set, Dict, Tuple, Optional

For simple built-in types, just use the name of the type
x: int = 1
x: float = 1.0
x: bool = True
x: str = "test"
x: bytes = b"test"

For collections, the name of the type is capitalized, and the
name of the type inside the collection is in brackets
x: List[int] = [1]
x: Set[int] = {6, 7}

Same as above, but with type comment syntax
x = [1] # type: List[int]

For mappings, we need the types of both keys and values
x: Dict[str, float] = {'field': 2.0}

For tuples, we specify the types of all the elements
x: Tuple[int, str, float] = (3, "yes", 7.5)

Use Optional[] for values that could be None
x: Optional[str] = some_function()
if x is not None:
 print(x)

Functions

Python 3 supports an annotation syntax for function declarations.

from typing import Callable, Iterable, Union, Optional, List

This is how you annotate a function definition
def stringify(num: int) -> str:
 return str(num)

And here's how you specify multiple arguments
def plus(num1: int, num2: int) -> int:
 return num1 + num2

Add default value for an argument after the type annotation
def f(num1: int, my_float: float = 3.5) -> float:
 return num1 + my_float

This is how you annotate a callable (function) value
x: Callable[[int, float], float] = f

A generator function that yields ints is secretly just a function that
returns an iterable (see below) of ints, so that's how we annotate it
def f(n: int) -> Iterable[int]:
 i = 0
 while i < n:
 yield i
 i += 1

You can of course split a function annotation over multiple lines
def send_email(address: Union[str, List[str]],
 sender: str,
 cc: Optional[List[str]],
 bcc: Optional[List[str]],
 subject='',
 body: Optional[List[str]] = None
) -> bool:
 ...

An argument can be declared positional-only by giving it a name
starting with two underscores:
def quux(__x: int) -> None:
 pass

quux(3) # Fine
quux(__x=3) # Error

When you’re puzzled or when things are complicated

from typing import Union, Any, List, Optional, cast

To find out what type mypy infers for an expression anywhere in
your program, wrap it in reveal_type(). Mypy will print an error
message with the type; remove it again before running the code.
reveal_type(1) # -> Revealed type is 'builtins.int'

Use Union when something could be one of a few types
x: List[Union[int, str]] = [3, 5, "test", "fun"]

Use Any if you don't know the type of something or it's too
dynamic to write a type for
x: Any = mystery_function()

If you initialize a variable with an empty container or "None"
you may have to help mypy a bit by providing a type annotation
x: List[str] = []
x: Optional[str] = None

This makes each positional arg and each keyword arg a "str"
def call(self, *args: str, **kwargs: str) -> str:
 request = make_request(*args, **kwargs)
 return self.do_api_query(request)

Use a "type: ignore" comment to suppress errors on a given line,
when your code confuses mypy or runs into an outright bug in mypy.
Good practice is to comment every "ignore" with a bug link
(in mypy, typeshed, or your own code) or an explanation of the issue.
x = confusing_function() # type: ignore # https://github.com/python/mypy/issues/1167

"cast" is a helper function that lets you override the inferred
type of an expression. It's only for mypy -- there's no runtime check.
a = [4]
b = cast(List[int], a) # Passes fine
c = cast(List[str], a) # Passes fine (no runtime check)
reveal_type(c) # -> Revealed type is 'builtins.list[builtins.str]'
print(c) # -> [4]; the object is not cast

If you want dynamic attributes on your class, have it override "__setattr__"
or "__getattr__" in a stub or in your source code.
#
"__setattr__" allows for dynamic assignment to names
"__getattr__" allows for dynamic access to names
class A:
 # This will allow assignment to any A.x, if x is the same type as "value"
 # (use "value: Any" to allow arbitrary types)
 def __setattr__(self, name: str, value: int) -> None: ...

 # This will allow access to any A.x, if x is compatible with the return type
 def __getattr__(self, name: str) -> int: ...

a.foo = 42 # Works
a.bar = 'Ex-parrot' # Fails type checking

Standard “duck types”

In typical Python code, many functions that can take a list or a dict
as an argument only need their argument to be somehow “list-like” or
“dict-like”. A specific meaning of “list-like” or “dict-like” (or
something-else-like) is called a “duck type”, and several duck types
that are common in idiomatic Python are standardized.

from typing import Mapping, MutableMapping, Sequence, Iterable, List, Set

Use Iterable for generic iterables (anything usable in "for"),
and Sequence where a sequence (supporting "len" and "__getitem__") is
required
def f(ints: Iterable[int]) -> List[str]:
 return [str(x) for x in ints]

f(range(1, 3))

Mapping describes a dict-like object (with "__getitem__") that we won't
mutate, and MutableMapping one (with "__setitem__") that we might
def f(my_dict: Mapping[int, str]) -> List[int]:
 return list(my_dict.keys())

f({3: 'yes', 4: 'no'})

def f(my_mapping: MutableMapping[int, str]) -> Set[str]:
 my_mapping[5] = 'maybe'
 return set(my_mapping.values())

f({3: 'yes', 4: 'no'})

Classes

class MyClass:
 # You can optionally declare instance variables in the class body
 attr: int
 # This is an instance variable with a default value
 charge_percent: int = 100

 # The "__init__" method doesn't return anything, so it gets return
 # type "None" just like any other method that doesn't return anything
 def __init__(self) -> None:
 ...

 # For instance methods, omit type for "self"
 def my_method(self, num: int, str1: str) -> str:
 return num * str1

User-defined classes are valid as types in annotations
x: MyClass = MyClass()

You can use the ClassVar annotation to declare a class variable
class Car:
 seats: ClassVar[int] = 4
 passengers: ClassVar[List[str]]

You can also declare the type of an attribute in "__init__"
class Box:
 def __init__(self) -> None:
 self.items: List[str] = []

Coroutines and asyncio

See Typing async/await for the full detail on typing coroutines and asynchronous code.

import asyncio

A coroutine is typed like a normal function
async def countdown35(tag: str, count: int) -> str:
 while count > 0:
 print('T-minus {} ({})'.format(count, tag))
 await asyncio.sleep(0.1)
 count -= 1
 return "Blastoff!"

Miscellaneous

import sys
import re
from typing import Match, AnyStr, IO

"typing.Match" describes regex matches from the re module
x: Match[str] = re.match(r'[0-9]+', "15")

Use IO[] for functions that should accept or return any
object that comes from an open() call (IO[] does not
distinguish between reading, writing or other modes)
def get_sys_IO(mode: str = 'w') -> IO[str]:
 if mode == 'w':
 return sys.stdout
 elif mode == 'r':
 return sys.stdin
 else:
 return sys.stdout

Forward references are useful if you want to reference a class before
it is defined
def f(foo: A) -> int: # This will fail
 ...

class A:
 ...

If you use the string literal 'A', it will pass as long as there is a
class of that name later on in the file
def f(foo: 'A') -> int: # Ok
 ...

Type hints cheat sheet (Python 2)

This document is a quick cheat sheet showing how the
PEP 484 [https://www.python.org/dev/peps/pep-0484/] type
language represents various common types in Python 2.

Note

Technically many of the type annotations shown below are redundant,
because mypy can derive them from the type of the expression. So
many of the examples have a dual purpose: show how to write the
annotation, and show the inferred types.

Built-in types

from typing import List, Set, Dict, Tuple, Text, Optional

For simple built-in types, just use the name of the type
x = 1 # type: int
x = 1.0 # type: float
x = True # type: bool
x = "test" # type: str
x = u"test" # type: unicode

For collections, the name of the type is capitalized, and the
name of the type inside the collection is in brackets
x = [1] # type: List[int]
x = {6, 7} # type: Set[int]

For mappings, we need the types of both keys and values
x = {'field': 2.0} # type: Dict[str, float]

For tuples, we specify the types of all the elements
x = (3, "yes", 7.5) # type: Tuple[int, str, float]

For textual data, use Text
("Text" means "unicode" in Python 2 and "str" in Python 3)
x = [u"one", u"two"] # type: List[Text]

Use Optional[] for values that could be None
x = some_function() # type: Optional[str]
if x is not None:
 print x

Functions

from typing import Callable, Iterable, Union, Optional, List

This is how you annotate a function definition
def stringify(num):
 # type: (int) -> str
 """Your function docstring goes here after the type definition."""
 return str(num)

This function has no parameters and also returns nothing. Annotations
can also be placed on the same line as their function headers.
def greet_world(): # type: () -> None
 print "Hello, world!"

And here's how you specify multiple arguments
def plus(num1, num2):
 # type: (int, int) -> int
 return num1 + num2

Add type annotations for arguments with default values as though they
had no defaults
def f(num1, my_float=3.5):
 # type: (int, float) -> float
 return num1 + my_float

An argument can be declared positional-only by giving it a name
starting with two underscores
def quux(__x):
 # type: (int) -> None
 pass

quux(3) # Fine
quux(__x=3) # Error

This is how you annotate a callable (function) value
x = f # type: Callable[[int, float], float]

A generator function that yields ints is secretly just a function that
returns an iterable (see below) of ints, so that's how we annotate it
def f(n):
 # type: (int) -> Iterable[int]
 i = 0
 while i < n:
 yield i
 i += 1

There's an alternative syntax for functions with many arguments
def send_email(address, # type: Union[str, List[str]]
 sender, # type: str
 cc, # type: Optional[List[str]]
 bcc, # type: Optional[List[str]]
 subject='',
 body=None # type: List[str]
):
 # type: (...) -> bool
 <code>

When you’re puzzled or when things are complicated

from typing import Union, Any, List, Optional, cast

To find out what type mypy infers for an expression anywhere in
your program, wrap it in reveal_type(). Mypy will print an error
message with the type; remove it again before running the code.
reveal_type(1) # -> Revealed type is 'builtins.int'

Use Union when something could be one of a few types
x = [3, 5, "test", "fun"] # type: List[Union[int, str]]

Use Any if you don't know the type of something or it's too
dynamic to write a type for
x = mystery_function() # type: Any

If you initialize a variable with an empty container or "None"
you may have to help mypy a bit by providing a type annotation
x = [] # type: List[str]
x = None # type: Optional[str]

This makes each positional arg and each keyword arg a "str"
def call(self, *args, **kwargs):
 # type: (*str, **str) -> str
 request = make_request(*args, **kwargs)
 return self.do_api_query(request)

Use a "type: ignore" comment to suppress errors on a given line,
when your code confuses mypy or runs into an outright bug in mypy.
Good practice is to comment every "ignore" with a bug link
(in mypy, typeshed, or your own code) or an explanation of the issue.
x = confusing_function() # type: ignore # https://github.com/python/mypy/issues/1167

"cast" is a helper function that lets you override the inferred
type of an expression. It's only for mypy -- there's no runtime check.
a = [4]
b = cast(List[int], a) # Passes fine
c = cast(List[str], a) # Passes fine (no runtime check)
reveal_type(c) # -> Revealed type is 'builtins.list[builtins.str]'
print c # -> [4]; the object is not cast

If you want dynamic attributes on your class, have it override "__setattr__"
or "__getattr__" in a stub or in your source code.
#
"__setattr__" allows for dynamic assignment to names
"__getattr__" allows for dynamic access to names
class A:
 # This will allow assignment to any A.x, if x is the same type as "value"
 # (use "value: Any" to allow arbitrary types)
 def __setattr__(self, name, value):
 # type: (str, int) -> None
 ...

a.foo = 42 # Works
a.bar = 'Ex-parrot' # Fails type checking

Standard “duck types”

In typical Python code, many functions that can take a list or a dict
as an argument only need their argument to be somehow “list-like” or
“dict-like”. A specific meaning of “list-like” or “dict-like” (or
something-else-like) is called a “duck type”, and several duck types
that are common in idiomatic Python are standardized.

from typing import Mapping, MutableMapping, Sequence, Iterable

Use Iterable for generic iterables (anything usable in "for"),
and Sequence where a sequence (supporting "len" and "__getitem__") is
required
def f(iterable_of_ints):
 # type: (Iterable[int]) -> List[str]
 return [str(x) for x in iterator_of_ints]

f(range(1, 3))

Mapping describes a dict-like object (with "__getitem__") that we won't
mutate, and MutableMapping one (with "__setitem__") that we might
def f(my_dict):
 # type: (Mapping[int, str]) -> List[int]
 return list(my_dict.keys())

f({3: 'yes', 4: 'no'})

def f(my_mapping):
 # type: (MutableMapping[int, str]) -> Set[str]
 my_mapping[5] = 'maybe'
 return set(my_mapping.values())

f({3: 'yes', 4: 'no'})

Classes

class MyClass(object):
 # For instance methods, omit type for "self"
 def my_method(self, num, str1):
 # type: (int, str) -> str
 return num * str1

 # The "__init__" method doesn't return anything, so it gets return
 # type "None" just like any other method that doesn't return anything
 def __init__(self):
 # type: () -> None
 pass

User-defined classes are valid as types in annotations
x = MyClass() # type: MyClass

Miscellaneous

import sys
import re
from typing import Match, AnyStr, IO

"typing.Match" describes regex matches from the re module
x = re.match(r'[0-9]+', "15") # type: Match[str]

Use IO[] for functions that should accept or return any
object that comes from an open() call (IO[] does not
distinguish between reading, writing or other modes)
def get_sys_IO(mode='w'):
 # type: (str) -> IO[str]
 if mode == 'w':
 return sys.stdout
 elif mode == 'r':
 return sys.stdin
 else:
 return sys.stdout

Built-in types

These are examples of some of the most common built-in types:

	Type

	Description

	int

	integer

	float

	floating point number

	bool

	boolean value

	str

	string (unicode)

	bytes

	8-bit string

	object

	an arbitrary object (object is the common base class)

	List[str]

	list of str objects

	Tuple[int, int]

	tuple of two int objects (Tuple[()] is the empty tuple)

	Tuple[int, ...]

	tuple of an arbitrary number of int objects

	Dict[str, int]

	dictionary from str keys to int values

	Iterable[int]

	iterable object containing ints

	Sequence[bool]

	sequence of booleans (read-only)

	Mapping[str, int]

	mapping from str keys to int values (read-only)

	Any

	dynamically typed value with an arbitrary type

The type Any and type constructors such as List, Dict,
Iterable and Sequence are defined in the typing module.

The type Dict is a generic class, signified by type arguments within
[...]. For example, Dict[int, str] is a dictionary from integers to
strings and Dict[Any, Any] is a dictionary of dynamically typed
(arbitrary) values and keys. List is another generic class. Dict and
List are aliases for the built-ins dict and list, respectively.

Iterable, Sequence, and Mapping are generic types that
correspond to Python protocols. For example, a str object or a
List[str] object is valid
when Iterable[str] or Sequence[str] is expected. Note that even though
they are similar to abstract base classes defined in collections.abc
(formerly collections), they are not identical, since the built-in
collection type objects do not support indexing.

Type inference and type annotations

Type inference

Mypy considers the initial assignment as the definition of a variable.
If you do not explicitly
specify the type of the variable, mypy infers the type based on the
static type of the value expression:

i = 1 # Infer type "int" for i
l = [1, 2] # Infer type "List[int]" for l

Type inference is not used in dynamically typed functions (those
without a function type annotation) — every local variable type defaults
to Any in such functions. Any is discussed later in more detail.

Explicit types for variables

You can override the inferred type of a variable by using a
variable type annotation:

from typing import Union

x: Union[int, str] = 1

Without the type annotation, the type of x would be just int. We
use an annotation to give it a more general type Union[int, str] (this
type means that the value can be either an int or a str).
Mypy checks that the type of the initializer is compatible with the
declared type. The following example is not valid, since the initializer is
a floating point number, and this is incompatible with the declared
type:

x: Union[int, str] = 1.1 # Error!

The variable annotation syntax is available starting from Python 3.6.
In earlier Python versions, you can use a special comment after an
assignment statement to declare the type of a variable:

x = 1 # type: Union[int, str]

We’ll use both syntax variants in examples. The syntax variants are
mostly interchangeable, but the variable annotation syntax allows
defining the type of a variable without initialization, which is not
possible with the comment syntax:

x: str # Declare type of 'x' without initialization

Note

The best way to think about this is that the type annotation sets the
type of the variable, not the type of the expression. To force the
type of an expression you can use cast(<type>, <expression>).

Explicit types for collections

The type checker cannot always infer the type of a list or a
dictionary. This often arises when creating an empty list or
dictionary and assigning it to a new variable that doesn’t have an explicit
variable type. Here is an example where mypy can’t infer the type
without some help:

l = [] # Error: Need type annotation for 'l'

In these cases you can give the type explicitly using a type annotation:

l: List[int] = [] # Create empty list with type List[int]
d: Dict[str, int] = {} # Create empty dictionary (str -> int)

Similarly, you can also give an explicit type when creating an empty set:

s: Set[int] = set()

Compatibility of container types

The following program generates a mypy error, since List[int]
is not compatible with List[object]:

def f(l: List[object], k: List[int]) -> None:
 l = k # Type check error: incompatible types in assignment

The reason why the above assignment is disallowed is that allowing the
assignment could result in non-int values stored in a list of int:

def f(l: List[object], k: List[int]) -> None:
 l = k
 l.append('x')
 print(k[-1]) # Ouch; a string in List[int]

Other container types like Dict and Set behave similarly. We
will discuss how you can work around this in Invariance vs covariance.

You can still run the above program; it prints x. This illustrates
the fact that static types are used during type checking, but they do
not affect the runtime behavior of programs. You can run programs with
type check failures, which is often very handy when performing a large
refactoring. Thus you can always ‘work around’ the type system, and it
doesn’t really limit what you can do in your program.

Context in type inference

Type inference is bidirectional and takes context into account. For
example, the following is valid:

def f(l: List[object]) -> None:
 l = [1, 2] # Infer type List[object] for [1, 2], not List[int]

In an assignment, the type context is determined by the assignment
target. In this case this is l, which has the type
List[object]. The value expression [1, 2] is type checked in
this context and given the type List[object]. In the previous
example we introduced a new variable l, and here the type context
was empty.

Declared argument types are also used for type context. In this program
mypy knows that the empty list [] should have type List[int] based
on the declared type of arg in foo:

def foo(arg: List[int]) -> None:
 print('Items:', ''.join(str(a) for a in arg))

foo([]) # OK

However, context only works within a single statement. Here mypy requires
an annotation for the empty list, since the context would only be available
in the following statement:

def foo(arg: List[int]) -> None:
 print(Items: ', '.join(arg))

a = [] # Error: Need type annotation for 'a'
foo(a)

Working around the issue is easy by adding a type annotation:

...
a: List[int] = [] # OK
foo(a)

Declaring multiple variable types at a time

You can declare more than a single variable at a time, but only with
a type comment. In order to nicely work with multiple assignment, you
must give each variable a type separately:

i, found = 0, False # type: int, bool

You can optionally use parentheses around the types, assignment targets
and assigned expression:

i, found = 0, False # type: (int, bool) # OK
(i, found) = 0, False # type: int, bool # OK
i, found = (0, False) # type: int, bool # OK
(i, found) = (0, False) # type: (int, bool) # OK

Starred expressions

In most cases, mypy can infer the type of starred expressions from the
right-hand side of an assignment, but not always:

a, *bs = 1, 2, 3 # OK
p, q, *rs = 1, 2 # Error: Type of rs cannot be inferred

On first line, the type of bs is inferred to be
List[int]. However, on the second line, mypy cannot infer the type
of rs, because there is no right-hand side value for rs to
infer the type from. In cases like these, the starred expression needs
to be annotated with a starred type:

p, q, *rs = 1, 2 # type: int, int, *List[int]

Here, the type of rs is set to List[int].

Kinds of types

We’ve mostly restricted ourselves to built-in types until now. This
section introduces several additional kinds of types. You are likely
to need at least some of them to type check any non-trivial programs.

Class types

Every class is also a valid type. Any instance of a subclass is also
compatible with all superclasses – it follows that every value is compatible
with the object type (and incidentally also the Any type, discussed
below). Mypy analyzes the bodies of classes to determine which methods and
attributes are available in instances. This example uses subclassing:

class A:
 def f(self) -> int: # Type of self inferred (A)
 return 2

class B(A):
 def f(self) -> int:
 return 3
 def g(self) -> int:
 return 4

def foo(a: A) -> None:
 print(a.f()) # 3
 a.g() # Error: "A" has no attribute "g"

foo(B()) # OK (B is a subclass of A)

The Any type

A value with the Any type is dynamically typed. Mypy doesn’t know
anything about the possible runtime types of such value. Any
operations are permitted on the value, and the operations are only checked
at runtime. You can use Any as an “escape hatch” when you can’t use
a more precise type for some reason.

Any is compatible with every other type, and vice versa. You can freely
assign a value of type Any to a variable with a more precise type:

a: Any = None
s: str = ''
a = 2 # OK (assign "int" to "Any")
s = a # OK (assign "Any" to "str")

Declared (and inferred) types are ignored (or erased) at runtime. They are
basically treated as comments, and thus the above code does not
generate a runtime error, even though s gets an int value when
the program is run, while the declared type of s is actually
str! You need to be careful with Any types, since they let you
lie to mypy, and this could easily hide bugs.

If you do not define a function return value or argument types, these
default to Any:

def show_heading(s) -> None:
 print('=== ' + s + ' ===') # No static type checking, as s has type Any

show_heading(1) # OK (runtime error only; mypy won't generate an error)

You should give a statically typed function an explicit None
return type even if it doesn’t return a value, as this lets mypy catch
additional type errors:

def wait(t: float): # Implicit Any return value
 print('Waiting...')
 time.sleep(t)

if wait(2) > 1: # Mypy doesn't catch this error!
 ...

If we had used an explicit None return type, mypy would have caught
the error:

def wait(t: float) -> None:
 print('Waiting...')
 time.sleep(t)

if wait(2) > 1: # Error: can't compare None and int
 ...

The Any type is discussed in more detail in section Dynamically typed code.

Note

A function without any types in the signature is dynamically
typed. The body of a dynamically typed function is not checked
statically, and local variables have implicit Any types.
This makes it easier to migrate legacy Python code to mypy, as
mypy won’t complain about dynamically typed functions.

Tuple types

The type Tuple[T1, ..., Tn] represents a tuple with the item types T1, …, Tn:

def f(t: Tuple[int, str]) -> None:
 t = 1, 'foo' # OK
 t = 'foo', 1 # Type check error

A tuple type of this kind has exactly a specific number of items (2 in
the above example). Tuples can also be used as immutable,
varying-length sequences. You can use the type Tuple[T, ...] (with
a literal ... – it’s part of the syntax) for this
purpose. Example:

def print_squared(t: Tuple[int, ...]) -> None:
 for n in t:
 print(n, n ** 2)

print_squared(()) # OK
print_squared((1, 3, 5)) # OK
print_squared([1, 2]) # Error: only a tuple is valid

Note

Usually it’s a better idea to use Sequence[T] instead of Tuple[T, ...], as
Sequence is also compatible with lists and other non-tuple sequences.

Note

Tuple[...] is valid as a base class in Python 3.6 and later, and
always in stub files. In earlier Python versions you can sometimes work around this
limitation by using a named tuple as a base class (see section Named tuples).

Callable types (and lambdas)

You can pass around function objects and bound methods in statically
typed code. The type of a function that accepts arguments A1, …, An
and returns Rt is Callable[[A1, ..., An], Rt]. Example:

from typing import Callable

def twice(i: int, next: Callable[[int], int]) -> int:
 return next(next(i))

def add(i: int) -> int:
 return i + 1

print(twice(3, add)) # 5

You can only have positional arguments, and only ones without default
values, in callable types. These cover the vast majority of uses of
callable types, but sometimes this isn’t quite enough. Mypy recognizes
a special form Callable[..., T] (with a literal ...) which can
be used in less typical cases. It is compatible with arbitrary
callable objects that return a type compatible with T, independent
of the number, types or kinds of arguments. Mypy lets you call such
callable values with arbitrary arguments, without any checking – in
this respect they are treated similar to a (*args: Any, **kwargs:
Any) function signature. Example:

from typing import Callable

 def arbitrary_call(f: Callable[..., int]) -> int:
 return f('x') + f(y=2) # OK

 arbitrary_call(ord) # No static error, but fails at runtime
 arbitrary_call(open) # Error: does not return an int
 arbitrary_call(1) # Error: 'int' is not callable

In situations where more precise or complex types of callbacks are
necessary one can use flexible callback protocols.
Lambdas are also supported. The lambda argument and return value types
cannot be given explicitly; they are always inferred based on context
using bidirectional type inference:

l = map(lambda x: x + 1, [1, 2, 3]) # Infer x as int and l as List[int]

If you want to give the argument or return value types explicitly, use
an ordinary, perhaps nested function definition.

Union types

Python functions often accept values of two or more different
types. You can use overloading to
represent this, but union types are often more convenient.

Use the Union[T1, ..., Tn] type constructor to construct a union
type. For example, if an argument has type Union[int, str], both
integers and strings are valid argument values.

You can use an isinstance() check to narrow down a union type to a
more specific type:

from typing import Union

def f(x: Union[int, str]) -> None:
 x + 1 # Error: str + int is not valid
 if isinstance(x, int):
 # Here type of x is int.
 x + 1 # OK
 else:
 # Here type of x is str.
 x + 'a' # OK

f(1) # OK
f('x') # OK
f(1.1) # Error

Note

Operations are valid for union types only if they are valid for every
union item. This is why it’s often necessary to use an isinstance()
check to first narrow down a union type to a non-union type. This also
means that it’s recommended to avoid union types as function return types,
since the caller may have to use isinstance() before doing anything
interesting with the value.

Optional types and the None type

You can use the Optional type modifier to define a type variant
that allows None, such as Optional[int] (Optional[X] is
the preferred shorthand for Union[X, None]):

from typing import Optional

def strlen(s: str) -> Optional[int]:
 if not s:
 return None # OK
 return len(s)

def strlen_invalid(s: str) -> int:
 if not s:
 return None # Error: None not compatible with int
 return len(s)

Most operations will not be allowed on unguarded None or Optional
values:

def my_inc(x: Optional[int]) -> int:
 return x + 1 # Error: Cannot add None and int

Instead, an explicit None check is required. Mypy has
powerful type inference that lets you use regular Python
idioms to guard against None values. For example, mypy
recognizes is None checks:

def my_inc(x: Optional[int]) -> int:
 if x is None:
 return 0
 else:
 # The inferred type of x is just int here.
 return x + 1

Mypy will infer the type of x to be int in the else block due to the
check against None in the if condition.

Other supported checks for guarding against a None value include
if x is not None, if x and if not x. Additionally, mypy understands
None checks within logical expressions:

def concat(x: Optional[str], y: Optional[str]) -> Optional[str]:
 if x is not None and y is not None:
 # Both x and y are not None here
 return x + y
 else:
 return None

Sometimes mypy doesn’t realize that a value is never None. This notably
happens when a class instance can exist in a partially defined state,
where some attribute is initialized to None during object
construction, but a method assumes that the attribute is no longer None. Mypy
will complain about the possible None value. You can use
assert x is not None to work around this in the method:

class Resource:
 path: Optional[str] = None

 def initialize(self, path: str) -> None:
 self.path = path

 def read(self) -> str:
 # We require that the object has been initialized.
 assert self.path is not None
 with open(self.path) as f: # OK
 return f.read()

r = Resource()
r.initialize('/foo/bar')
r.read()

When initializing a variable as None, None is usually an
empty place-holder value, and the actual value has a different type.
This is why you need to annotate an attribute in a cases like the class
Resource above:

class Resource:
 path: Optional[str] = None
 ...

This also works for attributes defined within methods:

class Counter:
 def __init__(self) -> None:
 self.count: Optional[int] = None

As a special case, you can use a non-optional type when initializing an
attribute to None inside a class body and using a type comment,
since when using a type comment, an initializer is syntactically required,
and None is used as a dummy, placeholder initializer:

from typing import List

class Container:
 items = None # type: List[str] # OK (only with type comment)

This is not a problem when using variable annotations, since no initializer
is needed:

from typing import List

class Container:
 items: List[str] # No initializer

Mypy generally uses the first assignment to a variable to
infer the type of the variable. However, if you assign both a None
value and a non-None value in the same scope, mypy can usually do
the right thing without an annotation:

def f(i: int) -> None:
 n = None # Inferred type Optional[int] because of the assignment below
 if i > 0:
 n = i
 ...

Sometimes you may get the error “Cannot determine type of <something>”. In this
case you should add an explicit Optional[...] annotation (or type comment).

Note

None is a type with only one value, None. None is also used
as the return type for functions that don’t return a value, i.e. functions
that implicitly return None.

Note

The Python interpreter internally uses the name NoneType for
the type of None, but None is always used in type
annotations. The latter is shorter and reads better. (Besides,
NoneType is not even defined in the standard library.)

Note

Optional[...] does not mean a function argument with a default value.
However, if the default value of an argument is None, you can use
an optional type for the argument, but it’s not enforced by default.
You can use the --no-implicit-optional command-line option to stop
treating arguments with a None default value as having an implicit
Optional[...] type. It’s possible that this will become the default
behavior in the future.

Disabling strict optional checking

Mypy also has an option to treat None as a valid value for every
type (in case you know Java, it’s useful to think of it as similar to
the Java null). In this mode None is also valid for primitive
types such as int and float, and Optional[...] types are
not required.

The mode is enabled through the --no-strict-optional command-line
option. In mypy versions before 0.600 this was the default mode. You
can enable this option explicitly for backward compatibility with
earlier mypy versions, in case you don’t want to introduce optional
types to your codebase yet.

It will cause mypy to silently accept some buggy code, such as
this example – it’s not recommended if you can avoid it:

def inc(x: int) -> int:
 return x + 1

x = inc(None) # No error reported by mypy if strict optional mode disabled!

However, making code “optional clean” can take some work! You can also use
the mypy configuration file to migrate your code
to strict optional checking one file at a time, since there exists
the per-module flag
strict_optional to control strict optional mode.

Often it’s still useful to document whether a variable can be
None. For example, this function accepts a None argument,
but it’s not obvious from its signature:

def greeting(name: str) -> str:
 if name:
 return 'Hello, {}'.format(name)
 else:
 return 'Hello, stranger'

print(greeting('Python')) # Okay!
print(greeting(None)) # Also okay!

You can still use Optional[t] to document that None is a
valid argument type, even if strict None checking is not
enabled:

from typing import Optional

def greeting(name: Optional[str]) -> str:
 if name:
 return 'Hello, {}'.format(name)
 else:
 return 'Hello, stranger'

Mypy treats this as semantically equivalent to the previous example
if strict optional checking is disabled, since None is implicitly
valid for any type, but it’s much more
useful for a programmer who is reading the code. This also makes
it easier to migrate to strict None checking in the future.

Class name forward references

Python does not allow references to a class object before the class is
defined. Thus this code does not work as expected:

def f(x: A) -> None: # Error: Name A not defined

class A:
 ...

In cases like these you can enter the type as a string literal — this
is a forward reference:

def f(x: 'A') -> None: # OK
 ...

class A:
 ...

Of course, instead of using a string literal type, you could move the
function definition after the class definition. This is not always
desirable or even possible, though.

Any type can be entered as a string literal, and you can combine
string-literal types with non-string-literal types freely:

def f(a: List['A']) -> None: ... # OK
def g(n: 'int') -> None: ... # OK, though not useful

class A: pass

String literal types are never needed in # type: comments.

String literal types must be defined (or imported) later in the same
module. They cannot be used to leave cross-module references
unresolved. (For dealing with import cycles, see
Import cycles.)

Type aliases

In certain situations, type names may end up being long and painful to type:

def f() -> Union[List[Dict[Tuple[int, str], Set[int]]], Tuple[str, List[str]]]:
 ...

When cases like this arise, you can define a type alias by simply
assigning the type to a variable:

AliasType = Union[List[Dict[Tuple[int, str], Set[int]]], Tuple[str, List[str]]]

Now we can use AliasType in place of the full name:

def f() -> AliasType:
 ...

Note

A type alias does not create a new type. It’s just a shorthand notation for
another type – it’s equivalent to the target type except for
generic aliases.

Named tuples

Mypy recognizes named tuples and can type check code that defines or
uses them. In this example, we can detect code trying to access a
missing attribute:

Point = namedtuple('Point', ['x', 'y'])
p = Point(x=1, y=2)
print(p.z) # Error: Point has no attribute 'z'

If you use namedtuple to define your named tuple, all the items
are assumed to have Any types. That is, mypy doesn’t know anything
about item types. You can use typing.NamedTuple to also define
item types:

from typing import NamedTuple

Point = NamedTuple('Point', [('x', int),
 ('y', int)])
p = Point(x=1, y='x') # Argument has incompatible type "str"; expected "int"

Python 3.6 introduced an alternative, class-based syntax for named tuples with types:

from typing import NamedTuple

class Point(NamedTuple):
 x: int
 y: int

p = Point(x=1, y='x') # Argument has incompatible type "str"; expected "int"

The type of class objects

(Freely after PEP 484 [https://www.python.org/dev/peps/pep-0484/#the-type-of-class-objects].)

Sometimes you want to talk about class objects that inherit from a
given class. This can be spelled as Type[C] where C is a
class. In other words, when C is the name of a class, using C
to annotate an argument declares that the argument is an instance of
C (or of a subclass of C), but using Type[C] as an
argument annotation declares that the argument is a class object
deriving from C (or C itself).

For example, assume the following classes:

class User:
 # Defines fields like name, email

class BasicUser(User):
 def upgrade(self):
 """Upgrade to Pro"""

class ProUser(User):
 def pay(self):
 """Pay bill"""

Note that ProUser doesn’t inherit from BasicUser.

Here’s a function that creates an instance of one of these classes if
you pass it the right class object:

def new_user(user_class):
 user = user_class()
 # (Here we could write the user object to a database)
 return user

How would we annotate this function? Without Type[] the best we
could do would be:

def new_user(user_class: type) -> User:
 # Same implementation as before

This seems reasonable, except that in the following example, mypy
doesn’t see that the buyer variable has type ProUser:

buyer = new_user(ProUser)
buyer.pay() # Rejected, not a method on User

However, using Type[] and a type variable with an upper bound (see
Type variables with upper bounds) we can do better:

U = TypeVar('U', bound=User)

def new_user(user_class: Type[U]) -> U:
 # Same implementation as before

Now mypy will infer the correct type of the result when we call
new_user() with a specific subclass of User:

beginner = new_user(BasicUser) # Inferred type is BasicUser
beginner.upgrade() # OK

Note

The value corresponding to Type[C] must be an actual class
object that’s a subtype of C. Its constructor must be
compatible with the constructor of C. If C is a type
variable, its upper bound must be a class object.

For more details about Type[] see PEP 484 [https://www.python.org/dev/peps/pep-0484/#the-type-of-class-objects].

Text and AnyStr

Sometimes you may want to write a function which will accept only unicode
strings. This can be challenging to do in a codebase intended to run in
both Python 2 and Python 3 since str means something different in both
versions and unicode is not a keyword in Python 3.

To help solve this issue, use typing.Text which is aliased to
unicode in Python 2 and to str in Python 3. This allows you to
indicate that a function should accept only unicode strings in a
cross-compatible way:

from typing import Text

def unicode_only(s: Text) -> Text:
 return s + u'\u2713'

In other cases, you may want to write a function that will work with any
kind of string but will not let you mix two different string types. To do
so use typing.AnyStr:

from typing import AnyStr

def concat(x: AnyStr, y: AnyStr) -> AnyStr:
 return x + y

concat('a', 'b') # Okay
concat(b'a', b'b') # Okay
concat('a', b'b') # Error: cannot mix bytes and unicode

For more details, see Type variables with value restriction.

Note

How bytes, str, and unicode are handled between Python 2 and
Python 3 may change in future versions of mypy.

Generators

A basic generator that only yields values can be annotated as having a return
type of either Iterator[YieldType] or Iterable[YieldType]. For example:

def squares(n: int) -> Iterator[int]:
 for i in range(n):
 yield i * i

If you want your generator to accept values via the send method or return
a value, you should use the
Generator[YieldType, SendType, ReturnType] generic type instead. For example:

def echo_round() -> Generator[int, float, str]:
 sent = yield 0
 while sent >= 0:
 sent = yield round(sent)
 return 'Done'

Note that unlike many other generics in the typing module, the SendType of
Generator behaves contravariantly, not covariantly or invariantly.

If you do not plan on receiving or returning values, then set the SendType
or ReturnType to None, as appropriate. For example, we could have
annotated the first example as the following:

def squares(n: int) -> Generator[int, None, None]:
 for i in range(n):
 yield i * i

This is slightly different from using Iterable[int] or Iterator[int],
since generators have close(), send(), and throw() methods that
generic iterables don’t. If you will call these methods on the returned
generator, use the Generator type instead of Iterable or Iterator.

Class basics

This section will help get you started annotating your
classes. Built-in classes such as int also follow these same
rules.

Instance and class attributes

The mypy type checker detects if you are trying to access a missing
attribute, which is a very common programming error. For this to work
correctly, instance and class attributes must be defined or
initialized within the class. Mypy infers the types of attributes:

class A:
 def __init__(self, x: int) -> None:
 self.x = x # Aha, attribute 'x' of type 'int'

a = A(1)
a.x = 2 # OK!
a.y = 3 # Error: 'A' has no attribute 'y'

This is a bit like each class having an implicitly defined
__slots__ attribute. This is only enforced during type
checking and not when your program is running.

You can declare types of variables in the class body explicitly using
a type annotation:

class A:
 x: List[int] # Declare attribute 'x' of type List[int]

a = A()
a.x = [1] # OK

As in Python generally, a variable defined in the class body can be used
as a class or an instance variable. (As discussed in the next section, you
can override this with a ClassVar annotation.)

Type comments work as well, if you need to support Python versions earlier
than 3.6:

class A:
 x = None # type: List[int] # Declare attribute 'x' of type List[int]

Note that attribute definitions in the class body that use a type comment
are special: a None value is valid as the initializer, even though
the declared type is not optional. This should be used sparingly, as this can
result in None-related runtime errors that mypy can’t detect.

Similarly, you can give explicit types to instance variables defined
in a method:

class A:
 def __init__(self) -> None:
 self.x: List[int] = []

 def f(self) -> None:
 self.y: Any = 0

You can only define an instance variable within a method if you assign
to it explicitly using self:

class A:
 def __init__(self) -> None:
 self.y = 1 # Define 'y'
 a = self
 a.x = 1 # Error: 'x' not defined

Annotating __init__ methods

The __init__ method is somewhat special – it doesn’t return a
value. This is best expressed as -> None. However, since many feel
this is redundant, it is allowed to omit the return type declaration
on __init__ methods if at least one argument is annotated. For
example, in the following classes __init__ is considered fully
annotated:

class C1:
 def __init__(self) -> None:
 self.var = 42

class C2:
 def __init__(self, arg: int):
 self.var = arg

However, if __init__ has no annotated arguments and no return type
annotation, it is considered an untyped method:

class C3:
 def __init__(self):
 # This body is not type checked
 self.var = 42 + 'abc'

Class attribute annotations

You can use a ClassVar[t] annotation to explicitly declare that a
particular attribute should not be set on instances:

from typing import ClassVar

class A:
 x: ClassVar[int] = 0 # Class variable only

A.x += 1 # OK

a = A()
a.x = 1 # Error: Cannot assign to class variable "x" via instance
print(a.x) # OK -- can be read through an instance

Note

If you need to support Python 3 versions 3.5.2 or earlier, you have
to import ClassVar from typing_extensions instead (available on
PyPI). If you use Python 2.7, you can import it from typing.

It’s not necessary to annotate all class variables using
ClassVar. An attribute without the ClassVar annotation can
still be used as a class variable. However, mypy won’t prevent it from
being used as an instance variable, as discussed previously:

class A:
 x = 0 # Can be used as a class or instance variable

A.x += 1 # OK

a = A()
a.x = 1 # Also OK

Note that ClassVar is not a class, and you can’t use it with
isinstance() or issubclass(). It does not change Python
runtime behavior – it’s only for type checkers such as mypy (and
also helpful for human readers).

You can also omit the square brackets and the variable type in
a ClassVar annotation, but this might not do what you’d expect:

class A:
 y: ClassVar = 0 # Type implicitly Any!

In this case the type of the attribute will be implicitly Any.
This behavior will change in the future, since it’s surprising.

Note

A ClassVar type parameter cannot include type variables:
ClassVar[T] and ClassVar[List[T]]
are both invalid if T is a type variable (see Defining generic classes
for more about type variables).

Overriding statically typed methods

When overriding a statically typed method, mypy checks that the
override has a compatible signature:

class Base:
 def f(self, x: int) -> None:
 ...

class Derived1(Base):
 def f(self, x: str) -> None: # Error: type of 'x' incompatible
 ...

class Derived2(Base):
 def f(self, x: int, y: int) -> None: # Error: too many arguments
 ...

class Derived3(Base):
 def f(self, x: int) -> None: # OK
 ...

class Derived4(Base):
 def f(self, x: float) -> None: # OK: mypy treats int as a subtype of float
 ...

class Derived5(Base):
 def f(self, x: int, y: int = 0) -> None: # OK: accepts more than the base
 ... # class method

Note

You can also vary return types covariantly in overriding. For
example, you could override the return type Iterable[int] with a
subtype such as List[int]. Similarly, you can vary argument types
contravariantly – subclasses can have more general argument types.

You can also override a statically typed method with a dynamically
typed one. This allows dynamically typed code to override methods
defined in library classes without worrying about their type
signatures.

As always, relying on dynamically typed code can be unsafe. There is no
runtime enforcement that the method override returns a value that is
compatible with the original return type, since annotations have no
effect at runtime:

class Base:
 def inc(self, x: int) -> int:
 return x + 1

class Derived(Base):
 def inc(self, x): # Override, dynamically typed
 return 'hello' # Incompatible with 'Base', but no mypy error

Abstract base classes and multiple inheritance

Mypy supports Python abstract base classes (ABCs). Abstract classes
have at least one abstract method or property that must be implemented
by any concrete (non-abstract) subclass. You can define abstract base
classes using the abc.ABCMeta metaclass and the abc.abstractmethod
function decorator. Example:

from abc import ABCMeta, abstractmethod

class Animal(metaclass=ABCMeta):
 @abstractmethod
 def eat(self, food: str) -> None: pass

 @property
 @abstractmethod
 def can_walk(self) -> bool: pass

class Cat(Animal):
 def eat(self, food: str) -> None:
 ... # Body omitted

 @property
 def can_walk(self) -> bool:
 return True

x = Animal() # Error: 'Animal' is abstract due to 'eat' and 'can_walk'
y = Cat() # OK

Note

In Python 2.7 you have to use @abc.abstractproperty to define
an abstract property.

Note that mypy performs checking for unimplemented abstract methods
even if you omit the ABCMeta metaclass. This can be useful if the
metaclass would cause runtime metaclass conflicts.

Since you can’t create instances of ABCs, they are most commonly used in
type annotations. For example, this method accepts arbitrary iterables
containing arbitrary animals (instances of concrete Animal
subclasses):

def feed_all(animals: Iterable[Animal], food: str) -> None:
 for animal in animals:
 animal.eat(food)

There is one important peculiarity about how ABCs work in Python –
whether a particular class is abstract or not is somewhat implicit.
In the example below, Derived is treated as an abstract base class
since Derived inherits an abstract f method from Base and
doesn’t explicitly implement it. The definition of Derived
generates no errors from mypy, since it’s a valid ABC:

from abc import ABCMeta, abstractmethod

class Base(metaclass=ABCMeta):
 @abstractmethod
 def f(self, x: int) -> None: pass

class Derived(Base): # No error -- Derived is implicitly abstract
 def g(self) -> None:
 ...

Attempting to create an instance of Derived will be rejected,
however:

d = Derived() # Error: 'Derived' is abstract

Note

It’s a common error to forget to implement an abstract method.
As shown above, the class definition will not generate an error
in this case, but any attempt to construct an instance will be
flagged as an error.

A class can inherit any number of classes, both abstract and
concrete. As with normal overrides, a dynamically typed method can
override or implement a statically typed method defined in any base
class, including an abstract method defined in an abstract base class.

You can implement an abstract property using either a normal
property or an instance variable.

Protocols and structural subtyping

Mypy supports two ways of deciding whether two classes are compatible
as types: nominal subtyping and structural subtyping. Nominal
subtyping is strictly based on the class hierarchy. If class D
inherits class C, it’s also a subtype of C, and instances of
D can be used when C instances are expected. This form of
subtyping is used by default in mypy, since it’s easy to understand
and produces clear and concise error messages, and since it matches
how the native isinstance() check works – based on class
hierarchy. Structural subtyping can also be useful. Class D is
a structural subtype of class C if the former has all attributes
and methods of the latter, and with compatible types.

Structural subtyping can be seen as a static equivalent of duck
typing, which is well known to Python programmers. Mypy provides
support for structural subtyping via protocol classes described
below. See PEP 544 [https://www.python.org/dev/peps/pep-0544/] for
the detailed specification of protocols and structural subtyping in
Python.

Predefined protocols

The typing module defines various protocol classes that correspond
to common Python protocols, such as Iterable[T]. If a class
defines a suitable __iter__ method, mypy understands that it
implements the iterable protocol and is compatible with Iterable[T].
For example, IntList below is iterable, over int values:

from typing import Iterator, Iterable, Optional

class IntList:
 def __init__(self, value: int, next: Optional[IntList]) -> None:
 self.value = value
 self.next = next

 def __iter__(self) -> Iterator[int]:
 current = self
 while current:
 yield current.value
 current = current.next

def print_numbered(items: Iterable[int]) -> None:
 for n, x in enumerate(items):
 print(n + 1, x)

x = IntList(3, IntList(5, None))
print_numbered(x) # OK
print_numbered([4, 5]) # Also OK

The subsections below introduce all built-in protocols defined in
typing and the signatures of the corresponding methods you need to define
to implement each protocol (the signatures can be left out, as always, but mypy
won’t type check unannotated methods).

Iteration protocols

The iteration protocols are useful in many contexts. For example, they allow
iteration of objects in for loops.

Iterable[T]

The example above has a simple implementation of an
__iter__ method.

def __iter__(self) -> Iterator[T]

Iterator[T]

def __next__(self) -> T
def __iter__(self) -> Iterator[T]

Collection protocols

Many of these are implemented by built-in container types such as
list and dict, and these are also useful for user-defined
collection objects.

Sized

This is a type for objects that support len(x).

def __len__(self) -> int

Container[T]

This is a type for objects that support the in operator.

def __contains__(self, x: object) -> bool

Collection[T]

def __len__(self) -> int
def __iter__(self) -> Iterator[T]
def __contains__(self, x: object) -> bool

One-off protocols

These protocols are typically only useful with a single standard
library function or class.

Reversible[T]

This is a type for objects that support reversed(x).

def __reversed__(self) -> Iterator[T]

SupportsAbs[T]

This is a type for objects that support abs(x). T is the type of
value returned by abs(x).

def __abs__(self) -> T

SupportsBytes

This is a type for objects that support bytes(x).

def __bytes__(self) -> bytes

SupportsComplex

This is a type for objects that support complex(x). Note that no arithmetic operations
are supported.

def __complex__(self) -> complex

SupportsFloat

This is a type for objects that support float(x). Note that no arithmetic operations
are supported.

def __float__(self) -> float

SupportsInt

This is a type for objects that support int(x). Note that no arithmetic operations
are supported.

def __int__(self) -> int

SupportsRound[T]

This is a type for objects that support round(x).

def __round__(self) -> T

Async protocols

These protocols can be useful in async code. See Typing async/await
for more information.

Awaitable[T]

def __await__(self) -> Generator[Any, None, T]

AsyncIterable[T]

def __aiter__(self) -> AsyncIterator[T]

AsyncIterator[T]

def __anext__(self) -> Awaitable[T]
def __aiter__(self) -> AsyncIterator[T]

Context manager protocols

There are two protocols for context managers – one for regular context
managers and one for async ones. These allow defining objects that can
be used in with and async with statements.

ContextManager[T]

def __enter__(self) -> T
def __exit__(self,
 exc_type: Optional[Type[BaseException]],
 exc_value: Optional[BaseException],
 traceback: Optional[TracebackType]) -> Optional[bool]

AsyncContextManager[T]

def __aenter__(self) -> Awaitable[T]
def __aexit__(self,
 exc_type: Optional[Type[BaseException]],
 exc_value: Optional[BaseException],
 traceback: Optional[TracebackType]) -> Awaitable[Optional[bool]]

Simple user-defined protocols

You can define your own protocol class by inheriting the special
typing_extensions.Protocol class:

from typing import Iterable
from typing_extensions import Protocol

class SupportsClose(Protocol):
 def close(self) -> None:
 ... # Empty method body (explicit '...')

class Resource: # No SupportsClose base class!
 # ... some methods ...

 def close(self) -> None:
 self.resource.release()

def close_all(items: Iterable[SupportsClose]) -> None:
 for item in items:
 item.close()

close_all([Resource(), open('some/file')]) # Okay!

Resource is a subtype of the SupportsClose protocol since it defines
a compatible close method. Regular file objects returned by open() are
similarly compatible with the protocol, as they support close().

Note

The Protocol base class is currently provided in the typing_extensions
package. Once structural subtyping is mature and
PEP 544 [https://www.python.org/dev/peps/pep-0544/] has been accepted,
Protocol will be included in the typing module.

Defining subprotocols and subclassing protocols

You can also define subprotocols. Existing protocols can be extended
and merged using multiple inheritance. Example:

... continuing from the previous example

class SupportsRead(Protocol):
 def read(self, amount: int) -> bytes: ...

class TaggedReadableResource(SupportsClose, SupportsRead, Protocol):
 label: str

class AdvancedResource(Resource):
 def __init__(self, label: str) -> None:
 self.label = label

 def read(self, amount: int) -> bytes:
 # some implementation
 ...

resource: TaggedReadableResource
resource = AdvancedResource('handle with care') # OK

Note that inheriting from an existing protocol does not automatically
turn the subclass into a protocol – it just creates a regular
(non-protocol) class or ABC that implements the given protocol (or
protocols). The typing_extensions.Protocol base class must always
be explicitly present if you are defining a protocol:

class NotAProtocol(SupportsClose): # This is NOT a protocol
 new_attr: int

class Concrete:
 new_attr: int = 0

 def close(self) -> None:
 ...

Error: nominal subtyping used by default
x: NotAProtocol = Concrete() # Error!

You can also include default implementations of methods in
protocols. If you explicitly subclass these protocols you can inherit
these default implementations. Explicitly including a protocol as a
base class is also a way of documenting that your class implements a
particular protocol, and it forces mypy to verify that your class
implementation is actually compatible with the protocol.

Note

You can use Python 3.6 variable annotations (PEP 526 [https://www.python.org/dev/peps/pep-0526/])
to declare protocol attributes. On Python 2.7 and earlier Python 3
versions you can use type comments and properties.

Recursive protocols

Protocols can be recursive (self-referential) and mutually
recursive. This is useful for declaring abstract recursive collections
such as trees and linked lists:

from typing import TypeVar, Optional
from typing_extensions import Protocol

class TreeLike(Protocol):
 value: int

 @property
 def left(self) -> Optional['TreeLike']: ...

 @property
 def right(self) -> Optional['TreeLike']: ...

class SimpleTree:
 def __init__(self, value: int) -> None:
 self.value = value
 self.left: Optional['SimpleTree'] = None
 self.right: Optional['SimpleTree'] = None

root: TreeLike = SimpleTree(0) # OK

Using isinstance() with protocols

You can use a protocol class with isinstance() if you decorate it
with the typing_extensions.runtime class decorator. The decorator
adds support for basic runtime structural checks:

from typing_extensions import Protocol, runtime

@runtime
class Portable(Protocol):
 handles: int

class Mug:
 def __init__(self) -> None:
 self.handles = 1

mug = Mug()
if isinstance(mug, Portable):
 use(mug.handles) # Works statically and at runtime

isinstance() also works with the predefined protocols
in typing such as Iterable.

Note

isinstance() with protocols is not completely safe at runtime.
For example, signatures of methods are not checked. The runtime
implementation only checks that all protocol members are defined.

Callback protocols

Protocols can be used to define flexible callback types that are hard
(or even impossible) to express using the Callable[...] syntax, such as variadic,
overloaded, and complex generic callbacks. They are defined with a special __call__
member:

from typing import Optional, Iterable, List
from typing_extensions import Protocol

class Combiner(Protocol):
 def __call__(self, *vals: bytes, maxlen: Optional[int] = None) -> List[bytes]: ...

def batch_proc(data: Iterable[bytes], cb_results: Combiner) -> bytes:
 for item in data:
 ...

def good_cb(*vals: bytes, maxlen: Optional[int] = None) -> List[bytes]:
 ...
def bad_cb(*vals: bytes, maxitems: Optional[int]) -> List[bytes]:
 ...

batch_proc([], good_cb) # OK
batch_proc([], bad_cb) # Error! Argument 2 has incompatible type because of
 # different name and kind in the callback

Callback protocols and Callable[...] types can be used interchangeably.
Keyword argument names in __call__ methods must be identical, unless
a double underscore prefix is used. For example:

from typing import Callable, TypeVar
from typing_extensions import Protocol

T = TypeVar('T')

class Copy(Protocol):
 def __call__(self, __origin: T) -> T: ...

copy_a: Callable[[T], T]
copy_b: Copy

copy_a = copy_b # OK
copy_b = copy_a # Also OK

Type checking Python 2 code

For code that needs to be Python 2.7 compatible, function type
annotations are given in comments, since the function annotation
syntax was introduced in Python 3. The comment-based syntax is
specified in PEP 484 [https://www.python.org/dev/peps/pep-0484].

Run mypy in Python 2 mode by using the --py2 option:

$ mypy --py2 program.py

To run your program, you must have the typing module in your
Python 2 module search path. Use pip install typing to install the
module. This also works for Python 3 versions prior to 3.5 that don’t
include typing in the standard library.

The example below illustrates the Python 2 function type annotation
syntax. This syntax is also valid in Python 3 mode:

from typing import List

def hello(): # type: () -> None
 print 'hello'

class Example:
 def method(self, lst, opt=0, *args, **kwargs):
 # type: (List[str], int, *str, **bool) -> int
 """Docstring comes after type comment."""
 ...

It’s worth going through these details carefully to avoid surprises:

	You don’t provide an annotation for the self / cls variable of
methods.

	Docstring always comes after the type comment.

	For *args and **kwargs the type should be prefixed with
* or **, respectively (except when using the multi-line
annotation syntax described below). Again, the above example
illustrates this.

	Things like Any must be imported from typing, even if they
are only used in comments.

	In Python 2 mode str is implicitly promoted to unicode, similar
to how int is compatible with float. This is unlike bytes and
str in Python 3, which are incompatible. bytes in Python 2 is
equivalent to str. (This might change in the future.)

Multi-line Python 2 function annotations

Mypy also supports a multi-line comment annotation syntax. You
can provide a separate annotation for each argument using the variable
annotation syntax. When using the single-line annotation syntax
described above, functions with long argument lists tend to result in
overly long type comments and it’s often tricky to see which argument
type corresponds to which argument. The alternative, multi-line
annotation syntax makes long annotations easier to read and write.

Here is an example (from PEP 484):

def send_email(address, # type: Union[str, List[str]]
 sender, # type: str
 cc, # type: Optional[List[str]]
 bcc, # type: Optional[List[str]]
 subject='',
 body=None # type: List[str]
):
 # type: (...) -> bool
 """Send an email message. Return True if successful."""
 <code>

You write a separate annotation for each function argument on the same
line as the argument. Each annotation must be on a separate line. If
you leave out an annotation for an argument, it defaults to
Any. You provide a return type annotation in the body of the
function using the form # type: (...) -> rt, where rt is the
return type. Note that the return type annotation contains literal
three dots.

When using multi-line comments, you do not need to prefix the
types of your *arg and **kwarg parameters with * or **.
For example, here is how you would annotate the first example using
multi-line comments:

from typing import List

class Example:
 def method(self,
 lst, # type: List[str]
 opt=0, # type: int
 *args, # type: str
 **kwargs # type: bool
):
 # type: (...) -> int
 """Docstring comes after type comment."""
 ...

Additional notes

	You should include types for arguments with default values in the
annotation. The opt argument of method in the example at the
beginning of this section is an example of this.

	The annotation can be on the same line as the function header or on
the following line.

	Variables use a comment-based type syntax (explained in
Explicit types for variables).

	You don’t need to use string literal escapes for forward references
within comments (string literal escapes are explained later).

	Mypy uses a separate set of library stub files in typeshed [https://github.com/python/typeshed] for Python 2. Library support
may vary between Python 2 and Python 3.

Dynamically typed code

As mentioned earlier, bodies of functions that don’t have have any
explicit types in their function annotation are dynamically typed
(operations are checked at runtime). Code outside functions is
statically typed by default, and types of variables are inferred. This
does usually the right thing, but you can also make any variable
dynamically typed by defining it explicitly with the type Any:

from typing import Any

s = 1 # Statically typed (type int)
d: Any = 1 # Dynamically typed (type Any)
s = 'x' # Type check error
d = 'x' # OK

Operations on Any values

You can do anything using a value with type Any, and type checker
does not complain:

def f(x: Any) -> int:
 # All of these are valid!
 x.foobar(1, y=2)
 print(x[3] + 'f')
 if x:
 x.z = x(2)
 open(x).read()
 return x

Values derived from an Any value also often have the type Any
implicitly, as mypy can’t infer a more precise result type. For
example, if you get the attribute of an Any value or call a
Any value the result is Any:

def f(x: Any) -> None:
 y = x.foo() # y has type Any
 y.bar() # Okay as well!

Any types may propagate through your program, making type checking
less effective, unless you are careful.

Any vs. object

The type object is another type that can have an instance of arbitrary
type as a value. Unlike Any, object is an ordinary static type (it
is similar to Object in Java), and only operations valid for all
types are accepted for object values. These are all valid:

def f(o: object) -> None:
 if o:
 print(o)
 print(isinstance(o, int))
 o = 2
 o = 'foo'

These are, however, flagged as errors, since not all objects support these
operations:

def f(o: object) -> None:
 o.foo() # Error!
 o + 2 # Error!
 open(o) # Error!
 n = 1 # type: int
 n = o # Error!

You can use cast() (see chapter Casts and type assertions) or isinstance to
go from a general type such as object to a more specific
type (subtype) such as int. cast() is not needed with
dynamically typed values (values with type Any).

Casts and type assertions

Mypy supports type casts that are usually used to coerce a statically
typed value to a subtype. Unlike languages such as Java or C#,
however, mypy casts are only used as hints for the type checker, and they
don’t perform a runtime type check. Use the function cast to perform a
cast:

from typing import cast, List

o: object = [1]
x = cast(List[int], o) # OK
y = cast(List[str], o) # OK (cast performs no actual runtime check)

To support runtime checking of casts such as the above, we’d have to check
the types of all list items, which would be very inefficient for large lists.
Casts are used to silence spurious
type checker warnings and give the type checker a little help when it can’t
quite understand what is going on.

Note

You can use an assertion if you want to perform an actual runtime check:

def foo(o: object) -> None:
 print(o + 5) # Error: can't add 'object' and 'int'
 assert isinstance(o, int)
 print(o + 5) # OK: type of 'o' is 'int' here

You don’t need a cast for expressions with type Any, or when
assigning to a variable with type Any, as was explained earlier.
You can also use Any as the cast target type – this lets you perform
any operations on the result. For example:

from typing import cast, Any

x = 1
x.whatever() # Type check error
y = cast(Any, x)
y.whatever() # Type check OK (runtime error)

Duck type compatibility

In Python, certain types are compatible even though they aren’t subclasses of
each other. For example, int objects are valid whenever float objects
are expected. Mypy supports this idiom via duck type compatibility. This is
supported for a small set of built-in types:

	int is duck type compatible with float and complex.

	float is duck type compatible with complex.

	In Python 2, str is duck type compatible with unicode.

For example, mypy considers an int object to be valid whenever a
float object is expected. Thus code like this is nice and clean
and also behaves as expected:

import math

def degrees_to_radians(degrees: float) -> float:
 return math.pi * degrees / 180

n = 90 # Inferred type 'int'
print(degrees_to_radians(n)) # Okay!

You can also often use Protocols and structural subtyping to achieve a similar effect in
a more principled and extensible fashion. Protocols don’t apply to
cases like int being compatible with float, since float is not
a protocol class but a regular, concrete class, and many standard library
functions expect concrete instances of float (or int).

Note

Note that in Python 2 a str object with non-ASCII characters is
often not valid when a unicode string is expected. The mypy type
system does not consider a string with non-ASCII values as a
separate type so some programs with this kind of error will
silently pass type checking. In Python 3 str and bytes are
separate, unrelated types and this kind of error is easy to
detect. This a good reason for preferring Python 3 over Python 2!

See Text and AnyStr for details on how to enforce that a
value must be a unicode string in a cross-compatible way.

Stub files

Mypy uses stub files stored in the
typeshed [https://github.com/python/typeshed] repository to determine
the types of standard library and third-party library functions, classes,
and other definitions. You can also create your own stubs that will be
used to type check your code. The basic properties of stubs were introduced
back in Library stubs and typeshed.

Creating a stub

Here is an overview of how to create a stub file:

	Write a stub file for the library (or an arbitrary module) and store it as
a .pyi file in the same directory as the library module.

	Alternatively, put your stubs (.pyi files) in a directory
reserved for stubs (e.g., myproject/stubs). In this case you
have to set the environment variable MYPYPATH to refer to the
directory. For example:

$ export MYPYPATH=~/work/myproject/stubs

Use the normal Python file name conventions for modules, e.g. csv.pyi
for module csv. Use a subdirectory with __init__.pyi for packages. Note
that PEP 561 [https://www.python.org/dev/peps/pep-0561/] stub-only packages
must be installed, and may not be pointed at through the MYPYPATH
(see PEP 561 support).

If a directory contains both a .py and a .pyi file for the
same module, the .pyi file takes precedence. This way you can
easily add annotations for a module even if you don’t want to modify
the source code. This can be useful, for example, if you use 3rd party
open source libraries in your program (and there are no stubs in
typeshed yet).

That’s it! Now you can access the module in mypy programs and type check
code that uses the library. If you write a stub for a library module,
consider making it available for other programmers that use mypy
by contributing it back to the typeshed repo.

There is more information about creating stubs in the
mypy wiki [https://github.com/python/mypy/wiki/Creating-Stubs-For-Python-Modules].
The following sections explain the kinds of type annotations you can use
in your programs and stub files.

Note

You may be tempted to point MYPYPATH to the standard library or
to the site-packages directory where your 3rd party packages
are installed. This is almost always a bad idea – you will likely
get tons of error messages about code you didn’t write and that
mypy can’t analyze all that well yet, and in the worst case
scenario mypy may crash due to some construct in a 3rd party
package that it didn’t expect.

Stub file syntax

Stub files are written in normal Python 3 syntax, but generally
leaving out runtime logic like variable initializers, function bodies,
and default arguments, or replacing them with ellipses.

In this example, each ellipsis ... is literally written in the
stub file as three dots:

x: int

def afunc(code: str) -> int: ...
def afunc(a: int, b: int = ...) -> int: ...

Note

The ellipsis ... is also used with a different meaning in
callable types and tuple types.

Generics

This section explains how you can define your own generic classes that take
one or more type parameters, similar to built-in types such as List[X].
User-defined generics are a moderately advanced feature and you can get far
without ever using them – feel free to skip this section and come back later.

Defining generic classes

The built-in collection classes are generic classes. Generic types
have one or more type parameters, which can be arbitrary types. For
example, Dict[int, str] has the type parameters int and
str, and List[int] has a type parameter int.

Programs can also define new generic classes. Here is a very simple
generic class that represents a stack:

from typing import TypeVar, Generic

T = TypeVar('T')

class Stack(Generic[T]):
 def __init__(self) -> None:
 # Create an empty list with items of type T
 self.items: List[T] = []

 def push(self, item: T) -> None:
 self.items.append(item)

 def pop(self) -> T:
 return self.items.pop()

 def empty(self) -> bool:
 return not self.items

The Stack class can be used to represent a stack of any type:
Stack[int], Stack[Tuple[int, str]], etc.

Using Stack is similar to built-in container types:

Construct an empty Stack[int] instance
stack = Stack[int]()
stack.push(2)
stack.pop()
stack.push('x') # Type error

Type inference works for user-defined generic types as well:

def process(stack: Stack[int]) -> None: ...

process(Stack()) # Argument has inferred type Stack[int]

Construction of instances of generic types is also type checked:

class Box(Generic[T]):
 def __init__(self, content: T) -> None:
 self.content = content

Box(1) # OK, inferred type is Box[int]
Box[int](1) # Also OK
s = 'some string'
Box[int](s) # Type error

Generic class internals

You may wonder what happens at runtime when you index
Stack. Actually, indexing Stack returns essentially a copy
of Stack that returns instances of the original class on
instantiation:

>>> print(Stack)
__main__.Stack
>>> print(Stack[int])
__main__.Stack[int]
>>> print(Stack[int]().__class__)
__main__.Stack

Note that built-in types list, dict and so on do not support
indexing in Python. This is why we have the aliases List, Dict
and so on in the typing module. Indexing these aliases gives
you a class that directly inherits from the target class in Python:

>>> from typing import List
>>> List[int]
typing.List[int]
>>> List[int].__bases__
(<class 'list'>, typing.MutableSequence)

Generic types could be instantiated or subclassed as usual classes,
but the above examples illustrate that type variables are erased at
runtime. Generic Stack instances are just ordinary
Python objects, and they have no extra runtime overhead or magic due
to being generic, other than a metaclass that overloads the indexing
operator.

Defining sub-classes of generic classes

User-defined generic classes and generic classes defined in typing
can be used as base classes for another classes, both generic and
non-generic. For example:

from typing import Generic, TypeVar, Mapping, Iterator, Dict

KT = TypeVar('KT')
VT = TypeVar('VT')

class MyMap(Mapping[KT, VT]]): # This is a generic subclass of Mapping
 def __getitem__(self, k: KT) -> VT:
 ... # Implementations omitted
 def __iter__(self) -> Iterator[KT]:
 ...
 def __len__(self) -> int:
 ...

items: MyMap[str, int] # Okay

class StrDict(Dict[str, str]): # This is a non-generic subclass of Dict
 def __str__(self) -> str:
 return 'StrDict({})'.format(super().__str__())

data: StrDict[int, int] # Error! StrDict is not generic
data2: StrDict # OK

class Receiver(Generic[T]):
 def accept(self, value: T) -> None:
 ...

class AdvancedReceiver(Receiver[T]):
 ...

Note

You have to add an explicit Mapping base class
if you want mypy to consider a user-defined class as a mapping (and
Sequence for sequences, etc.). This is because mypy doesn’t use
structural subtyping for these ABCs, unlike simpler protocols
like Iterable, which use structural subtyping.

Generic[...] can be omitted from bases if there are
other base classes that include type variables, such as Mapping[KT, VT]
in the above example. If you include Generic[...] in bases, then
it should list all type variables present in other bases (or more,
if needed). The order of type variables is defined by the following
rules:

	If Generic[...] is present, then the order of variables is
always determined by their order in Generic[...].

	If there are no Generic[...] in bases, then all type variables
are collected in the lexicographic order (i.e. by first appearance).

For example:

from typing import Generic, TypeVar, Any

T = TypeVar('T')
S = TypeVar('S')
U = TypeVar('U')

class One(Generic[T]): ...
class Another(Generic[T]): ...

class First(One[T], Another[S]): ...
class Second(One[T], Another[S], Generic[S, U, T]): ...

x: First[int, str] # Here T is bound to int, S is bound to str
y: Second[int, str, Any] # Here T is Any, S is int, and U is str

Generic functions

Generic type variables can also be used to define generic functions:

from typing import TypeVar, Sequence

T = TypeVar('T') # Declare type variable

def first(seq: Sequence[T]) -> T: # Generic function
 return seq[0]

As with generic classes, the type variable can be replaced with any
type. That means first can be used with any sequence type, and the
return type is derived from the sequence item type. For example:

Assume first defined as above.

s = first('foo') # s has type str.
n = first([1, 2, 3]) # n has type int.

Note also that a single definition of a type variable (such as T
above) can be used in multiple generic functions or classes. In this
example we use the same type variable in two generic functions:

from typing import TypeVar, Sequence

T = TypeVar('T') # Declare type variable

def first(seq: Sequence[T]) -> T:
 return seq[0]

def last(seq: Sequence[T]) -> T:
 return seq[-1]

A variable cannot have a type variable in its type unless the type
variable is bound in a containing generic class or function.

Generic methods and generic self

You can also define generic methods — just use a type variable in the
method signature that is different from class type variables. In particular,
self may also be generic, allowing a method to return the most precise
type known at the point of access.

Note

This feature is experimental. Checking code with type annotations for self
arguments is still not fully implemented. Mypy may disallow valid code or
allow unsafe code.

In this way, for example, you can typecheck chaining of setter methods:

from typing import TypeVar

T = TypeVar('T', bound='Shape')

class Shape:
 def set_scale(self: T, scale: float) -> T:
 self.scale = scale
 return self

class Circle(Shape):
 def set_radius(self, r: float) -> 'Circle':
 self.radius = r
 return self

class Square(Shape):
 def set_width(self, w: float) -> 'Square':
 self.width = w
 return self

circle = Circle().set_scale(0.5).set_radius(2.7) # type: Circle
square = Square().set_scale(0.5).set_width(3.2) # type: Square

Without using generic self, the last two lines could not be type-checked properly.

Other uses are factory methods, such as copy and deserialization.
For class methods, you can also define generic cls, using Type[T]:

from typing import TypeVar, Tuple, Type

T = TypeVar('T', bound='Friend')

class Friend:
 other = None # type: Friend

 @classmethod
 def make_pair(cls: Type[T]) -> Tuple[T, T]:
 a, b = cls(), cls()
 a.other = b
 b.other = a
 return a, b

class SuperFriend(Friend):
 pass

a, b = SuperFriend.make_pair()

Note that when overriding a method with generic self, you must either
return a generic self too, or return an instance of the current class.
In the latter case, you must implement this method in all future subclasses.

Note also that mypy cannot always verify that the implementation of a copy
or a deserialization method returns the actual type of self. Therefore
you may need to silence mypy inside these methods (but not at the call site),
possibly by making use of the Any type.

Variance of generic types

There are three main kinds of generic types with respect to subtype
relations between them: invariant, covariant, and contravariant.
Assuming that we have a pair of types A and B, and B is
a subtype of A, these are defined as follows:

	A generic class MyCovGen[T, ...] is called covariant in type variable
T if MyCovGen[B, ...] is always a subtype of MyCovGen[A, ...].

	A generic class MyContraGen[T, ...] is called contravariant in type
variable T if MyContraGen[A, ...] is always a subtype of
MyContraGen[B, ...].

	A generic class MyInvGen[T, ...] is called invariant in T if neither
of the above is true.

Let us illustrate this by few simple examples:

	Union is covariant in all variables: Union[Cat, int] is a subtype
of Union[Animal, int],
Union[Dog, int] is also a subtype of Union[Animal, int], etc.
Most immutable containers such as Sequence and FrozenSet are also
covariant.

	Callable is an example of type that behaves contravariant in types of
arguments, namely Callable[[Employee], int] is a subtype of
Callable[[Manager], int]. To understand this, consider a function:

def salaries(staff: List[Manager],
 accountant: Callable[[Manager], int]) -> List[int]: ...

This function needs a callable that can calculate a salary for managers, and
if we give it a callable that can calculate a salary for an arbitrary
employee, it’s still safe.

	List is an invariant generic type. Naively, one would think
that it is covariant, but let us consider this code:

class Shape:
 pass

class Circle(Shape):
 def rotate(self):
 ...

def add_one(things: List[Shape]) -> None:
 things.append(Shape())

my_things: List[Circle] = []
add_one(my_things) # This may appear safe, but...
my_things[0].rotate() # ...this will fail

Another example of invariant type is Dict. Most mutable containers
are invariant.

By default, mypy assumes that all user-defined generics are invariant.
To declare a given generic class as covariant or contravariant use
type variables defined with special keyword arguments covariant or
contravariant. For example:

from typing import Generic, TypeVar

T_co = TypeVar('T_co', covariant=True)

class Box(Generic[T_co]): # this type is declared covariant
 def __init__(self, content: T_co) -> None:
 self._content = content

 def get_content(self) -> T_co:
 return self._content

def look_into(box: Box[Animal]): ...

my_box = Box(Cat())
look_into(my_box) # OK, but mypy would complain here for an invariant type

Type variables with value restriction

By default, a type variable can be replaced with any type. However, sometimes
it’s useful to have a type variable that can only have some specific types
as its value. A typical example is a type variable that can only have values
str and bytes:

from typing import TypeVar

AnyStr = TypeVar('AnyStr', str, bytes)

This is actually such a common type variable that AnyStr is
defined in typing and we don’t need to define it ourselves.

We can use AnyStr to define a function that can concatenate
two strings or bytes objects, but it can’t be called with other
argument types:

from typing import AnyStr

def concat(x: AnyStr, y: AnyStr) -> AnyStr:
 return x + y

concat('a', 'b') # Okay
concat(b'a', b'b') # Okay
concat(1, 2) # Error!

Note that this is different from a union type, since combinations
of str and bytes are not accepted:

concat('string', b'bytes') # Error!

In this case, this is exactly what we want, since it’s not possible
to concatenate a string and a bytes object! The type checker
will reject this function:

def union_concat(x: Union[str, bytes], y: Union[str, bytes]) -> Union[str, bytes]:
 return x + y # Error: can't concatenate str and bytes

Another interesting special case is calling concat() with a
subtype of str:

class S(str): pass

ss = concat(S('foo'), S('bar')))

You may expect that the type of ss is S, but the type is
actually str: a subtype gets promoted to one of the valid values
for the type variable, which in this case is str. This is thus
subtly different from bounded quantification in languages such as
Java, where the return type would be S. The way mypy implements
this is correct for concat, since concat actually returns a
str instance in the above example:

>>> print(type(ss))
<class 'str'>

You can also use a TypeVar with a restricted set of possible
values when defining a generic class. For example, mypy uses the type
typing.Pattern[AnyStr] for the return value of re.compile,
since regular expressions can be based on a string or a bytes pattern.

Type variables with upper bounds

A type variable can also be restricted to having values that are
subtypes of a specific type. This type is called the upper bound of
the type variable, and is specified with the bound=... keyword
argument to TypeVar.

from typing import TypeVar, SupportsAbs

T = TypeVar('T', bound=SupportsAbs[float])

In the definition of a generic function that uses such a type variable
T, the type represented by T is assumed to be a subtype of
its upper bound, so the function can use methods of the upper bound on
values of type T.

def largest_in_absolute_value(*xs: T) -> T:
 return max(xs, key=abs) # Okay, because T is a subtype of SupportsAbs[float].

In a call to such a function, the type T must be replaced by a
type that is a subtype of its upper bound. Continuing the example
above,

largest_in_absolute_value(-3.5, 2) # Okay, has type float.
largest_in_absolute_value(5+6j, 7) # Okay, has type complex.
largest_in_absolute_value('a', 'b') # Error: 'str' is not a subtype of SupportsAbs[float].

Type parameters of generic classes may also have upper bounds, which
restrict the valid values for the type parameter in the same way.

A type variable may not have both a value restriction (see
Type variables with value restriction) and an upper bound.

Declaring decorators

One common application of type variable upper bounds is in declaring a
decorator that preserves the signature of the function it decorates,
regardless of that signature. Here’s a complete example:

from typing import Any, Callable, TypeVar, Tuple, cast

FuncType = Callable[..., Any]
F = TypeVar('F', bound=FuncType)

A decorator that preserves the signature.
def my_decorator(func: F) -> F:
 def wrapper(*args, **kwds):
 print("Calling", func)
 return func(*args, **kwds)
 return cast(F, wrapper)

A decorated function.
@my_decorator
def foo(a: int) -> str:
 return str(a)

Another.
@my_decorator
def bar(x: float, y: float) -> Tuple[float, float, bool]:
 return (x, y, x > y)

a = foo(12)
reveal_type(a) # str
b = bar(3.14, 0)
reveal_type(b) # Tuple[float, float, bool]
foo('x') # Type check error: incompatible type "str"; expected "int"

From the final block we see that the signatures of the decorated
functions foo() and bar() are the same as those of the original
functions (before the decorator is applied).

The bound on F is used so that calling the decorator on a
non-function (e.g. my_decorator(1)) will be rejected.

Also note that the wrapper() function is not type-checked. Wrapper
functions are typically small enough that this is not a big
problem. This is also the reason for the cast() call in the
return statement in my_decorator(). See Casts and type assertions.

Generic protocols

Mypy supports generic protocols (see also Protocols and structural subtyping). Several
predefined protocols are generic, such as
Iterable[T], and you can define additional generic protocols. Generic
protocols mostly follow the normal rules for generic classes. Example:

from typing import TypeVar
from typing_extensions import Protocol

T = TypeVar('T')

class Box(Protocol[T]):
 content: T

def do_stuff(one: Box[str], other: Box[bytes]) -> None:
 ...

class StringWrapper:
 def __init__(self, content: str) -> None:
 self.content = content

class BytesWrapper:
 def __init__(self, content: bytes) -> None:
 self.content = content

do_stuff(StringWrapper('one'), BytesWrapper(b'other')) # OK

x: Box[float] = ...
y: Box[int] = ...
x = y # Error -- Box is invariant

The main difference between generic protocols and ordinary generic
classes is that mypy checks that the declared variances of generic
type variables in a protocol match how they are used in the protocol
definition. The protocol in this example is rejected, since the type
variable T is used covariantly as a return type, but the type
variable is invariant:

from typing import TypeVar
from typing_extensions import Protocol

T = TypeVar('T')

class ReadOnlyBox(Protocol[T]): # Error: covariant type variable expected
 def content(self) -> T: ...

This example correctly uses a covariant type variable:

from typing import TypeVar
from typing_extensions import Protocol

T_co = TypeVar('T_co', covariant=True)

class ReadOnlyBox(Protocol[T_co]): # OK
 def content(self) -> T_co: ...

ax: ReadOnlyBox[float] = ...
ay: ReadOnlyBox[int] = ...
ax = ay # OK -- ReadOnlyBox is covariant

See Variance of generic types for more about variance.

Generic protocols can also be recursive. Example:

T = TypeVar('T')

class Linked(Protocol[T]):
 val: T
 def next(self) -> 'Linked[T]': ...

class L:
 val: int

 ... # details omitted

 def next(self) -> 'L':
 ... # details omitted

def last(seq: Linked[T]) -> T:
 ... # implementation omitted

result = last(L()) # Inferred type of 'result' is 'int'

Generic type aliases

Type aliases can be generic. In this case they can be used in two ways:
Subscripted aliases are equivalent to original types with substituted type
variables, so the number of type arguments must match the number of free type variables
in the generic type alias. Unsubscripted aliases are treated as original types with free
variables replaced with Any. Examples (following PEP 484 [https://www.python.org/dev/peps/pep-0484/#type-aliases]):

from typing import TypeVar, Iterable, Tuple, Union, Callable

S = TypeVar('S')

TInt = Tuple[int, S]
UInt = Union[S, int]
CBack = Callable[..., S]

def response(query: str) -> UInt[str]: # Same as Union[str, int]
 ...
def activate(cb: CBack[S]) -> S: # Same as Callable[..., S]
 ...
table_entry: TInt # Same as Tuple[int, Any]

T = TypeVar('T', int, float, complex)

Vec = Iterable[Tuple[T, T]]

def inproduct(v: Vec[T]) -> T:
 return sum(x*y for x, y in v)

def dilate(v: Vec[T], scale: T) -> Vec[T]:
 return ((x * scale, y * scale) for x, y in v)

v1: Vec[int] = [] # Same as Iterable[Tuple[int, int]]
v2: Vec = [] # Same as Iterable[Tuple[Any, Any]]
v3: Vec[int, int] = [] # Error: Invalid alias, too many type arguments!

Type aliases can be imported from modules just like other names. An
alias can also target another alias, although building complex chains
of aliases is not recommended – this impedes code readability, thus
defeating the purpose of using aliases. Example:

from typing import TypeVar, Generic, Optional
from example1 import AliasType
from example2 import Vec

AliasType and Vec are type aliases (Vec as defined above)

def fun() -> AliasType:
 ...

T = TypeVar('T')

class NewVec(Vec[T]):
 ...

for i, j in NewVec[int]():
 ...

OIntVec = Optional[Vec[int]]

Note

A type alias does not define a new type. For generic type aliases
this means that variance of type variables used for alias definition does not
apply to aliases. A parameterized generic alias is treated simply as an original
type with the corresponding type variables substituted.

More types

This section introduces a few additional kinds of types, including NoReturn,
NewType, TypedDict, and types for async code. It also discusses how to
give functions more precise types using overloads. All of these are only
situationally useful, so feel free to skip this section and come back when you
have a need for some of them.

Here’s a quick summary of what’s covered here:

	NoReturn lets you tell mypy that a function never returns normally.

	NewType lets you define a variant of a type that is treated as a
separate type by mypy but is identical to the original type at runtime.
For example, you can have UserId as a variant of int that is
just an int at runtime.

	@overload lets you define a function that can accept multiple distinct
signatures. This is useful if you need to encode a relationship between the
arguments and the return type that would be difficult to express normally.

	TypedDict lets you give precise types for dictionaries that represent
objects with a fixed schema, such as {'id': 1, 'items': ['x']}.

	Async types let you type check programs using async and await.

The NoReturn type

Mypy provides support for functions that never return. For
example, a function that unconditionally raises an exception:

from typing import NoReturn

def stop() -> NoReturn:
 raise Exception('no way')

Mypy will ensure that functions annotated as returning NoReturn
truly never return, either implicitly or explicitly. Mypy will also
recognize that the code after calls to such functions is unreachable
and will behave accordingly:

def f(x: int) -> int:
 if x == 0:
 return x
 stop()
 return 'whatever works' # No error in an unreachable block

In earlier Python versions you need to install typing_extensions using
pip to use NoReturn in your code. Python 3 command line:

python3 -m pip install --upgrade typing-extensions

This works for Python 2:

pip install --upgrade typing-extensions

NewTypes

There are situations where you may want to avoid programming errors by
creating simple derived classes that are only used to distinguish
certain values from base class instances. Example:

class UserId(int):
 pass

get_by_user_id(user_id: UserId):
 ...

However, this approach introduces some runtime overhead. To avoid this, the typing
module provides a helper function NewType that creates simple unique types with
almost zero runtime overhead. Mypy will treat the statement
Derived = NewType('Derived', Base) as being roughly equivalent to the following
definition:

class Derived(Base):
 def __init__(self, _x: Base) -> None:
 ...

However, at runtime, NewType('Derived', Base) will return a dummy function that
simply returns its argument:

def Derived(_x):
 return _x

Mypy will require explicit casts from int where UserId is expected, while
implicitly casting from UserId where int is expected. Examples:

from typing import NewType

UserId = NewType('UserId', int)

def name_by_id(user_id: UserId) -> str:
 ...

UserId('user') # Fails type check

name_by_id(42) # Fails type check
name_by_id(UserId(42)) # OK

num = UserId(5) + 1 # type: int

NewType accepts exactly two arguments. The first argument must be a string literal
containing the name of the new type and must equal the name of the variable to which the new
type is assigned. The second argument must be a properly subclassable class, i.e.,
not a type construct like Union, etc.

The function returned by NewType accepts only one argument; this is equivalent to
supporting only one constructor accepting an instance of the base class (see above).
Example:

from typing import NewType

class PacketId:
 def __init__(self, major: int, minor: int) -> None:
 self._major = major
 self._minor = minor

TcpPacketId = NewType('TcpPacketId', PacketId)

packet = PacketId(100, 100)
tcp_packet = TcpPacketId(packet) # OK

tcp_packet = TcpPacketId(127, 0) # Fails in type checker and at runtime

You cannot use isinstance() or issubclass() on the object returned by
NewType(), because function objects don’t support these operations. You cannot
create subclasses of these objects either.

Note

Unlike type aliases, NewType will create an entirely new and
unique type when used. The intended purpose of NewType is to help you
detect cases where you accidentally mixed together the old base type and the
new derived type.

For example, the following will successfully typecheck when using type
aliases:

UserId = int

def name_by_id(user_id: UserId) -> str:
 ...

name_by_id(3) # ints and UserId are synonymous

But a similar example using NewType will not typecheck:

from typing import NewType

UserId = NewType('UserId', int)

def name_by_id(user_id: UserId) -> str:
 ...

name_by_id(3) # int is not the same as UserId

Function overloading

Sometimes the arguments and types in a function depend on each other
in ways that can’t be captured with a Union. For example, suppose
we want to write a function that can accept x-y coordinates. If we pass
in just a single x-y coordinate, we return a ClickEvent object. However,
if we pass in two x-y coordinates, we return a DragEvent object.

Our first attempt at writing this function might look like this:

from typing import Union, Optional

def mouse_event(x1: int,
 y1: int,
 x2: Optional[int] = None,
 y2: Optional[int] = None) -> Union[ClickEvent, DragEvent]:
 if x2 is None and y2 is None:
 return ClickEvent(x1, y1)
 elif x2 is not None and y2 is not None:
 return DragEvent(x1, y1, x2, y2)
 else:
 raise TypeError("Bad arguments")

While this function signature works, it’s too loose: it implies mouse_event
could return either object regardless of the number of arguments
we pass in. It also does not prohibit a caller from passing in the wrong
number of ints: mypy would treat calls like mouse_event(1, 2, 20) as being
valid, for example.

We can do better by using overloading [https://www.python.org/dev/peps/pep-0484/#function-method-overloading]
which lets us give the same function multiple type annotations (signatures)
to more accurately describe the function’s behavior:

from typing import Union, overload

Overload *variants* for 'mouse_event'.
These variants give extra information to the type checker.
They are ignored at runtime.

@overload
def mouse_event(x1: int, y1: int) -> ClickEvent: ...
@overload
def mouse_event(x1: int, y1: int, x2: int, y2: int) -> DragEvent: ...

The actual *implementation* of 'mouse_event'.
The implementation contains the actual runtime logic.
#
It may or may not have type hints. If it does, mypy
will check the body of the implementation against the
type hints.
#
Mypy will also check and make sure the signature is
consistent with the provided variants.

def mouse_event(x1: int,
 y1: int,
 x2: Optional[int] = None,
 y2: Optional[int] = None) -> Union[ClickEvent, DragEvent]:
 if x2 is None and y2 is None:
 return ClickEvent(x1, y1)
 elif x2 is not None and y2 is not None:
 return DragEvent(x1, y1, x2, y2)
 else:
 raise TypeError("Bad arguments")

This allows mypy to understand calls to mouse_event much more precisely.
For example, mypy will understand that mouse_event(5, 25) will
always have a return type of ClickEvent and will report errors for
calls like mouse_event(5, 25, 2).

As another example, suppose we want to write a custom container class that
implements the __getitem__ method ([] bracket indexing). If this
method receives an integer we return a single item. If it receives a
slice, we return a Sequence of items.

We can precisely encode this relationship between the argument and the
return type by using overloads like so:

from typing import Sequence, TypeVar, Union, overload

T = TypeVar('T')

class MyList(Sequence[T]):
 @overload
 def __getitem__(self, index: int) -> T: ...

 @overload
 def __getitem__(self, index: slice) -> Sequence[T]: ...

 def __getitem__(self, index: Union[int, slice]) -> Union[T, Sequence[T]]:
 if isinstance(index, int):
 # Return a T here
 elif isinstance(index, slice):
 # Return a sequence of Ts here
 else:
 raise TypeError(...)

Note

If you just need to constrain a type variable to certain types or
subtypes, you can use a value restriction.

Runtime behavior

An overloaded function must consist of two or more overload variants
followed by an implementation. The variants and the implementations
must be adjacent in the code: think of them as one indivisible unit.

The variant bodies must all be empty; only the implementation is allowed
to contain code. This is because at runtime, the variants are completely
ignored: they’re overridden by the final implementation function.

This means that an overloaded function is still an ordinary Python
function! There is no automatic dispatch handling and you must manually
handle the different types in the implementation (e.g. by using
if statements and isinstance checks).

If you are adding an overload within a stub file, the implementation
function should be omitted: stubs do not contain runtime logic.

Note

While we can leave the variant body empty using the pass keyword,
the more common convention is to instead use the ellipsis (...) literal.

Type checking calls to overloads

When you call an overloaded function, mypy will infer the correct return
type by picking the best matching variant, after taking into consideration
both the argument types and arity. However, a call is never type
checked against the implementation. This is why mypy will report calls
like mouse_event(5, 25, 3) as being invalid even though it matches the
implementation signature.

If there are multiple equally good matching variants, mypy will select
the variant that was defined first. For example, consider the following
program:

from typing import List, overload

@overload
def summarize(data: List[int]) -> float: ...

@overload
def summarize(data: List[str]) -> str: ...

def summarize(data):
 if not data:
 return 0.0
 elif isinstance(data[0], int):
 # Do int specific code
 else:
 # Do str-specific code

What is the type of 'output'? float or str?
output = summarize([])

The summarize([]) call matches both variants: an empty list could
be either a List[int] or a List[str]. In this case, mypy
will break the tie by picking the first matching variant: output
will have an inferred type of float. The implementor is responsible
for making sure summarize breaks ties in the same way at runtime.

However, there are two exceptions to the “pick the first match” rule.
First, if multiple variants match due to an argument being of type
Any, mypy will make the inferred type also be Any:

dynamic_var: Any = some_dynamic_function()

output2 is of type 'Any'
output2 = summarize(dynamic_var)

Second, if multiple variants match due to one or more of the arguments
being a union, mypy will make the inferred type be the union of the
matching variant returns:

some_list: Union[List[int], List[str]]

output3 is of type 'Union[float, str]'
output3 = summarize(some_list)

Note

Due to the “pick the first match” rule, changing the order of your
overload variants can change how mypy type checks your program.

To minimize potential issues, we recommend that you:

	Make sure your overload variants are listed in the same order as
the runtime checks (e.g. isinstance checks) in your implementation.

	Order your variants and runtime checks from most to least specific.
(See the following section for an example).

Type checking the variants

Mypy will perform several checks on your overload variant definitions
to ensure they behave as expected. First, mypy will check and make sure
that no overload variant is shadowing a subsequent one. For example,
consider the following function which adds together two Expression
objects, and contains a special-case to handle receiving two Literal
types:

from typing import overload, Union

class Expression:
 # ...snip...

class Literal(Expression):
 # ...snip...

Warning -- the first overload variant shadows the second!

@overload
def add(left: Expression, right: Expression) -> Expression: ...

@overload
def add(left: Literal, right: Literal) -> Literal: ...

def add(left: Expression, right: Expression) -> Expression:
 # ...snip...

While this code snippet is technically type-safe, it does contain an
anti-pattern: the second variant will never be selected! If we try calling
add(Literal(3), Literal(4)), mypy will always pick the first variant
and evaluate the function call to be of type Expression, not Literal.
This is because Literal is a subtype of Expression, which means
the “pick the first match” rule will always halt after considering the
first overload.

Because having an overload variant that can never be matched is almost
certainly a mistake, mypy will report an error. To fix the error, we can
either 1) delete the second overload or 2) swap the order of the overloads:

Everything is ok now -- the variants are correctly ordered
from most to least specific.

@overload
def add(left: Literal, right: Literal) -> Literal: ...

@overload
def add(left: Expression, right: Expression) -> Expression: ...

def add(left: Expression, right: Expression) -> Expression:
 # ...snip...

Mypy will also type check the different variants and flag any overloads
that have inherently unsafely overlapping variants. For example, consider
the following unsafe overload definition:

from typing import overload, Union

@overload
def unsafe_func(x: int) -> int: ...

@overload
def unsafe_func(x: object) -> str: ...

def unsafe_func(x: object) -> Union[int, str]:
 if isinstance(x, int):
 return 42
 else:
 return "some string"

On the surface, this function definition appears to be fine. However, it will
result in a discrepancy between the inferred type and the actual runtime type
when we try using it like so:

some_obj: object = 42
unsafe_func(some_obj) + " danger danger" # Type checks, yet crashes at runtime!

Since some_obj is of type object, mypy will decide that unsafe_func
must return something of type str and concludes the above will type check.
But in reality, unsafe_func will return an int, causing the code to crash
at runtime!

To prevent these kinds of issues, mypy will detect and prohibit inherently unsafely
overlapping overloads on a best-effort basis. Two variants are considered unsafely
overlapping when both of the following are true:

	All of the arguments of the first variant are compatible with the second.

	The return type of the first variant is not compatible with (e.g. is not a
subtype of) the second.

So in this example, the int argument in the first variant is a subtype of
the object argument in the second, yet the int return type not is a subtype of
str. Both conditions are true, so mypy will correctly flag unsafe_func as
being unsafe.

However, mypy will not detect all unsafe uses of overloads. For example,
suppose we modify the above snippet so it calls summarize instead of
unsafe_func:

some_list: List[str] = []
summarize(some_list) + "danger danger" # Type safe, yet crashes at runtime!

We run into a similar issue here. This program type checks if we look just at the
annotations on the overloads. But since summarize(...) is designed to be biased
towards returning a float when it receives an empty list, this program will actually
crash during runtime.

The reason mypy does not flag definitions like summarize as being potentially
unsafe is because if it did, it would be extremely difficult to write a safe
overload. For example, suppose we define an overload with two variants that accept
types A and B respectively. Even if those two types were completely unrelated,
the user could still potentially trigger a runtime error similar to the ones above by
passing in a value of some third type C that inherits from both A and B.

Thankfully, these types of situations are relatively rare. What this does mean,
however, is that you should exercise caution when designing or using an overloaded
function that can potentially receive values that are an instance of two seemingly
unrelated types.

Type checking the implementation

The body of an implementation is type-checked against the
type hints provided on the implementation. For example, in the
MyList example up above, the code in the body is checked with
argument list index: Union[int, slice] and a return type of
Union[T, Sequence[T]]. If there are no annotations on the
implementation, then the body is not type checked. If you want to
force mypy to check the body anyways, use the --check-untyped-defs
flag (more details here).

The variants must also also be compatible with the implementation
type hints. In the MyList example, mypy will check that the
parameter type int and the return type T are compatible with
Union[int, slice] and Union[T, Sequence] for the
first variant. For the second variant it verifies the parameter
type slice and the return type Sequence[T] are compatible
with Union[int, slice] and Union[T, Sequence].

Note

The overload semantics documented above are new as of mypy 0.620.

Previously, mypy used to perform type erasure on all overload variants. For
example, the summarize example from the previous section used to be
illegal because List[str] and List[int] both erased to just List[Any].
This restriction was removed in mypy 0.620.

Mypy also previously used to select the best matching variant using a different
algorithm. If this algorithm failed to find a match, it would default to returning
Any. The new algorithm uses the “pick the first match” rule and will fall back
to returning Any only if the input arguments also contain Any.

Typing async/await

Mypy supports the ability to type coroutines that use the async/await
syntax introduced in Python 3.5. For more information regarding coroutines and
this new syntax, see PEP 492 [https://www.python.org/dev/peps/pep-0492/].

Functions defined using async def are typed just like normal functions.
The return type annotation should be the same as the type of the value you
expect to get back when await-ing the coroutine.

import asyncio

async def format_string(tag: str, count: int) -> str:
 return 'T-minus {} ({})'.format(count, tag)

async def countdown_1(tag: str, count: int) -> str:
 while count > 0:
 my_str = await format_string(tag, count) # has type 'str'
 print(my_str)
 await asyncio.sleep(0.1)
 count -= 1
 return "Blastoff!"

loop = asyncio.get_event_loop()
loop.run_until_complete(countdown_1("Millennium Falcon", 5))
loop.close()

The result of calling an async def function without awaiting will be a
value of type typing.Coroutine[Any, Any, T], which is a subtype of
Awaitable[T]:

my_coroutine = countdown_1("Millennium Falcon", 5)
reveal_type(my_coroutine) # has type 'Coroutine[Any, Any, str]'

Note

reveal_type() displays the inferred static type of
an expression.

If you want to use coroutines in Python 3.4, which does not support
the async def syntax, you can instead use the @asyncio.coroutine
decorator to convert a generator into a coroutine.

Note that we set the YieldType of the generator to be Any in the
following example. This is because the exact yield type is an implementation
detail of the coroutine runner (e.g. the asyncio event loop) and your
coroutine shouldn’t have to know or care about what precisely that type is.

from typing import Any, Generator
import asyncio

@asyncio.coroutine
def countdown_2(tag: str, count: int) -> Generator[Any, None, str]:
 while count > 0:
 print('T-minus {} ({})'.format(count, tag))
 yield from asyncio.sleep(0.1)
 count -= 1
 return "Blastoff!"

loop = asyncio.get_event_loop()
loop.run_until_complete(countdown_2("USS Enterprise", 5))
loop.close()

As before, the result of calling a generator decorated with @asyncio.coroutine
will be a value of type Awaitable[T].

Note

At runtime, you are allowed to add the @asyncio.coroutine decorator to
both functions and generators. This is useful when you want to mark a
work-in-progress function as a coroutine, but have not yet added yield or
yield from statements:

import asyncio

@asyncio.coroutine
def serialize(obj: object) -> str:
 # todo: add yield/yield from to turn this into a generator
 return "placeholder"

However, mypy currently does not support converting functions into
coroutines. Support for this feature will be added in a future version, but
for now, you can manually force the function to be a generator by doing
something like this:

from typing import Generator
import asyncio

@asyncio.coroutine
def serialize(obj: object) -> Generator[None, None, str]:
 # todo: add yield/yield from to turn this into a generator
 if False:
 yield
 return "placeholder"

You may also choose to create a subclass of Awaitable instead:

from typing import Any, Awaitable, Generator
import asyncio

class MyAwaitable(Awaitable[str]):
 def __init__(self, tag: str, count: int) -> None:
 self.tag = tag
 self.count = count

 def __await__(self) -> Generator[Any, None, str]:
 for i in range(n, 0, -1):
 print('T-minus {} ({})'.format(i, tag))
 yield from asyncio.sleep(0.1)
 return "Blastoff!"

def countdown_3(tag: str, count: int) -> Awaitable[str]:
 return MyAwaitable(tag, count)

loop = asyncio.get_event_loop()
loop.run_until_complete(countdown_3("Heart of Gold", 5))
loop.close()

To create an iterable coroutine, subclass AsyncIterator:

from typing import Optional, AsyncIterator
import asyncio

class arange(AsyncIterator[int]):
 def __init__(self, start: int, stop: int, step: int) -> None:
 self.start = start
 self.stop = stop
 self.step = step
 self.count = start - step

 def __aiter__(self) -> AsyncIterator[int]:
 return self

 async def __anext__(self) -> int:
 self.count += self.step
 if self.count == self.stop:
 raise StopAsyncIteration
 else:
 return self.count

async def countdown_4(tag: str, n: int) -> str:
 async for i in arange(n, 0, -1):
 print('T-minus {} ({})'.format(i, tag))
 await asyncio.sleep(0.1)
 return "Blastoff!"

loop = asyncio.get_event_loop()
loop.run_until_complete(countdown_4("Serenity", 5))
loop.close()

For a more concrete example, the mypy repo has a toy webcrawler that
demonstrates how to work with coroutines. One version
uses async/await [https://github.com/python/mypy/blob/master/test-data/samples/crawl2.py]
and one
uses yield from [https://github.com/python/mypy/blob/master/test-data/samples/crawl.py].

TypedDict

Note

TypedDict is an officially supported feature, but it is still experimental.

Python programs often use dictionaries with string keys to represent objects.
Here is a typical example:

movie = {'name': 'Blade Runner', 'year': 1982}

Only a fixed set of string keys is expected ('name' and
'year' above), and each key has an independent value type (str
for 'name' and int for 'year' above). We’ve previously
seen the Dict[K, V] type, which lets you declare uniform
dictionary types, where every value has the same type, and arbitrary keys
are supported. This is clearly not a good fit for
movie above. Instead, you can use a TypedDict to give a precise
type for objects like movie, where the type of each
dictionary value depends on the key:

from mypy_extensions import TypedDict

Movie = TypedDict('Movie', {'name': str, 'year': int})

movie = {'name': 'Blade Runner', 'year': 1982} # type: Movie

Movie is a TypedDict type with two items: 'name' (with type str)
and 'year' (with type int). Note that we used an explicit type
annotation for the movie variable. This type annotation is
important – without it, mypy will try to infer a regular, uniform
Dict type for movie, which is not what we want here.

Note

If you pass a TypedDict object as an argument to a function, no
type annotation is usually necessary since mypy can infer the
desired type based on the declared argument type. Also, if an
assignment target has been previously defined, and it has a
TypedDict type, mypy will treat the assigned value as a TypedDict,
not Dict.

Now mypy will recognize these as valid:

name = movie['name'] # Okay; type of name is str
year = movie['year'] # Okay; type of year is int

Mypy will detect an invalid key as an error:

director = movie['director'] # Error: 'director' is not a valid key

Mypy will also reject a runtime-computed expression as a key, as
it can’t verify that it’s a valid key. You can only use string
literals as TypedDict keys.

The TypedDict type object can also act as a constructor. It
returns a normal dict object at runtime – a TypedDict does
not define a new runtime type:

toy_story = Movie(name='Toy Story', year=1995)

This is equivalent to just constructing a dictionary directly using
{ ... } or dict(key=value, ...). The constructor form is
sometimes convenient, since it can be used without a type annotation,
and it also makes the type of the object explicit.

Like all types, TypedDicts can be used as components to build
arbitrarily complex types. For example, you can define nested
TypedDicts and containers with TypedDict items.
Unlike most other types, mypy uses structural compatibility checking
(or structural subtyping) with TypedDicts. A TypedDict object with
extra items is a compatible with (a subtype of) a narrower
TypedDict, assuming item types are compatible (totality also affects
subtyping, as discussed below).

A TypedDict object is not a subtype of the regular Dict[...]
type (and vice versa), since Dict allows arbitrary keys to be
added and removed, unlike TypedDict. However, any TypedDict object is
a subtype of (that is, compatible with) Mapping[str, object], since
typing.Mapping only provides read-only access to the dictionary items:

def print_typed_dict(obj: Mapping[str, object]) -> None:
 for key, value in obj.items():
 print('{}: {}'.format(key, value))

print_typed_dict(Movie(name='Toy Story', year=1995)) # OK

Note

You need to install mypy_extensions using pip to use TypedDict:

python3 -m pip install --upgrade mypy-extensions

Or, if you are using Python 2:

pip install --upgrade mypy-extensions

Totality

By default mypy ensures that a TypedDict object has all the specified
keys. This will be flagged as an error:

Error: 'year' missing
toy_story = {'name': 'Toy Story'} # type: Movie

Sometimes you want to allow keys to be left out when creating a
TypedDict object. You can provide the total=False argument to
TypedDict(...) to achieve this:

GuiOptions = TypedDict(
 'GuiOptions', {'language': str, 'color': str}, total=False)
options = {} # type: GuiOptions # Okay
options['language'] = 'en'

You may need to use get() to access items of a partial (non-total)
TypedDict, since indexing using [] could fail at runtime.
However, mypy still lets use [] with a partial TypedDict – you
just need to be careful with it, as it could result in a KeyError.
Requiring get() everywhere would be too cumbersome. (Note that you
are free to use get() with total TypedDicts as well.)

Keys that aren’t required are shown with a ? in error messages:

Revealed type is 'TypedDict('GuiOptions', {'language'?: builtins.str,
'color'?: builtins.str})'
reveal_type(options)

Totality also affects structural compatibility. You can’t use a partial
TypedDict when a total one is expected. Also, a total TypedDict is not
valid when a partial one is expected.

Supported operations

TypedDict objects support a subset of dictionary operations and methods.
You must use string literals as keys when calling most of the methods,
as otherwise mypy won’t be able to check that the key is valid. List
of supported operations:

	Anything included in typing.Mapping:

	d[key]

	key in d

	len(d)

	for key in d (iteration)

	d.get(key[, default])

	d.keys()

	d.values()

	d.items()

	d.copy()

	d.setdefault(key, default)

	d1.update(d2)

	d.pop(key[, default]) (partial TypedDicts only)

	del d[key] (partial TypedDicts only)

In Python 2 code, these methods are also supported:

	has_key(key)

	viewitems()

	viewkeys()

	viervalues()

Note

clear() and popitem() are not supported since they are unsafe
– they could delete required TypedDict items that are not visible to
mypy because of structural subtyping.

Class-based syntax

An alternative, class-based syntax to define a TypedDict is supported
in Python 3.6 and later:

from mypy_extensions import TypedDict

class Movie(TypedDict):
 name: str
 year: int

The above definition is equivalent to the original Movie
definition. It doesn’t actually define a real class. This syntax also
supports a form of inheritance – subclasses can define additional
items. However, this is primarily a notational shortcut. Since mypy
uses structural compatibility with TypedDicts, inheritance is not
required for compatibility. Here is an example of inheritance:

class Movie(TypedDict):
 name: str
 year: int

class BookBasedMovie(Movie):
 based_on: str

Now BookBasedMovie has keys name, year and based_on.

Mixing required and non-required items

In addition to allowing reuse across TypedDict types, inheritance also allows
you to mix required and non-required (using total=False) items
in a single TypedDict. Example:

class MovieBase(TypedDict):
 name: str
 year: int

class Movie(MovieBase, total=False):
 based_on: str

Now Movie has required keys name and year, while based_on
can be left out when constructing an object. A TypedDict with a mix of required
and non-required keys, such as Movie above, will only be compatible with
another TypedDict if all required keys in the other TypedDict are required keys in the
first TypedDict, and all non-required keys of the other TypedDict are also non-required keys
in the first TypedDict.

Final names, methods and classes

This section introduces these related features:

	Final names are variables or attributes that should not reassigned after
initialization. They are useful for declaring constants.

	Final methods should not be overridden in a subclass.

	Final classes should not be subclassed.

All of these are only enforced by mypy, and only in annotated code.
They is no runtime enforcement by the Python runtime.

Note

These are experimental features. They might change in later
versions of mypy. The final qualifiers are available through the
typing_extensions package on PyPI.

Final names

You can use the typing_extensions.Final qualifier to indicate that
a name or attribute should not be reassigned, redefined, or
overridden. This is often useful for module and class level constants
as a way to prevent unintended modification. Mypy will prevent
further assignments to final names in type-checked code:

from typing_extensions import Final

RATE: Final = 3000

class Base:
 DEFAULT_ID: Final = 0

RATE = 300 # Error: can't assign to final attribute
Base.DEFAULT_ID = 1 # Error: can't override a final attribute

Another use case for final attributes is to protect certain attributes
from being overridden in a subclass:

from typing_extensions import Final

class Window:
 BORDER_WIDTH: Final = 2.5
 ...

class ListView(Window):
 BORDER_WIDTH = 3 # Error: can't override a final attribute

You can use @property to make an attribute read-only, but unlike Final,
it doesn’t work with module attributes, and it doesn’t prevent overriding in
subclasses.

Syntax variants

You can use Final in one of these forms:

	You can provide an explicit type using the syntax Final[<type>]. Example:

ID: Final[float] = 1

	You can omit the type:

ID: Final = 1

Here mypy will infer type int for ID. Note that unlike for
generic classes this is not the same as Final[Any].

	In class bodies and stub files you can omit the right hand side and just write
ID: Final[float].

	Finally, you can write self.id: Final = 1 (also optionally with
a type in square brackets). This is allowed only in
__init__ methods, so that the final instance attribute is
assigned only once when an instance is created.

Details of using Final

These are the two main rules for defining a final name:

	There can be at most one final declaration per module or class for
a given attribute. There can’t be separate class-level and instance-level
constants with the same name.

	There must be exactly one assignment to a final name.

A final attribute declared in a class body without an initializer must
be initialized in the __init__ method (you can skip the
initializer in stub files):

class ImmutablePoint:
 x: Final[int]
 y: Final[int] # Error: final attribute without an initializer

 def __init__(self) -> None:
 self.x = 1 # Good

Final can only be used as the outermost type in assignments or variable
annotations. Using it in any other position is an error. In particular,
Final can’t be used in annotations for function arguments:

x: List[Final[int]] = [] # Error!

def fun(x: Final[List[int]]) -> None: # Error!
 ...

Final and ClassVar should not be used together. Mypy will infer
the scope of a final declaration automatically depending on whether it was
initialized in the class body or in __init__.

A final attribute can’t be overridden by a subclass (even with another
explicit final declaration). Note however that a final attribute can
override a read-only property:

class Base:
 @property
 def ID(self) -> int: ...

class Derived(Base):
 ID: Final = 1 # OK

Declaring a name as final only guarantees that the name wll not be re-bound
to another value. It doesn’t make the value immutable. You can use immutable ABCs
and containers to prevent mutating such values:

x: Final = ['a', 'b']
x.append('c') # OK

y: Final[Sequence[str]] = ['a', 'b']
y.append('x') # Error: Sequence is immutable
z: Final = ('a', 'b') # Also an option

Final methods

Like with attributes, sometimes it is useful to protect a method from
overriding. You can use the typing_extensions.final
decorator for this purpose:

from typing_extensions import final

class Base:
 @final
 def common_name(self) -> None:
 ...

class Derived(Base):
 def common_name(self) -> None: # Error: cannot override a final method
 ...

This @final decorator can be used with instance methods, class methods,
static methods, and properties.

For overloaded methods you should add @final on the implementation
to make it final (or on the first overload in stubs):

from typing import Any, overload

class Base:
 @overload
 def method(self) -> None: ...
 @overload
 def method(self, arg: int) -> int: ...
 @final
 def method(self, x=None):
 ...

Final classes

You can apply the typing_extensions.final decorator to a class to indicate
to mypy that it should not be subclassed:

from typing_extensions import final

@final
class Leaf:
 ...

class MyLeaf(Leaf): # Error: Leaf can't be subclassed
 ...

The decorator acts as a declaration for mypy (and as documentation for
humans), but it doesn’t actually prevent subclassing at runtime.

Here are some situations where using a final class may be useful:

	A class wasn’t designed to be subclassed. Perhaps subclassing would not
work as expected, or subclassing would be error-prone.

	Subclassing would make code harder to understand or maintain.
For example, you may want to prevent unnecessarily tight coupling between
base classes and subclasses.

	You want to retain the freedom to arbitrarily change the class implementation
in the future, and these changes might break subclasses.

Metaclasses

A metaclass [https://docs.python.org/3/reference/datamodel.html#metaclasses]
is a class that describes the construction and behavior of other classes,
similarly to how classes describe the construction and behavior of objects.
The default metaclass is type, but it’s possible to use other metaclasses.
Metaclasses allows one to create “a different kind of class”, such as Enums,
NamedTuples and singletons.

Mypy has some special understanding of ABCMeta and EnumMeta.

Defining a metaclass

class M(type):
 pass

class A(metaclass=M):
 pass

In Python 2, the syntax for defining a metaclass is different:

class A(object):
 __metaclass__ = M

Mypy also supports using the six [https://pythonhosted.org/six/#six.with_metaclass]
library to define metaclass in a portable way:

import six

class A(six.with_metaclass(M)):
 pass

@six.add_metaclass(M)
class C(object):
 pass

Metaclass usage example

Mypy supports the lookup of attributes in the metaclass:

from typing import Type, TypeVar, ClassVar
T = TypeVar('T')

class M(type):
 count: ClassVar[int] = 0

 def make(cls: Type[T]) -> T:
 M.count += 1
 return cls()

class A(metaclass=M):
 pass

a: A = A.make() # make() is looked up at M; the result is an object of type A
print(A.count)

class B(A):
 pass

b: B = B.make() # metaclasses are inherited
print(B.count + " objects were created") # Error: Unsupported operand types for + ("int" and "str")

Gotchas and limitations of metaclass support

Note that metaclasses pose some requirements on the inheritance structure,
so it’s better not to combine metaclasses and class hierarchies:

class M1(type): pass
class M2(type): pass

class A1(metaclass=M1): pass
class A2(metaclass=M2): pass

class B1(A1, metaclass=M2): pass # Mypy Error: Inconsistent metaclass structure for 'B1'
At runtime the above definition raises an exception
TypeError: metaclass conflict: the metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its bases

Same runtime error as in B1, but mypy does not catch it yet
class B12(A1, A2): pass

	Mypy does not understand dynamically-computed metaclasses,
such as class A(metaclass=f()): ...

	Mypy does not and cannot understand arbitrary metaclass code.

	Mypy only recognizes subclasses of type as potential metaclasses.

Running mypy and managing imports

The Getting started page should have already introduced you
to the basics of how to run mypy – pass in the files and directories
you want to type check via the command line:

$ mypy foo.py bar.py some_directory

This page discusses in more detail how exactly to specify what files
you want mypy to type check, how mypy discovers imported modules,
and recommendations on how to handle any issues you may encounter
along the way.

If you are interested in learning about how to configure the
actual way mypy type checks your code, see our
The mypy command line guide.

Specifying code to be checked

Mypy lets you specify what files it should type check in several
different ways.

	First, you can pass in paths to Python files and directories you
want to type check. For example:

$ mypy file_1.py foo/file_2.py file_3.pyi some/directory

The above command tells mypy it should type check all of the provided
files together. In addition, mypy will recursively type check the
entire contents of any provided directories.

For more details about how exactly this is done, see
Mapping file paths to modules.

	Second, you can use the -m flag (long form: --module) to
specify a module name to be type checked. The name of a module
is identical to the name you would use to import that module
within a Python program. For example, running:

$ mypy -m html.parser

…will type check the module html.parser (this happens to be
a library stub).

Mypy will use an algorithm very similar to the one Python uses to
find where modules and imports are located on the file system.
For more details, see How imports are found.

	Third, you can use the -p (long form: --package) flag to
specify a package to be (recursively) type checked. This flag
is almost identical to the -m flag except that if you give it
a package name, mypy will recursively type check all submodules
and subpackages of that package. For example, running:

$ mypy -p html

…will type check the entire html package (of library stubs).
In contrast, if we had used the -m flag, mypy would have type
checked just html’s __init__.py file and anything imported
from there.

Note that we can specify multiple packages and modules on the
command line. For example:

$ mypy --package p.a --package p.b --module c

	Fourth, you can also instruct mypy to directly type check small
strings as programs by using the -c (long form: --command)
flag. For example:

$ mypy -c 'x = [1, 2]; print(x())'

…will type check the above string as a mini-program (and in this case,
will report that List[int] is not callable).

Reading a list of files from a file

Finally, any command-line argument starting with @ reads additional
command-line arguments from the file following the @ character.
This is primarily useful if you have a file containing a list of files
that you want to be type-checked: instead of using shell syntax like:

$ mypy $(cat file_of_files.txt)

you can use this instead:

$ mypy @file_of_files.txt

This file can technically also contain any command line flag, not
just file paths. However, if you want to configure many different
flags, the recommended approach is to use a
configuration file instead.

How mypy handles imports

When mypy encounters an import statement, it will first
attempt to locate that module
or type stubs for that module in the file system. Mypy will then
type check the imported module. There are three different outcomes
of this process:

	Mypy is unable to follow the import: the module either does not
exist, or is a third party library that does not use type hints.

	Mypy is able to follow and type check the import, but you did
not want mypy to type check that module at all.

	Mypy is able to successfully both follow and type check the
module, and you want mypy to type check that module.

The third outcome is what mypy will do in the ideal case. The following
sections will discuss what to do in the other two cases.

Missing imports

When you import a module, mypy may report that it is unable to
follow the import.

This can cause a lot of errors that look like the following:

main.py:1: error: No library stub file for standard library module 'antigravity'
main.py:2: error: No library stub file for module 'flask'
main.py:3: error: Cannot find module named 'this_module_does_not_exist'

There are several different things you can try doing, depending on the exact
nature of the module.

If the module is a part of your own codebase, try:

	Making sure your import does not contain a typo.

	Reading the How imports are found section below to make sure you
understand how exactly mypy searches for and finds modules and modify
how you’re invoking mypy accordingly.

	Adding the directory containing that module to either the MYPYPATH
environment variable or the mypy_path
config file option.

Note: if the module you are trying to import is actually a submodule of
some package, you should add the directory containing the entire package
to MYPYPATH. For example, suppose you are trying to add the module
foo.bar.baz, which is located at ~/foo-project/src/foo/bar/baz.py.
In this case, you should add ~/foo-project/src to MYPYPATH.

If the module is a third party library, you must make sure that there are
type hints available for that library. Mypy by default will not attempt to
infer the types of any 3rd party libraries you may have installed
unless they either have declared themselves to be
PEP 561 compliant stub package or have registered
themselves on typeshed [https://github.com/python/typeshed],
the repository of types for the standard library and some 3rd party libraries.

If you are getting an import-related error, this means the library you
are trying to use has done neither of these things. In that case, you can try:

	Searching to see if there is a PEP 561 compliant stub package.
corresponding to your third party library. Stub packages let you install
type hints independently from the library itself.

	Writing your own stub files containing type hints for
the library. You can point mypy at your type hints either by passing
them in via the command line, by adding the location to the
MYPYPATH environment variable, or by using the mypy_path
config file option.

Note that if you decide to write your own stub files, they don’t need
to be complete! A good strategy is to add stubs for just the parts
of the library you need and iterate on them over time.

If you want to share your work, you can try contributing your stubs back
to the library – see our documentation on creating
PEP 561 compliant packages.

If the module is a third party library, but you cannot find any existing
type hints nor have to time to write your own, you can silence the errors:

	To silence a single missing import error, add a # type: ignore at the end of the
line containing the import.

	To silence all missing import imports errors from a single library, add
a section to your mypy config file for that library setting
ignore_missing_imports to True. For example, suppose your codebase
makes heavy use of an (untyped) library named foobar. You can silence
all import errors associated with that library and that library alone by
adding the following section to your config file:

[mypy-foobar]
ignore_missing_imports = True

Note: this option is equivalent to adding a # type: ignore to every
import of foobar in your codebase. For more information, see the
documentation about configuring
import discovery in config files.

	To silence all missing import errors for all libraries in your codebase,
invoke mypy with the --ignore-missing-imports command line flag or set
the ignore_missing_imports
config file option to True
in the global section of your mypy config file:

[mypy]
ignore_missing_imports = True

We recommend using this approach only as a last resort: it’s equivalent
to adding a # type: ignore to all unresolved imports in your codebase.

If the module is a part of the standard library, try:

	Updating mypy and re-running it. It’s possible type hints for that corner
of the standard library were added in a later version of mypy.

	Filing a bug report on typeshed [https://github.com/python/typeshed],
the repository of type hints for the standard library that comes bundled
with mypy. You can expedite this process by also submitting a pull request
fixing the bug.

Changes to typeshed will come bundled with mypy the next time it’s released.
In the meantime, you can add a # type: ignore to silence any relevant
errors. After upgrading, we recommend running mypy using the
--warn-unused-ignores flag to help you find any # type: ignore
annotations you no longer need.

Following imports

Mypy is designed to doggedly follow all imports,
even if the imported module is not a file you explicitly wanted mypy to check.

For example, suppose we have two modules mycode.foo and mycode.bar:
the former has type hints and the latter does not. We run
mypy -m mycode.foo and mypy discovers that mycode.foo imports
mycode.bar.

How do we want mypy to type check mycode.bar? We can configure the
desired behavior by using the --follow-imports flag. This flag
accepts one of four string values:

	normal (the default) follows all imports normally and
type checks all top level code (as well as the bodies of all
functions and methods with at least one type annotation in
the signature).

	silent behaves in the same way as normal but will
additionally suppress any error messages.

	skip will not follow imports and instead will silently
replace the module (and anything imported from it) with an
object of type Any.

	error behaves in the same way as skip but is not quite as
silent – it will flag the import as an error, like this:

main.py:1: note: Import of 'mycode.bar' ignored
main.py:1: note: (Using --follow-imports=error, module not passed on command line)

If you are starting a new codebase and plan on using type hints from
the start, we recommend you use either --follow-imports=normal
(the default) or --follow-imports=error. Either option will help
make sure you are not skipping checking any part of your codebase by
accident.

If you are planning on adding type hints to a large, existing code base,
we recommend you start by trying to make your entire codebase (including
files that do not use type hints) pass under --follow-imports=normal.
This is usually not too difficult to do: mypy is designed to report as
few error messages as possible when it is looking at unannotated code.

If doing this is intractable, we recommend passing mypy just the files
you want to type check and use --follow-imports=silent. Even if
mypy is unable to perfectly type check a file, it can still glean some
useful information by parsing it (for example, understanding what methods
a given object has). See Using mypy with an existing codebase for more recommendations.

We do not recommend using skip unless you know what you are doing:
while this option can be quite powerful, it can also cause many
hard-to-debug errors.

Mapping file paths to modules

One of the main ways you can tell mypy what files to type check
is by providing mypy the paths to those files. For example:

$ mypy file_1.py foo/file_2.py file_3.pyi some/directory

This section describes how exactly mypy maps the provided paths
to modules to type check.

	Files ending in .py (and stub files ending in .pyi) are
checked as Python modules.

	Files not ending in .py or .pyi are assumed to be Python
scripts and checked as such.

	Directories representing Python packages (i.e. containing a
__init__.py[i] file) are checked as Python packages; all
submodules and subpackages will be checked (subpackages must
themselves have a __init__.py[i] file).

	Directories that don’t represent Python packages (i.e. not directly
containing an __init__.py[i] file) are checked as follows:

	All *.py[i] files contained directly therein are checked as
toplevel Python modules;

	All packages contained directly therein (i.e. immediate
subdirectories with an __init__.py[i] file) are checked as
toplevel Python packages.

One more thing about checking modules and packages: if the directory
containing a module or package specified on the command line has an
__init__.py[i] file, mypy assigns these an absolute module name by
crawling up the path until no __init__.py[i] file is found.

For example, suppose we run the command mypy foo/bar/baz.py where
foo/bar/__init__.py exists but foo/__init__.py does not. Then
the module name assumed is bar.baz and the directory foo is
added to mypy’s module search path.

On the other hand, if foo/bar/__init__.py did not exist, foo/bar
would be added to the module search path instead, and the module name
assumed is just baz.

If a script (a file not ending in .py[i]) is processed, the module
name assumed is __main__ (matching the behavior of the
Python interpreter), unless --scripts-are-modules is passed.

How imports are found

When mypy encounters an import statement or receives module
names from the command line via the --module or --package
flags, mypy tries to find the module on the file system similar
to the way Python finds it. However, there are some differences.

First, mypy has its own search path.
This is computed from the following items:

	The MYPYPATH environment variable
(a colon-separated list of directories).

	The mypy_path config file option.

	The directories containing the sources given on the command line
(see below).

	The installed packages marked as safe for type checking (see
PEP 561 support)

	The relevant directories of the
typeshed [https://github.com/python/typeshed] repo.

Note

You cannot point to a PEP 561 package via the MYPYPATH, it must be
installed (see PEP 561 support)

For sources given on the command line, the path is adjusted by crawling
up from the given file or package to the nearest directory that does not
contain an __init__.py or __init__.pyi file.

Second, mypy searches for stub files in addition to regular Python files
and packages.
The rules for searching for a module foo are as follows:

	The search looks in each of the directories in the search path
(see above) until a match is found.

	If a package named foo is found (i.e. a directory
foo containing an __init__.py or __init__.pyi file)
that’s a match.

	If a stub file named foo.pyi is found, that’s a match.

	If a Python module named foo.py is found, that’s a match.

These matches are tried in order, so that if multiple matches are found
in the same directory on the search path
(e.g. a package and a Python file, or a stub file and a Python file)
the first one in the above list wins.

In particular, if a Python file and a stub file are both present in the
same directory on the search path, only the stub file is used.
(However, if the files are in different directories, the one found
in the earlier directory is used.)

The mypy command line

This section documents mypy’s command line interface. You can view
a quick summary of the available flags by running mypy --help.

Note

Command line flags are liable to change between releases.

Specifying what to type check

By default, you can specify what code you want mypy to type check
by passing in the paths to what you want to have type checked:

$ mypy foo.py bar.py some_directory

Note that directories are checked recursively.

Mypy also lets you specify what code to type check in several other
ways. A short summary of the relevant flags is included below:
for full details, see Running mypy and managing imports.

	-m MODULE, --module MODULE

	Asks mypy to type check the provided module. This flag may be
repeated multiple times.

Mypy will not recursively type check any submodules of the provided
module.

	-p PACKAGE, --package PACKAGE

	Asks mypy to type check the provided package. This flag may be
repeated multiple times.

Mypy will recursively type check any submodules of the provided
package. This flag is identical to -module apart from this
behavior.

	-c PROGRAM_TEXT, --command PROGRAM_TEXT

	Asks mypy to type check the provided string as a program.

Config file

	--config-file CONFIG_FILE

	This flag makes mypy read configuration settings from the given file.

By default settings are read from mypy.ini or setup.cfg in the
current directory, or .mypy.ini in the user’s home directory.
Settings override mypy’s built-in defaults and command line flags
can override settings.

See The mypy configuration file for the syntax of configuration files.

	--warn-unused-configs

	This flag makes mypy warn about unused [mypy-<pattern>] config
file sections.

Import discovery

The following flags customize how exactly mypy discovers and follows
imports.

	--namespace-packages

	This flag enables import discovery to use namespace packages (see
PEP 420 [https://www.python.org/dev/peps/pep-0420/]). In particular, this allows discovery of imported
packages that don’t have an __init__.py (or __init__.pyi)
file.

Namespace packages are found (using the PEP 420 rules, which
prefers “classic” packages over namespace packages) along the
module search path – this is primarily set from the source files
passed on the command line, the MYPYPATH environment variable,
and the mypy_path config option.

Note that this only affects import discovery – for modules and
packages explicitly passed on the command line, mypy still
searches for __init__.py[i] files in order to determine the
fully-qualified module/package name.

	--ignore-missing-imports

	This flag makes mypy ignore all missing imports. It is equivalent
to adding # type: ignore comments to all unresolved imports
within your codebase.

Note that this flag does not suppress errors about missing names
in successfully resolved modules. For example, if one has the
following files:

package/__init__.py
package/mod.py

Then mypy will generate the following errors with --ignore-missing-imports:

import package.unknown # No error, ignored
x = package.unknown.func() # OK. 'func' is assumed to be of type 'Any'

from package import unknown # No error, ignored
from package.mod import NonExisting # Error: Module has no attribute 'NonExisting'

For more details, see Missing imports.

	--follow-imports {normal,silent,skip,error}

	This flag adjusts how mypy follows imported modules that were not
explicitly passed in via the command line.

The default option is normal: mypy will follow and type check
all modules. For more information on what the other options do,
see Following imports.

	--python-executable EXECUTABLE

	This flag will have mypy collect type information from PEP 561 [https://www.python.org/dev/peps/pep-0561/]
compliant packages installed for the Python executable EXECUTABLE.
If not provided, mypy will use PEP 561 compliant packages installed for
the Python executable running mypy.

See Using installed packages for more on making PEP 561 compliant packages.
This flag will attempt to set --python-version if not already set.

	--no-site-packages

	This flag will disable searching for PEP 561 [https://www.python.org/dev/peps/pep-0561/] compliant packages. This
will also disable searching for a usable Python executable.

Use this flag if mypy cannot find a Python executable for the version of
Python being checked, and you don’t need to use PEP 561 typed packages.
Otherwise, use --python-executable.

	--no-silence-site-packages

	By default, mypy will suppress any error messages generated within PEP 561
compliant packages. Adding this flag will disable this behavior.

Platform configuration

By default, mypy will assume that you intend to run your code using the same
operating system and Python version you are using to run mypy itself. The
following flags let you modify this behavior.

For more information on how to use these flags, see Python version and system platform checks.

	--python-version X.Y

	This flag will make mypy type check your code as if it were
run under Python version X.Y. Without this option, mypy will default to using
whatever version of Python is running mypy. Note that the -2 and
--py2 flags are aliases for --python-version 2.7.

This flag will attempt to find a Python executable of the corresponding
version to search for PEP 561 [https://www.python.org/dev/peps/pep-0561/] compliant packages. If you’d like to
disable this, use the --no-site-packages flag (see
Import discovery for more details).

	-2, --py2

	Equivalent to running --python-version 2.7.

	--platform PLATFORM

	This flag will make mypy type check your code as if it were
run under the given operating system. Without this option, mypy will
default to using whatever operating system you are currently using.

The PLATFORM parameter may be any string supported by
sys.platform [https://docs.python.org/3/library/sys.html#sys.platform].

	--always-true NAME

	This flag will treat all variables named NAME as
compile-time constants that are always true. This flag may
be repeated.

	--always-false NAME

	This flag will treat all variables named NAME as
compile-time constants that are always false. This flag may
be repeated.

Disallow dynamic typing

The Any type is used represent a value that has a dynamic type.
The --disallow-any family of flags will disallow various uses of the Any type in
a module – this lets us strategically disallow the use of dynamic typing in a controlled way.

The following options are available:

	--disallow-any-unimported

	This flag disallows usage of types that come from unfollowed imports
(such types become aliases for Any). Unfollowed imports occur either
when the imported module does not exist or when --follow-imports=skip
is set.

	--disallow-any-expr

	This flag disallows all expressions in the module that have type Any.
If an expression of type Any appears anywhere in the module
mypy will output an error unless the expression is immediately
used as an argument to cast or assigned to a variable with an
explicit type annotation.

In addition, declaring a variable of type Any
or casting to type Any is not allowed. Note that calling functions
that take parameters of type Any is still allowed.

	--disallow-any-decorated

	This flag disallows functions that have Any in their signature
after decorator transformation.

	--disallow-any-explicit

	This flag disallows explicit Any in type positions such as type
annotations and generic type parameters.

	--disallow-any-generics

	This flag disallows usage of generic types that do not specify explicit
type parameters. Moreover, built-in collections (such as list and
dict) become disallowed as you should use their aliases from the typing
module (such as List[int] and Dict[str, str]).

	--disallow-subclassing-any

	This flag reports an error whenever a class subclasses a value of
type Any. This may occur when the base class is imported from
a module that doesn’t exist (when using
–ignore-missing-imports) or is
ignored due to –follow-imports=skip or a
type: ignore comment on the import statement.

Since the module is silenced, the imported class is given a type of Any.
By default mypy will assume that the subclass correctly inherited
the base class even though that may not actually be the case. This
flag makes mypy raise an error instead.

Untyped definitions and calls

The following flags configure how mypy handles untyped function
definitions or calls.

	--disallow-untyped-calls

	This flag reports an error whenever a function with type annotations
calls a function defined without annotations.

	--disallow-untyped-defs

	This flag reports an error whenever it encounters a function definition
without type annotations.

	--disallow-incomplete-defs

	This flag reports an error whenever it encounters a partly annotated
function definition.

	--check-untyped-defs

	This flag is less severe than the previous two options – it type checks
the body of every function, regardless of whether it has type annotations.
(By default the bodies of functions without annotations are not type
checked.)

It will assume all arguments have type Any and always infer Any
as the return type.

	--disallow-untyped-decorators

	This flag reports an error whenever a function with type annotations
is decorated with a decorator without annotations.

None and Optional handling

The following flags adjust how mypy handles values of type None.
For more details, see Disabling strict optional checking.

	--no-implicit-optional

	This flag causes mypy to stop treating arguments with a None
default value as having an implicit Optional[...] type.

For example, by default mypy will assume that the x parameter
is of type Optional[int] in the code snippet below since
the default parameter is None:

def foo(x: int = None) -> None:
 print(x)

If this flag is set, the above snippet will no longer type check:
we must now explicitly indicate that the type is Optional[int]:

def foo(x: Optional[int] = None) -> None:
 print(x)

	--no-strict-optional

	This flag disables strict checking of Optional[...]
types and None values. With this option, mypy doesn’t
generally check the use of None values – they are valid
everywhere. See Disabling strict optional checking for more about this feature.

Note

Strict optional checking was enabled by default starting in
mypy 0.600, and in previous versions it had to be explicitly enabled
using --strict-optional (which is still accepted).

Configuring warnings

The follow flags enable warnings for code that is sound but is
potentially problematic or redundant in some way.

	--warn-redundant-casts

	This flag will make mypy report an error whenever your code uses
an unnecessary cast that can safely be removed.

	--warn-unused-ignores

	This flag will make mypy report an error whenever your code uses
a # type: ignore comment on a line that is not actually
generating an error message.

This flag, along with the --warn-unsued-casts flag, are both
particularly useful when you are upgrading mypy. Previously,
you may have needed to add casts or # type: ignore annotations
to work around bugs in mypy or missing stubs for 3rd party libraries.

These two flags let you discover cases where either workarounds are
no longer necessary.

	--no-warn-no-return

	By default, mypy will generate errors when a function is missing
return statements in some execution paths. The only exceptions
are when:

	The function has a None or Any return type

	The function has an empty body or a body that is just
ellipsis (...). Empty functions are often used for
abstract methods.

Passing in --no-warn-no-return will disable these error
messages in all cases.

	--warn-return-any

	This flag causes mypy to generate a warning when returning a value
with type Any from a function declared with a non- Any return type.

Miscellaneous strictness flags

This section documents any other flags that do not neatly fall under any
of the above sections.

	--allow-untyped-globals

	This flag causes mypy to suppress errors caused by not being able to fully
infer the types of global and class variables.

	--strict

	This flag mode enables all optional error checking flags. You can see the
list of flags enabled by strict mode in the full mypy --help output.

Note: the exact list of flags enabled by running --strict may change
over time.

Configuring error messages

The following flags let you adjust how much detail mypy displays
in error messages.

	--show-error-context

	This flag will precede all errors with “note” messages explaining the
context of the error. For example, consider the following program:

class Test:
 def foo(self, x: int) -> int:
 return x + "bar"

Mypy normally displays an error message that looks like this:

main.py:3: error: Unsupported operand types for + ("int" and "str")

If we enable this flag, the error message now looks like this:

main.py: note: In member "foo" of class "Test":
main.py:3: error: Unsupported operand types for + ("int" and "str")

	--show-column-numbers

	This flag will add column offsets to error messages,
for example, the following indicates an error in line 12, column 9
(note that column offsets are 0-based):

main.py:12:9: error: Unsupported operand types for / ("int" and "str")

Incremental mode

By default, mypy will store type information into a cache. Mypy
will use this information to avoid unnecessary recomputation when
it type checks your code again. This can help speed up the type
checking process, especially when most parts of your program have
not changed since the previous mypy run.

If you want to speed up how long it takes to recheck your code
beyond what incremental mode can offer, try running mypy in
daemon mode.

	--no-incremental

	This flag disables incremental mode: mypy will no longer reference
the cache when re-run.

Note that mypy will still write out to the cache even when
incremental mode is disabled: see the --cache-dir flag below
for more details.

	--cache-dir DIR

	By default, mypy stores all cache data inside of a folder named
.mypy_cache in the current directory. This flag lets you
change this folder. This flag can also be useful for controlling
cache use when using remote caching.

Mypy will also always write to the cache even when incremental
mode is disabled so it can “warm up” the cache. To disable
writing to the cache, use --cache-dir=/dev/null (UNIX)
or --cache-dir=nul (Windows).

	--skip-version-check

	By default, mypy will ignore cache data generated by a different
version of mypy. This flag disables that behavior.

	--quick-and-dirty

	This flag enables a deprecated, unsafe variant of incremental mode.
Quick mode is faster than regular incremental mode because it only
re-checks modules that were modified since their cache file was
last written: regular incremental mode also re-checks all modules
that depend on one or more modules that were re-checked.

Quick mode is unsafe because it may miss problems caused by a change
in a dependency. Quick mode updates the cache, but regular incremental
mode ignores cache files written by quick mode.

We recommend that you try using the Mypy daemon (mypy server) before
attempting to use this feature.
Quick mode is deprecated and will soon be removed.

Advanced flags

The following flags are useful mostly for people who are interested
in developing or debugging mypy internals.

	--pdb

	This flag will invoke the Python debugger when mypy encounters
a fatal error.

	--show-traceback, --tb

	If set, this flag will display a full traceback when mypy
encounters a fatal error.

	--custom-typing MODULE

	This flag lets you use a custom module as a substitute for the
typing module.

	--custom-typeshed-dir DIR

	This flag specifies the directory where mypy looks for typeshed
stubs, instead of the typeshed that ships with mypy. This is
primarily intended to make it easier to test typeshed changes before
submitting them upstream, but also allows you to use a forked version of
typeshed.

	--warn-incomplete-stub

	This flag modifies both the --disallow-untyped-defs and
--disallow-incomplete-defs flags so they also report errors
if stubs in typeshed are missing type annotations or has incomplete
annotations. If both flags are missing, --warn-incomplete-stub
also does nothing.

This flag is mainly intended to be used by people who want contribute
to typeshed and would like a convenient way to find gaps and omissions.

If you want mypy to report an error when your codebase uses an untyped
function, whether that function is defined in typeshed or not, use the
--disallow-untyped-call flag. See Untyped definitions and calls
for more details.

	--shadow-file SOURCE_FILE SHADOW_FILE

	When mypy is asked to type check SOURCE_FILE, this flag makes mypy
read from and type check the contents of SHADOW_FILE instead. However,
diagnostics will continue to refer to SOURCE_FILE.

Specifying this argument multiple times (--shadow-file X1 Y1 --shadow-file X2 Y2)
will allow mypy to perform multiple substitutions.

This allows tooling to create temporary files with helpful modifications
without having to change the source file in place. For example, suppose we
have a pipeline that adds reveal_type for certain variables.
This pipeline is run on original.py to produce temp.py.
Running mypy --shadow-file original.py temp.py original.py will then
cause mypy to type check the contents of temp.py instead of original.py,
but error messages will still reference original.py.

Report generation

If these flags are set, mypy will generate a report in the specified
format into the specified directory.

	--any-exprs-report DIR

	Causes mypy to generate a text file report documenting how many
expressions of type Any are present within your codebase.

	--linecount-report DIR

	Causes mypy to generate a text file report documenting the functions
and lines that are typed and untyped within your codebase.

	--linecoverage-report DIR

	Causes mypy to generate a JSON file that maps each source file’s
absolute filename to a list of line numbers that belong to typed
functions in that file.

	--cobertura-xml-report DIR

	Causes mypy to generate a Cobertura XML type checking coverage report.

You must install the lxml [https://pypi.org/project/lxml/] library to generate this report.

	--html-report DIR, --xslt-html-report DIR

	Causes mypy to generate an HTML type checking coverage report.

You must install the lxml [https://pypi.org/project/lxml/] library to generate this report.

	--txt-report DIR, --xslt-txt-report DIR

	Causes mypy to generate a text file type checking coverage report.

You must install the lxml [https://pypi.org/project/lxml/] library to generate this report.

	--junit-xml JUNIT_XML

	Causes mypy to generate a JUnit XML test result document with
type checking results. This can make it easier to integrate mypy
with continuous integration (CI) tools.

Miscellaneous

	--find-occurrences CLASS.MEMBER

	This flag will make mypy print out all usages of a class member
based on static type information. This feature is experimental.

	--scripts-are-modules

	This flag will give command line arguments that appear to be
scripts (i.e. files whose name does not end in .py)
a module name derived from the script name rather than the fixed
name __main__.

This lets you check more than one script in a single mypy invocation.
(The default __main__ is technically more correct, but if you
have many scripts that import a large package, the behavior enabled
by this flag is often more convenient.)

The mypy configuration file

Mypy supports reading configuration settings from a file. By default
it uses the file mypy.ini with fallback to setup.cfg in the current
directory, or .mypy.ini in the user home directory if none of them are
found; the --config-file command-line flag can be used to read a different
file instead (see –config-file).

It is important to understand that there is no merging of configuration
files, as it would lead to ambiguity. The --config-file flag
has the highest precedence and must be correct; otherwise mypy will report
an error and exit. Without command line option, mypy will look for defaults,
but will use only one of them. The first one to read is mypy.ini,
and then setup.cfg.

Most flags correspond closely to command-line flags but there are some differences in flag names and some
flags may take a different value based on the module being processed.

Config file format

The configuration file format is the usual
ini file [https://docs.python.org/3.6/library/configparser.html]
format. It should contain section names in square brackets and flag
settings of the form NAME = VALUE. Comments start with #
characters.

	A section named [mypy] must be present. This specifies
the global flags. The setup.cfg file is an exception to this.

	Additional sections named [mypy-PATTERN1,PATTERN2,...] may be
present, where PATTERN1, PATTERN2, etc., are comma-separated
patterns of fully-qualified module names, with some components optionally
replaced by the ‘*’ character (e.g. foo.bar, foo.bar.*, foo.*.baz).
These sections specify additional flags that only apply to modules
whose name matches at least one of the patterns.

A pattern of the form qualified_module_name matches only the named module,
while qualified_module_name.* matches dotted_module_name and any
submodules (so foo.bar.* would match all of foo.bar,
foo.bar.baz, and foo.bar.baz.quux).

Patterns may also be “unstructured” wildcards, in which stars may
appear in the middle of a name (e.g
site.*.migrations.*). Stars match zero or more module
components (so site.*.migrations.* can match site.migrations).

	When options conflict, the precedence order for the configuration sections is:

	
	Sections with concrete module names (foo.bar)

	Sections with “unstructured” wildcard patterns (foo.*.baz),
with sections later in the configuration file overriding
sections earlier.

	Sections with “well-structured” wildcard patterns
(foo.bar.*), with more specific overriding more general.

	Command line options.

	Top-level configuration file options.

The difference in precedence order between “structured” patterns (by
specificity) and “unstructured” patterns (by order in the file) is
unfortunate, and is subject to change in future versions.

Note

The warn_unused_configs flag may be useful to debug misspelled
section names.

Note

Configuration flags are liable to change between releases.

Examples

Here is an example of a mypy.ini file. To use this config file, place it at the root
of your repo and run mypy.

Global options:

[mypy]
python_version = 2.7
warn_return_any = True
warn_unused_configs = True

Per-module options:

[mypy-mycode.foo.*]
disallow_untyped_defs = True

[mypy-mycode.bar]
warn_return_any = False

[mypy-somelibrary]
ignore_missing_imports = True

This config file specifies three global options in the [mypy] section. These three
options will:

	Type-check your entire project assuming it will be run using Python 2.7.
(This is equivalent to using the --python-version 2.7 or --2 flag).

	Report an error whenever a function returns a value that is inferred
to have type Any.

	Report any config options that are unused by mypy. (This will help us catch typos
when making changes to our config file).

Next, this module specifies three per-module options. The first two options change how mypy
type checks code in mycode.foo.* and mycode.bar, which we assume here are two modules
that you wrote. The final config option changes how mypy type checks somelibrary, which we
assume here is some 3rd party library you’ve installed and are importing. These options will:

	Selectively disallow untyped function definitions only within the mycode.foo
package – that is, only for function definitions defined in the
mycode/foo directory.

	Selectively disable the “function is returning any” warnings within
mycode.bar only. This overrides the global default we set earlier.

	Suppress any error messages generated when your codebase tries importing the
module somelibrary. This is useful if somelibrary is some 3rd party library
missing type hints.

Per-module and global options

The following config options may be set either globally (in the [mypy] section)
or on a per-module basis (in sections like [mypy-foo.bar]).

If you set an option both globally and for a specific module, the module configuration
options take precedence. This lets you set global defaults and override them on a
module-by-module basis. If multiple pattern sections match a module, the options from the
most specific section are used where they disagree.

Import discovery

For more information, see the import discovery
section of the command line docs.

Note: this section describes options that can be used both globally and per-module.
See below for a list of import discovery options that may be used
only globally.

	ignore_missing_imports (bool, default False)

	Suppresses error messages about imports that cannot be resolved.

If this option is used in a per-module section, the module name should
match the name of the imported module, not the module containing the
import statement.

	follow_imports (string, default normal)

	Directs what to do with imports when the imported module is found
as a .py file and not part of the files, modules and packages
provided on the command line.

The four possible values are normal, silent, skip and
error. For explanations see the discussion for the
–follow-imports command line flag.

If this option is used in a per-module section, the module name should
match the name of the imported module, not the module containing the
import statement.

	follow_imports_for_stubs (bool, default False)

	Determines whether to respect the follow_imports setting even for
stub (.pyi) files.

Used in conjunction with follow_imports=skip, this can be used
to suppress the import of a module from typeshed, replacing it
with Any.

Used in conjunction with follow_imports=error, this can be used
to make any use of a particular typeshed module an error.

Disallow dynamic typing

For more information, see the disallowing dynamic typing
section of the command line docs.

	disallow_any_unimported (bool, default False)

	Disallows usage of types that come from unfollowed imports (anything imported from
an unfollowed import is automatically given a type of Any).

	disallow_any_expr (bool, default False)

	Disallows all expressions in the module that have type Any.

	disallow_any_decorated (bool, default False)

	Disallows functions that have Any in their signature after decorator transformation.

	disallow_any_explicit (bool, default False)

	Disallows explicit Any in type positions such as type annotations and generic
type parameters.

	disallow_any_generics (bool, default False)

	Disallows usage of generic types that do not specify explicit type parameters.

	disallow_subclassing_any (bool, default False)

	Disallows subclassing a value of type Any.

Untyped definitions and calls

For more information, see the untyped definitions and calls
section of the command line docs.

	disallow_untyped_calls (bool, default False)

	Disallows calling functions without type annotations from functions with type
annotations.

	disallow_untyped_defs (bool, default False)

	Disallows defining functions without type annotations or with incomplete type
annotations.

	disallow_incomplete_defs (bool, default False)

	Disallows defining functions with incomplete type annotations.

	check_untyped_defs (bool, default False)

	Type-checks the interior of functions without type annotations.

	disallow_untyped_decorators (bool, default False)

	Reports an error whenever a function with type annotations is decorated with a
decorator without annotations.

None and optional handling

For more information, see the None and optional handling
section of the command line docs.

	no_implicit_optional (bool, default False)

	Changes the treatment of arguments with a default value of None by not implicitly
making their type Optional.

	strict_optional (bool, default True)

	Enables or disables strict Optional checks. If False, mypy treats None
as compatible with every type.

Note: This was False by default in mypy versions earlier than 0.600.

Configuring warnings

For more information, see the configuring warnings
section of the command line docs.

	warn_unused_ignores (bool, default False)

	Warns about unneeded # type: ignore comments.

	warn_no_return (bool, default True)

	Shows errors for missing return statements on some execution paths.

	warn_return_any (bool, default False)

	Shows a warning when returning a value with type Any from a function
declared with a non- Any return type.

Suppressing errors

Note: these configuration options are available in the config file only. There is
no analog available via the command line options.

	show_none_errors (bool, default True)

	Shows errors related to strict None checking, if the global strict_optional
flag is enabled.

	ignore_errors (bool, default False)

	Ignores all non-fatal errors.

Global-only options

The following options may only be set in the global section ([mypy]).

Import discovery

For more information, see the import discovery
section of the command line docs.

Note: this section describes only global-only import discovery options. See above for
a list of import discovery options that may be used
both per-module and globally.

	namespace_packages (bool, default False)

	Enables PEP 420 style namespace packages. See the
corresponding flag for more information.

	python_executable (string)

	Specifies the path to the Python executable to inspect to collect
a list of available PEP 561 packages. Defaults to
the executable used to run mypy.

	no_silence_site_packages (bool, default False)

	Enables reporting error messages generated within PEP 561 compliant packages.
Those error messages are suppressed by default, since you are usually
not able to control errors in 3rd party code.

	mypy_path (string)

	Specifies the paths to use, after trying the paths from MYPYPATH environment
variable. Useful if you’d like to keep stubs in your repo, along with the config file.

Platform configuration

For more information, see the platform configuration
section of the command line docs.

	python_version (string)

	Specifies the Python version used to parse and check the target
program. The string should be in the format DIGIT.DIGIT –
for example 2.7. The default is the version of the Python
interpreter used to run mypy.

	platform (string)

	Specifies the OS platform for the target program, for example
darwin or win32 (meaning OS X or Windows, respectively).
The default is the current platform as revealed by Python’s
sys.platform variable.

	always_true (comma-separated list of strings)

	Specifies a list of variables that mypy will treat as
compile-time constants that are always true.

	always_false (comma-separated list of strings)

	Specifies a list of variables that mypy will treat as
compile-time constants that are always false.

Incremental mode

For more information, see the incremental mode
section of the command line docs.

	incremental (bool, default True)

	Enables incremental mode.

	cache_dir (string, default .mypy_cache)

	Specifies the location where mypy stores incremental cache info.
Note that the cache is only read when incremental mode is enabled
but is always written to, unless the value is set to /dev/nul
(UNIX) or nul (Windows).

	skip_version_check (bool, default False)

	Makes mypy use incremental cache data even if it was generated by a
different version of mypy. (By default, mypy will perform a version
check and regenerate the cache if it was written by older versions of mypy.)

	quick_and_dirty (bool, default False)

	Enables quick mode. Deprecated.

Configuring error messages

For more information, see the configuring error messages
section of the command line docs.

	show_error_context (bool, default False)

	Prefixes each error with the relevant context.

	show_column_numbers (bool, default False)

	Shows column numbers in error messages.

Advanced options

For more information, see the advanced flags
section of the command line docs.

	pdb (bool, default False)

	Invokes pdb on fatal error.

	show_traceback (bool, default False)

	Shows traceback on fatal error.

	custom_typing_module (string)

	Specifies a custom module to use as a substitute for the typing module.

	custom_typeshed_dir (string)

	Specifies an alternative directory to look for stubs instead of the
default typeshed directory.

	warn_incomplete_stub (bool, default False)

	Warns about missing type annotations in typeshed. This is only relevant
in combination with disallow_untyped_defs or disallow_incomplete_defs.

Miscellaneous

	warn_redundant_casts (bool, default False)

	Warns about casting an expression to its inferred type.

	scripts_are_modules (bool, default False)

	Makes script x become module x instead of __main__. This is
useful when checking multiple scripts in a single run.

	warn_unused_configs (bool, default False)

	Warns about per-module sections in the config file that do not
match any files processed when invoking mypy.

	verbosity (integer, default 0)

	Controls how much debug output will be generated. Higher numbers are more verbose.

Mypy daemon (mypy server)

Instead of running mypy as a command-line tool, you can also run it as
a long-running daemon (server) process and use a command-line client to
send type-checking requests to the server. This way mypy can perform type
checking much faster, since program state cached from previous runs is kept
in memory and doesn’t have to be read from the file system on each run.
The server also uses finer-grained dependency tracking to reduce the amount
of work that needs to be done.

If you have a large codebase to check, running mypy using the mypy
daemon can be 10 or more times faster than the regular command-line
mypy tool, especially if your workflow involves running mypy
repeatedly after small edits – which is often a good idea, as this way
you’ll find errors sooner.

Note

The mypy daemon is experimental. In particular, the command-line
interface may change in future mypy releases.

Note

Each mypy daemon process supports one user and one set of source files,
and it can only process one type checking request at a time. You can
run multiple mypy daemon processes to type check multiple repositories.

Note

On Windows, due to platform limitations, the mypy daemon does not currently
support a timeout for the server process. The client will still time out if
a connection to the server cannot be made, but the server will wait forever
for a new client connection.

Basic usage

The client utility dmypy is used to control the mypy daemon.
Use dmypy run -- <flags> <files> to typecheck a set of files
(or directories). This will launch the daemon if it is not running.
You can use almost arbitrary mypy flags after --. The daemon
will always run on the current host. Example:

dmypy run -- --follow-imports=error prog.py pkg1/ pkg2/

Note

You’ll need to use either the --follow-imports=error or the
--follow-imports=skip option with dmypy because the current
implementation can’t follow imports.
See Following imports for details on how these work.
You can also define these using a
configuration file.

dmypy run will automatically restart the daemon if the
configuration or mypy version changes.

You need to provide all files or directories you want to type check
(other than stubs) as arguments. This is a result of the
--follow-imports restriction mentioned above.

The initial run will process all the code and may take a while to
finish, but subsequent runs will be quick, especially if you’ve only
changed a few files. You can use remote caching
to speed up the initial run. The speedup can be significant if
you have a large codebase.

Additional features

While dmypy run is sufficient for most uses, some workflows
(ones using remote caching, perhaps),
require more precise control over the lifetime of the daemon process:

	dmypy stop stops the daemon.

	dmypy start -- <flags> starts the daemon but does not check any files.
You can use almost arbitrary mypy flags after --.

	dmypy restart -- <flags> restarts the daemon. The flags are the same
as with dmypy start. This is equivalent to a stop command followed
by a start.

	Use dmypy run --timeout SECONDS -- <flags> (or
start or restart) to automatically
shut down the daemon after inactivity. By default, the daemon runs
until it’s explicitly stopped.

	dmypy check <files> checks a set of files using an already
running daemon.

	dmypy status checks whether a daemon is running. It prints a
diagnostic and exits with 0 if there is a running daemon.

Use dmypy --help for help on additional commands and command-line
options not discussed here, and dmypy <command> --help for help on
command-specific options.

Limitations

	You have to use either the --follow-imports=error or
the --follow-imports=skip option because of an implementation
limitation. This can be defined
through the command line or through a
configuration file.

Using installed packages

PEP 561 [https://www.python.org/dev/peps/pep-0561/] specifies how to mark
a package as supporting type checking. Below is a summary of how to create
PEP 561 compatible packages and have mypy use them in type checking.

Using PEP 561 compatible packages with mypy

Generally, you do not need to do anything to use installed packages that
support typing for the Python executable used to run mypy. Note that most
packages do not support typing. Packages that do support typing should be
automatically picked up by mypy and used for type checking.

By default, mypy searches for packages installed for the Python executable
running mypy. It is highly unlikely you want this situation if you have
installed typed packages in another Python’s package directory.

Generally, you can use the --python-version flag and mypy will try to find
the correct package directory. If that fails, you can use the
--python-executable flag to point to the exact executable, and mypy will
find packages installed for that Python executable.

Note that mypy does not support some more advanced import features, such as zip
imports and custom import hooks.

If you do not want to use typed packages, use the --no-site-packages flag
to disable searching.

Note that stub-only packages (defined in
PEP 561 [https://www.python.org/dev/peps/pep-0561/#stub-only-packages])
cannot be used with MYPYPATH. If you want mypy to find the package, it must
be installed. For a package foo, the name of the stub-only package
(foo-stubs) is not a legal package name, so mypy will not find it, unless
it is installed.

Making PEP 561 compatible packages

PEP 561 notes three main ways to distribute type information. The first is a
package that has only inline type annotations in the code itself. The second is
a package that ships stub files with type information alongside the runtime
code. The third method, also known as a “stub only package” is a package that
ships type information for a package separately as stub files.

If you would like to publish a library package to a package repository (e.g.
PyPI) for either internal or external use in type checking, packages that
supply type information via type comments or annotations in the code should put
a py.typed in their package directory. For example, with a directory
structure as follows

setup.py
package_a/
 __init__.py
 lib.py
 py.typed

the setup.py might look like

from distutils.core import setup

setup(
 name="SuperPackageA",
 author="Me",
 version="0.1",
 package_data={"package_a": ["py.typed"]},
 packages=["package_a"]
)

Note

If you use setuptools, you must pass the option zip_safe=False to
setup(), or mypy will not be able to find the installed package.

Some packages have a mix of stub files and runtime files. These packages also
require a py.typed file. An example can be seen below

setup.py
package_b/
 __init__.py
 lib.py
 lib.pyi
 py.typed

the setup.py might look like:

from distutils.core import setup

setup(
 name="SuperPackageB",
 author="Me",
 version="0.1",
 package_data={"package_b": ["py.typed", "lib.pyi"]},
 packages=["package_b"]
)

In this example, both lib.py and lib.pyi exist. At runtime, the Python
interpreter will use lib.py, but mypy will use lib.pyi instead.

If the package is stub-only (not imported at runtime), the package should have
a prefix of the runtime package name and a suffix of -stubs.
A py.typed file is not needed for stub-only packages. For example, if we
had stubs for package_c, we might do the following:

setup.py
package_c-stubs/
 __init__.pyi
 lib.pyi

the setup.py might look like:

from distutils.core import setup

setup(
 name="SuperPackageC",
 author="Me",
 version="0.1",
 package_data={"package_c-stubs": ["__init__.pyi", "lib.pyi"]},
 packages=["package_c-stubs"]
)

Extending and integrating mypy

Integrating mypy into another Python application

It is possible to integrate mypy into another Python 3 application by
importing mypy.api and calling the run function with a parameter of type List[str], containing
what normally would have been the command line arguments to mypy.

Function run returns a Tuple[str, str, int], namely
(<normal_report>, <error_report>, <exit_status>), in which <normal_report>
is what mypy normally writes to sys.stdout, <error_report> is what mypy
normally writes to sys.stderr and exit_status is the exit status mypy normally
returns to the operating system.

A trivial example of using the api is the following

import sys
from mypy import api

result = api.run(sys.argv[1:])

if result[0]:
 print('\nType checking report:\n')
 print(result[0]) # stdout

if result[1]:
 print('\nError report:\n')
 print(result[1]) # stderr

print ('\nExit status:', result[2])

Extending mypy using plugins

Mypy supports a plugin system that lets you customize the way mypy type checks
code. This can be useful if you want to extend mypy so it can type check code
that uses a library that is difficult to express using just PEP 484 types, for
example.

Warning: The plugin system is extremely experimental and prone to change. If you want
to contribute a plugin to mypy, we recommend you start by contacting the mypy
core developers either on gitter [https://gitter.im/python/typing] or on mypy’s
issue tracker [https://github.com/python/mypy/issues].

Common issues and solutions

This section has examples of cases when you need to update your code
to use static typing, and ideas for working around issues if mypy
doesn’t work as expected. Statically typed code is often identical to
normal Python code (except for type annotations), but sometimes you need
to do things slightly differently.

Can’t install mypy using pip

If installation fails, you’ve probably hit one of these issues:

	Mypy needs Python 3.4 or later to run.

	You may have to run pip like this:
python3 -m pip install mypy.

No errors reported for obviously wrong code

There are several common reasons why obviously wrong code is not
flagged as an error.

	The function containing the error is not annotated. Functions that
do not have any annotations (neither for any argument nor for the
return type) are not type-checked, and even the most blatant type
errors (e.g. 2 + 'a') pass silently. The solution is to add
annotations. Where that isn’t possible, functions without annotations
can be checked using --check-untyped-defs.

Example:

def foo(a):
 return '(' + a.split() + ')' # No error!

This gives no error even though a.split() is “obviously” a list
(the author probably meant a.strip()). The error is reported
once you add annotations:

def foo(a: str) -> str:
 return '(' + a.split() + ')'
error: Unsupported operand types for + ("str" and List[str])

If you don’t know what types to add, you can use Any, but beware:

	One of the values involved has type ‘Any’. Extending the above
example, if we were to leave out the annotation for a, we’d get
no error:

def foo(a) -> str:
 return '(' + a.split() + ')' # No error!

The reason is that if the type of a is unknown, the type of
a.split() is also unknown, so it is inferred as having type
Any, and it is no error to add a string to an Any.

If you’re having trouble debugging such situations,
reveal_type() might come in handy.

Note that sometimes library stubs have imprecise type information,
e.g. the pow() builtin returns Any (see typeshed issue 285 [https://github.com/python/typeshed/issues/285] for the reason).

	Some imports may be silently ignored. Another source of
unexpected Any values are the “–ignore-missing-imports” and “–follow-imports=skip” flags. When you use --ignore-missing-imports,
any imported module that cannot be found is silently replaced with
Any. When using --follow-imports=skip the same is true for
modules for which a .py file is found but that are not specified
on the command line. (If a .pyi stub is found it is always
processed normally, regardless of the value of
--follow-imports.) To help debug the former situation (no
module found at all) leave out --ignore-missing-imports; to get
clarity about the latter use --follow-imports=error. You can
read up about these and other useful flags in The mypy command line.

	A function annotated as returning a non-optional type returns ‘None’
and mypy doesn’t complain.

def foo() -> str:
 return None # No error!

You may have disabled strict optional checking (see
Disabling strict optional checking for more).

Spurious errors and locally silencing the checker

You can use a # type: ignore comment to silence the type checker
on a particular line. For example, let’s say our code is using
the C extension module frobnicate, and there’s no stub available.
Mypy will complain about this, as it has no information about the
module:

import frobnicate # Error: No module "frobnicate"
frobnicate.start()

You can add a # type: ignore comment to tell mypy to ignore this
error:

import frobnicate # type: ignore
frobnicate.start() # Okay!

The second line is now fine, since the ignore comment causes the name
frobnicate to get an implicit Any type.

Note

The # type: ignore comment will only assign the implicit Any
type if mypy cannot find information about that particular module. So,
if we did have a stub available for frobnicate then mypy would
ignore the # type: ignore comment and typecheck the stub as usual.

Another option is to explicitly annotate values with type Any –
mypy will let you perform arbitrary operations on Any
values. Sometimes there is no more precise type you can use for a
particular value, especially if you use dynamic Python features
such as __getattr__:

class Wrapper:
 ...
 def __getattr__(self, a: str) -> Any:
 return getattr(self._wrapped, a)

Finally, you can create a stub file (.pyi) for a file that
generates spurious errors. Mypy will only look at the stub file
and ignore the implementation, since stub files take precedence
over .py files.

Unexpected errors about ‘None’ and/or ‘Optional’ types

Starting from mypy 0.600, mypy uses
strict optional checking by default,
and the None value is not compatible with non-optional types.
It’s easy to switch back to the older behavior where None was
compatible with arbitrary types (see Disabling strict optional checking).
You can also fall back to this behavior if strict optional
checking would require a large number of assert foo is not None
checks to be inserted, and you want to minimize the number
of code changes required to get a clean mypy run.

Mypy runs are slow

If your mypy runs feel slow, you should probably use the mypy
daemon, which can speed up incremental mypy runtimes by
a factor of 10 or more. Remote caching can
make cold mypy runs several times faster.

Types of empty collections

You often need to specify the type when you assign an empty list or
dict to a new variable, as mentioned earlier:

a: List[int] = []

Without the annotation mypy can’t always figure out the
precise type of a.

You can use a simple empty list literal in a dynamically typed function (as the
type of a would be implicitly Any and need not be inferred), if type
of the variable has been declared or inferred before, or if you perform a simple
modification operation in the same scope (such as append for a list):

a = [] # Okay because followed by append, inferred type List[int]
for i in range(n):
 a.append(i * i)

However, in more complex cases an explicit type annotation can be
required (mypy will tell you this). Often the annotation can
make your code easier to understand, so it doesn’t only help mypy but
everybody who is reading the code!

Redefinitions with incompatible types

Each name within a function only has a single ‘declared’ type. You can
reuse for loop indices etc., but if you want to use a variable with
multiple types within a single function, you may need to declare it
with the Any type.

def f() -> None:
 n = 1
 ...
 n = 'x' # Type error: n has type int

Note

This limitation could be lifted in a future mypy
release.

Note that you can redefine a variable with a more precise or a more
concrete type. For example, you can redefine a sequence (which does
not support sort()) as a list and sort it in-place:

def f(x: Sequence[int]) -> None:
 # Type of x is Sequence[int] here; we don't know the concrete type.
 x = list(x)
 # Type of x is List[int] here.
 x.sort() # Okay!

Invariance vs covariance

Most mutable generic collections are invariant, and mypy considers all
user-defined generic classes invariant by default
(see Variance of generic types for motivation). This could lead to some
unexpected errors when combined with type inference. For example:

class A: ...
class B(A): ...

lst = [A(), A()] # Inferred type is List[A]
new_lst = [B(), B()] # inferred type is List[B]
lst = new_lst # mypy will complain about this, because List is invariant

Possible strategies in such situations are:

	Use an explicit type annotation:

new_lst: List[A] = [B(), B()]
lst = new_lst # OK

	Make a copy of the right hand side:

lst = list(new_lst) # Also OK

	Use immutable collections as annotations whenever possible:

def f_bad(x: List[A]) -> A:
 return x[0]
f_bad(new_lst) # Fails

def f_good(x: Sequence[A]) -> A:
 return x[0]
f_good(new_lst) # OK

Declaring a supertype as variable type

Sometimes the inferred type is a subtype (subclass) of the desired
type. The type inference uses the first assignment to infer the type
of a name (assume here that Shape is the base class of both
Circle and Triangle):

shape = Circle() # Infer shape to be Circle
...
shape = Triangle() # Type error: Triangle is not a Circle

You can just give an explicit type for the variable in cases such the
above example:

shape = Circle() # type: Shape # The variable s can be any Shape,
 # not just Circle
...
shape = Triangle() # OK

Complex type tests

Mypy can usually infer the types correctly when using isinstance()
type tests, but for other kinds of checks you may need to add an
explicit type cast:

def f(o: object) -> None:
 if type(o) is int:
 o = cast(int, o)
 g(o + 1) # This would be an error without the cast
 ...
 else:
 ...

Note

Note that the object type used in the above example is similar
to Object in Java: it only supports operations defined for all
objects, such as equality and isinstance(). The type Any,
in contrast, supports all operations, even if they may fail at
runtime. The cast above would have been unnecessary if the type of
o was Any.

Mypy can’t infer the type of o after the type() check
because it only knows about isinstance() (and the latter is better
style anyway). We can write the above code without a cast by using
isinstance():

def f(o: object) -> None:
 if isinstance(o, int): # Mypy understands isinstance checks
 g(o + 1) # Okay; type of o is inferred as int here
 ...

Type inference in mypy is designed to work well in common cases, to be
predictable and to let the type checker give useful error
messages. More powerful type inference strategies often have complex
and difficult-to-predict failure modes and could result in very
confusing error messages. The tradeoff is that you as a programmer
sometimes have to give the type checker a little help.

Python version and system platform checks

Mypy supports the ability to perform Python version checks and platform
checks (e.g. Windows vs Posix), ignoring code paths that won’t be run on
the targeted Python version or platform. This allows you to more effectively
typecheck code that supports multiple versions of Python or multiple operating
systems.

More specifically, mypy will understand the use of sys.version_info and
sys.platform checks within if/elif/else statements. For example:

import sys

Distinguishing between different versions of Python:
if sys.version_info >= (3, 5):
 # Python 3.5+ specific definitions and imports
elif sys.version_info[0] >= 3:
 # Python 3 specific definitions and imports
else:
 # Python 2 specific definitions and imports

Distinguishing between different operating systems:
if sys.platform.startswith("linux"):
 # Linux-specific code
elif sys.platform == "darwin":
 # Mac-specific code
elif sys.platform == "win32":
 # Windows-specific code
else:
 # Other systems

As a special case, you can also use one of these checks in a top-level
(unindented) assert; this makes mypy skip the rest of the file.
Example:

import sys

assert sys.platform != 'win32'

The rest of this file doesn't apply to Windows.

Some other expressions exhibit similar behavior; in particular,
typing.TYPE_CHECKING, variables named MYPY, and any variable
whose name is passed to --always-true or --always-false.
(However, True and False are not treated specially!)

Note

Mypy currently does not support more complex checks, and does not assign
any special meaning when assigning a sys.version_info or sys.platform
check to a variable. This may change in future versions of mypy.

By default, mypy will use your current version of Python and your current
operating system as default values for sys.version_info and
sys.platform.

To target a different Python version, use the --python-version X.Y flag.
For example, to verify your code typechecks if were run using Python 2, pass
in --python-version 2.7 from the command line. Note that you do not need
to have Python 2.7 installed to perform this check.

To target a different operating system, use the --platform PLATFORM flag.
For example, to verify your code typechecks if it were run in Windows, pass
in --platform win32. See the documentation for
sys.platform [https://docs.python.org/3/library/sys.html#sys.platform]
for examples of valid platform parameters.

Displaying the type of an expression

You can use reveal_type(expr) to ask mypy to display the inferred
static type of an expression. This can be useful when you don’t quite
understand how mypy handles a particular piece of code. Example:

reveal_type((1, 'hello')) # Revealed type is 'Tuple[builtins.int, builtins.str]'

You can also use reveal_locals() at any line in a file
to see the types of all local variables at once. Example:

a = 1
b = 'one'
reveal_locals()
Revealed local types are:
a: builtins.int
b: builtins.str

Note

reveal_type and reveal_locals are only understood by mypy and
don’t exist in Python. If you try to run your program, you’ll have to
remove any reveal_type and reveal_locals calls before you can
run your code. Both are always available and you don’t need to import
them.

Import cycles

An import cycle occurs where module A imports module B and module B
imports module A (perhaps indirectly, e.g. A -> B -> C -> A).
Sometimes in order to add type annotations you have to add extra
imports to a module and those imports cause cycles that didn’t exist
before. If those cycles become a problem when running your program,
there’s a trick: if the import is only needed for type annotations in
forward references (string literals) or comments, you can write the
imports inside if TYPE_CHECKING: so that they are not executed at runtime.
Example:

File foo.py:

from typing import List, TYPE_CHECKING

if TYPE_CHECKING:
 import bar

def listify(arg: 'bar.BarClass') -> 'List[bar.BarClass]':
 return [arg]

File bar.py:

from typing import List
from foo import listify

class BarClass:
 def listifyme(self) -> 'List[BarClass]':
 return listify(self)

Note

The TYPE_CHECKING constant defined by the typing module
is False at runtime but True while type checking.

Python 3.5.1 doesn’t have typing.TYPE_CHECKING. An alternative is
to define a constant named MYPY that has the value False
at runtime. Mypy considers it to be True when type checking.
Here’s the above example modified to use MYPY:

from typing import List

MYPY = False
if MYPY:
 import bar

def listify(arg: 'bar.BarClass') -> 'List[bar.BarClass]':
 return [arg]

Using classes that are generic in stubs but not at runtime

Some classes are declared as generic in stubs, but not at runtime. Examples
in the standard library include os.PathLike and queue.Queue.
Subscripting such a class will result in a runtime error:

from queue import Queue

class Tasks(Queue[str]): # TypeError: 'type' object is not subscriptable
 ...

results: Queue[int] = Queue() # TypeError: 'type' object is not subscriptable

To avoid these errors while still having precise types you can either use
string literal types or typing.TYPE_CHECKING:

from queue import Queue
from typing import TYPE_CHECKING

if TYPE_CHECKING:
 BaseQueue = Queue[str] # this is only processed by mypy
else:
 BaseQueue = Queue # this is not seen by mypy but will be executed at runtime.

class Tasks(BaseQueue): # OK
 ...

results: 'Queue[int]' = Queue() # OK

Silencing linters

In some cases, linters will complain about unused imports or code. In
these cases, you can silence them with a comment after type comments, or on
the same line as the import:

to silence complaints about unused imports
from typing import List # noqa
a = None # type: List[int]

To silence the linter on the same line as a type comment
put the linter comment after the type comment:

a = some_complex_thing() # type: ignore # noqa

Covariant subtyping of mutable protocol members is rejected

Mypy rejects this because this is potentially unsafe.
Consider this example:

from typing_extensions import Protocol

class P(Protocol):
 x: float

def fun(arg: P) -> None:
 arg.x = 3.14

class C:
 x = 42
c = C()
fun(c) # This is not safe
c.x << 5 # Since this will fail!

To work around this problem consider whether “mutating” is actually part
of a protocol. If not, then one can use a @property in
the protocol definition:

from typing_extensions import Protocol

class P(Protocol):
 @property
 def x(self) -> float:
 pass

def fun(arg: P) -> None:
 ...

class C:
 x = 42
fun(C()) # OK

Dealing with conflicting names

Suppose you have a class with a method whose name is the same as an
imported (or built-in) type, and you want to use the type in another
method signature. E.g.:

class Message:
 def bytes(self):
 ...
 def register(self, path: bytes): # error: Invalid type "mod.Message.bytes"
 ...

The third line elicits an error because mypy sees the argument type
bytes as a reference to the method by that name. Other than
renaming the method, a work-around is to use an alias:

bytes_ = bytes
class Message:
 def bytes(self):
 ...
 def register(self, path: bytes_):
 ...

I need a mypy bug fix that hasn’t been released yet

You can install the latest development version of mypy from source. Clone the
mypy repository on GitHub [https://github.com/python/mypy], and then run
pip install locally:

git clone --recurse-submodules https://github.com/python/mypy.git
cd mypy
sudo python3 -m pip install --upgrade .

Supported Python features

A list of unsupported Python features is maintained in the mypy wiki:

	Unsupported Python features [https://github.com/python/mypy/wiki/Unsupported-Python-Features]

Runtime definition of methods and functions

By default, mypy will complain if you add a function to a class
or module outside its definition – but only if this is visible to the
type checker. This only affects static checking, as mypy performs no
additional type checking at runtime. You can easily work around
this. For example, you can use dynamically typed code or values with
Any types, or you can use setattr or other introspection
features. However, you need to be careful if you decide to do this. If
used indiscriminately, you may have difficulty using static typing
effectively, since the type checker cannot see functions defined at
runtime.

New features in Python 3.6

Mypy has supported all language features new in Python 3.6 starting with mypy
0.510. This section introduces Python 3.6 features that interact with
type checking.

Syntax for variable annotations (PEP 526 [https://www.python.org/dev/peps/pep-0526])

Python 3.6 introduced a new syntax for variable annotations (in
global, class and local scopes). There are two variants of the
syntax, with or without an initializer expression:

from typing import Optional
foo: Optional[int] # No initializer
bar: List[str] = [] # Initializer

You can also mark names intended to be used as class variables with
ClassVar. In a pinch you can also use ClassVar in # type
comments. Example:

from typing import ClassVar

class C:
 x: int # Instance variable
 y: ClassVar[int] # Class variable
 z = None # type: ClassVar[int]

 def foo(self) -> None:
 self.x = 0 # OK
 self.y = 0 # Error: Cannot assign to class variable "y" via instance

C.y = 0 # This is OK

Asynchronous generators (PEP 525 [https://www.python.org/dev/peps/pep-0525]) and comprehensions (PEP 530 [https://www.python.org/dev/peps/pep-0530])

Python 3.6 allows coroutines defined with async def (PEP 492) to be
generators, i.e. contain yield expressions. It also introduced a syntax for
asynchronous comprehensions. This example uses the AsyncIterator type to
define an async generator:

from typing import AsyncIterator

async def gen() -> AsyncIterator[bytes]:
 lst = [b async for b in gen()] # Inferred type is "List[bytes]"
 yield 'no way' # Error: Incompatible types (got "str", expected "bytes")

New named tuple syntax

Python 3.6 supports an alternative, class-based syntax for named tuples.
See Named tuples for the details.

Additional features

This section discusses various features that did not fit in naturally in one
of the previous sections.

Dataclasses

In Python 3.7, a new dataclasses module has been added to the standard library.
This module allows defining and customizing simple boilerplate-free classes.
They can be defined using the @dataclasses.dataclass decorator:

from dataclasses import dataclass, field

@dataclass
class Application:
 name: str
 plugins: List[str] = field(default_factory=list)

test = Application("Testing...") # OK
bad = Application("Testing...", "with plugin") # Error: List[str] expected

Mypy will detect special methods (such as __lt__) depending on the flags used to
define dataclasses. For example:

from dataclasses import dataclass

@dataclass(order=True)
class OrderedPoint:
 x: int
 y: int

@dataclass(order=False)
class UnorderedPoint:
 x: int
 y: int

OrderedPoint(1, 2) < OrderedPoint(3, 4) # OK
UnorderedPoint(1, 2) < UnorderedPoint(3, 4) # Error: Unsupported operand types

Dataclasses can be generic and can be used in any other way a normal
class can be used:

from dataclasses import dataclass
from typing import Generic, TypeVar

T = TypeVar('T')

@dataclass
class BoxedData(Generic[T]):
 data: T
 label: str

def unbox(bd: BoxedData[T]) -> T:
 ...

val = unbox(BoxedData(42, "<important>")) # OK, inferred type is int

For more information see official docs [https://docs.python.org/3/library/dataclasses.html]
and PEP 557 [https://www.python.org/dev/peps/pep-0557/].

Caveats/Known Issues

Some functions in the dataclasses module, such as replace() and asdict(),
have imprecise (too permissive) types. This will be fixed in future releases.

Mypy does not yet recognize aliases of dataclasses.dataclass, and will
probably never recognize dynamically computed decorators. The following examples
do not work:

from dataclasses import dataclass

dataclass_alias = dataclass
def dataclass_wrapper(cls):
 return dataclass(cls)

@dataclass_alias
class AliasDecorated:
 """
 Mypy doesn't recognize this as a dataclass because it is decorated by an
 alias of `dataclass` rather than by `dataclass` itself.
 """
 attribute: int

@dataclass_wrapper
class DynamicallyDecorated:
 """
 Mypy doesn't recognize this as a dataclass because it is decorated by a
 function returning `dataclass` rather than by `dataclass` itself.
 """
 attribute: int

AliasDecorated(attribute=1) # error: Unexpected keyword argument
DynamicallyDecorated(attribute=1) # error: Unexpected keyword argument

The attrs package

attrs [http://www.attrs.org/en/stable] is a package that lets you define
classes without writing boilerplate code. Mypy can detect uses of the
package and will generate the necessary method definitions for decorated
classes using the type annotations it finds.
Type annotations can be added as follows:

import attr

@attr.s
class A:
 one: int = attr.ib() # Variable annotation (Python 3.6+)
 two = attr.ib() # type: int # Type comment
 three = attr.ib(type=int) # type= argument

If you’re using auto_attribs=True you must use variable annotations.

import attr

@attr.s(auto_attribs=True)
class A:
 one: int
 two: int = 7
 three: int = attr.ib(8)

Typeshed has a couple of “white lie” annotations to make type checking
easier. attr.ib and attr.Factory actually return objects, but the
annotation says these return the types that they expect to be assigned to.
That enables this to work:

import attr
from typing import Dict

@attr.s(auto_attribs=True)
class A:
 one: int = attr.ib(8)
 two: Dict[str, str] = attr.Factory(dict)
 bad: str = attr.ib(16) # Error: can't assign int to str

Caveats/Known Issues

	The detection of attr classes and attributes works by function name only.
This means that if you have your own helper functions that, for example,
return attr.ib() mypy will not see them.

	All boolean arguments that mypy cares about must be literal True or False.
e.g the following will not work:

import attr
YES = True
@attr.s(init=YES)
class A:
 ...

	Currently, converter only supports named functions. If mypy finds something else it
will complain about not understanding the argument and the type annotation in
__init__ will be replaced by Any.

	Validator decorators [http://www.attrs.org/en/stable/examples.html#validators]
and default decorators [http://www.attrs.org/en/stable/examples.html#defaults]
are not type-checked against the attribute they are setting/validating.

	Method definitions added by mypy currently overwrite any existing method
definitions.

Using a remote cache to speed up mypy runs

Mypy performs type checking incrementally, reusing results from
previous runs to speed up successive runs. If you are type checking a
large codebase, mypy can still be sometimes slower than desirable. For
example, if you create a new branch based on a much more recent commit
than the target of the previous mypy run, mypy may have to
process almost every file, as a large fraction of source files may
have changed. This can also happen after you’ve rebased a local
branch.

Mypy supports using a remote cache to improve performance in cases
such as the above. In a large codebase, remote caching can sometimes
speed up mypy runs by a factor of 10, or more.

Mypy doesn’t include all components needed to set
this up – generally you will have to perform some simple integration
with your Continuous Integration (CI) or build system to configure
mypy to use a remote cache. This discussion assumes you have a CI
system set up for the mypy build you want to speed up, and that you
are using a central git repository. Generalizing to different
environments should not be difficult.

Here are the main components needed:

	A shared repository for storing mypy cache files for all landed commits.

	CI build that uploads mypy incremental cache files to the shared repository for
each commit for which the CI build runs.

	A wrapper script around mypy that developers use to run mypy with remote
caching enabled.

Below we discuss each of these components in some detail.

Shared repository for cache files

You need a repository that allows you to upload mypy cache files from
your CI build and make the cache files available for download based on
a commit id. A simple approach would be to produce an archive of the
.mypy_cache directory (which contains the mypy cache data) as a
downloadable build artifact from your CI build (depending on the
capabilities of your CI system). Alternatively, you could upload the
data to a web server or to S3, for example.

Continuous Integration build

The CI build would run a regular mypy build and create an archive containing
the .mypy_cache directory produced by the build. Finally, it will produce
the cache as a build artifact or upload it to a repository where it is
accessible by the mypy wrapper script.

Your CI script might work like this:

	Run mypy normally. This will generate cache data under the
.mypy_cache directory.

	Create a tarball from the .mypy_cache directory.

	Determine the current git master branch commit id (say, using
git rev-parse HEAD).

	Upload the tarball to the shared repository with a name derived from the
commit id.

Mypy wrapper script

The wrapper script is used by developers to run mypy locally during
development instead of invoking mypy directly. The wrapper first
populates the local .mypy_cache directory from the shared
repository and then runs a normal incremental build.

The wrapper script needs some logic to determine the most recent
central repository commit (by convention, the origin/master branch
for git) the local development branch is based on. In a typical git
setup you can do it like this:

git merge-base HEAD origin/master

The next step is to download the cache data (contents of the
.mypy_cache directory) from the shared repository based on the
commit id of the merge base produced by the git command above. The
script will decompress the data so that mypy will start with a fresh
.mypy_cache. Finally, the script runs mypy normally. And that’s all!

Caching with mypy daemon

You can also use remote caching with the mypy daemon.
The remote cache will significantly speed up the first dmypy check
run after starting or restarting the daemon.

The mypy daemon requires extra fine-grained dependency data in
the cache files which aren’t included by default. To use caching with
the mypy daemon, use the --cache-fine-grained option in your CI
build:

$ mypy --cache-fine-grained <args...>

This flag adds extra information for the daemon to the cache. In
order to use this extra information, you will also need to use the
--use-fine-grained-cache option with dmypy start or
dmypy restart. Example:

$ dmypy start -- --use-fine-grained-cache <options...>

Now your first dmypy check run should be much faster, as it can use
cache information to avoid processing the whole program.

Refinements

There are several optional refinements that may improve things further,
at least if your codebase is hundreds of thousands of lines or more:

	If the wrapper script determines that the merge base hasn’t changed
from a previous run, there’s no need to download the cache data and
it’s better to instead reuse the existing local cache data.

	If you use the mypy daemon, you may want to restart the daemon each time
after the merge base or local branch has changed to avoid processing a
potentially large number of changes in an incremental build, as this can
be much slower than downloading cache data and restarting the daemon.

	If the current local branch is based on a very recent master commit,
the remote cache data may not yet be available for that commit, as
there will necessarily be some latency to build the cache files. It
may be a good idea to look for cache data for, say, the 5 latest
master commits and use the most recent data that is available.

	If the remote cache is not accessible for some reason (say, from a public
network), the script can still fall back to a normal incremental build.

	You can have multiple local cache directories for different local branches
using the --cache-dir option. If the user switches to an existing
branch where downloaded cache data is already available, you can continue
to use the existing cache data instead of redownloading the data.

	You can set up your CI build to use a remote cache to speed up the
CI build. This would be particularly useful if each CI build starts
from a fresh state without access to cache files from previous
builds. It’s still recommended to run a full, non-incremental
mypy build to create the cache data, as repeatedly updating cache
data incrementally could result in drift over a long time period (due
to a mypy caching issue, perhaps).

Extended Callable types

As an experimental mypy extension, you can specify Callable types
that support keyword arguments, optional arguments, and more. When
you specify the arguments of a Callable, you can choose to supply just
the type of a nameless positional argument, or an “argument specifier”
representing a more complicated form of argument. This allows one to
more closely emulate the full range of possibilities given by the
def statement in Python.

As an example, here’s a complicated function definition and the
corresponding Callable:

from typing import Callable
from mypy_extensions import (Arg, DefaultArg, NamedArg,
 DefaultNamedArg, VarArg, KwArg)

def func(__a: int, # This convention is for nameless arguments
 b: int,
 c: int = 0,
 *args: int,
 d: int,
 e: int = 0,
 **kwargs: int) -> int:
 ...

F = Callable[[int, # Or Arg(int)
 Arg(int, 'b'),
 DefaultArg(int, 'c'),
 VarArg(int),
 NamedArg(int, 'd'),
 DefaultNamedArg(int, 'e'),
 KwArg(int)],
 int]

f: F = func

Argument specifiers are special function calls that can specify the
following aspects of an argument:

	its type (the only thing that the basic format supports)

	its name (if it has one)

	whether it may be omitted

	whether it may or must be passed using a keyword

	whether it is a *args argument (representing the remaining
positional arguments)

	whether it is a **kwargs argument (representing the remaining
keyword arguments)

The following functions are available in mypy_extensions for this
purpose:

def Arg(type=Any, name=None):
 # A normal, mandatory, positional argument.
 # If the name is specified it may be passed as a keyword.

def DefaultArg(type=Any, name=None):
 # An optional positional argument (i.e. with a default value).
 # If the name is specified it may be passed as a keyword.

def NamedArg(type=Any, name=None):
 # A mandatory keyword-only argument.

def DefaultNamedArg(type=Any, name=None):
 # An optional keyword-only argument (i.e. with a default value).

def VarArg(type=Any):
 # A *args-style variadic positional argument.
 # A single VarArg() specifier represents all remaining
 # positional arguments.

def KwArg(type=Any):
 # A **kwargs-style variadic keyword argument.
 # A single KwArg() specifier represents all remaining
 # keyword arguments.

In all cases, the type argument defaults to Any, and if the
name argument is omitted the argument has no name (the name is
required for NamedArg and DefaultNamedArg). A basic
Callable such as

MyFunc = Callable[[int, str, int], float]

is equivalent to the following:

MyFunc = Callable[[Arg(int), Arg(str), Arg(int)], float]

A Callable with unspecified argument types, such as

MyOtherFunc = Callable[..., int]

is (roughly) equivalent to

MyOtherFunc = Callable[[VarArg(), KwArg()], int]

Note

This feature is experimental. Details of the implementation may
change and there may be unknown limitations. IMPORTANT:
Each of the functions above currently just returns its type
argument, so the information contained in the argument specifiers
is not available at runtime. This limitation is necessary for
backwards compatibility with the existing typing.py module as
present in the Python 3.5+ standard library and distributed via
PyPI.

Frequently Asked Questions

Why have both dynamic and static typing?

Dynamic typing can be flexible, powerful, convenient and easy. But
it’s not always the best approach; there are good reasons why many
developers choose to use statically typed languages or static typing
for Python.

Here are some potential benefits of mypy-style static typing:

	Static typing can make programs easier to understand and
maintain. Type declarations can serve as machine-checked
documentation. This is important as code is typically read much more
often than modified, and this is especially important for large and
complex programs.

	Static typing can help you find bugs earlier and with less testing
and debugging. Especially in large and complex projects this can be
a major time-saver.

	Static typing can help you find difficult-to-find bugs before your
code goes into production. This can improve reliability and reduce
the number of security issues.

	Static typing makes it practical to build very useful development
tools that can improve programming productivity or software quality,
including IDEs with precise and reliable code completion, static
analysis tools, etc.

	You can get the benefits of both dynamic and static typing in a
single language. Dynamic typing can be perfect for a small project
or for writing the UI of your program, for example. As your program
grows, you can adapt tricky application logic to static typing to
help maintenance.

See also the front page [http://www.mypy-lang.org] of the mypy web
site.

Would my project benefit from static typing?

For many projects dynamic typing is perfectly fine (we think that
Python is a great language). But sometimes your projects demand bigger
guns, and that’s when mypy may come in handy.

If some of these ring true for your projects, mypy (and static typing)
may be useful:

	Your project is large or complex.

	Your codebase must be maintained for a long time.

	Multiple developers are working on the same code.

	Running tests takes a lot of time or work (type checking helps
you find errors quickly early in development, reducing the number of
testing iterations).

	Some project members (devs or management) don’t like dynamic typing,
but others prefer dynamic typing and Python syntax. Mypy could be a
solution that everybody finds easy to accept.

	You want to future-proof your project even if currently none of the
above really apply. The earlier you start, the easier it will be to
adopt static typing.

Can I use mypy to type check my existing Python code?

Mypy supports most Python features and idioms, and many large Python
projects are using mypy successfully. Code that uses complex
introspection or metaprogramming may be impractical to type check, but
it should still be possible to use static typing in other parts of a
codebase that are less dynamic.

Will static typing make my programs run faster?

Mypy only does static type checking and it does not improve
performance. It has a minimal performance impact. In the future, there
could be other tools that can compile statically typed mypy code to C
modules or to efficient JVM bytecode, for example, but this is outside
the scope of the mypy project.

How do I type check my Python 2 code?

You can use a comment-based function annotation syntax [https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code]
and use the --py2 command-line option to type check your Python 2 code.
You’ll also need to install typing for Python 2 via pip install typing.

Is mypy free?

Yes. Mypy is free software, and it can also be used for commercial and
proprietary projects. Mypy is available under the MIT license.

Can I use duck typing with mypy?

Mypy provides support for both nominal subtyping [https://en.wikipedia.org/wiki/Nominative_type_system] and
structural subtyping [https://en.wikipedia.org/wiki/Structural_type_system].
Structural subtyping can be thought of as “static duck typing”.
Some argue that structural subtyping is better suited for languages with duck
typing such as Python. Mypy however primarily uses nominal subtyping,
leaving structural subtyping mostly opt-in (except for built-in protocols
such as Iterable that always support structural subtyping). Here are some
reasons why:

	It is easy to generate short and informative error messages when
using a nominal type system. This is especially important when
using type inference.

	Python provides built-in support for nominal isinstance() tests and
they are widely used in programs. Only limited support for structural
isinstance() is available, and it’s less type safe than
nominal type tests.

	Many programmers are already familiar with static, nominal subtyping and it
has been successfully used in languages such as Java, C++ and
C#. Fewer languages use structural subtyping.

However, structural subtyping can also be useful. For example, a “public API”
may be more flexible if it is typed with protocols. Also, using protocol types
removes the necessity to explicitly declare implementations of ABCs.
As a rule of thumb, we recommend using nominal classes where possible, and
protocols where necessary. For more details about protocol types and structural
subtyping see Protocols and structural subtyping and
PEP 544 [https://www.python.org/dev/peps/pep-0544/].

I like Python and I have no need for static typing

The aim of mypy is not to convince everybody to write statically typed
Python – static typing is entirely optional, now and in the
future. The goal is to give more options for Python programmers, to
make Python a more competitive alternative to other statically typed
languages in large projects, to improve programmer productivity, and
to improve software quality.

How are mypy programs different from normal Python?

Since you use a vanilla Python implementation to run mypy programs,
mypy programs are also Python programs. The type checker may give
warnings for some valid Python code, but the code is still always
runnable. Also, some Python features and syntax are still not
supported by mypy, but this is gradually improving.

The obvious difference is the availability of static type
checking. The section Common issues and solutions mentions some
modifications to Python code that may be required to make code type
check without errors. Also, your code must make attributes explicit.

Mypy supports modular, efficient type checking, and this seems to
rule out type checking some language features, such as arbitrary
monkey patching of methods.

How is mypy different from Cython?

Cython [http://cython.org/] is a variant of Python that supports
compilation to CPython C modules. It can give major speedups to
certain classes of programs compared to CPython, and it provides
static typing (though this is different from mypy). Mypy differs in
the following aspects, among others:

	Cython is much more focused on performance than mypy. Mypy is only
about static type checking, and increasing performance is not a
direct goal.

	The mypy syntax is arguably simpler and more “Pythonic” (no cdef/cpdef, etc.) for statically typed code.

	The mypy syntax is compatible with Python. Mypy programs are normal
Python programs that can be run using any Python
implementation. Cython has many incompatible extensions to Python
syntax, and Cython programs generally cannot be run without first
compiling them to CPython extension modules via C. Cython also has a
pure Python mode, but it seems to support only a subset of Cython
functionality, and the syntax is quite verbose.

	Mypy has a different set of type system features. For example, mypy
has genericity (parametric polymorphism), function types and
bidirectional type inference, which are not supported by
Cython. (Cython has fused types that are different but related to
mypy generics. Mypy also has a similar feature as an extension of
generics.)

	The mypy type checker knows about the static types of many Python
stdlib modules and can effectively type check code that uses them.

	Cython supports accessing C functions directly and many features are
defined in terms of translating them to C or C++. Mypy just uses
Python semantics, and mypy does not deal with accessing C library
functionality.

Mypy is a cool project. Can I help?

Any help is much appreciated! Contact [http://www.mypy-lang.org/contact.html] the developers if you would
like to contribute. Any help related to development, design,
publicity, documentation, testing, web site maintenance, financing,
etc. can be helpful. You can learn a lot by contributing, and anybody
can help, even beginners! However, some knowledge of compilers and/or
type systems is essential if you want to work on mypy internals.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Mypy documentation!

 		
 Introduction

 		
 Getting started

 		
 Installing mypy

 		
 Running mypy

 		
 Function signatures

 		
 The typing module

 		
 Library stubs and typeshed

 		
 Next steps

 		
 Using mypy with an existing codebase

 		
 Start small

 		
 Mypy runner script

 		
 Continuous Integration

 		
 Annotate widely imported modules

 		
 Write annotations as you go

 		
 Automate annotation of legacy code

 		
 Speed up mypy runs

 		
 Introduce stricter options

 		
 Type hints cheat sheet (Python 3)

 		
 Variables

 		
 Built-in types

 		
 Functions

 		
 When you’re puzzled or when things are complicated

 		
 Standard “duck types”

 		
 Classes

 		
 Coroutines and asyncio

 		
 Miscellaneous

 		
 Type hints cheat sheet (Python 2)

 		
 Built-in types

 		
 Functions

 		
 When you’re puzzled or when things are complicated

 		
 Standard “duck types”

 		
 Classes

 		
 Miscellaneous

 		
 Built-in types

 		
 Type inference and type annotations

 		
 Type inference

 		
 Explicit types for variables

 		
 Explicit types for collections

 		
 Compatibility of container types

 		
 Context in type inference

 		
 Declaring multiple variable types at a time

 		
 Starred expressions

 		
 Kinds of types

 		
 Class types

 		
 The Any type

 		
 Tuple types

 		
 Callable types (and lambdas)

 		
 Union types

 		
 Optional types and the None type

 		
 Disabling strict optional checking

 		
 Class name forward references

 		
 Type aliases

 		
 Named tuples

 		
 The type of class objects

 		
 Text and AnyStr

 		
 Generators

 		
 Class basics

 		
 Instance and class attributes

 		
 Annotating __init__ methods

 		
 Class attribute annotations

 		
 Overriding statically typed methods

 		
 Abstract base classes and multiple inheritance

 		
 Protocols and structural subtyping

 		
 Predefined protocols

 		
 Iteration protocols

 		
 Collection protocols

 		
 One-off protocols

 		
 Async protocols

 		
 Context manager protocols

 		
 Simple user-defined protocols

 		
 Defining subprotocols and subclassing protocols

 		
 Recursive protocols

 		
 Using isinstance() with protocols

 		
 Callback protocols

 		
 Type checking Python 2 code

 		
 Multi-line Python 2 function annotations

 		
 Additional notes

 		
 Dynamically typed code

 		
 Operations on Any values

 		
 Any vs. object

 		
 Casts and type assertions

 		
 Duck type compatibility

 		
 Stub files

 		
 Creating a stub

 		
 Stub file syntax

 		
 Generics

 		
 Defining generic classes

 		
 Generic class internals

 		
 Defining sub-classes of generic classes

 		
 Generic functions

 		
 Generic methods and generic self

 		
 Variance of generic types

 		
 Type variables with value restriction

 		
 Type variables with upper bounds

 		
 Declaring decorators

 		
 Generic protocols

 		
 Generic type aliases

 		
 More types

 		
 The NoReturn type

 		
 NewTypes

 		
 Function overloading

 		
 Runtime behavior

 		
 Type checking calls to overloads

 		
 Type checking the variants

 		
 Type checking the implementation

 		
 Typing async/await

 		
 TypedDict

 		
 Totality

 		
 Supported operations

 		
 Class-based syntax

 		
 Mixing required and non-required items

 		
 Final names, methods and classes

 		
 Final names

 		
 Syntax variants

 		
 Details of using Final

 		
 Final methods

 		
 Final classes

 		
 Metaclasses

 		
 Defining a metaclass

 		
 Metaclass usage example

 		
 Gotchas and limitations of metaclass support

 		
 Running mypy and managing imports

 		
 Specifying code to be checked

 		
 Reading a list of files from a file

 		
 How mypy handles imports

 		
 Missing imports

 		
 Following imports

 		
 Mapping file paths to modules

 		
 How imports are found

 		
 The mypy command line

 		
 Specifying what to type check

 		
 Config file

 		
 Import discovery

 		
 Platform configuration

 		
 Disallow dynamic typing

 		
 Untyped definitions and calls

 		
 None and Optional handling

 		
 Configuring warnings

 		
 Miscellaneous strictness flags

 		
 Configuring error messages

 		
 Incremental mode

 		
 Advanced flags

 		
 Report generation

 		
 Miscellaneous

 		
 The mypy configuration file

 		
 Config file format

 		
 Examples

 		
 Per-module and global options

 		
 Import discovery

 		
 Disallow dynamic typing

 		
 Untyped definitions and calls

 		
 None and optional handling

 		
 Configuring warnings

 		
 Suppressing errors

 		
 Global-only options

 		
 Import discovery

 		
 Platform configuration

 		
 Incremental mode

 		
 Configuring error messages

 		
 Advanced options

 		
 Miscellaneous

 		
 Mypy daemon (mypy server)

 		
 Basic usage

 		
 Additional features

 		
 Limitations

 		
 Using installed packages

 		
 Using PEP 561 compatible packages with mypy

 		
 Making PEP 561 compatible packages

 		
 Extending and integrating mypy

 		
 Integrating mypy into another Python application

 		
 Extending mypy using plugins

 		
 Common issues and solutions

 		
 Can’t install mypy using pip

 		
 No errors reported for obviously wrong code

 		
 Spurious errors and locally silencing the checker

 		
 Unexpected errors about ‘None’ and/or ‘Optional’ types

 		
 Mypy runs are slow

 		
 Types of empty collections

 		
 Redefinitions with incompatible types

 		
 Invariance vs covariance

 		
 Declaring a supertype as variable type

 		
 Complex type tests

 		
 Python version and system platform checks

 		
 Displaying the type of an expression

 		
 Import cycles

 		
 Using classes that are generic in stubs but not at runtime

 		
 Silencing linters

 		
 Covariant subtyping of mutable protocol members is rejected

 		
 Dealing with conflicting names

 		
 I need a mypy bug fix that hasn’t been released yet

 		
 Supported Python features

 		
 Runtime definition of methods and functions

 		
 New features in Python 3.6

 		
 Syntax for variable annotations (PEP 526)

 		
 Asynchronous generators (PEP 525) and comprehensions (PEP 530)

 		
 New named tuple syntax

 		
 Additional features

 		
 Dataclasses

 		
 Caveats/Known Issues

 		
 The attrs package

 		
 Caveats/Known Issues

 		
 Using a remote cache to speed up mypy runs

 		
 Shared repository for cache files

 		
 Continuous Integration build

 		
 Mypy wrapper script

 		
 Caching with mypy daemon

 		
 Refinements

 		
 Extended Callable types

 		
 Frequently Asked Questions

 		
 Why have both dynamic and static typing?

 		
 Would my project benefit from static typing?

 		
 Can I use mypy to type check my existing Python code?

 		
 Will static typing make my programs run faster?

 		
 How do I type check my Python 2 code?

 		
 Is mypy free?

 		
 Can I use duck typing with mypy?

 		
 I like Python and I have no need for static typing

 		
 How are mypy programs different from normal Python?

 		
 How is mypy different from Cython?

 		
 Mypy is a cool project. Can I help?

_static/file.png

_static/up.png

_static/up-pressed.png

