

llvmlite

A lightweight LLVM-Python binding for writing JIT compilers

llvmlite provides a Python binding to LLVM for use in Numba [http://numba.pydata.org/]. Numba
previously relied on llvmpy [http://www.llvmpy.org/].

Llvmpy became hard to maintain because:

	It has a cumbersome architecture.

	The C++11 requirement of recent LLVM versions does not go well
with the compiler and runtime ABI requirements of some Python
versions, especially under Windows.

Llvmpy also proved to be responsible for a sizable part of
Numba’s compilation times, because of its inefficient layering
and object encapsulation. Fixing this issue inside the llvmpy
codebase seemed a time-consuming and uncertain task.

The Numba developers decided to start a new binding from scratch,
with an entirely different architecture, centered around the
specific requirements of a JIT compiler.

Philosophy

While llvmpy [http://www.llvmpy.org/] exposed large parts of the LLVM C++ API for direct
calls into the LLVM library, llvmlite takes an entirely different
approach. Llvmlite starts from the needs of a JIT compiler and
splits them into two decoupled tasks:

	Construction of a Module, function by function,
Instruction by instruction.

	Compilation and optimization of the module into machine code.

The construction of an LLVM module does not call the LLVM C++ API.
Rather, it constructs the
LLVM intermediate representation
(IR) in pure Python. This is the role of the
IR layer.

The compilation of an LLVM module takes the IR in textual form
and feeds it into LLVM’s parsing API. It then returns a thin
wrapper around LLVM’s C++ module object. This is the role of the
binding layer.

Once parsed, the module’s source code cannot be modified, which
loses the flexibility of the direct mapping of C++ APIs into
Python that was provided by llvmpy but saves a great deal of
maintenance.

LLVM compatibility

Despite minimizing the API surface with LLVM, llvmlite is
impacted by changes to LLVM’s C++ API, which can occur at every
feature release. Therefore, each llvmlite version is targeted to
a specific LLVM feature version and works across all given bugfix
releases of that version.

EXAMPLE: Llvmlite 0.12.0 works with LLVM 3.8.0 and 3.8.1, but
it does not work with LLVM 3.7.0 or 3.9.0.

Numba’s requirements determine which LLVM version is supported.

API stability

At this time, we reserve the possibility of slightly breaking
the llvmlite API at each release, for the following reasons:

	Changes in LLVM behaviour, such as differences in the IR across
versions.

	As a young library, llvmlite has room for improvement or fixes
to the existing APIs.

Installation

Contrary to what you might expect, llvmlite does not use any LLVM shared
libraries that may be present on the system, or in the conda environment. The
parts of LLVM required by llvmlite are statically linked at build time. As a
result, installing llvmlite from a binary package does not also require the
end user to install LLVM. (For more details on the reasoning behind this,
see: Why Static Linking to LLVM?)

Pre-built binaries

Building LLVM for llvmlite is challenging, so we strongly recommend
installing a binary package where we have built and tested everything for you.
Official conda packages are available in the Anaconda [http://docs.continuum.io/anaconda/index.html] distribution:

conda install llvmlite

Development releases are built from the Git master branch and uploaded to
the Numba [http://numba.pydata.org/] channel on Anaconda Cloud [https://anaconda.org/numba]:

conda install --channel numba llvmlite

Binary wheels are also available for installation from PyPI [https://pypi.org/project/llvmlite/]:

pip install llvmlite

Building manually

Building llvmlite requires first building LLVM. Do not use prebuilt LLVM
binaries from your OS distribution or the LLVM website! There will likely be
a mismatch in version or build options, and LLVM will be missing certain patches
that are critical for llvmlite operation.

Prerequisites

Before building, you must have the following:

	On Windows:

	Visual Studio 2015 (Update 3) or later, to compile LLVM and llvmlite.
The free Express edition is acceptable.

	CMake [http://www.cmake.org/] installed.

	On Linux:

	g++ (>= 4.8) and CMake [http://www.cmake.org/]

	If building LLVM on Ubuntu, the linker may report an error
if the development version of libedit is not installed. If
you run into this problem, install libedit-dev.

	On Mac:

	Xcode for the compiler tools, and CMake [http://www.cmake.org/]

Compiling LLVM

If you can build llvmlite inside a conda environment, you can install a
prebuilt LLVM binary package and skip this step:

conda install -c numba llvmdev

The LLVM build process is fully scripted by conda-build [https://conda.io/docs/user-guide/tasks/build-packages/index.html], and the llvmdev recipe [https://github.com/numba/llvmlite/tree/master/conda-recipes/llvmdev] is the canonical reference for building LLVM for llvmlite. Please use it if at all possible!

The manual instructions below describe the main steps, but refer to the recipe for details:

	Download the LLVM 7.0.0 source code [http://releases.llvm.org/7.0.0/llvm-7.0.0.src.tar.xz].

	Download or git checkout the llvmlite source code [https://github.com/numba/llvmlite].

	Decompress the LLVM tar file and apply the following patches from the llvmlite/conda-recipes/ directory:

	llvm-lto-static.patch: Fix issue with LTO shared library on Windows

	D47188-svml-VF.patch: Add support for vectorized math functions via Intel SVML

	partial-testing.patch: Enables additional parts of the LLVM test suite

	twine_cfg_undefined_behavior.patch: Fix obscure memory corruption bug in LLVM that hasn’t been fixed in master yet

	0001-RuntimeDyld-Fix-a-bug-in-RuntimeDyld-loadObjectImpl-.patch: Fixes a bug relating to common symbol section size computation

	0001-RuntimeDyld-Add-test-case-that-was-accidentally-left.patch: Test for the above patch

	
	For Linux/macOS:

	
	export PREFIX=desired_install_location CPU_COUNT=N (N is number of parallel compile tasks)

	Run the build.sh [https://github.com/numba/llvmlite/blob/master/conda-recipes/llvmdev/build.sh] script in the llvmdev conda recipe from the LLVM source directory

	
	For Windows:

	
	set PREFIX=desired_install_location

	Run the bld.bat [https://github.com/numba/llvmlite/blob/master/conda-recipes/llvmdev/bld.bat] script in the llvmdev conda recipe from the LLVM source directory.

Compiling llvmlite

	To build the llvmlite C wrapper, which embeds a statically
linked copy of the required subset of LLVM, run the following from the llvmlite source directory:

python setup.py build

	If your LLVM is installed in a nonstandard location, set the
LLVM_CONFIG environment variable to the location of the
corresponding llvm-config or llvm-config.exe
executable. This variable must persist into the installation
of llvmlite—for example, into a Python environment.

EXAMPLE: If LLVM is installed in /opt/llvm/ with the
llvm-config binary located at
/opt/llvm/bin/llvm-config, set
LLVM_CONFIG=/opt/llvm/bin/llvm-config.

Installing

	To validate your build, run the test suite by running:

python runtests.py

or:

python -m llvmlite.tests

	If the validation is successful, install by running:

python setup.py install

Why Static Linking to LLVM?

The llvmlite package uses LLVM via ctypes calls to a C wrapper that is
statically linked to LLVM. Some people are surprised that llvmlite uses
static linkage to LLVM, but there are several important reasons for this:

	The LLVM API has not historically been stable across releases - Although
things have improved since LLVM 4.0, there are still enough changes between
LLVM releases to cause compilation issues if the right version is not
matched with llvmlite.

	The LLVM shipped by most Linux distributions is not the version
llvmlite needs - The release cycles of Linux distributions will never line
up with LLVM or llvmlite releases.

	We need to patch LLVM - The binary packages of llvmlite are built
against LLVM with a handful of patches to either fix bugs or to add
features that have not yet been merged upstream. In some cases, we’ve had
to carry patches for several releases before they make it into LLVM.

	We don’t need most of LLVM - We are sensitive to the install size of
llvmlite, and a full build of LLVM is quite large. We can dramatically
reduce the total disk needed by an llvmlite user (who typically doesn’t
need the rest of LLVM, ignoring the version matching issue) by statically
linking to the library and pruning the symbols we do not need.

	Numba can use multiple LLVM builds at once - Some Numba targets (AMD GPU,
for example) may require different LLVM versions or non-mainline forks of
LLVM to work. These other LLVMs can be wrapped in a similar fashion as
llvmlite, and will stay isolated.

	We need to support Windows + Python 2.7 - Python 2.7 extensions on
Windows needs to be built with Visual Studio 2008 for ABI compatibility
reasons. This presents a serious issue as VS2008 can no longer build LLVM.
The best workaround we have found (until the sunset of Python 2.7) is to
build LLVM and the llvmlite C wrapper with VS2015 and call it through
ctypes. This is not ideal, but experience has shown it seems to work.

Static linkage of LLVM was definitely not our goal early in Numba development,
but seems to have become the only workable solution given our constraints.

User guide

	IR layer—llvmlite.ir
	Types

	Values

	Modules

	IR builders

	Example—defining a simple function

	LLVM binding layer—llvmlite.binding
	Initialization and finalization

	Dynamic libraries and symbols

	Target information

	Context

	Modules

	Value references

	Type references

	Execution engine

	Optimization passes

	Analysis utilities

	Example—compiling a simple function

IR layer—llvmlite.ir

The llvmlite.ir module contains classes and utilities to
build the LLVM
intermediate representation
(IR) of native functions.

The provided APIs may sometimes look like LLVM’s C++ APIs, but
they never call into LLVM, unless otherwise noted. Instead, they
construct a pure Python representation of the IR.

To use this module, you should be familiar with the concepts
in the LLVM Language Reference [http://llvm.org/releases/7.0.0/docs/LangRef.html].

	Types

	Values

	Modules

	IR builders

	Example—defining a simple function

Types

	Atomic types

	Aggregate types

	Other types

All values used in an LLVM module are
explicitly typed. All types derive from a common base class
Type. You can instantiate most of them directly. Once
instantiated, a type should be considered immutable.

	
class llvmlite.ir.Type

	The base class for all types. Never instantiate it directly.
Types have the following methods in common:

	
	
as_pointer(addrspace=0)

	Return a PointerType pointing to this type. The
optional addrspace integer allows you to choose a
non-default address space—the meaning is platform
dependent.

	
	
get_abi_size(target_data)

	Get the ABI size of this type, in bytes, according to the
target_data—an llvmlite.binding.TargetData
instance.

	
	
get_abi_alignment(target_data)

	Get the ABI alignment of this type, in bytes, according
to the target_data—an
llvmlite.binding.TargetData instance.

NOTE: get_abi_size() and get_abi_alignment()
call into the LLVM C++ API to get the requested
information.

	
	
__call__(value)

	A convenience method to create a Constant of
this type with the given value:

>>> int32 = ir.IntType(32)
>>> c = int32(42)
>>> c
<ir.Constant type='i32' value=42>
>>> print(c)
i32 42

Atomic types

	
class llvmlite.ir.PointerType(pointee, addrspace=0)

	The type of pointers to another type.

Pointer types expose the following attributes:

	
	
addrspace

	The pointer’s address space number. This optional integer
allows you to choose a non-default address space—the
meaning is platform dependent.

	
	
pointee

	The type pointed to.

	
class llvmlite.ir.IntType(bits)

	The type of integers. The Python integer bits specifies the
bitwidth of the integers having this type.

	
width

	The width in bits.

	
class llvmlite.ir.FloatType

	The type of single-precision, floating-point, real numbers.

	
class llvmlite.ir.DoubleType

	The type of double-precision, floating-point, real numbers.

	
class llvmlite.ir.VoidType

	The class for void types. Used only as the return type of a
function without a return value.

Aggregate types

	
class llvmlite.ir.Aggregate

	The base class for aggregate types. Never instantiate it
directly. Aggregate types have the elements attribute in
common.

	
elements

	A tuple-like immutable sequence of element types for this
aggregate type.

	
class llvmlite.ir.ArrayType(element, count)

	The class for array types.

	element is the type of every element.

	count is a Python integer representing the number of
elements.

	
class llvmlite.ir.LiteralStructType(elements[, packed=False])

	The class for literal struct types.

	elements is a sequence of element types for each member of the structure.

	packed controls whether to use packed layout.

	
class llvmlite.ir.IdentifiedStructType

	The class for identified struct types. Identified structs are
compared by name. It can be used to make opaque types.

Users should not create new instance directly. Use the
Context.get_identified_type method instead.

An identified struct is created without a body (thus opaque). To define the
struct body, use the .set_body method.

	
set_body(*elems)

	Define the structure body with a sequence of element types.

Other types

	
class llvmlite.ir.FunctionType(return_type, args, var_arg=False)

	The type of a function.

	return_type is the return type of the function.

	args is a sequence describing the types of argument to the
function.

	If var_arg is True, the function takes a variable
number of additional arguments of unknown types after the
explicit args.

EXAMPLE:

int32 = ir.IntType(32)
fnty = ir.FunctionType(int32, (ir.DoubleType(), ir.PointerType(int32)))

An equivalent C declaration would be:

typedef int32_t (*fnty)(double, int32_t *);

	
class llvmlite.ir.LabelType

	The type for labels. You do not need to
instantiate this type.

	
class llvmlite.ir.MetaDataType

	The type for Metadata. You do not need to
instantiate this type.

NOTE: This class was previously called “MetaData,” but it was
renamed for clarity.

Values

	Metadata

	Global values

	Instructions

	Landing pad clauses

A Module consists mostly of values.

	
llvmlite.ir.Undefined

	An undefined value, mapping to LLVM’s undef.

	
class llvmlite.ir.Value

	The base class for all IR values.

	
class llvmlite.ir.Constant(typ, constant)

	A literal value.

	typ is the type of the represented value—a
Type instance.

	constant is the Python value to be represented.

Which Python types are allowed for constant depends on typ:

	All types accept Undefined and convert it to
LLVM’s undef.

	All types accept None and convert it to LLVM’s
zeroinitializer.

	IntType accepts any Python integer or boolean.

	FloatType and DoubleType accept any
Python real number.

	Aggregate types—array and structure types—accept a
sequence of Python values corresponding to the type’s
element types.

	ArrayType accepts a single bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]
instance to initialize the array from a string of bytes.
This is useful for character constants.

	
classmethod literal_array(elements)

	An alternate constructor for constant arrays.

	elements is a sequence of values, Constant or
otherwise.

	All elements must have the same type.

	Returns a constant array containing the elements, in
order.

	
classmethod literal_struct(elements)

	An alternate constructor for constant structs.

	elements is a sequence of values, Constant or
otherwise. Returns a constant struct containing the
elements in order.

	
	
bitcast(typ)

	Convert this pointer constant to a constant of the
given pointer type.

	
	
gep(indices)

	Compute the address of the inner element given by the
sequence of indices. The constant must have a pointer
type.

	
	
inttoptr(typ)

	Convert this integer constant to a constant of the
given pointer type.

NOTE: You cannot define constant functions. Use a
Function declaration instead.

	
class llvmlite.ir.Argument

	One of a function’s arguments. Arguments have the
add_attribute() method.

	
add_attribute(attr)

	Add an argument attribute to this argument. attr is a
Python string.

	
class llvmlite.ir.Block

	A Basic block. Do not instantiate or mutate this type
directly. Instead, call the helper methods on
Function and IRBuilder.

Basic blocks have the following methods and attributes:

	
	
replace(old, new)

	Replace the instruction old with the other instruction
new in this block’s list of instructions. All uses of
old in the whole function are also patched. old and new
are Instruction objects.

	
	
function

	The function this block is defined in.

	
	
is_terminated

	Whether this block ends with a
terminator instruction.

	
	
terminator

	The block’s terminator instruction, if any.
Otherwise None.

	
class llvmlite.ir.BlockAddress

	A constant representing an address of a basic block.

Block address constants have the following attributes:

	
	
function

	The function in which the basic block is defined.

	
	
basic_block

	The basic block. Must be a part of function.

Metadata

There are several kinds of Metadata values.

	
class llvmlite.ir.MetaDataString(module, value)

	A string literal for use in metadata.

	module is the module that the metadata belongs to.

	value is a Python string.

	
class llvmlite.ir.MDValue

	A metadata node. To create an instance, call
Module.add_metadata().

	
class llvmlite.ir.DIValue

	A debug information descriptor, containing key-value pairs.
To create an instance, call Module.add_debug_info().

	
class llvmlite.ir.DIToken(value)

	A debug information “token,” representing a well-known
enumeration value. value is the enumeration name.

EXAMPLE: 'DW_LANG_Python'

	
class llvmlite.ir.NamedMetaData

	A named metadata node. To create an instance, call
Module.add_named_metadata(). NamedMetaData has
the add() method:

	
add(md)

	Append the given piece of metadata to the collection of
operands referred to by the NamedMetaData. md can
be either a MetaDataString or a MDValue.

Global values

Global values are values accessible using a module-wide name.

	
class llvmlite.ir.GlobalValue

	The base class for global values. Global values have the
following writable attributes:

	
	
linkage

	A Python string describing the linkage behavior of the
global value—for example, whether it is visible from
other modules. The default is the empty string, meaning
“external.”

	
	
storage_class

	A Python string describing the storage class of the
global value.

	The default is the empty string, meaning “default.”

	Other possible values include dllimport and
dllexport.

	
class llvmlite.ir.GlobalVariable(module, typ, name, addrspace=0)

	A global variable.

	module is where the variable is defined.

	typ is the variable’s type. It cannot be a function type.
To declare a global function, use Function.

The type of the returned Value is a pointer to typ.
To read the contents of the variable, you need to
load() from the returned Value.
To write to the variable, you need to
store() to the returned Value.

	name is the variable’s name—a Python string.

	addrspace is an optional address space to store the
variable in.

Global variables have the following writable attributes:

	
	
global_constant

	
	If True, the variable is declared a constant,
meaning that its contents cannot be modified.

	The default is False.

	
	
unnamed_addr

	
	If True, the address of the variable is deemed
insignificant, meaning that it is merged with other
variables that have the same initializer.

	The default is False.

	
	
initializer

	The variable’s initialization value—probably a
Constant of type typ. The default is None,
meaning that the variable is uninitialized.

	
	
align

	An explicit alignment in bytes. The default is None,
meaning that the default alignment for the variable’s
type is used.

	
class llvmlite.ir.Function(module, typ, name)

	A global function.

	module is where the function is defined.

	typ is the function’s type—a FunctionType
instance.

	name is the function’s name—a Python string.

If a global function has any basic blocks, it is a
Function definition. Otherwise, it is a
Function declaration.

Functions have the following methods and attributes:

	
	
append_basic_block(name='')

	Append a Basic block to this function’s body.

	If name is not empty, it names the block’s entry
Label.

	Returns a new Block.

	
	
insert_basic_block(before, name='')

	Similar to append_basic_block(), but inserts it
before the basic block before in the function’s list
of basic blocks.

	
	
set_metadata(name, node)

	Add a function-specific metadata named name pointing to the
given metadata node—an MDValue.

	
	
args

	The function’s arguments as a tuple of Argument
instances.

	
	
attributes

	A set of function attributes. Each optional attribute is
a Python string. By default this is empty. Use the
.add() method to add an attribute:

fnty = ir.FunctionType(ir.DoubleType(), (ir.DoubleType(),))
fn = Function(module, fnty, "sqrt")
fn.attributes.add("alwaysinline")

	
	
calling_convention

	The function’s calling convention—a Python string. The
default is the empty string.

	
	
is_declaration

	Indicates whether the global function is a declaration
or a definition.

	If True, it is a declaration.

	If False, it is a definition.

Instructions

Every Instruction is also a value:

	It has a name—the recipient’s name.

	It has a well-defined type.

	It can be used as an operand in other instructions or in
literals.

Usually, you should not instantiate instruction types directly.
Use the helper methods on the IRBuilder class.

	
class llvmlite.ir.Instruction

	The base class for all instructions. Instructions have the
following method and attributes:

	
	
set_metadata(name, node)

	Add an instruction-specific metadata name pointing to the
given metadata node—an MDValue.

	
	
function

	The function that contains this instruction.

	
	
module

	The module that defines this instruction’s function.

	
class llvmlite.ir.PredictableInstr

	The class of instructions for which we can specify the
probabilities of different outcomes—for example, a switch or
a conditional branch. Predictable instructions have the
set_weights() method.

	
set_weights(weights)

	Set the weights of the instruction’s possible outcomes.
weights is a sequence of positive integers, each
corresponding to a different outcome and specifying its
relative probability compared to other outcomes. The
greater the number, the likelier the outcome.

	
class llvmlite.ir.SwitchInstr

	A switch instruction. Switch instructions have the
add_case() method.

	
add_case(val, block)

	Add a case to the switch instruction.

	val should be a Constant or a Python value
compatible with the switch instruction’s operand type.

	block is a Block to jump to if val and the
switch operand compare equal.

	
class llvmlite.ir.IndirectBranch

	An indirect branch instruction. Indirect branch instructions
have the add_destination() method.

	
add_destination(value, block)

	Add an outgoing edge. The indirect branch instruction must
refer to every basic block it can transfer control to.

	
class llvmlite.ir.PhiInstr

	A phi instruction. Phi instructions have the
add_incoming() method.

	
add_incoming(value, block)

	Add an incoming edge. Whenever transfer is controlled
from block—a Block—the phi instruction
takes the given value.

	
class llvmlite.ir.LandingPad

	A landing pad. Landing pads have the add_clause() method:

	
add_clause(value, block)

	Add a catch or filter clause. Create catch clauses using
CatchClause and filter clauses using
FilterClause.

Landing pad clauses

Landing pads have the following classes associated with them.

	
class llvmlite.ir.CatchClause(value)

	A catch clause. Instructs the personality function to compare
the in-flight exception typeinfo with value, which should
have type IntType(8).as_pointer().as_pointer().

	
class llvmlite.ir.FilterClause(value)

	A filter clause. Instructs the personality function to check
inclusion of the the in-flight exception typeinfo in value,
which should have type
ArrayType(IntType(8).as_pointer().as_pointer(), …).

Modules

A module is a compilation unit. It defines a set of related
functions, global variables and metadata. In the IR layer, a
module is represented by the Module class.

	
class llvmlite.ir.Module(name='')

	Create a module. For informational purposes, you can specify
the optional name, a Python string.

Modules have the following methods and attributes:

	
	
add_debug_info(kind, operands, is_distinct=False)

	Add debug information metadata to the module with the
given operands—a mapping of string keys to values—or
return a previous equivalent metadata. kind is the name
of the debug information kind.

EXAMPLE: 'DICompileUnit'

A DIValue instance is returned. You can then
associate it to, for example, an instruction.

EXAMPLE:

di_file = module.add_debug_info("DIFile", {
 "filename": "factorial.py",
 "directory": "bar",
})
di_compile_unit = module.add_debug_info("DICompileUnit", {
 "language": ir.DIToken("DW_LANG_Python"),
 "file": di_file,
 "producer": "llvmlite x.y",
 "runtimeVersion": 2,
 "isOptimized": False,
}, is_distinct=True)

	
	
add_global(globalvalue)

	Add the given globalvalue—a GlobalValue—to
this module. It should have a unique name in the whole
module.

	
	
add_metadata(operands)

	Add an unnamed Metadata node to the module with
the given operands—a list of metadata-compatible
values. If another metadata node with equal operands
already exists in the module, it is reused instead.
Returns an MDValue.

	
	
add_named_metadata(name, element=None)

	Return the metadata node with the given name. If it does
not already exist, the named metadata node is created
first. If element is not None, it can be a metadata
value or a sequence of values to append to the metadata
node’s elements. Returns a NamedMetaData.

EXAMPLE:

module.add_named_metadata("llvm.ident", ["llvmlite/1.0"])

	
	
get_global(name)

	Get the
Global value—a GlobalValue—with the
given name. KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] is raised if the name does
not exist.

	
	
get_named_metadata(name)

	Return the metadata node with the given name.
KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] is raised if the name does not exist.

	
	
get_unique_name(name)

	Return a unique name across the whole module. name is
the desired name, but a variation can be returned if it
is already in use.

	
	
data_layout

	A string representing the data layout in LLVM format.

	
	
functions

	The list of functions, as Function instances,
declared or defined in the module.

	
	
global_values

	An iterable of global values in this module.

	
	
triple

	A string representing the target architecture in LLVM
“triple” form.

IR builders

	Instantiation

	Attributes

	Utilities

	Positioning

	Flow control helpers

	Instruction building

	Arithmetic

	Conversions

	Comparisons

	Conditional move

	Phi

	Aggregate operations

	Memory

	Function call

	Branches

	Exception handling

	Inline assembler

	Miscellaneous

IRBuilder is the workhorse of LLVM Intermediate representation (IR) generation.
It allows you to fill the basic blocks of
your functions with LLVM instructions.

An IRBuilder internally maintains a current basic block
and a pointer inside the block’s list of instructions. When a
new instruction is added, it is inserted at that point, and then
the pointer is advanced after the new instruction.

A IRBuilder also maintains a reference to metadata
describing the current source location, which is attached to all
inserted instructions.

Instantiation

	
class llvmlite.ir.IRBuilder(block=None)

	Create a new IR builder. If block—a Block—is
given, the builder starts at the end of this basic block.

Attributes

IRBuilder has the following attributes:

	
	
IRBuilder.block

	The basic block that the builder is operating on.

	
	
IRBuilder.function

	The function that the builder is operating on.

	
	
IRBuilder.module

	The module that the builder’s function is defined in.

	
	
IRBuilder.debug_metadata

	If not None, the metadata that is attached to any
inserted instructions as !dbg, unless the instruction
already has !dbg set.

Utilities

	
IRBuilder.append_basic_block(name='')

	Append a basic block, with the given optional name, to the
current function. The current block is not changed. A
Block is returned.

Positioning

The following IRBuilder methods help you move the
current instruction pointer:

	
	
IRBuilder.position_before(instruction)

	Position immediately before the given instruction. The
current block is also changed to the instruction’s basic
block.

	
	
IRBuilder.position_after(instruction)

	Position immediately after the given instruction. The
current block is also changed to the instruction’s basic
block.

	
	
IRBuilder.position_at_start(block)

	Position at the start of the basic block.

	
	
IRBuilder.position_at_end(block)

	Position at the end of the basic block.

The following context managers allow you to temporarily switch to
another basic block and then go back to where you were.

	
	
IRBuilder.goto_block(block)

	Position the builder either at the end of the
basic block, if it is not terminated, or just before the
block’s terminator:

new_block = builder.append_basic_block('foo')
with builder.goto_block(new_block):
 # Now the builder is at the end of *new_block*
 # ... add instructions

Now the builder has returned to its previous position

	
	
IRBuilder.goto_entry_block()

	The same as goto_block(), but with the current
function’s entry block.

Flow control helpers

The following context managers make it easier to create
conditional code.

	
	
IRBuilder.if_then(pred, likely=None)

	Create a basic block whose execution is conditioned on
predicate pred, a value of type IntType(1). Another
basic block is created for instructions after the
conditional block. The current basic block is terminated
with a conditional branch based on pred.

When the context manager is entered, the builder positions
at the end of the conditional block. When the context
manager is exited, the builder positions at the start of
the continuation block.

If likely is not None, it indicates whether pred is
likely to be True, and metadata is emitted to specify
branch weights accordingly.

	
	
IRBuilder.if_else(pred, likely=None)

	Set up 2 basic blocks whose execution is conditioned on
predicate pred, a value of type IntType(1). likely has
the same meaning as in if_then().

A pair of context managers is yielded. Each of them acts as
an if_then() context manager—the first for the
block to be executed if pred is True and the second for
the block to be executed if pred is False.

When the context manager is exited, the builder is
positioned on a new continuation block that both
conditional blocks jump into.

Typical use:

with builder.if_else(pred) as (then, otherwise):
 with then:
 # emit instructions for when the predicate is true
 with otherwise:
 # emit instructions for when the predicate is false
emit instructions following the if-else block

Instruction building

The following methods insert a new instruction—an
Instruction instance—at the current index in the
current block. The new instruction is returned.

An instruction’s operands are almost always
values.

Many of these methods also take an optional name argument,
specifying the local name of the result value. If not given, a
unique name is automatically generated.

Arithmetic

In the methods below, the flags argument is an optional sequence
of strings that modify the instruction’s semantics. Examples
include the fast-math flags for floating-point operations, and
whether wraparound on overflow can be ignored on integer
operations.

Integer

	
	
IRBuilder.shl(lhs, rhs, name='', flags=())

	Left-shift lhs by rhs bits.

	
	
IRBuilder.lshr(lhs, rhs, name='', flags=())

	Logical right-shift lhs by rhs bits.

	
	
IRBuilder.ashr(lhs, rhs, name='', flags=())

	Arithmetic, signed, right-shift lhs by rhs bits.

	
	
IRBuilder.add(lhs, rhs, name='', flags=())

	Integer add lhs and rhs.

	
	
IRBuilder.sadd_with_overflow(lhs, rhs, name='', flags=())

	Integer add lhs and rhs. A { result, overflow bit }
structure is returned.

	
	
IRBuilder.sub(lhs, rhs, name='', flags=())

	Integer subtract rhs from lhs.

	
	
IRBuilder.ssub_with_overflow(lhs, rhs, name='', flags=())

	Integer subtract rhs from lhs. A
{ result, overflow bit } structure is returned.

	
	
IRBuilder.mul(lhs, rhs, name='', flags=())

	Integer multiply lhs with rhs.

	
	
IRBuilder.smul_with_overflow(lhs, rhs, name='', flags=())

	Integer multiply lhs with rhs. A
{ result, overflow bit } structure is returned.

	
	
IRBuilder.sdiv(lhs, rhs, name='', flags=())

	Signed integer divide lhs by rhs.

	
	
IRBuilder.udiv(lhs, rhs, name='', flags=())

	Unsigned integer divide lhs by rhs.

	
	
IRBuilder.srem(lhs, rhs, name='', flags=())

	Signed integer remainder of lhs divided by rhs.

	
	
IRBuilder.urem(lhs, rhs, name='', flags=())

	Unsigned integer remainder of lhs divided by rhs.

	
	
IRBuilder.and_(lhs, rhs, name='', flags=())

	Bitwise AND lhs with rhs.

	
	
IRBuilder.or_(lhs, rhs, name='', flags=())

	Bitwise OR lhs with rhs.

	
	
IRBuilder.xor(lhs, rhs, name='', flags=())

	Bitwise XOR lhs with rhs.

	
	
IRBuilder.not_(value, name='')

	Bitwise complement value.

	
	
IRBuilder.neg(value, name='')

	Negate value.

Floating-point

	
	
IRBuilder.fadd(lhs, rhs, name='', flags=())

	Floating-point add lhs and rhs.

	
	
IRBuilder.fsub(lhs, rhs, name='', flags=())

	Floating-point subtract rhs from lhs.

	
	
IRBuilder.fmul(lhs, rhs, name='', flags=())

	Floating-point multiply lhs by rhs.

	
	
IRBuilder.fdiv(lhs, rhs, name='', flags=())

	Floating-point divide lhs by rhs.

	
	
IRBuilder.frem(lhs, rhs, name='', flags=())

	Floating-point remainder of lhs divided by rhs.

Conversions

	
	
IRBuilder.trunc(value, typ, name='')

	Truncate integer value to integer type typ.

	
	
IRBuilder.zext(value, typ, name='')

	Zero-extend integer value to integer type typ.

	
	
IRBuilder.sext(value, typ, name='')

	Sign-extend integer value to integer type typ.

	
	
IRBuilder.fptrunc(value, typ, name='')

	Truncate—approximate—floating-point value to
floating-point type typ.

	
	
IRBuilder.fpext(value, typ, name='')

	Extend floating-point value to floating-point type typ.

	
	
IRBuilder.fptosi(value, typ, name='')

	Convert floating-point value to signed integer type typ.

	
	
IRBuilder.fptoui(value, typ, name='')

	Convert floating-point value to unsigned integer type typ.

	
	
IRBuilder.sitofp(value, typ, name='')

	Convert signed integer value to floating-point type typ.

	
	
IRBuilder.uitofp(value, typ, name='')

	Convert unsigned integer value to floating-point type typ.

	
	
IRBuilder.ptrtoint(value, typ, name='')

	Convert pointer value to integer type typ.

	
	
IRBuilder.inttoptr(value, typ, name='')

	Convert integer value to pointer type typ.

	
	
IRBuilder.bitcast(value, typ, name='')

	Convert pointer value to pointer type typ.

	
	
IRBuilder.addrspacecast(value, typ, name='')

	Convert pointer value to pointer type typ of different
address space.

Comparisons

	
	
IRBuilder.icmp_signed(cmpop, lhs, rhs, name='')

	Signed integer compare lhs with rhs. The string cmpop can
be one of <, <=, ==, !=, >= or >.

	
	
IRBuilder.icmp_unsigned(cmpop, lhs, rhs, name='')

	Unsigned integer compare lhs with rhs. The string cmpop can
be one of <, <=, ==, !=, >= or >.

	
	
IRBuilder.fcmp_ordered(cmpop, lhs, rhs, name='', flags=[])

	Floating-point ordered compare lhs with rhs.

	The string cmpop can be one of <, <=, ==,
!=, >=, >, ord or uno.

	The flags list can include any of nnan, ninf,
nsz, arcp and fast, which implies all
previous flags.

	
	
IRBuilder.fcmp_unordered(cmpop, lhs, rhs, name='', flags=[])

	Floating-point unordered compare lhs with rhs.

	The string cmpop, can be one of <, <=, ==,
!=, >=, >, ord or uno.

	The flags list can include any of nnan, ninf,
nsz, arcp and fast, which implies all
previous flags.

Conditional move

	
IRBuilder.select(cond, lhs, rhs, name='')

	A 2-way select—lhs if cond, else rhs.

Phi

	
IRBuilder.phi(typ, name='')

	Create a phi node. To add incoming edges and their values, use
the add_incoming() method on the return value.

Aggregate operations

	
	
IRBuilder.extract_value(agg, index, name='')

	Extract the element at index of the
aggregate value agg.

	index may be an integer or a sequence of integers.

	Indices must be constant.

	
	
IRBuilder.insert_value(agg, value, index, name='')

	Build a copy of aggregate value
agg by setting the new value at index. The value for index
can be of the same types as in extract_value().

Memory

	
	
IRBuilder.alloca(typ, size=None, name='')

	Statically allocate a stack slot for size values of type
typ. If size is not given, a stack slot for 1 value is
allocated.

	
	
IRBuilder.load(ptr, name='', align=None)

	Load value from pointer ptr. If align is passed, it should
be a Python integer specifying the guaranteed pointer
alignment.

	
	
IRBuilder.store(value, ptr, align=None)

	Store value to pointer ptr. If align is passed, it should
be a Python integer specifying the guaranteed pointer
alignment.

	
	
IRBuilder.gep(ptr, indices, inbounds=False, name='')

	The getelementptr instruction. Given a pointer ptr
to an aggregate value, compute the address of the inner
element given by the sequence of indices.

	
	
llvmlite.ir.cmpxchg(ptr, cmp, val, ordering, failordering=None, name='')

	Atomic compare-and-swap at address ptr.

	cmp is the value to compare the contents with.

	val is the new value to be swapped into.

	Optional ordering and failordering specify the memory
model for this instruction.

	
	
llvmlite.ir.atomic_rmw(op, ptr, val, ordering, name='')

	Atomic in-memory operation op at address ptr, with operand
val.

	The string op specifies the operation—for example,
add or sub.

	The optional ordering specifies the memory model for this
instruction.

Function call

	
IRBuilder.call(fn, args, name='', cconv=None, tail=False, fastmath=())

	Call function fn with arguments args, a sequence of values.

	cconv is the optional calling convention.

	tail, if True, is a hint for the optimizer to perform
tail-call optimization.

	fastmath is a string or a sequence of strings of names for
fast-math flags [http://llvm.org/docs/LangRef.html#fast-math-flags].

Branches

The following methods are all terminators:

	
	
IRBuilder.branch(target)

	Unconditional jump to the target, a Block.

	
	
IRBuilder.cbranch(cond, truebr, falsebr)

	Conditional jump to either truebr or falsebr—both
Block instances—depending on cond, a value of
type IntType(1). This instruction is a
PredictableInstr.

	
	
IRBuilder.ret(value)

	Return the value from the current function.

	
	
IRBuilder.ret_void()

	Return from the current function without a value.

	
	
IRBuilder.switch(value, default)

	Switch to different blocks based on the value. default is
the block to switch to if no other block is matched.

To add non-default targets, use the
add_case() method on the return value.

	
	
IRBuilder.indirectbr(address)

	Jump to the basic block with the address address, a value
of type IntType(8).as_pointer().

To obtain a block address, use the
BlockAddress constant.

To add all possible jump destinations, use
the add_destination() method on the
return value.

Exception handling

	
	
IRBuilder.invoke(self, fn, args, normal_to, unwind_to, name='', cconv=None, tail=False)

	Call function fn with arguments args, a sequence of values.

	cconv is the optional calling convention.

	tail, if True, is a hint for the optimizer to perform
tail-call optimization.

If the function fn returns normally, control is transferred
to normal_to. Otherwise, it is transferred to unwind_to,
whose first non-phi instruction must be LandingPad.

	
	
IRBuilder.landingpad(typ, personality, name='', cleanup=False)

	Describe which exceptions this basic block can handle.

	typ specifies the return type of the landing pad. It is a
structure with 2 pointer-sized fields.

	personality specifies an exception personality function.

	cleanup specifies whether control should always be
transferred to this landing pad, even when no matching
exception is caught.

To add landing pad clauses, use the
add_clause() method on the return value.

There are 2 kinds of landing pad clauses:

	A CatchClause, which specifies a typeinfo for
a single exception to be caught. The typeinfo is a value
of type IntType(8).as_pointer().as_pointer();

	A FilterClause, which specifies an array of
typeinfos.

Every landing pad must either contain at least 1 clause
or be marked for cleanup.

The semantics of a landing pad are entirely determined by
the personality function. For details on the way LLVM
handles landing pads in the optimizer, see
Exception handling in
LLVM [http://llvm.org/docs/ExceptionHandling.html].
For details on the implementation of personality functions,
see Itanium exception handling
ABI [https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html].

	
	
IRBuilder.resume(landingpad)

	Resume an exception caught by landingpad. Used to indicate
that the landing pad did not catch the exception after all,
perhaps because it only performed cleanup.

Inline assembler

	
	
IRBuilder.asm(ftype, asm, constraint, args, side_effect, name='')

	Add an inline assembler call instruction. For example, this
is used in load_reg() and store_reg().

Arguments:

	ftype is a function type specifying the inputs and output
of the inline assembler call.

	asm is the inline assembler snippet—for example,
"mov $2, $0\nadd $1, $0". x86 inline ASM uses the
AT&T syntax.

	constraint defines the input/output constraints—for
example =r,r,r.

	args is the list of inputs, as IR values.

	side_effect is a boolean that specifies whether or not
this instruction has side effects not visible in the
constraint list.

	name is the optional name of the returned LLVM value.

For more information about these parameters, see the
official LLVM documentation [http://llvm.org/docs/LangRef.html#inline-asm-constraint-string].

EXAMPLE: Adding 2 64-bit values on x86:

fty = FunctionType(IntType(64), [IntType(64),IntType(64)])
add = builder.asm(fty, "mov $2, $0\nadd $1, $0", "=r,r,r",
 (arg_0, arg_1), name="asm_add")

	
	
IRBuilder.load_reg(reg_type, reg_name, name='')

	Load a register value into an LLVM value.

EXAMPLE: Obtaining the value of the rax register:

builder.load_reg(IntType(64), "rax")

	
	
IRBuilder.store_reg(value, reg_type, reg_name, name='')

	Store an LLVM value inside a register.

EXAMPLE: Storing 0xAAAAAAAAAAAAAAAA into the rax
register:

builder.store_reg(Constant(IntType(64), 0xAAAAAAAAAAAAAAAA), IntType(64), "rax")

Miscellaneous

	
	
IRBuilder.assume(cond)

	Let the LLVM optimizer assume that cond—a value of type
IntType(1)—is True.

	
	
IRBuilder.unreachable()

	Mark an unreachable point in the code.

Example—defining a simple function

This example defines a function that adds 2 double-precision,
floating-point numbers.

"""
This file demonstrates a trivial function "fpadd" returning the sum of
two floating-point numbers.
"""

from llvmlite import ir

Create some useful types
double = ir.DoubleType()
fnty = ir.FunctionType(double, (double, double))

Create an empty module...
module = ir.Module(name=__file__)
and declare a function named "fpadd" inside it
func = ir.Function(module, fnty, name="fpadd")

Now implement the function
block = func.append_basic_block(name="entry")
builder = ir.IRBuilder(block)
a, b = func.args
result = builder.fadd(a, b, name="res")
builder.ret(result)

Print the module IR
print(module)

The generated LLVM
intermediate representation
is printed at the end:

; ModuleID = "examples/ir_fpadd.py"
target triple = "unknown-unknown-unknown"
target datalayout = ""

define double @"fpadd"(double %".1", double %".2")
{
entry:
 %"res" = fadd double %".1", %".2"
 ret double %"res"
}

To learn how to compile and execute this function, see
LLVM binding layer—llvmlite.binding.

LLVM binding layer—llvmlite.binding

The llvmlite.binding module provides classes to interact
with functionalities of the LLVM library. Generally, they closely
mirror concepts of the C++ API. Only a small subset of the LLVM
API is mirrored: those parts that have proven useful to
implement Numba [http://numba.pydata.org/]’s JIT compiler.

	Initialization and finalization

	Dynamic libraries and symbols

	Target information

	Context

	Modules

	Value references

	Type references

	Execution engine

	Optimization passes

	Analysis utilities

	Example—compiling a simple function

Initialization and finalization

You only need to call these functions once per process invocation.

	
	
llvmlite.binding.initialize()

	Initialize the LLVM core.

	
	
llvmlite.binding.initialize_all_targets()

	Initialize all targets. Must be called before targets can
be looked up via the Target class.

	
	
llvmlite.binding.initialize_all_asmprinters()

	Initialize all code generators. Must be called before
generating any assembly or machine code via the
TargetMachine.emit_object() and
TargetMachine.emit_assembly() methods.

	
	
llvmlite.binding.initialize_native_target()

	Initialize the native—host—target. Must be called once
before doing any code generation.

	
	
llvmlite.binding.initialize_native_asmprinter()

	Initialize the native assembly printer.

	
	
llvmlite.binding.initialize_native_asmparser()

	Initialize the native assembly parser. Must be called for
inline assembly to work.

	
	
llvmlite.binding.shutdown()

	Shut down the LLVM core.

	
	
llvmlite.binding.llvm_version_info

	A 3-integer tuple representing the LLVM version number.

EXAMPLE: (3, 7, 1)

Since LLVM is statically linked into the llvmlite DLL,
this is guaranteed to represent the true LLVM version in use.

Dynamic libraries and symbols

These functions tell LLVM how to resolve external symbols
referred from compiled LLVM code.

	
	
llvmlite.binding.add_symbol(name, address)

	Register the address of global symbol name, for use from
LLVM-compiled functions.

	
	
llvmlite.binding.address_of_symbol(name)

	Get the in-process address of symbol name. An integer is
returned, or None if the symbol is not found.

	
	
llvmlite.binding.load_library_permanently(filename)

	Load an external shared library. filename is the path to the
shared library file.

Target information

Target information allows you to inspect and modify aspects of
the code generation, such as which CPU is targeted or what
optimization level is desired.

Minimal use of this module would be to create a
TargetMachine for later use in code generation.

EXAMPLE:

from llvmlite import binding
target = binding.Target.from_default_triple()
target_machine = target.create_target_machine()

Functions

	
	
llvmlite.binding.get_default_triple()

	Return a string representing the default target triple that
LLVM is configured to produce code for. This represents the
host’s architecture and platform.

	
	
llvmlite.binding.get_process_triple()

	Return a target triple suitable for generating code for the
current process.

EXAMPLE: The default triple from get_default_triple()
is not suitable when LLVM is compiled for 32-bit, but the
process is executing in 64-bit mode.

	
	
llvmlite.binding.get_object_format(triple=None)

	Get the object format for the given triple string, or the
default triple if None. Returns a string such as
"ELF", "COFF" or "MachO".

	
	
llvmlite.binding.get_host_cpu_name()

	Get the name of the host’s CPU as a string. You can use the
return value with Target.create_target_machine().

	
	
llvmlite.binding.get_host_cpu_features()

	Return a dictionary-like object indicating the CPU features
for the current architecture and whether they are enabled
for this CPU.

The key-value pairs contain the feature name
as a string and a boolean indicating whether the feature is
available.

The returned value is an instance of the
FeatureMap class, which adds a new method
.flatten() for returning a string suitable for use
as the features argument to
Target.create_target_machine().

If LLVM has not implemented this feature or it fails to get
the information, a RuntimeError exception is raised.

	
	
llvmlite.binding.create_target_data(data_layout)

	Create a TargetData representing the given
data_layout string.

Classes

	
class llvmlite.binding.TargetData

	Provides functionality around a given data layout. It
specifies how the different types are to be represented in
memory. Use create_target_data() to instantiate.

	
	
get_abi_size(type)

	Get the ABI-mandated size of a TypeRef object.
Returns an integer.

	
	
get_pointee_abi_size(type)

	Similar to get_abi_size(), but assumes that type is
an LLVM pointer type and returns the ABI-mandated size of
the type pointed to. This is useful for a global
variable, whose type is really a pointer to the declared
type.

	
	
get_pointee_abi_alignment(type)

	Similar to get_pointee_abi_size(), but returns the
ABI-mandated alignment rather than the ABI size.

	
	
get_element_offset(type, position)

	Computes the byte offset of the struct element at position.

	
class llvmlite.binding.Target

	Represents a compilation target. The following factories
are provided:

	
	
classmethod from_triple(triple)

	Create a new Target instance for the given
triple string denoting the target platform.

	
	
classmethod from_default_triple()

	Create a new Target instance for the default
platform that LLVM is configured to produce code for.
This is equivalent to calling
Target.from_triple(get_default_triple()).

The following attributes and methods are available:

	
	
description

	A description of the target.

	
	
name

	The name of the target.

	
	
triple

	A string that uniquely identifies the target.

EXAMPLE: "x86_64-pc-linux-gnu"

	
	
create_target_machine(cpu='', features='', opt=2, reloc='default', codemodel='jitdefault')

	Create a new TargetMachine instance for this
target and with the given options:

	cpu is an optional CPU name to specialize for.

	features is a comma-separated list of target-specific
features to enable or disable.

	opt is the optimization level, from 0 to 3.

	reloc is the relocation model.

	codemodel is the code model.

The defaults for reloc and codemodel are appropriate for
JIT compilation.

TIP: To list the available CPUs and features for a
target, run the command llc -mcpu=help.

	
class llvmlite.binding.TargetMachine

	Holds all the settings necessary for proper code generation,
including target information and compiler options. Instantiate
using Target.create_target_machine().

	
	
add_analysis_passes(pm)

	Register analysis passes for this target machine with the
PassManager instance pm.

	
	
emit_object(module)

	Represent the compiled module—a ModuleRef
instance—as a code object that is suitable for use
with the platform’s linker. Returns a bytestring.

	
	
set_asm_verbosity(is_verbose)

	Set whether this target machine emits assembly with
human-readable comments, such as those describing control
flow or debug information.

	
	
emit_assembly(module)

	Return a string representing the compiled module’s native
assembler. You must first call
initialize_native_asmprinter().

	
	
target_data

	The TargetData associated with this target
machine.

	
class llvmlite.binding.FeatureMap

	Stores processor feature information in a dictionary-like
object. This class extends dict and adds only the
.flatten() method.

	
flatten(sort=True)

	Returns a string representation of the stored information
that is suitable for use in the features argument of
Target.create_target_machine().

If the sort keyword argument is
True—the default—the features are sorted by name
to give a stable ordering between Python sessions.

Context

LLVMContext is an opaque context reference used to group modules into logical groups.
For example, the type names are unique within a context, the name collisions
are resolved by LLVM automatically.

LLVMContextRef

A wrapper around LLVMContext. Should not be instantiated directly, use the
following methods:

	
class LLVMContextRef

	

	
	
create_context():

	Create a new LLVMContext instance.

	
	
get_global_context():

	Get the reference to the global context.

Modules

Although they conceptually represent the same thing, modules in
the IR layer and modules in the
binding layer do not have the same roles
and do not expose the same API.

While modules in the IR layer allow you to build and group
functions together, modules in the binding layer give access to
compilation, linking and execution of code. To distinguish
between them, the module class in the binding layer is
called ModuleRef as opposed to
llvmlite.ir.Module.

To go from the IR layer to the binding layer, use
the parse_assembly() function.

Factory functions

You can create a module from the following factory functions:

	
	
llvmlite.binding.parse_assembly(llvmir, context=None)

	Parse the given llvmir, a string containing some LLVM IR
code. If parsing is successful, a new ModuleRef
instance is returned.

	context: an instance of LLVMContextRef.

Defaults to the global context.

EXAMPLE: You can obtain llvmir by calling str() on an
llvmlite.ir.Module object.

	
	
llvmlite.binding.parse_bitcode(bitcode, context=None)

	Parse the given bitcode, a bytestring containing the
LLVM bitcode of a module. If parsing is successful, a new
ModuleRef instance is returned.

	context: an instance of LLVMContextRef.

Defaults to the global context.

EXAMPLE: You can obtain the bitcode by calling
ModuleRef.as_bitcode().

The ModuleRef class

	
class llvmlite.binding.ModuleRef

	A wrapper around an LLVM module object. The following methods
and properties are available:

	
	
as_bitcode()

	Return the bitcode of this module as a bytes object.

	
	
get_function(name)

	Get the function with the given name in this module.

If found, a ValueRef is returned. Otherwise,
NameError [https://docs.python.org/3/library/exceptions.html#NameError] is raised.

	
	
get_global_variable(name)

	Get the global variable with the given name in this
module.

If found, a ValueRef is returned. Otherwise,
NameError [https://docs.python.org/3/library/exceptions.html#NameError] is raised.

	
	
get_struct_type(name)

	Get the struct type with the given name in this module.

If found, a TypeRef is returned. Otherwise,
NameError [https://docs.python.org/3/library/exceptions.html#NameError] is raised.

	
	
link_in(other, preserve=False)

	Link the other module into this module, resolving
references wherever possible.

	If preserve is True, the other module is first
copied in order to preserve its contents.

	If preserve is False, the other module is not
usable after this call.

	
	
verify()

	Verify the module’s correctness. On error, raise
RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError].

	
	
data_layout

	The data layout string for this module. This attribute
can be set.

	
	
functions

	An iterator over the functions defined in this module.
Each function is a ValueRef instance.

	
	
global_variables

	An iterator over the global variables defined in this
module. Each global variable is a ValueRef
instance.

	
	
struct_types

	An iterator over the struct types defined in this module.
Each type is a TypeRef instance.

	
	
name

	The module’s identifier, as a string. This attribute can
be set.

	
	
triple

	The platform “triple” string for this module. This
attribute can be set.

Value references

A value reference is a wrapper around an LLVM value for you to
inspect. You cannot create a value reference yourself. You get
them from methods of the ModuleRef class.

Enumerations

	
class llvmlite.binding.Linkage

	The linkage types allowed for global values are:

	
	
external

	

	
	
available_externally

	

	
	
linkonce_any

	

	
	
linkonce_odr

	

	
	
linkonce_odr_autohide

	

	
	
weak_any

	

	
	
weak_odr

	

	
	
appending

	

	
	
internal

	

	
	
private

	

	
	
dllimport

	

	
	
dllexport

	

	
	
external_weak

	

	
	
ghost

	

	
	
common

	

	
	
linker_private

	

	
	
linker_private_weak

	

	
class llvmlite.binding.Visibility

	The visibility styles allowed for global values are:

	
	
default

	

	
	
hidden

	

	
	
protected

	

	
class llvmlite.binding.StorageClass

	The storage classes allowed for global values are:

	
	
default

	

	
	
dllimport

	

	
	
dllexport

	

The ValueRef class

	
class llvmlite.binding.ValueRef

	A wrapper around an LLVM value. The attributes available are:

	
	
is_declaration

	
	True—The global value is a mere declaration.

	False—The global value is defined in the given
module.

	
	
linkage

	The linkage type—a Linkage instance—for
this value. This attribute can be set.

	
	
module

	The module—a ModuleRef instance—that this
value is defined in.

	
	
name

	This value’s name, as a string. This attribute can be set.

	
	
type

	This value’s LLVM type as TypeRef object.

	
	
storage_class

	The storage
class—a StorageClass instance—for
this value. This attribute can be set.

	
	
visibility

	The visibility
style—a Visibility instance—for
this value. This attribute can be set.

Type references

A type reference wraps an LLVM type. It allows accessing type’s name and
IR representation. It is also accepted by methods like
TargetData.get_abi_size().

The TypeRef class

	
class llvmlite.binding.TypeRef

	

A wrapper around an LLVM type. The attributes available are:

	
	
llvmlite.binding.name

	This type’s name, as a string.

	
	
llvmlite.binding.is_pointer

	
	True—The type is a pointer type

	False—The type is not a pointer type

	
	
llvmlite.binding.element_type

	If the type is a pointer, return the pointed-to type. Raises a
ValueError if the type is not a pointer type.

	
	
llvmlite.binding.__str__(self)

	Get the string IR representation of the type.

Execution engine

The execution engine is where actual code generation and
execution happen. The currently supported LLVM
version—LLVM 3.8—exposes a single execution engine, named
MCJIT.

Functions

	
	
llvmlite.binding.create_mcjit_compiler(module, target_machine)

	Create a MCJIT-powered engine from the given module and
target_machine.

	module does not need to contain any code.

	Returns a ExecutionEngine instance.

	
	
llvmlite.binding.check_jit_execution()

	Ensure that the system allows creation of executable memory
ranges for JIT-compiled code. If some security mechanism
such as SELinux prevents it, an exception is raised.
Otherwise the function returns silently.

Calling this function early can help diagnose system
configuration issues, instead of letting JIT-compiled
functions crash mysteriously.

The ExecutionEngine class

	
class llvmlite.binding.ExecutionEngine

	A wrapper around an LLVM execution engine. The following
methods and properties are available:

	
	
add_module(module)

	Add the module—a ModuleRef instance—for
code generation. When this method is called, ownership
of the module is transferred to the execution engine.

	
	
finalize_object()

	Make sure all modules owned by the execution engine are
fully processed and usable for execution.

	
	
get_function_address(name)

	Return the address of the function name as an integer.
It’s a fatal error in LLVM if the symbol of name doesn’t exist.

	
	
get_global_value_address(name)

	Return the address of the global value name as an
integer.
It’s a fatal error in LLVM if the symbol of name doesn’t exist.

	
	
remove_module(module)

	Remove the module—a ModuleRef instance—from
the modules owned by the execution engine. This allows
releasing the resources owned by the module without
destroying the execution engine.

	
	
set_object_cache(notify_func=None, getbuffer_func=None)

	Set the object cache callbacks for this engine.

	notify_func, if given, is called whenever the engine
has finished compiling a module. It is passed the
(module, buffer) arguments:

	module is a ModuleRef instance.

	buffer is a bytes object of the code generated for
the module.

The return value is ignored.

	getbuffer_func, if given, is called before the engine
starts compiling a module. It is passed an argument,
module, a ModuleRef instance of the module
being compiled.

	It can return None, in which case the module
is compiled normally.

	It can return a bytes object of native code for the
module, which bypasses compilation entirely.

	
	
target_data

	The TargetData used by the execution engine.

Optimization passes

LLVM gives you the opportunity to fine-tune optimization passes.
Optimization passes are managed by a pass manager. There are 2
kinds of pass managers:

	FunctionPassManager, for optimizations that work on
single functions.

	ModulePassManager, for optimizations that work on
whole modules.

To instantiate either of these pass managers, you first need to
create and configure a PassManagerBuilder.

	
class llvmlite.binding.PassManagerBuilder

	
Create a new pass manager builder. This object centralizes
optimization settings.

The populate method is available:

	
populate(pm)

	Populate the pass manager pm with the optimization passes
configured in this pass manager builder.

The following writable attributes are available:

	
	
disable_unroll_loops

	If True, disable loop unrolling.

	
	
inlining_threshold

	The integer threshold for inlining one function into
another. The higher the number, the more likely that
inlining will occur. This attribute is write-only.

	
	
loop_vectorize

	If True, allow vectorizing loops.

	
	
opt_level

	The general optimization level, as an integer between 0
and 3.

	
	
size_level

	Whether and how much to optimize for size, as an integer
between 0 and 2.

	
	
slp_vectorize

	If True, enable the SLP vectorizer, which uses a
different algorithm than the loop vectorizer. Both may
be enabled at the same time.

	
class llvmlite.binding.PassManager

	The base class for pass managers. Use individual add_*
methods or PassManagerBuilder.populate() to add
optimization passes.

	
	
add_constant_merge_pass()

	See constmerge pass documentation [http://llvm.org/docs/Passes.html#constmerge-merge-duplicate-global-constants].

	
	
add_dead_arg_elimination_pass()

	See deadargelim pass documentation [http://llvm.org/docs/Passes.html#deadargelim-dead-argument-elimination].

	
	
add_function_attrs_pass()

	See functionattrs pass documentation [http://llvm.org/docs/Passes.html#functionattrs-deduce-function-attributes].

	
	
add_function_inlining_pass(self)

	See inline pass documentation [http://llvm.org/docs/Passes.html#inline-function-integration-inlining].

	
	
add_global_dce_pass()

	See globaldce pass documentation [http://llvm.org/docs/Passes.html#globaldce-dead-global-elimination].

	
	
add_global_optimizer_pass()

	See globalopt pass documentation [http://llvm.org/docs/Passes.html#globalopt-global-variable-optimizer].

	
	
add_ipsccp_pass()

	See ipsccp pass documentation [http://llvm.org/docs/Passes.html#ipsccp-interprocedural-sparse-conditional-constant-propagation].

	
	
add_dead_code_elimination_pass()

	See dce pass documentation [http://llvm.org/docs/Passes.html#dce-dead-code-elimination].

	
	
add_cfg_simplification_pass()

	See simplifycfg pass documentation [http://llvm.org/docs/Passes.html#simplifycfg-simplify-the-cfg].

	
	
add_gvn_pass()

	See gvn pass documentation [http://llvm.org/docs/Passes.html#gvn-global-value-numbering].

	
	
add_instruction_combining_pass()

	See instcombine pass documentation [http://llvm.org/docs/Passes.html#passes-instcombine].

	
	
add_licm_pass()

	See licm pass documentation [http://llvm.org/docs/Passes.html#licm-loop-invariant-code-motion].

	
	
add_sccp_pass()

	See sccp pass documentation [http://llvm.org/docs/Passes.html#sccp-sparse-conditional-constant-propagation].

	
	
add_sroa_pass()

	See scalarrepl pass documentation [http://llvm.org/docs/Passes.html#scalarrepl-scalar-replacement-of-aggregates].

While the scalarrepl pass documentation describes the
transformation performed by the pass added by this
function, the pass corresponds to the opt -sroa
command-line option and not to opt -scalarrepl.

	
	
add_type_based_alias_analysis_pass()

	See tbaa metadata documentation [http://llvm.org/docs/LangRef.html#tbaa-metadata].

	
	
add_basic_alias_analysis_pass()

	See basicaa pass documentation [http://llvm.org/docs/AliasAnalysis.html#the-basicaa-pass].

	
class llvmlite.binding.ModulePassManager

	Create a new pass manager to run optimization passes on a
module.

The run method is available:

	
run(module)

	Run optimization passes on the
module, a ModuleRef instance.

Returns True if the optimizations made any modification
to the module. Otherwise returns False.

	
class llvmlite.binding.FunctionPassManager(module)

	Create a new pass manager to run optimization passes on a
function of the given module, a ModuleRef instance.

The following methods are available:

	
	
finalize()

	Run all the finalizers of the optimization passes.

	
	
initialize()

	Run all the initializers of the optimization passes.

	
	
run(function)

	Run optimization passes on function, a
ValueRef instance.

Returns True if the optimizations made any
modification to the module. Otherwise returns False.

Analysis utilities

	
llvmlite.binding.get_function_cfg(func, show_inst=True)

	Return a string of the control-flow graph of the function,
in DOT format.

	If func is not a materialized function, the module
containing the function is parsed to create an actual
LLVM module.

	The show_inst flag controls whether the instructions of each block
are printed.functions.

	
llvmlite.binding.view_dot_graph(graph, filename=None, view=False)

	View the given DOT source. This function requires the
graphviz package.

	If view is True, the image is rendered and displayed in
the default application in the system. The file path of the
output is returned.

	If view is False, a graphviz.Source object is
returned.

	If view is False and the environment is in an IPython
session, an IPython image object is returned and can be
displayed inline in the notebook.

Example—compiling a simple function

Compile and execute the function defined in ir-fpadd.py.
For more information on ir-fpadd.py, see
Example—Defining a simple function.
The function is compiled with no specific optimizations.

from __future__ import print_function

from ctypes import CFUNCTYPE, c_double

import llvmlite.binding as llvm

All these initializations are required for code generation!
llvm.initialize()
llvm.initialize_native_target()
llvm.initialize_native_asmprinter() # yes, even this one

llvm_ir = """
 ; ModuleID = "examples/ir_fpadd.py"
 target triple = "unknown-unknown-unknown"
 target datalayout = ""

 define double @"fpadd"(double %".1", double %".2")
 {
 entry:
 %"res" = fadd double %".1", %".2"
 ret double %"res"
 }
 """

def create_execution_engine():
 """
 Create an ExecutionEngine suitable for JIT code generation on
 the host CPU. The engine is reusable for an arbitrary number of
 modules.
 """
 # Create a target machine representing the host
 target = llvm.Target.from_default_triple()
 target_machine = target.create_target_machine()
 # And an execution engine with an empty backing module
 backing_mod = llvm.parse_assembly("")
 engine = llvm.create_mcjit_compiler(backing_mod, target_machine)
 return engine

def compile_ir(engine, llvm_ir):
 """
 Compile the LLVM IR string with the given engine.
 The compiled module object is returned.
 """
 # Create a LLVM module object from the IR
 mod = llvm.parse_assembly(llvm_ir)
 mod.verify()
 # Now add the module and make sure it is ready for execution
 engine.add_module(mod)
 engine.finalize_object()
 engine.run_static_constructors()
 return mod

engine = create_execution_engine()
mod = compile_ir(engine, llvm_ir)

Look up the function pointer (a Python int)
func_ptr = engine.get_function_address("fpadd")

Run the function via ctypes
cfunc = CFUNCTYPE(c_double, c_double, c_double)(func_ptr)
res = cfunc(1.0, 3.5)
print("fpadd(...) =", res)

Contributing to llvmlite

llvmlite originated to fulfill the needs of the Numba [http://numba.pydata.org/] project.
It is maintained mostly by the Numba team. We tend to prioritize
the needs and constraints of Numba over other conflicting desires.

We do welcome any contributions in the form of
bug reports or pull requests.

	Communication methods

	Development rules

	Documentation

Communication methods

Mailing list

Send email to the Numba users public mailing list at
numba-users@anaconda.com. You are welcome to send any questions
about contributing to llvmlite to this mailing list.

You can subscribe and read the archives on
Google Groups [https://groups.google.com/a/anaconda.com/forum/#!forum/numba-users].
The Gmane mirror [http://news.gmane.org/gmane.comp.python.numba.user]
allows NNTP access.

Bug reports

We use the
Github issue tracker [https://github.com/numba/llvmlite/issues]
to track both bug reports and feature requests. If you report an
issue, please include:

	What you are trying to do.

	Your operating system.

	What version of llvmlite you are running.

	A description of the problem—for example, the full error
traceback or the unexpected results you are getting.

	As far as possible, a code snippet that allows full
reproduction of your problem.

Pull requests

To contribute code:

	Fork our Github repository [https://github.com/numba/llvmlite].

	Create a branch representing your work.

	When your work is ready, submit it as a pull request from the
Github interface.

Development rules

Coding conventions

	All Python code should follow PEP 8 [https://www.python.org/dev/peps/pep-0008/].

	Our C++ code does not have a well-defined coding style.

	Code and documentation should generally fit within 80 columns,
for maximum readability with all existing tools, such as code
review user interfaces.

Platform support

Llvmlite will be kept compatible with Python 2.7, 3.4 and later
under at least Windows, macOS and Linux. It needs to be
compatible only with the currently supported LLVM version—the
3.8 series.

We do not expect contributors to test their code on all platforms.
Pull requests are automatically built and tested using
Travis-CI [https://travis-ci.org/numba/llvmlite], which
addresses Linux compatibility. Other operating systems are tested
on an internal continuous integration platform at
Anaconda®.

Documentation

This llvmlite documentation is built using Sphinx and maintained
in the docs directory inside the
llvmlite repository [https://github.com/numba/llvmlite].

	Edit the source files under docs/source/.

	Build the documentation:

make html

	Check the documentation:

open _build/html/index.html

Release Notes

v0.27.0

This release updates llvmlite to LLVM 7. Note that LLVM 7.0.0 contains
a critical bug that is resolved with a patch included in the llvmdev conda
package recipe [https://github.com/numba/llvmlite/tree/69aed71a829e6c552cca24a28c42abdf1efd2363/conda-recipes/llvmdev]. The final release of LLVM 7.0.1 may also resolve the issue.

	PR #434: Add another thread for RPi builds.

	PR #430: llvm lld integration, merge #428

	PR #428: Build LLD as part of the llvmdev package

	PR #413: Set up CI with Azure Pipelines

	PR #412: LLVM 7 support

v0.26.0

The primary new features in this release is support for generation of Intel
JIT events, which makes profiling of JIT compiled code in Intel VTune
possible. This release also contains some minor build improvements for ARMv7,
and some small fixes.

LLVM 7 support was originally slated for this release, but had to be delayed
after some issues arose in testing. LLVM 6 is still required for llvmlite.

	PR #409: Use native cmake on armv7l

	PR #407: Throttle thread count for llvm build on armv7l.

	PR #403: Add shutdown detection to ObjectRef __del__ method.

	PR #400: conda recipe: add make as build dep

	PR #399: Add get_element_offset to TargetData

	PR #398: Fix gep method call on Constant objects

	PR #395: Fix typo in irbuilder documentation

	PR #394: Enable IntelJIT events for LLVM for VTune support

v0.25.0

This release adds support for the FMA instruction, and has some documentation
and build improvements. Starting with this release, we are including
ARMv8 (AArch64) testig in our CI process.

	PR #391: Fix broken win32 py2.7 build.

	PR #387: protect against empty features in list

	PR #384: Read CMAKE_GENERATOR which conda-build sets

	PR #382: rewrite of install instructions, calling out LLVM build challenges

	PR #380: Add FMA intrinsic support

	PR #379: ARM aarch64 test on jetson tx2

	PR #378: add slack, drop flowdock

v0.24.0

This release adds support for Python 3.7 and fixes some build issues. It also
contains an updated SVML patch for the llvmdev package that works around some
vectorization issues. It also adds a selective LLVM 6.0.1 llvmdev build for the
ppc64le architecture.

	PR #374: Fix up broken patch selector

	PR #373: Add long description from readme

	PR #371: LLVM 6.0.1 build based on RC and fixes for PPC64LE

	PR #369: Recipe fixes for Conda Build 3

	PR #363: Workaround for incorrect vectorization factor computed for SVML
functions

	PR #356: fix build on OpenBSD.

	PR #351: Python 3.7 compat: Properly escape repl in re.sub

v0.23.2

This is a bug fix release to assist in addressing a critical Numba issue that
can affect users who download llvmlite packages from sources other than PyPI
(pip), Anaconda, or Intel Python: https://github.com/numba/numba/issues/3006

Support for SVML is now detected at compile time and baked into a function that
is exposed by llvmlite. This function can be queried at runtime to find out if
SVML is supported by the LLVM that llvmlite was compiled against, code
generation paths can then be adjusted accordingly.

The following PRs are closed in this release:

	PR #361: Add SVML detection and a function to declare support.

v0.23.1

This is a minor patch release that includes no code changes. It is issued to
fix a couple of problems with the build recipes for llvmdev (on which llvmlite
relies).

The following PRs are closed in this release:

	PR #353: PR Fix llvmdev build recipe.

	PR #348: llvmdev: enhancements to conda recipe

v0.23.0

In this release, we upgrade to LLVM 6. Two LLVM patches are added:

	A patch to fix LLVM bug (https://bugs.llvm.org/show_bug.cgi?id=37019) that
causes undefined behavior during CFG printing.

	A patch to enable Intel SVML auto-vectorization of transcendentals.

The following PRs are closed in this release:

	PR #343: Fix undefined behavior bug due to Twine usage in LLVM

	PR #340: This moves llvmlite to use LLVM 6.0.0 as its backend.

	PR #339: Add cttz & ctlz

	PR #338: Add 3 Bit Manipulation Intrinsics

	PR #330: Add support for LLVM fence instruction

	
	PR #326: Enable Intel SVML-enabled auto-vectorization for all the

	transcendentals

v0.22.0

In this release, we have changed the locking strategy that protects LLVM from
race conditions. Before, the llvmlite user (like Numba) was responsible for
this locking. Now, llvmlite imposes a global thread lock on all calls into
the LLVM API. This should be significantly less error prone. Future llvmlite
releases may manually exempt some functions from locking once they are
determined to be thread-safe.

The following PRs are closed in this release:

	PR#318: Ensuring threadsafety in concurrent usage of LLVM C-API

	PR#221: Add all function/return value attributes from LLVM 3.9

	PR#304: Expose support for static constructors/destructors

v0.21.0

In this release, we upgrade to LLVM 5. Our build scripts now use
conda-build 3. For our prebuilt binaries, GCC 7 toolchain is used
on unix-like systems and the OSX minimum deployment target is 10.9.

The following PRs are closed in this release:

	PR #315: Updates for conda build 3.

	PR #307: Fixes for LLVM5.

	PR #306: Working towards LLVM 5.0 support.

v0.20.0

Beginning with this minor release, we support wheels for Linux, OSX and Windows.
Pull requests related to enabling wheels are #294, #295, #296 and #297.
There are also fixes to the documentation (#283 and #289).

v0.19.0

This is a minor release with the following fixes.

	PR #281, Issue #280: Fix GEP addrspace issue

	PR #279: Fix #274 addrspace in gep

	PR #278: add Readthedocs badge

	PR #275: Add variables to pass through when doing conda-build

	PR #273: Fix the behavior of module.get_global

	PR #272: cmpop contains comparison type, not lhs

	PR #268, Fix #267: Support packed struct

The following are CI build related changes:

	PR #277: Add pass through gcc flags for llvmdev

	PR #276: Remove jenkins build scripts

v0.18.0

This is a minor release that fixes several issues (#263, #262, #258, #237) with
the wheel build. In addition, we have minor fixes for running on PPC64LE
platforms (#261). And, we added CI testing against PyPy (#253).

v0.17.1

This is a bugfix release that addresses issue #258 that our LLVM
binding shared library is missing from the wheel builds.

v0.17.0

In this release, we are upgrading to LLVM 4.0. We are also starting to
provide wheel packages for 64-bit Linux platforms (manylinux).

Fixes:

	Issue #249, PR #250: Disable static linking of libstdc++ by default.

Enhancements:

	PR #246: Add requirements.txt for pip dependency resolving

	PR #238: LLVM 4.0

	PR #222: Enable wheel builds

v0.16.0

API changes:

	Switched from LLVM 3.8 to 3.9

	TargetData.add_pass is removed in LLVM 3.9.

Enhancements:

	PR #239: Enable fastmath flags

	PR #233: Updates for llvm3.9.1

	PR #199: Update for changes in LLVM 3.9

Fixes:

	PR #236: Fix metadata with long value

	PR #231: Fix setup.py for Python2.7 so that pip auto installs dependencies

	PR #226: Fix get_host_cpu_features() so that it fails properly

v0.15.0

Enhancements:

	PR #213: Add partial LLVM bindings for ObjectFile.

	PR #215: Add inline assembly helpers in the builder.

	PR #216: Allow specifying alignment in alloca instructions.

	PR #219: Remove unnecessary verify in module linkage.

Fixes:

	PR #209, Issue #208: Fix overly restrictive test for library filenames.

v0.14.0

Enhancements:

	PR #104: Add binding to get and view function control-flow graph.

	PR #210: Improve llvmdev recipe.

	PR #212: Add initializer for the native assembly parser.

v0.13.0

Enhancements:

	PR #176: Switch from LLVM 3.7 to LLVM 3.8.

	PR #191: Allow setting the alignment of a global variable.

	PR #198: Add missing function attributes.

	PR #160: Escape the contents of metadata strings, to allow embedding
any characters.

	PR #162: Add support for creating debug information nodes.

	PR #200: Improve the usability of metadata emission APIs.

	PR #200: Allow calling functions with metadata arguments
(such as @llvm.dbg.declare).

Fixes:

	PR #190: Suppress optimization remarks printed out in some cases by LLVM.

	PR #200: Allow attaching metadata to a ret instruction.

v0.12.1

New release to fix packages on PyPI. Same as v0.12.0.

v0.12.0

Enhancements:

	PR #179: Let llvmlite build on armv7l Linux.

	PR #161: Allow adding metadata to functions.

	PR #163: Allow emitting fast-math fcmp instructions.

	PR #159: Allow emitting verbose assembly in TargetMachine.

Fixes:

	Issue #177: Make setup.py compatible with pip install.

v0.11.0

Enhancements:

	PR #175: Check LLVM version at build time

	PR #169: Default initializer for non-external global variable

	PR #168: add ir.Constant.literal_array()

v0.10.0

Enhancements:

	PR #146: Improve setup.py clean to wipe more leftovers.

	PR #135: Remove some llvmpy compatibility APIs.

	PR #151: Always copy TargetData when adding to a pass manager.

	PR #148: Make errors more explicit on loading the binding DLL.

	PR #144: Allow overriding -flto in Linux builds.

	PR #136: Remove Python 2.6 and 3.3 compatibility.

	Issue #131: Allow easier creation of constants by making type instances
callable.

	Issue #130: The test suite now ensures the runtime DLL dependencies
are within a certain expected set.

	Issue #121: Simplify build process on Unix and remove hardcoded linking
with LLVMOProfileJIT.

	Issue #125: Speed up formatting of raw array constants.

Fixes:

	PR #155: Properly emit IR for metadata null.

	PR #153: Remove deprecated uses of TargetMachine::getDataLayout().

	PR #156: Move personality from LandingPadInstr to FunctionAttributes.
It was moved in LLVM 3.7.

	PR #149: Implement LLVM scoping correctly.

	PR #141: Ensure no CMakeCache.txt file is included in sdist.

	PR #132: Correct constant in llvmir.py example.

v0.9.0

Enhancements:

	PR #73: Add get_process_triple() and get_host_cpu_features()

	Switch from LLVM 3.6 to LLVM 3.7. The generated IR for some memory
operations has changed.

	Improved performance of IR serialization.

	Issue #116: improve error message when the operands of a binop have
differing types.

	PR #113: Let Type.get_abi_{size,alignment} not choke on identified types.

	PR #112: Support non-alphanumeric characters in type names.

Fixes:

	Remove the libcurses dependency on Linux.

v0.8.0

	Update LLVM to 3.6.2

	Add an align parameter to IRBuilder.load() and IRBuilder.store().

	Allow setting visibility, DLL storageclass of ValueRef

	Support profiling with OProfile

v0.7.0

	PR #88: Provide hooks into the MCJIT object cache

	PR #87: Add indirect branches and exception handling APIs to ir.Builder.

	PR #86: Add ir.Builder APIs for integer arithmetic with overflow

	Issue #76: Fix non-Windows builds when LLVM was built using CMake

	Deprecate .get_pointer_to_global() and add .get_function_address() and
.get_global_value_address() in ExecutionEngine.

v0.6.0

Enhancements:

	Switch from LLVM 3.5 to LLVM 3.6. The generated IR for metadata nodes
has slightly changed, and the “old JIT” engine has been remove (only
MCJIT is now available).

	Add an optional flags argument to arithmetic instructions on IRBuilder.

	Support attributes on the return type of a function.

v0.5.1

Fixes:

	Fix implicit termination of basic block in nested if_then()

v0.5.0

New documentation hosted at http://llvmlite.pydata.org

Enhancements:

	Add code-generation helpers from numba.cgutils

	Support for memset, memcpy, memmove intrinsics

Fixes:

	Fix string encoding problem when round-triping parse_assembly()

v0.4.0

Enhancements:

	Add Module.get_global()

	Renamd Module.global_variables to Module.global_values

	Support loading library parmanently

	Add Type.get_abi_alignment()

Fixes:

	Expose LLVM version as a tuple

Patched LLVM 3.5.1:
Updated to 3.5.1 with the same ELF relocation patched for v0.2.2.

v0.2.2

Enhancements:

	Support for addrspacescast

	Support for tail call, calling convention attribute

	Support for IdentifiedStructType

Fixes:

	GEP addrspace propagation

	Various installation process fixes

Patched LLVM 3.5:
The binaries from the numba binstar channel use a patched LLVM3.5 for fixing
a LLVM ELF relocation bug that is caused by the use of 32-bit relative offset
in 64-bit binaries. The problem appears to occur more often on hardened
kernels, like in CentOS. The patched source code is available at:
https://github.com/numba/llvm-mirror/releases/tag/3.5p1

v0.2.0

This is the first official release. It contains a few feature additions
and bug fixes. It meets all requirements to replace llvmpy in numba and
numbapro.

v0.1.0

This is the first release. This is released for beta testing llvmlite
and numba before the official release.

Glossary

	Basic block

	Function declaration

	Function definition

	getelementptr

	Global value

	Global variable

	Instruction

	Intermediate representation (IR)

	Label

	Metadata

	Module

	Terminator, terminator instruction

Basic block

A sequence of instructions inside a function. A basic block
always starts with a Label and ends with a
terminator. No other instruction inside the
basic block can transfer control out of the block.

Function declaration

The specification of a function’s prototype without an
associated implementation. A declaration includes the argument
types, return types and other information such as the calling
convention. This is like an extern function declaration in C.

Function definition

A function’s prototype, as in a Function declaration,
plus a body implementing the function.

getelementptr

An LLVM Instruction that lets you get the address of a
subelement of an aggregate data structure.

See ‘getelementptr’ Instruction [http://releases.llvm.org/7.0.0/docs/LangRef.html#i-getelementptr] in the official LLVM
documentation.

Global value

A named value accessible to all members of a module.

Global variable

A variable whose value is accessible to all members of a module.
It is a constant pointer to a module-allocated slot of the given
type.

All global variables are global values. However, the opposite is
not true—function declarations and function definitions are not
global variables, they are only global values.

Instruction

The fundamental element used in implementing an LLVM function.
LLVM instructions define a procedural, assembly-like language.

Intermediate representation (IR)

High-level assembly-language code describing to LLVM the
program to be compiled to native code.

Label

A branch target inside a function. A label always denotes the
start of a Basic block.

Metadata

Optional information associated with LLVM instructions,
functions and other code. Metadata provides information that is
not critical to the compiling of an
LLVM intermediate representation, such as the
likelihood of a condition branch or the source code location
corresponding to a given instruction.

Module

A compilation unit for LLVM intermediate representation.
A module can contain any number of function declarations and
definitions, global variables and metadata.

Terminator, terminator instruction

A kind of Instruction that explicitly transfers control
to another part of the program instead of going to the next
instruction after it is executed. Examples are branches and
function returns.

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 llvmlite	

 	
 	
 llvmlite.binding	
 Interacting with the LLVM library.

 	
 	
 llvmlite.ir	
 Classes for building the LLVM intermediate representation of functions.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

_

 	
 	__call__() (llvmlite.ir.Type method)

 	
 	__str__() (in module llvmlite.binding)

A

 	
 	add() (llvmlite.ir.IRBuilder method)

 	(llvmlite.ir.NamedMetaData method)

 	add_analysis_passes() (llvmlite.binding.TargetMachine method)

 	add_attribute() (llvmlite.ir.Argument method)

 	add_case() (llvmlite.ir.SwitchInstr method)

 	add_clause() (llvmlite.ir.LandingPad method)

 	add_debug_info() (llvmlite.ir.Module method)

 	add_destination() (llvmlite.ir.IndirectBranch method)

 	add_global() (llvmlite.ir.Module method)

 	add_incoming() (llvmlite.ir.PhiInstr method)

 	add_metadata() (llvmlite.ir.Module method)

 	add_module() (llvmlite.binding.ExecutionEngine method)

 	add_named_metadata() (llvmlite.ir.Module method)

 	add_symbol() (in module llvmlite.binding)

 	address_of_symbol() (in module llvmlite.binding)

 	addrspace (llvmlite.ir.PointerType attribute)

 	
 	addrspacecast() (llvmlite.ir.IRBuilder method)

 	Aggregate (class in llvmlite.ir)

 	align (llvmlite.ir.GlobalVariable attribute)

 	alloca() (llvmlite.ir.IRBuilder method)

 	and_() (llvmlite.ir.IRBuilder method)

 	append_basic_block() (llvmlite.ir.Function method)

 	(llvmlite.ir.IRBuilder method)

 	args (llvmlite.ir.Function attribute)

 	Argument (class in llvmlite.ir)

 	ArrayType (class in llvmlite.ir)

 	as_bitcode() (llvmlite.binding.ModuleRef method)

 	as_pointer() (llvmlite.ir.Type method)

 	ashr() (llvmlite.ir.IRBuilder method)

 	asm() (llvmlite.ir.IRBuilder method)

 	assume() (llvmlite.ir.IRBuilder method)

 	atomic_rmw() (in module llvmlite.ir)

 	attributes (llvmlite.ir.Function attribute)

B

 	
 	basic_block (llvmlite.ir.BlockAddress attribute)

 	bitcast() (llvmlite.ir.Constant method)

 	(llvmlite.ir.IRBuilder method)

 	
 	Block (class in llvmlite.ir)

 	block (llvmlite.ir.IRBuilder attribute)

 	BlockAddress (class in llvmlite.ir)

 	branch() (llvmlite.ir.IRBuilder method)

C

 	
 	call() (llvmlite.ir.IRBuilder method)

 	calling_convention (llvmlite.ir.Function attribute)

 	CatchClause (class in llvmlite.ir)

 	cbranch() (llvmlite.ir.IRBuilder method)

 	check_jit_execution() (in module llvmlite.binding)

 	
 	cmpxchg() (in module llvmlite.ir)

 	Constant (class in llvmlite.ir)

 	create_mcjit_compiler() (in module llvmlite.binding)

 	create_target_data() (in module llvmlite.binding)

 	create_target_machine() (llvmlite.binding.Target method)

D

 	
 	data_layout (llvmlite.binding.ModuleRef attribute)

 	(llvmlite.ir.Module attribute)

 	debug_metadata (llvmlite.ir.IRBuilder attribute)

 	description (llvmlite.binding.Target attribute)

 	
 	disable_unroll_loops (llvmlite.binding.PassManagerBuilder attribute)

 	DIToken (class in llvmlite.ir)

 	DIValue (class in llvmlite.ir)

 	DoubleType (class in llvmlite.ir)

E

 	
 	element_type (in module llvmlite.binding)

 	elements (llvmlite.ir.Aggregate attribute)

 	emit_assembly() (llvmlite.binding.TargetMachine method)

 	
 	emit_object() (llvmlite.binding.TargetMachine method)

 	ExecutionEngine (class in llvmlite.binding)

 	extract_value() (llvmlite.ir.IRBuilder method)

F

 	
 	fadd() (llvmlite.ir.IRBuilder method)

 	fcmp_ordered() (llvmlite.ir.IRBuilder method)

 	fcmp_unordered() (llvmlite.ir.IRBuilder method)

 	fdiv() (llvmlite.ir.IRBuilder method)

 	FeatureMap (class in llvmlite.binding)

 	FilterClause (class in llvmlite.ir)

 	finalize() (llvmlite.binding.FunctionPassManager method)

 	finalize_object() (llvmlite.binding.ExecutionEngine method)

 	flatten() (llvmlite.binding.FeatureMap method)

 	FloatType (class in llvmlite.ir)

 	fmul() (llvmlite.ir.IRBuilder method)

 	fpext() (llvmlite.ir.IRBuilder method)

 	fptosi() (llvmlite.ir.IRBuilder method)

 	fptoui() (llvmlite.ir.IRBuilder method)

 	
 	fptrunc() (llvmlite.ir.IRBuilder method)

 	frem() (llvmlite.ir.IRBuilder method)

 	from_default_triple() (llvmlite.binding.Target class method)

 	from_triple() (llvmlite.binding.Target class method)

 	fsub() (llvmlite.ir.IRBuilder method)

 	Function (class in llvmlite.ir)

 	function (llvmlite.ir.Block attribute)

 	(llvmlite.ir.BlockAddress attribute)

 	(llvmlite.ir.IRBuilder attribute)

 	(llvmlite.ir.Instruction attribute)

 	FunctionPassManager (class in llvmlite.binding)

 	functions (llvmlite.binding.ModuleRef attribute)

 	(llvmlite.ir.Module attribute)

 	FunctionType (class in llvmlite.ir)

G

 	
 	gep() (llvmlite.ir.Constant method)

 	(llvmlite.ir.IRBuilder method)

 	get_abi_alignment() (llvmlite.ir.Type method)

 	get_abi_size() (llvmlite.binding.TargetData method)

 	(llvmlite.ir.Type method)

 	get_default_triple() (in module llvmlite.binding)

 	get_element_offset() (llvmlite.binding.TargetData method)

 	get_function() (llvmlite.binding.ModuleRef method)

 	get_function_address() (llvmlite.binding.ExecutionEngine method)

 	get_function_cfg() (in module llvmlite.binding)

 	get_global() (llvmlite.ir.Module method)

 	get_global_value_address() (llvmlite.binding.ExecutionEngine method)

 	get_global_variable() (llvmlite.binding.ModuleRef method)

 	get_host_cpu_features() (in module llvmlite.binding)

 	
 	get_host_cpu_name() (in module llvmlite.binding)

 	get_named_metadata() (llvmlite.ir.Module method)

 	get_object_format() (in module llvmlite.binding)

 	get_pointee_abi_alignment() (llvmlite.binding.TargetData method)

 	get_pointee_abi_size() (llvmlite.binding.TargetData method)

 	get_process_triple() (in module llvmlite.binding)

 	get_struct_type() (llvmlite.binding.ModuleRef method)

 	get_unique_name() (llvmlite.ir.Module method)

 	global_constant (llvmlite.ir.GlobalVariable attribute)

 	global_values (llvmlite.ir.Module attribute)

 	global_variables (llvmlite.binding.ModuleRef attribute)

 	GlobalValue (class in llvmlite.ir)

 	GlobalVariable (class in llvmlite.ir)

 	goto_block() (llvmlite.ir.IRBuilder method)

 	goto_entry_block() (llvmlite.ir.IRBuilder method)

I

 	
 	icmp_signed() (llvmlite.ir.IRBuilder method)

 	icmp_unsigned() (llvmlite.ir.IRBuilder method)

 	IdentifiedStructType (class in llvmlite.ir)

 	if_else() (llvmlite.ir.IRBuilder method)

 	if_then() (llvmlite.ir.IRBuilder method)

 	indirectbr() (llvmlite.ir.IRBuilder method)

 	IndirectBranch (class in llvmlite.ir)

 	initialize() (in module llvmlite.binding)

 	(llvmlite.binding.FunctionPassManager method)

 	initialize_all_asmprinters() (in module llvmlite.binding)

 	initialize_all_targets() (in module llvmlite.binding)

 	initialize_native_asmparser() (in module llvmlite.binding)

 	initialize_native_asmprinter() (in module llvmlite.binding)

 	initialize_native_target() (in module llvmlite.binding)

 	
 	initializer (llvmlite.ir.GlobalVariable attribute)

 	inlining_threshold (llvmlite.binding.PassManagerBuilder attribute)

 	insert_basic_block() (llvmlite.ir.Function method)

 	insert_value() (llvmlite.ir.IRBuilder method)

 	Instruction (class in llvmlite.ir)

 	inttoptr() (llvmlite.ir.Constant method)

 	(llvmlite.ir.IRBuilder method)

 	IntType (class in llvmlite.ir)

 	invoke() (llvmlite.ir.IRBuilder method)

 	IRBuilder (class in llvmlite.ir)

 	is_declaration (llvmlite.binding.ValueRef attribute)

 	(llvmlite.ir.Function attribute)

 	is_pointer (in module llvmlite.binding)

 	is_terminated (llvmlite.ir.Block attribute)

L

 	
 	LabelType (class in llvmlite.ir)

 	LandingPad (class in llvmlite.ir)

 	landingpad() (llvmlite.ir.IRBuilder method)

 	link_in() (llvmlite.binding.ModuleRef method)

 	Linkage (class in llvmlite.binding)

 	linkage (llvmlite.binding.ValueRef attribute)

 	(llvmlite.ir.GlobalValue attribute)

 	Linkage.appending (in module llvmlite.binding)

 	Linkage.available_externally (in module llvmlite.binding)

 	Linkage.common (in module llvmlite.binding)

 	Linkage.dllexport (in module llvmlite.binding)

 	Linkage.dllimport (in module llvmlite.binding)

 	Linkage.external (in module llvmlite.binding)

 	Linkage.external_weak (in module llvmlite.binding)

 	Linkage.ghost (in module llvmlite.binding)

 	Linkage.internal (in module llvmlite.binding)

 	Linkage.linker_private (in module llvmlite.binding)

 	Linkage.linker_private_weak (in module llvmlite.binding)

 	
 	Linkage.linkonce_any (in module llvmlite.binding)

 	Linkage.linkonce_odr (in module llvmlite.binding)

 	Linkage.linkonce_odr_autohide (in module llvmlite.binding)

 	Linkage.private (in module llvmlite.binding)

 	Linkage.weak_any (in module llvmlite.binding)

 	Linkage.weak_odr (in module llvmlite.binding)

 	literal_array() (llvmlite.ir.Constant class method)

 	literal_struct() (llvmlite.ir.Constant class method)

 	LiteralStructType (class in llvmlite.ir)

 	llvm_version_info (in module llvmlite.binding)

 	LLVMContextRef (built-in class)

 	llvmlite.binding (module)

 	llvmlite.ir (module)

 	load() (llvmlite.ir.IRBuilder method)

 	load_library_permanently() (in module llvmlite.binding)

 	load_reg() (llvmlite.ir.IRBuilder method)

 	loop_vectorize (llvmlite.binding.PassManagerBuilder attribute)

 	lshr() (llvmlite.ir.IRBuilder method)

M

 	
 	MDValue (class in llvmlite.ir)

 	MetaDataString (class in llvmlite.ir)

 	MetaDataType (class in llvmlite.ir)

 	Module (class in llvmlite.ir)

 	module (llvmlite.binding.ValueRef attribute)

 	(llvmlite.ir.IRBuilder attribute)

 	(llvmlite.ir.Instruction attribute)

 	
 	ModulePassManager (class in llvmlite.binding)

 	ModuleRef (class in llvmlite.binding)

 	mul() (llvmlite.ir.IRBuilder method)

N

 	
 	name (in module llvmlite.binding)

 	(llvmlite.binding.ModuleRef attribute)

 	(llvmlite.binding.Target attribute)

 	(llvmlite.binding.ValueRef attribute)

 	
 	NamedMetaData (class in llvmlite.ir)

 	neg() (llvmlite.ir.IRBuilder method)

 	not_() (llvmlite.ir.IRBuilder method)

O

 	
 	opt_level (llvmlite.binding.PassManagerBuilder attribute)

 	
 	or_() (llvmlite.ir.IRBuilder method)

P

 	
 	parse_assembly() (in module llvmlite.binding)

 	parse_bitcode() (in module llvmlite.binding)

 	PassManager (class in llvmlite.binding)

 	PassManager.add_basic_alias_analysis_pass() (in module llvmlite.binding)

 	PassManager.add_cfg_simplification_pass() (in module llvmlite.binding)

 	PassManager.add_constant_merge_pass() (in module llvmlite.binding)

 	PassManager.add_dead_arg_elimination_pass() (in module llvmlite.binding)

 	PassManager.add_dead_code_elimination_pass() (in module llvmlite.binding)

 	PassManager.add_function_attrs_pass() (in module llvmlite.binding)

 	PassManager.add_function_inlining_pass() (in module llvmlite.binding)

 	PassManager.add_global_dce_pass() (in module llvmlite.binding)

 	PassManager.add_global_optimizer_pass() (in module llvmlite.binding)

 	PassManager.add_gvn_pass() (in module llvmlite.binding)

 	PassManager.add_instruction_combining_pass() (in module llvmlite.binding)

 	PassManager.add_ipsccp_pass() (in module llvmlite.binding)

 	
 	PassManager.add_licm_pass() (in module llvmlite.binding)

 	PassManager.add_sccp_pass() (in module llvmlite.binding)

 	PassManager.add_sroa_pass() (in module llvmlite.binding)

 	PassManager.add_type_based_alias_analysis_pass() (in module llvmlite.binding)

 	PassManagerBuilder (class in llvmlite.binding)

 	phi() (llvmlite.ir.IRBuilder method)

 	PhiInstr (class in llvmlite.ir)

 	pointee (llvmlite.ir.PointerType attribute)

 	PointerType (class in llvmlite.ir)

 	populate() (llvmlite.binding.PassManagerBuilder method)

 	position_after() (llvmlite.ir.IRBuilder method)

 	position_at_end() (llvmlite.ir.IRBuilder method)

 	position_at_start() (llvmlite.ir.IRBuilder method)

 	position_before() (llvmlite.ir.IRBuilder method)

 	PredictableInstr (class in llvmlite.ir)

 	ptrtoint() (llvmlite.ir.IRBuilder method)

R

 	
 	remove_module() (llvmlite.binding.ExecutionEngine method)

 	replace() (llvmlite.ir.Block method)

 	resume() (llvmlite.ir.IRBuilder method)

 	
 	ret() (llvmlite.ir.IRBuilder method)

 	ret_void() (llvmlite.ir.IRBuilder method)

 	run() (llvmlite.binding.FunctionPassManager method)

 	(llvmlite.binding.ModulePassManager method)

S

 	
 	sadd_with_overflow() (llvmlite.ir.IRBuilder method)

 	sdiv() (llvmlite.ir.IRBuilder method)

 	select() (llvmlite.ir.IRBuilder method)

 	set_asm_verbosity() (llvmlite.binding.TargetMachine method)

 	set_body() (llvmlite.ir.IdentifiedStructType method)

 	set_metadata() (llvmlite.ir.Function method)

 	(llvmlite.ir.Instruction method)

 	set_object_cache() (llvmlite.binding.ExecutionEngine method)

 	set_weights() (llvmlite.ir.PredictableInstr method)

 	sext() (llvmlite.ir.IRBuilder method)

 	shl() (llvmlite.ir.IRBuilder method)

 	shutdown() (in module llvmlite.binding)

 	sitofp() (llvmlite.ir.IRBuilder method)

 	size_level (llvmlite.binding.PassManagerBuilder attribute)

 	slp_vectorize (llvmlite.binding.PassManagerBuilder attribute)

 	
 	smul_with_overflow() (llvmlite.ir.IRBuilder method)

 	srem() (llvmlite.ir.IRBuilder method)

 	ssub_with_overflow() (llvmlite.ir.IRBuilder method)

 	storage_class (llvmlite.binding.ValueRef attribute)

 	(llvmlite.ir.GlobalValue attribute)

 	StorageClass (class in llvmlite.binding)

 	StorageClass.default (in module llvmlite.binding)

 	StorageClass.dllexport (in module llvmlite.binding)

 	StorageClass.dllimport (in module llvmlite.binding)

 	store() (llvmlite.ir.IRBuilder method)

 	store_reg() (llvmlite.ir.IRBuilder method)

 	struct_types (llvmlite.binding.ModuleRef attribute)

 	sub() (llvmlite.ir.IRBuilder method)

 	switch() (llvmlite.ir.IRBuilder method)

 	SwitchInstr (class in llvmlite.ir)

T

 	
 	Target (class in llvmlite.binding)

 	target_data (llvmlite.binding.ExecutionEngine attribute)

 	(llvmlite.binding.TargetMachine attribute)

 	TargetData (class in llvmlite.binding)

 	TargetMachine (class in llvmlite.binding)

 	terminator (llvmlite.ir.Block attribute)

 	
 	triple (llvmlite.binding.ModuleRef attribute)

 	(llvmlite.binding.Target attribute)

 	(llvmlite.ir.Module attribute)

 	trunc() (llvmlite.ir.IRBuilder method)

 	Type (class in llvmlite.ir)

 	type (llvmlite.binding.ValueRef attribute)

 	TypeRef (class in llvmlite.binding)

U

 	
 	udiv() (llvmlite.ir.IRBuilder method)

 	uitofp() (llvmlite.ir.IRBuilder method)

 	Undefined (in module llvmlite.ir)

 	
 	unnamed_addr (llvmlite.ir.GlobalVariable attribute)

 	unreachable() (llvmlite.ir.IRBuilder method)

 	urem() (llvmlite.ir.IRBuilder method)

V

 	
 	Value (class in llvmlite.ir)

 	ValueRef (class in llvmlite.binding)

 	verify() (llvmlite.binding.ModuleRef method)

 	view_dot_graph() (in module llvmlite.binding)

 	Visibility (class in llvmlite.binding)

 	
 	visibility (llvmlite.binding.ValueRef attribute)

 	Visibility.default (in module llvmlite.binding)

 	Visibility.hidden (in module llvmlite.binding)

 	Visibility.protected (in module llvmlite.binding)

 	VoidType (class in llvmlite.ir)

W

 	
 	width (llvmlite.ir.IntType attribute)

X

 	
 	xor() (llvmlite.ir.IRBuilder method)

Z

 	
 	zext() (llvmlite.ir.IRBuilder method)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 llvmlite

