

Welcome to the Livepeer Documentation

Livepeer [http://livepeer.org] is a decentralized video broadcasting platform powered by
a crypto token on the Ethereum blockchain. Livepeer is for:

	Developers who want to build applications that include live video.

	Users who want to stream video, gaming, coding, entertainment, educational courses, and other types of content..

	Broadcasters who currently have large audiences and high streaming bills or infrastructure costs can use the Livepeer network to potentially reduce costs or infrastructure overhead.

Use this documentation to learn how to broadcast video through
Livepeer, participate in the Livepeer protocol as a transcoder or
delegator, and build apps or DApps with video based features using
Livepeer.

We suggest you start with Getting Started.

Contributing

The code for this documentation is open source and is available on
Github [http://github.com/livepeer/docs]. Updates and pull requests are much appreciated.

Index

	Getting Started
	Download Livepeer

	Broadcast and Play Video

	Rinkeby Testnet

	Fund your account with test ETH

	What’s Next?

	The Livepeer Node
	Installation

	Running a node

	Broadcasting on Livepeer
	Install Livepeer and Have the Node Running

	Broadcasting Using OBS

	Playing the Stream

	Broadcasting Using FFMPEG

	Broadcasting from Mobile

	Reaching Many Viewers at Scale

	FAQ

	Bonding and Delegation
	Delegating using Explorer

	Assessing Transcoders

	Delegating using the Terminal

	Unbonding

	Transcoding
	Becoming a Transcoder

	FAQ

	Developing on Livepeer
	Building Video Dapps

	Building Livepeer Protocol Dapps

	Building Tools for Livepeer

	Open Projects

	Contributing to Livepeer

	License
	Contact

	Need Help

Getting Started

This guide will get you started with broadcasting your first livestream using the Livepeer tools in 5 minutes. Livepeer is currently under active development, and it is accessed through the command line on OS X or Linux.

The first step in getting started with Livepeer is to try to run the Livepeer executables and to broadcast a simple livestream.

For beginners, or for those who are not so familiar with command line interfaces (Terminal), here is a simple step-by-step guide to getting started as a broadcaster https://github.com/livepeer/wiki/wiki/Blueprint:-set-up-a-broadcasting-node-using-Livepeer-and-OBS).

Download Livepeer

Download livepeer and livepeer_cli from https://github.com/livepeer/go-livepeer/releases. Choose the _darwin version for OS X and the _linux versions for Linux, and then untar them:

$ tar -zxvf livepeer_darwin.tar.gz
$ mv ./livepeer_darwin/livepeer ./livepeer
$ mv ./livepeer_darwin/livepeer_cli ./livepeer_cli
$./livepeer

This will start a Livepeer node running on the Ethereum main network. It will ask you to set a password and use this same password
to unlock your ETH account.

Broadcast and Play Video

For instructions on broadcasting / playing videos, go to http://livepeer.readthedocs.io/en/latest/broadcasting.html.

Rinkeby Testnet

Livepeer also runs on the Ethereum Rinkeby testnet. If you want to try out Livepeer without spending real Ether / Livepeer tokens, you can simply run Livepeer with livepeer -rinkeby. Note: Change the price you are willing to pay to 200 to avoid being paired with a faulty transcoder. (15 - Set broadcast config)

Fund your account with test ETH

In a separate terminal window, run livepeer_cli:

$ livepeer_cli

Livepeer CLI will print out your account address, ETH balance,
Livepeer token balance, and more info. Take note of the ETH Account address
that is printed out, and copy this to your clipboard so that you can
use it to play your video later.:

-------------------------------*
| ETH Account | 0x5A4a992c26CbA8459Ec0d77f4c66216D2a8Fd18F |
-------------------------------*

It should present an array of options for interacting with Livepeer:

	What would you like to do? (default = stats)

	
	Get node status

	View protocol parameters

	List registered transcoders

	Print latest jobs

	Invoke “initialize round”

	Invoke “bond”

	Invoke “unbond”

	Invoke “withdraw stake” (LPT)

	Invoke “withdraw fees” (ETH)

	Invoke “claim” (for rewards and fees)

	Invoke “transfer” (LPT)

	Invoke “deposit” (ETH)

	Invoke “withdraw deposit” (ETH)

	Set broadcast config

	Set Eth gas price

	Get test LPT

	Get test ETH

	Before you can broadcast on Livepeer, you need Ethereum’s token: ETH.
The best way to get test ETH from the Rinkeby network is using the Rinkeby faucet:https://faucet.rinkeby.io/ ,
Make sure to post your Eth account address somewhere through google+/tweet/facebook, and provide correspond URI to Rinkeby faucet.

	You can check that the request is successful by going to livepeer_cli and selecting Get node status. You should see a positive Eth balance.

	Choose the Deposit (ETH) in livepeer_cli. It will ask you how much ETH you would like to deposit. Any amount should be fine. Type 100000 to start.

What’s Next?

You just demonstrated sending video around the Livepeer network on Rinkeby. Time to learn how to use more convenient tools to broadcast and consume the streams. The next sections will teach you how to run a node on the blockchain, use Livepeer to broadcast to a large audience, how to build an app with video functionality using Livepeer, and how to participate in the Livepeer protocol as a delegator or transcoder.

The Livepeer Node

The Livepeer node is a command line executable called livepeer that connects to other nodes on the Livepeer network and speaks the Livepeer protocol. It comes with an accompanying command line interface (CLI) called livepeer_cli which makes it easy to take a number of actions on the network.

The below instructions are comprehensive for a number of scenarios, but generally running a single Livepeer node and joining the test network consists of simply running the command:

$ livepeer --rinkeby

Installation

You can download precompiled binaries, or you can build the latest version from source.

Download Executables

Follow the instructions on Getting Started to download the binaries for your platform and set their permissions.

Building from Source

The latest instructions for building the go-livepeer project [https://github.com/livepeer/go-livepeer] can be found on Github [https://github.com/livepeer/go-livepeer#option-2-build-from-source].

Running a node

Once you have installed the executable, you can invoke it by running:

$ livepeer

Note: by default Livepeer listens to the local interface. This means if you are running Livepeer on a cloud-hosted instance, you need to set the --rtmpAddr 0.0.0.0:1935 flag. However, there is no security built into the RTMP listener, so use with caution.

There are two other options that control the use of Livepeer services. The first is the API for the CLI interface. The CLI is meant to be a control interface towards the node: it can bond and transfer LPT, deposit and withdraw ETH, initialize rounds, manage broadcast and transcoding configurations, and so forth. Hence, it is strongly recommended to keep the CLI internal-only: the default setting is `--cliAddr 127.0.0.1:7935. Only change the listening IP if you need to remotely configure your node, and you are absolutely certain that the listening interface is secure from the outside world.

The second option is the RPC/HTTP port. Broadcasters and transcoders use RPC messaging to interact and users can view streams via HTTP. The RPC and HTTP functions share the same port, and are configured with the same option. For the broadcaster, the default is -httpAddr 127.0.0.1:8935 . For transcoders, the default is -httpAddr 0.0.0.0:8935.

In offchain mode

Using offchain mode does not require syncing with the Ethereum blockchain. Start a node in offchain mode with the command:

$ livepeer --offchain

You are now running a node, and can use it to develop and test Livepeer locally, or even use it as the basis to begin forming a private network.

Running a Livepeer node on the Ethereum Rinkeby Testnet

The Livepeer testnet is a set of nodes that are running on Ethereum’s
Rinkeby testnet blockchain.

Run Livepeer

Make sure that you have gone through the installation steps for both Livepeer, and its dependencies ffmpeg and. Now you can start Livepeer:

$ livepeer --rinkeby

In a separate terminal window, run livepeer_cli:

$ livepeer_cli

Livepeer CLI will print out your account address, ETH balance, Livepeer token balance, and more info. It should present an array of options for interacting with Livepeer:

What would you like to do? (default = stats)
1. Get node status
2. View protocol parameters
3. List registered transcoders
4. Print latest jobs
5. Invoke "initialize round"
6. Invoke "bond"
7. Invoke "unbond"
8. Invoke "rebond"
9. Invoke "withdraw stake" (LPT)
10. Invoke "withdraw fees" (ETH)
11. Invoke "claim" (for rewards and fees)
12. Invoke "transfer" (LPT)
13. Invoke "deposit" (ETH)
14. Invoke "withdraw deposit" (ETH)
15. Set broadcast config
16. Set Eth gas price
17. Get test LPT
18. Get test ETH

The testnet contains faucets for providing you with test ETH and test Livepeer Token (LPT), which you will need to take other actions in Livepeer. The options for the faucets are present only when running with the --rinkeby flag enabled.

	Get some test eth from the eth faucet from https://faucet.rinkeby.io/. Make sure to use the Eth account address printed out above in livepeer_cli. Remember to add 0x as a prefix to address, if not present.

	You can check that the request is successful by going to livepeer_cli and selecting Get node status. You should see a positive Eth balance.

	Now get some test Livepeer tokens. Pick Get test Livepeer Token.

	You can check that the request is successful by going to livepeer_cli and selecting Get node status. You should see your Token balance go up.

Now that you have Livepeer token and ETH you can use them broadcast, bond and delegate, or even become a transcoding node:

	Broadcasting on Livepeer

	Bonding and Delegation

	Transcoding

Install and start Geth

Geth is the Ethereum client, and you can run your own Geth instances instead of using the Livepeer testnet Geth instances. The instructions for installing geth are available on the Ethereum installation guide [https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum]. Generally this is just downloading a binary file for your platform.

The “connect yourself” tab on the Testnet Homepage [https://www.rinkeby.io/#stats] provides instructions for how to initialize Geth and launch it. It can be summarized as:

	Create a geth data directory. For example:

$ mkdir ~/.lpGeth

We recommend creating a new directory even if you already have one, so the Livepeer testing data will be stored separately.

	Download the genesis json rinkeby.json [https://www.rinkeby.io/rinkeby.json]. It can be saved anywhere. It’ll just be used once for the next step

	Initialize your local geth node with testnet genesis block. For example:

$ geth --datadir ~/.lpGeth init lptestnet.json

Note

Depending on your geth version, you may see a complaint about ‘genesis.number’ related to your .json file. To fix the issue, delete the “number” field in the json.

	Create a new geth account and provide a password:

$ geth --datadir ~/.lpGeth account new

	Copy this account address down somewhere and remember the password, as you’ll need them when you start the Livepeer node.

	Start geth with the network id 858585 and the Livepeer testnet bootnode. For example:

$ geth --datadir ~/.lpGeth --networkid 858585 --bootnodes "enode://2975123a0b613588a52a4cc80981a1d101ce4dc0176e62757b771237073bccbf4066b03b5c647d36fcbdd7422fda434029563641bd6e4d2afdb96d73f574fd90@18.216.122.204:30303"

Now the geth node should be running, and it should soon start downloading blocks.

Running a node on a private network

You can also create your own private network without connecting to the public test network. To do so you’ll initialize a private ethereum chain using Geth.

Instructions for creating a private ethereum chain are on the geth README [https://github.com/ethereum/go-ethereum#operating-a-private-network].

Start Livepeer:

$ livepeer --v 4 --devenv --ethAcctAddr <ethereum address> --ethPassword <eth account pw>

If you are on the same machine, specify new ports for rtmpAddr, httpAddr and cliAddr. In this example, we added 1 to each of the default ports which are in use by the first node Consider creating a second ethereum account address in the new data directory:

$ livepeer --v 4 --devenv --rtmpAddr 127.0.0.1:1936 --httpAddr 127.0.0.1:8936 --cliAddr 127.0.0.1:7936 --datadir <new datadir eg. ~/.livepeer2> --ethAcctAddr <ethereum address> --ethPassword <eth account pw>

The second node should start. You’re now running a private network where the nodes can play different roles such as broadcaster and transcoder. Note that if you become an transcoder within a private network, the --serviceAddr option might need to be set in order to match the on-chain Service URI (which you will set when registering the transcoder).

Broadcasting on Livepeer

Broadcasting to Livepeer using existing broadcasting tools is
easy. After a Livepeer node is running, it exposes an RTMP interface
on port 1935. You can broadcast into Livepeer using this port.

Install Livepeer and Have the Node Running

The following instructions assume that you have followed the
installation instructions [http://livepeer.readthedocs.io/en/latest/node.html#installation]

and have the node running.

Note: make sure you have deposited ETH if you would like to broadcast.

Broadcasting Using OBS

Start by reading our step by step guide [https://github.com/livepeer/wiki/wiki/Blueprint:-set-up-a-broadcasting-node-using-Livepeer-and-OBS]

It is far more convenient to broadcast using existing tools that have
features for screen capture, composites, overlays, multiple video and
audio sources, etc. One such tool is
OBS [https://obsproject.com/]. To use OBS you have to change two
settings:

	Settings -> Stream -> URL. Set it as rtmp://localhost:1935/movie

	Settings -> Output -> Output Mode. Set it to Advanced. Ensure the following settings are enabled:

	Encoder: x264

	Rate Control: CBR

	Keyframe Interval: 4

	Start streaming as usual.

The tricky part is that OBS is not aware of the Livepeer Manifest
IDs. You can find the manifestID in the console output of the Livepeer
node. Or you can request it from the Livepeer node through curl:

$ curl http://localhost:7935/manifestID

Now that you have the manifestID you can share it or play the stream as
described above using the web player or ffplay.

Playing the Stream

You can request your stream in a number of ways.

	Request the stream using your channel through the per-broadcaster web player [http://media.livepeer.org]. Use the Eth address that is printed out in the Livepeer CLI or the node output.

	Request the stream using the manifest ID through the web player [http://media.livepeer.org/player.html].

	Request the stream using ffplay

$ ffplay http://localhost:8935/stream/{streamID}.m3u8

Note that the default playback port, 8935, is different than the internal API port, 7935, which is used for diagnostics such as /manifestID.

When you’re finished broadcasting you can type q to stop the stream.

Broadcasting Using FFMPEG

To broadcast using ffmpeg you can try the following command:

For Mac:

ffmpeg -f avfoundation -framerate 30 -pixel_format uyvy422 -i "0:0" -vcodec libx264 -tune zerolatency -b 1000k -x264-params keyint=60:min-keyint=60 -acodec aac -ac 1 -b:a 96k -f flv rtmp://localhost:1935/movie

For Linux:

ffmpeg -f dshow -framerate 30 -pixel_format uyvy422 -i "0:0" -vcodec libx264 -tune zerolatency -b 1000k -x264-params keyint=60:min-keyint=60 -acodec aac -ac 1 -b:a 96k -f flv rtmp://localhost:1935/movie

As described above, you can now find the manifestID and share it to play.

Broadcasting from Mobile

There is not currently a natively Livepeer aware mobile app, but much
like using OBS, as described above, you can
use any existing mobile broadcasting tool such as ManyCam on iOS or
RTMPCamera on Android to broadcast into Livepeer.

Instead of setting the rtmp output to localhost:1935, you’ll want to
set it to a remote Livepeer node that you are running on a
server. Replace localhost with the IP address of the server.

The tricky part will be finding the manifestID since the app
won’t be aware.

A good solution to this would be for someone to fork one of the open
source mobile broadcasting apps to make it Livepeer aware, by fetching
the manifestID from the server and displaying it when the user starts
broadcasting. Another solution we’re working on is making web and
mobile native Livepeer clients, so there’s no need to connect to a
remote node.

Reaching Many Viewers at Scale

Any user on the Livepeer network who has the ID for your stream should
be able to request and access it. The current relay-based solution for
delivering the video works in a p2p fashion, but may be susceptible to
user churn or low bandwidth connections. Future versions of the
software promise resilience against this by implementing more robust
p2p protocols.

In the meantime however, if you would like to take your output video
and make it available via a conventional CDN, then you have the option
to do so.

	Run a Livepeer node on a server, and expose ports 8935 and 1935.

	Boot up the livepeer node with the –rtmpAddr 0.0.0.0 and -httpAddr 0.0.0.0 flags

	Configure your CDN to cache video content running at
http://hostname:8935/stream/{streamID}.m3u8

Now any requests that come into your site or DApp for video streaming
through Livepeer will pull the video from the network, but will be
served off of a CDN. In the future, we would like to replace this
option with the p2p network that Livepeer forms around a stream.

FAQ

Check out our Broadcasting Forum for [frequently asked questions] (https://forum.livepeer.org/c/using-livepeer-for-broadcasting)

If you have any questions, reach out to Chris Hobcroft on our [community chat] (https://discord.gg/RR4kFAh)

Bonding and Delegation

Bonding is how most users participate in the Livepeer protocol and add
value to the network long term by vetting and electing the best nodes
to provide transcoding and video services to the
network. See the
Delegator Wikipage [https://github.com/livepeer/wiki/wiki/Delegating]
which describes what bonding and delegation is, how to do it, as well as tutorials on how to weigh various Transcoder statistics

The protocol mints new token every round and rewards participation in the network as a Delegator or Transcoder

Delegating using Explorer [https://explorer.livepeer.org/]

Explorer is a tool we built to interface with livepeer cli in a less technical way

	How to Delegate [https://github.com/livepeer/wiki/wiki/Delegating#how-to-delegate]

Assessing Transcoders

Assess transcoders based on performance, statistics and social campaigns

	Social Campaigns can be found in the Forum [https://forum.livepeer.org/c/transcoders]

	Stats can be viewed on Explorer [https://explorer.livepeer.org/]

	Definitions and examples are on the Delegator Wiki [https://github.com/livepeer/wiki/wiki/Delegating#applying-these-methods-examples]

Delegating using the Terminal

In order to bond your Livepeer Token (LPT) you use livepeer_cli.

$ livepeer_cli

Make sure you have ETH and LPT and are running a Livepeer node as
described in Getting Started.

The CLI presents options to

	Bond

	Unbond

	Withdraw Bond

When you choose to bond, it will present you with a table of
transcoders to choose from in order to bond towards. You should select
a transcoder based upon many factors including the fees that they’re
charging and sharing back to you, their statistics on past
performance, and the social data that they’ve shared through forum
posts or other Livepeer related resources. In the end, you’re making a
decision about whom you think will add the most value to the Livepeer
network.

Keep in mind that if you delegate towards a high performing, honest
transcoder you will earn a portion of the fees that they receive. If
you delegate towards a transcoder who cheats or doesn’t reliably do
work in the network, you will lose out on the economic opportunity of
fees and inflationary token issuance. Select wisely!

	Choose the option to Bond when you’d like to bond.

Unbonding

A Guide to Unbonding and Claiming Fees can be found on our Delegator Wiki [https://github.com/livepeer/wiki/wiki/Delegating#getting-your-tokens-and-rewards]

	Choose the option to Unbond when you’d like to withdraw your bond
from a particular transcoder.

You will not yet be able to access your token while it’s unbonding for
the length of the UnbondingPeriod. You can rebond during this period
to the same or a different transcoder.

	At the end of the UnbondingPeriod you can choose the option to
Withdraw which will now give you access to your unbonded token.

Transcoding

Transcoding is the process of taking an input video in one format and
bitrate, and converting it into many formats and bitrates to make it
playable on the majority of devices on the planet at any connection
speed.

In The Livepeer network, nodes who play the role of transcoder,
perform this very important function, and as a result it’s important
that they have high bandwidth connections, sufficient hardware, and
reliable devOps practices. These nodes are delegated towards and
elected to perform this role, and they are rewarded with the ability
to earn fees from the network.

Quicklinks:

Transcoder Megathread on Forum [https://forum.livepeer.org/t/transcoder-megathread-start-here-to-learn-about-playing-the-role-of-transcoder-on-livepeer/190]

Transcoder Election Dashboard (currently Rinkeby testnet) [https://explorer.livepeer.org/transcoders]

Transcoder campaign thread [https://forum.livepeer.org/c/transcoders/transcoder-campaign]

Livepeer Whitepaper [https://github.com/livepeer/wiki/blob/master/WHITEPAPER.md]

Transcoder chat [https://discord.gg/cBfD23u]

Becoming a Transcoder

We’ll walk through the steps of becoming a transcoder on the test
network. Start livepeer with the --transcoder flag:

$ livepeer --rinkeby --transcoder

Run livepeer_cli, and make sure you have test ETH and test LPT as
described in Getting Started.

$ livepeer_cli

You should see the Transcoder Status as “Not Registered”.

Pick “Become a transcoder” in the wizard. Make sure to choose “bond to
yourself”.

At this point the interface will ask you to set 3 values if you have
not set them already:

	PricePerSegment - How many base unit Livepeer Token (LPT) will you
charge to transcode a 4 second segment of video? Keep in mind that 1 LPT ==
10^18 base unit LPT. Example 1000.

	FeeShare - You will collect fees from broadcasters based upon the
above price that you charge and how many segments you
transcode. What % of fees would you to keep? The remaining fees will
be passed to your
delegators. Example 98%.

	BlockRewardCut - All delegators are
entitled to their share of newly minted inflationary Livepeer
Token. Set the cut as a percentage that you will take from
delegators who delegate towards you in exchange for doing the work
of performing this valuable service of transcoding
reliably. Example: 3%.

	Public IP:Port - Transcoders must be publicly accessible at the IP:port
in order to receive streams from broadcasters.

If Successful, you should see the Transcoder Status change to “Registered”

Wait for the next round to start, and your transcoder will become
active. At this point, the Livepeer node should handle everything for
you. The important thing is that you keep the node running.

FAQ

After running the transcoder for a while, I get an error that says “too many open files”.

	This means you have to increase the default file limit. This is a requirement for running an IPFS node. Since Livepeer transcoders run an internal IPFS node, we also have that requirement. The default file limit is 1024, increasing it to something like 4096 should be good. See this forum post [https://forum.livepeer.org/t/increase-file-limit-as-a-transcoder/170] for more details.

I get a lot of error messages saying things like “Error with x:EOF”. And a lot of times, the transcoder doesn’t do anything when it’s suppose to take some action (like call reward, do transcoding jobs, etc).

	This is most likely because the connection between the Livepeer node and the Ethereum network is flaky. It is recommended to run a local Geth or Parity node when running a Livepeer transcoder. If you have a local Geth or Parity running, you can use the --ethIpcPath flag to specify the local IPC file location, which is a much more stable way to connect to the Ethereum network.

I get an error that looks something like “failed to estimate gas needed: gas required exceeds allowance or always failing transaction”.

	This is because the gas estimator is giving incorrect estimates. To fix it, you can manually pass in a gas limit using -gasLimit. For example, $ livepeer -transcoder -gasLimit 400000.

What does being ‘publicly accessible’ mean? Can I run a transcoder from home?

	The transcoder should be reachable by broadcasters via the public IP and port that is set during transcoder configuration. Transcoders will not be able to serve the Livepeer network if they are behind a NAT (eg, a home router). If this is the case, special accommodations must be made for the transcoder, such as port forwarding or putting the the transcoder in the DMZ. The only port that is required to be public is the one that was set during the transcoder registration step (default 8935). Be aware that there are many risks to running a public server. Only set up a transcoder if you are comfortable with managing these risks.

What is the Service URI? Does this need to be an IP?

The Service Registry acts as a discovery mechanism to allow broadcasters to look up the addresses of transcoders on the network. Transcoders register their Service URI at configuration time; this is submitted to the blockchain as a standalone transaction. While the configuration tool only asks for your IP:port, the URI stored on the blockchain in the form of https://IP:port. Transcoders are expected to provide a consistent and reliable service, so IPs here should remain static. However, a host (DNS) name is also allowed for the service URI to give transcoders some flexibility.

What does this error mean? “Service address https://127.0.0.1:4433 did not match discovered address https://127.1.5.10:8935; set the correct address in livepeer_cli or use -serviceAddr”

	When starting up, the transcoder checks if the current public IP matches the IP that is stored on the blockchain. If there is a mismatch, there is a possibility that your node is not publicly accessible. Override the locally inferred IP address by setting -serviceAddr IP:port to what is on the blockchain. Ensure your node is actually accessible at that address.

TODO: These documents could be expanded with far more information
about the transactions that a Livepeer Transcoder has to submit on a
regular basis to avoid being penalized and to earn their rewards and fees.

Developing on Livepeer

Building Video Dapps

	Video-based Dapps (for example, livepeer.tv [http://livepeer.tv])

	Infrastructure tools and services for broadcasters or live streamers (for example, SAAS services on top of Livepeer)

	Livepeer Player - A react component for playing live video - https://github.com/livepeer/livepeerjs/tree/master/packages/chroma

Building Livepeer Protocol Dapps

	Dapps for the Livepeer ecosystem. (for example, livepeer protocol explorer [https://explorer.livepeer.org/] or Supermax [https://www.supermax.cool/livepeer])

Building Tools for Livepeer

	SDKs for Livepeer (for example, livepeerjs-sdk [https://github.com/livepeer/livepeerjs/tree/master/packages/sdk] or livepeerjs-graphql [https://github.com/livepeer/livepeerjs/tree/master/packages/graphql-sdk])

	Client implementation for Livepeer (for example, go-livepeer [https://github.com/livepeer/go-livepeer])

Open Projects

Livepeer also posts open problems for discussion, ideas, and collaboration on Github. Check out:

	Open Project Proposals [https://github.com/livepeer/project-proposals/projects/1]

	Open Research Areas [https://github.com/livepeer/research/projects/1]

Contributing to Livepeer

For developers who are looking for interesting to problems to work on related to decentralized tech, blockchain, cryptocurrency, video engineering, and peer-to-peer networking, Livepeer may provide some interesting challenges. The three technical areas that Livepeer focuses on today are:

	Protocol implementation (Smart Contract)

	Livepeer Node (Distributed Systems / Networking)

	Livepeer Media Server (Video Engineering)

For the protocol , you can follow the protocol repo [https://github.com/livepeer/protocol]. It requires some background in Solidity [https://solidity.readthedocs.io/en/develop/] and the Livepeer Whitepaper [https://github.com/livepeer/wiki/blob/master/WHITEPAPER.md].

For the livepeer node, check out the go-livepeer repo [https://github.com/livepeer/go-livepeer]. It requires some understanding of Golang and Geth [https://github.com/ethereum/go-ethereum/wiki/geth]. Setting up a development enviroment can be done by following `these instructions`_.

For the livepeer media server implementation, take a look at the LPMS repo [https://github.com/livepeer/lpms]. It requires some video engineering knowledge. The demuxed conf videos [https://www.twitch.tv/demuxed/videos/all] and the Apple Live streaming doc [https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/Introduction/Introduction.html] are good resources to start learning.

If you’re interested in the any of the above challenges, or are building video features into an application, jump into our development chat room on Discord [https://discord.gg/7wRSUGX] and join the conversation.

License

MIT License

Copyright (c) 2017 Livepeer, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contact

Questions? Email contact@livepeer.org

Need Help

The Livepeer team and community are available to help with any additional questions. You can find them on:

	Discord chat room: https://discord.gg/7wRSUGX

	Forum: http://forum.livepeer.org

	Twitter: http://twitter.com/LivepeerOrg

	Reddit: http://reddit.com/r/livepeer

Index

 #Broadcasting on Livepeer

##Introduction

This document is a recipe for how to broadcast on Livepeer.

It will explain what equipment you will need to start.

It will also provide a very simple step-by-step method to install and configure the required software.

It may seem long, but it works. I hope. If it doesn’t, come and find [me on gitter] (http://gitter.im/chrishobcroft)

##Equipment

In order to create a broadcaster node using Livepeer [http://livepeer.org] and Open Broadcast Studio (OBS [http://obsproject.com]) you will need:

	1 x laptop / desktop / server + peripherals

	running Linux or Apple Mac (starting from a clean OS install is not required but always preferable)

	binaries are compiled for x86-64

	requires MacOS 10.10 or above

	connected to internet with at least 348kbps upload bandwidth)

	the minimum bitrate possible to stream from OBS [http://obsproject.com] is 232kbps, however we recommend 50% contingency when streaming due to network instabilities.

	wired Ethernet connection is preferable but not compulsory - Wi-Fi / 4G is also fine

	with power supply (battery or power supply)

##Method

###Create a streaming node using Livepeer.

####download livepeer software

	Go to go-livepeer software release page [https://github.com/livepeer/go-livepeer/releases]

	Download the .zip file corresponding to your operating system (Linux, Mac)

	Extract the content of the .zip file into your favourite folder

####Run livepeer

	open a command-line-interface (such as terminal) in your favourite folder

	run the following command:

./livepeer -rinkeby -v 6

-rinkeby is to connect to the Rinkeby Ethereum Testnet

-v 6 is to output the highest level of logging

	create a Passphrase

	This is used to lock and unlock your account, so keep it safe

	You will be asked for this every time you start running the node.

	Enter this Passphrase twice to validate

	enter the Passphrase again (!)

	This unlocks the account

When you see the following message, then the streaming node is running:

LPMS Server listening on :1935

####configure livepeer

	open another command-line-interface in your favourite folder

	run livepeer_cli by executing the following command:

./livepeer_cli

	This will display the configuration of the node

	Also, this provides a richer menu-based command-line-interface to help you to get started

	get test Ethereum

	this method requires access to an account on twitter [http://www.twitter.com], facebook [http://www.facebook.com] or google+ [http://plus.google.com]. This is to stop automated trolls from attacking parts of the network.

	If you do not have this, you can ask a friend on Livepeer’s gitter channel [http://gitter.im/livepeer/Lobby] to send you some test ETH

	so, you copy the ETH Account from the NODE STATS to your clipboard.

	This is a hexadecimal string starting with 0x, such as 0x0dDB225031cCB58fF42866f82D907F7766899014

	Make a note of this, because you will be using it a lot.

	Go to twitter [http://www.twitter.com], facebook [http://www.facebook.com] or google+ [http://plus.google.com]

	Twitter is easiest, if you have an account already.

	create a new public post containing the ETH Account in the text of the post

	For example for Livepeer TV [https://twitter.com/LivepeerTV/status/974727781836820480]

	copy the URL for the post to your clipboard

	For Twitter, select Copy link to tweet on the right hand side of the tweet

	open [Rinkeby Faucet] (http://faucet.rinkeby.io) in a browser

	paste the URL for the post into the field, and click Give me Ether

	This will transfer some test Ethereum into your ETH Account

	This can take up to 10 minutes to arrive, but often happens in seconds, maybe faster

	validate that you have received the Ethereum

	open Etherscan’s Rinkeby Explorer [https://rinkeby.etherscan.io] in a browser

	paste the ETH Account into the search bar

	view your balance in the ETH Account.

	There should now be 1 transaction

	If you do not have any Ethereum in your account, contact the [Livepeer Team] (http://gitter.im/livepeer) and someone there will be happy to help you get some test Ethereum.

	get test LPT

	go to the terminal window where livepeer_cli is running

	enter 10, to select option 10. Get test LPT, and press return

	This can take up to 10 minutes to arrive, but often happens in seconds, maybe faster

	You can verify whether you have received the LPT using option 1 in livepeer_cli to run 1. Get node status, and look for LPT Balance

	Also, you can use Etherscan’s Rinkeby Explorer [https://rinkeby.etherscan.io] to view the details of your ETH Account.

	There should now be 2 transactions

	If you do not have any LPT in your account, contact the Livepeer Team [http://gitter.im/livepeer/Lobby] and someone there will be happy to help you get some test LPT.

	deposit ETH into your broadcaster account

	this deposit covers your broadcasting costs

	enter 13 into livepeer_cli to select 13. Deposit (ETH)

	enter an amount you would like to deposit, and press return

	This can take up to 10 minutes to arrive, but often happens in seconds, maybe faster

	You can use Etherscan’s Rinkeby Explorer [https://rinkeby.etherscan.io] to view the details of your ETH Account.

	There should now be 3 transactions

###You are now ready to broadcast on Livepeer.

###Download and install OBS [http://obsproject.com]

	follow the excellent instructions at OBS Project Home Page [http://obsproject.com]

###Configure OBS [http://obsproject.com] to broadcast on Livepeer

####launch OBS [http://obsproject.com] software

	if you are opening for the first time, cancel the configuration wizard

	Click Settings in the bottom right hand corner of the screen.

	Select Stream from the menu on the left of the “Settings” window

	Under Stream Type select Custom Streaming Server

	for URL, put rtmp://localhost:1935

	Click “OK” to close the “Settings” window

	Under “Sources” click the + and select Text (Freetype 2) 2

	Click OK

	In the Text field type HELLO WORLD

	Click OK

###Start broadcasting and monitoring

	Ensure livepeer is running (see instructions above)

	Click Start Streaming in OBS [http://obsproject.com].

You are now streaming on Livepeer

	Open Livepeer’s Media Browser [https://media.livepeer.org/] in a web browser

	Paste the ETH Address into the Search field, and click “SEARCH”

######You should see HELLO WORLD on a black screen.

After this, you are free to stream whatever content you want to configure in OBS [http://obsproject.com].

Personally, I love to add cameras and microphones to OBS [http://obsproject.com], and broadcast some lovely things at Livepeer TV.

You might also want to talk to the community at OBS Project [http://obsproject.com].

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the Livepeer Documentation

 		
 Getting Started

 		
 Download Livepeer

 		
 Broadcast and Play Video

 		
 Rinkeby Testnet

 		
 Fund your account with test ETH

 		
 What’s Next?

 		
 The Livepeer Node

 		
 Installation

 		
 Download Executables

 		
 Building from Source

 		
 Running a node

 		
 In offchain mode

 		
 Running a Livepeer node on the Ethereum Rinkeby Testnet

 		
 Running a node on a private network

 		
 Broadcasting on Livepeer

 		
 Install Livepeer and Have the Node Running

 		
 Broadcasting Using OBS

 		
 Playing the Stream

 		
 Broadcasting Using FFMPEG

 		
 Broadcasting from Mobile

 		
 Reaching Many Viewers at Scale

 		
 FAQ

 		
 Bonding and Delegation

 		
 Delegating using Explorer

 		
 Assessing Transcoders

 		
 Delegating using the Terminal

 		
 Unbonding

 		
 Transcoding

 		
 Becoming a Transcoder

 		
 FAQ

 		
 Developing on Livepeer

 		
 Building Video Dapps

 		
 Building Livepeer Protocol Dapps

 		
 Building Tools for Livepeer

 		
 Open Projects

 		
 Contributing to Livepeer

 		
 License

 		
 Contact

 		
 Need Help

_static/up-pressed.png

_static/up.png

_static/plus.png

