

mod_wsgi

The mod_wsgi package implements a simple to use Apache module which can
host any Python web application which supports the Python WSGI [http://www.python.org/dev/peps/pep-3333/]
specification. The package can be installed in two different ways
depending on your requirements.

The first is as a traditional Apache module installed into an existing
Apache installation. Following this path you will need to manually
configure Apache to load mod_wsgi and pass through web requests to your
WSGI application.

The second way of installing mod_wsgi is to install it from PyPi [http://pypi.python.org/pypi/mod_wsgi] using the
Python pip command. This builds and installs mod_wsgi into your Python
installation or virtual environment. The program mod_wsgi-express will
then be available, allowing you to run up Apache with mod_wsgi from the
command line with an automatically generated configuration. This
approach does not require you to perform any configuration of Apache
yourself.

Both installation types are suitable for production deployments. The latter
approach using mod_wsgi-express is the best solution if wishing to use
Apache and mod_wsgi within a Docker container to host your WSGI application.
It is also a better choice when using mod_wsgi during the development of
your Python web application as you will be able to run it directly from
your terminal.

Project Status

The mod_wsgi project is still being developed and maintained. The available
time of the sole developer is however limited. As a result, progress may
appear to be slow.

In general, the documentation is in a bit of a mess right now and somewhat
outdated, so if you can’t find something then ask on the mod_wsgi mailing
list for help. Also check out the Release Notes as they at least are
being updated.

A lot of the more recent changes are being made with the aim of making it a
lot easier to deploy Apache with mod_wsgi in Docker based environments.
Changes included the ability to install mod_wsgi using pip, along with
an admin command called mod_wsgi-express which provides a really simple
way of starting up Apache and mod_wsgi from the command line with an
automatically generated configuration.

Security Issues

Due to security issues in versions of mod_wsgi up to and including version
3.4, ensure that you are using version 3.5 or later.

Release notes for versions containing security related fixes are:

	Version 3.5

Because many Linux distributions still ship ancient out of date versions,
which are not supported, it is highly recommended you avoid using packaged
binary versions provided by your Linux distribution. Instead install
mod_wsgi from source code, ensuring you keep up to date with the most
recent version.

Getting Started

If starting out with mod_wsgi it is recommended you start out with a simple
‘Hello World’ type application.

Do not attempt to use a Python web application dependent on a web framework
such as Django, Flask or Pyramid until you have got a basic ‘Hello World’
application running first. The simpler WSGI application will validate that
your mod_wsgi installation is working okay and that you at least understand
the basics of configuring Apache.

You can find a simple ‘Hello World’ WSGI application, along with setup
instructions for the traditional way of setting up Apache and mod_wsgi,
described in the Quick Configuration Guide. For a bit
more in-depth information and additional examples see the
Configuration Guidelines.

Note that unless you are using Windows, where such a choice is not
available, you should always use daemon mode of mod_wsgi. This is not the
default mode, so you will need to ensure you follow the instructions to
enable daemon mode.

For a simpler way of running a Python WSGI application using mod_wsgi, also
checkout mod_wsgi-express, details of which can currently be found at:

https://pypi.python.org/pypi/mod_wsgi

Requirements

The mod_wsgi package can be compiled for and used with most recent patch
revisions of Apache 2.0, 2.2 or 2.4 on UNIX like systems, such as Linux and
MacOS X, as well as Windows.

It is highly recommended that you use Apache 2.4. Older versions of Apache
have architectural design problems and sub optimal configuration defaults,
that can result in excessive memory usage in certain circumstances. More
recent mod_wsgi versions attempt to protect against these problems in
Apache 2.0 and 2.2, however it is still better to use Apache 2.4.

Any of the single threaded ‘prefork’ or multithreaded ‘worker’ and ‘event’
Apache MPMs can be used when running on UNIX like systems.

Both Python 2 and 3 are supported. The minimum recommended versions of each
being Python 2.6 and 3.3 respectively. The Python installation must have
been installed in a way that shared libraries for Python are provided such
that embedding of Python in another application is possible.

The mod_wsgi package should be able to host any Python web application
which complies with the WSGI [http://www.python.org/dev/peps/pep-3333/] specification (PEP 3333). The
implementation is very strict with its interpretation of the WSGI
specification. Other WSGI servers available aren’t as strict and allow
Python web applications to run which do not comply with the WSGI
specification. If your Python web application doesn’t comply properly with
the WSGI specification, then it may fail to run or may run sub optimally
when using mod_wsgi.

Installation

The mod_wsgi package can be installed from source code or may also be
available as a pre built binary package as part of your Linux distribution.

Do be aware though that Linux distributions generally ship out of date
versions of mod_wsgi and for long term support (LTS) versions of Linux can
be anything up to about 5 years old. Those older versions are not supported
in any way even though they are part of a so called LTS version of Linux.

If you want support and want to ensure you have the most up to date and
bug free version of mod_wsgi, you should consider building and installing
mod_wsgi from the source code.

For instructions on how to compile mod_wsgi from the source code for UNIX like
operating systems such as Linux and MacOS X see:

	Quick Installation Guide

	Installation On MacOS X

If you are on Windows, you should instead use:

	https://github.com/GrahamDumpleton/mod_wsgi/blob/develop/win32/README.rst

Troubleshooting

If you are having problems getting mod_wsgi to start up or do what you want
it to do, first off ensure that you read the following documents:

	Installation Issues

	Configuration Issues

	Application Issues

You can also do some basic checking of your installation and configuration
to validate that how it is setup is how you expect it to be. See the
following document:

	Checking Your Installation

If none of the common issues match up with the problem you are seeing and
are after other ideas, or you have the need to perform more low level
debugging, check out the User Guides.

User Guides

	Quick Installation Guide

	Installation On MacOS X

	Quick Configuration Guide

	Configuration Guidelines

	Installation Issues

	Configuration Issues

	Application Issues

	Frequently Asked Questions

	Checking Your Installation

	Debugging Techniques

	Processes And Threading

	Reloading Source Code

	Virtual Environments

	Access Control Mechanisms

	File Wrapper Extension

	Registering Cleanup Code

	Assorted Tips And Tricks

	Issues With Pickle Module

	Issues With Expat Library

Quick Installation Guide

This document describes the steps for installing mod_wsgi on a UNIX system
from the original source code.

Apache Requirements

Apache 2.0, 2.2 or 2.4 can be used.

For Apache 2.0, 2.2 and 2.4, the single threaded ‘prefork’ or multithreaded
‘worker’ Apache MPMs can be used. For Apache 2.4 the ‘event’ MPM can also
be used.

The version of Apache and its runtime libraries must have be compiled with
support for threading.

On Linux systems, if Apache has been installed from a package repository,
you must have installed the corresponding Apache “dev” package as well.

For most Linux distributions, the “dev” package for Apache 2.X is
“apache2-dev” where the corresponding Apache package was “apache2”. Some
systems however distinguish the “dev” package based on which MPM is used by
Apache. As such, it may also be called “apache2-worker-dev” or
“apache2-prefork-dev”. If using Apache 2.X, do not mix things up and install
“apache-dev” by mistake, which is the “dev” package for Apache 1.3 called
just “apache”.

Python Requirements

Any Python 2.X version from Python 2.6 onwards can be used. For Python 3.X,
you will need Python 3.3 or later.

The version of Python being used must have been compiled with support for
threading.

On Linux systems, if Python has been installed from a package repository,
you must have installed the corresponding Python “dev” package as well.

Python should preferably be available as a shared library. If this is not
the case then base runtime memory usage of mod_wsgi will be greater.

Unpacking The Source Code

Source code tar balls can be obtained from:

	https://github.com/GrahamDumpleton/mod_wsgi/releases

After having downloaded the tar ball for the version you want to use,
unpack it with the command:

tar xvfz mod_wsgi-X.Y.tar.gz

Replace ‘X.Y’ with the actual version number for that being used.

Configuring The Source Code

To setup the package ready for building run the “configure” script from
within the source code directory:

./configure

The configure script will attempt to identify the Apache installation to
use by searching in various standard locations for the Apache build tools
included with your distribution called “apxs2” or “apxs”. If not found in
any of these standard locations, your PATH will be searched.

Which Python installation to use will be determined by looking for the
“python” executable in your PATH.

If these programs are not in a standard location, they cannot be found in
your PATH, or you wish to use alternate versions to those found, the
--with-apxs and --with-python options can be used in conjunction with
the “configure” script:

./configure --with-apxs=/usr/local/apache/bin/apxs \
 --with-python=/usr/local/bin/python

On some Linux distributions, such as SUSE and CentOS, it will be necessary
to use the --with-apxs option and specify either “/usr/sbin/apxs2-worker”
or “/usr/sbin/apxs2-prefork”. This is necessary as the Linux distribtions
allow installation of “dev” packages for both Apache MPM variants at the
same time, whereas other Linux distributions do not.

If you have multiple versions of Python installed and you are not using
that which is the default, you may have to organise that the PATH inherited
by the Apache application when run will result in Apache finding the
alternate version. Alternatively, the WSGIPythonHome directive should
be used to specify the exact location of the Python installation
corresponding to the version of Python compiled against. If this is not
done, the version of Python running within Apache may attempt to use the
Python modules from the wrong version of Python.

Building The Source Code

Once the package has been configured, it can be built by running:

make

If the mod_wsgi source code does not build successfully, see:

	Installation Issues

If successful, the only product of the build process that needs to be
installed is the Apache module itself. There are no separate Python code
files as everything is done within C code compiled into the Apache module.

To install the Apache module into the standard location for Apache modules
as dictated by Apache for your installation, run:

make install

Installation should be done as the ‘root’ user or ‘sudo’ command if
appropriate.

If you want to install the Apache module in a non standard location
dictated by how your operating system distribution structures the
configuration files and modules for Apache, you will need to copy the file
manually into place.

If installing the Apache module by hand, the file is called ‘mod_wsgi.so’.
The compiled Apache module can be found in the “.libs” subdirectory. The
name of the file should be kept the same when copied into its appropriate
location.

Loading Module Into Apache

Once the Apache module has been installed into your Apache installation’s
module directory, it is still necessary to configure Apache to actually
load the module.

Exactly how this is done and in which of the main Apache configuration
files it should be placed, is dependent on which version of Apache you are
using and may also be influenced by how your operating system’s Apache
distribution has organised the Apache configuration files. You may
therefore need to check with any documentation for your operating system to
see in what way the procedure may need to be modified.

In the simplest case, all that is required is to add a line of the form:

LoadModule wsgi_module modules/mod_wsgi.so

into the main Apache “httpd.conf” configuration file at the same point that
other Apache modules are being loaded. The last option to the directive
should either be an absolute path to where the mod_wsgi module file is
located, or a path expressed relative to the root of your Apache
installation. If you used “make” to install the package, see where it
copied the file to work out what to set this value to.

Restart Apache Web Server

Having adding the required directives you should perform a restart of
Apache to check everything is okay. If you are using an unmodified Apache
distribution from the Apache Software Foundation, a restart is performed
using the ‘apachectl’ command:

apachectl restart

If you see any sort of problem, or if you are upgrading from an older
version of mod_wsgi, it is recommended you actually stop and the start
Apache instead:

apachectl stop
apachectl start

Note that on many Linux distributions where Apache is prepackaged, the
Apache software has been modified and as a result the ‘apachectl’ command
may not work properly or the command may not be present. On these systems,
you will need to use whatever is the sanctioned method for restarting
system services.

This may be via an ‘init.d’ script:

/etc/init.d/httpd stop
/etc/init.d/httpd start

or via some special service maintenance script.

On Debian derived distributions, restarting Apache is usually done via the
‘invoke-rc.d’ command:

invoke-rc.d apache2 stop
invoke-rc.d apache2 start

On RedHat derived distributions, restarting Apache is usually done via the
‘service’ command:

service httpd stop
service httpd start

In nearly all cases the scripts used to restart Apache will need to be run
as the ‘root’ user or via ‘sudo’.

In general, for any system where you are using a prepackaged version of
Apache, it is wise to always check the documentation for that package or
system to determine the correct way to restart the Apache service. This is
because they often use a wrapper around ‘apachectl’, or replace it, with a
script which performs additional actions.

If all is okay, you should see a line of the form:

Apache/2.4.8 (Unix) mod_wsgi/4.4.21 Python/2.7 configured

in the Apache error log file.

Cleaning Up After Build

To cleanup after installation, run:

make clean

If you need to build the module for a different version of Apache, you
should run:

make distclean

and then rerun “configure” against the alternate version of Apache before
attempting to run “make” again.

Installation On MacOS X

If you are using MacOS X, mod_wsgi can be compiled from source code
against the standard versions of Python and Apache httpd server supplied
with the operating system. To do this though you will first need to have
installed the Xcode command line tools.

The Xcode command line tools package provides a C compiler, along with
header files and support tools for the Apache httpd server. If you have
already set up your system so as to be able to install additional Python
packages which include C extensions, you likely will already have the
Xcode command line tools.

Install Xcode command line tools

To install the Xcode command line tools you should run the command:

xcode-select --install

If this gives you back the error message:

xcode-select: error: command line tools are already installed, use "Software Update" to install updates

then the tools have already been installed. As noted by the warning
message, do make sure you have run a system software update to ensure
that you have the latest versions of these tools.

If you do not already have the Xcode command line tools installed, running
that xcode-select command should result in you being prompted to
install them. This may ask you to provide the details of an administrator
account along with the password for that account.

Note that it is not necessary to install the whole of the Xcode
developer application from the MacOS X App Store, only the command line
tools using xcode-select. If you have installed the Xcode developer
application, still ensure that the command line tools are installed and
ensure you have run the system software update.

Configuring and building mod_wsgi

If you are using the Python and Apache httpd server packages provided with
the operating system, all you need to do to configure the mod_wsgi source
code before building it is to run in the mod_wsgi source code directory:

./configure

This should yield output similar to:

checking for apxs2... no
checking for apxs... /usr/sbin/apxs
checking for gcc... gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
checking for suffix of executables...
checking whether we are cross compiling... no
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
checking for prctl... no
checking Apache version... 2.4.18
checking for python... /usr/bin/python
configure: creating ./config.status
config.status: creating Makefile

The configure script should show that it has detected apxs as being
located at /usr/sbin/apxs and python as being at /usr/bin/python.

If you get different values for apxs and python then it means
that you likely have a separate installation of Python or the Apache
httpd server installed on your system. If this is the case, to ensure that
you use the versions of Python and Apache httpd server provided with the
operating system instead use the command:

./configure --with-python=/usr/bin/python --with-apxs=/usr/sbin/apxs

Once you have configured the source code by running configure, you
can build mod_wsgi using the command:

make

This will compile the mod_wsgi source code and produce a single
mod_wsgi.so file which then needs to be installed into a common
location so that the Apache httpd server can use it.

Installing the mod_wsgi module

What you need to do to install the mod_wsgi module depends on which version
of MacOS X you are using.

For the Apache httpd server provided by the operating system, the directory
/usr/libexec/apache2 is used to store the compiled modules. Prior to
MacOS X El Capitan (10.11) this directory was writable and the mod_wsgi
module could be installed here along with all the default modules. With the
introduction of the System Integrity Protection (SIP [https://en.wikipedia.org/wiki/System_Integrity_Protection]) feature in MacOS X
El Capitan this directory is not writable, not even to the root user.

Because of this, if you are using a version of MacOS X prior to MacOS X El
Capitan (10.11) you can use the command:

sudo make install

to install the mod_wsgi module. As sudo is being run, you will be
prompted for your password. The module will be installed into the
directory /usr/libexec/apache2. Within the Apache httpd server
configuration file you can then use the standard LoadModule line
of:

LoadModule wsgi_module libexec/apache2/mod_wsgi.so

If however you are using MacOS X El Capitan (10.11) or later, the mod_wsgi
module will need to be installed into a different location. If you don’t
and try to run just sudo make install, it will fail with the output:

./apxs -i -S LIBEXECDIR=/usr/libexec/apache2 -n 'mod_wsgi' src/server/mod_wsgi.la
/usr/share/httpd/build/instdso.sh SH_LIBTOOL='./libtool' src/server/mod_wsgi.la /usr/libexec/apache2
./libtool --mode=install install src/server/mod_wsgi.la /usr/libexec/apache2/
libtool: install: install src/server/.libs/mod_wsgi.so /usr/libexec/apache2/mod_wsgi.so
install: /usr/libexec/apache2/mod_wsgi.so: Operation not permitted
apxs:Error: Command failed with rc=4653056
.
make: *** [install] Error 1

The directory you use to install the mod_wsgi module is up to you, but
one suggested option is that you use the directory
/usr/local/httpd/modules. Just ensure that this isn’t already used
by a separate installation of the Apache httpd server.

To install the mod_wsgi module into this directory use the command:

sudo make install LIBEXECDIR=/usr/local/httpd/modules

The output from the command will be similar to:

mkdir -p /usr/local/httpd/modules
./apxs -i -S LIBEXECDIR=/usr/local/httpd/modules -n 'mod_wsgi' src/server/mod_wsgi.la
/usr/share/httpd/build/instdso.sh SH_LIBTOOL='./libtool' src/server/mod_wsgi.la /usr/local/httpd/modules
./libtool --mode=install install src/server/mod_wsgi.la /usr/local/httpd/modules/
libtool: install: install src/server/.libs/mod_wsgi.so /usr/local/httpd/modules/mod_wsgi.so
libtool: install: install src/server/.libs/mod_wsgi.lai /usr/local/httpd/modules/mod_wsgi.la
libtool: install: install src/server/.libs/mod_wsgi.a /usr/local/httpd/modules/mod_wsgi.a
libtool: install: chmod 644 /usr/local/httpd/modules/mod_wsgi.a
libtool: install: ranlib /usr/local/httpd/modules/mod_wsgi.a
libtool: install: warning: remember to run `libtool --finish /usr/libexec/apache2'
chmod 755 /usr/local/httpd/modules/mod_wsgi.so

The warning about needing to run libtool --finish can be ignored as it
is not required for everything to work.

With the mod_wsgi module installed in this location, the LoadModule line
in the Apache httpd configuration file should be:

LoadModule wsgi_module /usr/local/httpd/modules/mod_wsgi.so

Normal steps to then configure the Apache httpd server and mod_wsgi for
your specific WSGI application would then be followed.

Quick Configuration Guide

This document describes the steps for configuring mod_wsgi for a basic
WSGI application.

If you are setting up mod_wsgi for the very first time, it is highly
recommended that you follow the examples in this document. Make sure that
you at least get the examples running to verify that mod_wsgi is working
correctly before attempting to install any WSGI applications of your own.

WSGI Application Script File

WSGI is a specification of a generic API for mapping between an underlying
web server and a Python web application. WSGI itself is described by Python
PEP 3333:

	http://www.python.org/dev/peps/pep-3333/

The purpose of the WSGI specification is to provide a common mechanism for
hosting a Python web application on a range of different web servers
supporting the Python programming language.

A very simple WSGI application, and the one which should be used for the
examples in this document, is as follows:

def application(environ, start_response):
 status = '200 OK'
 output = b'Hello World!'

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output]

This sample application will need to be placed into what will be referred
to as the WSGI application script file. For the examples presented here,
the WSGI application will be run as the user that Apache runs as. As such,
the user that Apache runs as must have read access to both the WSGI
application script file and all the parent directories that contain it.

Note that mod_wsgi requires that the WSGI application entry point be called
‘application’. If you want to call it something else then you would need to
configure mod_wsgi explicitly to use the other name. Thus, don’t go
arbitrarily changing the name of the function. If you do, even if you set
up everything else correctly the application will not be found.

Mounting The WSGI Application

There are a number of ways that a WSGI application hosted by mod_wsgi
can be mounted against a specific URL. These methods are similar to how
one would configure traditional CGI applications.

The main approach entails explicitly declaring in the main Apache
configuration file the URL mount point and a reference to the WSGI
application script file. In this case the mapping is fixed, with changes
only being able to be made by modifying the main Apache configuration and
restarting Apache.

When using mod_cgi to host CGI applications, this would be done using the
ScriptAlias directive. For mod_wsgi, the directive is instead called
WSGIScriptAlias:

WSGIScriptAlias /myapp /usr/local/www/wsgi-scripts/myapp.wsgi

This directive can only appear in the main Apache configuration files. The
directive can be used at server scope but would normally be placed within
the VirtualHost container for a particular site. It cannot be used within
either of the Location, Directory or Files container directives, nor can it
be used within a “.htaccess” file.

The first argument to the WSGIScriptAlias directive should be the URL
mount point for the WSGI application. For this case the URL should not
contain a trailing slash. The only exception to this is if the WSGI
application is to be mounted at the root of the web server, in which case
‘/’ would be used.

The second argument to the WSGIScriptAlias directive should be an absolute
pathname to the WSGI application script file. It is into this file that
the sample WSGI application code should be placed.

Note that an absolute pathname must be used for the WSGI application script
file supplied as the second argument. It is not possible to specify an
application by Python module name alone. A full path is used for a number
of reasons, the main one being so that all the Apache access controls can
still be applied to indicate who can actually access the WSGI application.

Because the Apache access controls will apply, if the WSGI application is
located outside of any directories already configured to be accessible to
Apache, it will be necessary to tell Apache that files within that
directory can be used. To do this the Directory directive must be used:

<Directory /usr/local/www/wsgi-scripts>
<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

Note that it is highly recommended that the WSGI application script file in
this case NOT be placed within the existing DocumentRoot for your main
Apache installation, or the particular site you are setting it up for. This
is because if that directory is otherwise being used as a source of static
files, the source code for your application might be able to be downloaded.

You also should not use the home directory of a user account, as to do
that would mean allowing Apache to serve up any files in that account. In
this case any misconfiguration of Apache could end up exposing your whole
account for downloading.

It is thus recommended that a special directory be setup distinct from
other directories and that the only thing in that directory be the WSGI
application script file, and if necessary any support files it requires.

A complete virtual host configuration for this type of setup would
therefore be something like:

<VirtualHost *:80>

 ServerName www.example.com
 ServerAlias example.com
 ServerAdmin webmaster@example.com

 DocumentRoot /usr/local/www/documents

 <Directory /usr/local/www/documents>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 </Directory>

 WSGIScriptAlias /myapp /usr/local/www/wsgi-scripts/myapp.wsgi

 <Directory /usr/local/www/wsgi-scripts>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 </Directory>

</VirtualHost>

After appropriate changes have been made Apache will need to be restarted.
For this example, the URL ‘http://www.example.com/myapp’ would then be used
to access the the WSGI application.

Note that you obviously should substitute the paths and hostname with
values appropriate for your system.

Mounting At Root Of Site

If instead you want to mount a WSGI application at the root of a site,
simply list ‘/’ as the mount point when configuring the WSGIScriptAlias
directive:

WSGIScriptAlias / /usr/local/www/wsgi-scripts/myapp.wsgi

Do note however that doing so will mean that any static files contained in
the DocumentRoot will be hidden and requests against URLs pertaining to
the static files will instead be processed by the WSGI application.

In this situation it becomes necessary to remap using the Alias directive,
any URLs for static files to the directory containing them:

Alias /robots.txt /usr/local/www/documents/robots.txt
Alias /favicon.ico /usr/local/www/documents/favicon.ico

Alias /media/ /usr/local/www/documents/media/

A complete virtual host configuration for this type of setup would
therefore be something like:

<VirtualHost *:80>

 ServerName www.example.com
 ServerAlias example.com
 ServerAdmin webmaster@example.com

 DocumentRoot /usr/local/www/documents

 Alias /robots.txt /usr/local/www/documents/robots.txt
 Alias /favicon.ico /usr/local/www/documents/favicon.ico

 Alias /media/ /usr/local/www/documents/media/

 <Directory /usr/local/www/documents>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 </Directory>

 WSGIScriptAlias / /usr/local/www/wsgi-scripts/myapp.wsgi

 <Directory /usr/local/www/wsgi-scripts>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 </Directory>

</VirtualHost>

After appropriate changes have been made Apache will need to be restarted.
For this example, the URL ‘http://www.example.com/’ would then be used
to access the the WSGI application.

Note that you obviously should substitute the paths and hostname with
values appropriate for your system.

Delegation To Daemon Process

By default any WSGI application will run in what is called embedded mode.
That is, the application will be hosted within the Apache worker processes
used to handle normal static file requests.

When embedded mode is used, whenever you make changes to your WSGI
application code you would generally have to restart the whole Apache web
server in order for changes to be picked up. This can be inconvenient,
especially if the web server is a shared resource hosting other web
applications at the same time, or you don’t have root access to be able to
restart the server and rely on someone else to restart it.

On UNIX systems when running Apache 2.X, an option which exists with
mod_wsgi and that avoids the need to restart the whole Apache web server
when code changes are made, is to use what is called daemon mode.

In daemon mode a set of processes is created for hosting a WSGI application,
with any requests for that WSGI application automatically being routed to
those processes for handling.

When code changes are made and it is desired that the daemon processes for
the WSGI application be restarted, all that is required is to mark the WSGI
application script file as modified by using the ‘touch’ command.

To make use of daemon mode for WSGI applications hosted within a specific
site, the WSGIDaemonProcess and WSGIProcessGroup directives would need to
be defined. For example, to setup a daemon process group containing two
multithreaded process one could use:

WSGIDaemonProcess example.com processes=2 threads=15
WSGIProcessGroup example.com

A complete virtual host configuration for this type of setup would
therefore be something like:

<VirtualHost *:80>

 ServerName www.example.com
 ServerAlias example.com
 ServerAdmin webmaster@example.com

 DocumentRoot /usr/local/www/documents

 Alias /robots.txt /usr/local/www/documents/robots.txt
 Alias /favicon.ico /usr/local/www/documents/favicon.ico

 Alias /media/ /usr/local/www/documents/media/

 <Directory /usr/local/www/documents>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 </Directory>

 WSGIDaemonProcess example.com processes=2 threads=15 display-name=%{GROUP}
 WSGIProcessGroup example.com

 WSGIScriptAlias / /usr/local/www/wsgi-scripts/myapp.wsgi

 <Directory /usr/local/www/wsgi-scripts>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 </Directory>

</VirtualHost>

After appropriate changes have been made Apache will need to be restarted.
For this example, the URL ‘http://www.example.com/’ would then be used
to access the the WSGI application.

Note that you obviously should substitute the paths and hostname with
values appropriate for your system.

As mentioned previously, the daemon processes will be shutdown and restarted
automatically if the WSGI application script file is modified.

For the sample application presented in this document the whole application
is in that file. For more complicated applications the WSGI application
script file will be merely an entry point to an application being imported
from other Python modules or packages. In this later case, although no
change may be required to the WSGI application script file itself, it can
still be touched to trigger restarting of the daemon processes in the event
that any code in the separate modules or packages is changed.

Note that only requests for the WSGI application are handled within the
context of the daemon processes. Any requests for static files are still
handled within the Apache worker processes.

Debugging Any Problems

To debug any problems one should take note of the type of error response
being returned, but more importantly one should look at the Apache error
logs for more detailed descriptions of a specific problem.

Being new to mod_wsgi it is highly recommended that the default Apache
LogLevel be increased from ‘warn’ to ‘info’:

LogLevel info

When this is done mod_wsgi will output additional information regarding
when daemon processes are created, when Python sub interpreters related
to a group of WSGI applications are created and when WSGI application
script files are loaded and/or reloaded. This information can be quite
valuable in determining what problem may be occuring.

Note that where the LogLevel directive may have been defined both in and
outside of a VirtualHost directive, due to the VirtualHost declaring its
own error logs, both instances of the LogLevel directive should be changed.

This is because although the virtual host may have its own error log, some
information is still logged to the main Apache error log and the LogLevel
directive outside of the virtual host context needs to be changed for that
additional information to be recorded.

In other words, even if the VirtualHost has its own error log file, also
look in the main Apache error log file for information as well.

Configuration Guidelines

The purpose of this document is to detail the basic configuration steps
required for running WSGI applications with mod_wsgi.

The WSGIScriptAlias Directive

Configuring Apache to run WSGI applications using mod_wsgi is similar to
how Apache is configured to run CGI applications. To streamline this task
however, an additional configuration directive called WSGIScriptAlias is
provided. Like the ScriptAlias directive for CGI scripts, the mod_wsgi
directive combines together a number of steps so as to reduce the amount of
configuration required.

The first way of using the WSGIScriptAlias directive to indicate the WSGI
application to be used, is to associate a WSGI application against a
specific URL prefix:

WSGIScriptAlias /myapp /usr/local/wsgi/scripts/myapp.wsgi

The last option to the directive in this case must be a full pathname to
the actual code file containing the WSGI application. A trailing slash
should never be added to the last option when it is referring to an actual
file.

The WSGI application contained within the code file specified should be
called ‘application’. For example:

def application(environ, start_response):
 status = '200 OK'
 output = b'Hello World!'

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output]

Note that an absolute pathname to a WSGI script file must be provided. It
is not possible to specify an application by Python module name alone. A
full path is used for a number of reasons, the main one being so that all
the Apache access controls can still be applied to indicate who can
actually access the WSGI application. Because these access controls will
apply, if the WSGI application is located outside of any directories
already known to Apache, it will be necessary to tell Apache that files
within that directory can be used. To do this the Directory directive must
be used:

<Directory /usr/local/wsgi/scripts>
<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

Note that Apache access control directives such as Order and Allow, or
Require in the case of Apache 2.4 or newer, should nearly always be applied
to Directory and never to a Location. Adding them to a Location would not
be regarded as best practice and would potentially weaken the security of
your Apache server, especially where the Location was for ‘/’.

As for CGI scripts and the ScriptAlias directive, it is not necessary to
have used the Options directive to enable the ExecCGI directive. This is
because it is automatically implied from the use of the WSGIScriptAlias
directive that the script must be executable.

For WSGIScriptAlias, to mount a WSGI application at the root of the web
site, simply use ‘/’ as the mount point:

WSGIScriptAlias / /usr/local/wsgi/scripts/myapp.wsgi

If you need to mount multiple WSGI applications, the directives can be
listed more than once. When this occurs, those occuring first are given
precedence. As such, those which are mounted at what would be a sub URL to
another WSGI application, should always be listed earlier:

WSGIScriptAlias /wiki /usr/local/wsgi/scripts/mywiki.wsgi
WSGIScriptAlias /blog /usr/local/wsgi/scripts/myblog.wsgi
WSGIScriptAlias / /usr/local/wsgi/scripts/myapp.wsgi

The second way of using the WSGIScriptAlias directive is to use it to map
to a directory containing any number of WSGI applications:

WSGIScriptAlias /wsgi/ /usr/local/wsgi/scripts/

When this is used, the next part of the URL after the URL prefix is used to
identify which WSGI application script file within the target directory
should be used. Both the mount point and the directory path must have a
trailing slash.

If you want WSGI application scripts to use an extension, but don’t wish
to have that extension appear in the URL, then it is possible to use the
WSGIScriptAliasMatch directive instead:

WSGIScriptAliasMatch ^/wsgi/([^/]+) /usr/local/wsgi/scripts/$1.wsgi

In this case, any path information appearing after the URL prefix, will be
mapped to a corresponding WSGI script file in the directory, but with a
‘.wsgi’ extension. The extension would though not need to be included in
the URL.

In all ways that the WSGIScriptAlias can be used, the target script is not
required to have any specific extension type and in particular it is not
necessary to use a ‘.py’ extension just because it contains Python code.
Because the target script is not treated exactly like a traditional Python
module, if an extension is used, it is recommended that ‘.wsgi’ be used
rather than ‘.py’.

The Apache Alias Directive

Although the WSGIScriptAlias directive is provided, the traditional Alias
directive can still be used to enable execution of WSGI applications for
specific URLs. The equivalent such configuration for:

WSGIScriptAlias /wsgi/ /usr/local/wsgi/scripts/

<Directory /usr/local/wsgi/scripts>
<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

using the Alias directive would be:

Alias /wsgi/ /usr/local/wsgi/scripts/

<Directory /usr/local/wsgi/scripts>
Options ExecCGI

SetHandler wsgi-script

<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

The additional steps required in this case are to enable the ability to
execute CGI like scripts using the Options directive and define the Apache
handler as ‘wsgi-script’.

If wishing to hold a mixture of static files, normal CGI scripts and WSGI
applications within the one directory, the AddHandler directive can be
used instead of the SetHandler directive to distinguish between the various
resource types based on resource extension:

Alias /wsgi/ /usr/local/wsgi/scripts/

<Directory /usr/local/wsgi/scripts>
Options ExecCGI

AddHandler cgi-script .cgi
AddHandler wsgi-script .wsgi

<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

For whatever extension you use to identify a WSGI script file, ensure that
you do not have a conflicting definition for that extension marking it as a
CGI script file. For example, if you previously had all ‘.py’ files being
handled as ‘cgi-script’, consider disabling that before marking ‘.py’ file
as then being handled as ‘wsgi-script’ file in same context. If both are
defined in same context, which is used will depend on the order of the
directives and the wrong handler may be selected.

Because an extension is required to determine whether a script should be
processed as a CGI script versus a WSGI application, the extension would
need to appear in the URL. If this is not desired, then add the MultiViews
option and MultiviewsMatch directive:

Alias /wsgi/ /usr/local/wsgi/scripts/

<Directory /usr/local/wsgi/scripts>
Options ExecCGI MultiViews
MultiviewsMatch Handlers

AddHandler cgi-script .cgi
AddHandler wsgi-script .wsgi

<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

Adding of MultiViews in this instance and allowing multiviews to match
Apache handlers will allow the extension to be dropped from the URL.
Provided that for each resource there is only one alternative, Apache will
then automatically select either the CGI script or WSGI application as
appropriate for that resource. Use of multiviews in this way would make it
possible to transparently migrate from CGI scripts to WSGI applications
without the need to change any URLs.

A benefit of using the AddHandler directive as described above, is that it
also allows a directory index page or directory browsing to be enabled for
the directory. To enable directory browsing add the Indexes option:

Alias /wsgi/ /usr/local/wsgi/scripts/

<Directory /usr/local/wsgi/scripts>
Options ExecCGI Indexes

AddHandler cgi-script .cgi
AddHandler wsgi-script .wsgi

<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

If a directory index page is enabled, it may refer to either a static file,
CGI or WSGI application. The DirectoryIndex directive should be used to
designate what should be used for the index page:

Alias /wsgi/ /usr/local/wsgi/scripts/

<Directory /usr/local/wsgi/scripts>
Options ExecCGI Indexes

DirectoryIndex index.html index.wsgi index.cgi

AddHandler cgi-script .cgi
AddHandler wsgi-script .wsgi

<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

Using AddHandler or SetHandler to configure a WSGI application can also
be done from within the ‘.htaccess’ file located within the directory which
a URL maps to. This will however only be possible where the directory has
been enabled to allow these directives to be used. This would be done using
the AllowOverride directive and enabling FileInfo for that directory.
It would also be necessary to allow the execution of scripts using the
Options directive by listing ExecCGI:

Alias /site/ /usr/local/wsgi/site/

<Directory /usr/local/wsgi/site>
AllowOverride FileInfo
Options ExecCGI MultiViews Indexes
MultiviewsMatch Handlers

<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

This done, the ‘.htaccess’ file could then contain:

DirectoryIndex index.html index.wsgi index.cgi

AddHandler cgi-script .cgi
AddHandler wsgi-script .wsgi

Note that the DirectoryIndex directive can only be used to designate a
simple WSGI application which returns a single page for when the URL maps
to the actual directory. Because the DirectoryIndex directive is not
applied when the URL has additional path information beyond the leading
portion of the URL which mapped to the directory, it cannot be used as a
means of making a complex WSGI application responding to numerous URLs
appear at the root of a server.

When using the AddHandler directive, with WSGI applications identified by
the extension of the script file, the only way to make the WSGI application
appear as the root of the server is to perform on the fly rewriting of the
URL internal to Apache using mod_rewrite. The required rules for
mod_rewrite to ensure that a WSGI application, implemented by the script
file ‘site.wsgi’ in the root directory of the virtual host, appears as being
mounted on the root of the virtual host would be:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ /site.wsgi/$1 [QSA,PT,L]

Do note however that when the WSGI application is executed for a request
the ‘SCRIPT_NAME’ variable indicating what the mount point of the application
was will be ‘/site.wsgi’. This will mean that when a WSGI application
constructs an absolute URL based on ‘SCRIPT_NAME’, it will include
‘site.wsgi’ in the URL rather than it being hidden. As this would probably
be undesirable, many web frameworks provide an option to override what the
value for the mount point is. If such a configuration option isn’t
available, it is just as easy to adjust the value of ‘SCRIPT_NAME’ in the
‘site.wsgi’ script file itself:

def _application(environ, start_response):
 # The original application.
 ...

import posixpath

def application(environ, start_response):
 # Wrapper to set SCRIPT_NAME to actual mount point.
 environ['SCRIPT_NAME'] = posixpath.dirname(environ['SCRIPT_NAME'])
 if environ['SCRIPT_NAME'] == '/':
 environ['SCRIPT_NAME'] = ''
 return _application(environ, start_response)

This wrapper will ensure that ‘site.wsgi’ never appears in the URL as long
as it wasn’t included in the first place and that access was always via the
root of the web site instead.

Application Configuration

If it is necessary or desired to be able to pass configuration information
through to a WSGI application from the Apache configuration file, then the
SetEnv directive can be used:

WSGIScriptAlias / /usr/local/wsgi/scripts/demo.wsgi

SetEnv demo.templates /usr/local/wsgi/templates
SetEnv demo.mailhost mailhost
SetEnv demo.debugging 0

Any such variables added using the SetEnv directive will be automatically
added to the WSGI environment passed to the application when executed.

Note that the WSGI environment is passed upon each request to the
application in the ‘environ’ argument of the application object. This
environment is totally unrelated to the process environment which is
kept in ‘os.environ’. The SetEnv directive has no effect on ‘os.environ’
and there is no way through Apache configuration directives to affect
what is in the process environment.

If needing to dynamically set variables based on some aspects of the
request itself, the RewriteRule directive may also be useful in some cases
as an avenue to set application configuration variables.

For example, to enable additional debug only when the client is connecting
from the localhost, the following might be used:

SetEnv demo.debugging 0

RewriteEngine On
RewriteCond %{REMOTE_ADDR} ^127.0.0.1$
RewriteRule . - [E=demo.debugging:1]

More elaborate schemes involving RewriteMap could also be employed.

Where SetEnv and RewriteRule are insufficient, then any further
application configuration should be injected into an application using a
WSGI application wrapper within the WSGI application script file:

def _application(environ, start_response):
 ...

def application(environ, start_response):
 if environ['REMOTE_ADDR'] in ['127.0.0.1']:
 environ['demo.debugging'] = '1'
 return _application(environ, start_response)

User Authentication

As is the case when using CGI scripts with Apache, authorisation headers
are not passed through to WSGI applications. This is the case, as doing so
could leak information about passwords through to a WSGI application which
should not be able to see them when Apache is performing authorisation.

Unlike CGI scripts however, when using mod_wsgi, the WSGIPassAuthorization
directive can be used to control whether HTTP authorisation headers are
passed through to a WSGI application in the HTTP_AUTHORIZATION
variable of the WSGI application environment when the equivalent HTTP
request headers are present. This option would need to be set to On
if the WSGI application was to handle authorisation rather than Apache
doing it:

WSGIPassAuthorization On

If Apache is performing authorisation and not the WSGI application, a WSGI
application can still find out what type of authorisation scheme was used
by checking the variable AUTH_TYPE of the WSGI application
environment. The login name of the authorised user can be determined by
checking the variable REMOTE_USER.

Hosting Of Static Files

When the WSGIScriptAlias directive is used to mount an application at the
root of the web server for a host, all requests for that host will be
processed by the WSGI application. If is desired for performance reasons
to still use Apache to host static files associated with the application,
then the Alias directive can be used to designate the files and directories
which should be served in this way:

Alias /robots.txt /usr/local/wsgi/static/robots.txt
Alias /favicon.ico /usr/local/wsgi/static/favicon.ico

AliasMatch /([^/]*\.css) /usr/local/wsgi/static/styles/$1

Alias /media/ /usr/local/wsgi/static/media/

<Directory /usr/local/wsgi/static>
<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

WSGIScriptAlias / /usr/local/wsgi/scripts/myapp.wsgi

<Directory /usr/local/wsgi/scripts>
<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

When listing the directives, list those for more specific URLs first. In
practice this shouldn’t actually be required as the Alias directive should
take precedence over WSGIScriptAlias, but good practice all the same.

Do note though that if using Apache 1.3, the Alias directive will only take
precedence over WSGIScriptAlias if the mod_wsgi module is loaded prior to
the mod_alias module. To ensure this, the LoadModule/AddModule directives
are used.

Note that there is never a need to use SetHandler to reset the Apache
content handler back to ‘None’ for URLs mapped to static files. That this
is a requirement for mod_python is a short coming in mod_python, do not do
the same thing for mod_wsgi.

Limiting Request Content

By default Apache does not limit the amount of data that may be pushed to
the server via a HTTP request such as a POST. That this is the case means
that malicious users could attempt to overload a server by attempting to
upload excessively large amounts of data.

If a WSGI application is not designed properly and doesn’t limit this
itself in some way, and attempts to load the whole request content into
memory, it could cause an application to exhaust available memory.

If it is unknown if a WSGI application properly protects itself against
such attempts to upload excessively large amounts of data, then the Apache
LimitRequestBody directive can be used:

LimitRequestBody 1048576

The argument to the LimitRequestBody should be the maxumum number of bytes
that should be allowed in the content of a request.

When this directive is used, mod_wsgi will perform the check prior to
actually passing a request off to a WSGI application. When the limit is
exceeded mod_wsgi will immediately return the HTTP 413 error response
without even invoking the WSGI application to handle the request. Any
request content will not be read as the client connection will then be
closed.

Note that the HTTP 413 error response page will be that defined by Apache,
or as specified by the Apache ErrorDocument directive for that error type.

Defining Application Groups

By default each WSGI application is placed into its own distinct
application group. This means that each application will be given its own
distinct Python sub interpreter to run code within. Although this means
that applications will be isolated and cannot in general interfere with the
Python code components of each other, each will load its own copy of all
Python modules it requires into memory. If you have many applications and
they use a lot of different Python modules this can result in large process
sizes.

To avoid large process sizes, if you know that applications within a
directory can safely coexist and run together within the same Python sub
interpreter, you can specify that all applications within a certain context
should be placed in the same application group. This is indicated by using
the WSGIApplicationGroup directive:

<Directory /usr/local/wsgi/scripts>
WSGIApplicationGroup admin-scripts

<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

The argument to the WSGIApplicationGroup directive can in general be any
unique name of your choosing, although there are also a number of special
values which you can use as well. For further information about these
special values see the more detailed documentation on the
WSGIApplicationGroup directive. Two of the
special values worth highlighting are:

%{GLOBAL}

The application group name will be set to the empty string.

Any WSGI applications in the global application group will always be
executed within the context of the first interpreter created by Python
when it is initialised. Forcing a WSGI application to run within the
first interpreter can be necessary when a third party C extension
module for Python has used the simplified threading API for
manipulation of the Python GIL and thus will not run correctly within
any additional sub interpreters created by Python.

%{ENV:variable}

The application group name will be set to the value of the named
environment variable. The environment variable is looked-up via the
internal Apache notes and subprocess environment data structures and
(if not found there) via getenv() from the Apache server process.

In an Apache configuration file, environment variables accessible
using the %{ENV} variable reference can be setup by using directives
such as SetEnv and RewriteRule.

For example, to group all WSGI scripts for a specific user when using
mod_userdir within the same application group, the following could be used:

RewriteEngine On
RewriteCond %{REQUEST_URI} ^/~([^/]+)
RewriteRule . - [E=APPLICATION_GROUP:~%1]

<Directory /home/*/public_html/wsgi-scripts/>
Options ExecCGI
SetHandler wsgi-script
WSGIApplicationGroup %{ENV:APPLICATION_GROUP}
</Directory>

Defining Process Groups

By default all WSGI applications will run in what is called ‘embedded’
mode. That is, the applications are run within Python sub interpreters
hosted within the Apache child processes. Although this results in the best
performance possible, there are a few down sides.

First off, embedded mode is not recommended where you are not adept at
tuning Apache. This is because the default MPM settings are never usually
suitable for Python web applications, instead being biased towards static
file serving and PHP applications. If you run embedded mode without tuning
the MPM settings, you can experience problems with memory usage, due to
default number of processes being too many, and can also experience load
spikes, due to how Apache performs lazy creation of processes to meet
demand.

Secondly, embedded mode would not be suitable for shared web hosting
environments as all applications run as the same user and through various
means could interfere with each other.

Running multiple Python applications within the same process, even if
separated into distinct sub interpreters also presents other challenges and
problems. These include problems with Python extension modules not being
implemented correctly such that they work from a secondary sub interpreter,
or when used from multiple sub interpreters at the same time.

Where multiple applications, potentially owned by different users, need to
be run, ‘daemon’ mode of mod_wsgi should instead be used. Using daemon
mode, each application can be delegated to its own dedicated daemon process
running just the WSGI application, with the Apache child processes merely
acting as proxies for delivering the requests to the application. Any
static files associated with the application would still be served up by
the Apache child processes to ensure best performance possible.

To denote that a daemon process should be created the WSGIDaemonProcess
directive is used. The WSGIProcessGroup directive is then used to delegate
specific WSGI applications to execute within that daemon process:

WSGIDaemonProcess www.site.com threads=15 maximum-requests=10000

Alias /favicon.ico /usr/local/wsgi/static/favicon.ico

AliasMatch /([^/]*\.css) /usr/local/wsgi/static/styles/$1

Alias /media/ /usr/local/wsgi/static/media/

<Directory /usr/local/wsgi/static>
<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

WSGIScriptAlias / /usr/local/wsgi/scripts/myapp.wsgi
WSGIProcessGroup www.site.com

<Directory /usr/local/wsgi/scripts>

<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>
</Directory>

Where Apache has been started as the root user, the daemon processes
can optionally be run as a user different to that which the Apache child
processes would normally be run as. The number of daemon processes making
up the process group and whether they are single or multithreaded can also
be controlled.

A further option which should be considered is that which dictates the
maximum number of requests that a daemon process should be allowed to
accept before the daemon process is shutdown and restarted. This should be
used where there are problems with increasing memory use due to problems
with the application itself or a third party extension module.

As a general recommendation it would probably be a good idea to use the
maximum requests option when running large installations of packages such
as Trac and MoinMoin. Any large web site based on frameworks such as
Django, TurboGears and Pylons or applications which use a database backend
may also benefit.

If an application does not shutdown cleanly when the maximum number of
requests has been reached, it will be killed off after the shutdown timeout
has expired. If this occurs on a regular basis you should run with more
than a single daemon process in the process group such that the other
process can still accept requests while the first is being restarted.

If the maximum requests option is not specified, then the daemon process
will never expire and will only be restarted if Apache is restarted or the
user explicitly signals it to restart.

For further information about the options that can be supplied to the
WSGIDaemonProcess directive see the more detailed documentation for
WSGIDaemonProcess. A few of the options
which can be supplied to the WSGIDaemonProcess directive worth highlighting
are:

user=name | user=#uid

Defines the UNIX user _name_ or numeric user _uid_ of the user that
the daemon processes should be run as. If this option is not supplied
the daemon processes will be run as the same user that Apache would
run child processes and as defined by the User directive.

Note that this option is ignored if Apache wasn’t started as the root
user, in which case no matter what the settings, the daemon processes
will be run as the user that Apache was started as.

group=name | group=#gid

Defines the UNIX group _name_ or numeric group _gid_ of the primary
group that the daemon processes should be run as. If this option is not
supplied the daemon processes will be run as the same group that Apache
would run child processes and as defined by the Group directive.

Note that this option is ignored if Apache wasn’t started as the root
user, in which case no matter what the settings, the daemon processes
will be run as the group that Apache was started as.

processes=num

Defines the number of daemon processes that should be started in this
process group. If not defined then only one process will be run in this
process group.

Note that if this option is defined as ‘processes=1’, then the WSGI
environment attribute called ‘wsgi.multiprocess’ will be set to be True
whereas not providing the option at all will result in the attribute
being set to be False. This distinction is to allow for where some form
of mapping mechanism might be used to distribute requests across
multiple process groups and thus in effect it is still a multiprocess
application. If you need to ensure that ‘wsgi.multiprocess’ is False so
that interactive debuggers will work, simply do not specify the
‘processes’ option and allow the default single daemon process to be
created in the process group.

threads=num

Defines the number of threads to be created to handle requests in each
daemon process within the process group.

If this option is not defined then the default will be to create 15
threads in each daemon process within the process group.

maximum-requests=nnn

Defines a limit on the number of requests a daemon process should
process before it is shutdown and restarted. Setting this to a non zero
value has the benefit of limiting the amount of memory that a process
can consume by (accidental) memory leakage.

If this option is not defined, or is defined to be 0, then the daemon
process will be persistent and will continue to service requests until
Apache itself is restarted or shutdown.

Note that the name of the daemon process group must be unique for the whole
server. That is, it is not possible to use the same daemon process group
name in different virtual hosts.

If the WSGIDaemonProcess directive is specified outside of all virtual
host containers, any WSGI application can be delegated to be run within
that daemon process group. If the WSGIDaemonProcess directive is specified
within a virtual host container, only WSGI applications associated with
virtual hosts with the same server name as that virtual host can be
delegated to that set of daemon processes.

When WSGIDaemonProcess is associated with a virtual host, the error log
associated with that virtual host will be used for all Apache error log
output from mod_wsgi rather than it appear in the main Apache error log.

For example, if a server is hosting two virtual hosts and it is desired
that the WSGI applications related to each virtual host run in distinct
processes of their own and as a user which is the owner of that virtual
host, the following could be used:

<VirtualHost *:80>
ServerName www.site1.com
CustomLog logs/www.site1.com-access_log common
ErrorLog logs/ww.site1.com-error_log

WSGIDaemonProcess www.site1.com user=joe group=joe processes=2 threads=25
WSGIProcessGroup www.site1.com

...
</VirtualHost>

<VirtualHost *:80>
ServerName www.site2.com
CustomLog logs/www.site2.com-access_log common
ErrorLog logs/www.site2.com-error_log

WSGIDaemonProcess www.site2.com user=bob group=bob processes=2 threads=25
WSGIProcessGroup www.site2.com

...
</VirtualHost>

When using the WSGIProcessGroup directive, the argument to the directive
can be either one of two special expanding variables or the actual name of
a group of daemon processes setup using the WSGIDaemonProcess directive.
The meaning of the special variables are:

%{GLOBAL}

The process group name will be set to the empty string.
Any WSGI applications in the global process group will always be
executed within the context of the standard Apache child processes.
Such WSGI applications will incur the least runtime overhead, however,
they will share the same process space with other Apache modules such
as PHP, as well as the process being used to serve up static file
content. Running WSGI applications within the standard Apache child
processes will also mean the application will run as the user that
Apache would normally run as.

%{ENV:variable}

The process group name will be set to the value of the named
environment variable. The environment variable is looked-up via the
internal Apache notes and subprocess environment data structures and
(if not found there) via getenv() from the Apache server process.
The result must identify a named process group setup using the
WSGIDaemonProcess directive.

In an Apache configuration file, environment variables accessible using
the %{ENV} variable reference can be setup by using directives such as
SetEnv and RewriteRule.

For example, to select which process group a specific WSGI application
should execute within based on entries in a database file, the following
could be used:

RewriteEngine On
RewriteMap wsgiprocmap dbm:/etc/httpd/wsgiprocmap.dbm
RewriteRule . - [E=PROCESS_GROUP:${wsgiprocmap:%{REQUEST_URI}}]

WSGIProcessGroup %{ENV:PROCESS_GROUP}

Note that the WSGIDaemonProcess directive and corresponding features are
not available on Windows or when running Apache 1.3.

Installation Issues

Although mod_wsgi is not a large package in itself, it depends on both
Apache and Python to get it compiled and installed. Because Apache and
Python are complicated systems in their own right, various problems can
come up during installation of mod_wsgi. These problems can arise for
various reasons, including an incomplete or suboptimal Python installation
or presence of multiple Python versions.

The purpose of this document is to capture all the known problems that can
arise regarding installation, including workarounds if available.

If you are having a problem which doesn’t seem to be covered by this
document, also make sure you see Configuration Issues
and Application Issues.

Missing Python Header Files

In order to compile mod_wsgi from source code you must have installed the
full Python distribution, including header files. On a Linux distribution
where binary Python packages are split into a runtime package and a
developer package, the developer package is often not installed by default.
This means that you will be missing the header files required to compile
mod_wsgi from source code. An example of the error messages you will see
if the developer package is not installed are:

mod_wsgi.c:113:20: error: Python.h: No such file or directory
mod_wsgi.c:114:21: error: compile.h: No such file or directory
mod_wsgi.c:115:18: error: node.h: No such file or directory
mod_wsgi.c:116:20: error: osdefs.h: No such file or directory
mod_wsgi.c:119:2: error: #error Sorry, mod_wsgi requires at least Python 2.3.0.
mod_wsgi.c:123:2: error: #error Sorry, mod_wsgi requires that Python supporting thread.

To remedy the problem, install the developer package for Python
corresponding to the Python runtime package you have installed. What the
name of the developer package is can vary from one Linux distribution to
another. Normally it has the same name as the Python runtime package with
-dev appended to the package name. You will need to lookup up list of
available packages in your packaging system to determine actual name of
package to install.

Lack Of Python Shared Library

In the optimal case, when mod_wsgi is compiled the resulting Apache module
should be less than 250 Kbytes in size. If this is not the case and the
module is over 1MB in size, it indicates that the version of Python being
used was not originally configured so as to produce a Python shared library
and is instead only producing a static library.

Although the existance of only a static library for Python doesn’t normally
cause compilation of mod_wsgi to fail, it does mean that when ‘libtool’ is
used to generate the mod_wsgi Apache module, that it has to embed the
actual static library objects into the Apache module instead of it being
used as a shared library.

The consequences of this are that when the mod_wsgi Apache module is loaded
by Apache, the operating system dynamic linker has to perform address
relocations on the Python library component of the mod_wsgi Apache module.
Because these relocations require memory to be modified, the full Python
library then becomes private memory to the process and not shared.

On a Linux system this need to perform the address relocations at runtime
will immediately cause each Apache child process to bloat out in size by
between 1 and 2MB. On a Solaris system, depending on which compiler is
being used and which options, the amount of additional memory used can be
5MB or more.

To determine whether the compiled mod_wsgi module is making use of a
shared library for Python, many UNIX systems provide the ‘ldd’
program. The output from running this on the ‘mod_wsgi.so’ file would
be something like:

$ ldd mod_wsgi.so
 linux-vdso.so.1 => (0x00007fffeb3fe000)
 libpython2.5.so.1.0 => /usr/local/lib/libpython2.5.so.1.0 (0x00002adebf94d000)
 libpthread.so.0 => /lib/libpthread.so.0 (0x00002adebfcba000)
 libdl.so.2 => /lib/libdl.so.2 (0x00002adebfed6000)
 libutil.so.1 => /lib/libutil.so.1 (0x00002adec00da000)
 libc.so.6 => /lib/libc.so.6 (0x00002adec02dd000)
 libm.so.6 => /lib/libm.so.6 (0x00002adec0635000)
 /lib64/ld-linux-x86-64.so.2 (0x0000555555554000)

Note how there is a dependency listed on the ‘.so’ file for Python. If
this is not present then mod_wsgi is using a static Python library.

Although mod_wsgi will still work when compiled against a version of Python
which only provides a static library, you are highly encouraged to ensure
that your Python installation has been configured and compiled with the
--enable-shared option to enable the production and use of a shared
library for Python.

If rebuilding Python to generate a shared library, do make sure that the
Python shared library, or a symlink to it appears in the Python ‘config’
directory of your Python installation. If the shared library doesn’t appear
here next to the static version of the library, ‘libtool’ will not be able
to find it and will still use the static version of the library. It is
understood that the Python build process may not actually do this, so you
may have to do it by hand.

To check, go to the Python ‘config’ directory of your Python installation
and do a directory listing:

$ ls -las

 4 drwxr-sr-x 2 root staff 4096 2007-11-29 23:26 .
 20 drwxr-sr-x 21 root staff 20480 2007-11-29 23:26 ..
 4 -rw-r--r-- 1 root staff 2078 2007-11-29 23:26 config.c
 4 -rw-r--r-- 1 root staff 1446 2007-11-29 23:26 config.c.in
 8 -rwxr-xr-x 1 root staff 7122 2007-11-29 23:26 install-sh
7664 -rw-r--r-- 1 root staff 7833936 2007-11-29 23:26 libpython2.5.a
 40 -rw-r--r-- 1 root staff 38327 2007-11-29 23:26 Makefile
 8 -rwxr-xr-x 1 root staff 7430 2007-11-29 23:26 makesetup
 8 -rw-r--r-- 1 root staff 6456 2007-11-29 23:26 python.o
 20 -rw-r--r-- 1 root staff 17862 2007-11-29 23:26 Setup
 4 -rw-r--r-- 1 root staff 368 2007-11-29 23:26 Setup.config
 4 -rw-r--r-- 1 root staff 41 2007-11-29 23:26 Setup.local

If you only see a ‘.a’ file for Python library, then either Python wasn’t
installed with the shared library, or the shared library was placed
elsewhere. What appears to normally happen is that the shared library is
actually placed in the ‘lib’ directory two levels above the Python ‘config’
directory. In that case you need to create a symlink in the ‘config’
directory to where the shared library is actually installed:

$ ln -s ../../libpython2.5.so .

Apart from the additional memory consumption when using a static library,
it is also preferable that a shared library be used where it is possible
that you will upgrade your Python installation to a newer patch revision.
This is because if you upgrade Python to a newer patch revision but do
not recompile mod_wsgi, mod_wsgi will still incorporate the older static
Python library and will not pick up any changes from the newer version
of Python. This will result in undefined behaviour as the Python library
code may not match up with the Python code modules or external modules
in the Python installation. If a Python shared library is used, this will
not be a problem.

Multiple Python Versions

Where there are multiple versions of Python installed on a system and it is
necessary to ensure that a specific version is used, the --with-python
option can be supplied to ‘configure’ when installing mod_wsgi:

./configure --with-python=/usr/local/bin/python2.5

This may be necessary where for example the default Python version supplied
with the system is an older version of Python. More specifically, it would
be required where it isn’t possible to replace the older version of Python
outright due to operating system management scripts being dependent on the
older version of Python and not working with newer versions of Python.

Where multiple versions of Python are present and are installed under the
same directory, this should generally be all that is required. If however
the newer version of Python you wish to use is in a different location, for
example under ‘/usr/local’, it is possible that when Apache is started that
it will not be able find the Python library files for the version of Python
you wish to use.

This can occur because the Python library when initialised determines where
the Python installation resides by looking through directories specified in
the ‘PATH’ environment variable for the ‘python’ executable and using that
as base location for calculating installation prefix. Specifically, the
directory above the directory containing the ‘python’ executable is taken
as being the installation prefix.

When the Python which should be used is installed in a non standard
location, then that ‘bin’ directory is unlikely to be in the ‘PATH’ used by
Apache when it is started. As such, rather than find
‘/usr/local/bin/python’ it would instead find ‘/usr/bin/python’ and so use
‘/usr’ rather than the directory ‘/usr/local/’ as the installation prefix.

When this occurs, if under ‘/usr’ there was no Python installation of the
same version number as Python which should be used, then normally:

'import site' failed; use -v for traceback

would appear in the Apache error log file when Python is first being
initialised within Apache. Any attempt to make a request against a WSGI
application would also result in errors as no modules at all except for
inbuilt modules, would be able to be found when an attempt is made to
import them.

Alternatively, if there was a Python installation of the same version,
albeit not the desired installation, then there may be no obvious issues on
startup, but at run time you may find modules cannot be found when being
imported as they are installed into a different location than that which
was being used. Even if equivalent module is found, it could fail at run
time in subtle ways if the two Python installations are of same version but at
the different locations are compiled in different ways, or if it is a third
party module and they are different versions and so API is different.

In this situation it will be necessary to explicitly tell mod_wsgi
where the Python executable for the version of Python which should be
used, is located. This can be done using the WSGIPythonHome directive:

WSGIPythonHome /usr/local

The value given to the WSGIPythonHome directive should be a normalised
path corresponding to that defined by the Python {{{sys.prefix}}} variable
for the version of Python being used and passed to the --with-python
option when configuring mod_wsgi:

>>> import sys
>>> sys.prefix
'/usr/local'

An alternative, although less desirable way of achieving this is to set the
‘PATH’ environment variable in the startup scripts for Apache. For a standard
Apache installation using ASF structure, this can be done by editing the
‘envvars’ file in same directory as the Apache executable and adding the
alternate bin directory to the head of the ‘PATH’:

PATH=/usr/local/bin:$PATH
export PATH

If there are any concerns over what Python installation directory is being
used and you want to verify what it is, then use a small test WSGI script
which outputs the values of ‘sys.prefix’ and ‘sys.path’. For example:

import sys

def application(environ, start_response):
 status = '200 OK'
 output = b'Hello World!'

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 print >> sys.stderr, 'sys.prefix = %s' % repr(sys.prefix)
 print >> sys.stderr, 'sys.path = %s' % repr(sys.path)

 return [output]

Using ModPython and ModWsgi

Using mod_python and mod_wsgi together is no longer supported and recent
versions of mod_wsgi will cause the startup of Apache to be aborted if both
are loaded at the same time.

Python Patch Level Mismatch

If the Python package is upgraded to a newer patch level revision, one
will likely see the following warning messages in the Apache error log
when Python is being initialised:

mod_wsgi: Compiled for Python/2.4.1.
mod_wsgi: Runtime using Python/2.4.2.

The warning is indicating that a newer version of Python is now being
used than what mod_wsgi was originally compiled for.

This would generally not be a problem provided that both versions of Python
were originally installed with the --enable-shared option supplied to
‘configure’. If this option is used then the Python library will be linked
in dynamically at runtime and so an upgrade to the Python version will be
automatically used.

If --enable-shared was however not used and the Python library is
therefore embedded into the actual mod_wsgi Apache module, then there is a
risk of undefined behaviour. This is because the version of the Python
library embedded into the mod_wsgi Apache module will be older than the
corresponding Python code modules and extension modules being used from the
Python library directory.

Thus, if a shared library is not being used for Python it will be necessary
to rebuild mod_wsgi against the newer patch level revision of mod_wsgi and
reinstall it.

Mixing 32 Bit And 64 Bit Packages

When attempting to compile mod_wsgi on a Linux system using an X86 64 bit
processor, the following error message can arise:

/bin/sh /usr/lib64/apr/build/libtool --silent --mode=link gcc -o \
 mod_wsgi.la -I/usr/local/include/python2.4 -DNDEBUG -rpath \
 /usr/lib64/httpd/modules -module -avoid-version mod_wsgi.lo \
 -L/usr/local/lib/python2.4/config -lpython2.4 -lpthread -ldl -lutil
/usr/bin/ld: /usr/local/lib/python2.4/config/
libpython2.4.a(abstract.o): relocation R_X86_64_32 against `a local
symbol' can not be used when making a shared object; recompile with -fPIC
/usr/local/lib/python2.4/config/libpython2.4.a: could not read symbols: Bad value
collect2: ld returned 1 exit status
apxs:Error: Command failed with rc=65536
.
make: *** [mod_wsgi.la] Error 1

This error is believed to be result of the version of Python being used
having been originally compiled for the generic X86 32 bit architecture
whereas mod_wsgi is being compiled for X86 64 bit architecture. The actual
error arises in this case because ‘libtool’ would appear to be unable to
generate a dynamically loadable module for the X86 64 bit architecture from
a X86 32 bit static library. Alternatively, the problem is due to ‘libtool’
on this platform not being able to create a loadable module from a X86 64
bit static library in all cases.

If the first issue, the only solution to this problem is to recompile
Python for the X86 64 bit architecture. When doing this, it is preferable,
and may actually be necessary, to ensure that the --enable-shared option
is provided to the ‘configure’ script for Python when it is being compiled
and installed.

If rebuilding Python to generate a shared library, do make sure that the
Python shared library, or a symlink to it appears in the Python ‘config’
directory of your Python installation. If the shared library doesn’t appear
here next to the static version of the library, ‘libtool’ will not be able
to find it and will still use the static version of the library. It is
understood that the Python build process may not actually do this, so you
may have to do it by hand.

If the version of Python being used was compiled for X86 64 bit
architecture and a shared library does exist, but not in the ‘config’
directory, then adding the missing symlink may be all that is required.

Unable To Find Python Shared Library

When mod_wsgi is built against a version of Python providing a shared
library, the Python shared library must be in a directory which is searched
for libraries at runtime by Apache. If this isn’t the case the Python
shared library will not be able to be found when loading the mod_wsgi
module in to Apache. The error in this situation will be similar to:

error while loading shared libraries: libpython2.4.so.1.0: \
 cannot open shared object file: No such file or directory

A number of alternatives exist for resolving this problem. The preferred
solution would be to copy the Python shared library into a directory which
is searched for dynamic libraries at run time. Directories which would
generally always be searched are ‘/lib’ and ‘/usr/lib’.

For some systems the directory ‘/usr/local/lib’ may also be searched, but
this may depend on the directory having been explicitly added to the
approrpiate system file listing the directories to be searched. The name
and location of this configuration file differs between platforms. On Linux
systems it is often called ‘/etc/ld.so.conf’. If changes are made to the
file on Linux systems the ‘ldconfig’ command also needs to be run. See the
manual page for ‘ldconfig’ for further details.

Rather than changing the system wide list of directories to search for
shared libraries, additional search directories can be specified just
for Apache. On Linux this would entail setting the ‘LD_LIBRARY_PATH’
environment variable to include the directory where the Python shared
library is installed.

The setting and exporting of the environment variable would be placed in
the Apache ‘envvars’ file, for a standard Apache installation, located in
the same directory as the Apache web server executable. If using a
customised Apache installation, such as on Red Hat, the ‘envvars’ file may
not exist. In this case you would need to add this into the actual startup
script for Apache. For Red Hat this is ‘/etc/sysconfig/httpd’.

A final alternative on some systems is to embed the directory to search
for the Python shared library into the mod_wsgi Apache module itself. On
Linux systems this can be done by setting the environment variable
‘LD_RUN_PATH’ to the directory containing the Python shared library when
initially building the mod_wsgi source code.

GNU C Stack Smashing Extensions

Various Linux distributions are starting to ship with a version of the GNU
C compiler which incorporates an extension which implements protection for
stack-smashing. In some instances where such a compiler is used to build
mod_wsgi, the module is unable to then be loaded by Apache. The specific
problem is that the symbol __stack_chk_fail_local is being flagged as
undefined:

$ invoke-rc.d apache2 reload
apache2: Syntax error on line 190 of /etc/apache2/apache2.conf: \
 Cannot load /usr/lib/apache2/modules/mod_wsgi.so into server: \
 /usr/lib/apache2/modules/mod_wsgi.so: \
 undefined symbol: __stack_chk_fail_local failed!
invoke-rc.d: initscript apache2, action "reload" failed.

The exact reason for this is not known but it is speculated to be caused
when the system libraries or Apache itself has not been compiled with a
version of the GNU C compiler incorporating the extension.

To workaround the problem, modify the ‘Makefile’ for mod_wsgi and change
the value of ‘CFLAGS’ to:

CFLAGS = -Wc,-fno-stack-protector

Perform a ‘clean’ in the directory and then rebuild and reinstall the
mod_wsgi module.

Undefined ‘forkpty’ On Fedora 7

On Fedora 7, the provided binary version of Apache is not linked against
the ‘libutil’ system library. This causes problems when Python is initialised
and the ‘posix’ module imported for the first time. This is because the
‘posix’ module requires functions from ‘libutil’ but they will not be present.
The error encountered would be similar to:

httpd: Syntax error on line 54 of /etc/httpd/conf/httpd.conf: Cannot \
 load /etc/httpd/modules/mod_wsgi.so into server: \
 /etc/httpd/modules/mod_wsgi.so: undefined symbol: forkpty

This problem can be fixed by adding -lutil to the list of libraries to
link mod_wsgi against when it is being built. This can be done by adding
-lutil to the ‘LDLIBS’ variable in the mod_wsgi ‘Makefile’ after having
run ‘configure’.

An alternative method which may work is to edit the ‘envvars’ file, if it
exists and is used, located in the same directory as the Apache ‘httpd’
executable, or the Apache startup script, and add:

LD_PRELOAD=/usr/lib/libutil.so
export LD_PRELOAD

Missing Include Files On SUSE

SUSE Linux follows a slightly different convention to other Linux
distributions and has split their Apache “dev” packages in a way as to
allow packages for different Apache MPMs to be installed at the same time.
Although the resultant mod_wsgi module isn’t strictly MPM specific, it
does indirectly include the MPM specific header file “mpm.h”. Because the
header file is MPM specific, when configuring mod_wsgi, it is necessary to
reference the version of “apxs” from the MPM specific “dev” package else
the “mpm.h” header file will not be found at compile time. These errors
are:

In file included from mod_wsgi.c:4882: /usr/include/apache2/mpm_common.h:46:17: error: mpm.h: No such file or directory
...
mod_wsgi.c: In function 'wsgi_set_accept_mutex':
mod_wsgi.c:5200: error: 'ap_accept_lock_mech' undeclared (first use in this function)
mod_wsgi.c:5200: error: (Each undeclared identifier is reported only once
mod_wsgi.c:5200: error: for each function it appears in.)
apxs:Error: Command failed with rc=65536

To avoid this problem, when configuring mod_wsgi, it is necessary to use
the --with-apxs option to designate that either “apxs2-worker” or
“apxs2-prefork” should be used. Thus:

./configure --with-apxs=/usr/sbin/apxs2-worker

or:

./configure --with-apxs=/usr/sbin/apxs2-prefork

Although which is used is not important, since mod_wsgi when compiled isn’t
specific to either, best to use that which corresponds to the version of
Apache being used.

Apache Maintainer Mode

When building mod_wsgi from source code, on UNIX systems there should be
minimal if no compiler warnings. If you see a lot of warnings, especially
complaints about ap_strstr, then your Apache installation has been
configured for maintainer mode:

mod_wsgi.c: In function 'wsgi_process_group':
mod_wsgi.c:722: warning: passing argument 1 of 'ap_strstr' discards
qualifiers from pointer target type
mod_wsgi.c:740: warning: passing argument 1 of 'ap_strstr' discards
qualifiers from pointer target type

Specifically, whoever built the version of Apache being used supplied the
option --enable-maintainer-mode when configuring Apache prior to
installation. You would be able to tell at the time of compiling mod_wsgi
if this has been done as the option -DAP_DEBUG would be supplied to the
compiler when mod_wsgi source code is compiled.

These warnings can be ignored, but in general you shouldn’t run Apache in
maintainer mode.

A further reason for not running Apache in maintainer mode is that certain
situations can cause Apache to fail an internal assertion check when using
mod_wsgi. The specific error message is:

[crit] file http_filters.c, line 346, assertion "readbytes > 0" failed
[notice] child pid 18551 exit signal Aborted (6)

This occurs because the Apache code has an overly agressive assertion
check, which is arguably incorrect. This particular assertion check will
fail when a zero length read is perform on the Apache ‘HTTP_IN’ input
filter.

This scenario can arise in mod_wsgi due to a workaround in place to get
around a bug in Apache related to generation of ‘100-continue’ response.
The Apache bug is described in:

	https://issues.apache.org/bugzilla/show_bug.cgi?id=38014

The scenario can also be triggered as a result of a WSGI application
performing a zero length read on ‘wsgi.input’.

Changes to mod_wsgi are being investigated to see if zero length reads can
be ignored, but due to the workaround for the bug, this would only be able
to be done for Apache 2.2.8 or later.

The prefered solution is simply not to use Apache with maintainer mode
enabled for systems where you are running real code. Unfortunately, it
looks like some Linux distributions, eg. SUSE, accidentally released Apache
binary packages with this mode enabled by default. You should update to a
Apache binary package that doesn’t have the mode enabled, or compile from
source code.

Configuration Issues

Many Linux distributions in particular do not structure an Apache
installation in the default manner as dictated by the original Apache code
distributed by the Apache Software Foundation. This fact, and differences
between different operating systems and distributions means that the
configuration for mod_wsgi may sometimes have to be tweaked.

The purpose of this document is to capture all the known problems that can
arise in respect of configuration.

If you are having a problem which doesn’t seem to be covered by this
document, also make sure you see Installation Issues
and Application Issues.

Location Of UNIX Sockets

When mod_wsgi is used in ‘daemon’ mode, UNIX sockets are used to
communicate between the Apache child processes and the daemon processes
which are to handle a request.

These sockets and any related mutex lock files will be placed in the
standard Apache runtime directory. This is the same directory that the
Apache log files would normally be placed.

For some Linux distributions, restrictive permissions are placed on the
standard Apache runtime directory such that the directory is not readable
to others. This can cause problems with mod_wsgi because the user that the
Apache child processes run as will subsequently not have the required
permissions to access the directory to be able to connect to the sockets.

When this occurs, a ‘503 Service Temporarily Unavailable’ error response
would be received by the client. The Apache error log file would show
messages of the form:

(13)Permission denied: mod_wsgi (pid=26962): Unable to connect to WSGI \
 daemon process '<process-name>' on '/etc/httpd/logs/wsgi.26957.0.1.sock' \
 after multiple attempts.

To resolve the problem, the WSGISocketPrefix directive should be defined to
point at an alternate location. The value may be a location relative to the
Apache root directory, or an absolute path.

On systems which restrict access to the standard Apache runtime directory,
they normally provide an alternate directory for placing sockets and lock
files used by Apache modules. This directory is usually called ‘run’ and
to make use of this directory the WSGISocketPrefix directive would be set
as follows:

WSGISocketPrefix run/wsgi

Although this may be present, do be aware that some Linux distributions,
notably RedHat, also lock down the permissions of this directory as well so
not readable to processes running as a non root user. In this situation you
will be forced to use the operating system level ‘/var/run’ directory
rather than the HTTP specific directory:

WSGISocketPrefix /var/run/wsgi

Note, do not put the sockets in the system temporary working directory.
That is, do not go making the prefix ‘/tmp/wsgi’. The directory should be
one that is only writable by ‘root’ user, or if not starting Apache as
‘root’, the user that Apache is started as.

Application Issues

Although installation and configuration of mod_wsgi may be successful,
there are a range of issues that can impact on specific WSGI applications.
These problems can arise for various reasons, including conflicts between
an application and other Apache modules or non WSGI applications hosted by
Apache, a WSGI application not being portable, use of Python modules that
are not fully compatible with the way that mod_wsgi uses Python sub
interpreters, or dependence on a specific operating system execution
environment.

The purpose of this document is to capture all the known problems that can
arise, including workarounds if available, related to the actual running
of a WSGI application.

Note that the majority of these issues are not unique to mod_wsgi and would
also affect mod_python as well. This is because they arise due to the fact
that the Python interpreter is being embedded within the Apache server
itself. Unlike mod_python, in mod_wsgi there are ways of avoiding many of
the problems by using daemon mode.

If you are having a problem which doesn’t seem to be covered by this
document, also make sure you see Installation Issues
and Configuration Issues.

Access Rights Of Apache User

For most Apache installations the web server is initially started up as
the root user. This is necessary as operating systems will block non root
applications from making use of Internet ports below 1024. A web server
responding to HTTP and HTTPS requests on the standard ports will need to
be able to acquire ports 80 and 443.

Once the web server has acquired these ports and forked off child processes
to handle any requests, the user that the child processes run as will be
switched to a non privileged user. The actual name of this user varies from
one system to another with some commonly used names being ‘apache’,
‘httpd’, ‘www’, and ‘wwwserv’. As well as the user being switched, the web
server will also normally switch to an alternate group.

If running a WSGI application in embedded mode with mod_wsgi, the user and
group that the Apache child processes run as will be inherited by the
application. To determine which user and group would be used the main
Apache configuration files should be consulted. The particular
configuration directives which control this are User and Group.
For example:

User www
Group www

Because this user is non privileged and will generally be different to the
user that owns the files for a specific WSGI application, it is important
that such files and the directories which contain them are accessible to
others. If the files are not readable or the directories not searchable,
the web server will not be able to see or read the files and execution of
the WSGI application will fail at some point.

As well as being able to read files, if a WSGI application needs to be able
to create or edit files, it will be necessary to create a special directory
which it can use to create files in and which is owned by the same user
that Apache is running as. Any files contained in the directory which it
needs to edit should also be owned by the user that Apache is run as, or
group privileges used in some way to ensure the application will have the
required access to update the file.

One example of where access rights can be a problem in Python is with
Python eggs which need to be unpacked at runtime by a WSGI application.
This issue arises with Trac because of its ability for plugins to be
packaged as Python eggs. Pylons with its focus on being able to support
Python eggs in its deployment mechanism can also be affected. Because
of the growing reliance on Python eggs however, the issue could arise
for any WSGI application where you have installed Python eggs in their
zipped up form rather than their unpacked form.

If your WSGI application is affected by this problem in relation to Python
eggs, you would generally see a Python exception similar to the following
occuring and being logged in the Apache error logs:

ExtractionError: Can't extract file(s) to egg cache

The following error occurred while trying to extract file(s) to the
Python egg cache:

[Errno 13] Permission denied: '/var/www/.python-eggs'

The Python egg cache directory is currently set to:

 /var/www/.python-eggs

Perhaps your account does not have write access to this directory?
You can change the cache directory by setting the PYTHON_EGG_CACHE
environment variable to point to an accessible directory.

To avoid this particular problem you can set the ‘PYTHON_EGG_CACHE’ cache
environment variable at the start of the WSGI application script file. The
environment variable should be set to a directory which is owned and/or
writable by the user that Apache runs as:

import os
os.environ['PYTHON_EGG_CACHE'] = '/usr/local/pylons/python-eggs'

Alternatively, if using mod_wsgi 2.0, one could also use the WSGIPythonEggs
directive for applications running in embedded mode, or the ‘python-eggs’
option to the WSGIDaemonProcess directive when using daemon mode.

Note that you should refrain from ever using directories or files which
have been made writable to anyone as this could compromise security. Also
be aware that if hosting multiple applications under the same web server,
they will all run as the same user and so it will be possible for each to
both see and modify each others files. If this is an issue, you should host
the applications on different web servers running as different users or on
different systems. Alternatively, any data required or updated by the
application should be hosted in a database with separate accounts for each
application.

Issues related to access rights can in general be avoided if daemon mode
of mod_wsgi is used to run a WSGI application. This is because in daemon
mode the user and group that the processes run as can be overridden and set
to alternate values. Do however note additional issues related to ‘HOME’
environment variable as described below.

Secure Variants Of UNIX

In addition to the constraints imposed by Apache running as a distinct
user, some variants of UNIX have features whereby access privileges for a
specific user may be even further restricted. One example of such a system
is SELinux. In such a system, the user that Apache runs as is typically
restricted to only being able to access quite specific parts of the file
system as well as possibly other resources or operating system library
features.

If running such a system you will need to change the configuration for the
security system to allow both mod_wsgi and you application to do what is
required.

As an example, the extra security checks of such a system may present
problems if the version of Python you are using only provides a static
library and not a shared library. If you experience an error similar to:

Cannot load /etc/httpd/modules/mod_wsgi.so into server: \
 /etc/httpd/modules/mod_wsgi.so: cannot restore segment prot after reloc: \
 Permission denied

you will either need to configure the security system appropriately to
allow that memory relocations in static code to work, or you would need to
make sure that you reinstall Python such that it provides a shared library
and rebuild mod_wsgi. Other issues around only having a static variant of
the Python library available are described in section ‘Lack Of Python
Shared Library’ of Installation Issues.

Even where a shared library is used, SELinux has also resulted in similar
memory related errors when loading C extension modules at run time for
Python:

ImportError: /opt/python2.6/lib/python2.6/lib-dynload/itertools.so: \
 failed to map segment from shared object: Permission denied

All up, configuring SELinux is a bit of a black art and so you are wise
to do your research.

For some information about using mod_wsgi in a SELinux enabled environment
check out:

	http://www.packtpub.com/article/selinux-secured-web-hosting-python-based-web-applications

	http://www.globalherald.net/jb01/weblog/21.html

	http://blog.endpoint.com/2010/02/selinux-httpd-modwsgi-26-rhel-centos-5.html

If you suspect that an issue may be caused by SELinux, you could
temporarily try disabling it and doing a restart to verify whether it is
the cause, but always re-enable it and do not disable it completely.

Application Working Directory

When Apache is started it is typically run such that the current working
directory for the application is the root directory, although the actual
directory may vary dependent on the system or any extra security system in
place.

Importantly, the current working directory will generally never have any
direct relationship to any specific WSGI application. As a result, an
application should never assume that it can use relative path names for
accessing the filesystem. All paths used should always be absolute path
names.

An application should also never change the current working directory and
then assume that it can then use relative paths. This is because other
applications being hosted on the same web server may assume they can do the
same thing with the result that you can never be sure what the current
working directory may actually be.

You should not even assume that it is safe to change the working directory
immediately prior to a specific operation, as use of multithreading can
mean that another application could change it even before you get to
perform the operation which depended on the current working directory
being the value you set it to.

In the case of Python, if needing to use relative paths in order to make it
easier to relocate an application, one can determine the directory that a
specific code module is located in using os.path.dirname(__file__). A
full path name can then be constructed by using os.path.join() to
merge the relative path with the directory name where the module was
located.

Another option is to take the directory part of the SCRIPT_FILENAME
variable from the WSGI environment as the base directory. The only other
alternative is to rely on a centralised configuration file so that all
absolute path names are at least defined in the one place.

Although it is preferable that an application never make assumptions about
what the current working directory is, if for some reason the application
cannot be changed the daemon mode of mod_wsgi could be used. This will work
as an initial current working directory for the process can be specified as
an option to the WSGIDaemonProcess directive used to configure the daemon
process. Because the working directory applies to the whole process
however, only the application requiring this working directory should be
delegated to run within the context of that daemon process.

Application Environment Variables

When Python sub interpreters are created, each has its own copy of any
modules which are loaded. They also each have their own copy of the set of
environment variables inherited by the process and found in os.environ.

Problems can arise with the use of os.environ though, due to the fact
that updates to os.environ are pushed back into the set of process
environment variables. This means that if the Python sub interpreter which
corresponds to another application group is created after os.environ
has been updated, the new value for that environment variable will be
inherited by the new Python sub interpreter.

This would not generally be a problem where a WSGI application is
configured using a single mandatory environment variable, as the WSGI
application script file for each application instance would be required to
set it, thereby overriding any value inherited from another application
instance via the process environment variables.

As example, Django relies on the DJANGO_SETTINGS_MODULE environment
variable being set to be the name of the Python module containing Django’s
configuration settings. So long as each WSGI script file sets this variable
all will be okay.

Where use of environment variables can be problematic though is where there
are multiple environment variables that can be set, with some being
optional and non overlapping sets of variables are used to configure
different modes.

As example, Trac can be configured to host a single project by setting the
TRAC_ENV environment variable. Alternatively, Trac can be configured
to host a group of projects by setting the TRAC_ENV_PARENT_DIR
environment variable. If both variables are set at the same time, then
TRAC_ENV takes precedence.

If now within the one process you have a Trac instance of each type in
different Python sub interpreters, if that using TRAC_ENV loads
first, when the other is loaded it will inherit TRAC_ENV from the
first and that will override TRAC_ENV_PARENT_DIR. The end result is
that both sites point at the same single project, rather than the first
being for the single project and the other being the group of projects.

Because of this potential leakage of environment variables between Python
sub interpreters, it is preferable that WSGI applications not rely on
environment variables for configuration.

A further reason that environment variables should not be used for
configuration is that it then becomes impossible to host two instances of
the same WSGI application component within the same Python sub interpreter
if each would require a different value be set for the same environment
variable. Note that this also applies to other means of hosting WSGI
applications besides mod_wsgi and is not mod_wsgi specific.

As a consequence, because Django relies on the DJANGO_SETTINGS_MODULE
environment variable being set to be the name of the Python module
containing Django’s configuration settings, it would be impossible to host
two Django instances in the same Python sub interpreter. It is thus
important that where there are multiple instances of Django that need to be
run on the same web server, that they run in separate Python sub
interpreters.

As it stands the default behaviour of mod_wsgi is to run different WSGI
application scripts within the context of different Python sub
interpreters. As such, this limitation in Django does not present as an
immediate problem, however it should be kept in mind when attempting to
merge multiple WSGI applications into one application group under one
Python sub interpreter to try and limit memory use by avoiding duplicate
instances of modules in memory.

The prefered way of configuring a WSGI application is for the application
to be a class instance which at the point of initialisation is provided
with its configuration data as an argument. Alternatively, or in
conjunction with this, configuration information can be passed through to
the WSGI application in the WSGI environment. Variables in the WSGI
environment could be set by a WSGI middleware component, or from the Apache
configuration files using the SetEnv directive.

Configuring an application when it is first constructed, or by supplying
the configuration information through the WSGI environment variables, is
thus the only way to ensure that a WSGI application is portable between
different means of hosting WSGI applications. These problems can also be
avoided by using daemon mode of mod_wsgi and delegating each WSGI
application instance to a distinct daemon process group.

Timezone and Locale Settings

More insidious than the problem of leakage of application environment
variable settings between sub interpreters, is where an environment
variable is required by operating system libraries to set behaviour.

This is a problem because applications running in different sub
interpreters could set the process environment variable to be different
values. Rather than each seeing behaviour consistant with the setting they
used, all applications will see behaviour reflecting the setting as
determined by the last application to initialise itself.

Process environment variables where this can be a problem are the ‘TZ’
environment variable for setting the timezone, and the ‘LANG’, ‘LC_TYPE’,
‘LC_COLLATE’, ‘LC_TIME’ and ‘LC_MESSAGES’ environment variables for setting
the locale and language settings.

The result of this, is that you cannot host multiple WSGI applications in
the same process, even if running in different sub interpreters, if they
require different settings for timezone, locale and/or language.

In this situation you would have no choice but to use mod_wsgi daemon mode
and delegate applications requiring different settings to different daemon
process groups. Alternatively, completely different instances of Apache
should be used.

User HOME Environment Variable

If Apache is started automatically as ‘root’ when a machine is first booted
it would inherit the user ‘HOME’ environment variable setting of the ‘root’
user. If however, Apache is started by a non privileged user via the ‘sudo’
command, it would inherit the ‘HOME’ environment variable of the user who
started it, unless the -H option had been supplied to ‘sudo’. In the case
of the -H option being supplied, the ‘HOME’ environment variable of the
‘root’ user would again be used.

Because the value of the ‘HOME’ environment variable can vary based on how
Apache has been started, an application should not therefore depend on the
‘HOME’ environment variable.

Unfortunately, parts of the Python standard library do use the ‘HOME’
environment variable as an authoritative source of information. In
particular, the ‘os.expanduser()’ function gives precedence to the value of
the ‘HOME’ environment variable over the home directory as obtained from
the user password database entry:

if 'HOME' not in os.environ:
 import pwd
 userhome = pwd.getpwuid(os.getuid()).pw_dir
else:
 userhome = os.environ['HOME']

That the ‘os.expanduser()’ function does this means it can yield incorrect
results. Since the ‘setuptools’ package uses ‘os.expanduser()’ on UNIX
systems to calculate where to store Python EGGS, the location it tries to
use can change based on who started Apache and how.

The only way to guarantee that the ‘HOME’ environment variable is set to a
sensible value is for it to be set explicitly at the start of the WSGI
script file before anything else is done:

import os, pwd
os.environ["HOME"] = pwd.getpwuid(os.getuid()).pw_dir

In mod_wsgi 2.0, if using daemon mode the value of the ‘HOME’ environment
variable will be automatically reset to correspond to the home directory of
the user that the daemon process is running as. This is not done for
embedded mode however, due to the fact that the Apache child processes are
shared with other Apache modules and it is not seen as appropriate that
mod_wsgi should be changing the same environment that is used by these
other unrelated modules.

For some consistency in the environment inherited by applications running
in embedded mode, it is therefore recommended that ‘sudo -H’ at least always
be used when restarting Apache from a non root account.

Application Global Variables

Because the Python sub interpreter which hosts a WSGI application is
retained in memory between requests, any global data is effectively
persistent and can be used to carry state forward from one request to the
next. On UNIX systems however, Apache will normally use multiple processes
to handle requests and each such process will have its own global data.

This means that although global data can be used, it can only be used
to cache data which can be safely reused within the context of that single
process. You cannot use global data as a means of holding information that
must be visible to any request handler no matter which process it runs in.

If data must be visible to all request handlers across all Apache
processes, then it will be necessary to store the data in the filesystem
directly, or using a database. Alternatively, shared memory can be employed
by using a package such as memcached.

Because your WSGI application can be spread across multiple process, one
must also be very careful in respect of local caching mechanisms employed
by database connector objects. If such an adapter is quite agressive in its
caching, it is possible that a specific process may end up with an out of
date view of data from a database where one of the other processes has
since changed the data. The result may be that requests handled in different
processes may give different results.

The problems described above can be alleviated to a degree by using daemon
mode of mod_wsgi and restricting to one the number of daemon processes in
the process group. This will ensure that all requests are serviced by the
same process. If the data is only held in memory, it would however obviously
be lost when Apache is restarted or the daemon process is restarted due to
a maximum number of requests being reached.

Writing To Standard Output

No WSGI application component which claims to be portable should write to
standard output. That is, an application should not use the Python print
statement without directing output to some alternate stream. An application
should also not write directly to sys.stdout.

This is necessary as an underlying WSGI adapter hosting the application
may use standard output as the means of communicating a response back to a
web server. This technique is for example used when WSGI is hosted within a
CGI script.

Ideally any WSGI adapter which uses sys.stdout in this way should
cache a reference to sys.stdout for its own use and then replace it
with a reference to sys.stderr. There is however nothing in the WSGI
specification that requires this or recommends it, so one can’t therefore
rely on it being done.

In order to highlight non portable WSGI application components which write
to or use standard output in some way, mod_wsgi prior to version 3.0
replaced sys.stdout with an object which will raise an exception when
any attempt is made to write to or make use of standard output:

IOError: sys.stdout access restricted by mod_wsgi

If the WSGI application you are using fails due to use of standard output
being restricted and you cannot change the application or configure it
to behave differently, you have one of two options. The first option is to
replace sys.stdout with sys.stderr at the start of your WSGI
application script file:

import sys
sys.stdout = sys.stderr

This will have the affect of directing any data written to standard output
to standard error. Such data sent to standard error is then directed through
the Apache logging system and will appear in the main Apache error log file.

The second option is to remove the restriction on using standard output
imposed by mod_wsgi using a configuration directive:

WSGIRestrictStdout Off

This configuration directive must appear at global scope within the Apache
configuration file outside of any VirtualHost container directives. It
will remove the restriction on using standard output from all Python sub
interpreters that mod_wsgi creates. There is no way using the configuration
directive to remove the restriction from only one Python sub interpreter.

When the restriction is not imposed, any data written to standard output
will also be directed through the Apache logging system and will appear in
the main Apache error log file.

Ideally though, code should never use the ‘print’ statement without
redirecting the output to ‘sys.stderr’. Thus if the code can be changed,
then it should be made to use something like:

import sys

def function():
 print >> sys.stderr, "application debug"
 ...

Also, note that code should ideally not be making assumptions about the
environment it is executing in, eg., whether it is running in an
interactive mode, by asking whether standard output is a tty. In other
words, calling ‘isatty()’ will cause a similar error with mod_wsgi. If such
code is a library module, the code should be providing a way to
specifically flag that it is a non interactive application and not use
magic to determine whether that is the case or not.

For further information about options for logging error messages and other
debugging information from a WSGI application running under mod_wsgi see
section ‘Apache Error Log Files’ of Debugging Techniques.

WSGI applications which are known to write data to standard output in their
default configuration are CherryPy and TurboGears. Some plugins for Trac
also have this problem. Thus one of these two techniques described above to
remove the restriction, should be used in conjunction with these WSGI
applications. Alternatively, those applications will need to be configured
not to output log messages via standard output.

Note that the restrictions on writing to stdout were removed in mod_wsgi
3.0 because it was found that people couldn’t be bothered to fix their
code. Instead they just used the documented workarounds, thereby
propogating their non portable WSGI application code. As such, since people
just couldn’t care, stopped promoting the idea of writing portable WSGI
applications.

Reading From Standard Input

No general purpose WSGI application component which claims to be portable
should read from standard input. That is, an application should not read
directly from sys.stdin either directly or indirectly.

This is necessary as an underlying WSGI adapter hosting the application may
use standard input as the means of receiving a request from a web server.
This technique is for example used when WSGI is hosted within a CGI script.

Ideally any WSGI adapter which uses sys.stdin in this way should
cache a reference to sys.stdin for its own use and then replace it
with an instance of StringIO.StringIO wrapped around an empty string
such that reading from standard input would always give the impression that
there is no input data available. There is however nothing in the WSGI
specification that requires this or recommends it, so one can’t therefore
rely on it being done.

In order to highlight non portable WSGI application components which try
and read from or otherwise use standard input, mod_wsgi prior to version
3.0 replaced sys.stdin with an object which will raise an exception
when any attempt is made to read from standard input or otherwise
manipulate or reference the object:

IOError: sys.stdin access restricted by mod_wsgi

This restriction on standard input will however prevent the use of
interactive debuggers for Python such as pdb. It can also interfere
with Python modules which use the isatty() method of sys.stdin
to determine whether an application is being run within an interactive
session.

If it is required to be able to run such debuggers or other code which
requires interactive input, the restriction on using standard input can be
removed using a configuration directive:

WSGIRestrictStdin Off

This configuration directive must appear at global scope within the Apache
configuration file outside of any VirtualHost container directives. It
will remove the restriction on using standard input from all Python sub
interpreters that mod_wsgi creates. There is no way using the configuration
directive to remove the restriction from only one Python sub interpreter.

Note however that removing the restriction serves no purpose unless you
also run the Apache web server in single process debug mode. This is
because Apache normally makes use of multiple processes and would close
standard input to prevent any process trying to read from standard input.

To run Apache in single process debug mode and thus allow an interactive
Python debugger such as pdb to be used, your Apache instance should
be shutdown and then the httpd program run explicitly:

httpd -X

For more details on using interactive debuggers in the context of mod_wsgi
see documentation on Debugging Techniques.

Note that the restrictions on reading from stdin were removed in mod_wsgi
3.0 because it was found that people couldn’t be bothered to fix their
code. Instead they just used the documented workarounds, thereby
propogating their non portable WSGI application code. As such, since people
just couldn’t care, stopped promoting the idea of writing portable WSGI
applications.

Registration Of Signal Handlers

Web servers upon which WSGI applications are hosted more often than not use
signals to control their operation. The Apache web server in particular
uses various signals to control its operation including the signals
SIGTERM, SIGINT, SIGHUP, SIGWINCH and SIGUSR1.

If a WSGI application were to register their own signal handlers it is
quite possible that they will interfere with the operation of the
underlying web server, preventing it from being shutdown or restarted
properly. As a general rule therefore, no WSGI application component should
attempt to register its own signal handlers.

In order to actually enforce this, mod_wsgi will intercept all attempts
to register signal handlers and cause the registration to be ignored.
As warning that this is being done, a message will be logged to the Apache
error log file of the form:

mod_wsgi (pid=123): Callback registration for signal 1 ignored.

If there is some very good reason that this feature should be disabled and
signal handler registrations honoured, then the behaviour can be reversed
using a configuration directive:

WSGIRestrictSignal Off

This configuration directive must appear at global scope within the Apache
configuration file outside of any VirtualHost container directives. It
will remove the restriction on signal handlers from all Python sub
interpreters that mod_wsgi creates. There is no way using the configuration
directive to remove the restriction from only one Python sub interpreter.

WSGI applications which are known to register conflicting signal handlers
are CherryPy and TurboGears. If the ability to use signal handlers is
reenabled when using these packages it prevents the shutdown and restart
sequence of Apache from working properly and the main Apache process is
forced to explicitly terminate the Apache child processes rather than
waiting for them to perform an orderly shutdown. Similar issues will occur
when using features of mod_wsgi daemon mode to recycle processes when a set
number of requests has been reached or an inactivity timer has expired.

Pickling of Python Objects

The script files that mod_wsgi uses as the entry point for a WSGI
application, although containing Python code, are not treated exactly the
same as a Python code module. This has implications when it comes to using
the ‘pickle’ module in conjunction which objects contained within the WSGI
application script file.

In practice what this means is that neither function objects, class objects
or instances of classes which are defined in a WSGI application script file
should be stored using the “pickle” module.

In order to ensure that no strange problems at all are likely to occur, it
is suggested that only basic builtin Python types, ie., scalars, tuples,
lists and dictionaries, be stored using the “pickle” module from a WSGI
application script file. That is, avoid any type of object which has user
defined code associated with it.

The technical reasons for the limitations in the use of the “pickle” module
in conjunction with WSGI application script files are further discussed in
the document Issues With Pickle Module. Note
that the limitations do not apply to standard Python modules and packages
imported from within a WSGI application script file from directories on the
standard Python module search path.

Expat Shared Library Conflicts

One of the Python modules which comes standard with Python is the ‘pyexpat’
module. This contains a Python wrapper for the popular ‘expat’ library. So
as to avoid dependencies on third party packages the Python package actually
contains a copy of the ‘expat’ library source code and embeds it within the
‘pyexpat’ module.

Prior to Python 2.5, there was however no attempt to properly namespace the
public functions within the ‘expat’ library source code. The problem this
causes with mod_wsgi is that Apache itself also provides its own copy of
and makes use of the ‘expat’ library. Because the Apache version of the
‘expat’ library is loaded first, it will always be used in preference to
the version contained with the Python ‘pyexpat’ module.

As a result, if the ‘pyexpat’ module is loaded into a WSGI application and
the version of the ‘expat’ library included with Python is markedly
different in some way to the Apache version, it can cause Apache to crash
with a segmentation fault. It is thus important to ensure that Apache and
Python use a compatible version of the ‘expat’ library to avoid this
problem.

For further technical discussion of this issue and how to determine which
version of the ‘expat’ library both Apache and Python use, see the document
Issues With Expat Library.

MySQL Shared Library Conflicts

Shared library version conflicts can also occur with the MySQL client
libraries. In this case the conflict is usually between an Apache module
that uses MySQL directly such as mod_auth_mysql or mod_dbd_mysql, or an
Apache module that indirectly uses MySQL such as PHP, and the Python
‘MySQLdb’ module. The result of conflicting library versions can be Apache
crashing, or incorrect results beings returned from the MySQL client
library for certain types of operations.

To ascertain if there is a conflict, you need to determine which versions
of the shared library each package is attempting to use. This can be done
by running, on Linux, the ‘ldd’ command to list the library dependencies.
This should be done on any Apache modules that are being loaded, any PHP
modules and the Python _mysql C extension module:

$ ldd /usr/lib/python2.3/site-packages/_mysql.so | grep mysql
 libmysqlclient_r.so.15 => /usr/lib/libmysqlclient_r.so.15 (0xb7d52000)

$ ldd /usr/lib/httpd/modules/mod_*.so | grep mysql
 libmysqlclient.so.12 => /usr/lib/libmysqlclient.so.12 (0xb7f00000)

$ ldd /usr/lib/php4/*.so | grep mysql
/usr/lib/php4/mysql.so:
 libmysqlclient.so.10 => /usr/lib/mysql/libmysqlclient.so.10 (0xb7f6e000)

If there is a difference in the version of the MySQL client library, or
one version is reentrant and the other isn’t, you will need to recompile
one or both of the packages such that they use the same library.

SSL Shared Library Conflicts

When Apache is built, if it cannot find an existing SSL library that it can
use or isn’t told where one is that it should use, it will use a SSL
library which comes with the Apache source code. When this SSL code is
compiled it will be statically linked into the actual Apache executable. To
determine if the SSL code is static rather than dynamically loaded from a
shared library, on Linux, the ‘ldd’ command can be used to list the library
dependencies. If an SSL library is listed, then code will not be statically
compiled into Apache:

$ ldd /usr/local/apache/bin/httpd | grep ssl
 libssl.so.0.9.8 => /usr/lib/i686/cmov/libssl.so.0.9.8 (0xb79ab000)

Where a Python module now uses a SSL library, such as a database client
library with SSL support, they would typically always obtain SSL code from
a shared library. When however the SSL library functions have also been
compiled statically into Apache, they can conflict and interfere with those
from the SSL shared library being used by the Python module. Such conflicts
can cause core dumps, or simply make it appear that SSL support in either
Apache or the Python module is not working.

Python modules where this is known to cause a problem are, any database
client modules which include support for connecting to the database using
an SSL connection, and the Python ‘hashlib’ module introduced in Python
2.5.

In the case of the ‘hashlib’ module it will fail to load the internal C
extension module called _hashlib because of the conflict. That
_hashlib module couldn’t be loaded is however not raised as an
exception, and instead the code will fallback to attempting to load the
older _md5 module. In Python 2.5 however, this older _md5
module is not generally compiled and so the following error will occur:

ImportError: No module named _md5

To resolve this problem it would be necessary to rebuild Apache and use the
--with-ssl option to ‘configure’ to specify the location of the distinct
SSL library that is being used by the Python modules.

Note that it has also been suggested that the !ImportError above can also
be caused due to the ‘python-hashlib’ package not being installed. This
might be the case on Linux systems where this module was separated from the
main Python package.

Python MD5 Hash Module Conflict

Python provides in the form of the ‘md5’ module, routines for calculating
MD5 message-digest fingerprint (checksum) values for arbitrary data. This
module is often used in Python web frameworks for generating cookie values
to be associated with client session information.

If a WSGI application uses this module, it is however possible that a
conflict can arise if PHP is also being loaded into Apache. The end result
of the conflict will be that the ‘md5’ module in Python can given incorrect
results for hash values. For example, the same value may be returned no
matter what the input data, or an incorrect or random value can be returned
even for the same data. In the worst case scenario the process may crash.

As might be expected this can cause session based login schemes such as
commonly employed by Python web frameworks such as Django, TurboGears or
Trac to fail in strange ways.

The underlying trigger for all these problems appears to be a clash between
the Python ‘md5’ module and the ‘libmhash2’ library used by the PHP ‘mhash’
module, or possibly also other PHP modules relying on md5 routines for
cryptography such as the LDAP module for PHP.

This clash has come about because because md5 source code in Python was
replaced with an alternate version when it was packaged for Debian. This
version did not include in the “md5.h” header file some preprocessor
defines to rename the md5 functions with a namespace prefix specific to
Python:

#define MD5Init _PyDFSG_MD5Init
#define MD5Update _PyDFSG_MD5Update
#define MD5Final _PyDFSG_MD5Final
#define MD5Transform _PyDFSG_MD5Transform

void MD5Init(struct MD5Context *context);
void MD5Update(struct MD5Context *context, md5byte const *buf, unsigned len);
void MD5Final(unsigned char digest[16], struct MD5Context *context);

As a result, the symbols in the md5 module ended up being:

$ nm -D /usr/lib/python2.4/lib-dynload/md5.so | grep MD5
0000000000001b30 T MD5Final
0000000000001380 T MD5Init
00000000000013b0 T MD5Transform
0000000000001c10 T MD5Update

The symbols then clashed directly with the non namespaced symbols present
in the ‘libmhash2’ library:

$ nm -D /usr/lib/libmhash.so.2 | grep MD5
00000000000069b0 T MD5Final
0000000000006200 T MD5Init
0000000000006230 T MD5Transform
0000000000006a80 T MD5Update

In Python 2.5 the md5 module is implemented in a different way and thus
this problem should only occur with older versions of Python. For those
older versions of Python, the only workaround for this problem at the
present time is to disable the loading of the ‘mhash’ module or other PHP
modules which use the ‘libmhash2’ library. This will avoid the problem
with the Python ‘md5’ module, obviously however, not loading these modules
into PHP may cause some PHP programs which rely on them to fail.

The actual cause of this problem having now been identified a patch has been
produced and is recorded in Debian ticket:

	http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=440272

It isn’t know when an updated Debian package for Python may be produced.

Python ‘pysqlite’ Symbol Conflict

Certain versions of ‘pysqlite’ module defined a global symbol ‘cache_init’.
This symbol clashes with a similarly named symbol present in the Apache
mod_cache module. As a result of the clash, the two modules being loaded at
the same time can cause the Apache process to crash or the following Python
exception to be raised:

SystemError: NULL result without error in PyObject_Call

This problem is mentioned in pysqlite ticket:

	http://www.initd.org/tracker/pysqlite/ticket/174

and the release notes for version 2.3.3:

	http://www.initd.org/tracker/pysqlite/wiki/2.3.3_Changelog

of pysqlite To avoid the problem upgrade to pysqlite 2.3.3 or later.

Python Simplified GIL State API

In an attempt to simplify management of thread state objects when coding C
extension modules for Python, Python 2.3 introduced the simplified API for
GIL state management. Unfortunately, this API will only work if the code is
running against the very first Python sub interpreter created when Python
is initialised.

Because mod_wsgi by default assigns a Python sub interpreter to each WSGI
application based on the virtual host and application mount point, code
would normally never be executed within the context of the first Python sub
interpreter created, instead a distinct Python sub interpreter would be
used.

The consequences of attempting to use a C extension module for Python which
is implemented against the simplified API for GIL state management in
any sub interpreter besides the first, is that the code is likely to
deadlock or crash the process. The only way around this issue is to ensure
that any WSGI application which makes use of C extension modules which use
this API, only runs in the very first Python sub interpreter created when
Python is initialised.

To force a specific WSGI application to be run within the very first Python
sub interpreter created when Python is initialised, the WSGIApplicationGroup
directive should be used and the group set to ‘%{GLOBAL}’:

WSGIApplicationGroup %{GLOBAL}

Extension modules for which this is known to be necessary are any which
have been developed using SWIG and for which the -threads option was
supplied to ‘swig’ when the bindings were generated. One example of this is
the ‘dbxml’ module, a Python wrapper for the Berkeley Database, previously
developed by !SleepyCat Software, but now managed by Oracle. Another package
believed to have this problem in certain use cases is Xapian.

There is also a bit of a question mark over the Python Subversion bindings.
This package also uses SWIG, however it is only some versions that appear
to require that the very first sub interpreter created when Python is
initialised be used. It is currently believed that this may be more to do
with coding problems than with the -threads option being passed to the
‘swig’ command when the bindings were generated.

For all the affected packages, as described above it is believed though
that they will work when application group is set to force the application
to run in the first interpreter created by Python as described above.

Another option for packages which use SWIG generated bindings is not to use
the -threads option when ‘swig’ is used to generate the bindings. This
will avoid any problems and allow the package to be used in any sub
interpreter. Do be aware though that by disabling thread support in SWIG
bindings, that the GIL isn’t released when C code is entered. The
consequences of this are that if the C code blocks, the whole Python
interpreter environment running in that process will be blocked, even
requests being handled within other threads in different sub interpreters.

Reloading Python Interpreters

Note: The “Interpreter” reload mechanism has been removed in mod_wsgi
version 2.0. This is because the problems with third party modules didn’t
make it a viable option. Its continued presence was simply complicating the
addition of new features. As an alternative, daemon mode of mod_wsgi should
be used and the “Process” reload mechanism added with mod_wsgi 2.0.

To make it possible to modify a WSGI application and have the whole
application reloaded without restarting the Apache web server, mod_wsgi
provides an interpreter reloading feature. This specific feature is enabled
using the WSGIReloadMechanism directive, setting it to the value
‘Interpreter’ instead of its default value of ‘Module’:

WSGIReloadMechanism Interpreter

When this option is selected and script reloading is also enabled, when the
WSGI application script file is modified, the next request which arrives
will result in the Python sub interpreter which is hosting that WSGI
application being destroyed. A new Python sub interpreter will then be
created and the WSGI application reloaded including any changes made to
normal Python modules.

For many WSGI applications this mechanism will generally work fine, however
there are a few limitations on what is reloaded, plus some Python C extension
modules can be incompatible with this feature.

The first issue is that although Python code modules will be destroyed and
reloaded, because a C extension module is only loaded once and used across
all Python sub interpreters for the life of the process, any changes to a C
extension module will not be picked up.

The second issue is that some C extension modules may cache references to
the Python interpreter object itself. Because there is no notification
mechanism for letting a C extension module know when a sub interpreter is
destroyed, it is possible that later on the C extension module may attempt
to access the now destroyed Python interpreter. By this time the pointer
reference is likely a dangling reference to unused memory or some
completely different data and attempting to access or use it will likely
cause the process to crash at some point.

A third issue is that the C extension module may cache references to Python
objects in static variables but not actually increment the reference count
on the objects in respect of its own reference to the objects. When the
last Python sub interpreter to hold a reference to that Python object is
destroyed, the object itself would be destroyed but the static variable left
with a dangling pointer. If a new Python sub interpreter is then created
and the C extension module attempts to use that cached Python object,
accessing it or using it will likely cause the process to crash at some
point.

A few examples of Python modules which exhibit one or more of these problems
are psycopg2, PyProtocols and lxml. In the case of !PyProtocols, because this
module is used by TurboGears and sometimes used indirectly by Pylons
applications, it means that the interpreter reloading mechanism can not be
used with either of these packages. The reason for the problems with
!PyProtocols appear to stem from its use of Pyrex generated code. The lxml
package similarly uses Pyrex and is thus afflicted.

In general it is probably inadvisable to use the interpreter reload
mechanism with any WSGI application which uses large or complicated C
extension modules. It would be recommended for example that the interpreter
reload mechanism not be used with Trac because of its use of the Python
Subversion bindings. One would also need to be cautious if using any Python
database client, although some success has been seen when using simple
database adapters such as pysqlite.

Multiple Python Sub Interpreters

In addition to the requirements imposed by the Python GIL, other issues can
also arise with C extension modules when multiple Python sub interpreters
are being used. Typically these problems arise where an extension module
caches a Python object from the sub interpreter which is initially used to
load the module and then passes that object to code executing within
secondary sub interpreters.

The prime example of where this would be a problem is where the code within
the second sub interpreter attempts to execute a method of the Python
object. When this occurs the result will be an attempt to execute Python
code which doesn’t belong to the current sub interpreter.

One result of this will be that if the code being executed attempts to
import additional modules it will obtain those modules from the current sub
interpreter rather than the interpreter the code belonged to. The result of
this can be a unholy mixing of code and data owned by multiple sub
interpreters leading to potential chaos at some point.

A more concrete outcome of such a mixing of code and data from multiple
sub interpreters is where a file object from one sub interpreter is used
within a different sub interpreter. In this sort of situation a Python
exception will occur as Python will detect in certain cases that the object
didn’t belong to that interpreter:

exceptions.IOError: file() constructor not accessible in restricted mode

Problems with code being executed in restricted mode can also occur when
the Python code and data marshalling features are used:

exceptions.RuntimeError: cannot unmarshal code objects in restricted execution mode

A further case is where the cached object is a class object and that object
is used to create instances of that type of object for different sub
interpreters. As above this can result in an unholy mixing of code and data
from multiple sub interpreters, but at a more mundane level may become
evident through the ‘isinstance()’ function failing when used to check the
object instances against the local type object for that sub interpreter.

An example of a Python module which fails in this way is psycopg2, which
caches an instance of the ‘decimal.Decimal’ type and uses it to create
object instances for all sub interpreters. This particular problem in
psycopg2 has been reported in psycopg2 ticket:

	http://www.initd.org/tracker/psycopg/ticket/192

and has been fixed in pyscopg2 source code. It isn’t known however which
version of psycopg2 this fix may have been released with. Another package
believed to have this problem in certain use cases is lxml.

Because of the possibilty that extension module writers have not written
their code to take into consideration it being used from multiple sub
interpreters, the safest approach is to force all WSGI applications to run
within the same application group, with that preferably being the
first interpreter instance created by Python.

To force a specific WSGI application to be run within the very first Python
sub interpreter created when Python is initialised, the WSGIApplicationGroup
directive should be used and the group set to ‘%{GLOBAL}’:

WSGIApplicationGroup %{GLOBAL}

If it is not feasible to force all WSGI applications to run in the same
interpreter, then daemon mode of mod_wsgi should be used to assign
different WSGI applications to their own daemon processes. Each would
then be made to run in the first Python sub interpreter instance within
their respective processes.

Memory Constrained VPS Systems

Virtual Private Server (VPS) systems typically always have constraints
imposed on them in regard to the amount of memory or resources they are
able to use. Various limits and related counts are described below:

	Memory Limit

	Maximum virtual memory size a VPS/context can allocate.

	Used Memory

	Virtual memory size used by a running VPS/context.

	Max Total Memory

	Maximum virtual memory usage by VPS/context.

	Context RSS Limit

	Maximum resident memory size a VPS/context can allocate. If limit is exceeded, VPS starts to use the host’s SWAP.

	Context RSS

	Resident memory size used by a running VPS/context.

	Max RSS Memory

	Maximum resident memory usage by VPS/context.

	Disk Limit

	Maximum disk space that can be used by VPS (calculated for the entire VPS file tree).

	Used Disk Memory

	Disk space used by a VPS file tree.

	Files Limit

	Maximum number of files that can be switched to a VPS/context.

	Used Files

	Number of files used in a VPS/context.

	TCP Sockets Limit

	Limit on the number of established connections in a virtual server.

	Established Sockets

	Number of established connections in a virtual server.

In respect of the limits, when summary virtual memory size used by the
VPS exceeds Memory Limit, processes can’t allocate the required memory and
will fail in unexpected ways. The general recommendation is that Context
RSS Limit be set to be one third of Memory Limit.

Some VPS providers however appear to ignore such guidance, not perhaps
understanding how virtual memory systems work, and set too restrictive a
value on the Memory Limit of the VPS, to the extent that virtual memory use
will exceed the Memory Limit even before actual memory use reaches Max RSS
Memory or even perhaps before reaching Context RSS Limit.

This is especially a problem where the hosted operating system is Linux, as
Linux uses a default per thread stack size which is excessive. When using
Apache worker MPM with multiple threads, or mod_wsgi daemon mode and
multiple worker threads, the amount of virtual memory quickly adds up
causing the artificial Memory Limit to be exceeded.

Under Linux the default process stack size is 8MB. Where as other UNIX
system typically use a much smaller per thread stack size in the order of
512KB, Linux inherits the process stack size and also uses it as the per
thread stack size.

If running a VPS system and are having problems with Memory Limit being
exceeded by the amount of virtual memory set aside by all applications
running in the VPS, it will be necessary to override the default per thread
stack size as used by Linux.

If you are using the Apache worker MPM, you will need to upgrade to Apache
2.2 if you are not already running it. Having done that you should then use
the Apache directive !ThreadStackSize to lower the per thread stack size
for threads created by Apache for the Apache child processes:

ThreadStackSize 524288

This should drop the amount of virtual memory being set aside by Apache for
its child process and thus any WSGI application running under embedded
mode.

If a WSGI application creates its own threads for performing background
activities, it is also preferable that they also override the stack size
set aside for that thread. For that you will need to be using at least
Python 2.5. The WSGI application should be ammended to execute:

import thread
thread.stack_size(524288)

If using mod_wsgi daemon mode, you will need to use mod_wsgi 2.0 and
override the per thread stack size using the ‘stack-size’ option to the
WSGIDaemonProcess directive:

WSGIDaemonProcess example stack-size=524288

If you are unable to upgrade to Apache 2.2 and/or mod_wsgi 2.0, the only
other option you have for affecting the amount of virtual memory set aside
for the stack of each thread is to override the process stack size. If you are
using a standard Apache distribution, this can be done by adding to the
‘envvars’ file for the Apache installation:

ulimit -s 512

If using a customised Apache installation, such as on RedHat, the ‘envvars’
file may not exist. In this case you would need to add this into the actual
startup script for Apache. For RedHat this is ‘/etc/sysconfig/httpd’.

Note that although 512KB is given here as an example, you may in practice
need to adjust this higher if you are using third party C extension modules
for Python which allocate significant amounts of memory on the stack.

OpenBSD And Thread Stack Size

When using Linux the excessive amount of virtual memory set aside for the
stack of each thread can cause problems in memory constrained VPS systems.
Under OpenBSD the opposite problem can occur in that the default per thread
stack size can be too small. In this situation the same mechanisms as used
above for adjusting the amount of virtual memory set aside can be used, but
in this case to increase the amount of memory to be greater than the
default value.

Although it has been reported that the default per thread stack size on
OpenBSD can be a problem, it isn’t known what it defaults too and thus
whether it is too low, or whether it was just the users specific
application which was attempting to allocate too much memory from the
stack.

Python Oracle Wrappers

When using WSGIDaemonProcess directive, it is possible to use the
‘display-name’ option to set what the name of the process is that will be
displayed in output from BSD derived ‘ps’ programs and some other monitoring
programs. This allows one to distinguish the WSGI daemon processes in a
process group from the normal Apache ‘httpd’ processes.

The mod_wsgi package accepts the magic string ‘%{GROUP}’ as value to the
WSGIDaemonProcess directive to indicate that mod_wsgi should construct the
name of the processes based on the name of the process group. Specifically,
if you have:

WSGIDaemonprocess mygroup display-name=%{GROUP}

then the name of the processes in that process group would be set to the
value:

(wsgi:mygroup)

This generally works fine, however causes a problem when the WSGI
application makes use of the ‘cx_Oracle’ module for wrapping Oracle client
libraries in Python. Specifically, Oracle client libraries can produce the
error:

ORA-06413: Connection not open.

This appears to be caused by the use of brackets, ie., ‘()’ in the name of
the process. It is therefore recommended that you explicitly provide the
name to use for the process and avoid these characters and potentially any
non alphanumeric characters to be extra safe.

This issue is briefly mentioned in:

	http://www.dba-oracle.com/t_ora_06413_connection_not_open.htm

Non Blocking Module Imports

In Python 2.6 non blocking module imports were added as part of the Python
C API in the form of the function PyImport_ImportModuleNoBlock(). This
function was introduced to prevent deadlocks with module imports in certain
circumstances. Unfortunately, for valid reasons or not, use of this
function has been sprinkled through Python standard library modules as well
as third party modules.

Although the function may have been created to fix some underlying issue,
its usage has caused a new set of problems for multithreaded programs which
defer module importing until after threads have been created. With mod_wsgi
this is actually the norm as the default mode of operation is that code is
lazily loaded only when the first request arrives which requires it.

A classic example of the sorts of problems use of this function causes is the
error:

ImportError: Failed to import _strptime because the import lock is held by another thread.

This particular error occurs when ‘time.strptime()’ is called for the first
time and it so happens that another thread is in the process of doing a
module import and holds the global module import lock.

It is believed that the fact this can happen indicates that Python is
flawed in using the PyImport_ImportModuleNoBlock(). Unfortunately, when
this issue has been highlighted in the past, people seemed to think it was
acceptable and the only solution, rather than fixing the Python standard
library, was to ensure that all module imports are done before any threads
are created.

This response is frankly crazy and you can expect all manner of random
problems related to this to crop up as more and more people start using the
PyImport_ImportModuleNoBlock() function without realising that it is a
really bad idea in the context of a multithreaded system.

Although no hope is held out for the issue being fixed in Python, a problem
report has still been lodged and can be found at:

* http://bugs.python.org/issue8098

The only work around for the problem is to ensure that all module imports
related to modules on which the PyImport_ImportModuleNoBlock() function is
used be done explicitly or indirectly when the WSGI script file is loaded.
Thus, to get around the specific case above, add the following into the
WSGI script file:

import _strptime

There is nothing that can be done in mod_wsgi to fix this properly as the
set of modules that might have to be forceably imported is unknown. Having
a hack to import them just to avoid the problem is also going to result in
unnecessary memory usage if the application didn’t actually need them.

Frequently Asked Questions

Apache Process Crashes

Q: Why when the mod_wsgi module is initially being loaded by Apache, do
the Apache server processes crash with a ‘segmentation fault’?

A: This is nearly always caused due to mod_python also being loaded by
Apache at the same time as mod_wsgi and the Python installation not
providing a shared library, or mod_python having originally being built
against a static Python library. This is especially a problem with older
Linux distributions before they started shipping with Python as a shared
library.

Further information on these problems can be found in various sections of
[InstallationIssues Installation Issues].

Q: Why when first request is made against a WSGI application does the
Apache server process handling the request crash with a ‘segmentation
fault’?

A: This is nearly always caused due to a shared library version conflict.
That is, Apache or some Apache module is linked against a different version
of a library than that which is being used by a particular Python module
that the WSGI application makes use of. The most common culprits are the
expat and MySQL libraries, but it can also occur with other shared
libraries.

Another cause of a process crash only upon the first request can be a third
party C extension module for Python which has not been implemented so as to
work within a secondary Python sub interpreter. The Python bindings for
Subversion are a particular example, with the Python module only working
correctly if the WSGI application is forced to run within the first
interpreter instance created by Python.

Further information on these problems can be found in various sections of
Application Issues.
The problems with the expat library are also gone into in more detail in
Issues With Expat Library.

Q: Why am I seeing the error message ‘premature end of script headers’ in
the Apache error logs.

A: If using daemon mode, this is a symptom of the mod_wsgi daemon process
crashing when handling a request. You would probably also see the message
‘segmentation fault’. See answer for question about ‘segmentation fault’
above.

This error message can also occur where you haven’t configured Apache
correctly and your WSGI script file is being executed as a CGI script
instead.

HTTP Error Responses

Q: When I try to use mod_wsgi daemon mode I get the error response ‘503
Service Temporarily Unavailable’.

A: The standard Apache runtime directory has restricted access and the
Apache child process cannot access the daemon process sockets. You will
need to use the WSGISocketPrefix directive to specify an alternative
location for storing of runtime files such as sockets.

For further information see section ‘Location Of UNIX Sockets’ of
[ConfigurationIssues Configuration Issues].

Q: I am getting a HTTP 500 error response and I can’t find any error in
the Apache error logs.

A: Some users of mod_wsgi 1.3/2.0 and older minor revisions, are finding
that mod_wsgi error messages are going missing, or ending up in the main
Apache error log file rather than a virtual host specific error log file.
Specifically, this is occurring when Apache ErrorLog directive is being
used inside of a VirtualHost container.

It is not known exactly what operating system setup and/or Apache
configuration is the trigger for this problem. To avoid the problem, use
a newer version of mod_wsgi.

HTTP Error Log Messages

Q: Why do I get the error ‘IOError: client connection closed’ appearing
in the error logs?

A: This occurs when the HTTP client making the request closes the
connection before the complete response for a request has been written.

This can occur where a user force reloads a web page before it had been
completely displayed. It can also occur when using benchmarking tools such
as ‘ab’ as they will over commit on the number of requests they make when
doing concurrent requests, killing off any extra requests once the required
number has been reached.

In general this error message can be ignored.

Application Reloading

Q: Do I have to restart Apache every time I make a change to the Python
code for my WSGI application?

A: If your WSGI application is contained totally within the WSGI script
file and it is that file that you are changing, then no you don’t. In this
case the WSGI script file will be automatically reloaded when a change is
made provided that script reloading hasn’t been disabled.

If the code you are changing lies outside of the WSGI script file then what
you may need to do will depend on how mod_wsgi is being used.

If embedded mode of mod_wsgi is being used, the only option is to restart
Apache. You could set Apache configuration directive MaxRequestsPerChild
to 1 to force a reload of the application on every request, but this is not
recommended because it will perform as bad as or as worse as CGI and will
also affect serving up of static files and other applications being hosted
by the same Apache instance.

If using daemon mode with a single process you can send a SIGINT signal to
the daemon process using the ‘kill’ command, or have the application send
the signal to itself when a specific URL is triggered.

If using daemon mode, with any number of processes, and the process reload
mechanism of mod_wsgi 2.0 has been enabled, then all you need to do is
touch the WSGI script file, thereby updating its modification time, and
the daemon processes will automatically shutdown and restart the next time
they receive a request.

Use of daemon mode and the process reload mechanism is the preferred
mechanism for handling automatic reloading of code after changes.

More details on how source code reloading works with mod_wsgi can be
found in Reloading Source Code.

Q: Why do requests against my application seem to take forever, but
then after a bit they all run much quicker?

A: This is because mod_wsgi by default performs lazy loading of any
application. That is, an application is only loaded the first time that a
request arrives which targets that WSGI application. This means that those
initial requests will incur the overhead of loading all the application code
and performing any startup initialisation.

This startup overhead can appear to be quite significant, especially if
using Apache prefork MPM and embedded mode. This is because the
startup cost is incurred for each process and with prefork MPM there are
typically a lot more processes that if using worker MPM or mod_wsgi
daemon mode. Thus, as many requests as there are processes will run
slowly and everything will only run full speed once code has all been
loaded.

Note that if recycling of Apache child processes or mod_wsgi daemon
processes after a set number of requests is enabled, or for embedded mode
Apache decides itself to reap any of the child processes, then you can
periodically see these delayed requests occurring.

Some number of the benchmarks for mod_wsgi which have been posted
do not take into mind these start up costs and wrongly try to compare
the results to other systems such as fastcgi or proxy based systems where
the application code would be preloaded by default. As a result mod_wsgi
is painted in a worse light than is reality. If mod_wsgi is configured
correctly the results would be better than is shown by those benchmarks.

For some cases, such as when WSGIScriptAlias is being used, it is actually
possible to preload the application code when the processes first starts,
rather than when the first request arrives. To preload an application see the
WSGIImportScript directive.

By preloading the application code you would not normally see delays in
requests being handled. The only exception to this would be when running
a single process under mod_wsgi daemon mode and the process is being
restarted when a maximum number of requests arrives or explicitly via one
of the means to trigger reloading of application code. Delays here can be
avoided by running at least two processes in the daemon process group.
This is because when one process is restarting, the others can handle the
requests.

Execution Environment

Q: Why do I get the error ‘IOError: sys.stdout access restricted by
mod_wsgi’?

A: A portable WSGI application or application component should not
output anything to standard output. This is because some WSGI hosting
mechanisms use standard output to communicate with the web server. If
a WSGI application outputs anything to standard output it will thus
potentially interleave with the response sent back to the client.

To promote portability of WSGI applications, mod_wsgi by default restricts
direct use of ‘sys.stdout’ and ‘sys.stdin’. Because the ‘print’ statement
defaults to outputing text to ‘sys.stdout’, using ‘print’ for debugging
purposes can cause this error.

For more details about this issue, including how applications should do
logging and how to disable this restriction see section ‘Writing To Standard
Output’ in Application Issues and section ‘Apache Error
Log Files’ in Debugging Techniques.

Q: Can mod_wsgi be used with Python virtual environments created using
Ian Bicking’s ‘virtualenv’ package?

A: Yes. For more details see Virtual Environments.

Access Control Mechanisms

Q: Why are client user credentials not being passed through to the WSGI
application in the ‘HTTP_AUTHORIZATION’ variable of the WSGI environment?

A: User credentials are not passed by default as doing so is insecure and
could expose a users password to WSGI applications which shouldn’t be
permitted to see it. Such a situation might occur within a corporate
setting where HTTP authentication mechanisms were used to control access to
a corporate web server but it was possible for users to provide their own
web pages. The last thing a system administator will want is normal users
being able to see other users passwords.

As a result, the passing of HTTP authentication credentials must be
explicitly enabled by the web server administrator. This can only be done
using directives placed in the main Apache confguration file.

For further information see Access Control Mechanisms
and the documentation for the WSGIPassAuthorization directive.

Q: Is there a way of having a WSGI application provide user authentication
for resources outside of the application such as static files, CGI scripts
or even a distinct application. In other words, something akin to being able
to define access, authentication and authorisation handlers in mod_python?

A: Providing you are using Apache 2.0 or later, version 2.0 of mod_wsgi
provides support for hooking into the Apache access, authentication and
authorisation handler phases. This doesn’t allow full control of how the
Apache handler is implemented, but does allow control over how user
credentials are validated, determination of what groups a user is a member
of and whether specific hosts are allowed access. This is generally more
than sufficient and makes the task somewhat simpler than needing to
implement a full handler like in mod_python as Apache and mod_wsgi do all
the hard work.

For further information see Access Control Mechanisms.

Checking Your Installation

When debugging mod_wsgi or a WSGI application, it is import to be able to
understand how mod_wsgi has been installed, what Apache and/or Python it
uses and how those systems have been configured, plus under what
configuration the WSGI application is running.

This document details various such checks that can be made. The primary
purpose of providing this information is so that when people ask questions
on the mod_wsgi mailing list, they can be directed here to perform certain
checks as a way of collecting additional information needed to help debug
their problem.

If you are reading this document because you have been directed here from
the mailing list, then ensure that you actually provide the full amount of
detail obtained from the checks and not leave out information. When you
leave out information then it means guesses have to be made about your
setup which makes it harder to debug your problems.

Apache Build Information

Information related to what version of Apache is being used and how it is
built is obtained in a number of ways. The primary means is from the
Apache ‘httpd’ executable itself using command line options. The main such
option is the -V option.

On most systems the standard Apache executable supplied with the operating
system is located at ‘/usr/sbin/httpd’. On MacOS X, for the operating system
supplied Apache the output from this is:

$ /usr/sbin/httpd -V
Server version: Apache/2.2.14 (Unix)
Server built: Feb 10 2010 22:22:39
Server's Module Magic Number: 20051115:23
Server loaded: APR 1.3.8, APR-Util 1.3.9
Compiled using: APR 1.3.8, APR-Util 1.3.9
Architecture: 64-bit
Server MPM: Prefork
 threaded: no
 forked: yes (variable process count)
Server compiled with....
 -D APACHE_MPM_DIR="server/mpm/prefork"
 -D APR_HAS_SENDFILE
 -D APR_HAS_MMAP
 -D APR_HAVE_IPV6 (IPv4-mapped addresses enabled)
 -D APR_USE_FLOCK_SERIALIZE
 -D APR_USE_PTHREAD_SERIALIZE
 -D SINGLE_LISTEN_UNSERIALIZED_ACCEPT
 -D APR_HAS_OTHER_CHILD
 -D AP_HAVE_RELIABLE_PIPED_LOGS
 -D DYNAMIC_MODULE_LIMIT=128
 -D HTTPD_ROOT="/usr"
 -D SUEXEC_BIN="/usr/bin/suexec"
 -D DEFAULT_PIDLOG="/private/var/run/httpd.pid"
 -D DEFAULT_SCOREBOARD="logs/apache_runtime_status"
 -D DEFAULT_LOCKFILE="/private/var/run/accept.lock"
 -D DEFAULT_ERRORLOG="logs/error_log"
 -D AP_TYPES_CONFIG_FILE="/private/etc/apache2/mime.types"
 -D SERVER_CONFIG_FILE="/private/etc/apache2/httpd.conf"

The most important details here are:

	The version of Apache from the ‘Server version’ entry.

	The MPM which Apache has been compiled to use from the ‘Server MPM’ entry.

Although this has a section which appears to indicate what preprocessor
options the server was compiled with, it is a massaged list. What is often
more useful is the actual arguments which were supplied to the ‘configure’
command when Apache was built.

To determine this information you need to do the following.

	Work out where ‘apxs2’ or ‘apxs’ is installed.

	Open this file and find setting for ‘$installbuilddir’.

	Open the ‘config.nice’ file in the directory specified for build directory.

On MacOS X, for the operating system supplied Apache this file is located at
‘/usr/share/httpd/build/config.nice’. The contents of the file is:

#! /bin/sh
#
Created by configure

"/SourceCache/apache/apache-747.1/httpd/configure" \
"--prefix=/usr" \
"--enable-layout=Darwin" \
"--with-apr=/usr" \
"--with-apr-util=/usr" \
"--with-pcre=/usr/local/bin/pcre-config" \
"--enable-mods-shared=all" \
"--enable-ssl" \
"--enable-cache" \
"--enable-mem-cache" \
"--enable-proxy-balancer" \
"--enable-proxy" \
"--enable-proxy-http" \
"--enable-disk-cache" \
"$@"

Not only does this indicate what features of Apache have been compiled in,
it also indicates by way of the --enable-layout option what custom Apache
installation layout has been used.

Apache Modules Loaded

Modules can be loaded into Apache statically, or can be loaded dynamically
at run time based on Apache configuration files.

If modules have been statically compiled into Apache, usually it would be
evident by what ‘configure’ arguments have been used when Apache was built.
To verify what exactly what is compiled in statically, you can use the -l
option to the Apache executable.

On MacOS X, for the operating system supplied Apache the output from
running -l option is:

$ /usr/sbin/httpd -l
Compiled in modules:
 core.c
 prefork.c
 http_core.c
 mod_so.c

This indicates that the only module that is loaded statically is ‘mod_so’.
This is actually the Apache module that handles the task of dynamically
loading other Apache modules.

For a specific Apache configuration, you can determine what Apache modules
will be loaded dynamically by using the -M option for the Apache executable.

On MacOS X, for the operating system supplied Apache the output from
running -M option, where the only additional module added is mod_wsgi,
is:

$ /usr/sbin/httpd -M
Loaded Modules:
 core_module (static)
 mpm_prefork_module (static)
 http_module (static)
 so_module (static)
 authn_file_module (shared)
 authn_dbm_module (shared)
 authn_anon_module (shared)
 authn_dbd_module (shared)
 authn_default_module (shared)
 authz_host_module (shared)
 authz_groupfile_module (shared)
 authz_user_module (shared)
 authz_dbm_module (shared)
 authz_owner_module (shared)
 authz_default_module (shared)
 auth_basic_module (shared)
 auth_digest_module (shared)
 cache_module (shared)
 disk_cache_module (shared)
 mem_cache_module (shared)
 dbd_module (shared)
 dumpio_module (shared)
 ext_filter_module (shared)
 include_module (shared)
 filter_module (shared)
 substitute_module (shared)
 deflate_module (shared)
 log_config_module (shared)
 log_forensic_module (shared)
 logio_module (shared)
 env_module (shared)
 mime_magic_module (shared)
 cern_meta_module (shared)
 expires_module (shared)
 headers_module (shared)
 ident_module (shared)
 usertrack_module (shared)
 setenvif_module (shared)
 version_module (shared)
 proxy_module (shared)
 proxy_connect_module (shared)
 proxy_ftp_module (shared)
 proxy_http_module (shared)
 proxy_ajp_module (shared)
 proxy_balancer_module (shared)
 ssl_module (shared)
 mime_module (shared)
 dav_module (shared)
 status_module (shared)
 autoindex_module (shared)
 asis_module (shared)
 info_module (shared)
 cgi_module (shared)
 dav_fs_module (shared)
 vhost_alias_module (shared)
 negotiation_module (shared)
 dir_module (shared)
 imagemap_module (shared)
 actions_module (shared)
 speling_module (shared)
 userdir_module (shared)
 alias_module (shared)
 rewrite_module (shared)
 bonjour_module (shared)
 wsgi_module (shared)
Syntax OK

The names reflect that which would have been used with the LoadModule line
in the Apache configuration and not the name of the module file itself.

The order in which modules are listed can be important in some cases where
a module doesn’t explicitly designate in what order a handler should be
applied relative to other Apache modules.

Global Accept Mutex

Because Apache is a multi process server, it needs to use a global cross
process mutex to control which of the Apache child processes get the next
chance to accept a connection from a HTTP client.

This cross process mutex can be implemented using a variety of different
mechanisms and exactly which is used can vary based on the operating system.
Which mechanism is used can also be overridden in the Apache configuration
if absolutely required.

A simlar instance of a cross process mutex is also used for each mod_wsgi
daemon process group to mediate which process in the daemon process group
gets to accept the next request proxied to that daemon process group via the
Apache child processes.

The list of mechanisms which might be used to implement the cross process
mutex are as follows:

	flock

	fcntl

	sysvsem

	posixsem

	pthread

In the event that there are issues which communicating between the Apache
child processes and the mod_wsgi daemon process in particular, it can be
useful to know what mechanism is used to implement the cross process mutex.

By default, the Apache configuration files would not specify a specific
mechanism, and instead which is used would be automatically selected by the
underlying Apache runtime libraries based on various build time and system
checks about what is the prefered mechanism for a particular operating
system.

Which mechanism is used by default can be determined from the build
information displayed by the -V option to the Apache executable described
previously. The particular entries of interest are those with ‘SERIALIZE’
in the name of the macro.

On MacOS X, using operating system supplied Apache, the entries of interest
are:

-D APR_USE_FLOCK_SERIALIZE
-D APR_USE_PTHREAD_SERIALIZE

As the entries are used in order, what this indicates is that Apache will by
default use the ‘flock’ mechanism to implement the cross process mutex.

In comparison, on a Linux system, the entries of interest may be:

-D APR_USE_SYSVSEM_SERIALIZE
-D APR_USE_PTHREAD_SERIALIZE

which indicates that ‘sysvsem’ mechanism is instead used.

This mechanism is also what would be used by mod_wsgi by default as well for
the cross process mutex for daemon process groups.

This mechanism will be different where the AcceptMutex and WSGIAcceptMutex
directives are used.

If the AcceptMutex directive is defined in the Apache configuration file,
then what ever mechanism is specified will be used instead for Apache child
processes. Provided that Apache 2.2 or older is used, and WSGIAcceptMutex
is not specified, then when AcceptMutex is used, that will also then be used
by mod_wsgi daemon processes as well.

In the case of Apache 2.4 and later, AcceptMutex will no longer override the
default for mod_wsgi daemon process groups, and instead WSGIAcceptMutex must
be specified seperately if it needs to be overridden for both.

Either way, you should check the Apache configuration files as to whether
either AcceptMutex or WSGIAcceptMutex directives are used as they will
override the defaults calculated above. Under normal circumstances neither
should be set as default would always be used.

If wanting to look at overriding the default mechanism, what options exist
for what mechanism can be used will be dependent on the operating system
being used. There are a couple of ways this can be determined.

The first is to find the ‘apr.h’ header file from the Apache runtime library
installation that Apache was compiled against. In that you will find entries
similar to the ‘USE’ macros above. You will also find ‘HAS’ entries. In this
case we are interested in the ‘HAS’ entries.

On MacOS X, with the operating system supplied APR library, the entries in
‘apr.h’ are:

#define APR_HAS_FLOCK_SERIALIZE 1
#define APR_HAS_SYSVSEM_SERIALIZE 1
#define APR_HAS_POSIXSEM_SERIALIZE 1
#define APR_HAS_FCNTL_SERIALIZE 1
#define APR_HAS_PROC_PTHREAD_SERIALIZE 0

The available mechanisms are those defined to be ‘1’.

Finding where the right ‘apr.h’ is located may be tricky, so an easier way
is to trick Apache into generating an error message to list what the available
mechanisms are. To do this, in turn, add entries into the Apache configuration
files, at global scope of:

AcceptMutex xxx

and:

WSGIAcceptMutex xxx

For each run the -t option on the Apache program executable.

On MacOS X, with the operating system supplied APR library, this yields:

$ /usr/sbin/httpd -t
Syntax error on line 501 of /private/etc/apache2/httpd.conf:
xxx is an invalid mutex mechanism; Valid accept mutexes for this platform \
 and MPM are: default, flock, fcntl, sysvsem, posixsem.

for AcceptMutex and for WSGIAcceptMutex:

$ /usr/sbin/httpd -t
Syntax error on line 501 of /private/etc/apache2/httpd.conf:
Accept mutex lock mechanism 'xxx' is invalid. Valid accept mutex mechanisms \
 for this platform are: default, flock, fcntl, sysvsem, posixsem.

The list of available mechanisms should normally be the same in both cases.

Using the value of ‘default’ indicates that which mechanism is used is left
up to the APR library.

Python Shared Library

When mod_wsgi is built, the ‘mod_wsgi.so’ file should be linked against
Python via a shared library. If it isn’t and it is linked against a static
library, various issues can arise. These include additional memory usage,
plus conflicts with mod_python if it is also loaded in same Apache.

To validate that ‘mod_wsgi.so’ is using a shared library for Python, on most
UNIX systems the ‘ldd’ command is used. For example:

$ ldd mod_wsgi.so
 linux-vdso.so.1 => (0x00007fffeb3fe000)
 libpython2.5.so.1.0 => /usr/local/lib/libpython2.5.so.1.0 (0x00002adebf94d000)
 libpthread.so.0 => /lib/libpthread.so.0 (0x00002adebfcba000)
 libdl.so.2 => /lib/libdl.so.2 (0x00002adebfed6000)
 libutil.so.1 => /lib/libutil.so.1 (0x00002adec00da000)
 libc.so.6 => /lib/libc.so.6 (0x00002adec02dd000)
 libm.so.6 => /lib/libm.so.6 (0x00002adec0635000)
 /lib64/ld-linux-x86-64.so.2 (0x0000555555554000)

What you want to see is a reference to an instance of ‘libpythonX.Y.so’.
Normally the operating system shared library version suffix would always be
‘1.0’. What it is shouldn’t really matter though.

This reference should refer to the actual Python shared library for your
Python installation.

Do note though, that ‘ldd’ will take into consideration any local user
setting of the ‘LD_LIBRARY_PATH’ environment variable. That is, ‘ldd’ will
also search any directories listed in that environment variable for shared
libraries.

Although that environment variable may be defined in your user account, it
will not normally be defined in the environment of the account that Apache
starts up as. Thus, it is important that you unset the ‘LD_LIBRARY_PATH’
environment variable when running ‘ldd’.

If you run the check with and without ‘LD_LIBRARY_PATH’ set and find that
without it that a different, or no Python shared library is found, then you
will likely have a problem. For the case of it not being found, Apache will
fail to start. For where it is found but it is a different installation to
that which you want used, subtle problems could occur due to C extension
modules for Python being used which were compiled against that installation.

For example, if ‘LD_LIBRARY_PATH’ contained the directory ‘/usr/local/lib’
and you obtained the results above, but when you unset it, it picked up
shared library from ‘/usr/lib’ instead, then you may end up with problems
if for a different installation. In this case you would see:

$ unset LD_LIBRARY_PATH
$ ldd mod_wsgi.so
 linux-vdso.so.1 => (0x00007fffeb3fe000)
 libpython2.5.so.1.0 => /usr/lib/libpython2.5.so.1.0 (0x00002adebf94d000)
 libpthread.so.0 => /lib/libpthread.so.0 (0x00002adebfcba000)
 libdl.so.2 => /lib/libdl.so.2 (0x00002adebfed6000)
 libutil.so.1 => /lib/libutil.so.1 (0x00002adec00da000)
 libc.so.6 => /lib/libc.so.6 (0x00002adec02dd000)
 libm.so.6 => /lib/libm.so.6 (0x00002adec0635000)
 /lib64/ld-linux-x86-64.so.2 (0x0000555555554000)

Similarly, if not found at all, you would see:

$ unset LD_LIBRARY_PATH
$ ldd mod_wsgi.so
 linux-vdso.so.1 => (0x00007fffeb3fe000)
 libpython2.5.so.1.0 => not found
 libpthread.so.0 => /lib/libpthread.so.0 (0x00002adebfcba000)
 libdl.so.2 => /lib/libdl.so.2 (0x00002adebfed6000)
 libutil.so.1 => /lib/libutil.so.1 (0x00002adec00da000)
 libc.so.6 => /lib/libc.so.6 (0x00002adec02dd000)
 libm.so.6 => /lib/libm.so.6 (0x00002adec0635000)
 /lib64/ld-linux-x86-64.so.2 (0x0000555555554000)

If you have this problem, then it would be necessary to set ‘LD_RUN_PATH’
environment variable to include directory containing where Python library
resides when building mod_wsgi, or set ‘LD_LIBRARY_PATH’ in startup file
for Apache such that it is also set for Apache when run. For standard
Apache installation the latter would be done in ‘envvars’ file in same
directory as Apache program executable. For some Linux installations would
need to be done in init scripts for Apache.

Note that MacOS X doesn’t use ‘LD_LIBRARY_PATH’ nor have ‘ldd’. On MacOS X,
instead of ‘ldd’ you can use ‘otool -L’:

$ otool -L mod_wsgi.so
mod_wsgi.so:
 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 125.2.0)
 /System/Library/Frameworks/Python.framework/Versions/2.6/Python (compatibility version 2.6.0, current version 2.6.1)

If using standard MacOS X compilers and not using Fink or !MacPorts, there
generally should not ever be any issues with whether it is a shared library
or not as everything should just work.

The only issue with MacOS X is that for whatever reason, the location
dependency for the shared library (framework) isn’t always encoded into
‘mod_wsgi.so’ correctly. This seems to vary between what Python installation
was used and what MacOS X operating system version. In this case, if
multiple installations of same version of Python in different locations,
may find the system installation rather than your custom installation.

In that situation you may need to use the --disable-framework option to
‘configure’ script for mod_wsgi. This doesn’t actually disable use of the
framework, but does change how it links to use a more traditional library
style linking rather than framework linking. This seems to resolve the
problems in most cases.

Python Installation In Use

Although the ‘mod_wsgi.so’ file may be finding a specific Python shared
library and that may be from the correct installation, the Python library
when initialised doesn’t actually know from where it came. As such, it uses
a series of checks to try and determine where the Python installation is
actually located.

This check has various subtleties and how it works varies depending on the
platform used. At its simplest though, on most UNIX systems it will check
all directories listed in the ‘PATH’ environment variable of the process.
In each of those directories it will look for the ‘python’ program. When it
finds such a file, it will then look for a corresponding ‘lib’ directory
containing a valid Python installation for the same version of Python as is
being run.

When it finds such a directory, the home for the Python installation will
be taken as being the parent directory of the directory containing the
‘python’ program file found.

Because this search is dependent on the ‘PATH’ environment variable, which
is likely set to a minimal set of directories for the Apache user, then if
you are using a Python installation in a non standard location, then it may
not properly find the location of that installation.

The easiest way to validate which Python installation is being used is to
use a test WSGI script to output the value of ‘sys.prefix’:

import sys

def application(environ, start_response):
 status = '200 OK'

 output = u''
 output += u'sys.version = %s\n' % repr(sys.version)
 output += u'sys.prefix = %s\n' % repr(sys.prefix)

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output.encode('UTF-8')]

For standard Python installation on a Linux system, this would produce
something like:

sys.version = "'2.6.1 (r261:67515, Feb 11 2010, 00:51:29) \\n[GCC 4.2.1 (Apple Inc. build 5646)]'"
sys.prefix = '/usr'

Thus, if you were expecting to pick up a separate Python installation
located under ‘/usr/local’ or elsewhere, this would be indicative of a
problem.

It can also be worthwhile to check that the Python module search path also
looks correct. This can be done by using a test WSGI script to output the
value of ‘sys.path’:

import sys

def application(environ, start_response):
 status = '200 OK'
 output = u'sys.path = %s' % repr(sys.path)

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output.encode('UTF-8')]

In both cases, even if incorrect location is being used for Python
installation and even if there is no actual Python installation of the
correct version under that root directory, then these test scripts should
still run as ‘sys’ module is a builtin module which can be satisified via
just the Python library.

If debugging, whether there is a Python installation underneath that root
directory, the subdirectory which you would want to look for is
‘lib/pythonX.Y’ corresponding to version of Python being used.

If the calculated directory is wrong, then you will need to use the
WSGIPythonHome directory to set the location to the correct value. The value
to use is what ‘sys.prefix’ is set to when the correct Python is run from
the command line and ‘sys.prefix’ output:

>>> import sys
>>> print sys.prefix
/usr/local

Thus for case where installed under ‘/usr/local’, would use:

WSGIPythonHome /usr/local

Embedded Or Daemon Mode

WSGI applications can run in either embedded mode or daemon mode. In the
case of embedded mode, the WSGI application runs within the Apache child
processes themselves. In the case of daemon mode, they run within a
separate set of processes managed by mod_wsgi.

To determine what mode a WSGI application is running under, replace its
WSGI script with the test WSGI script as follows:

import sys

def application(environ, start_response):
 status = '200 OK'
 output = u'mod_wsgi.process_group = %s' % repr(environ['mod_wsgi.process_group'])
 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output.encode('UTF-8')]

If the configuration is such that the WSGI application is running in embedded
mode, then you will see:

mod_wsgi.process_group = ''

This actually corresponds to the directive:

WSGIProcessGroup %{GLOBAL}

having being used, or the same value being used to the ‘process-group’
directive of WSGIScriptAlias. Do note though that these are also actually
the defaults for these if not explicitly defined.

If the WSGI application is actually running in daemon mode, then a non
empty string will instead be shown corresponding to the name of the daemon
process group used.

Sub Interpreter Being Used

As well as WSGI application being able to be delegated to run in either
embedded mode or daemon mode, within the process it ends up running in, it
can be delegated to a specific Python sub interpreter.

To determine which Python sub interpreter is being used within the process
the WSGI application is being run use the test WSGI script of:

import sys

def application(environ, start_response):
 status = '200 OK'
 output = u'mod_wsgi.application_group = %s' % repr(environ['mod_wsgi.application_group'])

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output.encode('UTF-8')]

If being run in the main interpreter, ie., the first interpreter created by
Python, this will output:

mod_wsgi.application_group = ''

This actually corresponds to the directive:

WSGIApplicationGroup %{GLOBAL}

having being used, or the same value being used to the ‘application-group’
directive of WSGIScriptAlias.

The default for these if not defined is actually ‘%{RESOURCE}’. This will
be a value made up from the name of the virtual host or server, the port
on which connection was accepted and the mount point of the WSGI application.
The port however is actually dropped where port is 80 or 443.

An example of what you would expect to see is:

mod_wsgi.application_group = 'tests.example.com|/interpreter.wsgi'

This corresponds to server name of ‘tests.example.com’ with connection
received on either port 80 or 443 and where WSGI application was mounted at
the URL of ‘/interpreter.wsgi’.

Single Or Multi Threaded

Apache supports differing Multiprocessing Modules (MPMs) having different
attributes. One such difference is whether a specific Apache child process
uses multiple threads for handling requests or whether a single thread is
instead used.

Depending on how you configure a daemon process group when using daemon
mode will also dictate whether single or multithreaded. By default, if
number of threads is not explicitly specified for a daemon process group,
it will be multithreaded.

Whether a WSGI application is executing within a multithreaded environment
is important to know. If it is, then you need to ensure that your own code
and any framework you are using is also thread safe.

A test WSGI script for validating whether WSGI application running in
multithread configuration is as follows:

import sys

def application(environ, start_response):
 status = '200 OK'
 output = u'wsgi.multithread = %s' % repr(environ['wsgi.multithread'])

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output.encode('UTF-8')]

If multithreaded, this will yield:

wsgi.multithread = True

Multithreaded would usually be true on Windows, on UNIX if running in embedded
mode and worker MPM is used by Apache, or if using daemon mode and number of
threads not explicitly set, or number of threads explicitly set to value other
than ‘1’.

Debugging Techniques

Be it when initially setting up mod_wsgi for the first time, or later
during development or use of your WSGI application, you are bound to get
some sort of unexpected Python error. By default all you are usually going
to see as evidence of this is a HTTP 500 “Internal Server Error” being
displayed in the browser window and little else.

The purpose of this document is to explain where to go look for more
details on what caused the error, describe techniques one can use to have
your WSGI application generate more useful debug information, as well as
mechanisms that can be employed to interactively debug your application.

Note that although this document is intended to deal with techniques which
can be used when using mod_wsgi, many of the techniques are also directly
transferable or adaptable to other web hosting mechanisms for WSGI
applications.

Apache Error Log Files

When using mod_wsgi, unless you or the web framework you are using takes
specific action to catch exceptions and present the details in an alternate
manner, the only place that details of uncaught exceptions will be recorded
is in the Apache error log files. The Apache error log files are therefore
your prime source of information when things go wrong.

Do note though that log messages generated by mod_wsgi are logged with
various severity levels and which ones will be output to the Apache error
log files will depend on how Apache has been configured. The standard
configuration for Apache has the !LogLevel directive being set to ‘warn’.
With this setting any important error messages will be output, but
informational messages generated by mod_wsgi which can assist in working
out what it is doing are not. Thus, if new to mod_wsgi or trying to debug a
problem, it is worthwhile setting the Apache configuration to use ‘info’
log level instead:

LogLevel info

If your Apache web server is only providing services for one host, it is
likely that you will only have one error log file. If however the Apache
web server is configured for multiple virtual hosts, then it is possible
that there will be multiple error log files, one corresponding to the main
server host and an additional error log file for each virtual host. Such a
virtual host specific error log if one is being used, would have been
configured through the placing of the Apache CustomLog directive within
the context of the VirtualHost container.

Although your WSGI application may be hosted within a particular virtual
host and that virtual host has its own error log file, some error and
informational messages will still go to the main server host error log
file. Thus you may still need to consult both error log files when using
virtual hosts.

Messages of note that will end up in the main server host error log file
include notifications in regard to initialisation of Python and the
creation and destruction of Python sub interpreters, plus any errors which
occur when doing this.

Messages of note that would end up in the virtual host error log file, if
it exists, include details of uncaught Python exceptions which occur when
the WSGI application script is being loaded, or when the WSGI application
callable object is being executed.

Messages that are logged by a WSGI application via the ‘wsgi.errors’ object
passed through to the application in the WSGI environment are also logged.
These will go to the virtual host error log file if it exists, or the main
error log file if the virtual host is not setup with its own error log file.
Thus, if you want to add debugging messages to your WSGI application code,
you can use ‘wsgi.errors’ in conjunction with the ‘print’ statement as shown
below:

def application(environ, start_response):
 status = '200 OK'
 output = b'Hello World!'

 print >> environ['wsgi.errors'], "application debug #1"

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 print >> environ['wsgi.errors'], "application debug #2"

 return [output]

If ‘wsgi.errors’ is not available to the code which needs to output log
messages, then it should explicitly direct output from the ‘print’
statement to ‘sys.stderr’:

import sys

def function():
 print >> sys.stderr, "application debug #3"
 ...

If sys.stderr or sys.stdout is used directly then
these messages will end up in the main server host error log file and not
that for the virtual host unless the WSGI application is running in a
daemon process specifically associated with a virtual host.

Do be aware though that writing to sys.stdout is by default
restricted in versions of mod_wsgi prior to 3.0 and will result in an
exception occurring of the form:

IOError: sys.stdout access restricted by mod_wsgi

This is because portable WSGI applications should not write to
sys.stdout or use the ‘print’ statement without specifying an
alternate file object besides sys.stdout as the target. This
restriction can be disabled for the whole server using the
WSGIRestrictStdout directive, or by mapping sys.stdout to
sys.stderr at global scope within in the WSGI application script
file:

import sys
sys.stdout = sys.stderr

In general, a WSGI application should always endeavour to only log messages
via the ‘wsgi.errors’ object that is passed through to a WSGI application
in the WSGI environment. This is because this is the only way of logging
messages for which there is some guarantee that they will end up in a log
file that you might have access to if using a shared server.

An application shouldn’t however cache ‘wsgi.errors’ and try to use it
outside of the context of a request. If this is done an exception will be
raised indicating that the request has expired and the error log object
is now invalid.

That messages output via sys.stderr and sys.stdout end up in
the Apache error logs at all is provided as a convenience but there is no
requirement in the WSGI specification that they are valid means of a WSGI
application logging messages.

Displaying Request Environment

When a WSGI application is invoked, the request headers are passed as CGI
variables in the WSGI request environment. The dictionary used for this
also holds information about the WSGI execution environment and mod_wsgi.
This includes mod_wsgi specific variables indicating the name of the
process and application groups within which the WSGI application is
executing.

Knowing the values of the process and application group variables can be
important when needing to validate that your Apache configuration is doing
what you intended as far as ensuring your WSGI application is running in
daemon mode or otherwise.

A simple way of validating such details or getting access to any of the
other WSGI request environment variables is to substitute your existing
WSGI application with one which echos back the details to your browser.
Such a task can be achieved with the following test application. The
application could be extended as necessary to display other information as
well, with process ID, user ID and group ID being shown as examples:

import cStringIO
import os

def application(environ, start_response):
 headers = []
 headers.append(('Content-Type', 'text/plain'))
 write = start_response('200 OK', headers)

 input = environ['wsgi.input']
 output = cStringIO.StringIO()

 print >> output, "PID: %s" % os.getpid()
 print >> output, "UID: %s" % os.getuid()
 print >> output, "GID: %s" % os.getgid()
 print >> output

 keys = environ.keys()
 keys.sort()
 for key in keys:
 print >> output, '%s: %s' % (key, repr(environ[key]))
 print >> output

 output.write(input.read(int(environ.get('CONTENT_LENGTH', '0'))))

 return [output.getvalue()]

For the case of the process group as recorded by the
‘mod_wsgi.process_group’ variable in the WSGI request environment, if the
value is an empty string then the WSGI application is running in embedded
mode. For any other value it will be running in daemon mode with the process
group named by the variables value.

Note that by default WSGI applications run in embedded mode, which means
within the Apache server child processes which accept the original requests.
Daemon mode processes would only be used through appropriate use of the
WSGIDaemonProcess and WSGIProcessGroup directives to delegate the WSGI
application to a named daemon process group.

For the case of the application group as recorded by the
‘mod_wsgi.application_group’ variable in the WSGI request environment, if the
value is an empty string then the WSGI application is running in the main
Python interpreter. That is, the very first interpreter created when Python
was initialised. For any other value it indicates it is running in the named
Python sub interpreter.

Note that by default WSGI applications would always run in a sub
interpreter rather than the main interpreter. The name of this sub
interpreter would be automatically constructed from the name of the server
or virtual host, the URL mount point of the WSGI application and the number
of the listener port when it is other than ports 80 or 443.

To delegate a WSGI application to run in main Python interpreter, the
WSGIApplicationGroup directive would need to have been used with the value
‘%{GLOBAL}’. Although the value is ‘%{GLOBAL}’, this translates to the
empty string seen for the value of ‘mod_wsgi.application_group’ within the
WSGI request environment.

The WSGIApplicationGroup directive could also be used to designate a
specific named sub interpreter rather than that selected automatically.

For newcomers this can all be a bit confusing, which is where the test
application comes in as you can use it to validate where your WSGI
application is running is where you intended it to run.

The set of WSGI request environment variables will also show the WSGI
variables indicating whether process is multithreaded and whether the
process group is multiprocess or not. For a more complete explanation
of what that means see documentation of
Processes And Threading.

Tracking Request and Response

Although one can use above test application to display the request
environment, it is replacing your original WSGI application. Rather than
replace your existing application you can use a WSGI middleware wrapper
application which logs the details to the Apache error log instead:

Original WSGI application.

def application(environ, start_response):
 ...

Logging WSGI middleware.

import pprint

class LoggingMiddleware:

 def __init__(self, application):
 self.__application = application

 def __call__(self, environ, start_response):
 errors = environ['wsgi.errors']
 pprint.pprint(('REQUEST', environ), stream=errors)

 def _start_response(status, headers, *args):
 pprint.pprint(('RESPONSE', status, headers), stream=errors)
 return start_response(status, headers, *args)

 return self.__application(environ, _start_response)

application = LoggingMiddleware(application)

The output from the middleware would end up in the Apache error log for the
virtual host, or if no virtual host specific error log file, in the main
Apache error log file.

For more complicated problems it may also be necessary to track both the
request and response content as well. A more complicated middleware which
can log these as well as header information to the file system is as
follows:

Original WSGI application.

def application(environ, start_response):
 ...

Logging WSGI middleware.

import threading
import pprint
import time
import os

class LoggingInstance:
 def __init__(self, start_response, oheaders, ocontent):
 self.__start_response = start_response
 self.__oheaders = oheaders
 self.__ocontent = ocontent

 def __call__(self, status, headers, *args):
 pprint.pprint((status, headers)+args), stream=self.__oheaders)
 self.__oheaders.close()

 self.__write = self.__start_response(status, headers, *args)
 return self.write

 def __iter__(self):
 return self

 def write(self, data):
 self.__ocontent.write(data)
 self.__ocontent.flush()
 return self.__write(data)

 def next(self):
 data = self.__iterable.next()
 self.__ocontent.write(data)
 self.__ocontent.flush()
 return data

 def close(self):
 if hasattr(self.__iterable, 'close'):
 self.__iterable.close()
 self.__ocontent.close()

 def link(self, iterable):
 self.__iterable = iter(iterable)

class LoggingMiddleware:

 def __init__(self, application, savedir):
 self.__application = application
 self.__savedir = savedir
 self.__lock = threading.Lock()
 self.__pid = os.getpid()
 self.__count = 0

 def __call__(self, environ, start_response):
 self.__lock.acquire()
 self.__count += 1
 count = self.__count
 self.__lock.release()

 key = "%s-%s-%s" % (time.time(), self.__pid, count)

 iheaders = os.path.join(self.__savedir, key + ".iheaders")
 iheaders_fp = file(iheaders, 'w')

 icontent = os.path.join(self.__savedir, key + ".icontent")
 icontent_fp = file(icontent, 'w+b')

 oheaders = os.path.join(self.__savedir, key + ".oheaders")
 oheaders_fp = file(oheaders, 'w')

 ocontent = os.path.join(self.__savedir, key + ".ocontent")
 ocontent_fp = file(ocontent, 'w+b')

 errors = environ['wsgi.errors']
 pprint.pprint(environ, stream=iheaders_fp)
 iheaders_fp.close()

 length = int(environ.get('CONTENT_LENGTH', '0'))
 input = environ['wsgi.input']
 while length != 0:
 data = input.read(min(4096, length))
 if data:
 icontent_fp.write(data)
 length -= len(data)
 else:
 length = 0
 icontent_fp.flush()
 icontent_fp.seek(0, os.SEEK_SET)
 environ['wsgi.input'] = icontent_fp

 iterable = LoggingInstance(start_response, oheaders_fp, ocontent_fp)
 iterable.link(self.__application(environ, iterable))
 return iterable

application = LoggingMiddleware(application, '/tmp/wsgi')

For this middleware, the second argument to the constructor should be a
preexisting directory. For each request four files will be saved. These
correspond to input headers, input content, response status and headers,
and request content.

Poorly Performing Code

The WSGI specification allows any iterable object to be returned as the
response, so long as the iterable yields string values. That this is the
case means that one can too easily return an object which satisfies this
requirement but has some sort of performance related issue.

The worst case of this is where instead of returning a list containing
strings, a single string is returned. The problem with a string is that
when it is iterated over, a single character of the string is yielded each
time. In other words, a single character is written back to the client on
each loop, with a flush occurring in between to ensure that the character
has actually been written and isn’t just being buffered.

Although for small strings a performance impact may not be noticed, if
returning large strings the affect on request throughput could be quite
significant.

Another case which can cause problems is to return a file like object. For
iteration over a file like object, typically what can occur is that a
single line within the file is returned each time. If the file is a line
oriented text file where each line is a of a reasonable length, this may be
okay, but if the file is a binary file there may not actually be line
breaks within the file.

For the case where file contains many short lines, throughput would be
affected much like in the case where a string is returned. For the case
where the file is just binary data, the result can be that the complete
file may be read in on the first loop. If the file is large, this could
cause a large transient spike in memory usage. Once that memory is
allocated, it will then be retained by the process, albeit that it may be
reused by the process at a later point.

Because of the performance impacts in terms of throughput and memory usage,
both these cases should be avoided. For the case of returning a string, it
should be returned with a single element list. For the case of a file like
object, the ‘wsgi.file_wrapper’ extension should be used, or a wrapper
which suitably breaks the response into chunks.

In order to identify where code may be inadvertently returning such iterable
types, the following code can be used:

import types

import cStringIO
import socket
import StringIO

BAD_ITERABLES = [
 cStringIO.InputType,
 socket.SocketType,
 StringIO.StringIO,
 types.FileType,
 types.StringType,
]

class ValidatingMiddleware:

 def __init__(self, application):
 self.__application = application

 def __call__(self, environ, start_response):
 errors = environ['wsgi.errors']

 result = self.__application(environ, start_response)

 value = type(result)
 if value == types.InstanceType:
 value = result.__class__
 if value in BAD_ITERABLES:
 print >> errors, 'BAD ITERABLE RETURNED: ',
 print >> errors, 'URL=%s ' % environ['REQUEST_URI'],
 print >> errors, 'TYPE=%s' % value

 return result

def application(environ, start_response):
 ...

application = ValidatingMiddleware(application)

Error Catching Middleware

Because mod_wsgi only logs details of uncaught exceptions to the Apache
error log and returns a generic HTTP 500 “Internal Server Error” response,
if you want the details of any exception to be displayed in the error
page and be visible from the browser, you will need to use a WSGI error
catching middleware component.

One example of WSGI error catching middleware is the ErrorMiddleware class
from Paste.

	http://www.pythonpaste.org

This class can be configured not only to catch exceptions and present the
details to the browser in an error page, it can also be configured to send
the details of any errors in email to a designated recipient, or log the
details to an alternate log file.

Being able to have error details sent by email would be useful in a
production environment or where your application is running on a web
hosting environment and the Apache error logs would not necessarily be
closely monitored on a day to day basis. Enabling of that particular
feature though should possibly only be done when you have some confidence
in the application else you might end up getting inundated with emails.

To use the error catching middleware from Paste you simply need to wrap
your existing application with it such that it then becomes the top level
application entry point:

def application(environ, start_response):
 status = '200 OK'
 output = b'Hello World!\n'

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output]

from paste.exceptions.errormiddleware import ErrorMiddleware
application = ErrorMiddleware(application, debug=True)

In addition to displaying information about the Python exception that has
occurred and the stack traceback, this middleware component will also
output information about the WSGI environment such that you can see what
was being passed to the WSGI application. This can be useful if the cause
of any problem was unexpected values passed in the headers of the HTTP
request.

Note that error catching middleware is of absolutely no use for trying
to capture and display in the browser any errors that occur at global scope
within the WSGI application script when it is being imported. Details of
any such errors occurring at this point will only be captured in the Apache
error log files. As much as possible you should avoid performing
complicated tasks when the WSGI application script file is being imported,
instead you should only trigger such actions the first time a request is
received. By doing this you will be able to capture errors in such
initialisation code with the error catching middleware.

Also note that the debug mode whereby details are displayed in the browser
should only be used during development and not in a production system. This
is because details which are displayed may be of use to anyone who may wish
to compromise your site.

Python Interactive Debugger

Python debuggers such as implemented by the ‘pdb’ module can sometimes be
useful in debugging Python applications, especially where there is a need
to single step through code and analyse application state at each point.
Use of such debuggers in web applications can be a bit more tricky than
normal applications though and especially so with mod_wsgi.

The problem with mod_wsgi is that the Apache web server can create multiple
child processes to respond to requests. Partly because of this, but also
just to prevent problems in general, Apache closes off standard input at
startup. Thus there is no actual way to interact with the Python debugger
module if it were used.

To get around this requires having complete control of the Apache web
server that you are using to host your WSGI application. In particular, it
will be necessary to shutdown the web server and then startup the ‘httpd’
process explicitly in single process debug mode, avoiding the ‘apachectl’
management application altogether:

$ apachectl stop
$ httpd -X

If Apache is normally started as the ‘root’ user, this also will need to be
run as the ‘root’ user otherwise the Apache web server will not have the
required permissions to write to its log directories etc.

The result of starting the ‘httpd’ process in this way will be that the
Apache web server will run everything in one process rather than using
multiple processes. Further, it will not close off standard input thus
allowing the Python debugger to be used.

Do note though that one cannot be using the ability of mod_wsgi to run
your application in a daemon process when doing this. The WSGI application
must be running within the main Apache process.

To trigger the Python debugger for any call within your code, the following
customised wrapper for the ‘Pdb’ class should be used:

class Debugger:

 def __init__(self, object):
 self.__object = object

 def __call__(self, *args, **kwargs):
 import pdb, sys
 debugger = pdb.Pdb()
 debugger.use_rawinput = 0
 debugger.reset()
 sys.settrace(debugger.trace_dispatch)

 try:
 return self.__object(*args, **kwargs)
 finally:
 debugger.quitting = 1
 sys.settrace(None)

This might for example be used to wrap the actual WSGI application callable
object:

def application(environ, start_response):
 status = '200 OK'
 output = b'Hello World!\n'

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output]

application = Debugger(application)

When a request is now received, the Python debugger will be triggered and
you can interactively debug your application from the window you ran the
‘httpd’ process. For example:

> /usr/local/wsgi/scripts/hello.py(21)application()
-> status = '200 OK'

(Pdb) list
 16 finally:
 17 debugger.quitting = 1
 18 sys.settrace(None)
 19
 20 def application(environ, start_response):
 21 -> status = '200 OK'
 22 output = b'Hello World!\n'
 23
 24 response_headers = [('Content-type', 'text/plain'),
 25 ('Content-Length', str(len(output)))]
 26 start_response(status, response_headers)

(Pdb) print start_response
<built-in method start_response of mod_wsgi.Adapter object at 0x1160180>

cont

When wishing to allow the request to complete, issue the ‘cont’ command. If
wishing to cause the request to abort, issue the ‘quit’ command. This will
result in a ‘BdbQuit’ exception being raised and would result in a HTTP
500 “Internal Server Error” response being returned to the client. To kill
off the whole ‘httpd’ process, after having issued ‘cont’ or ‘quit’ to exit
the debugger, interrupt the process using ‘CTRL-C’.

To see what commands the Python debugger accepts, issue the ‘help’ command
and also consult the documentation for the ‘pdb’ module on the Python web
site.

Note that the Python debugger expects to be able to write to
sys.stdout to display information to the terminal. Thus if using
using a Python web framework which replaces sys.stdout such as
web.py, you will not be able to use the Python debugger.

Browser Based Debugger

In order to use the Python debugger modules you need to have direct access
to the host and the Apache web server that is running your WSGI application.
If your only access to the system is via your web browser this makes the use
of the full Python debugger impractical.

An alternative to the Python debugger modules which is available is an
extension of the WSGI error catching middleware previously described. This
is the EvalException class from Paste. It embodies the error catching
attributes of the ErrorMiddleware class, but also allows some measure of
interactive debugging and introspection through the web browser.

As with any WSGI middleware component, to use the class entails creating
a wrapper around the application you wish to debug:

def application(environ, start_response):
 status = '200 OK'
 output = b'Hello World!\n'

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output]

from paste.evalexception.middleware import EvalException
application = EvalException(application)

Like ErrorMiddleware when an unexpected exception occurs a web page is
presented which shows the location of the error along with the contents of
the WSGI application environment. Where EvalException is different however
is that it is possible to inspect the local variables residing within each
stack frame down to where the error occurred. Further, it is possible to
enter Python code which can be evaluated within the context of the selected
stack frame in order to access data or call functions or methods of
objects.

In order for this to all work requires that subsequent requests back to
the WSGI application always end up with the same process where the error
originally occurred. With mod_wsgi this does however present a bit of a
problem as Apache can create and use multiple child processes to handle
requests.

Because of this requirement, if you want to be able to use this browser
based interactive debugger, if running your application in embedded mode of
mod_wsgi, you will need to configure Apache such that it only starts up one
child process to handle requests and that it never creates any additional
processes. The Apache configuration directives required to achieve this are
as follows:

StartServers 1
ServerLimit 1

The directives must be placed at global scope within the main Apache
configuration files and will affect the whole Apache web server.

If you are using the worker MPM on a UNIX system, restricting Apache to
just a single process may not be an issue, at least during development. If
however you are using the prefork MPM on a UNIX system, you may see issues
if you are using an AJAX intensive page that relies on being able to
execute parallel requests, as only one request at a time will be able to be
handled by the Apache web server.

If using Apache 2.X on a UNIX system, a better approach is to use daemon
mode of mod_wsgi and delegate your application to run in a single daemon
process. This process may be single or multithreaded as per any threading
requirements of your application.

Which ever configuration is used, if the browser based interactive debugger
is used it should only be used on a development system and should never be
deployed on a production system or in a web hosting environment. This is
because the debugger will allow one to execute arbitrary Python code within
the context of your application from a remote client.

Debugging Crashes With GDB

In cases where Apache itself crashes for no apparent reason, the above
techniques are not always particularly useful. This is especially the case
where the crash occurs in non Python code outside of your WSGI application.

The most common cause of Apache crashing, besides any still latent bugs
that may exist in mod_wsgi, of which hopefully there aren’t any, are shared
library version mismatches. Another major cause of crashes is third party C
extension modules for Python which are not compatible with being used in a
Python sub interpreter which isn’t the first interpreter created when
Python is initialised, or modules which are not compatible with Python sub
interpreters being destroyed and the module then being used in a new Python
sub interpreter.

Examples of where shared library version mismatches are known to occur are
between the version of the ‘expat’ library used by Apache and that embedded
within the Python ‘pyexpat’ module. Another is between the version of the
MySQL client libraries used by PHP and the Python MySQL module.

Both these can be a cause of crashes where the different components are
compiled and linked against different versions of the shared library for
the packages in question. It is vitally important that all packages making
use of a shared library were compiled against and use the same version of
a shared library.

Another problematic package is Subversion. In this case there can be
conflicts between the version of Subversion libraries used by mod_dav_svn
and the Python Subversion bindings. Certain versions of the Python
Subversion modules also cause problems because they appear to be
incompatible with use in a Python sub interpreter which isn’t the first
interpreter created when Python is initialised.

In this latter issue, the sub interpreter problems can often be solved by
forcing the WSGI application using the Python Subversion modules to run in
the ‘%{GLOBAL}’ application group. This solution often also resolves issues
with SWIG generated bindings, especially where the -thread option was
supplied to ‘swig’ when the bindings were generated.

Whatever the reason, in some cases the only way to determine why Apache or
Python is crashing is to use a C code debugger such as ‘gdb’. Now although
it is possible to attach ‘gdb’ to a running process, the preferred method
for using ‘gdb’ in conjunction with Apache is to run Apache in single
process debug mode from within ‘gdb’.

To do this it is necessary to first shutdown Apache. The ‘gdb’ debugger can
then be started against the ‘httpd’ executable and then the process started
up from inside of ‘gdb’:

$ /usr/local/apache/bin/apachectl stop
$ sudo gdb /usr/local/apache/bin/httpd
GNU gdb 6.1-20040303 (Apple version gdb-384) (Mon Mar 21 00:05:26 GMT 2005)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "powerpc-apple-darwin"...Reading symbols for shared
libraries done

(gdb) run -X
Starting program: /usr/local/apache/bin/httpd -X
Reading symbols for shared libraries .+++ done
Reading symbols for shared libraries done

If Apache is normally started as the ‘root’ user, this also will need to be
run as the ‘root’ user otherwise the Apache web server will not have the
required permissions to write to its log directories etc.

If Apache was crashing on startup, you should immediately encounter the
error, otherwise use your web browser to access the URL which is causing
the crash to occur. You can then commence trying to debug why the crash is
occurring.

Note that you should ensure that you have not assigned your WSGI
application to run in a mod_wsgi daemon process using the WSGIDaemonProcess
and WSGIProcessGroup directives. This is because the above procedure will
only catch crashes which occur when the application is running in embedded
mode. If it turns out that the application only crashes when run in mod_wsgi
daemon mode, an alternate method of using ‘gdb’ will be required.

In this circumstance you should run Apache as normal, but ensure that you
only create one mod_wsgi daemon process and have it use only a single
thread:

WSGIDaemonProcess debug threads=1
WSGIProcessGroup debug

If not running the daemon process as a distinct user where you can tell
which process it is, then you will also need to ensure that Apache
!LogLevel directive has been set to ‘info’. This is to ensure that
information about daemon processes created by mod_wsgi are logged to the
Apache error log. This is necessary, as you will need to consult the Apache
error logs to determine the process ID of the daemon process that has been
created for that daemon process group:

mod_wsgi (pid=666): Starting process 'debug' with threads=1.

Knowing the process ID, you should then run ‘gdb’, telling it to attach
directly to the daemon process:

$ sudo gdb /usr/local/apache/bin/httpd 666
GNU gdb 6.1-20040303 (Apple version gdb-384) (Mon Mar 21 00:05:26 GMT 2005)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "powerpc-apple-darwin"...Reading symbols for shared
libraries done

/Users/grahamd/666: No such file or directory.
Attaching to program: `/usr/local/apache/bin/httpd', process 666.
Reading symbols for shared libraries .+++..................... done
0x900c7060 in sigwait ()
(gdb) cont
Continuing.

Once ‘gdb’ has been started and attached to the process, then initiate the
request with the URL that causes the application to crash.

Attaching to the running daemon process can also be useful where a single
request or the whole process is appearing to hang. In this case one can
force a stack trace to be output for all running threads to try and
determine what code is getting stuck. The appropriate gdb command in this
instance is ‘thread apply all bt’:

sudo gdb /usr/local/apache-2.2/bin/httpd 666
GNU gdb 6.3.50-20050815 (Apple version gdb-477) (Sun Apr 30 20:06:22 GMT 2006)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "powerpc-apple-darwin"...Reading symbols
for shared libraries done

/Users/grahamd/666: No such file or directory.
Attaching to program: `/usr/local/apache/bin/httpd', process 666.
Reading symbols for shared libraries .+++..................... done
0x900c7060 in sigwait ()
(gdb) thread apply all bt

Thread 4 (process 666 thread 0xd03):
#0 0x9001f7ac in select ()
#1 0x004189b4 in apr_pollset_poll (pollset=0x1894650,
 timeout=-1146117585187099488, num=0xf0182d98, descriptors=0xf0182d9c)
 at poll/unix/select.c:363
#2 0x002a57f0 in wsgi_daemon_thread (thd=0x1889660, data=0x18895e8)
 at mod_wsgi.c:6980
#3 0x9002bc28 in _pthread_body ()

Thread 3 (process 666 thread 0xc03):
#0 0x9001f7ac in select ()
#1 0x0041d224 in apr_sleep (t=1000000) at time/unix/time.c:246
#2 0x002a2b10 in wsgi_deadlock_thread (thd=0x0, data=0x2aee68) at
 mod_wsgi.c:7119
#3 0x9002bc28 in _pthread_body ()

Thread 2 (process 666 thread 0xb03):
#0 0x9001f7ac in select ()
#1 0x0041d224 in apr_sleep (t=299970002) at time/unix/time.c:246
#2 0x002a2dec in wsgi_monitor_thread (thd=0x0, data=0x18890e8) at
 mod_wsgi.c:7197
#3 0x9002bc28 in _pthread_body ()

Thread 1 (process 666 thread 0x203):
#0 0x900c7060 in sigwait ()
#1 0x0041ba9c in apr_signal_thread (signal_handler=0x2a29a0
 <wsgi_check_signal>) at threadproc/unix/signals.c:383
#2 0x002a3728 in wsgi_start_process (p=0x1806418, daemon=0x18890e8)
 at mod_wsgi.c:7311
#3 0x002a6a4c in wsgi_hook_init (pconf=0x1806418, ptemp=0x0,
 plog=0xc8, s=0x18be8d4) at mod_wsgi.c:7716
#4 0x0000a5b0 in ap_run_post_config (pconf=0x1806418, plog=0x1844418,
 ptemp=0x180e418, s=0x180da78) at config.c:91
#5 0x000033d4 in main (argc=3, argv=0xbffffa8c) at main.c:706

It is suggested when trying to debug such issues that the daemon process be
made to run with only a single thread. This will reduce how many stack
traces one needs to analyse.

If you are running with multiple processes within the daemon process group
and all requests are hanging, you will need to get a snapshot of what is
happening in all processes in the daemon process group. Because doing this
by hand will be tedious, it is better to automate it.

To automate capturing the stack traces, first create a file called ‘gdb.cmds’
which contains the following:

set pagination 0
thread apply all bt
detach
quit

This can then be used in conjunction with ‘gdb’ to avoid needing to enter
the commands manually. For example:

sudo gdb /usr/local/apache-2.2/bin/httpd -x gdb.cmds -p 666

To be able to automate this further and apply it to all processes in a
daemon process group, then first off ensure that daemon processes are named
in ‘ps’ output by using the ‘display-name’ option to WSGIDaemonProcess
directive.

For example, to apply default naming strategy as implemented by mod_wsgi, use:

WSGIDaemonProcess xxx display-name=%{GLOBAL}

In the output of a BSD derived ‘ps’ command, this will now show the process
as being named ‘(wsgi:xxx)’:

$ ps -cxo command,pid | grep wsgi
(wsgi:xxx) 666

Note that the name may be truncated as the resultant name can be no longer
than what was the length of the original executable path for Apache. You
may therefore like to name it explicitly:

WSGIDaemonProcess xxx display-name=(wsgi:xxx)

Having named the processes in the daemon process group, we can now parse the
output of ‘ps’ to identify the process and apply the ‘gdb’ command script to
each:

for pid in `ps -cxo command,pid | awk '{ if ($0 ~ /wsgi:xxx/ && $1 !~ /grep/) print $NF }'`; do sudo gdb -x gdb.cmds -p $pid; done

The actual name given to the daemon process group using the ‘display-name’
option should be replaced in this command line. That is, change ‘wsgi:xxx’
appropriately.

If you are having problems with process in daemon process groups hanging,
you might consider implementing a monitoring system which automatically
detects somehow when the processes are no longer responding to requests and
automatically trigger this dump of the stack traces before restarting the
daemon process group or Apache.

Extracting Python Stack Traces

Using gdb to get stack traces as described above only gives you information
about what is happening at the C code level. This will not tell where in the
actual Python code execution was at. Your only clue is going to be where a
call out was being made to some distinct C function in a C extension module
for Python.

One can get stack traces for Python code by using:

def _stacktraces():
 code = []
 for threadId, stack in sys._current_frames().items():
 code.append("\n# ThreadID: %s" % threadId)
 for filename, lineno, name, line in traceback.extract_stack(stack):
 code.append('File: "%s", line %d, in %s' % (filename,
 lineno, name))
 if line:
 code.append(" %s" % (line.strip()))

 for line in code:
 print >> sys.stderr, line

The caveat here obviously is that the process has to still be running. There
is also the issue of how you trigger that function to dump stack traces for
executing Python threads.

If the problem you have is that some request handler threads are stuck,
either blocked, or stuck in an infinite loop, and you want to know what they
are doing, then so long as there are still some handler threads left and
the application is still responding to requests, then you could trigger it
from a request handler triggered by making a request against a specific URL.

This though depends on you only running your application within a single
process because as soon as you have multiple processes you have no guarantee
that a request will go to the process you want to debug.

A better method therefore is to have a perpetually running background thread
which monitors for a specific file in the file system. When that file is
created or the modification time changes, then the background thread would
dump the stack traces for the process.

Sample code which takes this approach is included below. This code could be
placed temporarily at the end of your WSGI script file if you know you are
going to need it because of a recurring problem:

import os
import sys
import time
import signal
import threading
import atexit
import Queue
import traceback

FILE = '/tmp/dump-stack-traces.txt'

_interval = 1.0

_running = False
_queue = Queue.Queue()
_lock = threading.Lock()

def _stacktraces():
 code = []
 for threadId, stack in sys._current_frames().items():
 code.append("\n# ProcessId: %s" % os.getpid())
 code.append("# ThreadID: %s" % threadId)
 for filename, lineno, name, line in traceback.extract_stack(stack):
 code.append('File: "%s", line %d, in %s' % (filename,
 lineno, name))
 if line:
 code.append(" %s" % (line.strip()))

 for line in code:
 print >> sys.stderr, line

try:
 mtime = os.path.getmtime(FILE)
except:
 mtime = None

def _monitor():
 while 1:
 global mtime

 try:
 current = os.path.getmtime(FILE)
 except:
 current = None

 if current != mtime:
 mtime = current
 _stacktraces()

 # Go to sleep for specified interval.

 try:
 return _queue.get(timeout=_interval)
 except:
 pass

_thread = threading.Thread(target=_monitor)
_thread.setDaemon(True)

def _exiting():
 try:
 _queue.put(True)
 except:
 pass
 _thread.join()

atexit.register(_exiting)

def _start(interval=1.0):
 global _interval
 if interval < _interval:
 _interval = interval

 global _running
 _lock.acquire()
 if not _running:
 prefix = 'monitor (pid=%d):' % os.getpid()
 print >> sys.stderr, '%s Starting stack trace monitor.' % prefix
 _running = True
 _thread.start()
 _lock.release()

_start()

Once your WSGI script file has been loaded, then touching the file
‘/tmp/dump-stack-traces.txt’ will cause stack traces for active Python
threads to be output to the Apache error log.

Note that the sample code doesn’t deal with possibility that with multiple
processes for same application, that all processes may attempt to dump
information at the same time. As such, you may get interleaving of output
from multiple processes in Apache error logs at the same time.

What you may want to do is modify this code to dump out to some special
directory, distinct files containing the trace where the names of the file
include the process ID and a date/time. That way each will be separate.

An example of what one might expect to see from the above code is as
follows:

ProcessId: 666
ThreadID: 4352905216
File: "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/threading.py", line 497, in __bootstrap
 self.__bootstrap_inner()
File: "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/threading.py", line 522, in __bootstrap_inner
 self.run()
File: "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/threading.py", line 477, in run
 self.__target(*self.__args, **self.__kwargs)
File: "/Library/WebServer/Sites/django-1/htdocs/project.wsgi", line 72, in _monitor
 _stacktraces()
File: "/Library/WebServer/Sites/django-1/htdocs/project.wsgi", line 47, in _stacktraces
 for filename, lineno, name, line in traceback.extract_stack(stack):

ThreadID: 4322832384
File: "/Library/WebServer/Sites/django-1/htdocs/project.wsgi", line 21, in application
 return _application(environ, start_response)
File: "/Library/WebServer/Sites/django-1/lib/python2.6/site-packages/django/core/handlers/wsgi.py", line 245, in __call__
 response = middleware_method(request, response)
File: "/Library/WebServer/Sites/django-1/lib/python2.6/site-packages/django/contrib/sessions/middleware.py", line 36, in process_response
 request.session.save()
File: "/Library/WebServer/Sites/django-1/lib/python2.6/site-packages/django/contrib/sessions/backends/db.py", line 63, in save
 obj.save(force_insert=must_create, using=using)
File: "/Library/WebServer/Sites/django-1/lib/python2.6/site-packages/django/db/models/base.py", line 434, in save
 self.save_base(using=using, force_insert=force_insert, force_update=force_update)
File: "/Library/WebServer/Sites/django-1/lib/python2.6/site-packages/django/db/models/base.py", line 527, in save_base
 result = manager._insert(values, return_id=update_pk, using=using)
File: "/Library/WebServer/Sites/django-1/lib/python2.6/site-packages/django/db/models/manager.py", line 195, in _insert
 return insert_query(self.model, values, **kwargs)
File: "/Library/WebServer/Sites/django-1/lib/python2.6/site-packages/django/db/models/query.py", line 1479, in insert_query
 return query.get_compiler(using=using).execute_sql(return_id)
File: "/Library/WebServer/Sites/django-1/lib/python2.6/site-packages/django/db/models/sql/compiler.py", line 783, in execute_sql
 cursor = super(SQLInsertCompiler, self).execute_sql(None)
File: "/Library/WebServer/Sites/django-1/lib/python2.6/site-packages/django/db/models/sql/compiler.py", line 727, in execute_sql
 cursor.execute(sql, params)
File: "/Library/WebServer/Sites/django-1/lib/python2.6/site-packages/debug_toolbar/panels/sql.py", line 95, in execute
 stacktrace = tidy_stacktrace(traceback.extract_stack())
File: "/Library/WebServer/Sites/django-1/lib/python2.6/site-packages/debug_toolbar/panels/sql.py", line 40, in tidy_stacktrace
 s_path = os.path.realpath(s[0])
File: "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/posixpath.py", line 355, in realpath
 if islink(component):
File: "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/posixpath.py", line 132, in islink
 st = os.lstat(path)

Note that one of the displayed threads will be that for the thread which is
dumping the stack traces. That stack trace can obviously be ignored.

One could extend the above recipe in more elaborate ways by using a WSGI
middleware that capture details of each request from the WSGI environment
and also dumping out from that the URL for the request being handled by
any threads. This may assist in working out whether problems are related
to a specific URL.

Processes And Threading

Apache can operate in a number of different modes dependent on the platform
being used and the way in which it is configured. This ranges from multiple
processes being used, with only one request being handled at a time within
each process, to one or more processes being used, with concurrent requests
being handled in distinct threads executing within those processes.

The combinations possible are further increased by mod_wsgi through its
ability to create groups of daemon processes to which WSGI applications can
be delegated. As with Apache itself, each process group can consist of one
or more processes and optionally make use of multithreading. Unlike Apache,
where some combinations are only possible based on how Apache was compiled,
the mod_wsgi daemon processes can operate in any mode based only on runtime
configuration settings.

This article provides background information on how Apache and mod_wsgi
makes use of processes and threads to handle requests, and how Python
sub interpreters are used to isolate WSGI applications. The implications
of the various modes of operation on data sharing is also discussed.

WSGI Process/Thread Flags

Although Apache can make use of a combination of processes and/or threads
to handle requests, this is not unique to the Apache web server and the
WSGI specification acknowledges this fact. This acknowledgement is in the
form of specific key/value pairs which must be supplied as part of the WSGI
environment to a WSGI application. The purpose of these key/value pairs is
to indicate whether the underlying web server does or does not make use of
multiple processes and/or multiple threads to handle requests.

These key/value pairs are defined as follows in the WSGI specification.

	wsgi.multithread

	This value should evaluate true if the application object may be
simultaneously invoked by another thread in the same process, and
should evaluate false otherwise.

	wsgi.multiprocess

	This value should evaluate true if an equivalent application object may
be simultaneously invoked by another process, and should evaluate false
otherwise.

A WSGI application which is not written to take into consideration the
different combinations of process and threading models may not be portable
and potentially may not be robust when deployed to an alternate hosting
platform or configuration.

Although you may not need an application or application component to work
under all possible combinations for these values initially, it is highly
recommended that any application component still be designed to work under
any of the different operating modes. If for some reason this cannot be
done due to the very nature of what functionality the component provides,
the component should validate if it is being run within a compatible
configuration and return a HTTP 500 internal server error response if it
isn’t.

An example of a component for which restrictions would apply is one
providing an interactive browser based debugger session in response to an
internal failure of a WSGI application. In this scenario, for the component
to work correctly, subsequent HTTP requests must be processed by the same
process. As such, the component can only be used with a web server that
uses a single process. In other words, the value of ‘wsgi.multiprocess’
would have to evaluate to be false.

Multi-Processing Modules

The main factor which determines how Apache operates is which
multi-processing module (MPM) is built into Apache at compile time.
Although runtime configuration can customise the behaviour of the MPM, the
choice of MPM will dictate whether or not multithreading is available.

On UNIX based systems, Apache defaults to being built with the ‘prefork’
MPM. If Apache 1.3 is being used this is actually the only choice, but for
later versions of Apache, this can be overridden at build time by supplying
an appropriate value in conjunction with the --with-mpm option when
running the ‘configure’ script for Apache. The main alternative to the
‘prefork’ MPM which can be used on UNIX systems is the ‘worker’ MPM.

If you are unsure which MPM is built into Apache, it can be determined
by running the Apache web server executable with the -V option. The
output from running the web server executable with this option will be
information about how it was configured when built:

Server version: Apache/2.2.1
Server built: Mar 4 2007 20:48:15
Server's Module Magic Number: 20051115:1
Server loaded: APR 1.2.6, APR-Util 1.2.6
Compiled using: APR 1.2.6, APR-Util 1.2.6
Architecture: 32-bit
Server MPM: Worker
 threaded: yes (fixed thread count)
 forked: yes (variable process count)
Server compiled with....
 -D APACHE_MPM_DIR="server/mpm/worker"
 -D APR_HAS_MMAP
 -D APR_HAVE_IPV6 (IPv4-mapped addresses enabled)
 -D APR_USE_SYSVSEM_SERIALIZE
 -D APR_USE_PTHREAD_SERIALIZE
 -D SINGLE_LISTEN_UNSERIALIZED_ACCEPT
 -D APR_HAS_OTHER_CHILD
 -D AP_HAVE_RELIABLE_PIPED_LOGS
 -D DYNAMIC_MODULE_LIMIT=128
 -D HTTPD_ROOT="/usr/local/apache-2.2"
 -D SUEXEC_BIN="/usr/local/apache-2.2/bin/suexec"
 -D DEFAULT_SCOREBOARD="logs/apache_runtime_status"
 -D DEFAULT_ERRORLOG="logs/error_log"
 -D AP_TYPES_CONFIG_FILE="conf/mime.types"
 -D SERVER_CONFIG_FILE="conf/httpd.conf"

Which MPM is being used can be determined from the ‘Server MPM’ field.

On the Windows platform the only available MPM is ‘winnt’.

The UNIX ‘prefork’ MPM

This MPM is the most commonly used. It was the only mode of operation
available in Apache 1.3 and is still the default mode on UNIX systems in
later versions of Apache. In this configuration, the main Apache process
will at startup create multiple child processes. When a request is received
by the parent process, it will be processed by which ever of the child
processes is ready.

Each child process will only handle one request at a time. If another
request arrives at the same time, it will be handled by the next available
child process. When it is detected that the number of available processes
is running out, additional child processes will be created as necessary. If
a limit is specified as to the number of child processes which may be
created and the limit is reached, plus there are sufficient requests
arriving to fill up the listener socket queue, the client may instead
receive an error resulting from not being able to establish a connection
with the web server.

Where additional child processes have to be created due to a peak in the
number of current requests arriving and where the number of requests has
subsequently dropped off, the excess child processes may be shutdown and
killed off. Child processes may also be shutdown and killed off after they
have handled some set number of requests.

Although threads are not used to service individual requests, this does not
preclude an application from creating separate threads to perform some
specific task.

For the typical ‘prefork’ configuration where multiple processes are used,
the WSGI environment key/value pairs indicating how processes and threads
are being used will be as follows.

	wsgi.multithread

	False

	wsgi.multiprocess

	True

Because multiple processes are being used, a WSGI middleware component such
as the interactive browser based debugger described would not be able to be
used. If during development and testing of a WSGI application, use of such a
debugger was required, the only option which would exist would be to limit
the number of processes being used. This could be achieved using the Apache
configuration:

StartServers 1
ServerLimit 1

With this configuration, only one process will be started, with no
additional processes ever being created. The WSGI environment key/value
pairs indicating how processes and threads are being used will for this
configuration be as follows.

	wsgi.multithread

	False

	wsgi.multiprocess

	False

In effect, this configuration has the result of serialising all requests
through a single process. This will allow an interactive browser based
debugger to be used, but may prevent more complex WSGI applications which
make use of AJAX techniques from working. This could occur where a web page
initiates a sequence of AJAX requests and expects later requests to be able
to complete while a response for an initial request is still pending. In
other words, problems may occur where requests overlap, as subsequent
requests will not be able to be executed until the initial request has
completed.

The UNIX ‘worker’ MPM

The ‘worker’ MPM is similar to ‘prefork’ mode except that within each child
process there will exist a number of worker threads. Instead of a request
only being able to be processed by the next available idle child process
and with the handling of the request being the only thing the child process
is then doing, the request may be processed by a worker thread within a
child process which already has other worker threads handling other
requests at the same time.

It is possible that a WSGI application could be executed at the same time
from multiple worker threads within the one child process. This means that
multiple worker threads may want to access common shared data at the same
time. As a consequence, such common shared data must be protected in a way
that will allow access and modification in a thread safe manner. Normally
this would necessitate the use of some form of synchronisation mechanism to
ensure that only one thread at a time accesses and or modifies the common
shared data.

If all worker threads within a child process were busy when a new request
arrives the request would be processed by an idle worker thread in another
child process. Apache may still create new child processes on demand if
necessary. Apache may also still shutdown and kill off excess child
processes, or child processes that have handled more than a set number of
requests.

Overall, use of ‘worker’ MPM will result in less child processes needing to
be created, but resource usage of individual child processes will be
greater. On modern computer systems, the ‘worker’ MPM would in general be
the prefered MPM to use and should if possible be used in preference to the
‘prefork’ MPM.

Although contention for the global interpreter lock (GIL) in Python can
causes issues for pure Python programs, it is not generally as big an issue
when using Python within Apache. This is because all the underlying
infrastructure for accepting requests and mapping the URL to a WSGI
application, as well as the handling of requests against static files are
all performed by Apache in C code. While this code is being executed the
thread will not be holding the Python GIL, thus allowing a greater level of
overlapping execution where a system has multiple CPUs or CPUs with
multiple cores.

This ability to make good use of more than processor, even when using
multithreading, is further enchanced by the fact that Apache uses multiple
processes for handling requests and not just a single process. Thus, even
when there is some contention for the GIL within a specific process, it
doesn’t stop other processes from being able to run as the GIL is only
local to a process and does not extend across processes.

For the typical ‘worker’ configuration where multiple processes and
multiple threads are used, the WSGI environment key/value pairs indicating
how processes and threads are being used will be as follows.

	wsgi.multithread

	True

	wsgi.multiprocess

	True

Similar to the ‘prefork’ MPM, the number of processes can be restricted
to just one if required using the configuration:

StartServers 1
ServerLimit 1

With this configuration, only one process will be started, with no
additional processes ever being created, but that one process would still
make use of multiple threads.

The WSGI environment key/value pairs indicating how processes and threads
are being used will for this configuration be as follows.

	wsgi.multithread

	True

	wsgi.multiprocess

	False

Because multiple threads are being used, there would be no problem with
overlapping requests generated by an AJAX based web page.

The Windows ‘winnt’ MPM

On the Windows platform the ‘winnt’ MPM is the only option available. With
this MPM, multiple worker threads within a child process are used to handle
all requests. The ‘winnt’ MPM is different to the ‘worker’ mode however in
that there is only one child process. At no time are additional child
processes created, or that one child process shutdown and killed off,
except where Apache as a whole is being stopped or restarted. Because there
is only one child process, the maximum number of threads used is much
greater.

The WSGI environment key/value pairs indicating how processes and threads
are being used will for this configuration be as follows.

	wsgi.multithread

	True

	wsgi.multiprocess

	False

The mod_wsgi Daemon Processes

When using ‘daemon’ mode of mod_wsgi, each process group can be
individually configured so as to run in a manner similar to either
‘prefork’, ‘worker’ or ‘winnt’ MPMs for Apache. This is achieved by
controlling the number of processes and threads within each process
using the ‘processes’ and ‘threads’ options of the WSGIDaemonProcess
directive.

To emulate the same process/thread model as the ‘winnt’ MPM, that is,
a single process with multiple threads, the following configuration would
be used:

WSGIDaemonProcess example threads=25

The WSGI environment key/value pairs indicating how processes and threads
are being used will for this configuration be as follows.

	wsgi.multithread

	True

	wsgi.multiprocess

	False

Note that by not specifying the ‘processes’ option only a single process is
created within the process group. Although providing ‘processes=1’ as an
option would also result in a single process being created, this has a
slightly different meaning and so you should only do this if necessary.

The difference between not specifying the ‘processes’ option and defining
‘processes=1’ will be that WSGI environment attribute called
‘wsgi.multiprocess’ will be set to be True when the ‘processes’ option
is defined, whereas not providing the option at all will result in the
attribute being set to be False. This distinction is to allow for where
some form of mapping mechanism might be used to distribute requests across
multiple process groups and thus in effect it is still a multiprocess
application.

In other words, if you use the configuration:

WSGIDaemonProcess example processes=1 threads=25

the WSGI environment key/value pairs indicating how processes and threads
are being used will instead be:

	wsgi.multithread

	True

	wsgi.multiprocess

	True

If you need to ensure that ‘wsgi.multiprocess’ is False so that interactive
debuggers do not complain about an incompatible configuration, simply do
not specify the ‘processes’ option and allow the default behaviour of a
single daemon process to apply.

To emulate the same process/thread model as the ‘worker’ MPM, that is,
multiple processes with multiple threads, the following configuration would
be used:

WSGIDaemonProcess example processes=2 threads=25

The WSGI environment key/value pairs indicating how processes and threads
are being used will for this configuration be as follows.

	wsgi.multithread

	True

	wsgi.multiprocess

	True

To emulate the same process/thread model as the ‘prefork’ MPM, that is,
multiple processes with only a single thread running in each, the following
configuration would be used:

WSGIDaemonProcess example processes=5 threads=1

The WSGI environment key/value pairs indicating how processes and threads
are being used will for this configuration be as follows.

	wsgi.multithread

	False

	wsgi.multiprocess

	True

Note that when using mod_wsgi daemon processes, the processes are only used
to execute the Python based WSGI application. The processes are not in any
way used to serve static files, or host applications implemented in other
languages.

Unlike the normal Apache child processes when ‘embedded’ mode of mod_wsgi
is used, the configuration as to the number of daemon processes within a
process group is fixed. That is, when the server experiences additional
load, no more daemon processes are created than what is defined. You should
therefore always plan ahead and make sure the number of processes and
threads defined is adequate to cope with the expected load.

Sharing Of Global Data

When the ‘winnt’ MPM is being used, or the ‘prefork’ or ‘worker’ MPM are
forced to run with only a single process, all request handlers within a
specific WSGI application will always be accessing the same global data.
This global data will persist in memory until Apache is shutdown or
restarted, or in the case of the ‘prefork’ or ‘worker’ MPM until the child
process is recycled due to reaching a predefined request limit.

This ability to access the same global data and for that data to persist
for the lifetime of the child process is not present when either of the
‘prefork’ or ‘worker’ MPM are used in multiprocess mode. In other words,
where the WSGI environment key/value pair indicating how processes are used
is set to:

	wsgi.multiprocess

	True

This is because request handlers can execute within the context of distinct
child processes, each with their own set of global data unique to that
child process.

The consequences of this are that you cannot assume that separate
invocations of a request handler will have access to the same global data
if that data only resides within the memory of the child process. If some
set of global data must be accessible by all invocations of a handler, that
data will need to be stored in a way that it can be accessed from multiple
child processes. Such sharing could be achieved by storing the global data
within an external database, the filesystem or in shared memory accessible
by all child processes.

Since the global data will be accessible from multiple child processes at
the same time, there must be adequate locking mechanisms in place to
prevent distinct child processes from trying to modify the same data at the
same time. The locking mechanisms need to also be able to deal with the
case of multiple threads within one child process accessing the global data
at the same time, as will be the case for the ‘worker’ and ‘winnt’ MPM.

Python Sub Interpreters

The default behaviour of mod_wsgi is to create a distinct Python sub
interpreter for each WSGI application. Thus, where Apache is being used to
host multiple WSGI applications a process will contain multiple sub
interpreters. When Apache is run in a mode whereby there are multiple child
processes, each child process will contain sub interpreters for each WSGI
application.

When a sub interpreter is created for a WSGI application, it would then
normally persist for the life of the process. The only exception to this
would be where interpreter reloading is enabled, in which case the sub
interpreter would be destroyed and recreated when the WSGI application
script file has been changed.

For the sub interpreter created for each WSGI application, they will each
have their own set of Python modules. In other words, a change to the
global data within the context of one sub interpreter will not be seen from
the sub interpreter corresponding to a different WSGI application. This
will be the case whether or not the sub interpreters are in the same
process.

This behaviour can be modified and multiple applications grouped together
using the WSGIApplicationGroup directive. Specifically, the directive
indicates that the marked WSGI applications should be run within the
context of a common sub interpreter rather than being run in their own sub
interpreters. By doing this, each WSGI application will then have access
to the same global data. Do note though that this doesn’t change the fact
that global data will not be shared between processes.

The only other way of sharing data between sub interpreters within the one
child process would be to use an external data store, or a third party
C extension module for Python which allows communication or sharing of
data between multiple interpreters within the same process.

Building A Portable Application

Taking into consideration the different process models used by Apache and the
manner in which interpreters are used by mod_wsgi, to build a portable and
robust application requires the following therefore be satisified.

1. Where shared data needs to be visible to all application instances,
regardless of which child process they execute in, and changes made to the
data by one application are immediately available to another, including any
executing in another child process, an external data store such as a
database or shared memory must be used. Global variables in normal Python
modules cannot be used for this purpose.

2. Access to and modification of shared data in an external data store must
be protected so as to prevent multiple threads in the same or different
processes from interfering with each other. This would normally be achieved
through a locking mechanism visible to all child processes.

3. An application must be re-entrant, or simply put, be able to be called
concurrently by multiple threads at the same time. Data which needs to
exist for the life of the request, would need to be stored as stack based
data, thread local data, or cached in the WSGI application environment.
Global variables within the actual application module cannot be used for
this purpose.

4. Where global data in a module local to a child process is still used,
for example as a cache, access to and modification of the global data must
be protected by local thread locking mechanisms.

Reloading Source Code

This document contains information about mechanisms available in mod_wsgi
for automatic reloading of source code when an application is changed and
any issues related to those mechanisms.

Embedded Mode Vs Daemon Mode

What is achievable in the way of automatic source code reloading depends on
which mode your WSGI application is running.

If your WSGI application is running in embedded mode then what happens when
you make code changes is largely dictated by how Apache works, as it
controls the processes handling requests. In general, if using embedded
mode you will have no choice but to manually restart Apache in order for code
changes to be used.

If using daemon mode, because mod_wsgi manages directly the processes
handling requests and in which your WSGI application runs, there is more
avenue for performing automatic source code reloading.

As a consequence, it is important to understand what mode your WSGI
application is running in.

If you are running on Windows, are using Apache 1.3, or have not used
WSGIDaemonProcess/WSGIProcessGroup directives to delegate your WSGI
application to a mod_wsgi daemon mode process, then you will be using
embedded mode.

If you are not sure whether you are using embedded mode or daemon mode,
then substitute your WSGI application entry point with:

def application(environ, start_response):
 status = '200 OK'

 if not environ['mod_wsgi.process_group']:
 output = u'EMBEDDED MODE'
 else:
 output = u'DAEMON MODE'

 response_headers = [('Content-Type', 'text/plain'),
 ('Content-Length', str(len(output)))]

 start_response(status, response_headers)

 return [output.encode('UTF-8')]

If your WSGI application is running in embedded mode, this will output to
the browser ‘EMBEDDED MODE’. If your WSGI application is running in daemon
mode, this will output to the browser ‘DAEMON MODE’.

Reloading In Embedded Mode

However you have configured Apache to mount your WSGI application, you will
have a script file which contains the entry point for the WSGI application.
This script file is not treated exactly like a normal Python module and
need not even use a ‘.py’ extension. It is even preferred that a ‘.py’
extension not be used for reasons described below.

For embedded mode, one of the properties of the script file is that by
default it will be reloaded whenever the file is changed. The primary
intent with the file being reloaded is to provide a second chance at
getting any configuration in it and the mapping to the application correct.
If the script weren’t reloaded in this way, you would need to restart
Apache even for a trivial change to the script file.

Do note though that this script reloading mechanism is not intended as a
general purpose code reloading mechanism. Only the script file itself is
reloaded, no other Python modules are reloaded. This means that if modifying
normal Python code files which are used by your WSGI application, you will
need to trigger a restart of Apache. For example, if you are using Django
in embedded mode and needed to change your ‘settings.py’ file, you would
still need to restart Apache.

That only the script file and not the whole process is reloaded also has a
number of implications and imposes certain restrictions on what code in the
script file can do or how it should be implemented.

The first issue is that when the script file is imported, if the code makes
modifications to sys.path or other global data structures and the
changes are additive, checks should first be made to ensure that the change
has not already been made, else duplicate data will be added every time the
script file is reloaded.

This means that when updating sys.path, instead of using:

import sys
sys.path.append('/usr/local/wsgi/modules')

the more correct way would be to use:

import sys
path = '/usr/local/wsgi/modules'
if path not in sys.path:
 sys.path.append(path)

This will ensure that the path doesn’t get added multiple times.

Even where the script file is named so as to have a ‘.py’ extension, that
the script file is not treated like a normal module means that you should
never try to import the file from another code file using the ‘import’
statement or any other import mechanism. The easiest way to avoid this is
not use the ‘.py’ extension on script files or never place script files in
a directory which is located on the standard module search path, nor add
the directory containing the script into sys.path explicitly.

If an attempt is made to import the script file as a module the result will
be that it will be loaded a second time as an independent module. This is
because script files are loaded under a module name which is keyed to the
full absolute path for the script file and not just the basename of the
file. Importing the script file directly and accessing it will therefore
not result in the same data being accessed as exists in the script file
when loaded.

Because the script file is not treated like a normal Python module also has
implications when it comes to using the “pickle” module in conjunction
with objects contained within the script file.

In practice what this means is that neither function objects, class objects
or instances of classes which are defined in the script file should be
stored using the “pickle” module.

The technical reasons for the limitations on the use of the “pickle” module
in conjunction with objects defined in the script file are further
discussed in the document Issues With Pickle Module.

The act of reloading script files also means that any data previously held
by the module corresponding to the script file will be deleted. If such
data constituted handles to database connections, and the connections are
not able to clean up themselves when deleted, it may result in resource
leakage.

One should therefore be cautious of what data is kept in a script file.
Preferably the script file should only act as a bridge to code and data
residing in a normal Python module imported from an entirely different
directory.

Restarting Apache Processes

As explained above, the only facility that mod_wsgi provides for reloading
source code files in embedded mode, is the reloading of just the script
file providing the entry point for your WSGI application.

If you don’t have a choice but to use embedded mode and still desire some
measure of automatic source code reloading, one option available which
works for both Windows and UNIX systems is to force Apache to recycle the
Apache server child process that handles the request automatically after
the request has completed.

To enable this, you need to modify the value of the MaxRequestsPerChild
directive in the Apache configuration. Normally this would be set to a
value of ‘0’, indicating that the process should never be restarted as a
result of the number of requests processed. To have it restart a process
after every request, set it to the value ‘1’ instead:

MaxRequestsPerChild 1

Do note however that this will cause the process to be restarted after any
request. That is, the process will even be restarted if the request was for
a static file or a PHP application and wasn’t even handled by your WSGI
application. The restart will also occur even if you have made no changes
to your code.

Because a restart happens regardless of the request type, using this method
is not recommended.

Because of how the Apache server child processes are monitored and restarts
handled, it is technically possible that this method will yield performance
which is worse than CGI scripts. For that reason you may even be better off
using a CGI/WSGI bridge to host your WSGI application. At least that way
the handling of other types of requests, such as for static files and PHP
applications will not be affected.

Reloading In Daemon Mode

If using mod_wsgi daemon mode, what happens when the script file is changed
is different to what happens in embedded mode. In daemon mode, if the
script file changed, rather than just the script file being reloaded, the
daemon process which contains the application will be shutdown and
restarted automatically.

Detection of the change in the script file will occur at the time of the
first request to arrive after the change has been made. The way that the
restart is performed does not affect the handling of the request, with it
still being processed once the daemon process has been restarted.

In the case of there being multiple daemon processes in the process group,
then a cascade effect will occur, with successive processes being restarted
until the request is again routed to one of the newly restarted processes.

In this way, restarting of a WSGI application when a change has been made
to the code is a simple matter of touching the script file if daemon mode
is being used. Any daemon processes will then automatically restart without
the need to restart the whole of Apache.

So, if you are using Django in daemon mode and needed to change your
‘settings.py’ file, once you have made the required change, also touch the
script file containing the WSGI application entry point. Having done that,
on the next request the process will be restarted and your Django
application reloaded.

Restarting Daemon Processes

If you are using daemon mode of mod_wsgi, restarting of processes can to a
degree also be controlled by a user, or by the WSGI application itself,
without restarting the whole of Apache.

To force a daemon process to be restarted, if you are using a single daemon
process with many threads for the application, then you can embed a page in
your application (password protected hopefully), that sends an appropriate
signal to itself.

This should only be done for daemon processes and not within the Apache
child processes, as sending such a signal within a child process may
interfere with the operation of Apache. That the code is executing within a
daemon process can be determined by checking the ‘mod_wsgi.process_group’
variable in the WSGI environment passed to the application. The value will
be non empty if a daemon process:

if environ['mod_wsgi.process_group'] != '':
 import signal, os
 os.kill(os.getpid(), signal.SIGINT)

This will cause the daemon process your application is in to shutdown. The
Apache process supervisor will then automatically restart your process
ready for subsequent requests. On the restart it will pick up your new
code. This way you can control a reload from your application through some
special web page specifically for that purpose.

You can also send this signal from an external application, but a problem
there may be identifying which process to send the signal to. If you are
running the daemon process(es) as a distinct user/group to Apache and each
application is running as a different user then you could just look for the
Apache (httpd) processes owned by the user the application is running as,
as opposed to the Apache user, and send them all signals.

If the daemon process is running as the same user as Apache or there are
distinct applications running in different daemon processes but as the same
user, knowing which daemon processes to send the signal may be harder to
determine.

Either way, to make it easier to identify which processes belong to a
daemon process group, you can use the ‘display-name’ option to the
WSGIDaemonProcess to name the process. On many platforms, when this option
is used, that name will then appear in the output from the ‘ps’ command
and not the name of the actual Apache server binary.

Monitoring For Code Changes

The use of signals to restart a daemon process could also be employed in a
mechanism which automatically detects changes to any Python modules or
dependent files. This could be achieved by creating a thread at startup
which periodically looks to see if file timestamps have changed and trigger
a restart if they have.

Example code for such an automatic restart mechanism which is compatible
with how mod_wsgi works is shown below:

from __future__ import print_function

import os
import sys
import time
import signal
import threading
import atexit

try:
 import Queue as queue
except ImportError:
 import queue

_interval = 1.0
_times = {}
_files = []

_running = False
_queue = queue.Queue()
_lock = threading.Lock()

def _restart(path):
 _queue.put(True)
 prefix = 'monitor (pid=%d):' % os.getpid()
 print('%s Change detected to \'%s\'.' % (prefix, path), file=sys.stderr)
 print('%s Triggering process restart.' % prefix, file=sys.stderr)
 os.kill(os.getpid(), signal.SIGINT)

def _modified(path):
 try:
 # If path doesn't denote a file and were previously
 # tracking it, then it has been removed or the file type
 # has changed so force a restart. If not previously
 # tracking the file then we can ignore it as probably
 # pseudo reference such as when file extracted from a
 # collection of modules contained in a zip file.

 if not os.path.isfile(path):
 return path in _times

 # Check for when file last modified.

 mtime = os.stat(path).st_mtime
 if path not in _times:
 _times[path] = mtime

 # Force restart when modification time has changed, even
 # if time now older, as that could indicate older file
 # has been restored.

 if mtime != _times[path]:
 return True
 except:
 # If any exception occured, likely that file has been
 # been removed just before stat(), so force a restart.

 return True

 return False

def _monitor():
 while 1:
 # Check modification times on all files in sys.modules.

 for module in sys.modules.values():
 if not hasattr(module, '__file__'):
 continue
 path = getattr(module, '__file__')
 if not path:
 continue
 if os.path.splitext(path)[1] in ['.pyc', '.pyo', '.pyd']:
 path = path[:-1]
 if _modified(path):
 return _restart(path)

 # Check modification times on files which have
 # specifically been registered for monitoring.

 for path in _files:
 if _modified(path):
 return _restart(path)

 # Go to sleep for specified interval.

 try:
 return _queue.get(timeout=_interval)
 except:
 pass

_thread = threading.Thread(target=_monitor)
_thread.setDaemon(True)

def _exiting():
 try:
 _queue.put(True)
 except:
 pass
 _thread.join()

atexit.register(_exiting)

def track(path):
 if not path in _files:
 _files.append(path)

def start(interval=1.0):
 global _interval
 if interval < _interval:
 _interval = interval

 global _running
 _lock.acquire()
 if not _running:
 prefix = 'monitor (pid=%d):' % os.getpid()
 print('%s Starting change monitor.' % prefix, file=sys.stderr)
 _running = True
 _thread.start()
 _lock.release()

This would be used by importing into the script file the Python module
containing the above code, starting the monitoring system and adding any
additional non Python files which should be tracked:

import os

import monitor
monitor.start(interval=1.0)
monitor.track(os.path.join(os.path.dirname(__file__), 'site.cf'))

def application(environ, start_response):
 ...

Where needing to add many non Python files in a directory hierarchy, such
as template files which would otherwise be cached within the running
process, the os.path.walk() function could be used to traverse
all files and add required files based on extension or other criteria
using the ‘track()’ function.

This mechanism would generally work adequately where a single daemon
process is used within a process group. You would need to be careful
however when multiple daemon processes are used. This is because it may not
be possible to synchronise the checks exactly across all of the daemon
processes. As a result you may end up with the daemon processes running a
mixture of old and new code until they all synchronise with the new code
base. This problem can be minimised by defining a short interval time
between scans, however that will increase the overhead of the checks.

Using such an approach may in some cases be useful if using mod_wsgi as a
development platform. It certainly would not be recommended you use this
mechanism for a production system.

The reasons for not using it on a production system is due to the
additional overhead and chance that daemon processes are restarted when you
are not expecting them to be. For example, in a production environment
where requests are coming in all the time, you do not want a restart
triggered when you are part way through making a set of changes which cover
multiple files as likely then that an inconsistent set of code will be
loaded and the application will fail.

Note that you should also not use this mechanism on a system where you have
configured mod_wsgi to preload your WSGI application as soon as the daemon
process has started. If you do that, then the monitor thread will be recreated
immediately and so for every single code change on a preloaded file you
make, the daemon process will be restarted, even if there is no intervening
request.

If preloading was really required, the example code would need to be
modified so as to not use signals to restart the daemon process, but reset
to zero the variable saved away in the WSGI script file that records the
modification time of the script file. This will have the affect of delaying
the restart until the next request has arrived. Because that variable holding
the modification time is an internal implementation detail of mod_wsgi and
not strictly part of its published API or behaviour, you should only use
that approach if it is warranted.

Restarting Windows Apache

On the Windows platform there is no daemon mode only embedded mode. The MPM
used on Apache is the ‘winnt’ MPM. This MPM is like the worker MPM on UNIX
systems except that there is only one process.

Being embedded mode, modifying the WSGI script file only results in the WSGI
script file itself being reloaded, the process as a whole is not reloaded.
Thus there is no way normally through modifying the WSGI script file or any
other Python code file used by the application, of having the whole
application reloaded automatically.

The recipe in the previous section can be used with daemon mode on UNIX
systems to implement an automated scheme for restarting the daemon
processes when any code change is made, but because Windows lacks the
‘fork()’ system call daemon mode isn’t supported in the first place.

Thus, the only way one can have code changes picked up on Windows is to
restart Apache as a whole. Although a full restart is required, Apache on
Windows only uses a single child server process and so the impact isn’t as
significant as on UNIX platforms, where many processes may need to be
shutdown and restarted.

With that in mind, it is actually possible to modify the prior recipe for
restarting a daemon process to restart Apache itself. To achieve this slight
of hand, it is necessary to use the Python ‘ctypes’ module to get access to
a special internal Apache function which is available in the Windows version
of Apache called ‘ap_signal_parent()’.

The required change to get this to work is to replace the restart
function in the previous code with the following:

def _restart(path):
 _queue.put(True)
 prefix = 'monitor (pid=%d):' % os.getpid()
 print('%s Change detected to \'%s\'.' % (prefix, path), file=sys.stderr)
 print('%s Triggering Apache restart.' % prefix, file=sys.stderr)
 import ctypes
 ctypes.windll.libhttpd.ap_signal_parent(1)

Other than that, the prior code would be used exactly as before. Now when
any change is made to Python code used by the application or any other
monitored files, Apache will be restarted automatically for you.

As before, probably recommended that this only be used during development
and not on a production system.

Virtual Environments

This document contains information about how to use Python virtual
environments with mod_wsgi. You can use a Python virtual environment
created using virtualenv [http://pypi.python.org/pypi/virtualenv] and virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper], or if using Python 3,
the pyvenv or python -m venv commands.

The purpose of a Python virtual environments is to allow one to create
multiple distinct Python environments for the same version of Python, but
with different sets of Python modules and packages installed. It is
recommended that you always use Python virtual environments and not install
additional Python packages direct into your Python installation.

A Python virtual environment is also required where it is necessary to run
multiple WSGI applications which have conflicting requirements as to what
version of a Python module or package needs to be installed. They can also
be used when distinct mod_wsgi daemon process groups are used to host WSGI
applications for different users and each user needs to be able to
separately install their own Python modules and packages.

How you configure mod_wsgi or setup your WSGI application script file for a
Python virtual environment will depend on your specific requirements. The
more common scenarios are explained below.

Location of the Virtual Environment

Whichever method you use to create a Python virtual environment, before you
use it with mod_wsgi, you should validate what the location of the Python
virtual environment is. If using virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper] this may be a non
obvious directory hidden away under your home directory.

The way to determine the location of the Python virtual environment is to
activate the Python virtual environment from an interactive shell so it is
being used, and then run the command:

python -c 'import sys; print(sys.prefix)'

This will output the directory path you will use when setting up mod_wsgi
to use the Python virtual environment. For the purposes of the examples
below, it is assumed the location of any Python virtual environments are
under the /usr/local/venvs directory. A specific Python virtual
environment may thus return for sys.prefix:

/usr/local/venvs/example

Note that this should be the root directory of the Python virtual
environment, which in turn contains the bin and lib directories for
the Python virtual environment. It is a common mistake when setting up a
Python virtual environment with mod_wsgi to use the full path to the
python executable instead of the root directory. That will not work, so
do not use the path for the python executable as the location of the
Python virtual environment, it has to be the root directory.

Do be aware that the user that Apache runs your code as will need to be
able to access the Python virtual environment. On some Linux distributions,
the home directory of a user account is not accessible to other users.
Rather than change the permissions on your home directory, it might be
better to consider locating your WSGI application code and any Python
virtual environment outside of your home directory.

Virtual Environment and Python Version

When using a Python virtual environment with mod_wsgi, it is very important
that it has been created using the same Python installation that mod_wsgi
was originally compiled for. It is not possible to use a Python virtual
environment to force mod_wsgi to use a different Python version, or even a
different Python installation.

You cannot for example force mod_wsgi to use a Python virtual environment
created using Python 3.5 when mod_wsgi was originally compiled for Python
2.7. This is because the Python library for the Python installation it was
originally compiled against is linked directly into the mod_wsgi module.
In other words, Python is embedded within mod_wsgi. When mod_wsgi is used
it does not run the command line python program to run the interpreter
and thus why you can’t force it to use a different Python installation.

The problem in trying to force mod_wsgi to use a different Python
installation than what it was compiled for, even where it is the same
Python version, is that the Python installation may itself not have been
compiled with the same options. This is especially a problem when it comes
to issues around how Python stores Unicode characters in memory.

The end result is that if you want to use a different Python installation
or version than what mod_wsgi was originally compiled for, you would need
to re-install mod_wsgi such that it is compiled for the Python installation
or version you do want to use. Do not try and use a Python virtual
environment from one Python installation or version with mod_wsgi, when
mod_wsgi was compiled for a different one.

Daemon Mode (Single Application)

The preferred way of setting up mod_wsgi is to run each WSGI application
in its own daemon process group. This is called daemon mode. A typical
configuration for running a WSGI application in daemon mode would be:

WSGIDaemonProcess myapp

WSGIProcessGroup myapp
WSGIApplicationGroup %{GLOBAL}

WSGIScriptAlias / /some/path/project/myapp.wsgi

<Directory /some/path/project>
 Require all granted
</Directory>

The WSGIDaemonProcess directive defines the daemon process group. The
WSGIProcessGroup directive indicates that the WSGI application should be
run within the defined daemon process group.

As only the single application is being run within the daemon process
group, the WSGIApplicationGroup directive is also being used. When this
is used with the %{GLOBAL} value, it forces the WSGI application to run
in the main Python interpreter context of each process. This is preferred
in this scenario as some third party packages for Python which include C
extensions will not run in the Python sub interpreter contexts which
mod_wsgi would use by default. By using the main Python interpreter context
you eliminate the possibility of such third party packages for Python
causing problems.

To modify the configuration for this scenario to use a Python virtual
environment, all you need to do is add the python-home option to the
WSGIDaemonProcess directive resulting in:

WSGIDaemonProcess myapp python-home=/usr/local/venvs/myapp

All the additonal Python packages and modules would then be installed into
that Python virtual environment.

Daemon Mode (Multiple Applications)

If instead of running each WSGI application in a separate daemon process
group as is the recommended practice, you are running multiple WSGI
applications in one daemon process group, a different approach to using
Python virtual environments is required.

For this scenario there are various ways the configuration could be set
up. If mounting each WSGI application explicitly you might be using:

WSGIDaemonProcess myapps

WSGIProcessGroup myapps

WSGIScriptAlias /myapp3 /some/path/project/myapp3.wsgi
WSGIScriptAlias /myapp2 /some/path/project/myapp2.wsgi

WSGIScriptAlias / /some/path/project/myapp1.wsgi

<Directory /some/path/project>
 Require all granted
</Directory>

If instead the directory containing the WSGI application script files is
being mounted, you might be using:

WSGIDaemonProcess myapps

WSGIProcessGroup myapps

WSGIScriptAlias / /some/path/project/

<Directory /some/path/project>
 Require all granted
</Directory>

The use of the WSGIDaemonProcess and WSGIProcessGroup is the same as
before, however the WSGIApplicationGroup directive is not being used.

When the WSGIApplicationGroup directive isn’t being used to override
which Python interpreter context is being used, each WSGI application will
be run in its own Python sub interpreter context of the processes. This is
necessary as often WSGI application frameworks (Django being a prime
example), do not support running more than one instance of a WSGI
application using the framework, in the same Python interpreter context at
the same time.

In this scenario of running multiple WSGI applications in the same daemon
process group, more than one change is possibly required. The changes
required depend on whether or not all WSGI applications should share the
same Python virtual environment.

If all of the WSGI applications should share the same Python virtual
environment, then the same change as was performed above for the single
application case would be made. That is, add the python-home option
to the WSGIDaemonProcess directive:

WSGIDaemonProcess myapp python-home=/usr/local/venvs/myapps

All the additonal Python packages and modules that any of the WSGI
applications required would then be installed into that Python virtual
environment. Because it is a shared environment, they must all use the same
version of any specific Python package or module.

If instead of all WSGI applications using the same Python virtual
environment each needed their own, then a change will instead need to be
made in each of the WSGI script files for the applications.

How this is done will depend on how the Python virtual environment is
created.

If the Python virtual environment is created using virtualenv [http://pypi.python.org/pypi/virtualenv] or
virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper], the WSGI script for each application should be
modified to include code of the following form:

python_home = '/usr/local/envs/myapp1'

activate_this = python_home + '/bin/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))

Because each WSGI application is to use a separate Python virtual
environment, the value of the python_home variable would be set
differently for each WSGI script file, with it referring to the root
directory of the respective Python virtual environments.

This code should be placed in the WSGI script file before any other module
imports in the WSGI script file, with the exception of from __future__
imports used to enable Python feature flags.

Important to note is that when the Python virtual environment is activated
from within the WSGI script, what happens is a bit different to when the
python-home option to WSGIDaemonProcess is used.

When activating the Python virtual environment from within the WSGI script
file, only the site-packages directory from the Python virtual
environment is being used. This directory will be added to the Python
module search path, along with any additional directories related to the
site-packages directory registered using .pth files present in the
site-packages directory. This will be placed at the start of the
existing sys.path.

The consequence of this is that the Python virtual environment isn’t
completely overriding the original Python installation the Python virtual
environment was created from. This means that if the main Python
installation had additional Python packages installed they will also
potentially be visible to the WSGI application.

That this occurs could cause confusion as you might for example think you
had all the packages you require listed in your requirements.txt file
for pip, but didn’t and so a package may not have been installed. If
that package was installed in the main Python installation, it would be
picked up from there, but it might be the wrong version and have
dependencies on versions of other packages for which you have different
versions installed in your Python virtual environment and which are found
instead of those in the main Python installation.

To avoid such problems, when activating the Python virtual environment
from within the WSGI script file, it is necessary to still set the
python-home option of the WSGIDaemonProcess directive, but set it to
an empty Python virtual environment which has had no additional packages
installed:

WSGIDaemonProcess myapp python-home=/usr/local/venvs/empty

By doing this, the main Python installation will not be consulted and
instead it will fallback to the empty Python virtual environment. This
Python virtual environment should remain empty and you should not install
additional Python packages or modules into it, or you will cause the same
sort of conflicts that can arise with the main Python installation when it
was being used.

When needing to activate the Python virtual environment from within the
WSGI script file as described, it is preferred that you be using the either
virtualenv [http://pypi.python.org/pypi/virtualenv] or virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper] to create the Python virtual
environment. This is because they both provide the activate_this.py
script file which does all the work of setting up sys.path. When you
use either pyvenv or python -m venv with Python 3, no such
activation script is provided.

So use virtualenv [http://pypi.python.org/pypi/virtualenv] or virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper] if you can. If you cannot for
some reason and are stuck with pyvenv or python -m venv, you can
instead use the following code in the WSGI script file:

python_home = '/usr/local/envs/myapp1'

import sys
import site

Calculate path to site-packages directory.

python_version = '.'.join(map(str, sys.version_info[:2]))
site_packages = python_home + '/lib/python%s/site-packages' % python_version

Add the site-packages directory.

site.addsitedir(site_packages)

As before this code should be placed in the WSGI script file before any
other module imports in the WSGI script file, with the exception of from
__future__ imports used to enable Python feature flags.

When using this method, do be aware that the additions to the Python module
search path are made at the end of sys.path. For that reason, you must
set the python-home option to WSGIDaemonProcess to the location of
an empty Python virtual environment. If you do not do this, any additional
Python package installed in the main Python installation will hide those in
the Python virtual environment for the application.

There is extra code you could add which would reorder sys.path to make
it work in an equivalent way to the activate_this.py script provided
when you use virtualenv [http://pypi.python.org/pypi/virtualenv] or virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper] but it is messy and more
trouble than it is worth:

python_home = '/usr/local/envs/myapp1'

import sys
import site

Calculate path to site-packages directory.

python_version = '.'.join(map(str, sys.version_info[:2]))
site_packages = python_home + '/lib/python%s/site-packages' % python_version
site.addsitedir(site_packages)

Remember original sys.path.

prev_sys_path = list(sys.path)

Add the site-packages directory.

site.addsitedir(site_packages)

Reorder sys.path so new directories at the front.

new_sys_path = []

for item in list(sys.path):
 if item not in prev_sys_path:
 new_sys_path.append(item)
 sys.path.remove(item)

sys.path[:0] = new_sys_path

It is better to avoid needing to manually activate the Python virtual
environment from inside of a WSGI script by using a separate daemon process
group per WSGI application. At the minimum, at least avoid pyvenv and
python -m venv.

Embedded Mode (Single Application)

The situation for running a single WSGI application in embedded mode is not
much different to running a single WSGI application in daemon mode. In the
case of embedded mode, there is though no WSGIDaemonProcess directive.

The typical configuration when running a single WSGI application in
embedded module might be:

WSGIScriptAlias / /some/path/project/myapp.wsgi

WSGIApplicationGroup %{GLOBAL}

<Directory /some/path/project>
 Require all granted
</Directory>

The WSGIDaemonProcess and WSGIProcessGroup directives are gone, but
the WSGIApplicationGroup directive is still used to force the WSGI
application to run in the main Python interpreter context of each of the
Apache worker processes. This is to avoid those issues with some third
party packages for Python with C extensions as mentioned before.

In this scenario, to set the location of the Python virtual environment
to be used, the WSGIPythonHome directive is used:

WSGIPythonHome /usr/local/envs/myapp

Note that if the WSGI application is being setup within the context of an
Apache VirtualHost, the WSGIPythonHome cannot be placed inside of
the VirtualHost. Instead it must be placed outside of all
VirtualHost definitions. This is because it applies to the whole Apache
instance and not just the single VirtualHost.

Embedded Mode (Multiple Applications)

Running multiple applications in embedded mode is also similar to when
running multiple WSGI applications in one daemon process group. You still
need to ensure each WSGI application runs in its own Python sub interpreter
context to avoid potential issues with Python web frameworks that don’t
allow more than one WSGI application to be using it at the same time in a
Python interpreter context.

If mounting each WSGI application explicitly you might be using:

WSGIScriptAlias /myapp3 /some/path/project/myapp3.wsgi
WSGIScriptAlias /myapp2 /some/path/project/myapp2.wsgi

WSGIScriptAlias / /some/path/project/myapp1.wsgi

<Directory /some/path/project>
 Require all granted
</Directory>

If instead the directory containing the WSGI application script files is
being mounted, you might be using:

WSGIScriptAlias / /some/path/project/

<Directory /some/path/project>
 Require all granted
</Directory>

In this scenario, to set the location of the Python virtual environment
to be used by all WSGI application, the WSGIPythonHome directive is used:

WSGIPythonHome /usr/local/envs/myapps

If the WSGI application is being setup within the context of an Apache
VirtualHost, the WSGIPythonHome cannot be placed inside of the
VirtualHost. Instead it must be placed outside of all VirtualHost
definitions. This is because it applies to the whole Apache instance and
not just the single VirtualHost.

If each WSGI application needs its own Python virtual environment, then
activation of the Python virtual environment needs to be performed in the
WSGI script itself as explained previously for the case of daemon mode
being used. The WSGIPythonHome directive should be used to refer to an
empty Python virtual environment if needed to ensure that any additional
Python packages in the main Python installation don’t interfere with what
packages are installed in the Python virtual environment for each WSGI
application.

Adding Additional Module Directories

The python-home option to WSGIDaemonProcess and the
WSGIPythonHome directive are the preferred way of specifying the
location of the Python virtual environment to be used. If necessary,
activation of the Python virtual environment can also be performed from the
WSGI script file itself.

If you need to add additional directories to search for Python packages or
modules this can also be done. You may want to do this where you need to
specify where the actual WSGI application is located, where a WSGI script
file needs to import application specific modules.

If you are using daemon mode and want to add additional directories to the
Python module search path, you can use the python-path option to
WSGIDaemonProcess:

WSGIDaemonProcess myapp python-path=/some/path/project

This option would be in addition to the python-home option used to
specify where the Python virtual environment is located.

If you are using embedded mode, you can use the WSGIPythonPath
directive:

WSGIPythonPath /some/path/project

This directive is in addition to the WSGIPythonHome directive used to
specify where the Python virtual environment is located.

In either case, if you need to specify more than one directory, they can be
separated using a ‘:’ character.

If you are having to activate the Python virtual enviromment from within a
WSGI script and need to add additional directories to the Python module
search path, you should modify sys.path directly from the WSGI script
file.

Note that prior practice was that these ways of setting the Python module
search path were used to specify the location of the Python virtual
environment. Specifically, they were used to add the site-packages
directory of the Python virtual environment. You should not do that.

The better way to specify the location of the Python virtual environment is
using the python-home option of the WSGIDaemonProcess directive for
daemon mode, or the WSGIPythonHome directive for embedded mode. These
ways of specifying the Python virtual environment have been available since
mod_wsgi 3.0 and Linux distributions have not shipped such an old version
of mod_wsgi for quite some time. If you are using the older way, please
update your configurations.

Access Control Mechanisms

This document contains information about mechanisms available in mod_wsgi
for controlling who can access a WSGI application. This includes coverage
of support for HTTP Basic and Digest authentication mechanisms, as well
as server side mechanisms for authorisation and host access control.

HTTP User Authentication

The HTTP protocol supports user authentication mechanisms for clients
through the ‘Authorization’ header. The two main examples for this are
the Basic and Digest authentication mechanisms.

Unlike other HTTP headers, the authorisation header is not passed through
to a WSGI application by default. This is the case as doing so could leak
information about passwords through to a WSGI application which should not
be able to see them when Apache is performing authentication.

If Apache is performing authentication, a WSGI application can still find
out what type of authentication scheme was used by checking the variable
AUTH_TYPE of the WSGI application environment. The login name of the
authorised user can be determined by checking the variable
REMOTE_USER.

If it is desired that the WSGI application be responsible for handling user
authentication, then it is necessary to explicitly configure mod_wsgi to
pass the required headers through to the application. This can be done by
specifying the WSGIPassAuthorization directive in the appropriate context
and setting it to ‘On’. Note that prior to mod_wsgi version 2.0c5, this
directive could not be used in .htaccess files.

When passing of authorisation information is enabled, the authorisation
headers are passed through to a WSGI application in the
HTTP_AUTHORIZATION variable of the WSGI application environment when
the equivalent HTTP request header is present. You will still need to
provide your own code to process the header and perform the required hand
shaking with the client to indicate whether the client is permitted access.

Apache Authentication Provider

When Apache 2.2 was released, it introduced the concept of authentication
providers. That is, Apache implements the hand shaking with the client for
authentication mechanisms such as Basic and Digest. All that the user
server side code needs to provide is a means of authenticating the actual
credentials of the user trying to gain access to the site.

This greatly simplified the implementation of client authentication as the
hand shaking for a particular authentication mechanism was implemented only
once in Apache and it wasn’t necessary for each authentication module to
duplicate it. This was particularly good for the Digest authentication
mechanism which was non trivial to implement correctly.

Using mod_wsgi 2.0 or later, it is possible using the WSGIAuthUserScript
directive to define a Python script file containing code which performs the
authenticating of user credentials as outlined.

The required Apache configuration for defining the authentication provider
for Basic authentication when using Apache 2.2 would be:

AuthType Basic
AuthName "Top Secret"
AuthBasicProvider wsgi
WSGIAuthUserScript /usr/local/wsgi/scripts/auth.wsgi
Require valid-user

The ‘auth.wsgi’ script would then need to contain a ‘check_password()’
function with a sample as shown below:

def check_password(environ, user, password):
 if user == 'spy':
 if password == 'secret':
 return True
 return False
 return None

This function should validate that the user exists in the user database and
that the password is correct. If the user does not exist at all, then the
result should be ‘None’. If the user does exist, the result should be
‘True’ or ‘False’ depending on whether the password was valid.

If wishing to use Digest authentication, the configuration for Apache 2.2
would instead be:

AuthType Digest
AuthName "Top Secret"
AuthDigestProvider wsgi
WSGIAuthUserScript /usr/local/wsgi/scripts/auth.wsgi
Require valid-user

The name of the required authentication function for Digest authentication
is ‘get_realm_hash()’. The result of the function must be ‘None’ if the
user doesn’t exist, or a hash string encoding the user name, authentication
realm and password:

import hashlib

def get_realm_hash(environ, user, realm):
 if user == 'spy':
 value = hashlib.md5()
 # user:realm:password
 input = '%s:%s:%s' % (user, realm, 'secret')
 if not isinstance(input, bytes):
 input = input.encode('UTF-8')
 value.update(input)
 hash = value.hexdigest()
 return hash
 return None

By default the auth providers are executed in context of first interpreter
created by Python, ie., ‘%{GLOBAL}’ and always in the Apache child
processes, never in a daemon process. The interpreter can be overridden
using the ‘application-group’ option to the script directive. The namespace
for authentication groups is shared with that for application groups
defined by WSGIApplicationGroup.

Because the auth provider is always run in the Apache child processes and
never in the context of a mod_wsgi daemon process, if the authentication
check is making use of the internals of some Python web framework, it is
recommended that the application using that web framework also be run in
embedded mode and the same application group. This is the case as the
Python web frameworks often bring in a huge amount of code even if using
only one small part of them. This will result in a lot of memory being used
in the Apache child processes just to support the auth provider.

If mod_authn_alias is being loaded into Apache, then an aliased auth
provider can also be defined:

<AuthnProviderAlias wsgi django>
WSGIAuthUserScript /usr/local/django/mysite/apache/auth.wsgi \
 application-group=django
</AuthnProviderAlias>

WSGIScriptAlias / /usr/local/django/mysite/apache/django.wsgi

<Directory /usr/local/django/mysite/apache>
<IfVersion < 2.4>
 Order allow,deny
 Allow from all
</IfVersion>
<IfVersion >= 2.4>
 Require all granted
</IfVersion>

WSGIApplicationGroup django

AuthType Basic
AuthName "Django Site"
AuthBasicProvider django
Require valid-user
</Directory>

An authentication script for Django might then be something like:

import os, sys
sys.path.append('/usr/local/django')
os.environ['DJANGO_SETTINGS_MODULE'] = 'mysite.settings'

from django.contrib.auth.models import User
from django import db

def check_password(environ, user, password):
 db.reset_queries()

 kwargs = {'username': user, 'is_active': True}

 try:
 try:
 user = User.objects.get(**kwargs)
 except User.DoesNotExist:
 return None

 if user.check_password(password):
 return True
 else:
 return False
 finally:
 db.connection.close()

For both Basic and Digest authentication providers, the ‘environ’ dictionary
passed as first argument is a cut down version of what would be supplied
to the actual WSGI application. This includes the ‘wsgi.errors’ object for
the purposes of logging error messages associated with the request.

Any configuration defined by !SetEnv directives is not passed in the
‘environ’ dictionary because doing so would allow users to override the
configuration specified in such a way from a ‘.htaccess’ file.
Configuration should as a result be placed into the script file itself.

Although authentication providers were a new feature in Apache 2.2, the
mod_wsgi module emulates the functionality so that the above can also be
used with Apache 2.0. In using Apache 2.0, the required Apache configuration
is however slightly different and needs to be:

AuthType Basic
AuthName "Top Secret"
WSGIAuthUserScript /usr/local/wsgi/scripts/auth.wsgi
AuthAuthoritative Off
Require valid-user

When using Apache 2.0 however, only support for Basic authentication
mechanism is provided. It is not possible to use Digest authentication.
When using Apache 1.3, this feature is not available at all.

The benefit of using the Apache authentication provider mechanism rather
than the WSGI application doing it all itself, is that it can be used to
control access to a number of WSGI applications at the same time as well as
static files or dynamic pages implemented by other Apache modules using
other programming languages such as PHP or Perl. The mechanism could even
be used to control access to CGI scripts.

Apache Group Authorisation

As compliment to the authentication provider mechanism, mod_wsgi 2.0 also
provides a mechanism for implementing group authorisation using the Apache
‘Require’ directive. To use this in conjunction with an inbuilt Apache
authentication provider such as a password file, the following Apache
configuration would be used:

AuthType Basic
AuthName "Top Secret"
AuthBasicProvider dbm
AuthDBMUserFile /usr/local/wsgi/accounts.dbm
WSGIAuthGroupScript /usr/local/wsgi/scripts/auth.wsgi
Require wsgi-group secret-agents
Require valid-user

The ‘auth.wsgi’ script would then need to contain a ‘groups_for_user()’
function with a sample as shown below:

def groups_for_user(environ, user):
 if user == 'spy':
 return ['secret-agents']
 return ['']

The function should supply a list of groups the user is a member of or
an empty list otherwise.

The feature may be used with any authentication provider, including one
defined using WSGIAuthUserScript.

The ‘environ’ dictionary passed as first argument is a cut down version of
what would be supplied to the actual WSGI application. This includes the
‘wsgi.errors’ object for the purposes of logging error messages associated
with the request.

Any configuration defined by !SetEnv directives is not passed in the
‘environ’ dictionary because doing so would allow users to override the
configuration specified in such a way from a ‘.htaccess’ file.
Configuration should as a result be placed into the script file itself.

Configuration of group authorisation is the same whether Apache 2.0 or 2.2
is used. The feature is not available when using Apache 1.3.

By default the group authorisation code is always executed in the context
of the first interpreter created by Python, ie., ‘%{GLOBAL}’, and always in
the Apache child processes, never in a daemon process. The interpreter can
be overridden using the ‘application-group’ option to the script directive.

Host Access Controls

The authentication provider and group authorisation features help to control
access based on the identity of a user. Using mod_wsgi 2.0 it is also
possible to limit access based on the machine which the client is connecting
from. The path to the script is defined using the WSGIAccessScript
directive:

WSGIAccessScript /usr/local/wsgi/script/access.wsgi

The name of the function that must exist in the script file is
‘allow_access()’. It must return True or False:

def allow_access(environ, host):
 return host in ['localhost', '::1']

The ‘environ’ dictionary passed as first argument is a cut down version of
what would be supplied to the actual WSGI application. This includes the
‘wsgi.errors’ object for the purposes of logging error messages associated
with the request.

Any configuration defined by !SetEnv directives is not passed in the
‘environ’ dictionary because doing so would allow users to override the
configuration specified in such a way from a ‘.htaccess’ file.
Configuration should as a result be placed into the script file itself.

By default the access checking code is executed in context of the first
interpreter created by Python, ie., ‘%{GLOBAL}’, and always in the Apache
child processes, never in a daemon process. The interpreter used can be
overridden using the ‘application-group’ option to the script directive.

File Wrapper Extension

The WSGI specification supports an optional feature that can be implemented
by WSGI adapters for platform specific file handling.

	http://www.python.org/dev/peps/pep-0333/#optional-platform-specific-file-handling

What this allows is for a WSGI application to return a special object type
which wraps a Python file like object. If that file like object statisfies
certain conditions as dictated by a specific platform, then the WSGI
adapter is allowed to return the content of that file in an optimised
manner.

The intent of this is to provide better performance for serving up static
file content than a pure Python WSGI application may itself be able to
achieve.

Do note however that for the best performance, static files should always
be served by a web server. In the case of mod_wsgi this means by Apache
itself rather than mod_wsgi or the WSGI application. Using the web server
may not always be possible however, such as for files generated on demand.

Example Of Wrapper Usage

A WSGI adapter implementing this extension needs to supply a special
callable object under the key ‘wsgi.file_wrapper’ in the ‘environ’
dictionary passed to the WSGI application.

What this callable does will be specific to a WSGI adapter, but it must be
a callable that accepts one required positional parameter, and one optional
positional parameter. The first parameter is the file like object to be
sent, and the second parameter is an optional block size. If the block size
is not supplied then the WSGI adapter would choose a value which would be
most appropriate for the specific hosting mechanism.

Whatever the WSGI adapter does, the result of the callable must be an
iterable object which can be used directly as the response from the WSGI
application or for passing into any WSGI middleware. Provided the response
content isn’t consumed by any WSGI middleware and the iterable object gets
passed through the WSGI adapter, the WSGI adapter should recognise the
special iterable object and trigger any special handling to return the
response in a more efficient way.

Because the support of this platform specific file handling is optional for
any specific WSGI adapter, any user code should be coded so as to be able
to cope with it not existing.

Using the snippet as described in the WSGI specification as guide, the
WSGI application would be written as follows:

def application(environ, start_response):
 status = '200 OK'
 response_headers = [('Content-type', 'text/plain')]
 start_response(status, response_headers)

 filelike = file('usr/share/dict/words', 'rb')
 block_size = 4096

 if 'wsgi.file_wrapper' in environ:
 return environ['wsgi.file_wrapper'](filelike, block_size)
 else:
 return iter(lambda: filelike.read(block_size), '')

Note that the file must always be opened in binary mode. If this isn’t done
then on platforms which do CR/LF translation automatically then the
original content will not be returned but the translated form. As well as
it not being the original content this can cause problems with calculated
content lengths if the ‘Content-Length’ response header is returned by the
WSGI application and it has been generated by looking at the actual file
size rather than the translated content.

Addition Of Content Length

The WSGI specification does not say anything specific about whether a WSGI
adapter should generate a ‘Content-Length’ response header when the
‘wsgi.file_wrapper’ extension is used and the WSGI application does not
return one itself.

For mod_wsgi at least, if the WSGI application doesn’t provide a
‘Content-Length’ response header it will calculate the response content
length automatically as being from the current file position to the end of
the file. A ‘Content-Length’ header will then be added to the response
for that value.

As far as is known, only mod_wsgi automatically supplies a ‘Content-Length’
response header in this way. If consistent behaviour is required on all
platforms, the WSGI application should always calculate the length and add
the header itself.

Existing Content Length

Where a ‘Content-Length’ is specified by the WSGI application, mod_wsgi
will honour that content length. That is, mod_wsgi will only return as many
bytes of the file as specified by the ‘Content-Length’ header.

This is not a requirement of the WSGI specification, but then this is one
area of the WSGI specification which is arguably broken. This manifests in
the WSGI specification where it says:

“”“transmission should begin at the current position within the “file”
at the time that transmission begins, and continue until the end is
reached”“”

If this interpretation is used, where a WSGI application supplies a
‘Content-Length’ header and the number of bytes listed is less than the
number of bytes remaining in the file from the current position, then more
bytes than specified by the ‘Content-Length’ header would be returned.

To do this would technically be in violation of HTTP specifications which
should dictate that the number of bytes returned be the same as that
specified by the ‘Content-Length’ response header if supplied.

Not only is this statement in the WSGI specification arguably wrong, the
example snippet of code which shows how to implement a fallback where the
‘wsgi.file_wrapper’ is not present, ie.:

if 'wsgi.file_wrapper' in environ:
 return environ['wsgi.file_wrapper'](filelike, block_size)
else:
 return iter(lambda: filelike.read(block_size), '')

is also wrong. This is because it doesn’t restrict the amount of bytes
returned to that specified by ‘Content-Length’.

Although mod_wsgi for normal iterable content would also discard any bytes
in excess of the specified ‘Content-Length’, many other WSGI adapters are
not known to do this and would just pass back all content regardless. The
result of returning excessive content above the specified ‘Content-Length’
would be the failure of subsequent connections were the connection using
keep alive and was pipe lining requests.

This problem is also compounded by the WSGI specification not placing any
requirement on WSGI middleware to respect the ‘Content-Length’ response
header when processing response content. Thus WSGI middleware could also
in general generate incorrect response content by virtue of not honouring
the ‘Content-Length’ response header.

Overall, although mod_wsgi does what is the logical and right thing to do,
if you need to write code which is portable to other WSGI hosting mechanisms,
you should never produce a ‘Content-Length’ response header which lists a
number of bytes different to that which would be yielded from an iterable
object such as a file like object. Thus it would be impossible to use any
platform specific file handling features to return a range of bytes from a
file.

Restrictions On Optimisations

Although mod_wsgi always supplies the ‘wsgi.file_wrapper’ callable object as
part of the WSGI ‘environ’ dictionary, optimised methods of returning the
file contents as the response are not always used.

A general restriction is that the file like object must supply both a
‘fileno()’ and ‘tell()’ method. This is necessary in order to get access to
the underlying file descriptor and to determine the current position within
the file.

The file descriptor is needed so as to be able to use the ‘sendfile()’
function to return file contents in a more optimal manner. The ‘tell()’
method is needed to be able to calculate response ‘Content-Length’ and to
validate that where the WSGI application supplies its own ‘Content-Length’
header that there is sufficient bytes in the file.

Because the ‘sendfile()’ function is used by Apache to return file contents
in a more optimal manner and because on Windows a Python file object only
provides a Windows file handle and not a file descriptor, no optimisations
are available on the Windows platform.

The optimisations are also not able to be used if using Apache 1.3. This is
because Apache doesn’t provide access to a mechanism for optimised sending
of file contents to a content handler under Apache 1.3.

Finally, optimisations are not used where the WSGI application is running in
daemon mode. This is currently disabled because some UNIX platforms do not
appear to support use of the ‘sendfile()’ function over UNIX sockets and only
support INET sockets. This situation may possibly have changed with recent
versions of Linux at least but this has yet to be investigated properly.

Whether or not optimisations are supported, the mod_wsgi ‘wsgi.file_wrapper’
extension generally still performs better than if a pure Python iterable
object was used to yield the file contents.

Note that this all presumes that the iterable object returned by
‘wsgi.file_wrapper’ is actually passed back to mod_wsgi and is not consumed
by a WSGI middleware. For example, a WSGI middleware which compresses the
response content would consume the response content and modify it with a
different iterable object being returned. In this case there is no chance
for optimisations to be used for returning the file contents.

This problem isn’t restricted though to just where the response content is
modified in some way and also extends to any WSGI middleware that wants to
replace the ‘close()’ method to perform some cleanup actions at the end of
a request.

This is because in order to interject the cleanup actions triggered on the
‘close()’ method of the iterable object it has to replace the existing
iterable object with another which wraps the first, with the outer
providing its own ‘close()’ method. An example of a middleware which
replaces the ‘close()’ method in this way can be found in
Registering Cleanup Code.

It is thus quite easy for a WSGI application stack to inadvertantly defeat
completely any attempts to return file contents in an optimised way using
the ‘wsgi.file_wrapper’ extension of WSGI. As such, attempts should always
be used instead to make use of a real web server, whether that be a separate
web server, or in the case of mod_wsgi the underlying Apache web server.

Where necessary, features of web servers or proxies such as
‘X-Accel-Redirect’, ‘X-Sendfile’ or other special purpose headers could be
used. If using mod_wsgi daemon mode and using mod_wsgi version 3.0 or later,
the ‘Location’ response header can also be used.

Registering Cleanup Code

This document describes how to go about registering callbacks to perform
cleanup tasks at the end of a request and when an application process is
being shutdown.

Cleanup At End Of Request

To perform a cleanup task at the end of a request a couple of different
approaches can be used dependent on the requirements. The first approach
entails wrapping the calling of a WSGI application within a Python ‘try’
block, with the cleanup code being triggered from the ‘finally’ block:

def _application(environ, start_response):
 status = '200 OK'
 output = b'Hello World!'

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output]

def application(environ, start_response):
 try:
 return _application(environ, start_response)
 finally:
 # Perform required cleanup task.
 ...

This might even be factored into a convenient WSGI middleware component:

class ExecuteOnCompletion1:
 def __init__(self, application, callback):
 self.__application = application
 self.__callback = callback
 def __call__(self, environ, start_response):
 try:
 return self.__application(environ, start_response)
 finally:
 self.__callback(environ)

The WSGI environment passed in the ‘environ’ argument to the application
could even be supplied to the cleanup callback as shown in case it needed
to look at any configuration information or information passed back in the
environment from the application.

The application would then be replaced with an instance of this class
initialised with a reference to the original application and a suitable
cleanup function:

def cleanup(environ):
 # Perform required cleanup task.
 ...

application = ExecuteOnCompletion1(_application, cleanup)

Using this approach, the cleanup function will actually be called prior to
the response content being consumed by mod_wsgi and written back to the
client. As such, it is probably only suitable where a complete response is
returned as an array of strings. It would not be suitable where a generator
is being returned as the cleanup would be called prior to any strings being
consumed from the generator. This would be problematic where the cleanup
task was to close or delete some resource from which the generator was
obtaining the response content.

In order to have the cleanup task only executed after the complete response
has been consumed, it would be necessary to wrap the result of the
application within an instance of a purpose built generator like object.
This object needs to yield each item from the response in turn, and when
this object is cleaned up by virtue of the ‘close()’ method being called,
it should in turn call ‘close()’ on the result returned from the application
if necessary, and then call the supplied cleanup callback:

class Generator2:
 def __init__(self, iterable, callback, environ):
 self.__iterable = iterable
 self.__callback = callback
 self.__environ = environ
 def __iter__(self):
 for item in self.__iterable:
 yield item
 def close(self):
 try:
 if hasattr(self.__iterable, 'close'):
 self.__iterable.close()
 finally:
 self.__callback(self.__environ)

class ExecuteOnCompletion2:
 def __init__(self, application, callback):
 self.__application = application
 self.__callback = callback
 def __call__(self, environ, start_response):
 try:
 result = self.__application(environ, start_response)
 except:
 self.__callback(environ)
 raise
 return Generator2(result, self.__callback, environ)

Note that for a successfully completed request, since the cleanup task will
be executed after the complete response has been written back to the
client, if an error occurs there will be no evidence of this in the
response seen by the client. As far as the client will be concerned
everything will look okay. The only indication of an error will be found in
the Apache error log.

Both of the solutions above are not specific to mod_wsgi and should work
with any WSGI hosting solution which complies with the WSGI specification.

Cleanup On Process Shutdown

To perform a cleanup task on shutdown of either an Apache child process
when using ‘embedded’ mode of mod_wsgi, or of a daemon process when using
‘daemon’ mode of mod_wsgi, the standard Python ‘atexit’ module can be used:

import atexit

def cleanup():
 # Perform required cleanup task.
 ...

atexit.register(cleanup)

Such a registered cleanup function will also be called if the ‘Interpreter’
reload mechanism is enabled and the Python sub interpreter in which the
cleanup function was registered was destroyed.

Note that although mod_wsgi will ensure that cleanup functions registered
using the ‘atexit’ module will be called correctly, this solution may not
be portable to all WSGI hosting solutions.

Also be aware that although one can register a cleanup function to be
called on process shutdown, this is no absolute guarantee that it will be
called. This is because a process may crash, or it may be forcibly killed
off by Apache if it takes too long to shutdown normally. As a result, an
application should not be dependent on cleanup functions being called on
process shutdown and an application must have some means of detecting an
abnormal shutdown when it is started up and recover from it automatically.

Assorted Tips And Tricks

This document contains various tips and tricks related to using mod_wsgi
which don’t deserve a document of their own or which don’t fit within other
documentation.

Determining If Running Under mod_wsgi

As a WSGI application developer you should always be striving to write
portable WSGI applications. That is, you should not write your code so as
to be dependent on the specific features of a specific WSGI hosting
mechanism.

This unfortunately is not always possible especially when it comes to
deployment due to there being no one blessed way for exposing a WSGI
application for hooking into WSGI hosting mechanisms. There may also be
times when you might want to rely on a feature of a specific WSGI hosting
mechanism, which although not part of the WSGI specification, allows you
to do something you wouldn’t otherwise.

That said, there a few ways in which you can detect that your code is
running under mod_wsgi. These fall under two categories. The first being
a general mechanism for how to detect if mod_wsgi is being used. The
second being additional ways to detect that mod_wsgi is being used when a
request is being handled.

The simplest way of detecting if mod_wsgi is being used is to import the
‘mod_wsgi’ module. This is a special embedded mode which is installed
automatically by the Apache/mod_wsgi module into set of imported modules,
ie., sys.modules. You can thus do:

try:
 import mod_wsgi
 # Put code here which should only run when mod_wsgi is being used.
except:
 pass

Do note however that although this is an embedded mode added automatically,
the way mod_wsgi has been implemented allows in the future for there to be
a separate Python package/module distinct from the mod_wsgi.so file called
‘mod_wsgi’ which might contain additional Python code to support use of
mod_wsgi.

What would happen if such a separate Python package/module is available is
that it will be automatically imported and additional information setup by
the Apache/mod_wsgi module then inserted into the global namespace of that
Python package/module.

The potential existance of this distinct Python package/module means that
importing ‘mod_wsgi’ could one day actually succeed outside of code being
run under the Apache/mod_wsgi module.

A more correct test therefore is:

try:
 from mod_wsgi import version
 # Put code here which should only run when mod_wsgi is being used.
except:
 pass

This is different because the ‘version’ attribute will only be present when
running under the Apache/mod_wsgi module as that version relates to the
version of mod_wsgi.so.

The above import check can be used anywhere, be that in the WSGI script file,
or in your application code at either global scope or within the context of
a specific function.

In the specific case of the WSGI script file, although the above can be
used there is an alternate check that can be made. That is to check the
value of the ‘__name__’ attribute given to the WSGI script file when the
code is loaded into the Python interpreter.

The normal situation where one would check the value of ‘__name__’ is where
wanting to do something different when a Python code file is executed
directly against the Python interpreter as opposed to being imported. For
example:

if __name__ == '__main__':
 ...

In contrast, were a Python code file is imported, the ‘__name__’ attribute
would be the dotted path which would be used to import the code file.

In the case of mod_wsgi, although WSGI script files are imported as if they
are a module, because they could exist anywhere and not in locations on
the Python module search path, they don’t have a conventional dotted path
name. Instead they have a magic name built from a md5 hash of the path to the
WSGI script file.

So as to at least identify this as being related to mod_wsgi, it has the
prefix ‘_mod_wsgi_’. This means a WSGI script file could use:

if __name__.startswith('_mod_wsgi_'):
 ...

if it needed to execute different code based on whether the WSGI script
file was actually being loaded by the Apache/mod_wsgi module as opposed to
be executed directly as a script by the command line Python interpreter.

This latter technique obviously only works in the WSGI script file and not
elsewhere.

A final method that can be used within the context of the WSGI application
handling the request is to interrogate the WSGI environ dictionary passed
to the WSGI application. In this case code can look for the presence of
the ‘mod_wsgi.version’ key within the WSGI environ dictionary:

def application(environ, start_response):
 status = '200 OK'
 if environ.has_key('mod_wsgi.version'):
 output = b'Hello mod_wsgi!'
 else:
 output = b'Hello other WSGI hosting mechanism!'

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output]

Issues With Pickle Module

This article describes various limitations on what data can be stored using
the “pickle” module from a WSGI application script file. This arises due
to the fact that a WSGI application script file is not treated exactly the
same as a standard Python module.

Note that these limitations only apply to the WSGI application script file
which is the target of the WSGIScriptAlias, AddHandler or Action
directives. Any standard Python modules or packages which make up an
application and which are being imported from directories located in
sys.path using the ‘import’ statement are not affected.

Packing And Script Reloading

The first source of problems and limitations is how the operation of the
“pickle” serialisation routine is affected by the ability of mod_wsgi to
automatically reload WSGI application script files. The particular types of
data which are known to be affected are function objects and class objects.

To illustrate the problems and where they arise, consider the following
output from an interactive Python session:

>>> import pickle
>>> def a(): pass
...
>>> pickle.dumps(a)
'c__main__\na\np0\n.'
>>> z = a
>>> pickle.dumps(z)
'c__main__\na\np0\n.'

As can be seen, it is possible to pickle a function object. This can be
done even through a copy of the function object by reference, although in
that case the pickled object still refers to the original function object.

If now the original function object is deleted however, and the copy of the
function object is pickled, a failure will occur:

>>> del a
>>> pickle.dumps(z)
... <deleted>
pickle.PicklingError: Can't pickle <function a at 0x612b0>: it's not found as __main__.a
Traceback (most recent call last):

The exception has been raised because the original function object was
deleted from where it was created. It occurs because the copy of the
original function object is still internally identified by the name which
it was assigned at the point of creation. The “pickle” serialisation
routine will check that the original object as identified by the name still
exists. If it doesn’t exist, it will refuse to serialise the object.

Creating a new function object in place of the original function object
does not eliminate the problem, although it does result in a different sort
of exception:

>>> def a(): pass
...
>>> pickle.dumps(z)
... <deleted>
pickle.PicklingError: Can't pickle <function a at 0x612b0>: it's not the same object as __main__.a
Traceback (most recent call last):

In this case, the “pickle” serialisation routine recognises that “a” exists
but realises that it is actually a different function object from which the
“z” copy was originally made.

Where the problems start occuring with mod_wsgi is if the function object
being saved was itself a copy of some function object which is held outside
of the module the function object was defined in. If the module holding the
original function object was actually the WSGI application script file and
it was reloaded because of the automatic script reloading mechanism, an
attempt to pickle the object will fail. This is because the original
function object which had been copied from will have been replaced by a new
one when the script was reloaded.

This sort of problem, although it will not occur for an instance of a
class, will occur for the class object itself:

>>> class B: pass
...
>>> b=B()
>>> pickle.dumps(b)
'(i__main__\nB\np0\n(dp1\nb.'
>>> del B
>>> pickle.dumps(b)
'(i__main__\nB\np0\n(dp1\nb.'
>>> class B: pass
...
>>> pickle.dumps(B)
'c__main__\nB\np0\n.'
>>> C = B
>>> pickle.dumps(C)
'c__main__\nB\np0\n.'
>>> del B
>>> pickle.dumps(C)
... <deleted>
pickle.PicklingError: Can't pickle <class __main__.B at 0x53ab0>: it's not found as __main__.B
Traceback (most recent call last):

Note though that for the case of a class instance, an appropriate class
object must exist at the same location when the serialised object is being
restored:

>>> class B: pass
...
>>> b = B()
>>> pickle.loads(pickle.dumps(b))
<__main__.B instance at 0x41e40>
>>> del B
>>> pickle.loads(pickle.dumps(b))
... <delete>
AttributeError: 'module' object has no attribute 'B'
Traceback (most recent call last):

Unpacking And Module Names

The second problem derives from how the mod_wsgi script loading mechanism
does not make use of the standard Python module importing mechanism. This
is necessary as the standard Python module importing mechanism requires
every loaded module to have a unique name, with each module residing in
sys.modules under that name. Further, that name must be able to be
used to import the module.

The mod_wsgi script loading mechanism does not place modules in
sys.modules under their original name so as to allow multiple modules
with the same name in different directories and also to avoid having to use
the “.py” extension for script files.

The consequence though of modules not residing in sys.modules under
their original name is that function objects and class objects within such
a module may not be able to converted back into objects from their
serialised form. This is because “pickle” when attempting to import a
module automatically if the module isn’t already loaded will not be
able to load the WSGI application script file.

The problem can be seen in the following output from an interactive Python
session:

>>> exec "class C: pass" in m.__dict__
>>> c = m.C()
>>> pickle.dumps(c)
'(im\nC\np0\n(dp1\nb.'
>>> pickle.loads(pickle.dumps(c))
<m.C instance at 0x9a0d0>
>>> del sys.modules["m"]
>>> pickle.loads(pickle.dumps(c))
... <deleted>
ImportError: No module named m
Traceback (most recent call last):

Summary Of Limitations

Although the first problem described above could be avoided by disabling
script reloading, there is no way to work around the second problem
resulting from how mod_wsgi names modules when stored in sys.modules.

In practice, what this means is that neither function objects, class
objects or instances of classes which are defined in a WSGI application
script file should be stored using the “pickle” module.

In order to ensure that no strange problems at all are likely to occur, it
is suggested that only basic builtin Python types, ie., scalars, tuples,
lists and dictionaries, be stored using the “pickle” module from a WSGI
application script file. That is, avoid any type of object which has user
defined code associated with it.

Note that this limitation only applies to the WSGI application script file,
it doesn’t apply to normal Python modules imported using the Python “import”
statement.

Issues With Expat Library

This article describes problems caused due to mismatches in the version of
the “expat” library embedded into Python and that linked into Apache. Where
incompatible versions are used, Apache can crash as soon as any Python code
module imports the “pyexpat” module.

Note that this only applies to Python versions prior to Python 2.5. From
Python 2.5 onwards, the copy of the “expat” library bundled in with Python
is name space prefixed, thereby avoid name clashes with an “expat” library
which has previously been loaded.

The Dreaded Segmentation Fault

When moving beyond creating simple WSGI applications to more complicated
tasks, one can unexpectedly be confronted with Apache crashing. This
generally manifests in no response being returned to the browser when a
request is made. Upon further investigation of the Apache error log file, a
message similar to the following message is found:

[notice] child pid 3238 exit signal Segmentation fault (11)

The change which causes this is the explicit addition of code to import the
Python module “pyexpat”, or the importing of any Python module which
indirectly makes use of the “pyexpat” module. Examples of other modules
which make use of the “pyexpat” module are “xmlrpclib” and modules from the
“PyXML” package. Nearly always, any module which in some way performs
processing of XML data will be affected as most such modules rely on using
the “pyexpat” module in some way.

Verifying Expat Is The Problem

To verify that the “pyexpat” module is the trigger for the problem,
construct a simple WSGI application script file containing:

def application(environ, start_response):
 status = '200 OK'
 output = 'without expat\n'

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output]

Verify that this handler works and the browser receives the response
“without pyepxat”. Now modify the handler such that the “pyexpat” module is
being imported. Also change the response so that it is clear that the
modified handler is being used:

import pyexpat

def application(environ, start_response):
 status = '200 OK'
 output = 'with expat\n'

 response_headers = [('Content-type', 'text/plain'),
 ('Content-Length', str(len(output)))]
 start_response(status, response_headers)

 return [output]

Presuming that script reloading is enabled, if now upon a request being
received by the WSGI application a succesful response of “with pyexpat” is
received by the browser, it would generally indicate that the “pyexpat”
module is not the problem after all. If however no response is received and
the Apache error log records a “Segmentation fault” then the “pyexpat”
module is the trigger.

Mismatch In Versions Of Expat

Segmentation faults can occur with any application where different
components of the application were compiled against different versions of a
common library such as the “expat” library. The actual cause of the problem
is generally a change in the API of the library, such as changed function
prototypes, changed data types, or changes in structure layouts. In the
case where mod_wsgi is being used, the different components are Apache
and the “pyexpat” module from Python.

Normally when different components of an application are built, they would
be built against the same version of the library and such problems would
not occur. In the case of the “pyexpat” module however, it is compiled
against a distinct version of the “expat” library which is then embedded
within the “pyexpat” module. At the same time, Apache will be built against
the version of the “expat” library included with the operating system, or
if not a standard part of the operating system, a version which is supplied
with Apache.

Thus if the version of the “expat” library embedded into the “pyexpat”
module is different to that which Apache was compiled against, the
potential for this problem will exist. Note though that there may not
always be a problem. Whether there is or not will ultimately depend on what
changes were made in the “expat” library between the releases of the
different versions used. It is also possible how each library version was
compiled could be a factor.

Expat Version Used By Apache

To determine the version of the the “expat” library which is used by
Apache, on Linux the “ldd” command can be used. Other operating systems
also provide this program or will generally have some form of equivalent
program. For example, on Mac OS X the command which is run is “otool -L”.

The purpose of these programs is to generate a list of all shared libraries
that an application is linked against. To determine where the “expat”
library being used by Apache is located, it is necessary to run the “ldd”
program on the “httpd” program. On a Linux system, the “httpd” program is
normally located in “/usr/sbin”. Because we are only interested in the
“expat” library, we can ignore anything but the reference to that library:

[grahamd@dscpl grahamd]$ ldd /usr/sbin/httpd | grep expat
 libexpat.so.0 => /usr/lib/libexpat.so.0 (0xb7e8c000)

From this output it can be seen that the “httpd” program appears to be
using “/usr/lib/libexpat.so.0”. Although some operating systems embed in
the name of the shared library versioning information, it does not
generally indicate the true version of the code base which made up the
library. To obtain this, it is necessary to extract the version information
out of the library. For the “expat” library this can be determined by
searching within the strings contained in the library for a version string
starting with expat_:

[grahamd@dscpl grahamd]$ strings /usr/lib/libexpat.so.0 | grep expat_
expat_1.95.8

The version of the “expat” library would therefore appear to be “1.95.8”.
Unfortunately though, many operating systems allow the library search path
to be overridden at the point that a program is run using an environment
variable such as “LD_LIBRARY_PATH” and it is quite possible that when
Apache is run, the context in which it is run could result in it finding
the “expat” library in a different location.

To be absolutely sure, it is necessary to determine which “expat” library
the running copy of Apache used. On Linux and many other operating systems,
this can be determined using the “lsof” command. If this program doesn’t
exist, an alternate program which may be available is “ofiles”. Either of
these should be run against one of the active Apache processes. If Apache
was originally started as root, the command will also need to be run as
root:

[grahamd@dscpl grahamd]$ ps aux | grep http | head -3
root 3625 0.0 0.6 31068 12836 ? SN Sep25 0:08 /usr/sbin/httpd
apache 24814 0.0 0.7 34196 15604 ? SN 04:11 0:00 /usr/sbin/httpd
apache 24815 0.0 0.7 33924 15916 ? SN 04:11 0:00 /usr/sbin/httpd

[grahamd@dscpl grahamd]$ sudo /usr/sbin/lsof -p 3625 | grep expat
httpd 3625 root mem REG 253,0 123552 6409040
/usr/lib/libexpat.so.0.5.0

[grahamd@dscpl grahamd]$ strings /usr/lib/libexpat.so.0.5.0 | grep expat_
expat_1.95.8

Expat Version Used By Python

To determine the version of the “expat” library which is embedded in the
Python “pyexpat” module, the module should be imported and the version
information extracted from the module. This can be done by executing
“python” on the command line and entering the necessary code directly:

[grahamd@dscpl grahamd]$ python
Python 2.3.3 (#1, May 7 2004, 10:31:40)
[GCC 3.3.3 20040412 (Red Hat Linux 3.3.3-7)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyexpat
>>> pyexpat.version_info
(1, 95, 7)

Combining Python And Apache

When mod_wsgi is used from within Apache, although there is a version of
the “expat” library embedded in the “pyexpat” module, it will effectively
be ignored. This is because Apache has already loaded into memory at
startup the version of the “expat” library which it is linked against. That
this occurs can be seen by using the ability of Linux to forcibly preload a
shared library into a program when run, even though that program wasn’t
linked against the library orginally. This is achieved using the
“LD_PRELOAD” environment variable:

[grahamd@dscpl grahamd]$ LD_PRELOAD=/usr/lib/libexpat.so.0.5.0 python
Python 2.3.3 (#1, May 7 2004, 10:31:40)
[GCC 3.3.3 20040412 (Red Hat Linux 3.3.3-7)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyexpat
>>> pyexpat.version_info
(1, 95, 8)

As can be seen, although the “pyexpat” module for this version of Python
embedded version 1.95.7 of the “expat” library, when the same version of
the “expat” library as was being used by Apache is forcibly loaded into the
program at startup, the version information obtained from the “pyexpat”
module now shows that version 1.95.8 of the “expat” library is being used.

Luckily in this case, the patch level difference between the two versions
of the “expat” library as used by Python and Apache doesn’t cause a
problem. If however the two versions of the “expat” library were
incompatible, one would expect to see the “python” program crash with a
segmentation fault at this point. This therefore can be used as an
alternate way of verifying that it is the “pyexpat” module and more
specifically the version of the “expat” library used, that is causing the
problem.

Updating System Expat Version

Because the version of the “expat” library embedded within the “pyexpat”
module is shipped as source code within the Python distribution, it can be
hard to replace it. The preferred approach to resolving the mismatch is
therefore to replace/update the version of the “expat” library that is used
by Apache.

Generally the problem occurs where that used by Apache is older than that
which is being used by Python. In that case, the version of the “expat”
library used by Apache should be updated to be the same version as that
embedded within the “pyexpat” module. By using the same version, one would
expect any problems to disappear. If problems still persist, it is possible
that Apache may also need to be recompiled against the same version of the
“expat” library as used in Python.

Configuration

	WSGIAcceptMutex

	WSGIAccessScript

	WSGIApplicationGroup

	WSGIAuthGroupScript

	WSGIAuthUserScript

	WSGICallableObject

	WSGICaseSensitivity

	WSGIChunkedRequest

	WSGIDaemonProcess

	WSGIImportScript

	WSGILazyInitialization

	WSGIPassAuthorization

	WSGIProcessGroup

	WSGIPythonEggs

	WSGIPythonHome

	WSGIPythonOptimize

	WSGIPythonPath

	WSGIRestrictEmbedded

	WSGIRestrictProcess

	WSGIRestrictSignal

	WSGIRestrictStdin

	WSGIRestrictStdout

	WSGIScriptAlias

	WSGIScriptAliasMatch

	WSGIScriptReloading

	WSGISocketPrefix

WSGIAcceptMutex

	Description

	Specify type of accept mutex used by daemon processes.

	Syntax

	WSGIAcceptMutex Default | method

	Default

	WSGIAcceptMutex Default

	Context

	server config

The WSGIAcceptMutex directive sets the method that mod_wsgi will use to
serialize multiple daemon processes in a process group accepting requests
on a socket connection from the Apache child processes. If this directive
is not defined then the same type of mutex mechanism as used by Apache for
the main Apache child processes when accepting connections from a client
will be used. If set the method types are the same as for the Apache
AcceptMutex [http://httpd.apache.org/docs/2.4/mod/mpm_common.html#acceptmutex] directive.

Note that the WSGIAcceptMutex directive and corresponding features are
not available on Windows or when running Apache 1.3.

WSGIAccessScript

	Description

	Specify script implementing host access controls.

	Syntax

	WSGIAccessScript path [options]

	Context

	directory, .htaccess

	Override

	AuthConfig

The WSGIAccessScript directive provides a mechanism for implementing
host access controls.

More detailed information on using the WSGIAccessScript directive
can be found in Access Control Mechanisms.

The options which can be supplied to the WSGIAccessScript directive are:

application-group=name

Specifies the name of the application group within the specified
process for which the script file will be loaded.

If the application-group option is not supplied, the special value
%{GLOBAL} which denotes that the script file be loaded within the
context of the first interpreter created by Python when it is
initialised will be used. Otherwise, will be loaded into the
interpreter for the specified application group.

Note that the script always runs in processes associated with embedded
mode. It is not possible to delegate the script such that it is run within
context of a daemon process.

WSGIApplicationGroup

	Description

	Sets which application group WSGI application belongs to.

	Syntax

	WSGIApplicationGroup name
WSGIApplicationGroup %{GLOBAL}
WSGIApplicationGroup %{SERVER}
WSGIApplicationGroup %{RESOURCE}
WSGIApplicationGroup %{ENV:variable}

	Default

	WSGIApplicationGroup %{RESOURCE}

	Context

	server config, virtual host, directory

The WSGIApplicationGroup directive can be used to specify which
application group a WSGI application or set of WSGI applications belongs
to. All WSGI applications within the same application group will execute
within the context of the same Python sub interpreter of the process
handling the request.

Setting WSGIApplicationGroup doesn’t control what processes a request
is handled by, that is what the WSGIProcessGroup directive does. In
other words, the WSGIProcessGroup directive operates distinct from the
WSGIApplicationGroup directive, with WSGIProcessGroup dictating
what named group of processes a request is handled by, and
WSGIApplicationGroup dictating which named Python sub interpreter
context (application group) of those processes is used. In each distinct
process of a named group of processes, there will be a separate sub
interpreter instance of same name, for handling the requests accepted by
that process.

The argument to the WSGIApplicationGroup can be either one of four
special expanding variables or an explicit name of your own choosing.
The meaning of the special variables are:

%{GLOBAL}

The application group name will be set to the empty string.

Any WSGI applications in the global application group will always be
executed within the context of the first interpreter created by Python
when it is initialised, of the process handling the request. Forcing a
WSGI application to run within the first interpreter can be necessary
when a third party C extension module for Python has used the
simplified threading API for manipulation of the Python GIL and thus
will not run correctly within any additional sub interpreters created
by Python.

%{SERVER}

The application group name will be set to the server hostname. If the
request arrived over a non standard HTTP/HTTPS port, the port number
will be added as a suffix to the group name separated by a colon.

For example, if the virtual host www.example.com is handling
requests on the standard HTTP port (80) and HTTPS port (443), a request
arriving on either port would see the application group name being set
to www.example.com. If instead the virtual host was handling requests
on port 8080, then the application group name would be set to
www.example.com:8080.

%{RESOURCE}

The application group name will be set to the server hostname and port
as for the %{SERVER} variable, to which the value of WSGI environment
variable SCRIPT_NAME is appended separated by the file separator
character.

For example, if the virtual host www.example.com was handling
requests on port 8080 and the URL-path which mapped to the WSGI
application was:

http://www.example.com/wsgi-scripts/foo

then the application group name would be set to:

www.example.com:8080|/wsgi-scripts/foo

The effect of using the %{RESOURCE} variable expansion is for each
application on any server to be isolated from all others by being
mapped to its own Python sub interpreter.

%{ENV:variable}

The application group name will be set to the value of the named
environment variable. The environment variable is looked-up via the
internal Apache notes and subprocess environment data structures and
(if not found there) via getenv() from the Apache server process.

In an Apache configuration file, environment variables accessible using
the %{ENV} variable reference can be setup by using directives such as
SetEnv [http://httpd.apache.org/docs/2.2/mod/mod_env.html#setenv] and RewriteRule [http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html#rewriterule].

For example, to group all WSGI scripts for a specific user when using
mod_userdir [http://httpd.apache.org/docs/2.2/mod/mod_userdir.html] within the same application group, the following could be
used:

RewriteEngine On
RewriteCond %{REQUEST_URI} ^/~([^/]+)
RewriteRule . - [E=APPLICATION_GROUP:~%1]

<Directory /home/*/public_html/wsgi-scripts/>
Options ExecCGI
SetHandler wsgi-script
WSGIApplicationGroup %{ENV:APPLICATION_GROUP}
</Directory>

Note that in embedded mode or a multi process daemon process group, there
will be an instance of the named sub interpreter in each process. Thus the
directive only ensures that request is handled in the named sub interpreter
within the process that handles the request. If you need to ensure that
requests for a specific user always go back to the exact same sub interpreter,
then you will need to use a daemon process group with only a single process,
or implement sticky session mechanism across a number of single process
daemon process groups.

WSGIAuthGroupScript

	Description

	Specify script implementing group authorisation.

	Syntax

	WSGIAuthGroupScript path [options]

	Context

	directory, .htaccess

	Override

	AuthConfig

The WSGIAuthGroupScript directive provides a mechanism for implementing
group authorisation using the Apache Require directive.

More detailed information on using the WSGIAuthGroupScript directive
can be found in Access Control Mechanisms.

The options which can be supplied to the WSGIAuthGroupScript directive are:

application-group=name

Specifies the name of the application group within the specified
process for which the script file will be loaded.

If the application-group option is not supplied, the special value
%{GLOBAL} which denotes that the script file be loaded within the
context of the first interpreter created by Python when it is
initialised will be used. Otherwise, will be loaded into the
interpreter for the specified application group.

Note that the script always runs in processes associated with embedded
mode. It is not possible to delegate the script such that it is run within
context of a daemon process.

WSGIAuthUserScript

	Description

	Specify script implementing an authentication provider.

	Syntax

	WSGIAuthUserScript path [options]

	Context

	directory, .htaccess

	Override

	AuthConfig

The WSGIAuthUserScript directive can be used to specify a script which
implements an Apache authentication provider.

Such an authentication provider can be used where you want Apache to worry
about the handshaking related to HTTP Basic and Digest authentication and
you only wish to deal with supplying the user credentials for authenticating
the user.

If using at least Apache 2.2, other Apache modules implementing custom
authentication mechanisms can also make use of the authentication provider
if they are using the corresponding Apache C API for accessing them.

More detailed information on using the WSGIAuthUserScript directive can be
found in Access Control Mechanisms.

The options which can be supplied to the WSGIAuthUserScript directive are:

	application-group=name

	Specifies the name of the application group within the specified
process for which the script file will be loaded.

If the ‘application-group’ option is not supplied, the special value
‘%{GLOBAL}’ which denotes that the script file be loaded within the
context of the first interpreter created by Python when it is
initialised will be used. Otherwise, will be loaded into the
interpreter for the specified application group.

Note that the script always runs in processes associated with embedded
mode. It is not possible to delegate the script such that it is run within
context of a daemon process.

WSGICallableObject

	Description

	Sets the name of the WSGI application callable.

	Syntax

	WSGICallableObject name
WSGICallableObject %{ENV:variable}

	Default

	WSGICallableObject application

	Context

	server config, virtual host, directory, .htaccess

	Override

	FileInfo

The WSGICallableObject directive can be used to override the name of the
Python callable object in the script file which is used as the entry point
into the WSGI application.

When %{ENV} is being used, the environment variable is looked-up via the
internal Apache notes and subprocess environment data structures and (if
not found there) via getenv() from the Apache server process.

In an Apache configuration file, environment variables accessible using
the %{ENV} variable reference can be setup by using directives such as
SetEnv [http://httpd.apache.org/docs/2.2/mod/mod_env.html#setenv] and RewriteRule [http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html#rewriterule].

Note that the name of the callable object must be an object present at
global scope within the WSGI script file. It is not possible to use a dotted
path to refer to a sub object of a module imported by the WSGI script file.

WSGICaseSensitivity

	Description

	Define whether file system is case sensitive.

	Syntax

	WSGICaseSensitivity On|Off

	Context

	server config

When mod_wsgi is used on the Windows and MacOS X platforms, it will assume
that the filesystem in use is case insensitive. This is necessary to ensure
that the module caching system works correctly and only one module is
retained in memory where paths with different case are used to identify the
same script file. On other platforms it will always be assumed that a case
sensitive file system is used.

The WSGICaseSensitivity directive can be used explicitly to specify for a
particular WSGI application whether the file system the script file is
stored in is case sensitive or not, thus overriding the default for any
platform. A value of On indicates that the filesystem is case sensitive.

Because it is set in the main server config it will apply to the whole
site. All paths therefore would need to be located in a filesystem with the
same case convention.

WSGIChunkedRequest

	Description

	Enabled support for chunked request content.

	Syntax

	WSGIChunkedRequest On|Off

	Default

	WSGIChunkedRequest Off

	Context

	server config, virtual host, directory, .htaccess

The WSGIChunkedRequest directive can be used to enable support for chunked
request content. Rather than Apache rejecting a request using chunked
request content, it will be allowed to pass through.

Do note however that WSGI is technically incapable of supporting chunked
request content without all chunked request content having to be first read
in and buffered. This is because WSGI requires CONTENT_LENGTH be set
when there is any request content.

In mod_wsgi no buffering is done. Thus, to be able to read the request
content in the case of a chunked transfer encoding, you need to step
outside of the WSGI specification and do things it says you aren’t meant to.

You have two choices for how you can do this. The first choice you have
is to call read() on wsgi.input but not supply any argument at all.
This will cause all request content to be read in and returned.

The second is to loop on calling read() on wsgi.input with a set
block size passed as argument and do this until read() returns an empty
string.

Because both calling methods are not allowed under WSGI specification, in
using these your code will not technically be portable to other WSGI hosting
mechanisms, although if those other WSGI servers support it, you will be
okay.

That all said, although technically not permitted by the WSGI specification,
some WSGI frameworks do now incoporate support for handling chunked request
content, as well as where compressed request content is expanded by the web
server such that CONTENT_LENGTH is no longer accurate. The required
behaviour is enabled in these frameworks by the WSGI server passing through
the non standard wsgi.input_terminated key set as True in the per
request WSGI environ dictionary. When this is done the web frameworks
will always read all available input and ignore CONTENT_LENGTH.

Because mod_wsgi guarantees that an empty string is returned when all input
is exhausted, it will will always set this flag.

It is known that Flask/Werkzeug supports the wsgi.input_terminated flag.

WSGIDaemonProcess

	Description

	Configure a distinct daemon process for running applications.

	Syntax

	WSGIDaemonProcess name [options]

	Context

	server config, virtual host

The WSGIDaemonProcess directive can be used to specify that distinct
daemon processes should be created to which the running of WSGI
applications can be delegated. Where Apache has been started as the
root user, the daemon processes can be run as a user different to that
which the Apache child processes would normally be run as.

When distinct daemon processes are enabled and used, the process is
dedicated to mod_wsgi and the only thing that the processes do is run the
WSGI applications assigned to that process group. Any other Apache modules
such as PHP or activities such as serving up static files continue to be
run in the standard Apache child processes.

Note that having denoted that daemon processes should be created by
using the WSGIDaemonProcess directive, the WSGIProcessGroup
directive, or the process-group option of WSGIScriptAlias still
needs to be used to delegate specific WSGI applications to execute within
those daemon processes.

Also note that the name of the daemon process group must be unique for the
whole server. That is, it is not possible to use the same daemon process
group name in different virtual hosts.

Options which can be supplied to the WSGIDaemonProcess directive are:

	processes=num

	Defines the number of daemon processes that should be started in this
process group. If not defined then only one process will be run in this
process group.

Note that if this option is defined as processes=1, then the WSGI
environment attribute called wsgi.multiprocess will be set to be
True whereas not providing the option at all will result in the
attribute being set to be False. This distinction is to allow for
where some form of load balancing is used across process groups in the
same Apache instance, or separate Apache instances. If you need to
ensure that wsgi.multiprocess is False so that interactive
debuggers will work, simply do not specify the processes option and
allow the default single daemon process to be created in the process
group.

	threads=num

	Defines the number of threads to be created to handle requests in each
daemon process within the process group.

If this option is not defined then the default will be to create 15
threads in each daemon process within the process group.

Do not get carried away and set this to a very large number in the
belief that it will somehow magically enable you to handle many more
concurrent users. Any sort of increased value would only be appropriate
where your code is I/O bound. If you code is CPU bound, you are better
of using at most 3 to 5 threads per process and using more processes.

If you set the number of threads to 0 you will enable a special mode
intended for using a daemon process to run a managed set of processes.
You will need to use WSGIImportScript to pre-load a Python script
into the main application group specified by %{GLOBAL} where the
script runs a never ending task, or does an exec to run an external
program. If the script or external program exits, the process is
shutdown and replaced with a new one. For the case of using a Python
script to run a never ending task, a SystemExit exception will be
injected when a signal is received to shutdown the process. You can
use signal.signal() to register a signal handler for SIGTERM
if needing to run special actions before then exiting the process using
sys.exit(), or to signal your own threads to exit any processing
so you can shutdown in an orderly manner.

	display-name=value

	Defines a different name to show for the daemon process when using the
ps command to list processes. If the value is %{GROUP} then the
name will be (wsgi:group) where group is replaced with the name
of the daemon process group.

Note that only as many characters of the supplied value can be displayed
as were originally taken up by argv0 of the executing process.
Anything in excess of this will be truncated.

This feature may not work as described on all platforms. Typically it
also requires a ps program with BSD heritage. Thus on some versions
of Solaris UNIX the /usr/bin/ps program doesn’t work, but
/usr/ucb/ps does. Other programs which can display this value
include htop.

	home=directory

	Defines an absolute path of a directory which should be used as the
initial current working directory of the daemon processes within the
process group.

If this option is not defined the initial current working directory
will be set to be the home directory of the user that the daemon
process is configured to run as using the user option to the
WSGIDaemonProcess directive. Otherwise the current working
directory of Apache when started will be used, which if Apache is being
started from system init scripts, would usually be the system root
directory.

	user=name | user=#uid

	Defines the UNIX user name or numeric user uid of the user that
the daemon processes should be run as. If this option is not supplied
the daemon processes will be run as the same user that Apache would
run child processes, as defined by the User [http://httpd.apache.org/docs/2.4/mod/mod_unixd.html#user] directive, and it is
not necessary to set this to the Apache user yourself.

Note that this option is ignored if Apache wasn’t started as the root
user, in which case no matter what the settings, the daemon processes
will be run as the user that Apache was started as.

Also be aware that mod_wsgi will not allow you to run a daemon process
group as the root user due to the security risk of running a web
application as root.

	group=name | group=#gid

	Defines the UNIX group name or numeric group gid of the primary
group that the daemon processes should be run as. If this option is not
supplied the daemon processes will be run as the same group that Apache
would run child processes, as defined by the Group [http://httpd.apache.org/docs/2.4/mod/mod_unixd.html#group] directive, and it
is not necessary to set this to the Apache group yourself.

Note that this option is ignored if Apache wasn’t started as the root
user, in which case no matter what the settings, the daemon processes
will be run as the group that Apache was started as.

	supplementary-groups=group1 | supplementary-groups=group1,group2

	Defines a list of additional UNIX groups that the user the daemon
process group runs as, should be added to, in addition to primary
UNIX group associated with that user. When specifying more than one
group, separate the names of the groups with a comma.

	umask=0nnn

	Defines a value to be used for the umask of the daemon processes within
the process group. The value must be provided as an octal number.

If this option is not defined then the umask of the user that Apache is
initially started as will be inherited by the process. Typically the
inherited umask would be ‘0022’.

	lang=locale

	Set the current language locale. This is the same as having set the
LANG environment variable.

You will need to set this on many Linux systems where Apache when
started up from system init scripts uses the default C locale, meaning
that the default system encoding is ASCII. Unless you need a special
language locale, set this to en_US.UTF-8.

Whether the lang or locale option works best can depend on the
system being used. Set both if you aren’t sure which is appropriate.

	locale=locale

	Set the current language locale. This is the same as having set the
LC_ALL environment variable.

You will need to set this on many Linux systems where Apache when
started up from system init scripts uses the default C locale, meaning
that the default system encoding is ASCII. Unless you need a special
language locale, set this to en_US.UTF-8.

Whether the lang or locale option works best can depend on the
system being used. Set both if you aren’t sure which is appropriate.

	chroot=directory

	Run the daemon process group process within a chroot jail. Use of a
chroot jail is now deprecated due to the difficulty in setting up a
chroot environment. It is recommended that you use more modern
containerisation technologies such as Docker or runC.

	script-user=name | script-user=#uid

	Sets the user that must be the owner of any WSGI script file delegated
to be run in the daemon process group. If the owner doesn’t match a
HTTP Forbidden response will be returned for any request.

Note that this doesn’t change what user the daemon process group runs
as at any time. If you want to set the user that the daemon process
group runs as, use the user option.

Only one of script-user or script-group option can be used at
the same time.

	script-group=name | scrip-group=#gid

	Sets the group that must be the group of any WSGI script file delegated
to be run in the daemon process group. If the group doesn’t match a
HTTP Forbidden response will be returned for any request.

Note that this doesn’t change what group the daemon process group runs
as at any time. If you want to set the group that the daemon process
group runs as, use the group option.

Only one of script-user or script-group option can be used at
the same time.

	python-home=directory

	Set the location of the Python virtual environment to be used by the
daemon processes. The directory to use is that which sys.prefix is
set to for the Python virtual environment. The virtual environment can
have been created by virtualenv, pyvenv or python -m venv.

Note that the Python virtual environment must have been created using
the same base Python version as was used to compile the mod_wsgi
module. You can’t use this to force mod_wsgi to somehow use a different
Python version than it was compiled for. If you want to use a different
version of Python, you will need to reinstall mod_wsgi, compiling it
for the version you want. It is not possible for the one mod_wsgi
instance to run applications for both Python 2 and 3 at the same time.

	python-path=directory | python-path=directory:directory

	List of colon separated directories to add to the Python module search
path, ie., sys.path.

Note that this is not strictly the same as having set the PYTHONPATH
environment variable when running normal command line Python. When this
option is used, the directories are added by calling
site.addsitedir(). As well as adding the directory to
sys.path this function has the effect of opening and interpreting
any .pth files located in the specified directories.

If using a Python virtual environment, rather than use this option to
refer to the site-packages directory of the Python virtual
environment, you should use the python-home option to specify the
root of the Python virtual environment instead.

In all cases, if the directory contains Python packages which have C
extension components, those packages must have been installed using the
same base Python version as was used to compile the mod_wsgi module.
You should not mix packages from different Python versions or
installations.

	python-eggs=directory

	Directory to be used as the Python egg cache directory. This is
equivalent to having set the PYTHON_EGG_CACHE environment
variable.

Note that the directory specified must exist and be writable by the
user that the daemon process run as.

	restart-interval=nnn

	Defines a time limit on how long a daemon process should run before
being restarted.

This might be use to periodically force restart the WSGI application
processes when you have issues related to Python object reference count
cycles, or incorrect use of in memory caching, which causes constant
memory growth.

If this option is not defined, or is defined to be 0, then the daemon
process will be persistent and will continue to service requests until
Apache itself is restarted or shutdown.

Avoid setting this too low. This is because the constant restarting and
reloading of your WSGI application may cause unecessary load on your
system and affect performance.

You can use the graceful-timeout option in conjunction with this
option to reduce the chances that an active request will be interrupted
when a restart occurs due to the use of this option.

	maximum-requests=nnn

	Defines a limit on the number of requests a daemon process should
process before it is shutdown and restarted.

This might be use to periodically force restart the WSGI application
processes when you have issues related to Python object reference count
cycles, or incorrect use of in memory caching, which causes constant
memory growth.

If this option is not defined, or is defined to be 0, then the daemon
process will be persistent and will continue to service requests until
Apache itself is restarted or shutdown.

Avoid setting this to a low number of requests on a site which handles
a lot of traffic. This is because the constant restarting and reloading
of your WSGI application may cause unecessary load on your system and
affect performance. Only use this option if you have no other choice
due to a memory usage issue. Stop using it as soon as any memory issue
has been resolved.

You can use the graceful-timeout option in conjunction with this
option to reduce the chances that an active request will be interrupted
when a restart occurs due to the use of this option.

	inactivity-timeout=sss

	Defines the maximum number of seconds allowed to pass before the
daemon process is shutdown and restarted when the daemon process has
entered an idle state. For the purposes of this option, being idle
means there are no currently active requests and no new requests are
being received.

This option exists to allow infrequently used applications running in
a daemon process to be restarted, thus allowing memory being used to
be reclaimed, with process size dropping back to the initial startup
size before any application had been loaded or requests processed.

Note that after any restart of the WSGI application process, the WSGI
application will need to be reloaded. This can mean that the first
request received by a process after the process was restarted can be
slower. If you WSGI application has a very high startup cost on CPU and
time, it may not be a good idea to use the option.

See also the request-timeout option for forcing a process restart
when requests block for a specified period of time.

Note that similar functionality to that of the request-timeout
option, for forcing a restart when requests blocked, was part of what
was implemented by the inactivity-timeout option. The request
timeout was broken out into a separate feature in version 4.1.0 of
mod_wsgi.

	request-timeout=sss

	Defines the maximum number of seconds that a request is allowed to run
before the daemon process is restarted. This can be used to recover
from a scenario where a request blocks indefinitely, and where if all
request threads were consumed in this way, would result in the whole
WSGI application process being blocked.

How this option is seen to behave is different depending on whether a
daemon process uses only one thread, or more than one thread for
handling requests, as set by the threads option.

If there is only a single thread, and so the process can only handle
one request at a time, as soon as the timeout has passed, a restart of
the process will be initiated.

If there is more than one thread, the request timeout is applied to
the average running time for any requests, across all threads. This
means that a request can run longer than the request timeout. This is
done to reduce the possibility of interupting other running requests,
and causing a user to see a failure. So where there is still capacity
to handle more requests, restarting of the process will be delayed
if possible.

	deadlock-timeout=sss

	Defines the maximum number of seconds allowed to pass before the
daemon process is shutdown and restarted after a potential deadlock on
the Python GIL has been detected. The default is 300 seconds.

This option exists to combat the problem of a daemon process freezing
as the result of a rogue Python C extension module which doesn’t
properly release the Python GIL when entering into a blocking or long
running operation.

	startup-timeout=sss

	Defines the maximum number of seconds allowed to pass waiting to see if
a WSGI script file can be loaded successfully by a daemon process. When
the timeout is passed, the process will be restarted.

This can be used to force the reloading of a process when a transient
issue occurs on the first attempt to load the WSGI script file, but
subsequent attempts still fail because a Python package that was loaded
has retained state that prevents attempts to run initialisation a
second time within the same process. The Django package can cause this
scenario as the initialisation of Django itself can no longer be
attempted more than once in the same process.

	graceful-timeout=sss

	When maximum-requests is used and the maximum has been reached,
or cpu-time-limit is used and the CPU limit reached, or
restart-interval is used and the time limit reached, if
graceful-timeout is set, then the process will continue to run for
the number of second specified by this option, while still accepting
new requests, to see if the process reaches an idle state. If the
process reaches an idle state, it will then be resarted immediately. If
the process doesn’t reach an idle state and the graceful restart
timeout expires, the process will be restarted, even if it means that
requests may be interrupted.

	eviction-timeout=sss

	When a daemon process is sent the graceful restart signal, usually
SIGUSR1, to restart a process, this timeout controls how many
seconds the process will wait, while still accepting new requests,
before it reaches an idle state with no active requests and shutdown.

If this timeout is not specified, then the value of the
graceful-timeout will instead be used. If the graceful-timeout
is not specified, then the restart when sent the graceful restart
signal will instead happen immediately, with the process being forcibly
killed, if necessary, when the shutdown timeout has expired.

	shutdown-timeout=sss

	Defines the maximum number of seconds allowed to pass when waiting for
a daemon process to shutdown. When this timeout has been reached the
daemon process will be forced to exited even if there are still active
requests or it is still running Python exit functions. The shutdown
timeout is applied after any graceful restart timeout or eviction
timeout if they have been specified. No new requests are accepted
during the shutdown timeout is being applied.

If this option is not defined, then the shutdown timeout will be set
to 5 seconds. Note that this option does not change the shutdown
timeout applied to daemon processes when Apache itself is being stopped
or restarted. That timeout value is defined internally to Apache as 3
seconds and cannot be overridden.

	connect-timeout=sss

	Defines the maximum amount of time for an Apache child process to wait
trying to get a successful connection to the mod_wsgi daemon processes.
This defaults to 15 seconds.

	socket-timeout=sss

	Defines the timeout on individual reads/writes on the socket connection
between the Apache child processes and the mod_wsgi daemon processes.
If this is not specified, the number of seconds specified by the
Apache Timeout [http://httpd.apache.org/docs/2.4/mod/core.html#timeout] directive will be used instead.

	queue-timeout=sss

	Defines the timeout on how long to wait for a mod_wsgi daemon process
to accept a request for processing.

This option is to allow one to control what to do when backlogging of
requests occurs. If the daemon process is overloaded and getting
behind, then it is more than likely that a user will have given up on
the request anyway if they have to wait too long. This option allows
you to specify that a request that was queued up waiting for too long
is discarded, allowing any transient backlog to be quickly discarded
and not simply cause the daemon process to become even more backlogged.
When this occurs the user will recieve a 504 Gateway Time Out response.

	listen-backlog=nnn

	Defines the depth of the daemon process socket listener queue. By
default the limit is 100, although this is actually a hint, as
different operating systems can have different limits on the maximum
value or otherwise treat it in special ways.a

This option can be set, along with queue-timeout to try and better
handle back logging when the WGSI application gets overloaded.

	socket-user=name | socket-user=#uid

	Set the owner of the UNIX listener socket for the daemon process group.

This can be used when using the Apache PrivilegesMode [https://httpd.apache.org/docs/2.4/mod/mod_privileges.html#privilegesmode] directive with
value of SECURE to change the owner of the socket from the default
Apache user, to the user under which the Apache child process which is
attempting to connect to the daemon process group, will run when
handling requests. This is necessary otherwise the Apache child worker
process will not be able to connect to the listener socket for the
mod_wsgi daemon process to proxy the request to the WSGI application.

This option can also be used when using third party Apache modules such
as mod_ruid, mod_ruid2, mod_suid as well as the ITK MPM for Apache.

	cpu-time-limit=sss

	Define the maximum amount of CPU time a daemon process is allowed to
consume before a shutdown is triggered and the daemon process
restarted. The point of this is to provide some means of controlling
potentially run away processes due to bad code that gets stuck in heavy
processing loops.

Note that CPU time used is recorded from when the daemon process is
first created. This means that a process will eventually reach the
limit in normal use and would be restarted. You can use the
graceful-timeout option to reduce the chances that an active
request will be interrupted.

	cpu-priority=num

	Sets the scheduling priority set to the daemon processes. This can be
a number of the range -20 to 20. The default priority is 0. A lower
priority gives more favourable scheduling.

	memory-limit=num

	Sets the maximum amount of memory a daemon process can use. This will
have no affect on some platforms as RLIMIT_AS/RLIMIT_DATA with
setrlimit() isn’t always implemented. For example MacOS X and older
Linux kernel versions do not implement this feature. You will need to
test whether this feature works or not before depending on it.

	virtual-memory-limit=num

	Sets the maximum amount of virtual memory a daemon process can use.
This will have no affect on some platforms as RLIMIT_VMEM with
setrlimit() isn’t always implemented. You will need to test whether
this feature works or not before depending on it.

	stack-size=nnn

	The amount of virtual memory in bytes to be allocated for the stack
corresponding to each thread created by mod_wsgi in a daemon process.

This option would be used when running Linux in a VPS system which has
been configured with a quite low ‘Memory Limit’ in relation to the
‘Context RSS’ and ‘Max RSS Memory’ limits. In particular, the default
stack size for threads under Linux is 8MB is quite excessive and could
for such a VPS result in the ‘Memory Limit’ being exceeded before the
RSS limits were exceeded. In this situation, the stack size should be
dropped down to be in the region of 512KB (524288 bytes).

	receive-buffer-size=nnn

	Defines the UNIX socket buffer size for data being received by the
daemon process from the Apache child process.

This option may need to be used to override small default values set by
certain operating systems and would help avoid possibility of deadlock
between Apache child process and daemon process when the WSGI
application generates large responses but doesn’t consume request
content. In general such deadlock problems would not arise with well
behaved WSGI applications, but some spam bots attempting to post data
to web sites are known to trigger the problem.

The maximum possible value that can be set for the buffer size is
operating system dependent and will need to be calculated through trial
and error.

	send-buffer-size=nnn

	Defines the UNIX socket buffer size for data being sent in the
direction daemon process back to Apache child process.

This option may need to be used to override small default values set by
certain operating systems and would help avoid possibility of deadlock
between Apache child process and daemon process when the WSGI
application generates large responses but doesn’t consume request
content. In general such deadlock problems would not arise with well
behaved WSGI applications, but some spam bots attempting to post data
to web sites are known to trigger the problem.

The maximum possible value that can be set for the buffer size is
operating system dependent and will need to be calculated through trial
and error.

	header-buffer-size=nnn

	Defines the maximum size that a response header/value can be that is
returned from a WSGI application. The default size is 32768 bytes. This
might need to be overridden where excessively large response headers
are returned, such as in custom authentication challenge schemes which
use the WWW-Authenticate header.

	response-buffer-size=nnn

	Defines the maximum number of bytes that will be buffered for a
response in the Apache child processes when proxying the response body
from the WSGI application. The default size is 65536 bytes. Be careful
increasing this to provide extra buffering of responses as it
contributes to the runtime memory size of the Apache child processes.

	response-socket-timeout=nnn

	Defines the maximum number of seconds allowed to pass before timing out
on a write operation back to the HTTP client when the response buffer
has filled and data is being forcibly flushed. Defaults to 0 seconds
indicating that it will default to the value of the socket-timeout
option.

To delegate a particular WSGI application to run in a named set of daemon
processes, the WSGIProcessGroup directive should be specified in
appropriate context for that application, or the process-group option
used on the WSGIScriptAlias directive. If neither is used to delegate
the WSGI application to run in a daemon process group, the application will
be run within the standard Apache child processes.

If the WSGIDaemonProcess directive is specified outside of all virtual
host containers, any WSGI application can be delegated to be run within
that daemon process group. If the WSGIDaemonProcess directive is
specified within a virtual host container, only WSGI applications
associated with virtual hosts with the same server name as that virtual
host can be delegated to that set of daemon processes.

In the case where you have two separate VirtualHost definitions for
the same ServerName, but where one is for port 80 and the other for
port 443, specify the WSGIDaemonProcess directive in the
first VirtualHost. You can then refer to that daemon process group
by name from the second VirtualHost. Using one daemon process group
across the two virtual hosts in this case is preferred as then you do not
have two whole separate instances of your application for port 80 and 443.

<VirtualHost *:80>
ServerName www.site1.com

WSGIDaemonProcess www.site1.com user=joe group=joe processes=2 threads=25
WSGIProcessGroup www.site1.com

...
</VirtualHost>

<VirtualHost *:443>
ServerName www.site1.com

WSGIProcessGroup www.site1.com

...
</VirtualHost>

When WSGIDaemonProcess is associated with a virtual host, the error log
associated with that virtual host will be used for all Apache error log
output from mod_wsgi rather than it appear in the main Apache error log.

For example, if a server is hosting two virtual hosts and it is desired
that the WSGI applications related to each virtual host run in distinct
processes of their own and as a user which is the owner of that virtual
host, the following could be used:

<VirtualHost *:80>
ServerName www.site1.com
CustomLog logs/www.site1.com-access_log common
ErrorLog logs/ww.site1.com-error_log

WSGIDaemonProcess www.site1.com user=joe group=joe processes=2 threads=25
WSGIProcessGroup www.site1.com

...
</VirtualHost>

<VirtualHost *:80>
ServerName www.site2.com
CustomLog logs/www.site2.com-access_log common
ErrorLog logs/www.site2.com-error_log

WSGIDaemonProcess www.site2.com user=bob group=bob processes=2 threads=25
WSGIProcessGroup www.site2.com

...
</VirtualHost>

For historical reasons and the inability to change existing behaviour when
adding or changing features, many of the options to WSGIDaemonProcess,
especially those related to timeouts are not enabled by default. It is
strongly recommended you explicitly set these options yourself as this will
give you a system which is better able to recover from backlogging due to
overloading when you have too many long running requests or hanging
requests. As a starting point you can see what mod_wsgi-express uses as
defaults, adjusting them as necessary to suit your specific application
after you research what each option does. For example, consider starting
out with:

	display-name='%{GROUP}'

	lang='en_US.UTF-8'

	locale='en_US.UTF-8'

	threads=5

	queue-timeout=45

	socket-timeout=60

	connect-timeout=15

	request-timeout=60

	inactivity-timeout=0

	startup-timeout=15

	deadlock-timeout=60

	graceful-timeout=15

	eviction-timeout=0

	restart-interval=0

	shutdown-timeout=5

	maximum-requests=0

Note that the WSGIDaemonProcess directive and corresponding features are
not available on Windows.

WSGIImportScript

	Description

	Specify a script file to be loaded on process start.

	Syntax

	WSGIImportScript path [options]

	Context

	server config

The WSGIImportScript directive can be used to specify a script file to be
loaded when a process starts. Options must be provided to indicate the name
of the process group and the application group into which the script will
be loaded.

The options which must supplied to the WSGIImportScript directive are:

	process-group=name

	Specifies the name of the process group for which the script file will
be loaded.

The name of the process group can be set to the special value
‘%{GLOBAL}’ which denotes that the script file be loaded for the Apache
child processes. Any other value indicates appropriate process group
for mod_wsgi daemon mode.

	application-group=name

	Specifies the name of the application group within the specified
process for which the script file will be loaded.

The name of the application group can be set to the special value
‘%{GLOBAL}’ which denotes that the script file be loaded within the
context of the first interpreter created by Python when it is
initialised. Otherwise, will be loaded into the interpreter for the
specified application group.

Because the script files are loaded prior to beginning to accept any
requests, any delay in loading the script will not cause actual requests to
be blocked. As such, the WSGIImportScript can be used to preload a WSGI
application script file on process start so that it is ready when actual
user requests arrive. For where there are multiple processes handling
requests, this can reduce or eliminate the apparent stalling of an
application when performing a restart of Apache or a daemon mode process
group.

WSGILazyInitialization

	Description

	Enable/disable lazy initialisation of Python.

	Syntax

	WSGILazyInitialization On|Off

	Default

	WSGILazyInitialization On

	Context

	server config

The WSGILazyInitialization directives sets whether or not the Python
interpreter is preinitialised within the Apache parent process or whether
lazy initialisation is performed, and the Python interpreter only
initialised in the Apache server processes or mod_wsgi daemon processes
after they have forked from the Apache parent process.

In versions of mod_wsgi prior to version 3.0 the Python interpreter was
always preinitialised in the Apache parent process. This did mean that
theoretically some benefit in memory usage could be derived from delayed
copy on write semantics of memory inherited by child processes that was
initialised in the parent. This memory wasn’t significant however and was
tempered by the fact that the Python interpreter when destroyed and then
reinitialised in the Apache parent process on an Apache restart, would with
some Python versions leak memory. This meant that if a server had many
restarts performed, the Apache parent process and thus all forked child
processes could grow in memory usage over time, eventually necessitating
Apache be completely stopped and then restarted.

This issue of memory leaks with the Python interpreter reached an extreme
with Python 3.0, where by design, various data structures would not be
destroyed on the basis that it would be reused when Python interpreter was
reinitialised within the same process. The problem is that when an Apache
restart is performed, mod_wsgi and the Python library are unloaded from
memory, with the result that the references to that memory would be lost
and so a real memory leak, of significant size and much worse that older
versions of Python, would result.

As a consequence, with mod_wsgi 3.0 and onwards, the Python interpreter is
not initialised by default in the Apache parent process for any version of
Python. This avoids completely the risk of cummulative memory leaks by the
Python interpreter on a restart into the Apache parent process, albeit with
potential for a slight increase in child process memory sizes. If need be,
the existing behaviour can be restored by setting the directive with the
value ‘Off’.

A further upside of using lazy initialisation is that if you are using
daemon mode only, ie., not using embedded mode, you can completely turn off
initialisation of the Python interpreter within the main Apache server
child process. Unfortunately, because it isn’t possible in the general case
to know whether embedded mode will be needed or not, you will need to
manually set the configuration to do this. This can be done by setting:

WSGIRestrictEmbedded On

With restrictions on embedded mode enabled, any attempt to run a WSGI
application in embedded mode will fail, so it will be necessary to ensure
all WSGI applications are delegated to run in daemon mode. Although WSGI
applications will be restricted from being run in embedded mode and the
Python interpreter therefore not initialised, it will fallback to being
initialised if you use any of the Python hooks for access control,
authentication or authorisation providers, or WSGI application dispatch
overrides.

Note that if mod_python is being used in the same Apache installation,
because mod_python takes precedence over mod_wsgi in initialising the
Python interpreter, lazy initialisation cannot be done and so Python
interpreter will continue to be preinitialised in the Apache parent process
regardless of the setting of WSGILazyInitialization. Use of mod_python will
thus perpetuate the risk of memory leaks and growing memory use of Apache
process. This is especially the case since mod_python doesn’t even properly
destroy the Python interpreter in the Apache parent process on a restart
and so all memory associated with the Python interpreter is leaked and not
just that caused by the Python interpreter when it is destroyed and doesn’t
clean up after itself.

WSGIPassAuthorization

	Description

	Enable/Disable passing of authorisation headers.

	Syntax

	WSGIPassAuthorization On|Off

	Default

	WSGIPassAuthorization Off

	Context

	server config, virtual host, directory, .htaccess

The WSGIPassAuthorization directive can be used to control whether HTTP
authorisation headers are passed through to a WSGI application in the
HTTP_AUTHORIZATION variable of the WSGI application environment when
the equivalent HTTP request headers are present. This option would need to
be set to On if the WSGI application was to handle authorisation
rather than Apache doing it.

Authorisation headers are not passed through by default as doing so could
leak information about passwords through to a WSGI application which should
not be able to see them when Apache is performing authorisation. If Apache
is performing authorisation, a WSGI application can still find out what
type of authorisation scheme was used by checking the variable
AUTH_TYPE of the WSGI application environment. The login name of the
authorised user can be determined by checking the variable
REMOTE_USER.

WSGIProcessGroup

	Description

	Sets which process group WSGI application is assigned to.

	Syntax

	WSGIProcessGroup %{GLOBAL}|%{ENV:variable}|name

	Default

	WSGIProcessGroup %{GLOBAL}

	Context

	server config, virtual host, directory

The WSGIProcessGroup directive can be used to specify which process group a
WSGI application or set of WSGI applications will be executed in. All WSGI
applications within the same process group will execute within the context
of the same group of daemon processes.

The argument to the WSGIProcessGroup can be either one of two special
expanding variables or the actual name of a group of daemon processes setup
using the WSGIDaemonProcess directive. The meaning of the special variables
are:

	%{GLOBAL}

	The process group name will be set to the empty string.

Any WSGI applications in the global process group will always be
executed within the context of the standard Apache child processes.
Such WSGI applications will incur the least runtime overhead, however,
they will share the same process space with other Apache modules such
as PHP, as well as the process being used to serve up static file
content. Running WSGI applications within the standard Apache child
processes will also mean the application will run as the user that
Apache would normally run as.

	%{ENV:variable}

	The process group name will be set to the value of the named
environment variable. The environment variable is looked-up via the
internal Apache notes and subprocess environment data structures and
(if not found there) via getenv() from the Apache server process.
The result must identify a named process group setup using the
WSGIDaemonProcess directive.

In an Apache configuration file, environment variables accessible using
the %{ENV} variable reference can be setup by using directives such as
SetEnv [http://httpd.apache.org/docs/2.2/mod/mod_env.html#setenv] and RewriteRule [http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html#rewriterule].

For example, to select which process group a specific WSGI application
should execute within based on entries in a database file, the following
could be used:

RewriteEngine On
RewriteMap wsgiprocmap dbm:/etc/httpd/wsgiprocmap.dbm
RewriteRule . - [E=PROCESS_GROUP:${wsgiprocmap:%{REQUEST_URI}}]

WSGIProcessGroup %{ENV:PROCESS_GROUP}

When using the WSGIProcessGroup directive, only daemon process groups
defined within virtual hosts with the same server name, or those defined at
global scope outside of any virtual hosts can be selected. It is not
possible to select a daemon process group which is defined within a
different virtual host. Which daemon process groups can be selected may be
further restricted if the WSGIRestrictProcess directive has been used.

Note that the WSGIProcessGroup directive and corresponding features are not
available on Windows or when running Apache 1.3.

WSGIPythonEggs

	Description

	Directory to use for Python eggs cache.

	Syntax

	WSGIPythonEggs directory

	Context

	server config

Used to specify the directory to be used as the Python eggs cache directory
for all sub interpreters created within embedded mode. This directive
achieves the same affect as having set the PYTHON_EGG_CACHE
environment variable.

Note that the directory specified must exist and be writable by the user
that the Apache child processes run as. The directive only applies to
mod_wsgi embedded mode. To set the Python eggs cache directory for mod_wsgi
daemon processes, use the ‘python-eggs’ option to the WSGIDaemonProcess
directive instead.

WSGIPythonHome

	Description

	Absolute path to Python prefix/exec_prefix directories.

	Syntax

	WSGIPythonHome prefix|prefix:exec_prefix

	Context

	server config

Used to indicate to Python when it is initialised where its library files
are installed. This should be defined where the Python executable is not in
the PATH of the user that Apache runs as, or where a system has
multiple versions of Python installed in different locations in the file
system, especially different installations of the same major/minor version,
and the installation that Apache finds in its PATH is not the desired
one.

This directive can also be used to indicate a Python virtual environment
created using a tool such as virtualenv, to be used for the whole of
mod_wsgi.

When this directive is used it should be supplied the prefix for the
directories containing the platform independent and system dependent Python
library files. The directories should be separated by a ‘:’. If the same
directory is used for both, then only the one directory path needs to be
supplied. Where the directories are the same, this can usually be
determined by looking at the value of the sys.prefix variable for the
version of Python being used.

Note that the Python installation being referred to using this directive
must be the same major/minor version of Python that mod_wsgi was compiled
for. If you want to use a different version of major/minor version of
Python than currently used, you must recompile mod_wsgi against the alternate
version of Python.

This directive is the same as having set the environment variable
PYTHONHOME in the environment of the user that Apache executes as. If
this directive is used it will override any setting of PYTHONHOME in
the environment of the user that Apache executes as.

This directive will have no affect if mod_python is being loaded into Apache
at the same time as mod_wsgi as mod_python will in that case be responsible
for initialising Python.

This directive is not available on Windows systems. Note that mod_wsgi 1.X
will not actually reject this directive if listed in the configuration,
however, it also will not do anything either. This is because on Windows
systems Python ignores the PYTHONHOME environment variable and always
seems to use the location of the Python DLL for determining where the
library files are located.

WSGIPythonOptimize

	Description

	Enables basic Python optimisation features.

	Syntax

	WSGIPythonOptimize [0|1|2]

	Default

	WSGIPythonOptimize 0

	Context

	server config

Sets the level of Python compiler optimisations. The default is ‘0’ which
means no optimisations are applied.

Setting the optimisation level to ‘1’ or above will have the effect of
enabling basic Python optimisations and changes the filename extension for
compiled (bytecode) files from .pyc to .pyo.

On the Windows platform, optimisation level of ‘0’ apparently results in
the same outcome as if the optimisation level had been set to ‘1’.

When the optimisation level is set to ‘2’, doc strings will not be
generated and thus not retained. This may techically result in a smaller
memory footprint if all .pyo files were compiled at this optimisation
level, but may cause some Python packages which interrogate doc strings in
some way to fail.

Since all the installed .pyo files in your Python installation are
not likely to be installed with level ‘2’ optimisation, the gain from using
this level of optimisation will probably be negligible if any. This is
because potentially only the Python code for your own application code will
be compiled with this level of optimisation. This will be the case as the
.pyo files will aready exist for modules in the standard Python
library and they will be used as is, rather than them being regenerated
with a higher level of optimisation than they might be. Use of level ‘2’
optimisation is therefore discouraged.

This directive will have no affect if mod_python is being loaded into Apache
at the same time as mod_wsgi as mod_python will in that case be responsible
for initialising Python.

Overall, if you do not understand what the normal ‘python’ executable -O
option does, how the Python runtime changes it behaviour as a result, and
you don’t know exactly how your application would be affected by enabling
this option, then do not use this option. In other words, stop trying to
prematurely optimise the performance of your application through shortcuts.
You will get much better performance gains by looking at the design of your
application and eliminating bottlenecks within it and how it uses any
database. So, put the gun down and back away, it will be better for all
concerned.

WSGIPythonPath

	Description

	Additional directories to search for Python modules.

	Syntax

	WSGIPythonPath directory|directory-1:directory-2:…

	Context

	server config

Used to specify additional directories to search for Python modules. If
multiple directories are specified they should be separated by a ‘:’ if
using a UNIX like system, or ‘;’ if using Windows. If any part of a
directory path contains a space character, the complete argument string to
WSGIPythonPath must be quoted.

When using mod_wsgi version 1.X, this directive is the same as having set
the environment variable PYTHONPATH in the environment of the user
that Apache executes as. If this directive is used it will override any
setting of PYTHONPATH in the environment of the user that Apache
executes as. The end result is that the listed directories will be added
to sys.path.

Note that in mod_wsgi version 1.X this applies to all Python sub
interpreters created, be they in the Apache child processes when embedded
mode is used, or in distinct daemon processes when daemon mode is used. It
is not possible to define this differently for mod_wsgi daemon processes.
If additional directories need to be added to the module search path for a
specific WSGI application it should be done within the WSGI application
script itself.

When using mod_wsgi version 2.0, this directive does not have the same
affect as having set the environment variable PYTHONPATH. In fact, if
PYTHONPATH is set in the environment of the user that Apache is
started as, any directories so defined will still be added to
sys.path and they will not be overridden.

The difference with this directive when using mod_wsgi 2.0 is that each
directory listed will be added to the end of sys.path by calling
site.addsitedir(). By using this function, as well as the directory
being added to sys.path, any ‘.pth’ files located in the directories
will be opened and processed. Thus, if the directories contain Python eggs,
any associated directories corresponding to those Python eggs will in turn
also be added automatically to sys.path.

Note however that when using mod_wsgi 2.0, this directive only sets up the
additional Python module search directories for interpreters created in the
Apache child processes where embedded mode is used. If directories need to
be specified for interpreters running in daemon processes, the
‘python-path’ option to the WSGIDaemonProcess directive corresponding to
that daemon process should instead be used.

In mod_wsgi version 2.0, because directories corresponding to Python eggs
are automatically added to sys.path, the directive can be used to
point at the site-packages directory corresponding to a Python
virtual environment created by a tool such as virtualenv.

For mod_wsgi 1.X, this directive will have no affect if mod_python is being
loaded into Apache at the same time as mod_wsgi as mod_python will in that
case be responsible for initialising Python.

WSGIRestrictEmbedded

	Description

	Enable restrictions on use of embedded mode.

	Syntax

	WSGIRestrictEmbedded On|Off

	Default

	WSGIRestrictEmbedded Off

	Context

	server config

The WSGIRestrictEmbedded directive determines whether mod_wsgi embedded
mode is enabled or not. If set to ‘On’ and the restriction on embedded mode
is therefore enabled, any attempt to make a request against a WSGI
application which hasn’t been properly configured so as to be delegated to
a daemon mode process will fail with a HTTP internal server error response.

For historical reasons and to maintain backward compatibility with old
configurations this option is ‘Off’ by default. As daemon mode is the
preferred deployment method, it is good practice to override the default
and set this to ‘On’, ensuring you have set up and are always using daemon
mode.

This option does not exist on Windows or any other configuration where
daemon mode is not available.

WSGIRestrictProcess

	Description

	Restrict which daemon process groups can be selected.

	Syntax

	WSGIRestrictProcess group-1 group-2 …

	Syntax

	WSGIRestrictProcess group-1 group-2 …

	Context

	server config, virtual host, directory

When using the WSGIProcessGroup directive, daemon process groups defined
within virtual hosts with the same server name, or those defined at global
scope outside of any virtual hosts can be selected. It is not possible to
select a daemon process group which is defined within a different virtual
host.

To further limit which of the available daemon process groups can be
selected, the WSGIRestrictProcess directive can be used to list a
restricted set of daemon process group names. This could be used for
example where %{ENV} substitution is being used to allow the daemon process
group to be selected from a .htaccess file for a specific user.

The main Apache configuration for this scenario might be:

WSGIDaemonProcess default processes=2 threads=25

<VirtualHost *:80>
ServerName www.site.com

WSGIDaemonProcess bob:1 user=bob group=bob threads=25
WSGIDaemonProcess bob:2 user=bob group=bob threads=25
WSGIDaemonProcess bob:3 user=bob group=bob threads=25

WSGIDaemonProcess joe:1 user=joe group=joe threads=25
WSGIDaemonProcess joe:2 user=joe group=joe threads=25
WSGIDaemonProcess joe:3 user=joe group=joe threads=25

SetEnv PROCESS_GROUP default
WSGIProcessGroup %{ENV:PROCESS_GROUP}

<Directory /home/bob/public_html>
Options ExecCGI
AllowOverride FileInfo
AddHandler wsgi-script .wsgi
WSGIRestrictProcess bob:1 bob:2 bob:3
SetEnv PROCESS_GROUP bob:1
</Directory>
</VirtualHost>

The .htaccess file within the users account could then delegate specific
WSGI applications to different daemon process groups using the
SetEnv [http://httpd.apache.org/docs/2.2/mod/mod_env.html#setenv] directive:

<Files blog.wsgi>
SetEnv PROCESS_GROUP bob:2
</Files>

<Files wiki.wsgi>
SetEnv PROCESS_GROUP bob:3
</Files>

Note that the WSGIDaemonProcess directive and corresponding features are
not available on Windows or when running Apache 1.3.

WSGIRestrictSignal

	Description

	Enable restrictions on use of signal().

	Syntax

	WSGIRestrictSignal On|Off

	Default

	WSGIRestrictSignal On

	Context

	server config

A well behaved Python WSGI application should not in general register any
signal handlers of its own using signal.signal(). The reason for this
is that the web server which is hosting a WSGI application will more than
likely register signal handlers of its own. If a WSGI application were to
override such signal handlers it could interfere with the operation of the
web server, preventing actions such as server shutdown and restart.

In the interests of promoting portability of WSGI applications, mod_wsgi
restricts use of signal.signal() and will ensure that any attempts
to register signal handlers are ignored. A warning notice will be output
to the Apache error log indicating that this action has been taken.

If for some reason there is a need for a WSGI application to register some
special signal handler this behaviour can be turned off, however an
application should avoid the signals SIGTERM, SIGINT,
SIGHUP, SIGWINCH and SIGUSR1 as these are all used by
Apache.

Apache will ensure that the signal SIGPIPE is set to SIG_IGN.
If a WSGI application needs to override this, it must ensure that it is
reset to SIG_IGN before any Apache code is run. In a multi threaded
MPM this would be practically impossible to ensure so it is preferable that
the handler for SIG_PIPE also not be changed.

Apache does not use SIGALRM, but it is generally preferable that
other techniques be used to achieve the same affect.

Do note that if enabling the ability to register signal handlers, such a
registration can only reliably be done from within code which is
implemented as a side effect of importing a script file identified by the
WSGIImportScript directive. This is because signal handlers can only be
registered from the main Python interpreter thread, and request handlers
when using embedded mode and a multithreaded Apache MPM would generally
execute from secondary threads. Similarly, when using daemon mode, request
handlers would executed from secondary threads. Only code run as a side
effect of WSGIImportScript is guaranteed to be executed in main Python
interpreter thread.

WSGIRestrictStdin

	Description

	Enable restrictions on use of STDIN.

	Syntax

	WSGIRestrictStdin On|Off

	Default

	WSGIRestrictStdin On

	Context

	server config

A well behaved Python WSGI application should never attempt to read any
input directly from sys.stdin. This is because ways of hosting WSGI
applications such as CGI use standard input as the mechanism for receiving
the content of a request from the web server. If a WSGI application were to
directly read from sys.stdin it could interfere with the operation of
the WSGI adapter and result in corruption of the input stream.

In the interests of promoting portability of WSGI applications, mod_wsgi
restricts access to sys.stdin and will raise an exception if an
attempt is made to use sys.stdin explicitly.

The only time that one might want to remove this restriction is if the Apache
web server is being run in debug or single process mode for the purposes of
being able to run an interactive Python debugger such as pdb.

WSGIRestrictStdout

	Description

	Enable restrictions on use of STDOUT.

	Syntax

	WSGIRestrictStdout On|Off

	Default

	WSGIRestrictStdout On

	Context

	server config

A well behaved Python WSGI application should never attempt to write any
data directly to sys.stdout or use the print statement without
directing it to an alternate file object. This is because ways of hosting
WSGI applications such as CGI use standard output as the mechanism for
sending the content of a response back to the web server. If a WSGI
application were to directly write to sys.stdout it could interfere
with the operation of the WSGI adapter and result in corruption of the
output stream.

In the interests of promoting portability of WSGI applications, mod_wsgi
restricts access to sys.stdout and will raise an exception if an
attempt is made to use sys.stdout explicitly.

The only time that one might want to remove this restriction is purely out
of convencience of being able to use the print statement during
debugging of an application, or if some third party module or WSGI
application was errornously using print when it shouldn’t. If
restrictions on using sys.stdout are removed, any data written to
it will instead be sent through to sys.stderr and will appear in
the Apache error log file.

WSGIScriptAlias

	Description

	Maps a URL to a filesystem location and designates the target as a WSGI script.

	Syntax

	WSGIScriptAlias URL-path file-path|directory-path [options]

	Context

	server config, virtual host

The WSGIScriptAlias directive behaves in the same manner as the
Alias [http://httpd.apache.org/docs/2.2/mod/mod_alias.html#alias] directive, except that it additionally marks the target directory
as containing WSGI scripts, or marks the specific file-path as a script,
that should be processed by mod_wsgi’s wsgi-script handler.

Where the target is a directory-path, URLs with a case-sensitive
(%-decoded) path beginning with URL-path will be mapped to scripts
contained in the indicated directory.

For example:

WSGIScriptAlias /wsgi-scripts/ /web/wsgi-scripts/

A request for http://www.example.com/wsgi-scripts/name in this case
would cause the server to run the WSGI application defined in
/web/wsgi-scripts/name. This configuration is essentially equivalent
to:

Alias /wsgi-scripts/ /web/wsgi-scripts/
<Location /wsgi-scripts>
SetHandler wsgi-script
Options +ExecCGI
</Location>

Where the target is a file-path, URLs with a case-sensitive
(%-decoded) path beginning with URL-path will be mapped to the script
defined by the file-path.

For example:

WSGIScriptAlias /name /web/wsgi-scripts/name

A request for http://www.example.com/name in this case would cause the
server to run the WSGI application defined in /web/wsgi-scripts/name.

If possible you should avoid placing WSGI scripts under the DocumentRoot [http://httpd.apache.org/docs/2.2/mod/core.html#documentroot]
in order to avoid accidentally revealing their source code if the
configuration is ever changed. The WSGIScriptAlias makes this easy by
mapping a URL and designating the location of any WSGI scripts at the same
time. If you do choose to place your WSGI scripts in a directory already
accessible to clients, do not use WSGIScriptAlias. Instead, use
Directory, SetHandler [http://httpd.apache.org/docs/2.2/mod/core.html#sethandler] and Options [http://httpd.apache.org/docs/2.2/mod/core.html#options] as in:

<Directory /usr/local/apache/htdocs/wsgi-scripts>
SetHandler wsgi-script
Options ExecCGI
</Directory>

This is necessary since multiple URL-paths can map to the same filesystem
location, potentially bypassing the WSGIScriptAlias and revealing the
source code of the WSGI scripts if they are not restricted by a
Directory section.

Options which can be supplied to the WSGIScriptAlias directive are:

	process-group=name

	Defines which process group the WSGI application will be executed
in. All WSGI applications within the same process group will execute
within the context of the same group of daemon processes.

If the name is set to be %{GLOBAL} the process group name will
be set to the empty string. Any WSGI applications in the global
process group will always be executed within the context of the
standard Apache child processes. Such WSGI applications will incur
the least runtime overhead, however, they will share the same
process space with other Apache modules such as PHP, as well as the
process being used to serve up static file content. Running WSGI
applications within the standard Apache child processes will also
mean the application will run as the user that Apache would normally
run as.

	application-group=name

	Defines which application group a WSGI application or set of WSGI
applications belongs to. All WSGI applications within the same
application group will execute within the context of the same Python
sub interpreter of the process handling the request.

If the name is set to be %{GLOBAL} the application group will be
set to the empty string. Any WSGI applications in the global
application group will always be executed within the context of the
first interpreter created by Python when it is initialised, of the
process handling the request. Forcing a WSGI application to run within
the first interpreter can be necessary when a third party C extension
module for Python has used the simplified threading API for
manipulation of the Python GIL and thus will not run correctly within
any additional sub interpreters created by Python.

If both process-group and application-group options are set, the
WSGI script file will be pre-loaded when the process it is to run in is
started, rather than being lazily loaded on the first request.

WSGIScriptAliasMatch

	Description

	Maps a URL to a filesystem location and designates the target as a WSGI script.

	Syntax

	WSGIScriptAliasMatch regex file-path|directory-path [options]

	Context

	server config, virtual host

This directive is similar to the WSGIScriptAlias directive, but makes use
of regular expressions, instead of simple prefix matching. The supplied
regular expression is matched against the URL-path, and if it matches, the
server will substitute any parenthesized matches into the given string and
use it as a filename.

For example, to map a URL to scripts contained within
a directory where the script files use the .wsgi extension, but it
is desired that the extension not appear in the URL, use:

WSGIScriptAliasMatch ^/wsgi-scripts/([^/]+) /web/wsgi-scripts/$1.wsgi

Note that you should only use WSGIScriptAliasMatch if you know what you are
doing. In most cases you should be using WSGIScriptAlias instead. If you
use WSGIScriptAliasMatch and don’t do things the correct way, then you risk
modifying the value of SCRIPT_NAME as passed to the WSGI application and
this can stuff things up badly causing URL mapping to not work correctly
within the WSGI application or stuff up reconstruction of the full URL when
doing redirects. This is because the substitution of the matched sub
pattern from the left hand side back into the right hand side is often
critical.

If you think you need to use WSGIScriptAliasMatch, you probably don’t
really. If you really really think you need it, then check on the mod_wsgi
mailing list about how to use it properly.

Options which can be supplied to the WSGIScriptAlias directive are:

	process-group=name

	Defines which process group the WSGI application will be executed
in. All WSGI applications within the same process group will execute
within the context of the same group of daemon processes.

If the name is set to be %{GLOBAL} the process group name will
be set to the empty string. Any WSGI applications in the global
process group will always be executed within the context of the
standard Apache child processes. Such WSGI applications will incur
the least runtime overhead, however, they will share the same
process space with other Apache modules such as PHP, as well as the
process being used to serve up static file content. Running WSGI
applications within the standard Apache child processes will also
mean the application will run as the user that Apache would normally
run as.

	application-group=name

	Defines which application group a WSGI application or set of WSGI
applications belongs to. All WSGI applications within the same
application group will execute within the context of the same Python
sub interpreter of the process handling the request.

If the name is set to be %{GLOBAL} the application group will be
set to the empty string. Any WSGI applications in the global
application group will always be executed within the context of the
first interpreter created by Python when it is initialised, of the
process handling the request. Forcing a WSGI application to run within
the first interpreter can be necessary when a third party C extension
module for Python has used the simplified threading API for
manipulation of the Python GIL and thus will not run correctly within
any additional sub interpreters created by Python.

If both process-group and application-group options are set, and
the WSGI script file doesn’t include substiutions values to be supplied
from the matched URL pattern, the WSGI script file will be pre-loaded when
the process it is to run in is started, rather than being lazily loaded on
the first request.

WSGIScriptReloading

	Description

	Enable/Disable detection of WSGI script file changes.

	Syntax

	WSGIScriptReloading On|Off

	Default

	WSGIScriptReloading On

	Context

	server config, virtual host, directory, .htaccess

	Override

	FileInfo

The WSGIScriptReloading directive can be used to control whether changes to
WSGI script files trigger the reloading mechanism. By default script
reloading is enabled and a change to the WSGI script file will trigger
whichever reloading mechanism is appropriate to the mode being used.

WSGISocketPrefix

	Description

	Configure directory to use for daemon sockets.

	Syntax

	WSGISocketPrefix prefix

	Context

	server config

Defines the directory and name prefix to be used for the UNIX domain
sockets used by mod_wsgi to communicate between the Apache child processes
and the daemon processes.

If the directive is not defined, the sockets and any related mutex lock
files will be placed in the standard Apache runtime directory. This is the
same directory that the Apache log files would normally be placed.

For some Linux distributions, restrictive permissions are placed on the
standard Apache runtime directory such that the directory is not readable
to others. This can cause problems with mod_wsgi because the user that the
Apache child processes run as will subsequently not have the required
permissions to access the directory to be able to connect to the sockets.

When this occurs, a ‘503 Service Temporarily Unavailable’ error response
would be received by the client. To resolve the problem, the
WSGISocketPrefix directive should be defined to point at an alternate
location. The value may be a location relative to the Apache root directory,
or an absolute path.

On systems which restrict access to the standard Apache runtime directory,
they normally provide an alternate directory for placing sockets and lock
files used by Apache modules. This directory is usually called ‘run’ and
to make use of this directory the WSGISocketPrefix directive would be set
as follows:

WSGISocketPrefix run/wsgi

Note, do not put the sockets in the system temporary working directory.
That is, do not go making the prefix ‘/tmp/wsgi’. The directory should be
one that is only writable by ‘root’ user, or if not starting Apache as
‘root’, the user that Apache is started as.

Note that the WSGISocketPrefix directive and corresponding features are not
available on Windows or when running Apache 1.3.

Finding Help

If after you have gone through all the available documentation you still
cannot work out how to do something or can’t resolve a problem you are
having, use the mod_wsgi mailing list to post your question. The mailing
list is hosted by Google Groups at:

	http://groups.google.com/group/modwsgi

You do not need to have a Google email account as Google Groups allows you
to register external email addresses as well.

Please use the mailing list in preference to raising a ticket in the issue
tracker, unless you are somewhat certain that the problem is a bug in
mod_wsgi and not just some environment issue related to your application,
any third party packages being used or the operating system. It is much
easier to have a discussion on the mailing list than the issue tracker.

The mailing list also has many people participating, or at least reading,
so you have people with a broad experience with many third party Python web
packages and operating systems who may be able to help.

If the problem is potentially more an issue with a third party package or
the operating system rather than mod_wsgi, you might also consider asking
on any mailing list related to the third party package instead.

A further option is to ask your question on StackOverflow, if a programming
question, or ServerFault, if an administration issue. These sites allow a
broad range of questions about many topics with quite a large user base of
sometimes knowledgeable people.

A final option you might try is any IRC channels related to any third party
package or the more general #wsgi.

Do be aware though that the only forum that is guaranteed to be monitored
is the mod_wsgi mailing list. Questions are not gauranteed to be answered
on sites such as StackOverflow and ServerFault, on IRC, or mailing lists
for other packages. So, it is much preferable to use the mod_wsgi mailing
list if you want an informed answer for a mod_wsgi specific question.

As a general rule, if you have never participated in public forums
previously to seek answers to technical questions, including about Open
Source software, it is highly recommended you have a read of.

	http://www.catb.org/esr/faqs/smart-questions.html

This will help you to ensure you have exhausted all possibilities as to
where to find information and try and solve the problem yourself, as well
as assist you in framing your question the best way so as to get the best
response possible.

Remember that people on the mailing list are volunteering their time to
help and don’t get paid for answering questions. Thus, it is in your
interest not to annoy them too much.

No matter which forum you use, when asking questions, it is always helpful
to detail the following:

	Which version of mod_wsgi you are using and if using a packaged
distribution, who provided the distribution.

If you are not using the latest version, then upgrade first and verify
the problem still occurs with the latest version.

	Which version of Python you are using and if using a packaged
distribution, who provided the distribution.

	Which version of Apache you are using and if using a packaged
distribution, who provided the distribution.

If not using latest version of Apache available, then consider upgrading
and trying again. If at all possible, avoid using Apache 2.0 or 2.2. You
definitely shouldn’t still be using Apache 1.3

	What operating system you are using.

	Details on any third party packages being used and what versions of
those packages.

	The mod_wsgi configuration you are using from Apache configuration files.

In particular you should indicate whether you are using mod_wsgi
embedded mode or daemon mode. Also can be helpful to indicate what MPM
Apache has been compiled for and whether mod_php or mod_python are being
loaded into the same Apache instance.

	Relevant error messages from the Apache error logs.

Specifically, don’t just quote the single line you think shows the error
message. Instead, also show the lines before and after that point. These
other lines from the error logs may show supplemental error messages
from Apache or mod_wsgi or provide Python traceback information.

Reporting Bugs

If you believe you have uncovered a bug in mod_wsgi code then lodge a bug
report on the mod_wsgi issue tracker. The issue tracker is located on
GitHub at:

	https://github.com/GrahamDumpleton/mod_wsgi/issues

Before creating a ticket on the issue tracker, please do try and ensure you
attempt to resolve issues using the mod_wsgi mailing list first as
explained in Finding Help. The majority of issues lodged via the
issue tracker are not actually bugs in mod_wsgi but due to external factors
or simply a failure to read the documentation.

Contributing

The mod_wsgi package is a solo effort by Graham Dumpleton.

The package is developed purely in the author’s spare time and is not
funded in any way by a company, nor is it developed for a specific
companies requirements. In fact the author doesn’t even develop it for his
own needs. It is developed purely because it represents an interesting
technical challenge and not because the author needs it himself to host a
significant web site.

How to make a donation

If you use mod_wsgi and wish to show your appreciation, donations can be
made via PayPal [https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=636842] or an Amazon (USA store only) gift certificate sent to Graham.Dumpleton
at gmail dot com.

A suggested formula for how much to donate is:

	If using mod_wsgi for personal use, then consider donating what you would
pay for one months worth of a single host used to run your own site.

	If using mod_wsgi for a company web site, then consider donating what you
would pay for two months worth of a single host used to run that site.

	If using mod_wsgi as part of a web hosting service which you then charge
other people for using, then consider donating what you would pay for
three months worth of a single host used to run that site.

In other words, if you feel inclined, donate an amount commensurate with
how much benefit you are getting from mod_wsgi. The reference to the cost
of hosting is used at it reflects in some way how much you can afford or
might be willing to pay for a hosting service yourself.

On that basis, donations might realistically range from $5 up to $150 or
more. Obviously where your company spends ridiculous amounts of money on
web hosting you can instead elect to donate something more within the range
stated above rather than how much you actually spend on web hosting
services.

Now for the reality, which is that it is very rare that a company will ever
donate any money to an Open Source project. As such, when donations have
occassionally been received (which doesn’t happen very often), they are
from individuals using mod_wsgi themselves.

Some people do openly begrudge Open Source projects soliciting donations,
but the amounts received overall are so insignificant in comparison to how
much effort is generally put into projects and what a developer would need
to survive that anything received is more a symbolic gesture, more than
anything else, of ones appreciation.

Given that donations invariably are from individuals, do know that they are
accepted with much gratitude and appreciation in return that you are at
least, even if companies aren’t, trying to help support Open Source
projects in some way.

How else can you donate

If you are an author of a book related to Apache, Python, Docker or any
other technologies which go into providing web hosting services, then will
also happily accept an electronic copy of the book for reference.

Still don’t think a monetary contribution is something you would do, you
can also simply send a Twitter message to the author expressing your
appreciation. You will be surprised how far positive encouragement and
appreciation can go with people who work on Open Source projects. This is
because in part satisfaction comes from knowing people are benefiting from
the work being done. If you never do or say anything, then Open Source
developers will never know that you do appreciate the work they do, so
don’t be quiet when an Open Source project is of value to you, at least say
‘Thank You’.

How are donations used

Any monetary donations typically go towards buying clothes, toys, music,
books and apps for the authors 2 children. They are therefore used as a
special treat for the authors kids.

Source code contributions

You might be thinking, what about source code contributions. Although it
would be great for this project to grow to have multiple developers working
on the code and documentation, reality is that working inside of Apache and
the Python C APIs is quite specialised. It isn’t therefore the most
attractive of projects in that regard. If however you are keen, then would
love to hear from you.

Open Source free loaders

If you are the sort of person who thinks that the Internet exists only to
provide you with free stuff and where you think everyone out there exists
purely to help you work out your problems, then it may be better that you
go use some other WSGI server project.

Even if you don’t contribute as described above, if you at least recognise
that other people are giving up their time to help you and that you put in
some effort yourself to resolve a problem first, and then explain it
properly in some detail to others when seeking help, providing answers to
any questions asked of you, then you will still be helped.

The worst sort of people, which hopefully you don’t want to be one of, are
those who simply say something is broken but will not provide sufficient
details, thereby forcing other people to waste huge amounts of time
dragging out the information required to help you, or having to guess what
your problem is.

It is people in this latter category which are becoming a significant drain
on the time of developers of Open Source projects and which are a part of
why so many Open Source developers are experiencing burnout. So if you are
the sort to expect people to help you, complain about things when the
problem is really your own unwillingness to learn, and generally give
nothing positive in return, even if only encouragement, then don’t expect
to be helped. Your like has caused too much damage in the past already to
any number of Open Source projects and will not be tolerated here. The
mental health of Open Source developers is more important than you are.

Source Code

The source code repository for mod_wsgi is located on GitHub at:

	https://github.com/GrahamDumpleton/mod_wsgi

Downloadable tar balls of the source code can be found at:

	https://github.com/GrahamDumpleton/mod_wsgi/releases

A version of the source code which can be installed using pip can
also be found on PyPi at:

	https://pypi.python.org/pypi/mod_wsgi

Release Notes

	Version 4.6.5
	Bugs Fixed

	Features Changed

	New Features

	Version 4.6.4
	Bugs Fixed

	Version 4.6.3
	Bugs Fixed

	Version 4.6.2
	Bugs Fixed

	Version 4.6.1
	Bugs Fixed

	Version 4.6.0
	Bugs Fixed

	Features Changed

	New Features

	Version 4.5.24
	Bugs Fixed

	Version 4.5.23
	Bugs Fixed

	Version 4.5.22
	Bugs Fixed

	Version 4.5.21
	Bugs Fixed

	Features Changed

	Version 4.5.20
	Bugs Fixed

	Version 4.5.19
	Features Changed

	Version 4.5.18
	Features Changed

	Version 4.5.17
	Bugs Fixed

	Version 4.5.16
	Bugs Fixed

	New Features

	Version 4.5.15
	Bugs Fixed

	Version 4.5.14
	Bugs Fixed

	New Features

	Version 4.5.13
	New Features

	Version 4.5.12
	Bugs Fixed

	New Features

	Version 4.5.11
	Bugs Fixed

	Version 4.5.10
	Bugs Fixed

	Version 4.5.9
	Bugs Fixed

	Version 4.5.8
	Bugs Fixed

	New Features

	Version 4.5.7
	Bugs Fixed

	New Features

	Version 4.5.6
	Bugs Fixed

	New Features

	Version 4.5.5
	Features Changed

	Version 4.5.4
	Bugs Fixed

	Features Changed

	New Features

	Version 4.5.3
	Bugs Fixed

	Version 4.5.2
	Bugs Fixed

	Version 4.5.1
	Bugs Fixed

	Version 4.5.0
	New Features

	Version 4.4.23
	New Features

	Version 4.4.22
	Bugs Fixed

	New Features

	Version 4.4.21
	Features Changed

	New Features

	Version 4.4.20
	Bugs Fixed

	Version 4.4.19
	Bugs Fixed

	Version 4.4.18
	Bugs Fixed

	Version 4.4.17
	Bugs Fixed

	Version 4.4.16
	Bugs Fixed

	Version 4.4.15
	Bugs Fixed

	Version 4.4.14
	Bugs Fixed

	New Features

	Version 4.4.13
	Bugs Fixed

	Features Changed

	New Features

	Version 4.4.12
	Bugs Fixed

	Version 4.4.11
	Bugs Fixed

	New Features

	Version 4.4.10
	Bugs Fixed

	Features Changed

	New Features

	Version 4.4.9
	Features Changed

	New Features

	Version 4.4.8
	Bugs Fixed

	New Features

	Version 4.4.7
	Features Changed

	New Features

	Version 4.4.6
	Bugs Fixed

	New Features

	Version 4.4.5
	Known Issues

	Bugs Fixed

	Version 4.4.4
	Known Issues

	New Features

	Version 4.4.3
	Known Issues

	Features Changed

	Bugs Fixed

	New Features

	Version 4.4.2
	Known Issues

	Features Changed

	Bugs Fixed

	Version 4.4.1
	Known Issues

	Bugs Fixed

	Features Changed

	New Features

	Version 4.4.0
	Known Issues

	Bugs Fixed

	Features Changed

	New Features

	Version 4.3.2
	Known Issues

	Bugs Fixed

	New Features

	Version 4.3.1
	Known Issues

	Bugs Fixed

	New Features

	Version 4.3.0
	Known Issues

	Bugs Fixed

	Features Changed

	New Features

	Version 4.2.8
	Known Issues

	Bugs Fixed

	Version 4.2.7
	Known Issues

	New Features

	Version 4.2.6
	Known Issues

	Bugs Fixed

	Version 4.2.5
	Known Issues

	Bugs Fixed

	Version 4.2.4
	Known Issues

	Bugs Fixed

	New Features

	Version 4.2.3
	Known Issues

	Bugs Fixed

	Version 4.2.2
	Known Issues

	Bugs Fixed

	New Features

	Version 4.2.1
	Known Issues

	Bugs Fixed

	Version 4.2.0
	Known Issues

	New Features

	Version 4.1.3
	Known Issues

	Bugs Fixed

	Version 4.1.2
	Known Issues

	Bugs Fixed

	Version 4.1.1
	Known Issues

	Bugs Fixed

	Version 4.1.0
	Known Issues

	Bugs Fixed

	Features Removed

	Features Changed

	New Features

	Version 4.0

	Version 3.5
	Security Issues

	Bugs Fixed

	New Features

	Version 3.4
	Security Issues

	Bugs Fixed

	Features Changed

	New Features

	Version 3.3
	Bug Fixes

	Features Changed

	Version 3.2
	Bug Fixes

	Version 3.1
	Bug Fixes

	Features Changed

	Version 3.0
	Bug Fixes

	Features Changed

	Features Removed

	Features Added

	Version 2.8
	Bug Fixes

	Version 2.7
	Features Changed

	Bug Fixes

	Version 2.6
	Bug Fixes

	Features Changed

	Version 2.5
	Bug Fixes

	Version 2.4
	Bug Fixes

	Features Changed

	Features Added

	Version 2.3
	Bug Fixes

	Version 2.2
	Features Changed

	Bug Fixes

	Version 2.1
	Bug Fixes

	Version 2.0
	Bug Fixes

	Features Changed

	Features Removed

	Features Added

	Version 1.6
	Bug Fixes

	Version 1.5
	Bug Fixes

	Version 1.4
	Bug Fixes

	Features Added

	Version 1.3
	Bug Fixes

	Version 1.2
	Bug Fixes

	Version 1.1
	Bug Fixes

	Version 1.0

Version 4.6.5

Version 4.6.5 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.6.5

Bugs Fixed

	When running mod_wsgi-express and serving up static files from the
document root, and the WSGI application was mounted at a sub URL using
--mount-point, the static files in the document root outside of the
mount point for the WSGI application would no longer be accessible.

	If no system mime types file can be found, fall back to /dev/null
so that Apache can still at least start up.

Features Changed

	On macOS, use /var/tmp as default parent directory for server root
directory rather than value of $TMPDIR. The latter can produce a
path which is too long and UNIX socket cannot be written there.

New Features

	Now possible to use mod_wsgi-express in an a zipapp created using
shiv. This entailed a special workaround to detect when shiv was
used, so that the unpacked site-packages directory could be added to
the Python module search path for mod_wsgi-express.

Version 4.6.4

Version 4.6.4 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.6.4

Bugs Fixed

	In more recent Python versions, the config directory in the Python
installation incorporates the platform name. This directory was added as
an additional directory to search for Python shared libraries when
installing using the setup.py file or pip. It should not even be
needed for newer Python versions but still check for older Python
versions. The only issue arising from the wrong directory, not incorporating
the platform name, being used, was a linker warning about the directory
not being present.

	Installing mod_wsgi on Windows would fail as hadn’t exclude mod_wsgi
daemon mode specific code from Windows build. This would result in compile
time error about wsgi_daemon_process being undefined. This problem
was introduced to Windows in version 4.6.0. A prior attempt to fix this
in 4.6.3 missed one place in the code which needed to be changed.

Version 4.6.3

Version 4.6.3 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.6.3

Bugs Fixed

	When compiled for Python 2.6, when run mod_wsgi would fail to load into
Apache due to misisng symbol PyFrame_GetLineNumber. This was only
introduced in Python 2.7. Use alternate way to get line number which
still yields correct answer. This issue was introduced in mod_wsgi
version 4.6.0 in fix to have correct line numbers generated for stack
traces on shutdown due to request timeout.

	Installing mod_wsgi on Windows would fail as hadn’t exclude mod_wsgi
daemon mode specific code from Windows build. This would result in compile
time error about wsgi_daemon_process being undefined. This problem
was introduced to Windows in version 4.6.0.

	When using runmodwsgi management command integration for Django, the
file containing the WSGI application entry point was specified via a full
filesystem path, rather than by module import path. This meant that relative
imports from that file would fail. The file is now imported as a module
path based on what WSGI_APPLICATION is set to in the Django settings
module. This means the file is imported as part of package for the project
and relative imports will work.

Version 4.6.2

Version 4.6.2 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.6.2

Bugs Fixed

	Full details of error not logged when a Python script file could not be
loaded due to a failure when parsing Python code.

Version 4.6.1

Version 4.6.1 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.6.1

Bugs Fixed

	APR version 1.4.X on RHEL/CentOS doesn’t have apr_hash_this_key()
function. Swap to using apr_hash_this() instead.

Version 4.6.0

Version 4.6.0 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.6.0

Bugs Fixed

	Management of reference counting on Python objects in the access,
authentication, authorization and dispatch hooks wasn’t correct for
certain error cases. The error cases shouldn’t have ever occurred, but
still fixed.

	Point at which details of Python exceptions occuring during access,
authentication, authorization and dispatch hooks was incorrect and not
done, with exception cleared, before trying to close per callback error
log. That the exception hadn’t been cleared would result in the call to
close the per callback error log to itself fail as it believed an
exception occurred in that call when it hadn’t. The result was confusing
error messages in the Apache error log.

	The deprecated backwards compatability mode enabled by setting the
directive WSGILazyInitialization Off, to have Python initialised
in the Apache parent process before forking, was resulting in the Apache
parent process crashing on Apache shutdown or restart. This resulted in
Apache child processes and daemon process being orphaned. Issue has been
fixed, but you should never use this mode and it will be removed in a
future update. The reason it shouldn’t be used is due to memory leaks
in Python interpreter re-initialisation in same process and also the risks
due to Python code potentially being run as root.

	When stack traces were being dumped upon request timeout expiring, the
line numbers of the definition of each function in the stack trace was
being displayed, instead of the actual line number within the body of the
function that was executing at the time.

	When stack traces were being dumped upon request timeout expiring, the
thread ID was being truncated to 32 bits when displayed, meaning it
wouldn’t match the actual Python thread ID on 64 bit systems.

Features Changed

	Now flagging mod_wsgi package when installing using setup.py as
being not zip_safe. This is to workaround an apparent bug with
setuptools when using Python 3.7 alpha versions. Believe this will
disable use of egg file in certain cases.

	When the connection to a client is lost when writing back the response,
the HTTP response code logged in the Apache access log will be that for
the original response from the WSGI application rather than a 500 error.

This is done to avoid confusion where a 500 error is recorded in the
access log, making you think your WSGI application is at fault when it
wasn’t, but there is no actual error recorded in the error log as to why
the 500 error was recorded in the access log.

The reason no error is logged in the case of the connection to a client
being lost is that doing so would create a lot of noise due to the
regularity which it can happen. The only time an error is logged is when
a timeout occurs rather than connection being lost. That is done to
highlight that connections are hanging due to the effect it can have on
available server capacity when connections are kept open for long times.

Thanks to Jesús Cea Avión for identifying how using the Apache C API it
could be identified that the connection had been aborted and in that
case the original HTTP response code could safely be used.

	When using the Django integration for mod_wsgi-express, if the
whitenoise.middleware.WhiteNoiseMiddleware middleware is listed in
MIDDLEWARE or MIDDLEWARE_CLASSES of the Django settings file,
Apache will now not be used to host Django’s static files. This is being
done to allow WhiteNoise middleware to be used in conjunction with front
end content delivery networks or other caching systems. If you aren’t
using such a front end and do want Apache to still host the static files,
either don’t list the WhiteNoise middleware in the list of middleware
classes when using mod_wsgi-express, or pass the --url-alias
option explictly, along with the URL mount point for static files and the
directory where they have been placed by the collectstatic management
command of Django.

	When running mod_wsgi-express if the TMPDIR environment variable
is specified, it will be used as the directory under which the default
server root directory for generated files will be created. If TMPDIR
is not specified, then /tmp will be used.

This allows TMPDIR to be used to control the directory used as a
default. On MacOS where TMPDIR is set to a unique directory for the
login session under /var/tmp, this also avoids a problem where a
system cron job in MacOS will delete files under /tmp which are older
than a certain date, which can cause a long running instance of
mod_wsgi-express to start failing.

	The “process_stopping” event previously would not be delivered when the
process was being shutdown and there were still active requests, such as
when a request timeout occurred. Seen as better to always deliver the
event if can, even if there were still requests that hadn’t been completed.
This will allow the event handler to dump out details on what the active
requests were, helping to identify long running or stuck requests.

New Features

	When using --compress-responses option of mod_wsgi-express,
content of type application/json will now be compressed.

	Added directive WSGISocketRotation to allow the rotation of the daemon
socket file path on restarts of Apache to be disabled. By default it is
On to preserve existing behaviour but can be set to Off to have
the same socket file path always be used for lifetime of that Apache
instance.

Rotation should only be disabled where the Apache configuration for the
mod_wsgi application stays constant over time. The rotation was
originally done to prevent a request received and handled by an Apache
worker process being proxied through to a daemon process created under a
newer configuration. This was done to avoid the possibility of an error,
or a security issue, due to the old and new configurations being
incompatible or out of sync.

By setting rotation to Off, when a graceful restart is done and the
Apache worker process survives for a period of time due to keep alive
connections, those subsequent requests on the keep alive connection will
now be proxied to the newer daemon processes rather than being failed as
occurred before due to no instances of daemon process existing under the
older configuration.

Although socket rotation still defaults to On for mod_wsgi, this is
overridden for mod_wsgi-express where it is always now set to Off.
This is okay as is not possible for configuration to change when using it.

	The process-group and application-group options can now be used
with the WSGIScriptAliasMatch directive. If substitutions are not used
in the value for the WSGI script file target path, then the WSGI script
file will be pre-loaded if both process-group and application-group
options are used at the same time.

Note that the documentation was wrongly updated recently to suggest that
these options were already supported by WSGIScriptAliaMatch. This was
done in error. Instead of removing the documentation, the ability to use
the options with the directive was instead added with this release.

	Raise an actual exception when installing using pip or using the
setup.py file on MacOS and it doesn’t appear that Xcode application
has been installed. Lack of Xcode application will mean that cannot find
the SDK which has the Apache include files.

	An explicit error message is now logged when the calculated daemon socket
path is too long and would be truncated, causing potential failures. A
shorter directory path should be set with the WSGISocketPrefix option.

	Added the --socket-path option to mod_wsgi-express so you can set
the daemon socket prefix via the WSGISocketPrefix directive to an
alternate directory if the calculated path would be too long based on
where server root is set for mod_wsgi-express.

	Added the --isatty option to mod_wsgi-express to indicate that
running the command in an interactive terminal session. In this case
Apache will be run as a sub process rather than it replacing the current
script. Signals such as SIGINT, SIGTERM, SIGHUP and SIGUSR1 will be
intercepted and forwarded onto Apache, but the signal SIGWINCH will be
ignored. This will avoid the problems of Apache shutting down when the
terminal session Apache is run in is resized.

Technically this could be done automatically by working out if the
attached terminal is a tty, but is being done using an option at this
point so the reliability of the mechanism used to run Apache as a sub
process and the handling of the signals, can be verified. If everything
checks out, it is likely that this will become the default behaviour
when the attached terminal is a tty.

	When using WSGIDaemonProcess, if you set the number of threads to zero
you will enable a special mode intended for using a daemon process to run
a managed task or program. You will need to use WSGIImportScript to
pre-load a Python script into the main application group specified by
%{GLOBAL} where the script runs a never ending task, or does an exec
to run an external program. If the script or external program exits, the
process is shutdown and replaced with a new one. For the case of using a
Python script to run a never ending task, a SystemExit exception will
be injected when a signal is received to shutdown the process. You can
use signal.signal() to register a signal handler for SIGTERM if
needing to run special actions before then exiting the process using
sys.exit(), or to signal your own threads to exit any processing so
you can shutdown in an orderly manner.

The ability to do something very similar did previously exist in that
you could use WSGIImportScript to run a never ending task even when
the number of threads was non zero. This was used by --service-script
option of mod_wsgi-express. The difference in setting threads=0
is that signals will work correctly and be able to interupt the script.
Also once the script exits, the process will shutdown, to be replaced,
where as previously the process would stay running until Apache was
restart or shutdown. The --service-script option of mod_wsgi-express
has been updated to set the number of threads to zero.

	Added mod_wsgi.active_requests dictionary. This is populated with the
per request data object for active requests, keyed by the Apache request ID.

	Add --cpu-time-limit option to mod_wsgi-express so that limit can
be imposed on daemon process group as to how much CPU can be used for
process is restarted automatically.

	Pass a “shutdown_reason” argument with “process_stopping” event so event
handler knows the reason the process is being shutdown.

Version 4.5.24

Version 4.5.24 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.24

Bugs Fixed

	Using mod_wsgi in daemon mode on Solaris would cause a process hang or
max out CPU usage. Caused by change of variable type to unsigned to get
rid of compiler warnings, without fixing how condition check using
variable was done.

Problem could also affect non Solaris systems if total number of HTTP
headers and other variables passed in WSGI environ was greater than 1024.
Affected Solaris all the time due to it having a limit of only 16 in
operating system for same code, meaning hit problem immediately.

Version 4.5.23

Version 4.5.23 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.23

Bugs Fixed

	Incorrect check around whether apxs was present on system would result
in pip install failing on Windows, and possibly also when using
latest Xcode on MacOS X.

Version 4.5.22

Version 4.5.22 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.22

Bugs Fixed

	Change in version 4.5.21 caused Windows builds to break with undefined
symbol wsgi_daemon_shutdown.

Version 4.5.21

Version 4.5.21 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.21

Bugs Fixed

	Installation using pip or setup.py install was failing on
MacOS X High Sierra with latest Xcode as Apple doesn’t even include
the apxs program at all.

Note you still cannot use the configure/make/make install method of
deploying mod_wsgi to MacOS X. You need to use the pip install
method.

	Speculated that crashes on daemon process shutdown were being caused
by a race condition around accessing Python C API when interpreter
was being destroyed. There was a check in place to avoid this but may
not have been robust enough depending on how memory cache worked
for threads running across multi core machine. Now use a dedicated
thread mutex to avoid race condition between main process thread and
Python interpreter deadlock detection thread.

Features Changed

	Set wsgi.input_terminated to True in WSGI environment. This is a
unofficial extension to WSGI specification proposed by Armin Ronacher
for a WSGI server/middleware to flag that it is safe to read to the
end of input and that CONTENT_LENGTH can be ignored. This is to be
able to support chunked request content, but also anything which
mutates the request content length but which can’t easily change the
CONTENT_LENGTH, such as occurs when request content is compressed
and is decompressed by the Apache web server.

The ability to safely read until end of input was always present in
mod_wsgi, but there was no way in the WSGI specification for a WSGI
server to tell a WSGI application this was the case. Prior attempts to
include something to deal with this in the WSGI specification when it
was updated in PEP 3333 were ignored. This is why now an unofficial way
of doing it is being adopted by WSGI servers separate to the WSGI
specification.

Version 4.5.20

Version 4.5.20 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.20

Bugs Fixed

	Installation on MacOS X using setup.py or pip would fail if Xcode
9.0 was installed.

Version 4.5.19

Version 4.5.19 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.19

Features Changed

	When using the Django management command integration of
mod_wsgi-express, allow the --working-directory option to
override the calculated directory. This is necessary to cope with
where the meaning of BASE_DIR in the Django settings file has been
changed from the accepted convention of it being the parent directory
of the Django project.

Version 4.5.18

Version 4.5.18 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.18

Features Changed

	When using --url-alias with mod_wsgi-express and the target of
the URL doesn’t exist, it will now be assumed that it will be a directory
rather than a file, when finally created. This is to accomodate where
may have used --setup-only option or setup-server command to
pre-generate config files before the directory is created.

Version 4.5.17

Version 4.5.17 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.17

Bugs Fixed

	Addition in mod_wsgi-express of --allow-override option in 4.5.16
caused --url-alias option to break.

Version 4.5.16

Version 4.5.16 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.16

Bugs Fixed

	The WSGIDontWriteBytecode option wasn’t available when using Python 3.3
and later. This feature of Python wasn’t in initial Python 3 versions, but
when was later added, mod_wsgi was updated to allow it.

	The feature behind the startup-timeout option of WSGIDaemonProcess
was broken by prior fix related to feature in 4.5.10. This meant the option
was not resulting in daemon processes being restarted when the WSGI script
file could not be loaded successfully by the specified timeout.

	When using WSGIImportScript, or WSGIScriptAlias with both the
process-group and application-group options, with the intent of
preloading a WSGI script file, the ability to reach across to a daemon
process defined in a different virtual host with same ServerName was
always failing and the target daemon process group would be flagged as
not accessible when instead it should have been.

New Features

	Added --allow-override option to mod_wsgi-express to allow use of
a .htaccess in document root directory and any directories mapped
using a URL alias. The argument to the directive should be the directive
type which can be overridden in the .htaccess file. The option can be
used more than once if needing to allow overriding of more than one
directive type. Argument can be anything allowed by AllowOverride
directive.

Version 4.5.15

Version 4.5.15 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.15

Bugs Fixed

	Incorrect version for mod_wsgi was being reported in server token.

	On 32 bit platforms, when reading from request content, all input would
be returned and the chunk size would be ignored.

Version 4.5.14

Version 4.5.14 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.14

Bugs Fixed

	Using the --url-alias option to the runmodwsgi management
command when integrating mod_wsgi-express with Django could fail
with Python 3. This is because the type of the items passed in an
option list could be tuple or list depending on Python version. It
was necessary to add items with same type else sorting would break.

New Features

	Added a name attribute to the log object used in place of
sys.stdout and sys.stderr, and which is also used for
wsgi.errors in the per request environ dictionary. This is
because although the name attribute is not required to exist, one can
find code out there that assumes it always does exist for file like
objects. Adding the attribute ensures that such code doesn’t fail.

Version 4.5.13

Version 4.5.13 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.13

New Features

	Added response-socket-timeout option to WSGIDaemonProcess
directive to allow the timeout on writes back to HTTP client from Apache
child worker process, when proxying responses from a mod_wsgi daemon
process, to be separately overridden. Previously this would use the value
of the Apache Timeout directive. With this change the timeout will be
based on response-socket-timeout option. If that is not set it will
use the the general socket-timeout option and if that isn’t set only
then will the value of the Apache Timeout directive be used.

The overall purpose of being able to separately control this option is to
combat against HTTP clients that never read the response, causing the
response buffer when proxying to fill up, which in turn can cause the
request thread in the daemon process to block. The default high value of
the Apache Timeout directive, at 300 seconds meant it could take a
while to clear, and if the mod_wsgi daemon processes were configured with
a low total number of request threads, the whole WSGI application could
block if this occurred for many requests at the same time.

When using mod_wsgi-express the option can be set using the command
line --response-socket-timeout option. If using mod_wsgi-express
the default socket timeout is 60 seconds so the issue would not have had
as big an impact, especially since mod_wsgi-express also defines a
default request timeout of 60 seconds, which would have resulted in the
daemon process being restarted if the request had blocked in returning
the response.

An additional error message is also now logged to indicate that failure
to proxy the response content was due to a socket timeout. This will help
to indentify where problems are due to a blocked connection or slow
client.

Version 4.5.12

Version 4.5.12 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.12

Bugs Fixed

	When the pip install method is used to compile the module for
Windows, the mod_wsgi-express module-config command was generating
the wrong DLL path for LoadFile directive for Python 3.4, as well as
possibly older Python versions.

New Features

	When using pip install on Windows, in addition to looking in the
directory C:\Apache24 for an Apache installation, it will now also
check C:\Apache22 and C:\Apache2. It is recommended though that
you use Apache 2.4. If your Apache installation is elsewhere, you can
still set the MOD_WSGI_APACHE_ROOTDIR environment variable to its
location. The environment variable should be set in your shell before
running pip install mod_wsgi and should be set in a way that exports
it to child processes run from the shell.

	Added restart-interval option to WSGIDaemonProcess for restarting
daemon mode processes after a set time. If graceful-timeout option is
also specified, active requests will be given a chance to complete, while
still accepting new requests. If within the grace period the process
becomes idle, a shutdown will occur immediately. In the case of no grace
period being specified, or the grace period expiring, the normal shutdown
sequence will occur. The option is also available in mod_wsgi-express
as --restart-interval.

Version 4.5.11

Version 4.5.11 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.11

Bugs Fixed

	The runmodwsgi option when using Django application integration would
fail on older Django versions up to Django 1.7.

Version 4.5.10

Version 4.5.10 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.10

Bugs Fixed

	In version 4.5.9, the version number 4.5.8 was being incorrectly reported
via mod_wsgi.version in the per request WSGI environ dictionary.

	When using Anaconda Python on MacOS X, the Python shared library wasn’t
being resolved correctly due to changes in Anaconda Python, meaning it
cannot be used in embedded systems which load Python via a dynamically
loaded module, such as in Apache. When using mod_wsgi-express the
Python shared library is now forcibly loaded before the mod_wsgi module
is loaded in Apache. If doing manual Apache configration, you will need
to add before the LoadModule line for wsgi_module, a LoadFile
directive which loads the Ananconda Python shared library by its full
path from where it is located in the Anaconda Python lib directory.

	Startup timeout wasn’t being cancelled after succesful load of the WSGI
script file and instead was only being done after first request had
finished. This meant that if first request took longer than the startup
timeout the process would be wrongly restarted.

	Fix parsing of Content-Length header returned in daemon mode so that
responses greater than 2GB in size could be returned.

	Using incorrect header files in workaround to be able to compile mod_wsgi
on MacOSX Sierra when using pip install. Was using old MacOS X 10.6
SDK which are header files for Apache 2.2. Was running, but should not
have worked at all. Possibility this still may not work or might break.
No choice until Apple fixes their broken Xcode and Apache installation.

Version 4.5.9

Version 4.5.9 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.9

Bugs Fixed

	Revert apachectl script generated by mod_wsgi-express back to
using /bin/bash as /bin/sh on some Linux systems lacking ability
to do exec -a.

Version 4.5.8

Version 4.5.8 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.8

Bugs Fixed

	When using HTTP/2 support and wsgi.file_wrapper, the response could
be truncated when mod_h2 was deferring the sending of the response
until after the WSGI request had been finalized.

	Builds were failing on Windows. Insert appropriate #if conditional
around code which shouldn’t have been getting included on Windows.

	When mod_wsgi-express is run as root and --python-eggs
option is used, if the directory for the Python eggs didn’t exist, it
was created, but the ownership/group were not set to be the user and
group that Apache would run the WSGI application. As a result Python
eggs could not actually be unpacked into the directory. Now change
the ownership/group of the directory to user/group specified when
mod_wsgi-express was run.

	Installation on MacOS X Sierra fails for both CMMI and pip install
methods. This is because Apple removed apr-1-config and
apu-1-config tools needed by apxs to install third party
Apache module. A workaround has been incorporated so that installation
still works when using pip install, but there is no workaround for
CMMI method. You will need to use pip install method and then use
mod_wsgi-express module-config to get the configuration to then
add into the Apache configuration so it knows how to load the mod_wsgi
module. Then configure Apache so it knows about your WSGI application.

	Compilation would fail on MacOS X Sierra as the API was changed for
obtaining task information. This was used to get memory used by the
process.

New Features

	Add WSGIIgnoreActivity directive. This can be set to On inside of
a Location directive block for a specific URL path, and any requests
against matching URLs will not trigger a reset of the inactivity timeout
for a mod_wsgi daemon process. This can be used on health check URLs so
that periodic requests against the health check URL do not interfere with
the inactivity timeout and keep the process running, rather than allowing
the process to restart due to being otherwise idle.

	Added the --ignore-activity option to mod_wsgi-express. It will
set the WSGIIgnoreActivity directive to On for the specific URL
path passed as argument to the option. Any requests against the matching
URL path will not trigger a reset of the inactivity timeout for a
mod_wsgi daemon process.

	Added the --module-config option to mod_wsgi-express to get the
Apache configuration snippet you would use to load the mod_wsgi module
from the Python installation direct into Apache, rather than installing
the module into the Apache modules directory.

	Added experimental support for installing mod_wsgi on Windows using pip.
Is only tested with Apache 2.4 and Python 3.5. The Apache installation
must be installed in C:\Apache24 directory. Run pip install mod_wsgi.
The run mod_wsgi-express module-config and it will generate the
required configuration to add into the Apache configuration file to load
the mod_wsgi module. You still need to separately configure Apache for
your specific WSGI application.

Version 4.5.7

Version 4.5.7 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.7

Bugs Fixed

	Resolved problem whereby mod_wsgi would fail on startup when using
Anaconda Python. This was caused by Anaconda Python changing the
behaviour of the C API function Py_GetVersion() so that it can no
longer be called before the Python interpreter is initialised. Now
display only the Python major and minor version in server string from
time of compilation, rather than runtime. Also no longer log warning
about mismatches between compile time and runtime Python version. This
avoids need to call Py_GetVersion().

New Features

	Add --http2 option to mod_wsgi-express for enabling support of
HTTP/2. Requires the mod_http2 module to be compiled into Apache
httpd server for versions of Apache where that is available.

Version 4.5.6

Version 4.5.6 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.6

Bugs Fixed

	Reinstanted change to associate any messages logged via sys.stdout
and sys.stderr back to the request so that Apache can log them
with the correct request log ID. This change was added in 4.5.4, but
was reverted in 4.5.5 as the change was causing process crashes under
Python 3.

	When using Apache 2.4 use new style Require directive instead of
older Order and Allow when setting up access controls for
mod_wsgi-express. This fixes a problem where when using
--include-file and Require directive was being used. Precedence
order was such that older directives were overriding new directive and
it was possible to permit access to additional directories when using
custom configuration.

	Django 1.10 requires that management commands use argparse style
options but mod_wsgi-express uses optparse style options. Can no
longer simply merge main script option list to get management command
option list. Instead need to convert optparse list to argparse format on
the fly, as still need to retain main script option list as optparse
until drop Python 2.6 support. Changes stop runmodwsgi management
command failing when using Django 1.10+.

New Features

	Added startup-timeout option to WSGIDaemonProcess directive.
If set and the first loading of the WSGI application script file
fails, then if no subsequent attempt to load it succeeds within the
specified startup timeout, the daemon process will be restarted. When
configuring mod_wsgi directly, the option is not enabled by default.
The option is exposed via mod_wsgi-express with a default value
of 15 seconds.

This would be used where running the Django web framework and there is
a risk of the database not being available, causing Django initialisation
to fail. Django doesn’t allow initialisation to be performed a second
time in the same process, meaning it will then constantly fail. Use of
startup timeout will allow the process to be restarted in face of such
constant startup failures. If the database is available when the
process is restarted, then next time the process starts, everything
should be fine.

Do note that this option should preferably only be used where the one
WSGI application has been delegated to a WSGI daemon process. This is
because if multiple WSGI applications are hosted out of the daemon
process group, be they in the same application group or distinct ones,
as soon as any one of them loads successfully, then the startup timeout
is disabled, meaning that if a subsequent one loaded is constantly
failing, then a process restart will not occur. Best practice is to
delegate each WSGI application to a distinct daemon process group.

Version 4.5.5

Version 4.5.5 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.5

Features Changed

	Reverted the change in 4.5.4 which associated any messages logged via
sys.stdout and sys.stderr back to the request so that Apache
could log them with the correct request log ID. This was necessary as
the change was causing process crashes under Python 3. The feature will
be reinstated when a solution to the issue can be found.

Version 4.5.4

Version 4.5.4 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.4

Bugs Fixed

	When using Apache 2.4 and daemon mode, the connection and request log
IDs from the Apache child worker processes were not being copied across
to the daemon process so that log messages generated against the request
would use the same ID in logs when using the %L format modifier.

	When using Apache 2.4 and daemon mode, the remote client port
information was not being cached such that log messages generated
against the request would use the port in logs when using the %a
format modifier.

Features Changed

	If sys.stdout and sys.stderr are used in the context of the
thread handling a request, calls against them to log messages will be
routed back via wsgi.errors from the per request WSGI environ
dictionary. This avoids the danger of logged messages from different
request handlers being intermixed as buffering will now be done on a per
request basis. Such messages will also be logged with the correct
connection and request log ID if the %L formatter is used in the
error log format.

New Features

	Added new option --error-log-format to mod_wsgi-express to allow
the error log message format to be specified.

	Pass through to the WSGI per request environ dictionary new values
for mod_wsgi.connection_id and mod_wsgi.request_id. These are
the Apache log IDs for the connection and request that it uses in log
messages when using the %L format modifier. This only applies to
Apache 2.4 and later.

Version 4.5.3

Version 4.5.3 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.3

Bugs Fixed

	Ensure that startup messages are flushed so immediately visible in logs.

Version 4.5.2

Version 4.5.2 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.2

Bugs Fixed

	When using --debug-mode with mod_wsgi-express any additional
directories to search for Python modules, which were supplied by the
--python-path option, were not being added to sys.path.

Version 4.5.1

Version 4.5.1 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.1

Bugs Fixed

	The CPU user and system time for requests wasn’t always being output
in request finished event data.

Version 4.5.0

Version 4.5.0 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.5.0

New Features

	Added additional internal performance monitoring features, included per
request event mechanism for getting extended metrics on a per request
basis. This includes details like per request CPU burn, which along with
process level CPU burn and thread utilisation can be used to better tune
processes/threads settings.

Version 4.4.23

Version 4.4.23 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.23

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

New Features

1. Added the --ssl-certificate-chain-file option to
mod_wsgi-express, for specifying the path to a file containing the
certificates of Certification Authorities (CA) which form the certificate
chain of the server certificate. This is equivalent to having used the
Apache SSLCertificateChainFile directive.

Version 4.4.22

Version 4.4.22 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.22

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. Stack traces logged at INFO level when a request timeout occurred
were not displaying correctly when Python 3 was being used. It is possible
that the logging code could also have caused the process to then crash as
the process was shutting down.

2. When using the --url-alias option with mod_wsgi-express and the
target directory had a trailing slash, that trailing slash was being
incorrectly dropped. This would cause URL lookup to fail when the URL for
the directory was a sub URL and also had a trailing slash.

New Features

1. When using mod_wsgi-express, rewrite rules can now be added into the
rewrite.conf file located under the server root directory. An alternate
location for the rewrite rules can be specified using the --rewrite-rules
option.

Note that the rewrite rules are included within a Directory block of
the Apache configuration file, for the document root directory. Any rules
therefore needs to be written so as to work in this context.

If you need to debug the rewrite rules and are using Apache 2.4, the
easiest way to enable rewrite logging is to use the --log-level option
with the quoted value of 'info rewrite:trace8'.

Version 4.4.21

Version 4.4.21 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.21

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Features Changed

1. When any of the options --enable-debugger, --enable-debugger,
--enable-coverage, --enable-profiler, --enable-recorder or
--enable-gdb are used, debug module will now automatically be enabled.
Previously you had to also supply the --debug-mode option otherwise
these options wouldn’t be honoured.

New Features

1. Add a WSGI test application to mod_wsgi-express which returns back
details of the request headers, application environment and request content
as the response. This can be used for testing how requests are passed
through and also what the execution environment looks like. It can be used
by running:

mod_wsgi-express start-server --application-type module mod_wsgi.server.environ

2. Added --entry-point option to mod_wsgi-express as more explicit
way of identifying the file or module name containing the WSGI application
entry point or description. This is in addition to simply being able to
list it without any option. The explicit way just makes it easier to see
the purpose when you have a long list of options.

Version 4.4.20

Version 4.4.20 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.20

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. Post mortem debugger would fail if the exception was raised during
yielding of items from a WSGI application, or inside of any close()
callable of an iterator returned from the WSGI application.

Version 4.4.19

Version 4.4.19 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.19

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. Daemon mode processes were crashing when attempting to set USER,
USERNAME, LOGNAME or HOME when no password entry could be
found for the current user ID. Now do not attempt to set these if the
user ID doesn’t have a password file entry.

Version 4.4.18

Version 4.4.18 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.18

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. If mod_wsgi-express was run under a user ID for which there was no
password entry in the system password file, it would fail when looking up
the group name. If this occurs now use #nnn as the default group name,
where nnn is the user ID.

Version 4.4.17

Version 4.4.17 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.17

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. If mod_wsgi-express was run under a user ID for which there was no
password entry in the system password file, it would fail when looking up
the user name. If this occurs now use #nnn as the default user name,
where nnn is the user ID.

Version 4.4.16

Version 4.4.16 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.16

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. If /dev/stderr cannot be opened for writing when startup log is
requested and logging to the terminal, then mod_wsgi-express would
fail. Now attempt fallback to using /dev/tty and if that cannot be
opened either, then give up on trying to use terminal for startup log.

Version 4.4.15

Version 4.4.15 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.15

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. When specifying multiple directories for the Python module search path
using the WSGIPythonPath directive, or the python-path option to
WSGIDaemonProcess, it was failing under Python 3 due to incorrect
logging. It was therefore only possible to add a single directory.

2. If Apache was already running when the mod_wsgi module was enabled or
otherwise configured to be loaded, and then an Apache graceful restart was
done so that it would be loaded for the first time, all child processes
would crash when starting up and would keep crashing, requiring Apache be
shutdown. This would occur as Python initialisation was not being performed
correctly in this specific case where mod_wsgi was loaded when Apache was
already running and a graceful restart, rather than a normal restart was
done.

Version 4.4.14

Version 4.4.14 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.14

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. The --compress-responses option of mod_wsgi-express was
failing when Apache 2.4 was used. This was because mod_filter module
is required when using Apache 2.4 and it wasn’t being loaded.

2. On Python 3, the IO object wrapped by sys.stdout and sys.stderr,
according to the Python documentation, must provide a fileno() method
even though no file descriptor exists corresponding to the Apache error
logs. The method should raise IOError if called to indicate not file
descriptor can be returned.

Previously, an attempt to use fileno() on sys.stdout and sys.stderr
would raise an AttributeError instead due to there being no fileno()
method.

3. Use compiler include flags from running of apr-config and
apu-config when doing pip install of mod_wsgi-express. This is
necessary as on MacOS X 10.11 El Capitan the include flags for APR returned
by apxs refer to the wrong location causing installation to fail.

New Features

1. When proxying a URL path or a virtual host, now setting request
header for X-Forwarded-Port so back end knows correct port that
front end used.

2. When proxying a URL path, if the request came in over a secure HTTP
connection, now setting request header for X-Forwarded-Scheme so back
end knows that front end handled the request over a secure connection.
The value of the header will be https.

3. When using mod_wsgi-express, it is now possible to supply the
--with-cgi option, with any files in the document root directory with
a ‘.cgi’ extension then being processed as traditional CGI scripts.

Version 4.4.13

Version 4.4.13 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.13

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. The pip installable ‘mod_wsgi’ package was failing to install on
OpenShift and Heroku as mod_wsgi-apxs isn’t used for tarball based
installs.

Features Changed

1. For mod_wsgi-express, only the web server type is now shown in the
server tokens sent back in the Server response header. This prevents
users from knowing any specifics and thus using that to determine possible
vulnerabilities.

New Features

1. Set environment variables from apachectl for mod_wsgi-express
about the server environment which can be used in additional Apache
configuration included into the generated configuration. The environment
variables are:

	MOD_WSGI_SERVER_ROOT - This is the directory where the generated
configuration files, startup scripts, etc were placed.

	MOD_WSGI_WORKING_DIRECTORY - This is the directory which will be used
as the current working directory of the process. Would default to being
the same as MOD_WSGI_SERVER_ROOT if not overridden.

	MOD_WSGI_LISTENER_HOST - The host name or IP on which connections are
being accepted. This should only be used if the Apache configuration
variable MOD_WSGI_WITH_LISTENER_HOST is defined.

	MOD_WSGI_HTTP_PORT - The port on which HTTP connections are being accepted.

	MOD_WSGI_HTTPS_PORT - The port on which HTTPS connections are being
accepted. This should only be used if the Apache configuration variable
MOD_WSGI_WITH_HTTPS is defined.

	MOD_WSGI_MODULES_DIRECTORY - The directory where the Apache modules are
installed.

	MOD_WSGI_RUN_USER - The user that the WSGI application will be run as.

	MOD_WSGI_RUN_GROUP - The group that the WSGI application will be run as.

2. Added X-Client-IP to list of possible trusted headers indicating the
true remote address of client when passing through a proxy.

Version 4.4.12

Version 4.4.12 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.12

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. If the WSGI application when run under daemon mode returned response
content as many small blocks, this could result in excessive memory
usage in the Apache child worker process proxying the request due to
many buckets being buffered until the buffer size threshold was reached.
If the number of buckets reaches a builtin threshold the buffered data
will now be forcibly flushed even if the size threshold hadn’t been
reached.

Version 4.4.11

Version 4.4.11 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.11

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. No provision was made for operating systems with a very low limit on the
number of separate data blocks that could be passed to system writev()
call. This was an issue on Solaris where the limit is 16 and meant that since
version 4.4.0, daemon mode of mod_wsgi would fail where a HTTP request had
more than a small number of headers.

2. When installing the mod_wsgi package using pip and rather
than activating the virtual environment you were referring to pip by
path from the bin directory, the mod_wsgi-httpd package which
had already been installed into the virtual environment would not be
detected.

New Features

1. Added the --service-log option to mod_wsgi-express for
specifying the name of a log file for a specific service script. The
arguments are the name of the service and the file name for the log. The
log file will be placed in the log directory, be it the default, or a
specific log directory if specified.

2. Set various environment variables from mod_wsgi-express to identify
that it is being used, what hosts it is handling requests for, and whether
debug mode and/or specific debug mode features are enabled. This is so that
a web application can modify it’s behaviour when mod_wsgi-express is
being used, or being used in specific ways. The environment variables which
are set are:

	MOD_WSGI_EXPRESS - Indicates that mod_wsgi-express is being used.

	MOD_WSGI_SERVER_NAME - The primary server host name for the site.

	MOD_WSGI_SERVER_ALIASES - Secondary host names the site is known by.

	MOD_WSGI_RELOADER_ENABLED - Indicates if source code reloading enabled.

	MOD_WSGI_DEBUG_MODE - Indicates if debug mode has been enabled.

	MOD_WSGI_DEBUGGER_ENABLED - Indicates pdb debugger has been enabled.

	MOD_WSGI_COVERAGE_ENABLED - Indicates if coverage analysis has been
enabled.

	MOD_WSGI_PROFILER_ENABLED - Indicates if code profiling has been enabled.

	MOD_WSGI_RECORDER_ENABLED - Indicates if request/response recording
enabled.

	MOD_WSGI_GDB_ENABLED - Indicates if gdb process crash debugging enabled.

For any environment variable indicating a feature has been enabled, it
will be set when enabled and have the value ‘true’.

For the list of server aliases, it will be a space separated list of host
names.

Version 4.4.10

Version 4.4.10 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.10

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. Fixed a reference counting bug which would cause a daemon process to
crash if both home and python-path options were specified at the
same time with the WSGIDaemonProcess directive.

2. When using --https-only option with mod_wsgi-express, the
redirection from the http address to the https address was not
setting the correct port for https.

Features Changed

1. Changed the default Apache log level for mod_wsgi-express to
warn instead of info. This has been done avoid very noisy logs
when enabling secure HTTP connections. To set back to info level use
the --log-level option.

2. When specifying a service script with the --service-script option of
mod_wsgi-express, the home directory for the process will now be set to
the same home directory as used for the hosted WGSI application. Python
modules from the WSGI application will therefore be automatically found
when imported. Any directory paths added using --python-path option
will also be added as search directories for Python module imports, with
any .pth files in those directories also being handled. In addition,
the language locale and Python eggs directory used by the hosted WSGI
application will also be used for the service script.

3. When specifying --python-path option, when paths are now setup for
the WSGI application, they will be added in such a way that they appear at
the head of sys.path and any .pth files in those directories are
also handled.

New Features

1. Added the --directory-listing option to mod_wsgi-express to
allow automatic directory listings to be enabled when using the static file
application type and no explicit directory index file has been specified.

2. In addition to the convenience function of --ssl-certificate for
mod_wsgi-express, which allowed the SSL certificate and private key
file to be specified using one option by specifying the command file
name up to the extension, separate --ssl-certificate-file and
--ssl-certificate-key-file options are now also provided. These
would either both need to be specified, or the existing
--ssl-certificate option used, when specifying that secure HTTPS
connections should be used through having specified --https-port.

3. Added the --ssl-ca-certificate-file option to mod_wsgi-express.
If specified this should give the location of the file with any CA
certificates to be used for client authentication. As soon as this option
is provided, the client authentication will be required for the whole site.
This would generally be used in conjunction with the --https-only
option so that only a secure communication channel is being used.

If you do not wish for the whole site to required client authentication,
you can use the --ssl-verify-client option to specify sub URLs for
which client authentication should be performed.

4. Added the --ssl-environment option to mod_wsgi-express to enable
the passing of standard SSL variables in the WSGI environ dictionary passed
to the WSGI application.

5. Added the WSGITrustedProxies directive and corresponding option of
--trust-proxy to mod_wsgi-express. This works in conjunction with
the WSGITrustedProxyHeaders directive and --trust-proxy-header
option of mod_wsgi-express. When trusted proxies are specified, then
proxy headers will only be trusted if the request originated with a trusted
proxy. Further, any IP addresses corresponding to a proxy listed in the
X-Forwarded-For header will only be trusted if specified. When
determining the value for REMOTE_ADDR the IP preceding the last
recognised proxy the request passed through will be used and not simply the
first IP listed in the header. The header will be rewritten to reflect what
was honoured with client IPs of dubious origin discarded.

Version 4.4.9

Version 4.4.9 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.9

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Features Changed

1. The --proxy-url-alias option of mod_wsgi-express has been
superseded by the --proxy-mount-point option. This option now should
only be used to proxy to a whole site or sub site and not individual file
resources. If the mount point URL for what should be proxied doesn’t have a
trailing slash, the trailing slash redirection will first be performed on
the proxy for the mount point rather than simply passing it through to
the backend.

2. The signal handler intercept will now be removed automatically from a
Python child process forked from either an Apache child process or a daemon
process. This avoids the requirement of setting WSGIRestrictSignal to
Off if wanting to setup new signal handlers from a forked child process.

3. The signal handler registrations setup in daemon processes to manage
process shutdown, will now revert to exiting the process when invoked from
a Python process forked from a daemon process. This avoids the need to set
new signal handlers in forked processes to override what was inherited.

Note that this only applies to processes forked from daemon mode processes.
If you are forking processes when your WSGI application is running in
embedded mode, it is still a good idea to set signal handles for SIGINT,
SIGTERM and SIGUSR1 back to SIG_DFL using signal.signal()
if you want to avoid the possibility of strange behaviour due to the
inherited Apache child worker process signal registrations.

New Features

1. Added --hsts-policy option to mod_wsgi-express to allow a HSTS
(Strict-Transport-Security) policy response header to be specified which
should be included when the --https-only option is used to ensure that
the site only accepts HTTPS connections.

2. Added WSGITrustedProxyHeaders directive. This allows you to specify
a space separated list of inbound HTTP headers used to transfer client
connection information from a proxy to a backend server, that are trusted.
When the specified headers are seen in a request, the values passed via
them will be used to fix up the values in the WSGI environ dictionary
to reflect client information as was seen by the proxy.

Only the specific headers you are expecting and which is guaranteed to have
only been set by the proxy should be listed. Whether it exists or not, all
other headers in a category will be removed so as to avoid an issue with
a forged header getting through to a WSGI middleware which is looking for a
different header and subsequently overriding whatever the trusted header
specified. This applies to the following as well when more than one
convention is used for the header name.

The header names which are accepted for specifying the HTTP scheme used are
X-Forwarded-Proto, X-Forwarded-Scheme and X-Scheme. It is
expected that the value these supply will be http or https. When it
is https, the wsgi.url_scheme value in the WSGI environ
dictionary will be overridden to be https.

Alternate headers accepted are X-Forwarded-HTTPS, X-Forwarded-SSL
and X-HTTPS. If these are passed, the value needs to be On,
true or 1. A case insensitive match is performed. When matched, the
wsgi.url_scheme value in the WSGI environ dictionary will be
overridden to be https.

The header names which are accepted for specifying the target host are
X-Forwarded-Host and X-Host. When found, the value will be used
to override the HTTP_HOST value in the WSGI environ dictionary.

The sole header name accepted for specifying the front end proxy server
name is X-Fowarded-Server. When found, the value will be used to
override the SERVER_NAME value in the WSGI environ dictionary.

The sole header name accepted for specifying the front end proxy server
port is X-Fowarded-Port. When found, the value will be used to
override the SERVER_PORT value in the WSGI environ dictionary.

The header names accepted for specifying the client IP address are
X-Forwarded-For and X-Real-IP. When X-Forwarded-For is used
then the first IP address listed in the header value will be used. For
X-Real-IP only one IP address should be given. When found, the value
will be used to override the REMOTE_ADDR value in the WSGI environ
dictionary.

Note that at present there is no facility for specifying a list of trusted
IP addresses to be specified for front end proxies. This will be a feature
added in a future version. When that is available and X-Forwarded-For
is used, then the IP address preceding the furthest away trusted proxy IP
address will instead be used, even if not the first in the list.

The header names accepted for specifying the application mount point are
X-Script-Name and X-Forwarded-Script-Name. When found, the value
will override the SCRIPT_NAME value in the WSGI environ dictionary.

When using mod_wsgi-express the equivalent command line option is
--trust-proxy-header. The option can be used multiple times to specify
more than one header.

Version 4.4.8

Version 4.4.8 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.8

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. The eviction timeout was not being correctly applied when request timeout
wasn’t being applied at the same time. It may have partly worked if any of
inactivity or graceful timeout were also specified, but the application of
the timeout may still have been delayed.

New Features

1. Added the --error-log-name option to mod_wsgi-express to allow
the name of the file used for the error log, when being written to the log
directory, to be overridden.

2. Added the --access-log-name option to mod_wsgi-express to allow
the name of the file used for the access log, when being written to the log
directory, to be overridden.

3. Added the --startup-log-name option to mod_wsgi-express to allow
the name of the file used for the startup log, when being written to the log
directory, to be overridden.

Version 4.4.7

Version 4.4.7 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.7

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Features Changed

1. The proxy-buffer-size option to WSGIDaemonProcess directive
was renamed to response-buffer-size to avoid confusion with options
related to normal HTTP proxying. The --proxy-buffer-size option of
mod_wsgi-express was similarly renamed to --response-buffer-size.

New Features

1. Added --service-script option to mod_wsgi-express to allow a
Python script to be loaded and executed in the context of a distinct
daemon process. This can be used for executing a service to be managed by
Apache, even though it is a distinct application. The options take two
arguments, a short name for the service and the path to the Python script
for starting the service.

If mod_wsgi-express is being run as root, then a user and group can be
specified for the service using the --service-user and
--service-group options. The options take two arguments, a short name
for the service and the user or group name respectively.

2. Added --proxy-url-alias option to mod_wsgi-express for setting
up proxying of a sub URL of the site to a remote URL.

3. Added --proxy-virtual-host option to mod_wsgi-express for setting
up proxying of a whole virtual host to a remote URL. Only supports proxying
of HTTP requests and not HTTPS requests.

4. Added eviction-timeout option to WSGIDaemonProcess directive.
For the case where the graceful restart signal, usually SIGUSR1, is
sent to a daemon process to evict the WSGI application and restart the
process, this controls how many seconds the process will wait, while still
accepting new requests, before it reaches an idle state with no active
requests and shuts down.

The graceful-timeout option previously performed this exact role in
this case previously, but a separate option is being added to allow a
different timeout period to be specified for the case for forced eviction.
The existing graceful-timeout option is still used when a maximum
requests option or CPU usage limit is set. For backwards compatibility,
if eviction-timeout isn’t set, it will fall back to using any value
specified using the graceful-timeout option.

The --eviction-timeout option has also been added to
mod_wsgi-express and behaves in a similar fashion.

5. Added support for new mod_wsgi-httpd package. The mod_wsgi-httpd
package is a pip installable package which will build the Apache httpd
server and install it into the Python installation. If the
mod_wsgi-httpd package is installed before installing this package,
then the Apache httpd server installation installed by mod_wsgi-httpd
will be used instead of any system installed version of the Apache httpd
server when running mod_wsgi-express. This allows you to workaround
any inability to upgrade the main Apache installation, or install its ‘dev’
package if missing, or install it outright if not present.

Version 4.4.6

Version 4.4.6 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.6

For details on the availability of Windows binaries see:

https://github.com/GrahamDumpleton/mod_wsgi/tree/master/win32

Bugs Fixed

1. Apache 2.2.29 and 2.4.11 introduce additional fields to the request
structure request_rec due to CVE-2013-5704. The addition of these
fields will cause versions of mod_wsgi from 4.4.0-4.4.5 to crash when used
in mod_wsgi daemon mode and mod_wsgi isn’t initialising the new structure
members.

If you are upgrading your Apache installation to those versions or later
versions, you must also update to mod_wsgi version 4.4.6. The mod_wsgi
4.4.6 source code must have also been compiled against the newer Apache
version.

In recompiling mod_wsgi 4.4.6 source code against the newer Apache versions
the source code is able to detect the new fields exist at compile time by
checking a compile time version number.

One problem that can arise is that where a CVE is raised for a security
issue, Linux distributions will back port the change to older Apache
versions. When they do this though, the compile time version number isn’t
changed, so mod_wsgi cannot detect at compile time when built against
Apache versions with the backport that the additional fields exist.

To combat this problem, mod_wsgi will do some runtime checks which look at
the actual size of request_rec and calculate whether the additional
fields have been added by way of a backported change. In this case mod_wsgi
will then set the fields as necessary.

As a final fail safe for forward compatibility. If the current mod_wsgi
source code is compiled against a version of Apache which doesn’t have the
CVE change applied, it will pad the request_rec and optimistically set
the fields anyway. This is to deal with the situation where mod_wsgi is
compiled against an older Apache and then that Apache is upgraded to one
with the CVE change, but mod_wsgi is not recompiled so that the additional
fields can be detected at compile time.

2. Override LC_ALL environment variable when locale option to the
WSGIDaemonProcess directive. It is not always sufficient to just call
setlocale() as some Python code, including interpreter initialisation
can still consult the original LC_ALL environment variable. In this
case this can result in an undesired file system encoding still being
selected.

New Features

1. Added --enable-gdb option to mod_wsgi-express for when running
in debug mode. With this option set, Apache will be started up within
gdb allowing the debug of process crashes on startup or while handling
requests. If the gdb program is not in PATH, the --gdb-executable
option can be set to give its location.

Version 4.4.5

Version 4.4.5 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.5

Known Issues

1. Although the makefiles for building mod_wsgi on Windows have now been
updated for the new source code layout, some issues are being seen with
mod_wsgi on Apache 2.4. These issues are still being investigated. As
most new changes in 4.X relate to mod_wsgi daemon mode, which is not
supported under Windows, you should keep using the last available binary
for version 3.X on Windows instead. Binaries compiled by a third party
can be obtained from:

	http://www.lfd.uci.edu/~gohlke/pythonlibs/#mod_wsgi

Bugs Fixed

1. When installing mod_wsgi-express from PyPi on OpenShift as a
dependency of an application setup.py file, the precompiled Apache
binaries would not be installed.

Version 4.4.4

Version 4.4.4 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.4

Known Issues

1. Although the makefiles for building mod_wsgi on Windows have now been
updated for the new source code layout, some issues are being seen with
mod_wsgi on Apache 2.4. These issues are still being investigated. As
most new changes in 4.X relate to mod_wsgi daemon mode, which is not
supported under Windows, you should keep using the last available binary
for version 3.X on Windows instead. Binaries compiled by a third party
can be obtained from:

	http://www.lfd.uci.edu/~gohlke/pythonlibs/#mod_wsgi

New Features

1. The mod_wsgi-express command will now output to stdout the
number of daemon processes and threads being used.

2. Add automatic installation of precompiled Apache binaries when deploying
mod_wsgi-express to Heroku or OpenShift. These binaries will be pulled
down from S3 and installed as part of the mod_wsgi package.

Version 4.4.3

Version 4.4.3 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.3

Known Issues

1. Although the makefiles for building mod_wsgi on Windows have now been
updated for the new source code layout, some issues are being seen with
mod_wsgi on Apache 2.4. These issues are still being investigated. As
most new changes in 4.X relate to mod_wsgi daemon mode, which is not
supported under Windows, you should keep using the last available binary
for version 3.X on Windows instead. Binaries compiled by a third party
can be obtained from:

	http://www.lfd.uci.edu/~gohlke/pythonlibs/#mod_wsgi

Features Changed

1. The --lang option to mod_wsgi-express has been deprecated. Any
default language locale setting should be set exclusively using the
--locale option.

2. The behaviour of the --locale option to mod_wsgi-express has
changed. Previously if this option was not defined, then both of the locales
en_US.UTF-8 and C.UTF-8 have at times been hardwired as the default
locale. These locales are though not always present. As a consequence, a
new algorithm is now used.

If the --locale option is supplied, the argument will be used as the
locale. If no argument is supplied, the default locale for the executing
mod_wsgi-express process will be used. If that however is C or
POSIX, then an attempt will be made to use either the en_US.UTF-8
or C.UTF-8 locales and if that is not possible only then fallback to
the default locale of the mod_wsgi-express process.

In other words, unless you override the default language locale, an attempt
is made to use an English language locale with UTF-8 encoding.

3. Unless the process name is overridden using --process-name option
to mod_wsgi-express, the Apache parent and child worker process will
be given a name such as httpd (mod_wsgi-express) making them more
easily distinguishable from a traditional Apache installation.

Bugs Fixed

1. The mod_wsgi-express script would fail on startup if the user had
a corresponding group ID which didn’t actually match an existing group in
the groups file and no override group was being specified. When this
occurs, the group will now be specified as #nnn where nnn is the
group ID.

New Features

1. Added --process-name option to mod_wsgi-express to allow the
name of the Apache parent process to be overridden as it would be displayed
in ps. This is necessary under some process manager systems where it
looks for a certain name, but with shell script wrappers and exec calls
happening around mod_wsgi-express the name would change.

Version 4.4.2

Version 4.4.2 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.2

Known Issues

1. Although the makefiles for building mod_wsgi on Windows have now been
updated for the new source code layout, some issues are being seen with
mod_wsgi on Apache 2.4. These issues are still being investigated. As
most new changes in 4.X relate to mod_wsgi daemon mode, which is not
supported under Windows, you should keep using the last available binary
for version 3.X on Windows instead. Binaries compiled by a third party
can be obtained from:

	http://www.lfd.uci.edu/~gohlke/pythonlibs/#mod_wsgi

Features Changed

1. The --ssl-port option has been deprecated in favour of the option
--https-port. Strictly speaking SSL no longer exists and has been
supplanted with TLS. The ‘S’ in ‘HTTPS’ is actually meant to mean secure
and not ‘SSL’. So change name of option to properly match terminoligy.

2. The name of the startup log was changed such that naming was consistent
with how logs are normally named with Apache. That is startup_log
instead of startup.log, thereby matching convention with error_log
and access_log.

Bugs Fixed

1. When a default language was specified using the locale option to
the WSGIDaemonProcess directive or the --locale option to
mod_wsgi-express, if it did not actually match a locale supported by
the operating system, that the locale couldn’t be set wasn’t logged. Such
a message is now logged along with a suggestion to use C.UTF-8 as a
fallback locale if the intent is to have UTF-8 support.

2. When using the --https-only option with mod_wsgi-express, a HTTP
request was not being redirected to be a HTTPS request when there were no
server aliases specified.

Version 4.4.1

Version 4.4.1 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.1

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. Process crashes could occur when request content had been consumed by
the WSGI application. The trigger was when the Python wsgi.input was
still in existence after the web request had finished. The destruction of
the wsgi.input object was accessing memory which had already been
released back to the Apache memory pools and potentially reused. This could
cause crashes or other unexplained behaviour. This issue was introduced in
version 4.4.0 of mod_wsgi.

Features Changed

1. When an error occurs in writing back a response to the HTTP client,
during the consumption of the iterable returned by the WSGI application,
the message will now be logged at debug level rather than error level. Note
that under Apache 2.2 it isn’t possible to suppress the message generated
by Apache itself from the core_output_filter, so that may still appear.

2. The --profiler-output-file option for mod_wsgi-express was
changed to --profiler-directory and now refers to a directory, with
individual pstats files being added to the directory for each session
rather than reusing the same name all the time.

New Features

1. Added the --server-mpm option to mod_wsgi-express. With this
option, if you are using Apache 2.4 with dynamically loadable MPM modules
and more than one option for the MPM is available, you can specify your
preference for which is used. If not specified, then the precedence order
for MPMs is ‘event’, ‘worker’ and finally ‘prefork’.

2. Added static as an option for --application-type when running
mod_wsgi-express. When set as static, only static files will be
served. One can still set specific handler types for different extensions
which may invoke a Python handler script, but there will be no global
fallback WSGI application for any URLs that do not map to static files. In
these cases a normal HTTP 404 response will be returned instead.

3. Added --host-access-script option to mod_wsgi-express to allow
a Python script to be provided which can control host access. This uses
the WSGIAccessScript directive and the handler script should define an
allow_access(environ, host) function which returns True if access is
allowed or False if blocked.

4. Added --debugger-startup option to be used in conjunction with
the --enable-debugger option of mod_wsgi-express when in debug mode.
The option will cause the debugger to be activated on server start before
any requests are handled to allow breakpoints to be set.

5. Added a socket-user option to WSGIDaemonProcess to allow the
owner of the UNIX listener socket for the daemon process group to be
overridden. This can be used when using mod_ruid2 to change the owner of
the socket from the default Apache user, to the user under which mod_ruid2
will run Apache when handling requests. This is necessary otherwise the
Apache child worker process will not be able to connect to the listener
socket for the mod_wsgi daemon process to proxy the request to the WSGI
application.

6. Added a --enable-recorder option for enabling request recording when
also using debug mode.

Version 4.4.0

Version 4.4.0 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.4.0

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. When an exception occurs during the yielding of data from a generator
returned from the WSGI application, and chunked transfer encoding was used
on the response, then a ‘0’ chunk would be errornously added at the end of
the response content even though the response was likely incomplete. The
result would be that clents wouldn’t be able to properly detect that the
response was truncated due to an error. This issue is now fixed for when
embedded mode is being used. Fixing it for daemon mode is a bit trickier.

2. Response headers returned from the WSGI application running in daemon
mode were being wrongly attached to the internal Apache data structure for
err_headers_out instead of headers_out. This meant that the
Header directive of the mod_headers module, with its default
condition of only checking onsuccess headers would not work as
expected.

In order to be able to check for or modify the response headers one would
have had to use the Header directive with the always condition and
if also working with an embedded WSGI application, also define a parallel
Header directive but with the onsuccess condition.

For daemon mode, response headers will now be correctly associated with
headers_out and the onsuccess condition of the Header directive.
The only exception to this in either embedded or daemon mode now is that
of the WWW-Authenticate header, which remains associated with
err_headers_out so that the header will survive an internal redirect
such as to an ErrorDocument.

3. When optional support for chunked requests was enabled, it was only
working properly for embedded mode. The feature now also works properly for
daemon mode.

The directive to enable support for chunked request content is
WSGIChunkedRequest. The command line option when using mod_wsgi express
is --chunked-request.

This is an optional feature, as the WSGI specification is arguably broken
in not catering properly for mutating input filters or chunked request
content. Support for chunked request content could be enabled by default,
but then WSGI applications which don’t simply read all available content
and instead rely entirely on CONTENT_LENGTH, would likely see a chunked
request as having no content at all, as it would interpret the lack of
the CONTENT_LENGTH as meaning the length of the content is zero.

An attempt to get the WSGI specification ammended to be more sensible and
allow what is a growing requirement to support chunked request content was
ignored. Thus support is optional. You will need to enable this if you wish
to rely on features of any WSGI framework that take the more sensible
approach of ignoring CONTENT_LENGTH as a true indicator of content
length. One such WSGI framework which provides some support for chunked
request content is Flask/Werkzeug. Check its documentation or the code for
Flask/Werkzeug to to see if any additional SetEnv directive may be
required to enable the support in Flask/Werkzeug.

4. Fixed a potential request content data corruption issue when running a
WSGI application in daemon mode. The bug in the code is quite obvious, yet
unable to trigger it on older mod_wsgi versions. It was though triggering
quite easily in the current release on MacOS X, prior to it being fixed,
due to the changes made to support chunked request content for daemon
processes.

Suspect it is still a latent bug in older mod_wsgi versions, but the
conditions under which it would trigger must have been harder to induce.
The lack of reported problems may have been aided by virtue of Linux UNIX
socket buffer size being quite large, in comparison to MacOS X, and so
harder to create a condition where not all data could be written onto the
UNIX socket in one call. Yet, when buffer sizes for the UNIX socket on
MacOS X were increased, it was still possible to induce the bug.

5. When the --working-directory option for mod_wsgi-express was
given a relative path name, that wasn’t being translated to an absolute
path name when substituting the home option of WSGIDaemonProcess
causing server startup to fail.

6. When using --debug-mode of mod_wsgi-express the working
directory for the application was not being added to sys.path. This
meant that if the WSGI script was referenced from a different directory,
any module imports for other modules in that directory would fail.

Features Changed

1. Until recently, a failed attempt to change the working directory for a
daemon process to the user the process runs as would be ignored. Now it
will cause a hard failure that will prevent the daemon process from
starting. This would cause issues where the user, usually the default
Apache user, has not valid home directory. Now what will happens is that
any attempt will only be made to change the working directory to the home
directory of the user the daemon process runs as, if the ‘user’ option had
been explicitly set to define the user and the user is different to the
user that Apache child worker processes run as. In other words, is
different to the default Apache user.

2. The support for the wdb debugger was removed. Decided that it wasn’t
mainstream enough and not ideal that still required a separate service and
port to handle debugging sessions.

New Features

1. Added new feature to mod_wsgi-express implementing timeouts on the
reading of the request, including headers, and the request body. This
feature uses the Apache module mod_reqtimeout to implement the feature.

By default a read timeout on the initial request including headers of 15
seconds is used. This can dynamically increase up to a maximum of 30
seconds if the request data is received at a minimum required rate.

By default a read timeout on the request body of 15 seconds is used. This
can dynamically increase if the request data is received at a minimum
required rate.

The options to override the defaults are --header-timeout,
--header-max-timeout, --header-min-rate, --body-timeout,
--body-max-timeout and --body-min-rate. For a more detailed
explaination of this feature, consult the documentation for the Apache
mod_reqtimeout module.

2. Added a new %{HOST} label that can be used when specifying the
application group (Python sub interpreter context) to run the WSGI
application in, via the WSGIApplicationGroup directive, or the
application-group option to WSGIScriptAlias.

This new label will result in an application group being used with a name
that corresponds to the name of the site as identified by the HTTP request
Host header. Where the accepting port number is other than 80 or 443,
then the name of the application group will be suffixed with the port
number separated by a colon.

Note that extreme care must be exercised when using this new label to
specify the application group. This is because the HTTP request Host
header is under the control of the user of the site.

As such, it should only be used in conjunction with a configuration which
adequately blocks access to anything but the expected hosts.

For example, it would be dangerous to use this inside of a VirtualHost
where the ServerAlias directive is used with a wildcard. This is
because a user could pick arbitrary host names matching the wildcard and so
force a new sub interpreter context to be created each time and so blow out
memory usage.

Similarly, caution should be exercised with mod_vhost_alias, with any
configuration forbidding any host which doesn’t specifically match some
specified resource such as a directory.

Finally, this should probably never be used when not using either
VirtualHost or mod_vhost_alias as in that case the server is likely
going to accept any Host header value without exclusions.

3. Allow %{RESOURCE}, %{SERVER} and %{HOST} labels to be used
with the WSGIProcessGroup directive, or the process-group option of
the WSGIScriptAlias directive.

For this to work, it is still necessary to have setup an appropriate
mod_wsgi daemon process group using the WSGIDaemonProcess directive,
with name that will match the expanded value for the respective labels.
If there is no matching mod_wsgi daemon process group specified, then
a generic HTTP 500 internal server error response would be returned and
the reason, lack of matching mod_wsgi daemon process group, being logged in
the Apache error log.

4. Error messages and exceptions raised when there is a failure to read
request content, or write back a response now provide the internal error
indication from Apache as to why. For the IOError exceptions which are
raised, that the exception originates within Apache/mod_wsgi is now flagged
in the description associated with the exception.

5. When using mod_wsgi daemon mode and there is a timeout when reading
request content in order to proxy it to the daemon process, a 408 request
timeout HTTP response is now returned where as previously a generic 500
internal server error HTTP response was returned.

Note that this doesn’t mean that the WSGI application wasn’t actually run.
The WSGI application in the daemon process would have run as soon as the
headers had been received.

If the WSGI application had actually attempted to read the request content,
it should also have eventually received an exception of type IOError
when accessing wsgi.input to read the request content, due to a
timeout or due to the proxy connection being closed before all request
content was able to be read.

If the WSGI application wasn’t expecting any request content and had
ignored it, even though some was present, it would still have run to
completion and generated a response, but because the Apache child worker
process was blocked waiting for content, when the timeout occurred the
client would get the 408 HTTP response rather than the actual response
generated by the WSGI application.

6. Added the --log-to-terminal option to mod_wsgi-express to allow
the error log output to be directed to standard error for the controlling
terminal, and the access log output, if enabled, to be directed to standard
output. Similarly, the startup log output, if enabled, will be sent to
standard error also.

This should not be used in conjunction with --setup-only option when
using the generated apachectl script, unless the -DFOREGROUND
option is also being supplied to apachectl at the time it is run with
the start command.

7. Added the --access-log-format option to mod_wsgi-express. By
default if the access log is enabled, entries will follow the ‘common’ log
format as typically used by Apache. You have two options of how you can use
the --access-log-format. The first is to give it the argument
‘combined’, which will then cause it to use this alternate log format
which is again often used with Apache. The other is to specify the log
format string yourself.

The format string can contain format string components as would be used
with the LogFormat directive. For example, to specify the equivalent to
the ‘common’ log format, you could use:

--access-log-format "%h %l %u %t \"%r\" %>s %b"

This ‘common’ log format is identified via a nickname in the same way
‘combined’ is, so if you did have to specify it explicitly for some reason,
you could just have instead used:

--access-log-format common

8. Added the --newrelic-config-file and --newrelic-environment
options to mod_wsgi-express. This allows these to be set using command
line options rather than requiring the New Relic environment variables.
Importantly, when the options are used, the values will be embedded in the
generated files if using --setup-only. Thus they will still be set when
later using the apachectl control script to start the server.

Note that when these options are used, they will cause the equivalent New
Relic environment variable for that option to be ignored, both if running
the server immediately, or if using --setup-only and running the server
later using apachectl.

9. Added the --enable-debugger option to mod_wsgi-express. When
specified and at the same time the --debug-mode option is specified,
then when an exception is raised from the initial execution of the WSGI
application, when consuming the response iterable, or when calling any
close() method of the response iterable, then post mortem debugging of
the exception will be triggered. Post mortem debugging is performed using
the Python debugger (pdb).

10. Added the --enable-coverage option to mod_wsgi-express. When
specified and at the same time the --debug-mode option is specified,
then coverage analysis is enabled. When the server is exited, then the HTML
reports will be output to the htmlcov directory under the server
working directory, or the directory specified using the
--coverage-directory option. The coverage module must be installed
for this feature to work.

11. Added the --enable-profiler option to mod_wsgi-express. When
specified and at the same time the --debug-mode option is specified,
then coverage analysis is enabled. When the server is exited, then the
profiler data will be output to the pstats.dat file under the server
working directory, or the file specified using the --profiler-output-file
option.

12. Added the --python-path option to mod_wsgi-express to specify
additional directories that should be added to the Python module search path.

Note that these directories will not be processed for .pth files. If
processing of .pth files is required, then the PYTHONPATH environment
variable should be set and exported in a script file referred to using the
--envvars-script option.

Version 4.3.2

Version 4.3.2 of mod_wsgi can be obtained from:

https://codeload.github.com/GrahamDumpleton/mod_wsgi/tar.gz/4.3.2

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. Linux behaviour when using connect() on a non blocking UNIX socket
and the listener queue is full, is apparently not POSIX compliant and it
returns EAGAIN instead of ECONNREFUSED. The code handling errors
from the connect() wasn’t accomodating this non standard behaviour
and so would fail immediately rather than retrying.

2. Only change working directory for mod_wsgi daemon process after having
dropped privileges to target user. This is required where the specified
working directory is on an NFS file system configured so as not to have
root access priviliges.

3. The workaround for getting pyvenv style virtual environments to work
with Python 3.3+ would break brew Python 2.7 on MacOS X as brew Python
appears to not work in embedded systems which use Py_SetProgramName()
instead of using Py_SetPythonHome(). Now only use Py_SetProgramName() if
detect it is actually a pyvenv style virtual environment. This even appears
to be okay for brew Python 3.4 at least as it does still work with the
Py_SetProgramName() call even if brew Python 2.7 doesn’t.

New Features

1. If the WSGIPythonHome directive or the python-home option is
used with the WSGIDaemonProcess directive, the path provided, which is
supposed to be the root directory of the Python installation or virtual
environment, will be checked to see if it is actually accessible and refers
to a directory. If it isn’t, a warning message will be logged along with
any details providing an indication of what may be wrong with the supplied
path.

This is being done to warn when an invalid path has been supplied that
subsequently is likely to be rejected and ignored by the Python
interpreter. In such a situation where an invalid path is supplied the
Python interpreter doesn’t actually log anything and will instead silently
fallback to using any Python installation it finds by seaching for
python on the users PATH. This may not be the Python installation
or virtual environment you intended be used.

2. The Apache configuration snippet generated as an example when running
the install-module sub command of mod_wsgi-express to install the
mod_wsgi.so into the Apache installation itself, will now output a
WSGIPythonHome directive for the Python installation or virtual
environment the mod_wsgi module was compiled against so that the correct
Python runtime will be used.

Version 4.3.1

Version 4.3.1 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.3.1.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. The install-module sub command of mod_wsgi-express was incorrectly
trying to install the mod_wsgi .so file onto itself rather than into
the Apache modules directory.

2. The workaround for the broken MacOS X Apache build scripts as implemented
by the configure script used when building using the traditional make
command wasn’t working correctly for MacOS X 10.10 (Yosemite).

In fixing this issue, the configure script has been enhanced such that
it is now no longer to have the whole of the Xcode package installed on
MacOS X. Instead the minimum required now is the developer command line
tools. If using Python and you wanted to be able to install Python packages
which has a source code component you would have already likely installed
the developer command line tools.

New Features

1. Added the --add-handler option to mod_wsgi-express to allow a
WSGI application script file to be provided which is to handle any requests
against static resources in the document root directory matching a specific
extension type.

2. Added a mechanism to limit the amount of response content that can
buffered in the Apache child worker processes when proxying back the response
from a request which had been handled in a mod_wsgi daemon process.

This is to combat a lack of flow control within Apache 2.2 which can cause
excessive amounts of memory usage as a result of such buffered content.
This issue in Apache 2.2 was fixed in Apache 2.4, but the new mechanism is
applied to both versions for consistency.

The default maximum on the amount of buffered content is 65536 bytes. This
can be increased by using the proxy-buffer-size option to the
WSGIDaemonProcess directive or the --proxy-buffer-size option to
mod_wsgi-express. If using Apache 2.4, its own flow control mechanism
may override the value in increasing the buffer size.

Version 4.3.0

Version 4.3.0 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.3.0.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. Performing authorization using the WSGIAuthGroupScript was not
working correctly on Apache 2.4 due to changes in how auth providers
and authentication/authorization works. The result could be that a user
could gain access to a resource even though they were not in the
required group.

2. Under Apache 2.4, when creating the environ dictionary for
passing into access/authentication/authorisation handlers, the behvaiour
of Apache 2.4 as it pertained to the WSGI application, whereby it
blocked the passing of any HTTP headers with a name which did not contain
just alphanumerics or ‘-‘, was not being mirrored. This created the
possibility of HTTP header spoofing in certain circumstances. Such headers
are now being ignored.

3. When home option was used with WSGIDaemonProcess directive an
empty string was added to sys.path. This meant current working directory
would be searched. This was fine so long as the current working directory
wasn’t changed, but if it was, it would no longer look in the home
directory. Need to use the actual home directory instead.

4. Fixed Django management command integration so would work for versions
of Django prior to 1.6 where BASE_DIR didn’t exist in Django settings
module.

Features Changed

1. In Apache 2.4, any headers with a name which does not include only
alphanumerics or ‘-‘ are blocked from being passed into a WSGI application
when the CGI like WSGI environ dictionary is created. This is a
mechanism to prevent header spoofing when there are multiple headers where
the only difference is the use of non alphanumerics in a specific character
position.

This protection mechanism from Apache 2.4 is now being restrospectively
applied even when Apache 2.2 is being used and even though Apache itself
doesn’t do it. This may technically result in headers that were previously
being passed, no longer being passed. The change is also technically
against what the HTTP RFC says is allowed for HTTP header names, but such
blocking would occur in Apache 2.4 anyway due to changes in Apache. It is
also understood that other web servers such as nginx also perform the same
type of blocking. Reliance on HTTP headers which use characters other
than alphanumerics and ‘-‘ is therefore dubious as many servers will now
discard them when needing to be passed into a system which requires the
headers to be passed as CGI like variables such as is the case for WSGI.

2. In Apache 2.4, only wsgi-group is allowed when using the Require
directive for group authorisation. In prior Apache versions group would
also be accepted and matched by the wsgi auth provider. The inability
to use group is due to a change in Apache itself and not mod_wsgi. To
avoid any issues going forward though, the mod_wsgi code will now no longer
check for group even if for some reason Apache still decides to pass
the authorisation check off to mod_wsgi even when it shouldn’t.

New Features

1. The value of the REMOTE_USER variable for an authenticated user
when user Basic authentication can now be overridden from an
authentication handler specified using the WSGIAuthUserScript. To
override the name used to identify the user, instead of returning True
when indicating that the user is allowed, return the name to be used for
that user as a string. That value will then be passed through in
REMOTE_USER in place of any original value:

def check_password(environ, user, password):
 if user == 'spy':
 if password == 'secret':
 return 'grumpy'
 return False
 return None

2. Added the --debug-mode option to mod_wsgi-express which results
in Apache and the WSGI application being run in a single process which is
left attached to stdin/stdout of the shell where the script was run. Only a
single thread will be used to handle any requests.

This feature enables the ability to interactively debug a Python WSGI
application using the Python debugger (pdb). The simplest way to
break into the Python debugger is by adding to your WSGI application code:

import pdb; pdb.set_trace()

3. Added the --application-type option to mod_wsgi-express. This
defaults to script indicating that the target WSGI application provided
to mod_wsgi-express is a WSGI script file defined by a relative or
absolute file system path.

In addition to script, it is also possible to supply for the application
type module and paste.

For the case of module, the target WSGI application will be taken to
reside in a Python module with the specified name. This module will be
loaded using the standard Python module import system and so must reside
on the Python module search path.

For the case of paste, the target WSGI application will be taken to be
a Paste deployment configuration file. In loading the Paste deployment
configuration file, any WSGI application pipeline specified by the
configuration will be constructed and the resulting top level WSGI
application entry point returned used as the WSGI application.

Note that the code file for the WSGI script file, Python module, or Paste
deployment configuration file, if modified, will all result in the WSGI
application being automatically reloaded on the next web request.

4. Added the --auth-user-script and --auth-type options to
mod_wsgi-express to enable the hosted site to implement user
authentication using either HTTP Basic or Digest authentication
mechanisms. The check_password() or get_realm_hash() functions
should follow the same form as if using the WSGIAuthUserScript direct
with mod_wsgi when using manual configuration.

5. Added the --auth-group-script and --auth-group options to
mod_wsgi-express to enable group authorization to be performed using a
group authorization script, in conjunction with a user authentication
script. The groups_for_user() function should follow the same form as
if using the WSGIAuthGroupScript direct with mod_wsgi when using manual
configuration.

By default any users must be a member of the wsgi group. The name of
this group though can be overridden using the --auth-group option.
It is recommended that this be overridden rather than changing your own
application to use the wsgi group.

6. Added the --directory-index option to mod_wsgi-express to enable
a index resource to be added to the document root directory which would
take precedence over the WSGI application for the root page for the site.

7. Added the --with-php5 option to mod_wsgi-express to enable the
concurrent hosting of a PHP web application in conjunction with the WSGI
application. Due to the limitations of PHP, this is currently only
supported if using prefork MPM.

8. Added the --server-name option to mod_wsgi-express. When this is
used and set to the host name for the web site, a virtual host will be
created to ensure that the server only accepts web requests for that host
name.

If the host name starts with www. then web requests will also be
accepted against the parent domain, that is the host name without the
www., but those requests will be automatically redirected to the
specified host name on the same port as that used for the original request.

When the --server-name option is being used, the --server-alias
option can also be specified, multiple times if need be, to setup alternate
names for the web site on which web requests should also be accepted.
Wildcard aliases may be used in the name if wishing to match multiple
sub domains in one go.

If for some reason you do still need to be able to access the server via
localhost when a virtual host for a set server name is being used, you
can supply the --allow-localhost option.

9. Added the --rotate-logs option to mod_wsgi-express to enable log
file rotation. By default the error log and access log, if enabled, will be
rotated when they reach 5MB in size. To change the size at which the log
files will be rotated, use the --max-log-size option. If the
rotatelogs command is not being found properly, its location can be
specified using the --rotatelogs-executable option.

10. Added the --ssl-port and --ssl-certificate options to
mod_wsgi-express. When both are set, with the latter being the stub
path for the SSL certificate .crt and .key file, then HTTPS
requests will be handled over the designated SSL port.

When --https-only is supplied, any requests made over HTTP to the non
SSL port will be automatically redirected so as to use a HTTPS connection
over the SSL connection.

Note that if using the --allow-localhost option, redirection from a
HTTP to HTTPS connection will not occur when access via localhost.

11. Added the --setenv option to mod_wsgi-express to enable request
specific name/value pairs to be added to the WSGI environ dictionary. The
values are restricted to string values.

Also added a companion --passenv option to mod_wsgi-express to
indicate the names of normal process environment variables which should
be added to the per request WSGI environ dictionary.

12. Added the WSGIMapHEADToGET directive for overriding the previous
behaviour of automatically mapping any HEAD request to a GET request
when an Apache output filter was registered that may want to see the complete
response in order to generate correct response headers.

The directive can be set to be either Auto (the default), On which
will always map a HEAD to GET even if no output filters detected and
Off to always preserve the original request method type.

The original behaviour was to avoid problems with users trying to optimise
for HEAD requests and then breaking caching mechanisms because the
response headers for a HEAD request for a resource didn’t match a GET
request against the same resource as required by HTTP.

If using mod_wsgi-express, the --map-head-to-get option can be used with
the same values.

12. Added the --compress-responses option to mod_wsgi-express to
enable compression of common text based responses such as plain text, HTML,
XML, CSS and Javascript.

Version 4.2.8

Version 4.2.8 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.2.8.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. Disable feature for dumping stack traces on daemon process shutdown when
a timeout occurs when using Python prior to 2.5. This is because the C API
functions are not available in older Python versions.

2. If using Python 3.4 the minimum MacOS X version you can use is 10.8.
This needs to be inforced as Apache Runtime library has a definition in
header files which changes sizes from 10.7 to 10.8 and trying to compile
for compatability back to 10.6 as Python 3.4 tries to enforce, will cause
mod_wsgi daemon mode processes to crash at runtime.

3. Python 3.3+ pyvenv style virtual environments would not work with
mod_wsgi via the WSGIPythonHome directive or the home option to the
WSGIDaemonProcess directive. This is because the support in Python for
pyvenv will not work with embedded systems which set the equivalent of
PYTHONHOME via the Python C API.

The underlying problem in Python is described in issue:

	http://bugs.python.org/issue22213

of the Python issue tracer.

To support both normal virtualenv style virtual environments and pyvenv
style virtual environments, the manner in which virtual environments are
setup by mod_wsgi has been changed. This has at this point only been done
on UNIX systems however, as it isn’t known at this point whether the same
trick will work on Windows systems.

Version 4.2.7

Version 4.2.7 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.2.7.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

New Features

1. Added a --mount-point option to mod_wsgi-express to allow a WSGI
application to be mounted at a sub URL rather than the root of the site
when using mod_wsgi express.

Version 4.2.6

Version 4.2.6 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.2.6.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. Apache 2.2.3 and older doesn’t provide the ap_get_server_description()
function. Using mod_wsgi with such older versions would therefore cause
processes to crash when Apache was being started up. For older versions of
Apache now fallback to using ap_get_server_version() instead.

Version 4.2.5

Version 4.2.5 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.2.5.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. When using Apache 2.4 with dynamically loaded MPM modules, mod_wsgi
express was incorrectly trying to load more than one MPM module if more
than one existed in the Apache modules directory.

Version 4.2.4

Version 4.2.4 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.2.4.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. Fixed one off error in applying limit to the number of supplementary
groups allowed for a daemon process group. The result could be that if
more groups than the operating system allowed were specified to the option
supplementary-groups, then memory corruption or a process crash could
occur.

2. Improved error handling in setting up the current working directory and
group access rights for a process when creating a daemon process group. The
change means that if any error occurs that the daemon process group will be
restarted rather than allow it to keep running with an incorrect working
directory or group access rights.

New Features

1. Added the --setup-only option to mod_wsgi express so that it is
possible to create the configuration when using the Django management command
runmodwsgi without actually starting the server.

Version 4.2.3

Version 4.2.3 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.2.3.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. The feature for starting mod_wsgi express using the Django management
command runmodwsgi was broken by the 4.2.2 release.

Version 4.2.2

Version 4.2.2 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.2.2.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. The envvars file was being overwritten even if it existed and had
been modified.

New Features

1. Output the location of the envvars file when using the
setup-server command for mod_wsgi-express or if using the
start-server command and the --envars-script option was being used.

2. Output the location of the apachectl script when using the
setup-server command for mod_wsgi-express.

Version 4.2.1

Version 4.2.1 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.2.1.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. The auto generated configuration would not work with an Apache
installation where core Apache modules were statically compiled into Apache
rather than being dynamically loaded.

Version 4.2.0

Version 4.2.0 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.2.0.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

New Features

1. Added mod_wsgi.server_metrics() function which provides access to a
dictionary of data derived from the Apache worker scoreboard. In effect this
provides access to the same information that is used to create the Apache
server status page.

Note that if mod_status is not loaded into Apache, or the compile time
configuration of Apache prohibits the scoreboard from being available, this
function will return None.

Also be aware that only partial information about worker status, and no
information about requests, will be returned if the ExtendedStatus
directive is not also set to On.

Although mod_status needs to be loaded, it is not necessary to enable
any URL to expose the server status page.

2. Added support for a platform plugin for New Relic to mod_wsgi-express
which will report server status information up to New Relic if the
--with-newrelic option is supplied when running mod_wsgi express.

That same option also enables the New Relic Python agent. If you only want
one or the other, you can instead use the --with-newrelic-agent and
--with-newrelic-platform options.

The feature of mod_wsgi-express for reporting data up to the New Relic
Platform is dependent upon the separate mod_wsgi-metrics package being
installed.

Version 4.1.3

Version 4.1.3 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.1.3.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. The setup.py file wasn’t always detecting the Python library version
suffix properly when setting it up to be linked into the resulting
mod_wsgi.so. This would cause an error message at link time of:

/usr/bin/ld: cannot find -lpython

Version 4.1.2

Version 4.1.2 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.1.2.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. The integration for Django management command was looking for the wrong
name for the admin script to start mod_wsgi express.

2. The code which connected to the mod_wsgi daemon process was passing an
incorrect size into the connect() call for the size of the address
structure. On some Linux systems this would cause an error similar to:

(22)Invalid argument: mod_wsgi (pid=22944): Unable to connect to \
 WSGI daemon process 'localhost:8000' on \
 '/tmp/mod_wsgi-localhost:8000:12145/wsgi.22942.0.1.sock'

This issue was only introduced in 4.1.0 and does not affect older versions.

3. The deadlock detection thread could try and acquire the Python GIL
after the Python interpreter had been destroyed on Python shutdown
resulting in the process crashing. This issue cannot be completely
eliminated, but the deadlock thread will now at least check whether the
flag indicating process shutdown is happening has been set before trying to
acquire the Python GIL.

Version 4.1.1

Version 4.1.1 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.1.1.tar.gz

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. Compilation would fail on Apache 2.4 due to a change in the Apache API to
determine the name of the MPM being used.

Version 4.1.0

With version 4.1.0 of mod_wsgi, a switch to a X.Y.Z version numbering
scheme from the existing X.Y scheme is being made. This is to enable a
much quicker release cycle with more incremental changes.

Version 4.1.0 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/4.1.0.tar.gz

Note that mod_wsgi 4.1.0 was originally derived from mod_wsgi 3.1. It has
though all changes from later releases in the 3.X branch. Thus also see:

	Version 3.2

	Version 3.3

	Version 3.4

	Version 3.5

Known Issues

1. The makefiles for building mod_wsgi on Windows are currently broken and
need updating. As most new changes relate to mod_wsgi daemon mode, which is
not supported under Windows, you should keep using the last available
binary for version 3.X on Windows instead.

Bugs Fixed

1. If a UNIX signal received by daemon mode process while still being
initialised to signal that it should be shutdown, the process could crash
rather than shutdown properly due to not registering the signal pipe
prior to registering signal handler.

2. Python doesn’t initialise codecs in sub interpreters automatically which
in some cases could cause code running in WSGI script to fail due to lack
of encoding for Unicode strings when converting them. The error message
in this case was:

LookupError: no codec search functions registered: can't find encoding

The ‘ascii’ encoding is now forcibly loaded when initialising sub interpreters
to get Python to initialise codecs.

3. Fixed reference counting bug under Python 3 in SSL var_lookup()
function which can be used from an auth handler to look up SSL variables.

4. The WWW-Authenticate headers returned from a WSGI application when
run under daemon mode are now always preserved as is.

Because of previously using an internal routine of Apache, way back in time
the values of multiple WWW-Authenticate headers would be merged when
there was more than one. This would cause an issue with some browsers.

A workaround was subsequently implemented above the Apache routine to break
apart the merged header to create separate ones again, however, if the
value of a header validly had a ‘,’ in it, this would cause the header
value to be broken apart where it wasn’t meant to. This could issues with
some type of WWW-Authenticate headers.

Features Removed

1. No longer support the use of mod_python in conjunction with mod_wsgi.
When this is attempted an error is forced and Apache will not be able to
start. An error message is logged in main Apache error log.

2. No longer support the use of Apache 1.3. Minimum requirement is now
Apache 2.0.

Features Changed

1. Use of kernel sendfile() function by wsgi.file_wrapper is now
off by default. This was originally always on for embedded mode and
completely disabled for daemon mode. Use of this feature can be enabled for
either mode using WSGIEnableSendfile directive, setting it to On to
enable it.

The default is now off because kernel sendfile() is not always able to
work on all file objects. Some instances where it will not work are
described for the Apache EnableSendfile directive.

http://httpd.apache.org/docs/2.2/mod/core.html#enablesendfile

Although Apache has use of sendfile() enabled by default for static
files, they are moving to having it off by default in future version of
Apache. This change is being made because of the problems which arise and
users not knowing how to debug it and solve it.

Thus also erring on side of caution and having it off by default but
allowing more knowledgeable users to enable it where they know always using
file objects which will work with sendfile().

2. The HTTPS variable is no longer set within the WSGI environment. The
authoritative indicator of whether a SSL connection is used is
wsgi.url_scheme and a WSGI compliant application should check for
wsgi.url_scheme. The only reason that HTTPS was supplied at all was
because early Django versions supporting WSGI interface weren’t correctly
using wsgi.url_scheme. Instead they were expecting to see HTTPS to
exist.

This change will cause non conformant WSGI applications to finally break.
This possibly includes some Django versions prior to Django version 1.0.

Note that you can still set HTTPS in Apache configuration using the
SetEnv or SetEnvIf directive, or via a rewrite rule. In that case,
that will override what wsgi.url_scheme is set to and once
wsgi.url_scheme is set appropriately, the HTTPS variable will be
removed from the set of variables passed through to the WSGI environment.

3. The wsgi.version variable has been reverted to 1.0 to conform to the
WSGI PEP 3333 specification. It was originally set to 1.1 on expectation
that revised specification would use 1.1 but that didn’t come to be.

4. The inactivity-timeout option to WSGIDaemonProcess now only
results in the daemon process being restarted after the idle timeout period
where there are no active requests. Previously it would also interrupt a
long running request. See the new request-timeout option for a way of
interrupting long running, potentially blocked requests and restarting
the process.

5. If the home option is used with WSGIDaemonProcess, in addition
to that directory being made the current working directory for the process,
an empty string will be added to the start of the Python module search
path. This causes Python to look in the current working directory for
Python modules when they are being imported.

This behaviour brings things into line with what happens when running the
Python interpreter from the command line. You must though be using the
home option for this to come into play.

Do not that if your application then changes the working directory, it
will start looking in the new current working directory and not that which
is specified by the home option. This again mirrors what the normal
Python command line interpreter does.

New Features

1. Add supplementary-groups option to WSGIDaemonProcess to allow
group membership to be overridden and specified comma separate list of
groups used instead.

2. Add a graceful-timeout option to WSGIDaemonProcess. This option
is applied in a number of circumstances.

When maximum-requests and this option are used together, when maximum
requests is reached, rather than immediately shutdown, potentially
interupting active requests if they don’t finished with shutdown timeout,
can specify a separate graceful shutdown period. If the all requests are
completed within this time frame then will shutdown immediately, otherwise
normal forced shutdown kicks in. In some respects this is just allowing a
separate shutdown timeout on cases where requests could be interrupted and
could avoid it if possible.

When cpu-time-limit and this option are used together, when CPU time
limit reached, rather than immediately shutdown, potentially interupting
active requests if they don’t finished with shutdown timeout, can specify a
separate graceful shutdown period.

3. Add potentially graceful process restart option for daemon processes
when sent a graceful restart signal. Signal is usually SIGUSR1 but is
platform dependent as using same signal as Apache would use. If the
graceful-timeout option had been provided to WSGIDaemonProcess,
then the process will attempt graceful shutdown first based on the that
timeout, otherwise normal shutdown procedure used as if received a
SIGTERM.

4. Add memory-limit option to WSGIDaemonProcess to allow memory
usage of daemon processes to be restricted. This will have no affect on
some platforms as RLIMIT_AS/RLIMIT_DATA with setrlimit() isn’t
always implemented. For example MacOS X and older Linux kernel versions do
not implement this feature. You will need to test whether this feature
works or not before depending on it.

5. Add virtual-memory-limit option to WSGIDaemonProcess to allow
virtual memory usage of daemon processes to be restricted. This will have
no affect on some platforms as RLIMIT_VMEM with setrlimit() isn’t
always implemented. You will need to test whether this feature works or not
before depending on it.

6. Access, authentication and authorisation hooks now have additional keys
in the environ dictionary for mod_ssl.is_https and
mod_ssl.var_lookup. These equate to callable functions provided by
mod_ssl for determining if the client connection to Apache used SSL and
what the values of variables specified in the SSL certifcates, server or
client, are. These are only available if Apache 2.0 or later is being used.

7. For Python 2.6 and above, the WSGIDontWriteBytecode directive can be
used at global scope in Apache configuration to disable writing of all byte
code files, ie., .pyc, by the Python interpreter when it imports Python
code files. To disable writing of byte code files, set directive to On.

Note that this doesn’t prevent existing byte code files on disk being used
in preference to the corresponding Python code files. Thus you should first
remove .pyc files from web application directories if relying on this
option to ensure that .py file is always used.

8. Add request-timeout option to WSGIDaemonProcess to allow a
separate timeout to be applied on how long a request is allowed to run for
before the daemon process is automatically restarted to interrupt the
request.

This is to counter the possibility that a request may become blocked on
some backend service, thereby using up available requests threads and
preventing other requests to be handled.

In the case of a single threaded process, then the timeout will happen at
the specified time duration from the start of the request being handled.

Applying such a timeout in the case of a multithreaded process is more
problematic as doing a restart when a single requests exceeds the timeout
could unduly interfere with with requests which just commenced.

In the case of a multi threaded process, what is instead done is to take
the total of the current running time of all requests and divide that by
the number of threads handling requests in that process. When this average
time exceeds the time specified, then the process will be restarted.

This strategy for a multithreaded process means that individual requests
can actually run longer than the specified timeout and a restart will only
be performed when the overall capacity of the processes appears to be
getting consumed by a number of concurrent long running requests, or when
a specific requests has been blocked for an excessively long time.

The intent of this is to allow the process to still keep handling requests
and only perform a restart when the available capacity of the process to
handle more requests looks to be potentially on the decline.

9. Add connect-timeout option to WSGIDaemonProcess to allow a
timeout to be specified on how long the Apache child worker processes should
wait on being able to obtain a connection to the mod_wsgi daemon process.

As UNIX domain sockets are used, connections should always succeed, however
there have been some incidences seen which could only be explained by the
operating system hanging on the initial connect call without being added to
the daemon process socket listener queue. As such the timeout has been
added. The timeout defaults to 15 seconds.

This timeout also now dictates how long the Apache child worker process
will attempt to get a connection to the daemon process when the connection
is refused due to the daemon socket listener queue being full. Previously
how long connection attempts were tried was based on an internal retry
count rather than a configurable timeout.

10. Add socket-timeout option to WSGIDaemonProcess to allow the
timeout on indvidual read/writes on the socket connection between the
Apache child worker and the daemon process to be specified separately to
the Apache Timeout directive.

If this option is not specified, it will default to the value of the Apache
Timeout directive.

11. Add queue-timeout option to WSGIDaemonProcess to allow a
request to be aborted if it never got handed off to a mod_wsgi daemon
process within the specified time. When this occurs a ‘503 Service
Unavailable’ response will be returned.

This is to allow one to control what to do when backlogging of requests
occurs. If the daemon process is overloaded and getting behind, then it is
more than likely that a user will have given up on the request anyway if
they have to wait too long. This option allows you to specify that a
request that was queued up waiting for too long is discarded, allowing any
transient backlog to be quickly discarded and not simply cause the daemon
process to become even more backlogged.

12. Add listen-backlog option to WSGIDaemonProcess to allow the
daemon process socket listener backlog size to be specified. By default
this limit is 100, although this is actually a hint, as different operating
systems can have different limits on the maximum value or otherwise treat
it in special ways.

13. Add WSGIPythonHashSeed directive to allow Python behaviour related
to initial hash seed to be overridden when the interpreter supports it.

This is equivalent to setting the PYTHONHASHSEED environment variable
and should be set to either random or a number in the range in range
[0; 4294967295].

14. Implemented a new streamlined way of installing mod_wsgi as a Python
package using a setup.py file or from PyPi. This includes a
mod_wsgi-express script that can then be used to start up
Apache/mod_wsgi with an auto generated configuration on port 8000.

This makes it easy to run up Apache for development without interfering
with the main Apache on the system and without having to worry about
configuring Apache. Command line options can be used to override behaviour.

Once the mod_wsgi package has been installed into your Python
installation, you can run:

mod_wsgi-express start-server

Then open your browser on the listed URL. This will verify that everything
is working. Enter CTRL-C to exit the server and shut it down.

You can now point it at a specific WSGI application script file:

mod_wsgi-express start-server wsgi.py

For options run:

mod_wsgi-express start-server --help

If you already have another web server running on port 8000, you can
override the port to be used using the --port option:

mod_wsgi-express start-server wsgi.py --port 8001

15. Implemented a Django application plugin to add a runmodwsgi command
to the Django management command script. This allows the automatic run up
of the new mod_wsgi express script, with it hosting the Django web site the
plugin was added to.

To enable, once the mod_wsgi package has been installed into your
Python installation, add mod_wsgi.server to the INSTALLED_APPS
setting in your Django settings file.

After having run the collectstatic Django management command, you
can then run:

python manage.py runmodwsgi

For options run:

python manage.py runmodwsgi --help

To enable automatic code reloading in a development setting, use the
option:

python manage.py runmodwsgi --reload-on-changes

16. The maximum size that a response header/value can be that is returned
from a WSGI application under daemon mode can now be configured. The
default size has also now been increased from 8192 bytes to 32768 bytes.
The name of the option to WSGIDaemonProcess to set the buffer size used
is header-buffer-size.

Version 4.0

Due to version 4.0 of mod_wsgi being in development for so long, or not in
development depending on how you want to look at it, and the confusion that
might be caused by releasing what was sitting in the source code repository
after so long, the version 4.0 moniker has been dropped. The next version
after the 3.X series will therefore be version 4.1.0. With the introduction
of version 4.1.0, a switch is also being made to a X.Y.Z version numbering
scheme, in place of the existing X.Y version numbering scheme.

	Version 4.1.0

Version 3.5

Version 3.5 of mod_wsgi can be obtained from:

https://github.com/GrahamDumpleton/mod_wsgi/archive/3.5.tar.gz

Security Issues

	Local privilege escalation when using daemon mode. (CVE-2014-0240)

The issue is believed to affect Linux systems running kernel versions >=
2.6.0 and < 3.1.0.

The issue affects all versions of mod_wsgi up to and including version 3.4.

The source of the issue derives from mod_wsgi not correctly handling Linux
specific error codes from setuid(), which differ to what would be expected
to be returned by UNIX systems conforming to the Open Group UNIX
specification for setuid().

	http://man7.org/linux/man-pages/man2/setuid.2.html

	http://pubs.opengroup.org/onlinepubs/009695399/functions/setuid.html

This difference in behaviour between Linux and the UNIX specification was
believed to have been removed in version 3.1.0 of the Linux kernel.

	https://groups.google.com/forum/?fromgroups=#!topic/linux.kernel/u6cKf4D1D-k

The issue would allow a user, where Apache is initially being started as
the root user and where running code under mod_wsgi daemon mode as an
unprivileged user, to manipulate the number of processes run by that user
to affect the outcome of setuid() when daemon mode processes are forked and
so gain escalated privileges for the users code.

Due to the nature of the issue, if you provide a service or allow untrusted
users to run Python web applications you do not control the code for, and
do so using daemon mode of mod_wsgi, you should update mod_wsgi as soon as
possible.

Bugs Fixed

1. Python 3 installations can add a suffix to the Python library. So instead
of libpythonX.Y.so it can be libpythonX.Ym.so.

2. When using daemon mode, if an uncaught exception occurred when handling
a request, when response was proxied back via the Apache child process, an
internal value for the HTTP status line was not cleared correctly. This
was resulting in a HTTP status in response to client of ‘200 Error’ rather
than ‘500 Internal Server Error’.

Note that this only affected the status line and not the actual HTTP
status. The status would still be 500 and the client would still interpret
it as a failed request.

3. Null out Apache scoreboard handle in daemon processes for Apache 2.4 to
avoid process crash when lingering close cleanup occurs.

4. Workaround broken MacOS X XCode Toolchain references in Apache apxs
build configuration tool and operating system libtool script. This means
it is no longer necessary to manually go into:

Applications/Xcode.app/Contents/Developer/Toolchains

and manually add symlinks to define the true location of the compiler tools.

	Restore ability to compile mod_wsgi source code under Apache 1.3.

6. Fix checks for whether the ITK MPM is used and whether ITK MPM specific
actions should be taken around the ownership of the mod_wsgi daemon process
listener socket.

7. Fix issue where when using Python 3.4, mod_wsgi daemon processes would
actually crash when the processes were being shutdown.

8. Made traditional library linking the default on MacOS X. If needing
framework style linking for the Python framework, then use the
--enable-framework option. The existing --disable-framework has now
been removed given that the default action has been swapped around.

New Features

1. For Linux 2.4 and later, enable ability of daemon processes to dump core
files when Apache CoreDumpDirectory directive used.

2. Attempt to log whether daemon process exited normally or was killed off
by an unexpected signal.

Version 3.4

Version 3.4 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-3.4.tar.gz

Security Issues

	Information disclosure via Content-Type response header. (CVE-2014-0242)

The issue was identified and fixed in version 3.4 (August 2012) of mod_wsgi
and is listed below at item 7 under ‘Bugs Fixed’.

Response Content-Type header could be corrupted when being sent in
multithreaded configuration and embedded mode being used. Problem thus
affected Windows and worker MPM on UNIX.

At the time it was believed to be relatively benign, only ever having been
seen with one specific web application (Trac - http://trac.edgewall.org),
with the corrupted value always appearing to be replaced with a small set
of known values which themselves did not raise concerns.

A new example of this problem was identified May 2014 which opens this
issue up as being able to cause arbitrary corruption of the web server HTTP
response Content-Type value, resulting in possible exposure of data from
the hosted web application to a HTTP client.

The new example also opens the possibility that the issue can occur with
any Apache MPM and not just multithreaded MPMs as previously identified.
Albeit that it still requires some form of background application threads
to be in use, when a single threaded Apache MPM is being used.

In either case, it is still however restricted to the case where embedded
mode of mod_wsgi is being used.

The specific scenario which can trigger the issue is where the value for
the Content-Type response header is dynamically generated, and where the
stack frame where the calculation was done went out of use between the time
that the WSGI start_response() function was called and the first non empty
byte string was yielded from the WSGI application for the response,
resulting in the Python object being destroyed and memory returned to the
free list.

At the same time, it would have been necessary for a parallel request
thread or an application background thread to execute during that window of
time and perform sufficient object allocations so as to reuse the memory
previously used by the value of the Content-Type response header.

Example code which can be used to trigger the specific scenario can be
found at:

https://gist.github.com/GrahamDumpleton/14b31ebe18166a89b090

That example code also provides a workaround if you find yourself affected
by the issue but cannot upgrade straight away. It consists of the
@intern_content_type decorator/wrapper. This can be applied to the WSGI
application entry point and will use a cache to store the value of the
Content-Type response header to ensure it is persistent for the life of the
request.

Bugs Fixed

1. If using write() function returned by start_response() and a non string
value is passed to it, then process can crash due to errors in Python object
reference counting in error path of code.

2. If using write() function returned by start_response() under Python 3.X
and a Unicode string is passed to it rather than a byte string, then a
memory leak will occur because of errors in Python object reference
counting.

3. Debug level log message about mismatch in content length generated was
generated when content returned less than that specified by Content-Length
response header even when exception occurring during response generation
from an iterator. In the case of an exception occuring, was only meant to
generate the log message if more content returned than defined by the
Content-Length response header.

	Using writelines() on wsgi.errors was failing.

5. If a UNIX signal received by daemon mode process while still being
initialised to signal that it should be shutdown, the process could crash
rather than shutdown properly due to not registering the signal pipe
prior to registering signal handler.

6. Python doesn’t initialise codecs in sub interpreters automatically which
in some cases could cause code running in WSGI script to fail due to lack
of encoding for Unicode strings when converting them. The error message
in this case was:

LookupError: no codec search functions registered: can't find encoding

The ‘ascii’ encoding is now forcibly loaded when initialising sub interpreters
to get Python to initialise codecs.

7. Response Content-Type header could be corrupted when being sent in
multithreaded configuration and embedded mode being used. Problem thus
affected Windows and worker MPM on UNIX.

Features Changed

1. The HTTPS variable is no longer set within the WSGI environment. The
authoritative indicator of whether a SSL connection is used is
wsgi.url_scheme and a WSGI compliant application should check for
wsgi.url_scheme. The only reason that HTTPS was supplied at all was because
early Django versions supporting WSGI interface weren’t correctly using
wsgi.url_scheme. Instead they were expecting to see HTTPS to exist.

This change will cause non conformant WSGI applications to finally break.
This possibly includes some Django versions prior to Django version 1.0.

Note that you can still set HTTPS in Apache configuration using the !SetEnv
or !SetEnvIf directive, or via a rewrite rule. In that case, that will
override what wsgi.url_scheme is set to and once wsgi.url_scheme is set
appropriately, the HTTPS variable will be removed from the set of variables
passed through to the WSGI environment.

2. The wsgi.version variable has been reverted to 1.0 to conform to the
WSGI PEP 3333 specification. It was originally set to 1.1 on expectation
that revised specification would use 1.1 but that didn’t come to be.

3. Use of kernel sendfile() function by wsgi.file_wrapper is now off by
default. This was originally always on for embedded mode and completely
disabled for daemon mode. Use of this feature can be enabled for either
mode using WSGIEnableSendfile directive, setting it to On to enable it.

The default is now off because kernel sendfile() is not always able to work
on all file objects. Some instances where it will not work are described
for the Apache !EnableSendfile directive.

http://httpd.apache.org/docs/2.2/mod/core.html#enablesendfile

Although Apache has use of sendfile() enabled by default for static files,
they are moving to having it off by default in future version of Apache.
This change is being made because of the problems which arise and users not
knowing how to debug it and solve it.

Thus also erring on side of caution and having it off by default but
allowing more knowledgeable users to enable it where they know always using
file objects which will work with sendfile().

New Features

	Support use of Python 3.2.

	Support use of Apache 2.4.

3. Is now guaranteed that mod_ssl access handler is run before that for
mod_wsgi so that any per request variables setup by mod_ssl are available
in the mod_wsgi access handler as implemented by WSGIAccessScript
directive.

4. Added ‘python-home’ option to WSGIDaemonProcess allowing a Python virtual
environment to be used directly in conjunction with daemon process. Note that
this option does not do anything if setting WSGILazyInitialization to ‘Off’.

5. Added ‘lang’ and ‘locale’ options to WSGIDaemonProcess to perform same
tasks as setting ‘LANG’ and ‘LC_ALL environment’ variables. Note that if
needing to do the same for embedded mode you still need to set the
environment variables in the Apache envvars file or init.d startup scripts.

6. Split combined WWW-Authenticate header returned from daemon process back
into separate headers. This is work around for some browsers which require
separate headers when multiple authentication providers exist.

7. For Python 2.6 and above, the WSGIDontWriteBytecode directive can be used
at global scope in Apache configuration to disable writing of all byte code
files, ie., .pyc, by the Python interpreter when it imports Python code files.
To disable writing of byte code files, set directive to ‘On’.

Note that this doesn’t prevent existing byte code files on disk being used
in preference to the corresponding Python code files. Thus you should first
remove .pyc files from web application directories if relying on this
option to ensure that .py file is always used.

8. Add supplementary-groups option to WSGIDaemonProcess to allow group
membership to be overridden and specified comma separated list of groups
to be used instead.

9. Add ‘memory-limit’ option to WSGIDaemonProcess to allow memory usage of
daemon processes to be restricted. This will have no affect on some
platforms as RLIMIT_AS/RLIMIT_DATA with setrlimit() isn’t always
implemented. For example MacOS X and older Linux kernel versions do not
implement this feature. You will need to test whether this feature works
or not before depending on it.

10. Add ‘virtual-memory-limit’ option to WSGIDaemonProcess to allow virtual
memory usage of daemon processes to be restricted. This will have no affect
on some platforms as RLIMIT_VMEM with setrlimit() isn’t always implemented.
You will need to test whether this feature works or not before depending on
it.

11. Access, authentication and authorisation hooks now have additional keys
in the environ dictionary for ‘mod_ssl.is_https’ and ‘mod_ssl.var_lookup’.
These equate to callable functions provided by mod_ssl for determining if
the client connection to Apache used SSL and what the values of variables
specified in the SSL certifcates, server or client, are. These are only
available if Apache 2.0 or later is being used.

12. Add ‘mod_wsgi.queue_start’ attribute to WSGI environ so tools like
New Relic can use it to track request queueing time. This is the time between
when request accepted by Apache and when handled by WSGI application.

Version 3.3

Version 3.3 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-3.3.tar.gz

Bug Fixes

1. Inactivity timeout not triggered at correct time when occurs for first
request after process is started. See

http://code.google.com/p/modwsgi/issues/detail?id=182

2. Back off timer for failed connections to daemon process group wasn’t
working correctly and no delay on reconnect attempts was being applied. See:

http://code.google.com/p/modwsgi/issues/detail?id=195

3. Logging not appearing in Apache error log files when using daemon mode
and have multiple virtual hosts against same server name. See:

http://code.google.com/p/modwsgi/issues/detail?id=204

4. Eliminate logging of !KeyError exception in threading module when processes
are shutdown when using Python 2.6.5 or 3.1.2 or later. This wasn’t indicating
any real problem but was annoying all the same. See:

http://code.google.com/p/modwsgi/issues/detail?id=197

5. Fix potential for crash when logging error message resulting from failed
group authorisation.

	Fix compilation problems with Apache 2.3.6.

Features Changed

1. When compiled against ITK MPM for Apache, if using daemon mode, the
listener socket for daemon process will be marked as being owned by the
same user that daemon process runs. This will at least allow a request
handled under ITK MPM to be directed to daemon process owned by same user
as script. See issue:

http://code.google.com/p/modwsgi/issues/detail?id=187

2. Add isatty() to log objects used for sys.stdout/sys.stderr and
wsgi.errors. The Python documentation says ‘If a file-like object is not
associated with a real file, this method should not be implemented’. That
however is ambiguous as to whether one can omit it, or whether one should
raise an NotImplementedError exception. Either way, various code doesn’t
cope with isatty() not existing or failing, so implement it and have it
return False to be safe.

Version 3.2

Version 3.2 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-3.2.tar.gz

Bug Fixes

1. The path of the handler script was reported wrongly when
WSGIHandlerScript was being used and an error occurred when loading the
file. Rather than the handler script file being listed, the file to which
the URL mapped was reported instead.

2. Fix problem with use of condition variables/thread mutexes that was
causing all requests in daemon mode on a FreeBSD system to hang immediately
upon Apache being started.

http://code.google.com/p/modwsgi/issues/detail?id=176

Also use a distinct flag with condition variable in case condition variable
is triggered even though condition not satisfied. This latter issue hasn’t
presented as a known problem, but technically a condition variable can by
definition return even though not satisified. If this were to occur,
undefined behaviour could result as multiple threads could listen on socket
and/or accept connections on that socket at the same time.

3. Wrong check of APR_HAS_THREADS by preprocessor conditional resulting in code
not compiling where APR_HAS_THREADS was defined but 0.

4. When Apache error logging redirected to syslog there is no error log
associated with Apache server data structure to close. Code should always
check that there is an error log to avoid crashing mod_wsgi daemon process
on startup by operating on null pointer. See:

http://code.google.com/p/modwsgi/issues/detail?id=178

5. Code was not compiling with Apache 2.3. This is because ap_accept_lock_mech
variable was removed. See:

http://code.google.com/p/modwsgi/issues/detail?id=186

Version 3.1

Version 3.1 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-3.1.tar.gz

As this version follows on quickly from mod_wsgi 3.0, ensure you read:

	Version 3.0

Bug Fixes

1. Ensure that any compiler flags supplied via the CFLAGS environment variable
when running ‘configure’ script are prefixed by ‘-Wc,’ before being passed to
‘apxs’ to build module. Without this ‘apxs’ will incorrectly interpret the
compiler options. For more details see:

http://code.google.com/p/modwsgi/issues/detail?id=166

Features Changed

1. Now give more explicit error message when compilation fails due to the
Apache or Python developer header files not being installed. See:

http://code.google.com/p/modwsgi/issues/detail?id=169

Version 3.0

Version 3.0 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-3.0.tar.gz

Precompiled Windows binaries for Apache 2.2 and Python 2.6 and 3.1 are also
available from:

http://code.google.com/p/modwsgi/downloads/list

Note that mod_wsgi 3.0 was originally derived from mod_wsgi 2.0. It has
though all changes from later releases in the 2.X branch. Thus also see:

	Version 2.1

	Version 2.2

	Version 2.3

	Version 2.4

	Version 2.5

	Version 2.6

	Version 2.7

Bug Fixes

	Fix bug with quoting of options to mod_wsgi directives as described in:

http://code.google.com/p/modwsgi/issues/detail?id=55

2. For any code not run in the first Python interpreter instance, thread
local data was being thrown away at the end of the request, rather than
persisting through to subsequent requests handled by the same thread. This
prevented caching techniques which made use of thread local storage and
where data was intended to persist for the life of the process. The result
was that any such data would have had to have been recreated on every
request. See:

http://code.google.com/p/modwsgi/issues/detail?id=120

Features Changed

1. No longer force a zero length read before sending response headers
where Apache 2.2.8 or later is used. This was originally being done as a
workaround because of bug in Apache whereby it didn’t generate the
‘100 Continue’ headers properly, with possibility they would be sent as
part of response content. This problem was however fixed in Apache 2.2.7
(really 2.2.8 as 2.2.7 was never publically released by ASF). Also only
allow zero length read to propogate to Apache input filters when done, if
the zero length read is the very first read against the input stream. For
details see:

http://code.google.com/p/modwsgi/issues/detail?id=52

2. The WSGIImportScript can now appear inside of VirtualHost. However, there
are now additional restrictions.

First is that the WSGIDaemonProcess directive being referred to by the
WSGIImportScript directive by way of the process-group option, must appear
before the WSGIImportScript directive.

Second is that the WSGIDaemonProcess directive being referred to by the
WSGIImportScript directive by way of the process-group option, must appear
in the same VirtualHost context, or at global server scope. It is not possible
to reference a daemon process group specified in a different virtual server
context.

Third is that at global server context, it is not possible to refer to a
daemon process group defined in a VirtualHost context.

For additional details see:

http://code.google.com/p/modwsgi/issues/detail?id=110

3. The restriction on accessing sys.stdin and sys.stdout has been lifted.
This was originally done to promote the writing of portable WSGI code. In
all the campaign has failed as people can’t be bothered to read the
documentation to understand why it was done and instead use the workaround
and don’t actually fix the code that isn’t portable. More details at:

http://blog.dscpl.com.au/2009/04/wsgi-and-printing-to-standard-output.html

4. Reenabled WSGIPythonHome directive in Windows as does apparently work so
long as virtual environment setup correctly for it to refer to.

5. WSGI version now marked as WSGI 1.1 instead of 1.0. This is on basis that
proposed ammendments to WSGI which mod_wsgi already implements will at least
be accepted as WSGI 1.1 independent of any discussions of changing WSGI
interface to use unicode with encoding other than Latin-1.

6. Set timeout on socket connection between Apache server child process and
daemon process earlier to catch any blocking problems in initial handshake
between the processes. This will make code more tolerant of any unexpected
issues with socket communications.

Features Removed

1. The WSGIReloadMechanism directive has been removed. This means that script
reloading is not available as an option in daemon mode and the prior default
of process reloading always used, unless of course WSGIScriptReloadig is Off
and all reloading is disabled. Doesn’t affect embedded mode where script
reloading was always the only option. For details see:

http://code.google.com/p/modwsgi/issues/detail?id=72

2. There is no longer an attempt to set Content-Length header for a response
if not supplied and iterable was a sequence of length 1. This was suggested
by WSGI specification but turns out this causes problems with HEAD requests.
For details see:

http://blog.dscpl.com.au/2009/10/wsgi-issues-with-http-head-requests.html

Note that Apache may still do the same thing in certain circumstances.
Whether Apache always does the correct thing is not known.

In general, a WSGI application should always return full response content
for a HEAD request and should NOT truncate the response.

Features Added

	Support added for using Python 3.X.

What constitutes support for Python 3.X is described in:

http://code.google.com/p/modwsgi/wiki/SupportForPython3X

Note that Python 3.0 is not supported and cannot be used. You must use
Python 3.1 or later as mod_wsgi relies on features only added in Python 3.1.
The PSF has also affectively abandoned Python 3.0 now anyway.

Also note that there is no official WSGI specification for Python 3.X and
objections could be raised about what mod_wsgi has implemented. If that
occurs then mod_wsgi may need to stop claiming to be WSGI compliant.

2. It is now possible to supply ‘process-group’, ‘application-group’,
‘callable-object’ and ‘pass-authorization’ configuration options to the
WSGIScriptAlias and WSGIScriptAliasMatch directives after the location of
the WSGI script file parameter. For example:

WSGIScriptAlias /trac /var/trac/apache/trac.wsgi \
 process-group=trac-projects application-group=%{GLOBAL}

Where the options are provided, these will take precedence over any which
apply to the application as defined in Location or Directory configuration
containers.

For WSGIScriptAlias (but not WSGIScriptAliasMatch) where both
‘process-group’ and ‘application-group’ parameters are provided, and
neither use expansion variables that can only be evaluated at the time of
request handling, this will also cause the WSGI script file to be preloaded
when the process starts, rather than being lazily loaded only when first
request for application arrives.

Preloading of the WSGI script is performed in the same way as when using
the WSGIImportScript directive. The above configuration is therefore
equivalent to existing, but longer way of doing it, as shown below:

WSGIScriptAlias /trac /var/trac/apache/trac.wsgi

WSGIImportScript /var/trac/apache/trac.wsgi \
 process-group=trac-projects application-group=%{GLOBAL}

<Directory /var/trac/apache>
WSGIProcessGroup trac-projects
WSGIApplicationGroup %{GLOBAL}
</Directory>

Note that the WSGIDaemonProcess directive defining the daemon process group
being referred to by the process-group option must preceed the WSGIScriptAlias
directive in the configuration file. Further, you can only refer to a daemon
process group referred to in the same VirtualHost context, or at global server
scope.

3. When client closes connection and iterable returned from WSGI
application being processed, now directly log message at debug level in log
files, rather than raising a Python exception and with that being logged at
error level as was previously the case.

For where write() being called a Python exception still has to be raised
and whether that results in any message being logged depends on what the
WSGI application does.

End result is that for normal case where LogLevel wouldn’t be set to debug,
the log file will not fill up with messages where client prematurely closes
connection.

For details see:

http://code.google.com/p/modwsgi/issues/detail?id=29

4. Added new ‘chroot’ option to WSGIDaemonProcess directive to force daemon
process to run inside of a chroot environment.

For this to work you need to have a working Python installation installed
into the chroot environment such that inside of that context it appears at
same location as that which Apache/mod_wsgi is running.

Note that the WSGI application code and any files it require have to be
located within the chroot directory structure. In configuring mod_wsgi
reference is then made to the WSGI application at that location. Thus:

WSGIDaemonProcess choot-1 user=grahamd group=staff display-name=%{GROUP} \
 root=/some/path/chroot-1

WSGIScriptAlias /app /some/path/chroot-1/var/www/app/scripts/app.wsgi \
 process-group=chroot-1

Normally this would result in Apache generating SCRIPT_FILENAME as the
path as second argument to WSGIScriptAlias, but mod_wsgi, knowing it is a
chroot environment will adjust that path and drop the chroot directory root
from front of path so that it resolves correctly when used in context of
chroot environmet.

In other words, there is no need to create a parallel directory structure
outside of chroot environment just to satisfy Apache URL mapper.

Any static files can be in or outside of the chroot directory and will
still be served by Apache child worker processes, which don’t run in chroot
environment. If user only has access to chroot environment through login
shell that goes directly to it, then static files will obviously be inside.

How to create a chroot environment will not be described here and you will
want to know what you are doing if you want to use this feature. For some
pointers to what may need to be done for Debian/Ubuntu see article at:

http://transcyberia.info/archives/12-chroot-plone-buildouts.html

For details on this change also see:

http://code.google.com/p/modwsgi/issues/detail?id=106

5. Added WSGIPy3kWarningFlag directive when Python 2.6 being used. This should
be at server scope outside of any VirtualHost and will apply to whole server:

WSGIPy3kWarningFlag On

This should have same affect as -3 option to ‘python’ executable. For more
details see:

http://code.google.com/p/modwsgi/issues/detail?id=109

6: Fix up how Python thread state API is used to avoid internal Python
assertion error when Python compiled with Py_DEBUG preprocessor symbol.
For details see:

http://code.google.com/p/modwsgi/issues/detail?id=113

7. Now allow chunked request content. Such content will be dechunked and
available for reading by WSGI application. See:

http://code.google.com/p/modwsgi/issues/detail?id=1

To enable this feature, you must use:

WSGIChunkedRequest On

for appropriate context in Apache configuration.

Do note however that WSGI is technically incapable of supporting chunked
request content without all chunked request content having to be first
read in and buffered. This is because WSGI requires CONTENT_LENGTH be set
when there is any request content.

In mod_wsgi no buffering is done. Thus, to be able to read the request
content in the case of a chunked transfer encoding, you need to step
outside of the WSGI specification and do things it says you aren’t meant
to.

You have two choices for how you can do this. The first choice you have is
to call read() on wsgi.input but not supply any argument at all. This will
cause all request content to be read in and returned.

The second is to loop on calling read() on wsgi.input with a set block size
passed as argument and do this until read() returns an empty string.

Because both calling methods are not allowed under WSGI specification, in
using these your code will not be portable to other WSGI hosting mechanisms.

8. Values for HTTP headers now passed in environment dictionary to access,
authentication and authorisation hooks. See:

http://code.google.com/p/modwsgi/issues/detail?id=69

9. The flag wsgi.run_once is not set to True when running in daemon mode and
both threads and maximum-requests is set to 1. With this configuration, are
gauranteed that process will only be used once before being restarted. Note
that don’t get this gaurantee when multiple threads used as the maximum
requests is only checked at end of successful request and so could feasibly
still have multiple concurrent requests in progress at that point and so
process wasn’t used only once.

10. Added lazy initialisation of Python interpreter. That is, Python
interpreter will not be initialised in Apache parent process and inherited
across fork when creating child processes. Instead, the Python interpreter
will only first be initialised in child process after the fork.

This behaviour is now the default as Python 3.X by design doesn’t cleanup
memory when interpreter destroyed. This causes significant memory leaks
into Apache parent process as not reclaiming the memory doesn’t work well
with fact that Apache will unload Python library on an Apache restart and
loose references to that unclaimed memory, such that when Python is
reinitialised, it can’t reuse it.

In Python 2.X it does attempt to reclaim all memory when Python interpreter
is destroyed, but some Python versions still leak some memory due to real
leaks or also perhaps by design as per Python 3.X. In Python 2.X the leaks
are far less significant and have been tolerated in the past. The leaks in
Python 2.X only cause problems if you do lots of Apache restarts, rather
than stop/start. All the same, default for Python 2.X has also now been
made to perform lazy initialisation.

To control the behaviour have added the directive WSGILazyInitialization.
This defaults to On for both Python 2.X and Python 3.X. If you wish to
experiment with whether early initialisation gives better results for
Python 2.X, you can set this directive to Off.

The downside of performing lazy initialisation is that you may loose some
benefit of being able to share memory between child process. Thus, child
processes will potentially consume more resident memory than before due to
data being local to process rather than potentially being shared.

If you are exclusively using mod_wsgi daemon mode and not using embedded mode,
if lazy initialisation is used in conjunction with WSGIRestrictEmbedded
being set to On, then the Python interpreter will not be initialised at all
in the Apache server child processes, unless authentication providers or
other non content generation code is being provided to be executed in
Apache server child processes. This means that Apache worker processes will
be much smaller.

Even when initialisation of Python in Apache worker processes is disabled,
as before, the mod_wsgi daemon processes will still use more resident
memory over shared memory. If however you are only running a small number
of mod_wsgi daemon processes, then this may overall balance out as using
less memory in total.

For more details see:

http://code.google.com/p/modwsgi/issues/detail?id=99

11. If daemon process defined in virtual host which has its own error log,
then associated stderr with that virtual hosts error log instead. This way
any messages sent direct to stderr from C extension modules will end up in
the virtual host error log that the daemon process is associated with,
rather than the main error log.

12. If daemon process defined in a virtual host, close all error logs for
other virtual hosts which don’t reference the same error log. This ensures
that code can’t write messages to error logs for another host, or reopen the
log and read data from the logs.

13. Implement internal server redirection using Location response header
as allowed for in CGI specification. Note though that this feature has only
been implemented for mod_wsgi daemon mode. See:

http://code.google.com/p/modwsgi/issues/detail?id=14

14. Implement WSGIErrorOverride directive which when set to On will result
in Apache error documents being used rather than those passed back by the
WSGI application. This allows error documents to match any web site that
the WSGI application may be integrated as a part of. This feature is akin
to the ProxyErrorOverride directive of Apache but for mod_wsgi only. Do note
though that this feature has only been implemented for mod_wsgi daemon mode.
See:

http://code.google.com/p/modwsgi/issues/detail?id=57

15. Implement WSGIPythonWarnings directive as equivalent to the ‘python’
executable ‘-W’ option. The directive can be used at global scope in Apache
configuration to provide warning control strings to disable messages produced
by the warnings module. For example:

Ignore everything.
WSGIPythonWarnings ignore

or:

Ignore only DeprecationWarning.
WSGIPythonWarnings ignore::DeprecationWarning::

For more details see:

http://code.google.com/p/modwsgi/issues/detail?id=137

16. Added cpu-time-limit option to WSGIDaemonProcess directive. This allows
one to define a time in seconds which will be the maximum amount of cpu
time the process is allowed to use before a shutdown is triggered and the
daemon process restarted. The point of this is to provide some means of
controlling potentially run away processes due to bad code that gets stuck
in heavy processing loops. For more details see:

http://code.google.com/p/modwsgi/issues/detail?id=21

17. Added cpu-priority option to WSGIDaemonProcess directive. This allows
one to adjust the CPU priority associated with processes in a daemon process
groups. The range of values that can be supplied is dictated by what the
setpriority() function on your particular operating system accepts. Normally
this is in the range of about -20 to 20, with 0 being normal. For more
details see:

http://code.google.com/p/modwsgi/issues/detail?id=142

18. Added WSGIHandlerScript directive. This allows one to nominate a WSGI
script file that should be executed as a handler for a specific file type
as configured within Apache. For example:

<Files *.bobo>
WSGIProcessGroup bobo
WSGIApplicationGroup %{GLOBAL}
MultiViewsMatch Handlers
Options +ExecCGI
</Files>
AddHandler bobo-script .bobo
WSGIHandlerScript bobo-script /some/path/bobo-handler/handler.wsgi

For this example, the application within the WSGI script file will be
invoked whenever a URL maps to a file with ‘.bobo’ extension. The name of
the file mapped to by the URL will be available in the ‘SCRIPT_FILENAME’
WSGI environment variable.

Although same calling interface is used as a WSGI application, to distinguish
that this is acted as a handler, the application entry point must be called
‘handle_request’ and not ‘application’.

When providing such a handler script, it is also possible to provide in the
script file a ‘reload_required’ callable object. This will be called prior
to handling a request and allows the script to determine if a reload should be
performed first. In the case of daemon mode, this allows script to
programmatically determine if the whole process should be reloaded first.
The argument to the ‘reload_required’ function is the original resource file
that was the target of the request and which would have been available to the
handler as SCRIPT_FILENAME.

Version 2.8

Version 2.8 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-2.8.tar.gz

Bug Fixes

1. Ensure that any compiler flags supplied via the CFLAGS environment variable
when running ‘configure’ script are prefixed by ‘-Wc,’ before being passed to
‘apxs’ to build module. Without this ‘apxs’ will incorrectly interpret the
compiler options. For more details see:

http://code.google.com/p/modwsgi/issues/detail?id=166

Version 2.7

Version 2.7 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-2.7.tar.gz

Note that this release does not support Python 3.0. Python 3.0 will only be
supported in mod_wsgi 3.0.

Features Changed

1. Set timeout on socket connection between Apache server child process and
daemon process earlier to catch any blocking problems in initial handshake
between the processes. This will make code more tolerant of any unexpected
issues with socket communications.

Bug Fixes

1. Wasn’t possible to set CFLAGS from environment variable when running the
‘configure’ script.

Version 2.6

Version 2.6 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-2.6.tar.gz

For Windows binaries see:

http://code.google.com/p/modwsgi/wiki/InstallationOnWindows

Note that this release does not support Python 3.0. Python 3.0 will only be
supported in mod_wsgi 3.0.

Note that the fix for (3) below is believed to have already been backported
to mod_wsgi 2.5 in Debian Stable tree. Thus, if using mod_wsgi 2.5 from
Debian you do not need to be concerned about upgrading to this version.

Bug Fixes

1. Fixed build issue on MacOS X where incorrect Python framework found at
run time. This was caused by ‘-W,-l’ option prefix being dropped from ‘-F’
option in LDFLAGS of Makefile and not reverted back when related changes
undone. This would affect Python 2.3 through 2.5. For more details see:

http://code.google.com/p/modwsgi/issues/detail?id=28

2. Fixed build issue on MacOS X where incorrect Python framework found at
run time. This was caused by ‘-L/-l’ flags being used for versions of Python
prior to 2.6. That approach, even where ‘.a’ library link to framework exists,
doesn’t seem to work for the older Python versions.

Because of the unpredictability as to when ‘-F/-framework’ or ‘-L/-l’
should be used for specific Python versions or distributions. Now always
link against Python framework via ‘-F/-framework’ if available. If for some
particular setup this isn’t working, then the ‘–disable-framework’ option
can be supplied to ‘configure’ script to force use of ‘-L/-l’. For more
details see:

http://code.google.com/p/modwsgi/issues/detail?id=28

3. Fixed bug where was decrementing Python object reference count on NULL
pointer, causing a crash. This was possibly only occuring in embedded mode
and only where closure of remote client connection was detected before any
request content was read. The issue may have been more prevalent for a HTTPS
connection from client.

4. Fixed bug for Python 2.X where when using ‘print’ to output multple
objects to log object via, wsgi.errors, stderr or stdout, a space wasn’t
added to output between objects. This was occuring because log object
lacked a softspace attribute.

Features Changed

1. When trying to determining version of Apache being used at build time,
if Apache executable not available, fallback to getting version from the
installed Apache header files. Do this as some Linux distributions build
boxes do not actually have Apache executable itself installed, only the
header files and apxs tool needed to build modules. For more details see:

http://code.google.com/p/modwsgi/issues/detail?id=147

Version 2.5

Version 2.5 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-2.5.tar.gz

For Windows binaries see:

http://code.google.com/p/modwsgi/wiki/InstallationOnWindows

Note that this release does not support Python 3.0. Python 3.0 will only be
supported in mod_wsgi 3.0.

Bug Fixes

1. Change to workaround problem where correct version of Python framework
isn’t being found at run time and instead uses the standard system one,
which may be the wrong version. Change is for those Python versions on
MacOS X which include a .a in Python config directory, which should be
symlinked to framework, link against the .a instead. For some reason, doing
this results in framework then being picked up from the correct location.

This problem may well have only started cropping up at some point due to a
MacOS X Leopard patch update as has been noticed that Python frameworks
installed previously stopped being found properly when mod_wsgi was
subsequently recompiled against them. Something may therefore have changed
in compiler tools suite.

For more details see:

http://code.google.com/p/modwsgi/issues/detail?id=28

2. Remove isatty from Log object used for stdout/stderr. It should have
been a function and not an attribute. Even so, isatty() is not meant to be
supplied by a file like object if it is associated with a file descriptor.
Thus, packages which want to use isatty() are supposed to check for its
existance before calling it. Thus wasn’t ever mod_wsgi that was wrong in
not supply this, but the packages which were trying to use it.

For more details see:

http://code.google.com/p/modwsgi/issues/detail?id=146

Version 2.4

Version 2.4 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-2.4.tar.gz

Bug Fixes

1. Compilation would fail on Windows due to daemon mode specific code not
being conditionally compiled out on that platform. This was a problem
introduced by changes in mod_wsgi 2.3.

2. Fix bug where wrong Apache memory pool used when processing configuration
directives at startup. This could later result in memory corruption and may
account for problems seen with ‘fopen()’ errors. See:

http://code.google.com/p/modwsgi/issues/detail?id=78

http://code.google.com/p/modwsgi/issues/detail?id=108

3. Fix bug where Python interpreter not being destroyed correctly in Apache
parent process on an Apache restart. This was resulting in slow memory leak
into Apache parent process on each restart. This additional memory usage
would then be inherited by all child processes forked from Apache parent
process.

Note that this change does not help for case where mod_python is also being
loaded into Apache as in that case mod_python is responsible for
intialising Python and in all available versions of mod_python it still
doesn’t properly destroy the Python interpreter either and so causes memory
leaks which mod_wsgi cannot work around.

Also, this doesn’t solve problems with the Python interpreter itself
leaking memory when destroyed and reinitialised. Such memory leaks in
Python seem to occur for some versions of Python on particular platforms.

For further details see:

http://code.google.com/p/modwsgi/issues/detail?id=99

4. Fix bug whereby POST requests where 100-continue was expected by client
would see request content actually truncated and not be available to WSGI
application if application running in daemon mode. See:

http://code.google.com/p/modwsgi/issues/detail?id=121

5. Fix bug where Apache optimisation related to keep alive connections can
kick in when using wsgi.file_wrapper with result that if amount of data is
between 255 and aproximately 8000 bytes, that a completely empty response
will result. This occurs because Apache isn’t flushing out the file data
straight away but holding it over in case subsequent request on connection
arrives. By then the file object used with wsgi.file_wrapper can have been
closed and underlying file descriptor will not longer be valid. See:

http://code.google.com/p/modwsgi/issues/detail?id=132

6. Modify how daemon process shutdown request is detected such that no need
to block signals in request threads. Doing this caused problems in
processes which were run from daemon mode process and which needed to be
able to receive signals. New mechanism uses a internal pipe to which signal
handler writes a character, with main thread performing a poll on pipe
waiting for that character to know when to shutdown. For additional details
see:

http://code.google.com/p/modwsgi/issues/detail?id=87

7. Fix bug where excessive transient memory usage could occur when calling
read() or readline() on wsgi.input with no argument. See:

http://code.google.com/p/modwsgi/issues/detail?id=126

Note that calling read() with no argument is actually a violation of WSGI
specification and any application doing that is not a WSGI compliant
application.

8. Fix bug where daemon process would crash if User/Group directives were
not specified prior to WSGIDaemonProcess in Apache configuration file. See:

http://code.google.com/p/modwsgi/issues/detail?id=40

9. Fix bug whereby Python exception state wasn’t being cleared correctly
when error occurred in loading target of WSGIImportScript. See:

http://code.google.com/p/modwsgi/issues/detail?id=117

Features Changed

1. No longer populate ‘error-notes’ field in Apache request object notes
table, with details of why WSGI script failed. This has been removed as
information can be seen in default Apache multilanguage error documents.
Because errors may list paths or user/group information, could be seen as
a security risk.

Features Added

1. Added ‘mod_wsgi.version’ to WSGI environment passed to WSGI application.
For details see:

http://code.google.com/p/modwsgi/issues/detail?id=93

2. Added ‘process_group’ and ‘application_group’ attributes to mod_wsgi module
that is created within each Python interpreter instance. This allows code
executed outside of the context of a request handler to know whether it is
running in a daemon process group and what it may be called. Similarly, can
determine if running in first interpreter or some other sub interpreter.
For details see:

http://code.google.com/p/modwsgi/issues/detail?id=27

3. Added closed and isatty attributes to Log object as well as close() method.
For wsgi.errors these aren’t required, but log object also used for stderr
and stdout (when enabled) and code may assume these methods may exist for
stderr and stdout. The closed and isatty attributes always yield false and
close() will raise a run time error indicating that log cannot be closed.
For details see:

http://code.google.com/p/modwsgi/issues/detail?id=82

4. Apache scoreboard cleaned up when daemon processes first initialised to
prevent any user code interfering with operation of Apache. For details see:

http://code.google.com/p/modwsgi/issues/detail?id=104

5. When running configure script, can now supply additional options for
CPPFLAGS, LDFLAGS and LDLIBS through environment variables. For details see:

http://code.google.com/p/modwsgi/issues/detail?id=107

6. Better checking done on response headers and an explicit error will now
be produce if name or value of response header contains an embedded newline.
This is done as by allowing embedded newline would cause daemon mode to fail
when handing response in Apache child process. In embedded mode, could allow
application to pass back malformed response headers to client. For details
see:

http://code.google.com/p/modwsgi/issues/detail?id=81

7: Ensure that SYSLIBS linker options from Python configuration used when
linking mod_wsgi Apache module. This is now prooving necessary as some Apache
distributions are no longer linking system maths library and Python requires
it. To avoid problem simply link against mod_wsgi Apache module and system
libraries that Python needs. For details see:

http://code.google.com/p/modwsgi/issues/detail?id=115

8: Reorder sys.path after having called site.addsitedir() in WSGIPythonPath
and python-path option for WSGIDaemonProcess. This ensures that newly added
directories get moved to front of sys.path and that they take precedence over
standard directories. This in part avoids need to ensure –no-site-packages
option used when creating virtual environments, as shouldn’t have an issue
with standard directories still overriding additions. For details see:

http://code.google.com/p/modwsgi/issues/detail?id=112

9. Update USER, USERNAME and LOGNAME environment variables if set in
daemon process to be the actual user that the process runs as rather than
what may be inherited from Apache root process, which would typically be
‘root’ or the user that executed ‘sudo’ to start Apache, if they hadn’t
used ‘-H’ option to ‘sudo’. See:

http://code.google.com/p/modwsgi/issues/detail?id=129

10. Build process now inserts what is believed to be the directory where
Python shared library is installed, into the library search path before the
Python config directory. This should negate the need to ensure that Python
shared library is also symlink into the config directory next to the static
library as linkers would normally expect it. See:

http://code.google.com/p/modwsgi/issues/detail?id=136

Version 2.3

Version 2.3 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-2.3.tar.gz

Note that this is a quick followup to version 2.2 of mod_wsgi to rectify
significant problem introduced by that release. You should therefore also
refer to:

	Version 2.2

Bug Fixes

1. Fixed problem introduced in version 2.2 of mod_wsgi whereby use of
daemon mode would cause CGI scripts to fail.

It is quite possible that the bug could also have caused failures with other
Apache modules that relied on registering of cleanup functions against
Apache configuration memory pool.

For details see:

http://groups.google.com/group/modwsgi/browse_frm/thread/79a86f8faffe7dcf

2. When using setproctitle() on BSD systems, first argument should be a
printf style format string with values to fill out per format as additional
arguments. Code was supplying value to be displayed as format string which
meant that if it contained any printf type format sequences, could cause
process to crash as corresponding arguments wouldn’t have ben provided.

For details see:

http://code.google.com/p/modwsgi/issues/detail?id=90

Version 2.2

Version 2.2 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-2.2.tar.gz

Note: This version was quickly superseded by version 2.3 of mod_wsgi.
Version 2.2 should not be used.

Features Changed

1. Use official way of setting process names on FreeBSD, NetBSD and OpenBSD.
For details see:

http://code.google.com/p/modwsgi/issues/detail?id=90

This is a backport of change from version 3.0 of mod_wsgi.

Bug Fixes

1. Fix bug whereby if mod_python is loaded at same time as mod_wsgi the
WSGIImportScript directive can cause Apache child processes to crash.
For details see:

http://code.google.com/p/modwsgi/issues/detail?id=91

2. Fix bug where mod_wsgi daemon process startup could fail due to old stale
UNIX listener socket file as described in:

http://code.google.com/p/modwsgi/issues/detail?id=77

3. Fix bug where listener socket file descriptors for daemon processes were
being leaked in Apache parent process on a graceful restart. Also fixes
problem where UNIX listener socket was left in filesystem on both graceful
restart and graceful shutdown. For details see:

http://code.google.com/p/modwsgi/issues/detail?id=95

4. Fix bug where response was truncated when a null character appeared as
first character in block of data being returned from wsgi.file_wrapper. Only
occurred when code fell back to using iteration over supplied file like
object, rather than optimised method such as sendfile().

http://code.google.com/p/modwsgi/issues/detail?id=100

Version 2.1

Version 2.1 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-2.1.tar.gz

Bug Fixes

1. Fix bug which was resulting in logging destined for !VirtualHost !ErrorLog
going missing or ending up in main Apache error log.

http://code.google.com/p/modwsgi/issues/detail?id=79

2. Fix bug where WSGI application returning None rather than valid iterable
causes process to crash.

http://code.google.com/p/modwsgi/issues/detail?id=88

Version 2.0

Version 2.0 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-2.0.tar.gz

Note that mod_wsgi 2.0 was originally derived from mod_wsgi 1.0. It has
though all changes from later releases in the 1.X branch. Thus also see:

	Version 1.1

	Version 1.2

	Version 1.3

Bug Fixes

1. Work around bug in Apache where ‘100 Continue’ response was sent as
part of response content if no attempt to read request input before headers
and response were generated.

Features Changed

1. The WSGICaseSensitivity directive can now only be used at global scope
within the Apache configuration. This means that individual directories can
not be designated as being case sensitive or not. For correct operation
therefore, the path names of all script files should treat case the same,
one cannot have a mixture.

2. How the WSGIPythonPath directive is interpreted has changed in that
‘.pth’ files in the desiginated directories are honoured. See item 10 in
new features section for more information.

3. Removed support for output buffering outside of WSGI specification. In
other words, removed the WSGIOutputBuffering directive and associated code.
If using a WSGI application which does poor buffering itself, to the extent
that performance is affected, you will need to wrap it in a WSGI middleware
component that does buffering on its behalf.

Features Removed

1. The ‘Interpreter’ option to WSGIReloadMechanism has been removed. This
option for interpreter reloading was of limited practical value as many
third party modules for Python aren’t written in a way to cope with
destruction of Python interpreters in a running process. The presence
of the feature was just making it harder to implement various new features.

2. The WSGIPythonHome directive is no longer available on Windows systems
as Python would ignore it anyway.

3. The WSGIPythonExecutable directive has been removed. This didn’t work
on Windows or MacOS X systems. On UNIX systems, the WSGIPythonHome
directive should be used instead. Not known how one can achieve same on
Windows systems.

Features Added

1. The WSGIReloadMechanism now provides the ‘Process’ option for enabling
process reloading when the WSGI script file is changed. Note that this only
applies to WSGI script files used for WSGI applications which have been
delegated to a mod_wsgi daemon process. Additionally, as of 2.0c5 the use
of ‘Process’ option has been made the default for daemon mode processes.
If specifically requiring existing default behaviour, the ‘Module’ option
will need to be specified to indicate script file reloading.

If this option is specified for WSGI application run in embedded mode
within Apache child processes, the existing default behaviour of reloading
just the script file will apply.

For more details see:

http://code.google.com/p/modwsgi/wiki/ReloadingSourceCode

2. When application is running in embedded mode, and WSGIApacheExtensions
directive is set to On, then a Python CObject reference is added to the
WSGI application environment as ‘apache.request_rec’. This can be passed to
C extension modules and can be converted back to a reference to internal
Apache request_rec structure thereby allow C extension modules to work
against the internal Apache C APIs to implement special features.

One example of such special extensions are the Python SWIG bindings for the
Apache C API implemented in the separate ‘ap_swig_py’ package. Because SWIG
is being used, and due to thread support within SWIG generated bindings
possibly only being usable within the first Python interpreter instance
created, it may be the case that the ‘ap_swig_py’ package an only be used
when WSGIApplicationGroup has been set to ‘%{GLOBAL}’.

The ‘ap_swig_py’ package has not yet been released and is still in
development. The package can be obtained from the Subversion repository
at:

https://bitbucket.org/grahamdumpleton/apswigpy/wiki/Home

With the SWIG binding for the Apache API, the intention is that many of
the internal features of Apache would then be available. For example:

import apache.httpd, apache.http_core

req = apache.httpd.request_rec(environ["apache.request_rec"])
root = apache.http_core.ap_document_root(req)

Note that this feature is experimental and may be removed from a future
version if insufficient interest in it or in developing SWIG bindings.

3. When Apache 2.0/2.2 is being used, Python script can now be provided to
perform the role of an Apache auth provider. This would allow user
authentication underlying HTTP Basic (2.0 and 2.2) or Digest (2.2 only)
authentication schemes to be done by a Python web application. Do note
though that at present the provided authentication script will always
run in the context of the Apache child processes and can not be delegated
to a distinct daemon process.

Apache configuration for defining an auth provider for Basic authentication
when using Apache 2.2 would be:

AuthType Basic
AuthName "Top Secret"
AuthBasicProvider wsgi
WSGIAuthUserScript /usr/local/wsgi/scripts/auth.wsgi
Require valid-user

For Apache 2.0 it would be:

AuthType Basic
AuthName "Top Secret"
WSGIAuthUserScript /usr/local/wsgi/scripts/auth.wsgi
AuthAuthoritative Off
Require valid-user

The ‘auth.wsgi’ script would then need to contain a ‘check_password()’
function with a sample as shown below:

def check_password(environ, user, password):
 if user == 'spy':
 if password == 'secret':
 return True
 return False
 return None

If using Apache 2.2 and Digest authentication support is built into Apache,
then that also may be used:

AuthType Digest
AuthName "Top Secret"
AuthDigestProvider wsgi
WSGIAuthUserScript /usr/local/wsgi/scripts/auth.wsgi
Require valid-user

The name of the required authentication function for Digest authentication
is ‘get_realm_hash()’. The result of the function must be ‘None’ if the
user doesn’t exist, or a hash string encoding the user name, authentication
realm and password:

import md5

def get_realm_hash(environ, user, realm):
 if user == 'spy':
 value = md5.new()
 # user:realm:password
 value.update('%s:%s:%s' % (user, realm, 'secret'))
 hash = value.hexdigest()
 return hash
 return None

By default the auth providers are executed in context of first interpreter
created by Python. This can be overridden using the ‘application-group’
option to the script directive. The namespace for authentication groups is
shared with that for application groups defined by WSGIApplicationGroup.

If mod_authn_alias is being loaded into Apache, then an aliased auth
provider can also be defined:

<AuthnProviderAlias wsgi django>
WSGIAuthUserScript /usr/local/django/mysite/apache/auth.wsgi \
 application-group=django
</AuthnProviderAlias>

WSGIScriptAlias / /usr/local/django/mysite/apache/django.wsgi

<Directory /usr/local/django/mysite/apache>
Order deny,allow
Allow from all

WSGIApplicationGroup django

AuthType Basic
AuthName "Django Site"
AuthBasicProvider django
Require valid-user
</Directory>

An authentication script for Django might then be something like:

import os, sys
sys.path.append('/usr/local/django')
os.environ['DJANGO_SETTINGS_MODULE'] = 'mysite.settings'

from django.contrib.auth.models import User
from django import db

def check_password(environ, user, password):
 db.reset_queries()

 kwargs = {'username': user, 'is_active': True}

 try:
 try:
 user = User.objects.get(**kwargs)
 except User.DoesNotExist:
 return None

 if user.check_password(password):
 return True
 else:
 return False
 finally:
 db.connection.close()

If the WSGIApacheExtensions directive is set to On then ‘apache.request_rec’
will be passed in ‘environ’ to the auth provider functions. This may be used
in conjunction with C extension modules such as ‘ap_swig_py’. For example,
it may be used to set attributes in ‘req.subprocess_env’ which are then in
turn passed to the WSGI application through the WSGI environment. Passing
of these settings will occur even if the WSGI application itself is running
in a daemon process.

A further example where this can be useful is where which daemon process
is used is dependent on some attribute of the user. For example, if using
the Apache configuration:

WSGIDaemonProcess django-admin
WSGIDaemonProcess django-users

WSGIProcessGroup %{ENV:PROCESS_GROUP}

which daemon process the request is delegated to can be controlled from
the auth provider:

import apache.httpd

def check_password(environ, user, password):
 db.reset_queries()

 kwargs = {'username': user, 'is_active': True}

 try:
 try:
 user = User.objects.get(**kwargs)
 except User.DoesNotExist:
 return None

 if user.check_password(password):
 req = apache.httpd.request_rec(environ["apache.request_rec"])

 if user.is_staff:
 req.subprocess_env["PROCESS_GROUP"] = 'django-admin'
 else:
 req.subprocess_env["PROCESS_GROUP"] = 'django-users'

 return True
 else:
 return False
 finally:
 db.connection.close()

For more details see:

http://code.google.com/p/modwsgi/wiki/AccessControlMechanisms

4. When Apache 2.2 is being used, now possible to provide a script file
containing a callable which returns the groups that a user is a member of.
This can be used in conjunction with a ‘group’ option to the Apache
‘Require’ directive. Note that up to mod_wsgi 2.0c3 the option was actually
‘wsgi-group’.

Apache configuration for defining an auth provider for Basic authentication
and subsequent group authorisation would be:

AuthType Basic
AuthName "Top Secret"
AuthBasicProvider wsgi
WSGIAuthUserScript /usr/local/wsgi/scripts/auth.wsgi
WSGIAuthGroupScript /usr/local/wsgi/scripts/auth.wsgi
Require group secret-agents
Require valid-user

The ‘auth.wsgi’ script would then need to contain a ‘check_password()’
and ‘groups_for_user()’ function with a sample as shown below:

def check_password(environ, user, password):
 if user == 'spy':
 if password == 'secret':
 return True
 return False
 return None

def groups_for_user(environ, user):
 if user == 'spy':
 return ['secret-agents']
 return ['']

For more details see:

http://code.google.com/p/modwsgi/wiki/AccessControlMechanisms

5. Implemented WSGIDispatchScript directive. This directive can be used
to designate a script file in which can be optionally defined any of the
functions:

def process_group(environ):
 return "%{GLOBAL}"

def application_group(environ):
 return "%{GLOBAL}"

def callable_object(environ):
 return "application"

This allows for the process group, application group and callable object
name for a WSGI application to be programmatically defined rather than be
exclusively drawn from the configuration.

Each function if wishing to override the value defined by the configuration
should return a string object. If None is returned then value defined by
the configuration will still be used.

By default the script file code will be executed within the context of the
‘%{GLOBAL}’ application group within the Apache child processes (never in
the daemon processes). The application group used can be overridden by
defining the ‘application-group’ option to the script directive. Note that
up to 2.0c3 the WSGIServerGroup directive was instead provided, but this
has now been removed.

This feature could be used as part of a mechanism for distributing requests
across a number of daemon process groups, but always directing requests from
a specific user to the same daemon process.

6. Implemented inactivity-timeout option for WSGIDaemonProcess directive.
For example:

WSGIDaemonProcess trac processes=1 threads=15 \
 maximum-requests=1000 inactivity-timeout=300

When this option is used, the daemon process will be shutdown, and thence
restarted, after no request activity for the defined period (in seconds).

The purpose of this option is to allow amount of memory being used by a
process to be dropped back to the initial idle state level. This option
would be used where the application delegated to the daemon process was
used infrequently and thus it would be preferable to reclaim the memory
when the application is not in use.

7. In daemon processes, the HOME environment variable is now overridden
such that its initial value when a new Python sub interpreter is created
is the same as the home directory of the user that the daemon process is
running as. This is to give some certainty as to its value as otherwise
the HOME environment variable may be that of the root user, a particular
user, or the user that ran ‘sudo’ to start Apache. This is because HOME
environment variable will be inherited from environment of user that Apache
is started as and has no relationship to the user that the process is
actually run as.

Note that the HOME environment variable is not updated for embedded mode as
this would change the environment of code running under different Apache
modules, such as mod_php and mod_perl. Not seen as being good practice to
modify the environment of other systems.

Once consequence of the HOME environment variable being set correctly for
daemon processes at least, is that the default location calculated for
Python egg cache should then be correct. If running in embedded mode, would
still be necessary to manually override Python egg cache location.

8. In daemon processes, the initial current working directory of the
process will be set to the home directory of the user that the process
runs as, or as specified by the ‘home’ option to the WSGIDaemonProcess
directive.

9. Added ‘stack-size’ option to WSGIDaemonProcess so that per thread stack
size can be overridden for processes in the daemon process group.

This can be required on Linux where the default stack size for threads is
the same as the default user process stack size, that being 8MB. When
running in a VPS provided by a web hosting company, where they for some
reason seem to take into consideration the virtual memory size as well as
the resident memory size when calculating your process limits, it is better
to drop the per thread stack size down to a value closer to 512KB. For
example:

WSGIDaemonProcess example processes=2 threads=25 stack-size=524288

10. Added some direct support into mod_wsgi for virtual environments for
Python such as virtualenv and workingenv.

The first approach to configuration is to use WSGIPythonPath directive at
global scope in apache configuration. For example:

workingenv
WSGIPythonPath /some/path/env/lib/python2.3

virtualenv
WSGIPythonPath /some/path/env/lib/python2.3/site-packages

The path you have to specify is slightly different depending on whether you
use workingenv or virtualenv packages.

Previously the WSGIPythonPath directive would just override the
PYTHONPATH environment variable. Instead it now calls
site.addsitedir() for any specified directories, thus triggering the
reading of any .pth files and the subsequent addition of further
directories there specified to sys.path.

Note that directories added with WSGIPythonPath only apply to applications
running in embedded mode.

If you want to specify directories for daemon processes, you can use the
‘python-path’ option to WSGIDaemonProcess. For example:

WSGIDaemonProcess turbogears processes=5 threads=1 \
 user=site1 group=site1 maximum-requests=1000 \
 python-path=/some/path/env/lib/python2.3/site-packages

WSGIScriptAlias / /some/path/scripts/turbogears.wsgi

WSGIProcessGroup turbogears
WSGIApplicationGroup %{GLOBAL}
WSGIReloadMechanism Process

Do note that anything defined in the standard Python site-packages
directories takes precedence over directories added using the mechanisms
described above. Thus, if wanting to use these virtual environments all the
time, your standard Python installation effectively needs to have an empty
site-packages directory. Alternatively, on UNIX systems you can use the
WSGIPythonHome directive to point to a virtual environment which contains
an empty ‘site-packages’.

End result is that with these options, should be very easy to have
different daemon process groups using different Python virtual
environments without any fiddles having to be done in the WSGI script
file itself.

For more details see:

http://code.google.com/p/modwsgi/wiki/VirtualEnvironments

11. Added WSGIPythonEggs directive and corresponding ‘python-eggs’ option
for WSGIDaemonProcess directive. These allow the location of the Python
egg cache directive to be set for applications running in embedded mode or
in the designated daemon processes. These options have the same affect as
if the ‘PYTHON_EGG_CACHE’ environment variable had been set.

12. Implement ‘deadlock-timeout’ option for WSGIDaemonProcess for detecting
Python programs that hold the GIL for extended periods, thus perhaps
indicating that process has frozen or has become unresponsive. The default
value for the timeout is 300 seconds.

13. Added support for providing an access control script. This equates to
the access handler phase of Apache and would be use to deny access to a
subset of URLs based on the details of the remote client. The path to the
script is defined using the WSGIAccessScript directive:

WSGIAccessScript /usr/local/wsgi/script/access.wsgi

The name of the function that must exist in the script file is ‘allow_access()’.
It must return True or False:

def allow_access(environ, host):
 return host in ['localhost', '::1']

This function will always be executed in the context of the Apache child
processes even if it is controlling access to a WSGI application which has
been delegated to a daemon process. By default the function will be executed
in the context of the main Python interpreter, ie., ‘%{GLOBAL}’. This can
be overridden by using the ‘application-group’ option to the WSGIAccessScript
directive:

WSGIAccessScript /usr/local/wsgi/script/access.wsgi application-group=admin

For more details see documentation on
[AccessControlMechanisms Access Control Mechanisms]

14. Added support for loading a script file at the time that process is
first started. This would allow modules related to an application to be
preloaded into an interpreter immediately rather than it only occuring when
the first request arrives for that application.

The directive for designating the script to load is WSGIImportScript. The
directive can only be used at global scope within the Apache configuration.
It is necessary to designate both the application group, and if dameon mode
support is available, the process group:

WSGIImportScript /usr/local/wsgi/script/import.wsgi \
 process-group=%{GLOBAL} application-group=django

14. Add “–disable-embedded” option to “configure” script so that ability
to run a WSGI application in embedded mode can be disabled completely.
Also added the directive WSGIRestrictEmbedded so that ability to run a
WSGI application in embedded mode can be disabled easily if support for
embedde mode is still compiled in.

15. Added support for optional WSGI extension wsgi.file_wrapper. On UNIX
systems and when Apache 2.X is being used, if the wrapped file like object
relates to a regular file then additional optimisations will be applied to
improve the performance of returning the file in a response.

16. Added ‘display-name’ option for WSGIDaemonProcess. On operating systems
where it works, this should allow displayed name of daemon process shown by
‘ps’ to be changed. Note that name will be truncated to whatever the existing
length of ‘argv[0]’ was for the process.

17. When WSGI application generates more content than what was defined by
response content length header, excess is discarded. If Apache log level is
set to debug, messages will be logged to Apache error log file warning of
when generated content length differs to specified content length.

18. Allow WSGIPassAuthorization to be used in .htaccess file if !FileInfo
override has been set. This has been allowed as !FileInfo enables ability to
use both mod_rewrite and mod_headers, which both provide means of getting
at the authorisation header anyway, so no point trying to block it.

19. Optimise sending of WSGI environment across to daemon process by
reducing number of writes to socket. For daemon mode and a simple hello
world application this improves base performance by 40% moving it
significantly closer to performance of embedded mode.

20. Always change a HEAD request into a GET request. This is to ensure that
a WSGI application always generates response content. If this isn’t done
then any Apache output filters will not get to see the response content and
if they need to see the response content to generate headers based on it,
then the response headers from a HEAD request would be incorrect and not
match a GET request as required.

If Apache 2.X, this will not however be done if there are no Apache output
filters registered which could change the response headers or content.

21. Add option “send-buffer-size” and “receive-buffer-size” to
WSGIDaemonProcess for controlling the send and receive buffer sizes of the
UNIX socket used to communicate with mod_wsgi daemon processes. This is to
work around or limit deadlock problems that can occur in certain cases
when the operating system defines a very small default UNIX socket buffer
size.

22. When no request content has been read and headers are to be sent back,
force a zero length read in order to flush out any ‘100 Continue’ response
if expected by client. This is only done for 2xx and 3xx response status
values.

23. A negative value for content length in response wasn’t being rejected.
Where invalid header was being returned in response original response
status was being returned instead of a 500 error.

Version 1.6

Version 1.6 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-1.6.tar.gz

Note that this is a quick followup to version 1.5 of mod_wsgi to rectify
significant problem introduced by that release. You should therefore also
refer to:

	Version 1.5.

Bug Fixes

1. Fixed problem introduced in version 1.5 of mod_wsgi whereby use of
daemon mode would cause CGI scripts to fail.

It is quite possible that the bug could also have caused failures with other
Apache modules that relied on registering of cleanup functions against
Apache configuration memory pool.

For details see:

http://groups.google.com/group/modwsgi/browse_frm/thread/79a86f8faffe7dcf

Version 1.5

Version 1.5 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-1.5.tar.gz

Bug Fixes

1. Fix bug where listener socket file descriptors for daemon processes were
being leaked in Apache parent process on a graceful restart. Also fixes
problem where UNIX listener socket was left in filesystem on both graceful
restart and graceful shutdown. For details see:

http://code.google.com/p/modwsgi/issues/detail?id=95

This is a backport of change from version 2.2 of mod_wsgi.

Version 1.4

Version 1.4 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-1.4.tar.gz

Bug Fixes

1. A negative value for content length in response wasn’t being rejected.
Where invalid header was being returned in response original response
status was being returned instead of a 500 error.

2. Fix bug which was resulting in logging destined for !VirtualHost !ErrorLog
going missing or ending up in main Apache error log.

http://code.google.com/p/modwsgi/issues/detail?id=79

Features Added

1. Optimise sending of WSGI environment across to daemon process by
reducing number of writes to socket. For daemon mode and a simple hello
world application this improves base performance by 40% moving it
significantly closer to performance of embedded mode.

This is a backport of change from version 2.0 of mod_wsgi.

Version 1.3

Version 1.3 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-1.3.tar.gz

Bug Fixes

1. Fix bug whereby mod_wsgi daemon process could hang when a request with
content greater than UNIX socket buffer size, was directed at a WSGI
application resource handler which in turn returned a response, greater
than UNIX socket buffer size, without first consuming the request content.

There were two aspects to this problem, the first is that the above would
trigger that specific request to hang. Second was that at the point of the
hang, the Python GIL hadn’t been released, and so all other threads were
blocked from running any Python code resulting in whole process effectively
hanging.

Code now correctly ensures that Python GIL is released prior to going into
potentially blocking operation. Secondly, where mutual deadlock between
Apache child process and mod_wsgi daemon process, timeout as defined by the
standard Apache ‘Timeout’ directive will now kick in and remaining request
content discarded by Apache child process so that thread in the daemon
process can continue and break out of its hung state.

Although this can still result in request thread being in a hung state
until the timeout occurs, this mirrors exactly what would happen if running
a WSGI application using a CGI-WSGI bridge behind Apache mod_cgi module. A
better solution which would avoid the hung state altogether is still being
investigated.

Note that this scenario shouldn’t ever eventuate for a correctly implemented
and functioning web application, however it is feasible that it could be
triggered as a result of spambots which attempt to POST data randomly to
sites with the hope they find a wiki system with an unprotected comment
system.

Version 1.2

Version 1.2 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-1.2.tar.gz

Bug Fixes

1. When headers are flushed by mod_wsgi is not strictly compliant with
the WSGI specification. In particular the specification says:

The start_response callable must not actually transmit the response
headers. Instead, it must store them for the server or gateway to
transmit only after the first iteration of the application return value
that yields a non-empty string, or upon the application’s first
invocation of the write() callable. In other words, response headers
must not be sent until there is actual body data available, or until
the application’s returned iterable is exhausted. (The only possible
exception to this rule is if the response headers explicitly include a
Content-Length of zero.)

In mod_wsgi when an iterable was returned from the application, the headers
were being flushed even if the string was empty. See:

http://code.google.com/p/modwsgi/issues/detail?id=35

2. Calling start_response() a second time to supply exception information
and status to replace prior response headers and status, was resulting in
a process crash when there had actually been response content sent and the
existing response headers and status flushed and written back to the client.
See:

http://code.google.com/p/modwsgi/issues/detail?id=36

3. Added additional logging to highlight instance where WSGI script file was
removed in between the time that Apache matched request to it and the WSGI
script file was loaded and the request passed to it. These changes also log
something if the attempt to stat the WSGI script file in the daemon process
fails due to inadequate permissions or other reasons.

4. Fixed a few instances where logging via request object before fake
request object in daemon process had been constructed properly. The particular
cases would only have been triggered if something other than mod_wsgi code
with Apache child process had tried to communicate with the daemon process.

5. Fixed problem when Apache 1.3 or 2.0 was being used, where the
automatically determined default for the application group (interpreter)
name would be wrong where the URL had repeating slashes in it after the
leading portion of the URL which mapped to the mount point of the WSGI
application. See:

http://code.google.com/p/modwsgi/issues/detail?id=39

In particular, for a URL with the repeating slash the application group
name would have a trailing slash appended when it shouldn’t. The
consequences of this are that two instances of the WSGI application could
end up being loaded into the same process, doubling the memory usage for
the process.

Besides the additional memory use, this would in general not be an issue
as most applications would be designed to work within multi process
environment of Apache. If however a specific application was designed to
only work within a single process (interpreter instance), as would occur
when Windows was being used, or a single daemon process with daemon mode,
then there may be issues as requests which had a repeating slash in the
URL would not access the same application data as those without.

Note, this problem could only arise where WSGIApplicationGroup directive
wasn’t used and thus default value being used. Or the value ‘%{RESOURCE}’
was specified as argument to WSGIApplicationGroup, this being the same as
the default.

6. Fixed problem whereby status of sub processes created from mod_wsgi
daemon processes were not being caught properly. This was because mod_wsgi
was wrongly blocking SIGCHLD signal. See:

http://code.google.com/p/modwsgi/issues/detail?id=38

Version 1.1

Version 1.1 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-1.1.tar.gz

Bug Fixes

1. Fix bug which could result in processes crashing when multiple threads
attempt to write to sys.stderr or sys.stdout at the same time. See:

http://code.google.com/p/modwsgi/issues/detail?id=30

Chance of this occuring was small, as was contingent on code writing out
strings which contained an embedded newline but no terminating new line,
thereby triggering the internal line caching code.

2. In error case when not able to release interpreter, was wrongly trying
to release Python GIL around code to unlock module mutex when didn’t
actually have the GIL acquired in the first place. Didn’t strictly need to
be releasing GIL when releasing lock as it shouldn’t block anyway, so don’t
do this even in case where had the Python GIL.

This problem would only have been encountered in situation where Python had
failed in a major way to begin with.

3. Incorrectly trying to output Python exception details when Python GIL
would not have been held.

This problem would only have been encountered in situation where Python had
failed in a major way to begin with.

4. Fix location of Python object reference count decrements to avoid
decrement reference count on null pointer.

Would only have caused a problem if Python was in some sort of corrupted
state to begin with as the object which the reference count was being
performed on should always exist.

5. Replace normal Apache connection setup in daemon processes with
equivalent code that avoids possibility that other Apache modules will
insert their own connection level input/output filters. This is needed as
running WSGI applications in daemon processes where requests were arriving
to Apache as HTTPS requests could cause daemon processes to crash. See:

http://code.google.com/p/modwsgi/issues/detail?id=33

This was only occuring for some HTTPS configurations, but not known what
exactly was different about those configurations to cause the problem.
Actually possible that the real problem was mod_logio as described below.

6. Substitute optional ap_logio_add_bytes_out() function provided by the
mod_logio module when loaded and when handling request in daemon process.
This is needed to prevent core output filters calling this function and
triggering a crash due to configuration for mod_logio not being setup. See:

http://code.google.com/p/modwsgi/issues/detail?id=34

Version 1.0

Version 1.0 of mod_wsgi can be obtained from:

http://modwsgi.googlecode.com/files/mod_wsgi-1.0.tar.gz

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 mod_wsgi

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

