

Welcome to Moxie API’s documentation!

HTTP API

	API specification

	Authentication

Endpoints

	Places endpoint

	Transport endpoint

List of standard relations describing links between resources.

	Relations

List of real-time information resources.

	Real-time Information

Internal API

	Overview
	Blueprints

	Cache
	Configuration

	Caching the result of a function

	Cache key that includes arguments as well

	Configurator

	Domain

	Health checks
	Configuration

	Defining an health check on a service

	Running health checks

	Importer

	Key-value Store

	Metrics
	Configuration

	Views timing

	E.g. timing some code execution

	OAuth

	Provider

	Representation

	Search

	Service

	Tasks

	ServiceView
	Caching headers

	Exceptions

Developer

	Configuration
	Logging

	Metrics
	Solr (search server) metrics

List of apps available

	List of apps

	Contact search

	Graduate courses search

	Library search

	Dates

	Places search

	Transport real-time information

	Weather

Data

	OxPoints importer

Indices and tables

	Index

	Module Index

	Search Page

API specification

Formats

The API returns HAL+JSON at the moment (see the HAL specification [http://tools.ietf.org/html/draft-kelly-json-hal-05]).

HAL+JSON

Responses have a _links attribute containing links to help in the navigation (e.g. when results need pagination).

Each individual entity has a self attribute in _links that represents the path to itself.

It is highly recommended for clients to use these links (Relations) to navigate between resources.

CORS

We use CORS (Cross-origin resource sharing). JSONP is not available (causes problem e.g. no custom header).

Pagination

Standard parameters are available for pagination: start and count.
It is advised to use Relations (first, last,
prev and next) to browse results.

Errors

Error messages are provided as JSON, the key description gives a technical error message.
In addition to the message, you should check the HTTP response code which will give you an idea of the problem (4xx vs. 5xx…).

Authentication

Authentication within Moxie API’s is done with HMAC. This means HTTP requests on
these API’s must be made with specific headers. Before going into detail on how
these requests can be build here is a brief glossary of terms used when
discussing Authentication.

	HMAC

	keyed-Hash Message Authentication Code: a code generated by calculating a
hashing function in combination with a secret key.

	Canonical representation

	What is being hashed. String representation of the request being made.

	Shared secret

	Generally a string issued by the service owner to grant access to an API.
This is used as the hashing key by both parties to successfully
authenticate the user. NEVER sent visibly over the wire.

	API Key

	Sent over the wire to identify a request with a particular user.

Step 1. Building the “Canonical Representation”

As described above the canonical representation is what is being hashed by our
hashing function to generate the HMAC. Within Moxie the canonical representation
of a HTTP request looks like this:

{method}
{url}
{headers}

All of the canonical representation is in lowercase.

Where method is the HTTP method being invoked for example get, post, put,
delete. url is the absolute URL being requested. headers is the only
tricky part. Some of the HTTP request headers are included in the canonical
representation. For Moxie we require the Date header and a special header,
the X-HMAC-Nonce (in the canonical representation both of these will be
lowercase of course). They are included in the following format:

date:{date}
x-hmac-nonce:{nonce}

The values of these headers is the responsibility of the client making the
request. However we recommend following the HTTP spec and include a Date in
the standard format, such as “Wed, 15 Nov 2013 06:25:24 GMT”. Perhaps more
important is the usage of a good Cryptographic Nonce [http://en.wikipedia.org/wiki/Cryptographic_nonce]. Good options for a nonce
are pseudo-random numbers.

Here is a complete example of a “canonical representation”:

POST
http://localhost:5000/notifications/alert
date:Wed, 15 Nov 2013 06:25:24 GMT
x-hmac-nonce:29582

Attention

There is not a new line character “\n” after the headers.

Step 2. Generating the HMAC

As mentioned before HMAC requires the use of a hashing function. We use the
SHA-1 hashing function.

This step depends on your toolset, find your preferable hmac function and call
it with the SHA-1 algorithm and your shared secret as the hash key and the
canonical representation built above as the message to be hashed. Here are a
few possible ways to run this

	Python - hmac [http://docs.python.org/2/library/hmac.html]

	PHP - hash_hmac [http://php.net/manual/en/function.hash-hmac.php]

	OpenSSL [http://www.openssl.org/]

Using whatever tools appropriate you need just the hexidemical representation of
the digest.

Step 3. Making the request

Set the Authorization HTTP header on your request to the hexidecimal digest
value from the previous step. Also set a custom X-Moxie-Key header to the
value of your API key, this is used to identify your request. Your complete
HTTP request should look similar to this:

POST /alert HTTP/1.1
Host: api.m.ox.ac.uk
X-Moxie-Key: d51459b5-d634-48f7-a77c-d87c77af37f1
X-HMAC-Nonce: 12642
Date: Fri, 10 Jan 2014 11:49:55 GMT
Authorization: ccd61eddf0c6be849b13e524c171e4c14a0d571f
Content-Type: application/json

Should your request fail and you receive a 401. There should be a
WWW-Authenticate header which will provide a “reason” why your request
failed. This also describes how to make requests on the API:

WWW-Authenticate: HMACDigest realm="HMACDigest Moxie", reason="missing header: HTTP_AUTHORIZATION", algorithm="HMAC-SHA-1",

So this request failed because they missed the Authorization header.

Places endpoint

Endpoint to search and retrieve information about places.

All the responses are conform to the HAL specification [http://stateless.co/hal_specification.html].

	
GET /places/(string: id)[,(string: id)...]

	Get details of one or multiple places by their ID

Example request:

GET /places/oxpoints:23232339 HTTP/1.1
Host: api.m.ox.ac.uk
Accept: application/json

Example request for multiple POIs:

The response representation for multiple POIs will be equivalent to the
search method.

GET /places/osm:3646652,oxpoints:23232392 HTTP/1.1
Host: api.m.ox.ac.uk
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "_embedded": {
 "files": [
 {
 "location": "oxpoints/54559254/depiction/original/primary.jpg",
 "primary": true,
 "type": "depiction",
 "url": "//mox-static-files.oucs.ox.ac.uk/oxpoints/54559254/depiction/original/primary.jpg"
 },
]
 },
 "_links": {
 "child": [
 {
 "href": "/places/oxpoints:32320005",
 "title": "Balliol College Library",
 "type": [
 "/university/library"
],
 "type_name": [
 "Library"
]
 }
],
 "primary_place": {
 "href": "/places/oxpoints:23232339",
 "title": "Balliol College",
 "type": [
 "/university/college"
],
 "type_name": [
 "College"
]
 },
 "self": {
 "href": "/places/oxpoints:23232339"
 }
 },
 "address": "Broad Street OX1 3BJ",
 "distance": 0,
 "id": "oxpoints:23232339",
 "identifiers": [
 "oxpoints:54559254",
 "oxpoints:23232339",
 "obn:851",
 "osm:187925177",
 "oucs:ball",
 "finance:RB"
],
 "lat": "51.754425",
 "lon": "-1.257216",
 "name": "Balliol College",
 "name_sort": "Balliol College",
 "shape": "POLYGON ((... 51.755528699999999 0,-1.2584285 51.755520099999998 0))",
 "social_facebook": [
 "https://www.facebook.com/balliolcollege"
],
 "social_twitter": [
 "https://www.twitter.com/BalliolOxford"
],
 "type": [
 "/university/college"
],
 "type_name": [
 "College"
],
 "website": "http://www.balliol.ox.ac.uk/"
}

	Parameters

	
	id (string) – ID of the resource, if multiple resources, separated by a comma

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – resource found

	301 Moved Permanently [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.2] – redirection to the resource by its main ID

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – no resource found

	503 Service Unavailable [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – Service not available

If multiple resources are requested, as much documents as possible will be returned (i.e. if one of
the identifier requested is not found, all other documents will be returned).

	
GET /places/search

	Search for places using full-text search on name, tags and type of place.
Also searches in identifiers (e.g. searching “69326473” will return the bus stop corresponding to this Naptan ID).
Results can be filtered by a type and its subtypes or can be filtered by specific types (both options cannot be used at the same time).
Note that the result might be using a different search as spellchecking is done (e.g. searching for “Wolverkote” will return results with “Wolvercote”).

Example request:

GET /places/search?q=aldates&type=/transport HTTP/1.1
Host: api.m.ox.ac.uk
Accept: application/json
Geo-Position: 0.232, 51.347

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "_embedded": {
 "pois": [
 {
 "_links": {
 "child": [
 {
 "href": "/places/atco:340000004H5",
 "title": "Stop H5 St Aldates",
 "type": [
 "/transport/bus-stop"
],
 "type_name": [
 "Bus stop"
]
 },
],
 "parent": {
 "href": "/places/stoparea:340G00004000",
 "title": "Oxford City Centre",
 "type": [
 "/transport/stop-area"
],
 "type_name": [
 "Bus stop area"
]
 },
 "self": {
 "href": "/places/stoparea:340G00003140"
 }
 },
 "distance": 0,
 "id": "stoparea:340G00003140",
 "identifiers": [
 "stoparea:340G00003140"
],
 "lat": "51.7508834555",
 "lon": "-1.2571120376",
 "name": "St Aldates",
 "name_sort": "St Aldates",
 "type": [
 "/transport/stop-area"
],
 "type_name": [
 "Bus stop area"
]
 },
 {
 "_links": {
 "curie": {
 "href": "http://moxie.readthedocs.org/en/latest/http_api/rti.html#{type}",
 "name": "rti",
 "templated": true
 },
 "parent": {
 "href": "/places/stoparea:340G00003140",
 "title": "St Aldates",
 "type": [
 "/transport/stop-area"
],
 "type_name": [
 "Bus stop area"
]
 },
 "rti:bus": {
 "href": "/places/atco:340000004H5/rti/bus",
 "title": "Live bus departure times"
 },
 "self": {
 "href": "/places/atco:340000004H5"
 }
 },
 "distance": 0,
 "id": "atco:340000004H5",
 "identifiers": [
 "atco:340000004H5",
 "naptan:69326543"
],
 "lat": "51.7502787977",
 "lon": "-1.2567597994",
 "name": "Stop H5 St Aldates",
 "name_sort": "Stop H5 St Aldates",
 "type": [
 "/transport/bus-stop"
],
 "type_name": [
 "Bus stop"
]
 },
]
 },
 "_links": {
 "curies": [
 {
 "href": "http://moxie.readthedocs.org/en/latest/http_api/relations/{rel}.html",
 "name": "hl",
 "templated": true
 },
 {
 "href": "http://moxie.readthedocs.org/en/latest/http_api/relations/facet.html",
 "name": "facet"
 }
],
 "hl:first": {
 "href": "/places/search?q=aldates&facet=type&type=%2Ftransport&count=35"
 },
 "hl:last": {
 "href": "/places/search?q=aldates&facet=type&type=%2Ftransport&count=35"
 },
 "hl:types": [
 {
 "count": 10,
 "href": "/places/search?q=aldates&facet=type&type=%2Ftransport%2Fbus-stop",
 "name": "/transport/bus-stop",
 "title": [
 "Bus stop"
],
 "value": "/transport/bus-stop"
 },
 {
 "count": 1,
 "href": "/places/search?q=aldates&facet=type&type=%2Ftransport%2Fstop-area",
 "name": "/transport/stop-area",
 "title": [
 "Bus stop area"
],
 "value": "/transport/stop-area"
 }
],
 "self": {
 "href": "/places/search?q=aldates&facet=type&type=%2Ftransport&count=35&start=0"
 }
 },
 "query": "aldates",
 "size": 11
}

	Query Parameters

	
	q – what to search for

	type – filter by a specific type in the hierarchy of types (will search within subtypes too)

	type_exact – filter by exact types (as opposite to the type parameter), you can have this parameter multiple times.

	start – first result to retrieve

	count – number of results to retrieve

	lat – latitude (as an alternative to the Geo-Position header if spatial search required)

	lon – longitude (as an alternative to the Geo-Position header if spatial search required)

	inoxford – only get results within Oxford (value will be ignored)

	university_only – only get results from the University (value will be ignored)

	exclude_university – exclude results from the University (value will be ignored) i.e. only amenities, transport…

Accessibility filtering

Below are filters specific to accessibility features, coming from the university’ access guide.

	Query Parameters

	
	accessibility_has_adapted_furniture – only get POIs known to have “adapted furniture”

	accessibility_has_cafe_refreshments – only get POIs known to have “accessible cafe / refreshments”

	accessibility_has_computer_access – only get POIs known to have “accessible computer access”

	accessibility_has_hearing_system – only get POIs known to have a “hearing system”

	accessibility_has_lifts_to_all_floors – only get POIs known to have “lift access to all floors”

	accessibility_has_quiet_space – only get POIs known to have “accessible quiet space”

	accessibility_has_accessible_toilets – only get POIs known to have “accessible toilets”

	accessibility_has_accessible_parking_spaces – only get POIs known to have “accessible parking spaces”

Application specific filtering

Below are filters made specifically for an application. It is not recommended to use these parameters, as it
is mainly experimental and might change to be generic in the future.

	Query Parameters

	
	is_display_in_maps_department_list – only get POIs manually selected / curated as “featured” university departments

If no geolocation is passed (either by header or query parameters), and if there is no full-text search (q parameter),
the result will be sorted by name (A-Z).

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – query found

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request (could happen if some parameters are used in combination e.g. type and type_exact)

	503 Service Unavailable [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – Service not available

	
GET /places/types

	Display a list of types.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – display a list of types

	
GET /places/suggest

	Suggest places based on name and alternative names.
Results can be filtered by specific types.

Example request:

GET /places/suggest?q=sec&type_exact=/university/department HTTP/1.1
Host: api.m.ox.ac.uk
Accept: application/json

Example response:

The response only contains a subset of properties available in the search method to reduce the
length of the response.

HTTP/1.1 200 OK
Content-Type: application/json

{
 "_embedded": {
 "pois": [
 {
 "_links": {
 "self": {
 "href": "/places/oxpoints:23233517"
 }
 },
 "address": "Wellington Square OX1 2JD",
 "distance": 0,
 "id": "oxpoints:23233517",
 "identifiers": [],
 "name": "Council Secretariat",
 "type": [
 "/university/department"
],
 "type_name": [
 "Department"
]
 },
 {
 "_links": {
 "self": {
 "href": "/places/oxpoints:59801811"
 }
 },
 "address": "Parks Road OX1 3QD",
 "distance": 0,
 "id": "oxpoints:59801811",
 "identifiers": [],
 "name": "Cyber Security Centre",
 "type": [
 "/university/department"
],
 "type_name": [
 "Department"
]
 },
 {
 "_links": {
 "self": {
 "href": "/places/oxpoints:58455192"
 }
 },
 "address": "off South Parks Road OX1 3RQ",
 "distance": 0,
 "id": "oxpoints:58455192",
 "identifiers": [],
 "name": "Oxford University Security Services",
 "type": [
 "/university/department"
],
 "type_name": [
 "Department"
]
 },
]
 },
 "_links": {
 "curies": [
 {
 "href": "http://moxie.readthedocs.org/en/latest/http_api/relations/{rel}.html",
 "name": "hl",
 "templated": true
 }
],
 "hl:first": {
 "href": "/places/suggest?q=sec&count=20"
 },
 "hl:last": {
 "href": "/places/suggest?q=sec&count=20"
 },
 "self": {
 "href": "/places/suggest?q=sec&count=20&start=0"
 }
 },
 "query": "sec",
 "size": 13
}

	Query Parameters

	
	q – what to search for

	type_exact – filter by exact types (as opposite to the type parameter), you can have this parameter multiple times.

	start – first result to retrieve

	count – number of results to retrieve

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – query found

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad request (e.g. missing parameters)

	503 Service Unavailable [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – Service not available

Transport endpoint

Endpoint to retrieve information about transport.

	
GET /transport/park-and-rides

	Get real-time information about status of park and rides

Example request:

GET /transport/park-and-rides HTTP/1.1
Host: api.m.ox.ac.uk
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "park_and_rides": [
 {
 "capacity": 1389,
 "identifier": "osm:2809915",
 "name": "Redbridge Park & Ride OX1 4XG",
 "percentage": 0,
 "spaces": 0,
 "unavailable": true // real-time information not available
 },
 [...]
 {
 "capacity": 758,
 "identifier": "osm:4329908",
 "name": "Water Eaton Park & Ride OX2 8HA",
 "percentage": 48,
 "spaces": 390,
 "unavailable": false
 }
]
}

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – resource found

	503 Service Unavailable [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – Service not available

Relations

List of standard relations (rel) generally used in our API. See the HAL specification about link relations [http://tools.ietf.org/html/draft-kelly-json-hal-05#section-8.2].

	child

	facet

	first

	last

	next

	parent

	poi

	prev

	primary_place

	rti

	search

child

Child document of a resource. This is usually represented as an array.

facet

Return an overview of your search results for a given field by listing the
possible values this field may take and the number of results with each value.

For example: /places/search?q=union&facet=type_exact. Produces facets something like this:

"facet:type_exact": [
 {
 "count": 9,
 "href": "/places/search?q=union&facet=type_exact&type_exact=%2Funiversity%2Fsub-library",
 "name": "/university/sub-library",
 "title": "Sub-library",
 "value": "/university/sub-library"
 },
 {
 "count": 1,
 "href": "/places/search?q=union&facet=type_exact&type_exact=%2Funiversity%2Fsite",
 "name": "/university/site",
 "title": "Site",
 "value": "/university/site"
 },
 {
 "count": 1,
 "href": "/places/search?q=union&facet=type_exact&type_exact=%2Funiversity%2Flibrary",
 "name": "/university/library",
 "title": "Library",
 "value": "/university/library"
 },
 {
 "count": 1,
 "href": "/places/search?q=union&facet=type_exact&type_exact=%2Funiversity%2Fdepartment",
 "name": "/university/department",
 "title": "Department",
 "value": "/university/department"
 }
],

first

First page of a result set. This relation is always present.

last

Last page of a result set. This relation is always present.

next

Next page of a result set. This relation is only present if there is a next page (regarding URL parameters start and count).

parent

Parent document

poi

Point of Interest related to a resource.

This usually refers to a place from the Places endpoint.

prev

Previous page of a result set. This relation is only present if there is a previous page (regarding URL parameters start and count).

primary_place

In the case of a POI, indicates the primary place of the POI.
In some cases, the primary place might be equivalent to self.

rti

Real-Time information attached to a resource.

This is usually referenced in a place from the Places endpoint.

search

Search related to present resource.

Real-time Information

Moxie supports an API for providing RTI from Service providers. Currently all
RTI is represented in a similar way:

{
 "messages": [],
 "services": [],
 "type": '',
 "title": ''
}

The contents of this structure is left to the provider itself. Here are
some guidelines for each key, messages, which is used for human readable
messages from the RTI provider. For example in the case of rail travel it might
be a message informing you of delays on a line due to maintenance work.

services should contain the RTI itself. The choice of format is left to the
providers to expose in whatever form makes the most sense.

The type attribute should be a unique identifier for that RTI
representation and the title attribute should be a human readable title for
the information. Here are examples of RTI representations.

rail-arrivals

Rail live arrivals board information, for example:

{
 "messages": [],
 "services": [
 {
 "destination": {
 "location": [
 {
 "crs": "PAD",
 "futureChangeTo": null,
 "locationName": "London Paddington",
 "via": null
 }
]
 },
 "eta": "11:54",
 "operator": "First Great Western",
 "operatorCode": "GW",
 "origin": {
 "location": [
 {
 "crs": "GMV",
 "futureChangeTo": null,
 "locationName": "Great Malvern",
 "via": null
 }
]
 },
 "platform": "1",
 "serviceID": "kgCLsr4sZvhigTZPO8doPQ==",
 "sta": "11:28"
 },
]
 },
 "serviceID": "bMcFsZG5AMloV3FVpYkZpA==",
 "sta": "13:02"
 }
],
 "type": "rail-arrivals",
 "title": "Arrivals"
}

rail-departures

Rail live departures board information, for example:

{
 "messages": [],
 "services": [
 {
 "destination": {
 "location": [
 {
 "crs": "PAD",
 "futureChangeTo": null,
 "locationName": "London Paddington",
 "via": null
 }
]
 },
 "etd": "11:55",
 "operator": "First Great Western",
 "operatorCode": "GW",
 "origin": {
 "location": [
 {
 "crs": "GMV",
 "futureChangeTo": null,
 "locationName": "Great Malvern",
 "via": null
 }
]
 },
 "platform": "1",
 "serviceID": "kgCLsr4sZvhigTZPO8doPQ==",
 "std": "11:31"
 }
],
 "type": "rail-departures",
 "title": "Departures"
}

bus

Bus stop current real time information, for example:

{
 "messages": [
 "traffic incidents in Oxford some delays to X39/X40 possible<div class=\"stopLine\">-traffic incidents in Oxford some delays to X39/X40 possible
</div>"
],
 "services": [
 {
 "destination": "Didcot & Harwell",
 "following": [],
 "next": "10 mins",
 "service": "X32"
 },
 {
 "destination": "Gloucester Green",
 "following": [
 "30 mins",
 "55 mins",
 "65 mins",
],
 "next": "15 mins",
 "service": "X90"
 },
 {
 "destination": "City Centre",
 "following": [
 "27 mins",
 "41 mins",
 "67 mins",
 "72 mins",
 "82 mins",
 "91 mins",
],
 "next": "19 mins",
 "service": "TUBE"
 },
 {
 "destination": "Oxford City Centre",
 "following": [
 "69 mins",
 "126 mins",
 "156 mins",
],
 "next": "30 mins",
 "service": "OXF"
 },
 {
 "destination": "Reading",
 "following": [],
 "next": "30 mins",
 "service": "X39"
 },
 {
 "destination": "Reading via W'dcote",
 "following": [],
 "next": "60 mins",
 "service": "X40"
 }
],
 "type": "bus",
 "title": "Live bus timetable information"
}

Overview

Blueprints

Encapsulates an instance of an Application.

	Domain

	Representation

	Service

	ServiceView

	Provider

	Importer

Cache

Moxie provides cache using Flask-Cache [https://github.com/thadeusb/flask-cache].

Configuration

See Flask-Cache documentation [https://github.com/thadeusb/flask-cache/blob/master/docs/index.rst#configuring-flask-cache].

Caching the result of a function

To use it on a view, you have to decorate your method with @cache.cached
(imported from moxie.core.cache) and specify a timeout (in seconds).

from moxie.core.views import ServiceView
from moxie.core.cache import cache

class NearRealTimeInformation(ServiceView):

 @cache.cached(timeout=10)
 def handle_request(self):
 return {'near': 'real-time'}

Warning

This acts on the path of the request only, not the arguments of the request. See below for more information on
that topic.

Cache key that includes arguments as well

You can customize the cache key used depending on your requirements by passing
the keyword argument key_prefix to @cache.cached.

We provide an helper to create the key from the path of the request and the arguments,
you can use it by importing args_cache_key from moxie.core.cache. See example below.

from flask import request

from moxie.core.views import ServiceView
from moxie.core.cache import cache, args_cache_key

class LookupView(ServiceView):

 @cache.cached(timeout=60, key_prefix=args_cache_key)
 def handle_request(self):
 identifier = request.args.get('identifier', None)
 return {'lookup': identifier}

Configurator

	
class moxie.core.configurator.Configurator(app)

	Provides basic configuration within Moxie. Currently we handle
our configuration through YAML [http://yaml.org] files.

	
from_envvar(envvar, silent=False)

	Lifted from Flask.config

	
from_yaml(yaml_path, silent=False)

	Read in the file and parse (safely) as YAML.
Update the Flask conf, blueprints, services.

	
register_blueprints(blueprints)

	Expects a dictionary of blueprints, something like this:

{'courses': {
 'url_prefix': '/courses',
 'factory': 'moxie_courses.create_blueprint'},
}

Here the factory should point to a callable which reflects
the following function signature.

	
create_blueprint(name, conf) → Flask.blueprint

	

Domain

Domain objects are used in the Service layer, they are passed from/to Provider and resources.

Health checks

Health checks are used to test the status of some services at runtime.

Result is exposed in an URL that can be given to a monitoring solution based on HTTP status code, providing a quick health check of your API.

Configuration

Your configuration file can have a healthchecks section that has a dictionary of services to check. See following example.

healthchecks:
 Places index:
 moxie.core.search.SearchService:
 backend_uri: 'solr+http://url/solr/places'
 Events index:
 moxie.core.search.SearchService:
 backend_uri: 'solr+http://url/solr/events'

Defining an health check on a service

A method healthcheck will be called on every service defined in the configuration section healthchecks.

This method shouldn’t take any argument, and should return a tuple with:

	a boolean value True / False: True if the service answered as expected, else False

	a string that represents a “friendly” message to represent the answer of the service

The code below is an example from a check to the search server Apache Solr.

def healthcheck(self):
 try:
 response = requests.get('{url}{core}/{method}'.format(url=self.server_url,
 core=self.core, method=self.methods['healthcheck']), timeout=2,
 config={'danger_mode': True})
 return response.ok, response.json['status']
 except Exception as e:
 return False, e

Running health checks

Health checks are available at /_health and are exposed as a list (in plain text) with the status of each service.

The response has a status code of 200 if all services returned a correct value, otherwise the status code will be 500.

Inspired from Dropwizard Health Checks [http://dropwizard.codahale.com/manual/core/#health-checks].

Importer

Writes data from an external (potentially cached) data source into our data layer. Generally running periodically from Tasks.

Key-value Store

	
class moxie.core.kv.KVService(backend_uri)

	Service for accessing a Key-Value store.
This is the secondary datastore used within Moxie. General usage should
be for caching and as a non-critical data store.

Most development has taken place with redis [http://redis.io] being used
as the KV store. Currently this is the only fully supported KV store, see:
moxie.core.kv.SUPPORTED_KV_STORES for details.

	
__getattr__(name)

	The KV Service proxies all calls through to the underlying backend.
Since we only have one moxie.core.kv.SUPPORTED_KV_STORES for
the time being it doesn’t make sense to restrict the functionality.

Note

In future we may need to consider this API if we want to have other
supported backends. This might involve implementing a compatibility
layer.

	
__init__(backend_uri)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
__module__ = 'moxie.core.kv'

	

	
static _get_backend(kv_uri)

	Following the same pattern found in
moxie.core.search.SearchService._get_backend()

	Parameters

	kv_uri – URI to the Key-value store for example
redis://foo.bar/bucket.

	
healthcheck()

	Healthcheck query to the backend

Metrics

Moxie provides metrics using Flask-StatsD [https://github.com/cyberdelia/flask-statsd], a wrapper around Statsd python client.

Configuration

The following configuration variables are available (in the Flask section):

	STATSD_HOST hostname of the statsd instance

	STATSD_PORT port of statsd (8125 by default)

	STATSD_PREFIX prefix to set for all metrics

See Flask-Statsd documentation [https://github.com/cyberdelia/flask-statsd] for more information.

Views timing

All views are automatically timed (from moxie.core.views), metrics are sent in the form of <module name>.<view name>
e.g. moxie_events.views.Search.

E.g. timing some code execution

To time some code execution, you should use a context manager statsd.timer
(imported from moxie.core.metrics and specify the name of the metric.

from moxie.core.views import ServiceView
from moxie.core.metrics import statsd

class TimedView(ServiceView):

 def handle_request(self):
 self.expensive_method()
 return {'near': 'real-time'}

 def expensive_method(self):
 with statsd.timer('expensive'):
 # some code

OAuth

	
class moxie.oauth.services.OAuth1Service(oauth_endpoint, client_identifier, client_secret, request_token_path='request_token', access_token_path='access_token', authorize_path='authorize')

	Enables using 3-legged authentication with OAuth v1 the Moxie client
handles making actual redirections and user interactions.

Note

OAuth1 terminology varies, between the original spec and the
formal RFC [http://tools.ietf.org/html/rfc5849#page-5] the terminology is far from consistent.
We have tried to follow the RFC [http://tools.ietf.org/html/rfc5849#page-5] where possible however, we use
requests.auth which uses differing terminology.

	Parameters

	
	oauth_endpoint – URL of the form http://service.foo/oauth/

	client_identifier – Client token identifier.

	client_secret – Shared secret paired with the above identifier.

	
authorization_url(token_param='oauth_token', callback_uri=None)

	Convenience method to both generate a new temporary credential and
return a URL where a user can continue the OAuth workflow
authentication. Always generates new temporary credentials.

	
authorized

	Returns True if resource owner credentials are available.

	
refresh_temporary_credentials(callback_uri=None)

	Requests new temporary credentials from the OAuth server.

	Parameters

	callback_uri – the request is (optionally) signed with this
URL and the user should be redirected back here upon
completing the OAuth workflow.

	
signer

	Returns a OAuth1 object which can be used to sign
http requests bound for protected resources:

oa = OAuth1Service('http://private.foo/oauth', 'private', 'key')
requests.get('http://private.foo/private_resource', auth=oa.signer)

	
verify(verifier)

	Sends a signed request to the OAuth server trading in your temporary
credentials for access credentials these can be used to sign requests
for the users protected resources.

	Parameters

	verifier – Verification code passed from the OAuth server through
the users OAuth workflow. Can be either passed in a redirect or
the user could be instructed to copy it over.

	
class moxie.oauth.services.OAuthCredential(key)

	Descriptor for caching our OAuth credentials in a user session.
Only if one is available. Caches on the OAuth1Service
object in an attribute named by OAuthCredential.credential_store

Provider

As opposed to Importer providers do not create persistent data. Instead data from providers should be safely cached and re-requested at an appropriate interval.

Representation

Representation of a Domain object, it is often a simplified view that is sent to clients in a specific format.

Search

	
class moxie.core.search.SearchResponse(raw_response, query, size, results=None, query_suggestion=None, facets=None)

	
	
as_dict

	Raw response as a dict
:rtype dict

	
as_json

	Raw response as JSON
:rtype string of JSON

	
facets

	Facets of the query
:rtype list of facets

	
query

	String of the query (FTS)
:rtype string

	
query_suggestion

	Suggestion of a new query
:return query suggestion
:rtype string

	
results

	Response documents
:return list of dict or None if no results
:rtype list of dict

	
size

	Size of the search result

	
exception moxie.core.search.SearchServerException(message=None, status_code=None, payload=None, headers=None)

	
	
message = 'Search service not available'

	

	
class moxie.core.search.SearchService(backend_uri)

	Represents the abstraction between our Search implementation
(by default, Apache Solr) and the public API. For configuration
details, see the Service documentation.

All Search requests should be made through this service.

	
static _get_backend(backend_uri)

	Parse the URI and imports the appropriate Search implementation
The backend_uri schema is as follows:
implementation+transport://domain/path/collection where:

	implementation

	is the name of a supported scheme in
moxie.core.search.SEARCH_SCHEMES.

	collection

	name used by the backend to identify your index.

	Parameters

	backend_uri – URI Representing your search implementation
e.g. solr+http://example.com/solr/collection

	Returns

	Searcher implementation.

	
commit()

	

	
get_by_ids(ids)

	

	
healthcheck()

	

	
index(document, **kwargs)

	

	
search(query, fq=None, start=0, count=10)

	Generic search query
:param query: dict of k/v corresponding to parameters to search
:return moxie.core.search.SearchResponse

	
search_for_ids(id_key, identifiers)

	

	
suggest(query, fq=None, start=0, count=10)

	

Service

	
exception moxie.core.service.MultipleProvidersFound

	

	
exception moxie.core.service.NoConfiguredService

	

	
exception moxie.core.service.NoSuitableProviderFound

	

	
exception moxie.core.service.ProviderException

	

	
class moxie.core.service.ProviderService(providers={})

	Used where a Service deals with many external providers.
Example usage can be found in the
TransportService

	
get_provider(doc, *args, **kwargs)

	Returns a Provider which can handle
your doc.

If no (single) approrpriate provider can be found for your document
we raise a ProviderException. Two subclasses are currently
raised:

	NoSuitableProviderFound if we can’t find any provider.

	MultipleProvidersFound if we find more than one provider.

	
class moxie.core.service.Service

	Services are HTTP (transport layer) agnostic instead operating at
the Application Layer. Services encapsulate all operations made on
the data. Views should never directly access data sources without going
through a Service.

Configuration of services can be done for each Blueprint. Within the
Application context [http://flask.pocoo.org/docs/appcontext/] they
will be cached, this means the following code accesses the same
Service object.:

with app.app_context():
 service_one = MyService.from_context()
 service_two = MyService.from_context()
 assert(service_one is service_two)

	
classmethod from_context(blueprint_name='')

	Create a Service from the application and request
context. args and kwargs for the Service are read from
the Flask.config. Configuration should follow this pattern:

SERVICES = {
 'my_blueprint': {
 'MyService': (args, kwargs),
 'MySecondService: ((1,2,3), {'foo': 'bar'},
 }
 }

	Parameters

	blueprint_name – Override the blueprint name so it isn’t read
from the request context.

Tasks

Celery task definitions which can optionally run periodically. Can be for anything but generally run an Importer.

ServiceView

Provides set of resources which can be accessed by defined routes. Currently most of our views represent data as json over HTTP.

Handles CORS, content-negotiation and geo-location awareness. Calls Service to access data.

Caching headers

You can control the value of the HTTP headers Expires and Cache-Control
by setting the property expires of your view to either a timedelta or a datetime.

from datetime import timedelta, datetime
from moxie.core.views import ServiceView

class NearRealTimeInformation(ServiceView):

 expires = timedelta(seconds=5)
 # expires = datetime.utcnow().replace(hour=23, minute=59)

 def handle_request(self):
 return {'real': 'time'}

Exceptions

You should raise exceptions in case of an error in your application.

Moxie provides ServiceUnavailable, BadRequest and NotFound in moxie.core.exceptions,
to respectfully provide 503, 400 and 404 responses.

The generic ApplicationException is also available, message and status_code parameters
can be passed to have a more personalised exception.

from moxie.core.exceptions import NotFound, ApplicationException

class DetailView(ServiceView):

 def handle_request(self, uuid):
 # pseudo logic: book = service.get(uuid)
 if not book:
 raise NotFound() # HTTP 404

 # pseudo logic:
 # user = view.get_user()
 # authorized = service.view_book(user, book)
 if not authorized:
 raise ApplicationException(message="You are not authorized to see this book",
 status_code=401)

Configuration

Logging

Sentry/Raven can be used with Moxie, the key SENTRY_DSN has to be set in the flask section of the configuration.

An optional key SENTRY_LEVEL can be used to define the level of logging (WARNING by default).

Metrics

Metrics are useful to understand the performances of your application.

Solr (search server) metrics

Display the average QTime (number of milliseconds to execute a search) of Solr from a log file:

cat /var/log/jetty/solr-0.log | grep QTime | awk '{print $NF}' | awk -F\= '{ s += $2} END {print s/NR}'

Display request handlers used per core:

cat /var/log/jetty/solr-0.log | grep path | awk '{print $2 $4}' | sort | uniq -c

Display search queries (parameter “q”) which are not search for “identifiers”, and not browsing (q=”:”):

cat /var/log/jetty/solr-0.log | grep "places" | grep "path=/select" | grep "q=" | awk '{print substr($5,index($5,"q=")+2)}' | grep -v "identifiers" | grep -v "*:*"

List of apps

Listing of apps currently used by Moxie.

	Contact search

	Graduate courses search

	Library search

	Dates

	Places search

	Transport real-time information

	Weather

Contact search

Search for contacts, see documentation [http://moxie-contacts.readthedocs.org].

Graduate courses search

Search for courses, browse by subject…

See documentation [http://moxie-courses.readthedocs.org].

Library search

Search for books, get real-time availability information…

See documentation [http://moxie-library.readthedocs.org].

Dates

Display current (Oxford) date.

See documentation [http://moxie-oxford-dates.readthedocs.org].

Places search

Search for places, browse by categories…

See Places endpoint

Transport real-time information

Get real-time information about transports

See Transport endpoint

Weather

See documentation [http://moxie-weather.readthedocs.org].

Contact search

Search for contacts, see documentation [http://moxie-contacts.readthedocs.org].

Graduate courses search

Search for courses, browse by subject…

See documentation [http://moxie-courses.readthedocs.org].

Library search

Search for books, get real-time availability information…

See documentation [http://moxie-library.readthedocs.org].

Dates

Display current (Oxford) date.

See documentation [http://moxie-oxford-dates.readthedocs.org].

Places search

Search for places, browse by categories…

See Places endpoint

Transport real-time information

Get real-time information about transports

See Transport endpoint

Weather

See documentation [http://moxie-weather.readthedocs.org].

OxPoints importer

The OxPoints importer is using the RDF/XML representation of the full dataset of OxPoints,
and also requires the extension of OxPoints containing shapes of buildings as WKT (Well-Known Text).

The goal of Moxie is to provide a “simplified” view of OxPoints, easier to understand
from an end-user point of view. The following transformations have been done:

	A Thing has been merged with its primary site if they have the same name (e.g. Colleges)

	Some types have been regrouped (see table below)

Types mapping

The following table explains the transformation on types between OxPoints and Moxie.

	OxPoints type

	Mapped type

	Building

	Building

	Carpark

	University carpark

	College

	College

	Department

	Department

	Division

	Division

	Faculty

	Department

	Hall

	Hall

	Library

	Library

	Museum

	Museum

	OpenSpace

	Not imported

	Outside

	Not imported

	Place

	

	Room

	Room

	Site

	Site

	Space

	Space

	StudentGroup

	Not imported

	SubLibrary

	SubLibrary

	Unit

	Department

	University

	University

 HTTP Routing Table

 /places |
 /transport

 		 	

 		
 /places	

 	
 	
 GET /places/(string:id)[,(string:id)...]	

 	
 	
 GET /places/search	

 	
 	
 GET /places/suggest	

 	
 	
 GET /places/types	

 		 	

 		
 /transport	

 	
 	
 GET /transport/park-and-rides	

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 moxie	

 	
 	
 moxie.core.configurator	

 	
 	
 moxie.core.kv	

 	
 	
 moxie.core.search	

 	
 	
 moxie.core.service	

 	
 	
 moxie.oauth.services	

Index

 _
 | A
 | C
 | F
 | G
 | H
 | I
 | K
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | V

_

 	
 	__getattr__() (moxie.core.kv.KVService method)

 	__init__() (moxie.core.kv.KVService method)

 	
 	__module__ (moxie.core.kv.KVService attribute)

 	_get_backend() (moxie.core.kv.KVService static method)

 	(moxie.core.search.SearchService static method)

A

 	
 	as_dict (moxie.core.search.SearchResponse attribute)

 	as_json (moxie.core.search.SearchResponse attribute)

 	
 	authorization_url() (moxie.oauth.services.OAuth1Service method)

 	authorized (moxie.oauth.services.OAuth1Service attribute)

C

 	
 	commit() (moxie.core.search.SearchService method)

 	
 	Configurator (class in moxie.core.configurator)

 	Configurator.create_blueprint() (in module moxie.core.configurator)

F

 	
 	facets (moxie.core.search.SearchResponse attribute)

 	from_context() (moxie.core.service.Service class method)

 	
 	from_envvar() (moxie.core.configurator.Configurator method)

 	from_yaml() (moxie.core.configurator.Configurator method)

G

 	
 	get_by_ids() (moxie.core.search.SearchService method)

 	
 	get_provider() (moxie.core.service.ProviderService method)

H

 	
 	healthcheck() (moxie.core.kv.KVService method)

 	(moxie.core.search.SearchService method)

I

 	
 	index() (moxie.core.search.SearchService method)

K

 	
 	KVService (class in moxie.core.kv)

M

 	
 	message (moxie.core.search.SearchServerException attribute)

 	moxie.core.configurator (module)

 	moxie.core.kv (module)

 	
 	moxie.core.search (module)

 	moxie.core.service (module)

 	moxie.oauth.services (module)

 	MultipleProvidersFound

N

 	
 	NoConfiguredService

 	
 	NoSuitableProviderFound

O

 	
 	OAuth1Service (class in moxie.oauth.services)

 	
 	OAuthCredential (class in moxie.oauth.services)

P

 	
 	ProviderException

 	
 	ProviderService (class in moxie.core.service)

Q

 	
 	query (moxie.core.search.SearchResponse attribute)

 	
 	query_suggestion (moxie.core.search.SearchResponse attribute)

R

 	
 	refresh_temporary_credentials() (moxie.oauth.services.OAuth1Service method)

 	
 	register_blueprints() (moxie.core.configurator.Configurator method)

 	results (moxie.core.search.SearchResponse attribute)

S

 	
 	search() (moxie.core.search.SearchService method)

 	search_for_ids() (moxie.core.search.SearchService method)

 	SearchResponse (class in moxie.core.search)

 	SearchServerException

 	
 	SearchService (class in moxie.core.search)

 	Service (class in moxie.core.service)

 	signer (moxie.oauth.services.OAuth1Service attribute)

 	size (moxie.core.search.SearchResponse attribute)

 	suggest() (moxie.core.search.SearchService method)

V

 	
 	verify() (moxie.oauth.services.OAuth1Service method)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Moxie API’s documentation!

 		
 API specification

 		
 Formats

 		
 HAL+JSON

 		
 CORS

 		
 Pagination

 		
 Errors

 		
 Authentication

 		
 Step 1. Building the “Canonical Representation”

 		
 Step 2. Generating the HMAC

 		
 Step 3. Making the request

 		
 Places endpoint

 		
 Transport endpoint

 		
 Relations

 		
 child

 		
 facet

 		
 first

 		
 last

 		
 next

 		
 parent

 		
 poi

 		
 prev

 		
 primary_place

 		
 rti

 		
 search

 		
 Real-time Information

 		
 rail-arrivals

 		
 rail-departures

 		
 bus

 		
 Overview

 		
 Blueprints

 		
 Cache

 		
 Configuration

 		
 Caching the result of a function

 		
 Cache key that includes arguments as well

 		
 Configurator

 		
 Domain

 		
 Health checks

 		
 Configuration

 		
 Defining an health check on a service

 		
 Running health checks

 		
 Importer

 		
 Key-value Store

 		
 Metrics

 		
 Configuration

 		
 Views timing

 		
 E.g. timing some code execution

 		
 OAuth

 		
 Provider

 		
 Representation

 		
 Search

 		
 Service

 		
 Tasks

 		
 ServiceView

 		
 Caching headers

 		
 Exceptions

 		
 Configuration

 		
 Logging

 		
 Metrics

 		
 Solr (search server) metrics

 		
 List of apps

 		
 Contact search

 		
 Graduate courses search

 		
 Library search

 		
 Dates

 		
 Places search

 		
 Transport real-time information

 		
 Weather

 		
 Contact search

 		
 Graduate courses search

 		
 Library search

 		
 Dates

 		
 Places search

 		
 Transport real-time information

 		
 Weather

 		
 OxPoints importer

 		
 Types mapping

_static/ajax-loader.gif

