

Introduction to LinchPin

Welcome to the LinchPin documentation!

LinchPin is a simple and flexible hybrid cloud orchestration tool. Its intended purpose is managing cloud resources across multiple infrastructures. These resources can be provisioned, decommissioned, and configured all using declarative data and a simple command-line interface.

Additionally, LinchPin provides a Python API for managing resources. The cloud management component is backed by Ansible [https://ansible.com]. The front-end API manages the interface between the command line (or other interfaces) and calls to the Ansible API.

This documentation covers LinchPin version (1.6.5). For recent features, see the updated release notes.

Why LinchPin?

LinchPin provides a simple, declarative interface to a repeatable set of resources on cloud providers such as Amazon Web Services, Openstack, and Google Cloud Platform to help improve productivity and performance for you and your team. It’s built on top of other proven resources, including Ansible and Python. LinchPin is built with a focus on Continuous Integration and Continuous Delivery tooling, in which its workflow excels.

LinchPin has some very useful features, including inventory generation, hooks, and more. Using these, specific cloud resources can be spun up for testing applications. By creating a single PinFile with your targets in an environment, you can simply run linchpin up and have your environment up and configured, ready for you to do your work with very little effort.

	Getting Started

	Documentation

	Developer Information

	FAQs

	Community

	Glossary

Note

Releases are formatted using semanting versioning [https://semver.org]. If the release shown above is a pre-release version, the content listed may not be supported. Use latest for the most up-to-date documentation.

Indices and tables

	Index

	Module Index

	Search Page

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]

	Subscribe and participate. A great place for Q&A

	LinchPin on Github [https://github.com/CentOS-PaaS-SIG/linchpin]

	Code Contributions and Latest Software

	webchat.freenode.net [http://webchat.freenode.net?channels=linchpin]

	#linchpin IRC chat channel

	LinchPin on PyPi [https://pypi.org/project/linchpin/]

	Latest Release of LinchPin

Getting Started

The LinchPin getting started guide will walk you through your first LinchPin project, and show off the basics of the major features LinchPin has to offer.

If you are curious about LinchPin and its features, please read the “Why LinchPin?” page.

This getting started guide will use LinchPin with the dummy provider. LinchPin can work with many other providers and use cases. After following this tutorial, check out some other providers and use cases.

Before starting, please install the latest version of LinchPin.

See also

	Commands (CLI)

	Linchpin Command-Line Interface

	Common Workflows

	Common LinchPin Workflows

	Managing Resources

	Managing Resources

	Providers

	Providers in Detail

Installation

Currently, LinchPin can be run from any machine with Python 2.6+ (Python 3.x is currently experimental), and requires Ansible 2.3.1 or newer.

Note

Some providers have additional dependencies. Additional software requirements can be found in the Providers documentation.

Refer to your specific operating system for directions on the best method to install Python, if it is not already installed. Many modern operating systems will have Python already installed. This is typically the case in all versions of Linux and OS X, but the version present might be older than the version needed for use with Ansible. You can check the version by typing python --version.

If the system installed version of Python is older than 2.6, many systems will provide a method to install updated versions of Python in parallel to the system version (eg. virtualenv).

Minimal Software Requirements

As LinchPin is heavily dependent on Ansible 2.3.1 or newer, this is a core requirement. Beyond installing Ansible, there are several packages that need to be installed:

* libffi-devel
* openssl-devel
* libyaml-devel
* gmp-devel
* libselinux-python
* make
* gcc
* redhat-rpm-config
* libxml2-python
* libxslt-python

For CentOS or RHEL the following packages should be installed:

$ sudo yum install python-pip python-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config libxml2-python libxslt-python

Attention

CentOS 6 (and likely RHEL 6) require special care during installation. See Installing LinchPin on CentOS 6 for more detail.

For Fedora 26+ the following packages should be installed:

$ sudo dnf install python-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config libxml2-python libxslt-python

Installing LinchPin

Note

Currently, linchpin is not packaged for any major Operating System. If you’d like to contribute your time to create a package, please contact the linchpin mailing list.

Create a virtualenv to install the package using the following sequence of commands (requires virtualenvwrapper)

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install linchpin
..snip..

Using mkvirtualenv with Python 3 (now default on some Linux systems) will attempt to link to the python3 binary. LinchPin isn’t fully compatible with Python 3 yet. However, mkvirtualenv provides the -p option for specifying the python2 binary.

$ mkvirtualenv linchpin -p $(which python2)
..snip..
(linchpin) $ pip install linchpin
..snip..

Note

mkvirtualenv is optional dependency you can install from here [http://virtualenvwrapper.readthedocs.io/en/latest/install.html]. An alternative, virtualenv, also exists. Please refer to the virtualenv documentation [https://virtualenv.pypa.io/en/stable/] for more details.

To deactivate the virtualenv

(linchpin) $ deactivate
$

Then reactivate the virtualenv

$ workon linchpin
(linchpin) $

If testing or docs is desired, additional steps are required

(linchpin) $ pip install linchpin[docs]
(linchpin) $ pip install linchpin[tests]

Virtual Environments and SELinux

When using a virtualenv with SELinux enabled, LinchPin may fail due to an error related to with the libselinux-python libraries. This is because the libselinux-python binary needs to be enabled in the Virtual Environment. Because this library affects the filesystem, it isn’t provided as a standard python module via pip. The RPM must be installed, then a symlink must occur.

(linchpin) $ sudo dnf install libselinux-python
.. snip ..
(linchpin) $ echo ${VIRTUAL_ENV}
/path/to/virtualenvs/linchpin
(linchpin) $ export VENV_LIB_PATH=lib/python2.7/site-packages
(linchpin) $ export LIBSELINUX_PATH=/usr/lib64/python2.7/site-packages # make sure to verify this location
(linchpin) $ ln -s ${LIBSELINUX_PATH}/selinux ${VIRTUAL_ENV}/${VENV_LIB_PATH}
(linchpin) $ ln -s ${LIBSELINUX_PATH}/_selinux.so ${VIRTUAL_ENV}/${VENV_LIB_PATH}

Note

A script is provided to do this work at scripts/install_selinux_venv.sh [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/scripts/install_selinux_venv.sh]

Installing on Fedora 26

Install RPM pre-reqs

$ sudo dnf -y install python-virtualenv libffi-devel openssl-devel libyaml-devel gmp-devel libselinux-python make gcc redhat-rpm-config libxml2-python

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Note

The default workspace is $PWD, but can be set using the $WORKSPACE variable.

Installing on RHEL 7.4

Tested on RHEL 7.4 Server VM which was kickstarted and pre-installed with the following YUM package-groups and RPMs:

* @core
* @base
* vim-enhanced
* bash-completion
* scl-utils
* wget

For RHEL 7, it is assumed that you have access to normal RHEL7 YUM repos via RHSM or by pointing at your own http YUM repos, specifically the following repos or their equivalents:

* rhel-7-server-rpms
* rhel-7-server-optional-rpms

Install pre-req RPMs via YUM:

$ sudo yum install -y libffi-devel openssl-devel libyaml-devel gmp-devel libselinux-python make gcc redhat-rpm-config libxml2-devel libxslt-devel libxslt-python libxslt-python

To get a working python 2.7 pip and virtualenv either use EPEL

$ sudo rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Install python pip and virtualenv:

$ sudo yum install -y python2-pip python-virtualenv

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install linchpin

Inside the virtualenv, upgrade pip and setuptools because the EPEL versions are too old.

(linchpin) $ pip install -U pip
(linchpin) $ pip install -U setuptools

Install linchpin

(linchpin) $ pip install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Source Installation

As an alternative, LinchPin can be installed via github. This may be done in order to fix a bug, or contribute to the project.

$ git clone git://github.com/CentOS-PaaS-SIG/linchpin
..snip..
$ cd linchpin
$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install file://$PWD/linchpin

linchpin setup : Automatic Dependency installation:

From version 1.6.5 linchpin includes linchpin setup commandline option to automate installations of linchpin dependencies.
linchpin setup uses built in ansible-playbooks to carryout the installations.

Usage:
.. code-block:: bash

$ linchpin setup # by default linchpin installs all the dependencies

LinchPin Initialization

$ linchpin init simple
Created destination workspace: /tmp/simple
$ cd /tmp/simple
$ linchpin up

.. snip ..

Action 'up' on Target 'simple' is complete

ID: 1
Action: up

Target Run ID uHash Exit Code

simple 1 7735aa 0

After running the commands above, LinchPin should be able to provision for you. We’ll use linchpin init and linchpin fetch throughout this tutorial to get you familiar with its inner workings.

It’s a minimal setup, using the dummy provider. We’ll get more into those in the upcoming parts of this tutorial.

Now that LinchPin is working, the simple workspace is in place, let’s learn more about Workspaces.

Note

If you were unable to get LinchPin successfully installed and/or working, please see the troubleshooting documentation.

Workspaces

What is generated is commonly referred to as the workspace. The workspace can live anywhere on the filesystem. The default is the current directory. The workspace can also be passed into the linchpin command line with the --workspace (--w) option, or it can be set with the $WORKSPACE environmental variable.

In our simple example, the workspaces is /tmp/simple.

A workspace requires only one file, the PinFile. This file is the cornerstone to LinchPin provisioning. It’s a YAML file, written with declarative syntax. This means the PinFile is written to explain how things should be provisioned after running linchpin up.

Looking at the simple workspace, you’ll see that it has a few other items.

$ pwd
/tmp/simple
$ ls
inventories PinFile PinFile.json README.rst resources

Ignoring everything but the PinFile for now, it’s clear that other files and directories will exist in a workspace. Let’s have a closer look at the components of a PinFile.

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

The PinFile in the simple workspace is shown below.

1 ---
2 simple:
3 topology:
4 topology_name: simple
5 resource_groups:
6 - resource_group_name: simple
7 resource_group_type: dummy
8 resource_definitions:
9 - name: web
10 role: dummy_node
11 count: 2

The PinFile collects the given topology and layout into one place. It’s grouped together in a target.

Note

Each of the lines of this PinFile are numbered to help identify lines discussed throughout this section. Each will be denoted with a superscript1 next to its description.

Target

In this PinFile, the target2 is the first line simple, just like the name of the workspace. The target is what LinchPin performs actions upon. For instance, typing linchpin up causes the PinFile to be read, and all targets evaluated. The simple target would be found, and then the resources listed would be provisioned.

A target will have subcomponents, which tell linchpin what it should do and how. Currently, those are topology, layout, and hooks. For now, we will just cover the topology and its components.

Topology

A topology3 consists of several items. First and foremost is the topology_name4, followed by one or more resource_groups5. In this PinFile, there is only one resource group.

Resource Group

A resource group contains several items, minimally, it will have a resource_group_name6, and a resource_group_type7. The main component of a resource group, it its resource_definitions8 section.

Resource Definitions

Within a resource group, multiple resource definitions can exist. In many cases, there are desires for two different resources to be provisioned within a resource group. In this example, there is only one. Each provider has its own constraints for what is required. There are some common fields, however. In the example above, there is name9, role10, and count11.

Note

The role relates to the ansible role used to perform provisioning. In this case, that’s the dummy_node role. But many providers have multiple roles.

Definitions help, but lets see it in action.

Note

More detail about the PinFile can be found in the PinFiles document.

Up

It’s time to provision your first LinchPin resources.

1 [/tmp/simple]$ linchpin up
2 [WARNING]: Unable to parse /tmp/simple/localhost as an inventory source

3 [WARNING]: No inventory was parsed, only implicit localhost is available

4 Action 'up' on Target 'simple' is complete

5 ID: 10
6 Action: up

7 Target Run ID uHash Exit Code

8 simple 2 3a4038 0

In just a few seconds, the command will finish. Because the simple target provides only the dummy_node resource, no actual instances are provisioned. However, a representation can be found at /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-3a4038-0.example.net
web-3a4038-1.example.net

More importantly, there are several other things to note. First off, The linchpin command has two basic actions, up and destroy. Each should be pretty self-explanatory.

Summary

Upon completion of every action, there is a summary that is provided. This summary provides details which can be used to repeat the process, or for further reporting with linchpin journal. Let’s cover the process in detail.

uHash

The Unique-ish Hash, or uHash8 provides a way for each instance to be unique within a set of resources. The uHash is used throughout LinchPin with reporting, idempotency, inventories, etc. The uHash is configurable, but defaults to a sha256 hash of some unique data, trimmed to 6 characters.

Run ID

The Run ID8 can be used for idempotency. The Run ID is used for a specific target. Passing -r <run-id> to linchpin up or linchpin destroy along with the target will provide an idempotent up or destroy action.

$ linchpin up --run-id 2 simple

.. snip ..

Action 'up' on Target 'simple' is complete

ID: 11
Action: up

Target Run ID uHash Exit Code

simple 3 3a4038 0

The thing to notice here is that the uHash is the same here as in the original up action above. This provides idempotency when provisioning.

ID

Similar to the Run ID explained above, the Transaction ID, or ID5, is provided for idempotency. If desired, the entire transaction can be repeated using this value. Unlike the Run ID, however, the Transaction ID can be used to repeat the entire transaction (multiple targets). As with Run ID, passing -t <tx-id> will provide idempotent an idempotent up or destroy action.

$ linchpin up --tx-id 10

.. snip ..

ID: 12
Action: up

Target Run ID uHash Exit Code

simple 4 3a4038 0

Note

All targets are executed when using -t/--tx-id. This differs from -r/--run-id where only one target can be supplied per Run ID. This is useful when multiple targets are executed from the PinFile.

Exit Code

A common desire is to check the exit code7. This is provided as an indicator of the action’s success or failure. Commonly, post actions are performed upon resources (eg. configure the system, adding logins, setting up security, etc.)

Destroy

To destroy the previously provisioned resources, use linchpin destroy.

$ linchpin destroy
 [WARNING]: Unable to parse /tmp/simple/localhost as an inventory source

 [WARNING]: No inventory was parsed, only implicit localhost is available

Action 'destroy' on Target 'simple' is complete

ID: 13
Action: destroy

Target Run ID uHash Exit Code

simple 5 3a4038 0

As with linchpin up, destroy provides a summary of the action taken. In this case, however, the resources have been terminated and cleaned up. With the dummy_node role, the resources are remove from the file.

$ cat /tmp/dummy.hosts
$ wc -l /tmp/dummy.hosts
0 /tmp/dummy.hosts

This concludes the introduction of the LinchPin getting started tutorial. For more information, see Providers.

Documentation

	Installation

	Running LinchPin

	General Configuration

	Commands (CLI)

	Managing Resources

	Providers

	Advanced Topics

Installation

Currently, LinchPin can be run from any machine with Python 2.6+ (Python 3.x is currently experimental), and requires Ansible 2.3.1 or newer.

Note

Some providers have additional dependencies. Additional software requirements can be found in the Providers documentation.

Refer to your specific operating system for directions on the best method to install Python, if it is not already installed. Many modern operating systems will have Python already installed. This is typically the case in all versions of Linux and OS X, but the version present might be older than the version needed for use with Ansible. You can check the version by typing python --version.

If the system installed version of Python is older than 2.6, many systems will provide a method to install updated versions of Python in parallel to the system version (eg. virtualenv).

Minimal Software Requirements

As LinchPin is heavily dependent on Ansible 2.3.1 or newer, this is a core requirement. Beyond installing Ansible, there are several packages that need to be installed:

* libffi-devel
* openssl-devel
* libyaml-devel
* gmp-devel
* libselinux-python
* make
* gcc
* redhat-rpm-config
* libxml2-python
* libxslt-python

For CentOS or RHEL the following packages should be installed:

$ sudo yum install python-pip python-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config libxml2-python libxslt-python

Attention

CentOS 6 (and likely RHEL 6) require special care during installation. See Installing LinchPin on CentOS 6 for more detail.

For Fedora 26+ the following packages should be installed:

$ sudo dnf install python-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config libxml2-python libxslt-python

Installing LinchPin

Note

Currently, linchpin is not packaged for any major Operating System. If you’d like to contribute your time to create a package, please contact the linchpin mailing list.

Create a virtualenv to install the package using the following sequence of commands (requires virtualenvwrapper)

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install linchpin
..snip..

Using mkvirtualenv with Python 3 (now default on some Linux systems) will attempt to link to the python3 binary. LinchPin isn’t fully compatible with Python 3 yet. However, mkvirtualenv provides the -p option for specifying the python2 binary.

$ mkvirtualenv linchpin -p $(which python2)
..snip..
(linchpin) $ pip install linchpin
..snip..

Note

mkvirtualenv is optional dependency you can install from here [http://virtualenvwrapper.readthedocs.io/en/latest/install.html]. An alternative, virtualenv, also exists. Please refer to the virtualenv documentation [https://virtualenv.pypa.io/en/stable/] for more details.

To deactivate the virtualenv

(linchpin) $ deactivate
$

Then reactivate the virtualenv

$ workon linchpin
(linchpin) $

If testing or docs is desired, additional steps are required

(linchpin) $ pip install linchpin[docs]
(linchpin) $ pip install linchpin[tests]

Virtual Environments and SELinux

When using a virtualenv with SELinux enabled, LinchPin may fail due to an error related to with the libselinux-python libraries. This is because the libselinux-python binary needs to be enabled in the Virtual Environment. Because this library affects the filesystem, it isn’t provided as a standard python module via pip. The RPM must be installed, then a symlink must occur.

(linchpin) $ sudo dnf install libselinux-python
.. snip ..
(linchpin) $ echo ${VIRTUAL_ENV}
/path/to/virtualenvs/linchpin
(linchpin) $ export VENV_LIB_PATH=lib/python2.7/site-packages
(linchpin) $ export LIBSELINUX_PATH=/usr/lib64/python2.7/site-packages # make sure to verify this location
(linchpin) $ ln -s ${LIBSELINUX_PATH}/selinux ${VIRTUAL_ENV}/${VENV_LIB_PATH}
(linchpin) $ ln -s ${LIBSELINUX_PATH}/_selinux.so ${VIRTUAL_ENV}/${VENV_LIB_PATH}

Note

A script is provided to do this work at scripts/install_selinux_venv.sh [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/scripts/install_selinux_venv.sh]

Installing on Fedora 26

Install RPM pre-reqs

$ sudo dnf -y install python-virtualenv libffi-devel openssl-devel libyaml-devel gmp-devel libselinux-python make gcc redhat-rpm-config libxml2-python

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Note

The default workspace is $PWD, but can be set using the $WORKSPACE variable.

Installing on RHEL 7.4

Tested on RHEL 7.4 Server VM which was kickstarted and pre-installed with the following YUM package-groups and RPMs:

* @core
* @base
* vim-enhanced
* bash-completion
* scl-utils
* wget

For RHEL 7, it is assumed that you have access to normal RHEL7 YUM repos via RHSM or by pointing at your own http YUM repos, specifically the following repos or their equivalents:

* rhel-7-server-rpms
* rhel-7-server-optional-rpms

Install pre-req RPMs via YUM:

$ sudo yum install -y libffi-devel openssl-devel libyaml-devel gmp-devel libselinux-python make gcc redhat-rpm-config libxml2-devel libxslt-devel libxslt-python libxslt-python

To get a working python 2.7 pip and virtualenv either use EPEL

$ sudo rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Install python pip and virtualenv:

$ sudo yum install -y python2-pip python-virtualenv

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install linchpin

Inside the virtualenv, upgrade pip and setuptools because the EPEL versions are too old.

(linchpin) $ pip install -U pip
(linchpin) $ pip install -U setuptools

Install linchpin

(linchpin) $ pip install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Source Installation

As an alternative, LinchPin can be installed via github. This may be done in order to fix a bug, or contribute to the project.

$ git clone git://github.com/CentOS-PaaS-SIG/linchpin
..snip..
$ cd linchpin
$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install file://$PWD/linchpin

linchpin setup : Automatic Dependency installation:

From version 1.6.5 linchpin includes linchpin setup commandline option to automate installations of linchpin dependencies.
linchpin setup uses built in ansible-playbooks to carryout the installations.

Usage:
.. code-block:: bash

$ linchpin setup # by default linchpin installs all the dependencies

Running LinchPin

This guide will walk you through the basics of using LinchPin. LinchPin is a command-line utility, a Python API, and Ansible playbooks. As this guide is intentionally brief to get you started, a more complete version can be found in the documentation links found to the left in the index.

Topics

	Running LinchPin

	Running the linchpin command

	Getting Help

	Basic Usage

	Options and Arguments

	Combining Options

	Common Usage

	Verbose Output

	Specify an Alternate PinFile

	Specify an Alternate Workspace

	Provide Credentials

	Workspaces

	Initialization (init)

	Resources

	Topology

	Inventory Layout

	PinFile

	Provisioning (up)

	Teardown (destroy)

	Authentication

	Credentials

	Credentials File

	Using Credentials

	Credentials Location

Running the linchpin command

The linchpin CLI is used to perform tasks related to managing resources. For detail about a specific command, see Commands (CLI).

Getting Help

Getting help from the command line is very simple. Running either linchpin
or linchpin --help will yield the command line help page.

$ linchpin --help
Usage: linchpin [OPTIONS] COMMAND [ARGS]...

 linchpin: hybrid cloud orchestration

Options:
 -c, --config PATH Path to config file
 -p, --pinfile PINFILE Use a name for the PinFile different from
 the configuration.
 -d, --template-data TEMPLATE_DATA
 Template data passed to PinFile template
 -o, --output-pinfile OUTPUT_PINFILE
 Write out PinFile to provided location
 -w, --workspace PATH Use the specified workspace. Also works if
 the familiar Jenkins WORKSPACE environment
 variable is set
 -v, --verbose Enable verbose output
 --version Prints the version and exits
 --creds-path PATH Use the specified credentials path. Also
 works if CREDS_PATH environment variable is
 set
 -h, --help Show this message and exit.

Commands:
 init Initializes a linchpin project.
 up Provisions nodes from the given target(s) in...
 destroy Destroys nodes from the given target(s) in...
 fetch Fetches a specified linchpin workspace or...
 journal Display information stored in Run Database...

For subcommands, like linchpin up, passing the --help or -h option produces help related to the provided subcommand.

$ linchpin up -h
Usage: linchpin up [OPTIONS] TARGETS

 Provisions nodes from the given target(s) in the given PinFile.

 targets: Provision ONLY the listed target(s). If omitted, ALL targets
 in the appropriate PinFile will be provisioned.

 run-id: Use the data from the provided run_id value

Options:
 -r, --run-id run_id Idempotently provision using `run-id` data
 -h, --help Show this message and exit.

As can easily be seen, linchpin up has additional arguments and options.

Basic Usage

The most basic usage of linchpin might be to perform an up action. This simple command assumes a PinFile in the workspace (current directory by default), with one target dummy.

$ linchpin up
Action 'up' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 75 79b9 0

Upon completion, the systems defined in the dummy target will be provisioned. An equally basic usage of linchpin is the destroy action. This command is peformed using the same PinFile and target.

$ linchpin destroy
Action 'destroy' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 76 79b9 0

Upon completion, the systems which were provisioned, are destroyed (or torn down).

Options and Arguments

The most common argument available in linchpin is the TARGET. Generally, the PinFile will have many targets available, but only one or two will be requested.

$ linchpin up dummy-new libvirt-new
Action 'up' on Target 'dummy' is complete
Action 'up' on Target 'libvirt' is complete

Target Run ID uHash Exit Code

dummy 77 73b1 0
libvirt 39 dc2c 0

In some cases, you may wish to use a different PinFile.

$ linchpin -p PinFile.json up
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 29 c70a 0

As you can see, this PinFile had a target called dummy-new, and it was the only target listed.

Other common options include:

	--verbose (-v) to get more output

	--config (-c) to specify an alternate configuration file

	--workspace (-w) to specify an alternate workspace

Combining Options

The linchpin command also allows combinining of general options with subcommand options. A good example of these might be to use the verbose (-v) option. This is very helpful in both the up and destroy subcommands.

$ linchpin -v up dummy-new -r 72
using data from run_id: 72
rundb_id: 73
uhash: a48d
calling: preup
hook preup initiated

PLAY [schema check and Pre Provisioning Activities on topology_file] ********

TASK [Gathering Facts] **
ok: [localhost]

TASK [common : use linchpin_config if provided] *****************************

What can be immediately observed, is that the -v option provides more verbose output of a particular task. This can be useful for troubleshooiting or giving more detail about a specitic task. The -v option is placed before the subcommand. The -r option, since it applies directly to the up subcommand, it is placed afterward. Investigating the linchpin -help and linchpin up --help can help differentiate if there’s confusion.

Common Usage

Verbose Output

$ linchpin -v up dummy-new

Specify an Alternate PinFile

$ linchpin -vp Pinfile.alt up

Specify an Alternate Workspace

$ export WORKSPACE=/tmp/my_workspace
$ linchpin up libvirt

or

$ linchpin -vw /path/to/workspace destroy openshift

Provide Credentials

$ export CREDS_PATH=/tmp/my_workspace
$ linchpin -v up libvirt

or

$ linchpin -v --creds-path /credentials/path up openstack

Note

The value provided to the --creds-path option is a directory,
NOT a file. This is generally due to the topology containing the
filename where the credentials are stored.

Workspaces

Initialization (init)

Running linchpin init will generate the workspace directory structure, along with an example PinFile, topology, and layout files. Performing the following tasks will generate a simple dummy PinFile, topology, and layout structure.

$ pwd
/tmp/workspace
$ linchpin init
PinFile and file structure created at /tmp/workspace
$ tree
.
├── credentials
├── hooks
├── inventories
├── layouts
│ └── dummy-layout.yml
├── PinFile
└── topologies
 └── dummy-topology.yml

Resources

With LinchPin, resources are king. Defining, managing, and generating outputs are all done using a declarative syntax. Resources are managed via the PinFile. The PinFile can hold two additional files, the topology, and layout. Linchpin also supports hooks.

Topology

The topology is declarative, written in YAML or JSON (v1.5+), and defines how the provisioned systems should look after executing the linchpin up command. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "web"
 role: "dummy_node"
 count: 1

This topology describes a single dummy system that will be provisioned when linchpin up is executed. Once provisioned, the resources outputs are stored for reference and later lookup. Additional topology examples can be found in the source code [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/topologies].

Inventory Layout

An inventory_layout (or layout) is written in YAML or JSON (v1.5+), and defines how the provisioned resources should look in an Ansible static inventory file. The inventory is generated from the resources provisioned by the topology and the layout data. A layout is shown here.

inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 1
 host_groups:
 - example

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory. A host group called example will be added to the Ansible static inventory. The all group always exists, and includes all provisioned hosts.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

Note

A keen observer might notice the filename and hostname are appended with -0446. This value is called the uhash or unique-ish hash. Most providers allow for unique identifiers to be assigned automatically to each hostname as well as the inventory name. This provides a flexible way to repeat the process, but manage multiple resource sets at the same time.

Advanced layout examples can be found by reading ra_inventory_layouts.

Note

Additional layout examples can be found in the source code [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/layouts].

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

dummy_cluster:
 topology: dummy-topology.yml
 layout: dummy-layout.yml

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

More detail about the PinFile can be found in the PinFiles document.

Additional PinFile examples can be found in the source code [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace]

Provisioning (up)

Once a PinFile, topology, and optional layout are in place, provisioning can happen. Performing the command linchpin up should provision the resources and inventory files based upon the topology_name value. In this case, is dummy_cluster.

$ linchpin up
target: dummy_cluster, action: up
Action 'up' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 70 0446 0

As you can see, the generated inventory file has the right data. This can be used in many ways, which will be covered elsewhere in the documentation.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0446-0.example.net
test-0446-0.example.net

Teardown (destroy)

As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will look up the resources and/or topology files (depending on the provider) to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology during teardown.

$ linchpin destroy
target: dummy_cluster, action: destroy
Action 'destroy' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 71 0446 0

Verify the /tmp/dummy.hosts file to ensure the records have been removed.

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note

The teardown functionality is slightly more limited around ephemeral
resources, like networking, storage, etc. It is possible that a network
resource could be used with multiple cloud instances. In this way,
performing a linchpin destroy does not teardown certain resources. This
is dependent on each providers implementation.

Authentication

Some Providers require authentication to acquire
managing_resources. LinchPin provides tools for these providers to
authenticate. The tools are called credentials.

Credentials

Credentials come in many forms. LinchPin wants to let the user control how the
credentials are formatted. In this way, LinchPin supports the standard
formatting and options for a provider. The only constraints that exist are how
to tell LinchPin which credentials to use, and where they credentials data
resides. In every case, LinchPin tries to use the data similarly to the way
the provider might.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also

Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
 - resource_group_name: "aws"
 resource_group_type: "aws"
 resource_definitions:
 - name: demo-day
 flavor: m1.small
 role: aws_ec2
 region: us-east-1
 image: ami-984189e2
 count: 1
 credentials:
 filename: aws.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
default_config_path [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/linchpin.conf#L22] value, and
can be overridden in the linchpin.conf [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/linchpin.conf].

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note

The aws.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

See also

	Commands (CLI)

	Linchpin Command-Line Interface

	Common Workflows

	Common LinchPin Workflows

	Managing Resources

	Managing Resources

	Providers

	Providers in Detail

General Configuration

Managing LinchPin requires a few configuration files. Most configurations are
stored in the linchpin configuration [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/linchpin/linchpin.constants] file.

Note

in versions before 1.5.1, the file was called linchpin.conf. This
changed in 1.5.1 due to backward compatibility requirements, and the need
to load configuration defaults. The linchpin.conf continues to work as
expected.

The settings in this file are loaded automatically as defaults.

However, it’s possible to override any setting in linchpin. For the
command line shell, three different locations are checked for linchpin.conf
files. Files are checked in the following order:

	/etc/linchpin.conf

	~/.config/linchpin/linchpin.conf

	/path/to/workspace/linchpin.conf

The LinchPin configuration parser supports overriding and extending
configurations. If linchpin finds the same section and setting in more than
one file, the header that was parsed more recently will provide the
configuration. In this way user can override default configurations. Commonly,
this is done by placing a linchpin.conf in the root of the workspace.

Adding/Overriding a Section

New in version 1.2.0

Adding a section to the configuration is simple. The best approach is to
create a linchpin.conf in the appropriate location from the locations above.

Once created, add a section. The section can be a new section, or it can
overwrite an existing section.

[lp]
move the rundb_connection to a global scope
rundb_conn = %(default_config_path)s/rundb/rundb-::mac::.json

module_folder = library
rundb_conn = ~/.config/linchpin/rundb-::mac::.json

rundb_type = TinyRunDB
rundb_conn_type = file
rundb_schema = {"action": "",
 "inputs": [],
 "outputs": [],
 "start": "",
 "end": "",
 "rc": 0,
 "uhash": ""}
rundb_hash = sha256

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p
default_pinfile = PinFile

Warning

For version 1.5.0 and earlier, if overwriting a section, all
entries from the entire section must be updated.

Overriding a configuration item

New in version 1.5.1

Each item within a section can be a new setting,
or override a default setting, as shown.

[lp]
move the rundb_connection to a global scope
rundb_conn = ~/.config/linchpin/rundb-::mac::.json

As can be plainly seen, the configuration has been updated to use a different
path to the rundb_conn. This section now uses a user-based RunDB, which
can be useful in some scenarios.

Useful Configuration Options

These are some configuration options that may be useful to adjust for your
needs. Each configuration option listed here is in a format of
section.option.

Note

For clarity, this would appear in a configuration file where the
section is in brackets (eg. [section]) and the option would have a
option = value set within the section.

	lp.external_providers_path

	New in version 1.5.0

Default value: %(default_config_path)s/linchpin-x

Providers playbooks can be created outside of the core of linchpin,
if desired. When using these external providers, linchpin will use
the external_providers_path to lookup the playbooks and attempt to
run them.

See Providers for more information.

	lp.rundb_conn

	New in version 1.2.0

	Default value:

	
	v1.2.0: /home/user/.config/linchpin/rundb-<macaddress>.json

	v1.2.2+: /path/to/workspace/.rundb/rundb.json

The RunDB is a single json file, which records each transaction involving
resources. A run_id and uHash are assigned, along with
other useful information. The lp.rundb_conn describes the location to
store the RunDB so data can be retrieved during execution.

	evars._async

	Updated in version 1.2.0

Default value: False

Previous key name: evars.async

Some providers (eg. openstack, aws, ovirt) support asynchronous
provisioning. This means that a topology containing many resources
would provision or destroy all at once. LinchPin then waits for responses
from these asynchronous tasks, and returns the success or failure. If the
amount of resources is large, asynchronous tasks reduce the wait time
immensely.

Reason for change: Avoiding conflict with existing Ansible variable.

Starting in Ansible 2.4.x, the async variable could not be set internally.
The _async value is now passed in and sets the Ansible async variable
to its value.

	evars.default_credentials_path

	Default value: %(default_config_path)s

Storing credentials for multiple providers can be useful. It also may
be useful to change the default here to point to a given location.

Note

The --creds-path option, or $CREDS_PATH environment
variable overrides this option

	evars.inventory_file

	Default value: None

If the unique-hash feature is turned on, the default inventory_file
value is built up by combining the workspace path,
inventories_folder topology_name, the uhash,
and the extensions.inventory configuration value. The resulting file
might look like this:

/path/to/workspace/inventories/dummy_cluster-049e.inventory

It may be desired to store the inventory without the uhash, or
define a completely different structure altogether.

	ansible.console

	Default value: False

This configuration option controls whether the output from the Ansible
console is printed. In the linchpin CLI tool, it’s the equivalent of
the -v (--verbose) option.

Commands (CLI)

This document covers the linchpin Command Line Interface (CLI) in detail. Each page contains a description and explanation for each component. For an overview, see Running the linchpin command.

	linchpin init

	linchpin up

	linchpin destroy

	linchpin journal

	linchpin fetch

	linchpin validate

	Validate Command

linchpin init

Running linchpin init will generate the workspace directory structure, along with an example PinFile, topology, and layout files. Performing the following tasks will generate a simple dummy PinFile, topology, and layout structure.

$ pwd
/tmp/workspace
$ linchpin init
PinFile and file structure created at /tmp/workspace
$ tree
.
├── credentials
├── hooks
├── inventories
├── layouts
│ └── dummy-layout.yml
├── PinFile
└── topologies
 └── dummy-topology.yml

linchpin up

Once a PinFile, topology, and optional layout are in place, provisioning can happen. Performing the command linchpin up should provision the resources and inventory files based upon the topology_name value. In this case, is dummy_cluster.

$ linchpin up
target: dummy_cluster, action: up
Action 'up' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 70 0446 0

As you can see, the generated inventory file has the right data. This can be used in many ways, which will be covered elsewhere in the documentation.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0446-0.example.net
test-0446-0.example.net

linchpin destroy

As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will look up the resources and/or topology files (depending on the provider) to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology during teardown.

$ linchpin destroy
target: dummy_cluster, action: destroy
Action 'destroy' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 71 0446 0

Verify the /tmp/dummy.hosts file to ensure the records have been removed.

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note

The teardown functionality is slightly more limited around ephemeral
resources, like networking, storage, etc. It is possible that a network
resource could be used with multiple cloud instances. In this way,
performing a linchpin destroy does not teardown certain resources. This
is dependent on each providers implementation.

See also

Providers

linchpin journal

Upon completion of any provision (up) or teardown (destroy) task, there’s a record that is created and stored in the RunDB. The linchpin journal command displays data about these tasks.

$ linchpin journal --help
Usage: linchpin journal [OPTIONS] TARGETS

 Display information stored in Run Database

 view: How the journal is displayed

 'target': show results of transactions on listed targets
 (or all if omitted)

 'tx': show results of each transaction, with results
 of associated targets used

 (Default: target)

 count: Number of records to show per target

 targets: Display data for the listed target(s). If omitted, the latest
 records for any/all targets in the RunDB will be displayed.

 fields: Comma separated list of fields to show in the display.
 (Default: action, uhash, rc)

 (available fields are: uhash, rc, start, end, action)

Options:
 --view VIEW Type of view display (default: target)
 -c, --count COUNT (up to) number of records to return (default: 3)
 -f, --fields FIELDS List the fields to display
 -h, --help Show this message and exit.

There are two specific ways to view the data using the journal, by ‘target’ and ‘transactions (tx)’.

Target

The default view, ‘target’, is displayed using the target. The data displayed to the screen shows the last three (3) tasks per target, along with some useful information.

$ linchpin journal --view=target dummy-new

Target: dummy-new
run_id action uhash rc
--
5 up 0658 0
4 destroy cf22 0
3 up cf22 0

Note

The ‘target’ view is the default, making the –view optional.

The target view can show more data as well. Fields (-f, --fields) and
count (-c, --count) are useful options.

$ linchpin journal dummy-new -f action,uhash,end -c 5

Target: dummy-new
run_id action uhash end
--
6 up cd00 12/15/2017 05:12:52 PM
5 up 0658 12/15/2017 05:10:52 PM
4 destroy cf22 12/15/2017 05:10:29 PM
3 up cf22 12/15/2017 05:10:17 PM
2 destroy 6d82 12/15/2017 05:10:06 PM
1 up 6d82 12/15/2017 05:09:52 PM

It is simple to see that the output now has five (5) records, each containing the run_id, action, uhash, and end date.

The data here can be used to perform idempotent (repetitive) tasks, like running the up action on run_id: 5 again.

$ linchpin up dummy-new -r 6
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 7 cd00 0

What might not be immediately obvious, is that the uhash on Run ID: 7 is identical to the run_id: 6 shown in the previous linchpin journal output. Essentially, the same task was run again.

Note

If LinchPin is configured with the unique-hash feature, and the provider supports naming, resources can have unique names. These features are turned off by default.

The destroy action will automatically look up the last task with an up action and destroy it. If other resources are needed to be destroyed, a run_id should be passed to the task.

$ linchpin destroy dummy-new -r 5
Action 'destroy' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 8 0658 0

Transactions

The transaction view, provides data based upon each transaction.

$ linchpin journal --view tx --count 1

ID: 130 Action: up

Target Run ID uHash Exit Code

dummy-new 279 920c 0
libvirt 121 ef96 0

===

In the future, the transaction view will also provide output for these items.

linchpin fetch

The linchpin fetch command provides a simple way to access a resource from
a remote location. One could simply perform a git clone, or use wget to
download a workspace. However, linchpin fetch makes this process
simpler, and includes some tooling to make the workflow smooth.

$ linchpin fetch --help
Usage: linchpin fetch [OPTIONS] REMOTE

 Fetches a specified linchpin workspace or component from a remote location

Options:
 -t, --type TYPE Which component of a workspace to fetch.
 (Default: workspace)
 -r, --root ROOT Use this to specify the location of the
 workspace within the root url. If root is not
 set, the root of the given remote will be used.
 --dest DEST Workspaces destination, the fetched workspace
 will be relative to this location. (Overrides
 -w/--workspace)
 --branch REF Specify the git branch. Used only with git
 protocol (eg. master).
 --git Remote is a Git repository (default)
 --web Remote is a web directory
 --nocache Do not check the cached time, just copy the
 data to the destination
 -h, --help Show this message and exit.

linchpin validate

Validate Command

The purpose of the validate command is to determine whether topologies and layouts are syntactically valid. If not, it will provide a list of errors that occured during validation

The command linchpin validate looks at the topology and layout files for each target in a given PinFile. If the topology is not valid under the current schema, it will attempt to convert the topology to an older schema and try again. If the topology is still invalid, the command will report the topology and a list of errors found.

Invalid Topologies

Here is a simple PinFile and topology file. The topology file has some errors and will not validate.

libvirt-new:
 topology: libvirt-new.yml
 layout: libvirt.yml

libvirt:
 topology: libvirt.yml
 layout: libvirt.yml

libvirt-network:
 topology: libvirt-network.yml

topology_name: libvirt-new
resource_groups:
 - resource_group_name: libvirt-new
 resource_group_type: libvirt
 resource_definitions:
 - role: libvirt_node
 uri: qemu:///system
 count: "1"
 image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz
 memory: 2048
 vcpus: 1
 arch: x86_64
 ssh_key: libvirt
 networks:
 - name: default
 additional_storage: 10G
 cloud_config:
 users:
 - name: herlo
 gecos: Clint Savage
 groups: wheel
 sudo: ALL=(ALL) NOPASSWD:ALL
 ssh-import-id: gh:herlo
 lock_passwd: true

$ linchpin validate
topology for target 'libvirt-network' is valid

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups', [OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type', 'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri', 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch', 'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), ('hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config', OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), ('groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:
 res_defs[0][count]: value for field 'count' must be of type 'integer'
 res_defs[0][networks][0][additional_storage]: field 'additional_storage' could not be recognized within the schema provided
 res_defs[0][name]: field 'name' is required

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

The linchpin validate command can also provide a list of errors against the old schema with the –old-schema flag

$ linchpin validate --old-schema

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups', [OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type', 'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri', 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch', 'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), ('hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config', OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), ('groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:
 res_defs[0][networks][0][additional_storage]: field 'additional_storage' could not be recognized within the schema provided
 res_defs[0][name]: field 'name' is required

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

As you can see, validation under both schemas result in an error stating that the field additional_storage could not be recognized. In this case, there is simply an indentation error. additional_storage is a recognized field within resource_definitions but not within the networks sub-schema. Other times this unrecognized field may be a spelling error. Both fields also flag the missing “name” field, which is required. Both of these errors must be fixed in order for the topology file to validate. Because making count a string only results in an error when validating against the old schema, this field does not have to be changed in order for the topology file to pass validation. However, it is best to change it anyway and keep your topology as up-to-date as possible.

Valid Topologies

The topology below has been fixed so that it will validate under the current schema.

topology_name: libvirt-new
resource_groups:
 - resource_group_name: libvirt-new
 resource_group_type: libvirt
 resource_definitions:
 - role: libvirt_node
 name: centos71
 uri: qemu:///system
 count: 1
 image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz
 memory: 2048
 vcpus: 1
 arch: x86_64
 ssh_key: libvirt
 networks:
 - name: default
 additional_storage: 10G
 cloud_config:
 users:
 - name: herlo
 gecos: Clint Savage
 groups: wheel
 sudo: ALL=(ALL) NOPASSWD:ALL
 ssh-import-id: gh:herlo
 lock_passwd: true

If linchpin validate is run on a PinFile containing the topology above, this will be the output:

$ linchpin validate
topology for target 'libvirt-new' is valid
topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

Managing Resources

Resources in LinchPin generally consist of Virtual Machines, Containers, Networks, Security Groups, Instances, and much more. Detailed below are examples of topoologies, layouts, and PinFiles used to manage resources.

PinFiles

These PinFiles represent many combinations of complexity and providers.

PinFiles are processed top to bottom.

YAML

PinFiles written using YAML format:

	PinFile.dummy.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.dummy.yml]

	PinFile.openstack.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.openstack.yml]

	PinFile.complex.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.complex.yml]

The combined format is only available in v1.5.0+

	PinFile.combined.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.combined.yml]

JSON

New in version 1.5.0

PinFiles written using JSON format.

	PinFile.dummy.json [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.dummy.json]

	PinFile.aws.json [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.aws.json]

	PinFile.duffy.json [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.duffy.json]

	PinFile.combined.json [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.combined.json]

	PinFile.complex.json [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.complex.json]

Jinja2

New in version 1.5.0

These PinFiles are examples of what can be done with templating using Jinja2.

Beaker Template

This template would be processed with a dictionary containing a key named arches.

	PinFile.beaker.template [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.beaker.template]

$ linchpin -p PinFile.beaker.template \
 --template-data '{ "arches": ["x86_64", "ppc64le", "s390x"]}' up

Libvirt Template and Data

This template and data can be processed together.

	PinFile.libvirt-mi.template [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.libvirt-mi.template]

	Data.libvirt-mi.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/Data.libvirt-mi.yml]

$ linchpin -vp PinFile.libvirt-mi.template \
 --template-data Data.libvirt-mi.yml up

Scripts

New in version 1.5.0

Scripts that generate valid JSON output to STDOUT can be processed and used.

	generate_dummy.sh [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/scripts/generate_dummy.sh]

$ linchpin -vp ./scripts/generate_dummy.sh up

Output PinFile

New in version 1.5.0

An output file can be created on an up/destroy action. Simply pass
the --output-pinfile option with a path to a writable file location.

$ linchpin --output-pinfile /tmp/Pinfile.out -vp ./scripts/generate_dummy.sh up
..snip..
$ cat /tmp/Pinfile.out
{
 "dummy": {
 "layout": {
 "inventory_layout": {
 "hosts": {
 "example-node": {
 "count": 3,
 "host_groups": [
 "example"
]
 }
 },
 "vars": {
 "hostname": "__IP__"
 }
 }
 },
 "topology": {
 "topology_name": "dummy_cluster",
 "resource_groups": [
 {
 "resource_group_name": "dummy",
 "resource_definitions": [
 {
 "count": 3,
 "type": "dummy_node",
 "name": "web"
 },
 {
 "count": 1,
 "type": "dummy_node",
 "name": "test"
 }
],
 "resource_group_type": "dummy"
 }
]
 }
 }
}

Topologies

These topologies represent many combinations of complexity and providers.
Topologies process resource_definitions top to bottom according to the file.

Topologies have evolved a little and have a slightly different format between
versions. However, older versions still work on v1.5.0+ (until otherwise noted).

The difference is quite minor, except in two providers, beaker and openshift.

Topology Format Pre v1.5.0

topology_name: "dummy_cluster" # topology name
resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "web"
 type: "dummy_node" <-- this is called 'type`
 count: 1

v1.5.0+ Topology Format

topology_name: "dummy_cluster" # topology name
resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "web"
 role: "dummy_node" <-- this is called 'role`
 count: 1

The subtle difference is in the resource_definitions section. In the pre-v1.5.0 topology,
the key was type, in v1.5.0+, the key is role.

Note

Pay attention to the callout in the code blocks above.

For details about the differences in beaker and openshift,
see Topology Incompatibilities.

YAML

New in version 1.5.0

Topologies written using YAML format:

	os-server-new.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-server-new.yml]

	libvirt-new.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/libvirt-new.yml]

	bkr-new.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/bkr-new.yml]

Older topologies, supported in v1.5.0+

	os-server.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-server.yml]

	libvirt.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/libvirt.yml]

	bkr.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/bkr.yml]

JSON

New in version 1.5.0

Topologies can be written using JSON format.

	dummy.json [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/dummy.json]

Jinja2

New in version 1.5.0

Topologies can be processed as templates using Jinja2.

Jenkins-Slave Template

This topology template would be processed with a dictionary containing one key named arch.

	jenkins-slave.j2 [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/jenkins-slave.j2]

The PinFile.jenkins.yml contains the reference to the jenkins-slave topology.

jenkins-slave:
 topology: jenkins-slave.yml
 layout: jenkins-slave.yml

See also

Pinfile.jenkins.j2 [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.jenkins.j2]

$ linchpin -p PinFile.jenkins --template-data '{ "arch": "x86_64" }' up

Layouts

Inventory Layouts (or just layout) describe what an Ansible
inventory might look like after provisioning. A layout is needed
because information about the resources provisioned are unknown in advance.

Layouts, like topologies and PinFiles are processed top to bottom according
to the file.

YAML

Layouts written using YAML format:

	aws-ec2.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/layouts/aws-ec2.yml]

	dummy-new.yml [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/layouts/dummy-new.yml]

JSON

New in version 1.5.0

Layouts can be written using JSON format.

	gcloud.json [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/layouts/gcloud.json]

Jinja2

New in version 1.5.0

Topologies can be processed as templates using Jinja2.

Dummy Template

This layout template would be processed with a dictionary containing one
key named node_count.

	dummy.json [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/layouts/dummy.json]

The PinFile.dummy.json contains the reference to the dummy.json layout.

{
 "dummy": {
 "topology": "dummy.json",
 "layout": "dummy.json"
 }
}

See also

PinFile.dummy.json [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.dummy.json]

$ linchpin -p PinFile.dummy.json --template-data '{ "node_count": 2 }' up

Advanced layout examples can be found by reading ra_inventory_layouts.

See also

Providers

Providers

LinchPin has many default providers. This choose-your-own-adventure page takes you through the basics to ensure success for each.

	Openstack

	Libvirt

	Amazon Web Services

	Google Cloud Platform

	Beaker

	Duffy

	oVirt

	Openshift

Openstack

The openstack provider manages multiple types of resources.

os_server

Openstack instances can be provisioned using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-server-new.yml]

	Ansible module [http://docs.ansible.com/ansible/latest/os_server_module.html]

Note

Currently, the ansible module used is bundled with LinchPin. However,
the variables used are identical to the Ansible os_server module, except for
adding a count option.

Topology Schema

Within Linchpin, the os_server resource_definition has more options
than what are shown in the examples above. For each os_server definition, the
following options are available.

	Parameter

	required

	type

	ansible value

	comments

	name

	true

	string

	name

	

	flavor

	true

	string

	flavor

	

	image

	true

	string

	image

	

	region

	false

	string

	region

	

	count

	false

	integer

	count

	

	keypair

	false

	string

	key_name

	

	security_groups

	false

	string

	security_groups

	

	fip_pool

	false

	string

	floating_ip_pools

	

	nics

	false

	string

	networks

	

	userdata

	false

	string

	userdata

	

	volumes

	false

	list

	volumes

	

	boot_from_volume

	false

	string

	boot_from_volume

	

	terminate_volume

	false

	string

	terminate_volume

	

	volume_size

	false

	string

	volume_size

	

	boot_volume

	false

	string

	boot_volume

	

os_obj

Openstack Object Storage can be provisioned using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-obj-new.yml]

	Ansible module [http://docs.ansible.com/ansible/latest/os_object_module.html]

os_vol

Openstack Cinder Volumes can be provisioned using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-vol-new.yml]

	Ansible module [http://docs.ansible.com/ansible/latest/os_volume_module.html]

os_sg

Openstack Security Groups can be provisioned using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-sg-new.yml]

	Ansible Security Group module [http://docs.ansible.com/ansible/latest/os_security_group_module.html]

	Ansible Security Group Rule module [http://docs.ansible.com/ansible/latest/os_security_group_rule_module.html]

Additional Dependencies

No additional dependencies are required for the Openstack Provider.

Credentials Management

Openstack provides several ways to provide credentials. LinchPin supports
some of these methods for passing credentials for use with openstack resources.

LinchPin honors the openstack environment variables such as $OS_USERNAME,
$OS_PROJECT_NAME, etc.

See the openstack documentation cli documentation [https://docs.openstack.org/python-openstackclient/pike/cli/man/openstack.html#manpage]
for details.

Note

No credentials files are needed for this method. When LinchPin calls
the openstack provider, the environment variables are automatically picked
up by the openstack Ansible modules, and passed to openstack for
authentication.

Openstack provides a simple file structure using a file called
clouds.yaml [https://docs.openstack.org/os-client-config/latest/user/configuration.html],
to provide authentication to a particular tenant. A single clouds.yaml file
might contain several entries.

clouds:
 devstack:
 auth:
 auth_url: http://192.168.122.10:35357/
 project_name: demo
 username: demo
 password: 0penstack
 region_name: RegionOne
 trystack:
 auth:
 auth_url: http://auth.trystack.com:8080/
 project_name: trystack
 username: herlo-trystack-3855e889
 password: thepasswordissecrte

Using this mechanism requires that credentials data be passed into LinchPin.

An openstack topology can have a credentials section for each
resource_group, which requires the filename, and the profile name.

topology_name: topo
resource_groups:
 - resource_group_name: openstack
 resource_group_type: openstack
 resource_definitions:

 .. snip ..

 credentials:
 filename: clouds.yaml
 profile: devstack

Provisioning with credentials uses the --creds-path option. Assuming
the clouds.yaml file was placed in ~/.config/openstack, and the
topology described above, a provision task could occur.

$ linchpin -v --creds-path ~/.config/openstack up

Note

The clouds.yaml could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="/path/to/credential_dir/"
$ linchpin -v up

Libvirt

The libvirt provider manages two types of resources.

libvirt_node

Libvirt Domains (or nodes) can be provisioned using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/libvirt-new.yml]

	Ansible module [http://docs.ansible.com/ansible/latest/virt_module.html]

Topology Schema

Within Linchpin, the libvirt_node resource_definition has more
options than what are shown in the examples above. For each libvirt_node
definition, the following options are available.

	Parameter

	req’d

	type

	where used

	default

	comments

	role

	true

	string

	role

	
	

	name

	true

	string

	module: name

	
	

	vcpus

	true

	string

	xml: vcpus

	
	

	memory

	true

	string

	xml: memory

	1024

	driver

	false

	string

	xml: driver
(kvm, qemu)

	kvm

	arch

	false

	string

	xml: arch

	x86_64

	boot_dev

	false

	string

	xml: boot_dev

	hd

	networks

	false

	list

	xml: networks

	name (req)

	ip

	mac

	Assigns the domain to a network
by name. Each device is named
with an incremented value (eth0)

Note

Network must exist

	image_src

	false

	string

	virt-install

	
	

	network_bridge

	false

	string

	virt-install

	virbr0

	

	ssh_key

	false

	string

	role

	resource_group_name

	

	remote_user

	false

	string

	role

	ansible_user_id

	

	cloud_config

	false

	list

	role

	http://cloudinit.readthedocs.io
is used here

	additional_storage

	false

	string

	role

	1G

	

	uri

	false

	string

	module: uri

	qemu:///system

	

	count

	false

	string

	N/A

	
	

libvirt_network

Libvirt networks can be provisioned. If a libvirt_network is to be used
with a libvirt_node, it must precede it.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/libvirt-el7net.yml]

	Ansible module [http://docs.ansible.com/ansible/latest/virt_net_module.html]

Topology Schema

Within Linchpin, the libvirt_network resource_definition has more
options than what are shown in the examples above. For each libvirt_network
definition, the following options are available.

	Parameter

	req’d

	type

	where used

	default

	comments

	role

	true

	string

	role

	
	

	name

	true

	string

	module: name

	
	

	uri

	false

	string

	module: name

	qemu:///system

	

	ip

	true

	string

	xml: ip

	
	

	dhcp_start

	false

	string

	xml: dhcp_start

	
	

	dhcp_end

	false

	string

	xml: dhcp_end

	
	

	domain

	false

	string

	xml: domain

	
	Automated DNS for guests

	forward_mode

	false

	string

	xml: forward

	nat

	

	forward_dev

	false

	string

	xml: forward

	
	

	bridge

	false

	string

	xml: bridge

	
	

Note

This resource will not be torn down during a destroy action.
This is because other resources may depend on the now existing resource.

Additional Dependencies

The libvirt resource group requires several additional dependencies. The
following must be installed.

	libvirt-devel

	libguestfs-tools

	python-libguestfs

	libvirt-python

	python-lxml

For a Fedora 26 machine, the dependencies would be installed using dnf.

$ sudo dnf install libvirt-devel libguestfs-tools python-libguestfs
$ pip install linchpin[libvirt]

Additionally, because libvirt downloads images, certain SELinux libraries must
exist.

	libselinux-python

For a Fedora 26 machine, the dependencies would be installed using dnf.

$ sudo dnf install libselinux-python

If using a python virtual environment, the selinux libraries must be symlinked. Assuming
a virtualenv of ~/venv, symlink the libraries.

$ export LIBSELINUX_PATH=/usr/lib64/python2.7/site-packages
$ ln -s ${LIBSELINUX_PATH}/selinux ~/venv/lib/python2.7/site-packages
$ ln -s ${LIBSELINUX_PATH}/_selinux.so ~/venv/lib/python2.7/site-packages

Copying Images

New in version 1.5.1

By default, LinchPin manages the libvirt images in a directory that is accessible
only by the root user. However, adjustments can be made to allow an unprivileged
user to manage Libvirt via LinchPin. These settings can be modified in the
linchpin.conf [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/linchpin.conf]

This configuration adjustment of linchpin.conf may work for the unprivileged
user herlo.

[evars]
libvirt_image_path = ~/libvirt/images/
libvirt_user = herlo
libvirt_become = no

The directory will be created automatically by LinchPin. However, the user may
need additional rights, like group membership to access Libvirt. Please see
https://libvirt.org for any additional configurations.

Credentials Management

Libvirt doesn’t require credentials via LinchPin. Multiple options are
available for authenticating against a Libvirt daemon (libvirtd). Most methods
are detailed here [https://libvirt.org/auth.html]. If desired, the uri for
the resource can be set using one of these mechanisms.

By default, however, libvirt requires sudo access to use. To allow users
without sudo access to provision libvirt instances, run the following commands
on the target machine:

	Create the libvirt group if it does not exist

$ getent group | grep libvirt
$ groupadd -g 7777 libvirt

	Add user account to libvirt group

$ usermod -aG libvirt <user>

	Edit libvirtd configuration to add group

$ cat <<EOF >>/etc/libvirt/libvirtd.conf
unix_sock_group = "libvirt"
unix_sock_rw_perms = "0770"
EOF

	Restart the libvirtd daemon

$ systemctl restart libvirtd

The next time the user logs in, they will be able to provision libvirt disks
without sudo access

Amazon Web Services

The Amazon Web Services (AWS) provider manages multiple types of resources.

aws_ec2

AWS Instances can be provisioned using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/aws-ec2-new.yml]

	Topology Example w/ VPC [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/aws-ec2-vpc.yml]

	aws_ec2 module [http://docs.ansible.com/ansible/latest/ec2_module.html]

Topology Schema

Within Linchpin, the aws_ec2 resource_definition has more
options than what are shown in the examples above. For each aws_ec2
definition, the following options are available.

	Parameter

	required

	type

	ansible value

	comments

	role

	true

	string

	N/A

	

	name

	true

	string

	instance_tags

	name is set as
an instance_tag
value.

	flavor

	true

	string

	instance_type

	

	image

	true

	string

	image

	

	region

	false

	string

	region

	

	count

	false

	integer

	count

	

	keypair

	false

	string

	key_name

	

	security_group

	false

	string / list

	group

	

	vpc_subnet_id

	false

	string

	vpc_subnet_id

	

	assign_public_ip

	false

	string

	assign_public_ip

	

EC2 Inventory Generation

If an instance has a public IP attached, its hostname in public DNS, if
available, will be provided in the generated Ansible inventory file, and if not
the public IP address will be provided.

For instances which have a private IP address for VPC usage, the private IP
address will be provided since private EC2 DNS hostnames (e.g.
ip-10-0-0-1.ec2.internal) will not typically be resolvable outside of AWS.

For instances with both a public and private IP address, the public address is
always provided instead of the private address, so as to avoid duplicate runs
of Ansible on the same host via the generated inventory file.

aws_ec2_key

AWS SSH keys can be added using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/aws-ec2-key-new.yml]

	ec2_key module [http://docs.ansible.com/ansible/latest/ec2_key_module.html]

Note

This resource will not be torn down during a destroy
action. This is because other resources may depend on the now existing
resource.

aws_s3

AWS Simple Storage Service buckets can be provisioned using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/aws-s3-new.yml]

	aws_s3 module [http://docs.ansible.com/ansible/latest/aws_s3_module.html]

Note

This resource will not be torn down during a destroy
action. This is because other resources may depend on the now existing
resource.

aws_sg

AWS Security Groups can be provisioned using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/aws-sg-new.yml]

	ec2_group module [http://docs.ansible.com/ansible/latest/ec2_group_module.html]

Note

This resource will not be torn down during a destroy
action. This is because other resources may depend on the now existing
resource.

Additional Dependencies

No additional dependencies are required for the AWS Provider.

Credentials Management

AWS provides several ways to provide credentials. LinchPin supports
some of these methods for passing credentials for use with AWS resources.

One method to provide AWS credentials that can be loaded by LinchPin is to use
the INI format that the AWS CLI tool [https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html]
uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also

Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
 - resource_group_name: "aws"
 resource_group_type: "aws"
 resource_definitions:
 - name: demo-day
 flavor: m1.small
 role: aws_ec2
 region: us-east-1
 image: ami-984189e2
 count: 1
 credentials:
 filename: aws.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
default_config_path [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/linchpin.conf#L22] value, and
can be overridden in the linchpin.conf [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/linchpin.conf].

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note

The aws.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

Environment Variables

LinchPin honors the AWS environment variables

Provisioning

Provisioning with credentials uses the --creds-path option.

$ linchpin -v --creds-path ~/.config/aws up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/aws"
$ linchpin -v up

Google Cloud Platform

The Google Cloud Platform (gcloud) provider manages one resource, gcloud_gce.

gcloud_gce

Google Compute Engine (gce) instances are provisioned using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/gce-new.yml]

	Ansible module [http://docs.ansible.com/ansible/latest/gce_module.html]

Additional Dependencies

No additional dependencies are required for the Google Cloud (gcloud) Provider.

Credentials Management

Google Compute Engine provides several ways to provide credentials. LinchPin supports
some of these methods for passing credentials for use with openstack resources.

Environment Variables

LinchPin honors the gcloud environment variables.

Configuration Files

Google Cloud Platform provides tooling for authentication. See
https://cloud.google.com/appengine/docs/standard/python/oauth/ for options.

Beaker

The Beaker (bkr) provider manages a single resource, bkr_server.

bkr_server

Beaker instances are provisioned using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/bkr-new.yml]

The ansible modules for beaker are written and bundled as part of LinchPin.

	bkr_server.py [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/linchpin/provision/library/bkr_server.py]

	bkr_info.py [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/linchpin/provision/library/bkr_info.py]

Topology Schema

Within Linchpin, the bkr_server resource_definition has more
options than what are shown in the examples above. For each bkr_server
role definition, the following options are available.

	Parameter

	required

	type

	ansible value

	default

	role

	true

	string

	N/A

	

	whiteboard

	false

	string

	whiteboard

	Provisioned by
LinchPin

	job_group

	false

	string

	job_group

	

	cancel_message

	false

	string

	cancel_message

	

	max_attempts

	false

	string

	max_attempts

	

	attempt_wait_time

	false

	integer

	attempt_wait_time

	

	recipesets

	false

	string

	recipesets

	see table below

recipesets

Because recipesets is how beaker requests systems, it’s a large part of what the
topology schema includes. There are several ways to request systems. This table
describes the available recipesets options.

	Parameter

	required

	type

	sub-field layout options

	distro

	false

	string

	N/A

	family

	false

	string

	N/A

	tags

	false

	list

	list of strings

	name

	false

	string

	N/A

	arch

	false

	string

	N/A

	variant

	false

	string

	N/A

	bkr_data

	false

	string

	N/A

	method

	false

	string

	N/A

	count

	false

	string

	N/A

	ids

	false

	list

	N/A

	taskparam

	false

	list

	list of strings

	keyvalue

	false

	list

	list of strings

	hostrequires

	false

	list

	param

	required

	type

	tag

	true

	string

	op

	false

	string

	value

	false

	int / string

	type

	false

	string

	dict

	force

	false

	string

	dict

	rawxml

	false

	string

	reserve_duration

	false

	int

	N/A

	repos

	false

	list

	dict baseurl

	install

	false

	list

	list of strings

Additional Dependencies

The beaker resource group requires several additional dependencies. The
following must be installed.

	beaker-client>=23.3

It is also recommended to install the python bindings for kerberos.

	python-krbV

For a Fedora 26 machine, the dependencies could be installed using dnf.

$ sudo dnf install python-krbV
$ wget https://beaker-project.org/yum/beaker-server-Fedora.repo
$ sudo mv beaker-server-Fedora.repo /etc/yum.repos.d/
$ sudo dnf install beaker-client

Alternatively, with pip, possibly within a virtual environment.

$ pip install linchpin[beaker]

Credentials Management

Beaker provides several ways to authenticate. LinchPin supports these methods.

	Kerberos

	OAuth2

Note

LinchPin doesn’t support the username/password authentication
mechanism. It’s also not recommended by the Beaker Project, except for
initial setup.

Duffy

Duffy is a tool for managing pre-provisioned systems in CentOS’ CI environment.
The Duffy provider manages a single resource, duffy_node.

duffy_node

The duffy_node resource provides the ability to provision using the
duffy api [https://wiki.centos.org/QaWiki/CI/Duffy].

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/duffy-new.yml]

The ansible module for duffy exists in its own
repository [https://github.com/CentOS-PaaS-SIG/duffy-ansible-module].

Using Duffy

Duffy can only be run within the CentOS CI environment. To get access, follow
this guide [https://wiki.centos.org/QaWiki/CI/GettingStarted]. Once access
is granted, the duffy ansible module can be used.

Additional Dependencies

Duffy doesn’t require any additional dependencies, but does need to be included
in the Ansible library path to work properly. See the ansible documentation [http://docs.ansible.com/ansible/latest/intro_configuration.html#library] for
help addding a library path.

Credentials Management

Duffy uses a single file, generally found in the user’s home directory, to
provide credentials. It contains a single line, which has the API key which is
passed to duffy via the API.

For LinchPin to provision, duffy.key must exist.

A duffy topology can have a credentials section for each
resource_group, which requires a filename.

topology_name: topo
resource_groups:
 - resource_group_name: duffy
 resource_group_type: duffy
 resource_definitions:

 .. snip ..

 credentials: duffy.key

By default, the location searched for the duffy.key is the user’s home
directory, as stated above. However, the credentials path can be set using
--creds-path option. Assuming the duffy.key file was placed in
~/.config/duffy, using the topology described above, a provisioning task
could occur.

$ linchpin -v --creds-path ~/.config/duffy up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/duffy"
$ linchpin -v up

oVirt

The ovirt provider manages a single resource, ovirt_vms.

ovirt_vms

oVirt Domains/VMs can be provisioned using this resource.

	Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/ovirt-new.yml]

	Ansible module [http://docs.ansible.com/ansible/latest/ovirt_module.html]

Additional Dependencies

There are no known additional dependencies for using the oVirt provider
for LinchPin.

Credentials Management

An oVirt topology can have a credentials section for each
resource_group, which requires the filename, and the profile name.

Consider the following file, named ovirt_creds.yml.

clouds:
 ge2:
 auth:
 ovirt_url: http://192.168.122.10/
 ovirt_username: demo
 ovirt_password: demo

An oVirt topology can have a credentials section for each
resource_group, which requires the filename and profile name.

topology_name: topo
resource_groups:
 - resource_group_name: ovirt
 resource_group_type: ovirt
 resource_definitions:

 .. snip ..

 credentials:
 filename: ovirt_creds.yml
 profile: ge2

Provisioning

Provisioning with credentials uses the --creds-path option. Assuming
the credentials file was placed in ~/.config/ovirt, and the
topology described above, a provision task could occur.

$ linchpin -v --creds-path ~/.config/ovirt up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/ovirt"
$ linchpin -v up

Openshift

The openshift provider manages two resources, openshift_inline, and openshift_external.
However, both of the resource types are managed by module k8s Ansible module. Usage of either one
will result in redirection to k8s module with different parameters.

Prior to linchpin 1.6.5,
The Ansible module for openshift is written and bundled as part of LinchPin.
* openshift.py [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/linchpin/provision/library/openshift.py]

After 1.6.5 bundled ansible module is being replaced by upstream ansible kubernetes module.
Refer: K8s module [https://docs.ansible.com/ansible/2.6/modules/k8s_module.html].
Linchpin supports all the attributes mentioned in k8s module.

openshift_inline

Openshift instances can be provisioned using this resource. Resources are
detail inline.
* Topology Example [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/openshift-new.yml]

Example PinFile:

openshift_external

	Openshift instances can be provisioned using this resource. Resources are

	detail in an external file.

Example PinFile:

Topology Schema:

openshift_inline and opeshift_external resource definitions in linchpin
follow the schema identical to ansible k8s module.
The following parameters are allowed in a linchpin topology:

Additional Dependencies

There are no known additional dependencies for using the openshift provider
for LinchPin. Since openshift client dependecy is included as part of linchpin’s
core requirements.

Credentials Management

An openshift topology can have a credentials section for each
resource_group, which requires the api_endpoint, and the api_token
values.
Openshift honors –creds-path in linchpin. The credential file
passed needs to be formatted as follows.
Further, it also honors all the evironment variables that are supported by
ansible k8s module.
Refer: K8s module [https://docs.ansible.com/ansible/2.6/modules/k8s_module.html].
Linchpin defaults to environment variables if the credentials section is ommited
or the –creds-path does not contain the openshift credential file.

default:
 api_endpoint: https://192.168.42.115:8443
 api_token: 4_6A86rcZqdVBIbPwJQnsz33mO35O_PnSH2okk8_190
optional parameters
api_version: v1 # defaults to version 1
cert_file: /path/to/cert_file
context: contextname
key_file: /path/to/key_file
kube_config: /path/to/kube_config
ssl_ca_cert: /path/to/ssl_ca_cert
username: username # not needed when api_token is used
password: ******** # not needed when api_token is used
verify_ssl: no #defaults to no. Needs to be set to yes when ssl_ca_cert is used

test:
 api_endpoint: https://192.168.42.115:8443
 api_token: 4_6A86rcZqdVBIbPwJQnsz33mO35O_PnSH2okk8_190

topology_name: topo
resource_groups:
 - resource_group_name: openshift
 resource_group_type: openshift
 resource_definitions:
 - name: openshift
 role: openshift_inline
 definition:

 .. snip ..

 credentials:
 filename: name_of_credsfile.yaml # fetched from --creds-path is provided
 profile: name_of_profile # defaults to 'default' profile in cred_file

Tid bits :

How to get to know API_ENDPOINT and API_TOKEN:

Once the openshift cluster is up and running try logging into openshift using the following command

After login run following command to get the API_ENDPOINT:

Run the following command to get API_TOKEN

Make sure your openshift user has permissions to create resources:

Openshift by default imposes many restrictions on users when it comes to
creation . One can always manage roles to get appropriate roles.
if its just a development environment please use following command to give
admin user privileges to user
.. code-block:

oc adm policy add-cluster-role-to-user cluster-admin <username> --as=system:admin

Refer: Openshift role management [https://docs.openshift.com/container-platform/3.3/admin_solutions/user_role_mgmt.html].

Advanced Topics

Provisioning in LinchPin is a fairly simple process. However, LinchPin also
provides some very flexible and powerful features. These features can
sometimes be complex, which means most users will likely not use them. Those
features are covered here.

	Inventory Layouts

	The RunDB Explained

	Context Distiller

Inventory Layouts

When generating an inventory, LinchPin provides some very flexible options. From the simple Layouts to much more complex options, detailed here.

inventory_file

New in version 1.5.2

When an layout is provided in the PinFile, LinchPin automatically generates
a static inventory for Ansible. The inventory filename is dynamically generated based
upon a few factors. However, the value can be overridden simply by adding the
inventory_file option.

inventory_layout:
 inventory_file: /path/to/dummy.inventory
 vars:
 .. snip ..

Using LinchPin or Ansible variables

New in version 1.5.2

It’s likely that the inventory file is based upon specific Linchpin
(or Ansible) variables. In this case, the values need to be wrapped as
raw values. This allows LinchPin to read the string in unparsed and
pass it to the Ansible parser.

inventory_layout:
 inventory_file: "{% raw -%}{{ workspace }}/inventories/dummy-new-{{ uhash }}.inventory{%- endraw %}"

Using Environment variables

Additionally, using environment variables requires the raw values.

host_groups:
 all:
 vars:
 ansible_user: root
 ansible_private_key_file: |
 "{% raw -%}{{ lookup('env', 'TESTLP') | default('/tmp', true) }}/CSS/keystore/css-central{%- endraw %}"

The RunDB Explained

Attention

Much of the information below began in v1.2.0 and later.
However, much of the data did not exist until later on, generally in
version 1.5.0 or later. Some cases, where noted, the data is only planned,
and does not yet exist.

The RunDB is the central database which stores transactions and target-based
runs each time any LinchPin action is performed. The RunDB stores detailed
data, including inputs like topology, inventory layout, hooks; and outputs
like resource return data, ansible inventory filename and data, etc.

RunDB Storage

The RunDB is stored using a JSON format by default. TinyDB [http://tinydb.readthedocs.io/en/latest/] currently provides the backend.
It is a NOSQL database, which writes out transactional records to a single
file. Other databases could provide a backend, as long as a driver is written and
included.

TinyDB is included in a class called TinyRunDB [https://github.com/CentOS-PaaS-SIG/linchpin/blob/develop/linchpin/rundb/tinyrundb.py].
TinyRunDB is an implementation of a parent class, called BaseDB, which in turn
is a subclass of the abstract RunDB class.

Records are the main way for items to be stored in the RunDB. There are two
types of records stored in the RunDB, target, and transaction.

Transaction Records

Each time any action (eg. linchpin up) occurs using linchpin, a
transaction record is stored. The transaction records are stored in the
‘linchpin’ table. The main constraint to this is that a target called
linchpin cannot be used.

Transaction Records consist of a Transaction ID (tx_id), the action and
a target information for each target acted upon during the specified
transaction. A single record could have multiple targets listed.

"136": {
 "action": "up",
 "targets": [
 {
 "dummy-new": {
 "290": {
 "rc": 0,
 "uhash": "27e1"
 }
 },
 "libvirt-new": {
 "225": {
 "rc": 0,
 "uhash": "d88c"
 }
 }
 }
]
},

In every case, the target data included is the name, run-id, return code (rc),
and uhash. The linchpin journal provides a transaction view to show this
data in human readable format.

$ linchpin journal --view tx -t 136

ID: 136 Action: up

Target Run ID uHash Exit Code

dummy-new 290 27e1 0
libvirt-new 225 d88c 0

===

Target Records

Target Records are much more detailed. Generally, the target records
correspond to a specific Run ID (run_id). These can also be referenced via
the linchpin journal command, using the target (default) view.

$ linchpin journal dummy-new --view target

Target: dummy-new
run_id action uhash rc

225 up f9e5 0
224 destroy 89ea 0
223 up 89ea 0

The target record data is where the detail lies. Each record contains several
sections, followed by possibly several sub-sections. A complete target record
is very large. Let’s have a look at record 225 for the ‘dummy-new’ target.

"225": {
 "action": "up",
 "end": "03/27/2018 12:18:21 PM",
 "inputs": [
 {
 "topology_data": {
 "resource_groups": [
 {
 "resource_definitions": [
 {
 "count": 3,
 "name": "web",
 "role": "dummy_node"
 },
 {
 "count": 1,
 "name": "test",
 "role": "dummy_node"
 }
],
 "resource_group_name": "dummy",
 "resource_group_type": "dummy"
 }
],
 "topology_name": "dummy_cluster"
 }
 },
 {
 "layout_data": {
 "inventory_layout": {
 "hosts": {
 "example-node": {
 "count": 3,
 "host_groups": [
 "example"
]
 },
 "test-node": {
 "count": 1,
 "host_groups": [
 "test"
]
 }
 },
 "inventory_file": "{{ workspace }}/inventories/dummy-new-{{ uhash }}.inventory",
 "vars": {
 "hostname": "__IP__"
 }
 }
 }
 },
 {
 "hooks_data": {
 "postup": [
 {
 "actions": [
 "echo hello"
],
 "name": "hello",
 "type": "shell"
 }
]
 }
 }
],
 "outputs": [
 {
 "resources": [
 {
 "changed": true,
 "dummy_file": "/tmp/dummy.hosts",
 "failed": false,
 "hosts": [
 "web-f9e5-0.example.net",
 "web-f9e5-1.example.net",
 "web-f9e5-2.example.net"
]
 },
 {
 "changed": true,
 "dummy_file": "/tmp/dummy.hosts",
 "failed": false,
 "hosts": [
 "test-f9e5-0.example.net"
]
 }
]
 }
],
 "rc": 0,
 "start": "03/27/2018 12:18:02 PM",
 "uhash": "f9e5",
 "cfgs": [
 {
 "evars": []
 },
 {
 "magics": []
 },
 {
 "user": []
 }
]
},

As might be gleaned from looking at the JSON, there are a few main sections.
Some of these sections, have subsections. The main sections include:

* action
* start
* end
* uhash
* rc
* inputs
* outputs
* cfgs

Most of these sections are self-explanatory, or can be easily determined.
However, there are three that may need further explanation.

Inputs

The RunDB stored all inputs in the “inputs” section.

"inputs": [
 {
 "topology_data": {
 "resource_groups": [
 {
 "resource_definitions": [
 {
 "count": 3,
 "name": "web",
 "role": "dummy_node"
 },
 {
 "count": 1,
 "name": "test",
 "role": "dummy_node"
 }
],
 "resource_group_name": "dummy",
 "resource_group_type": "dummy"
 }
],
 "topology_name": "dummy_cluster"
 }
 },
 {
 "layout_data": {
 "inventory_layout": {
 "hosts": {
 "example-node": {
 "count": 3,
 "host_groups": [
 "example"
]
 },
 "test-node": {
 "count": 1,
 "host_groups": [
 "test"
]
 }
 },
 "inventory_file": "{{ workspace }}/inventories/dummy-new-{{ uhash }}.inventory",
 "vars": {
 "hostname": "__IP__"
 }
 }
 }
 },
 {
 "hooks_data": {
 "postup": [
 {
 "actions": [
 "echo hello"
],
 "name": "hello",
 "type": "shell"
 }
]
 }
 }
],

Currently, the inputs section has three sub-sections, topology_data,
layout_data, and hooks_data. These three sub-sections hold
relevant data. The use of this data is generally for record-keeping, and more
recently to allow for reuse of the data with linchpin up/destroy actions.

Additionally, some of this data is used to create the outputs, which are
stored in the outputs section.

Outputs

Going forward, the outputs section will contain much more data than is
displayed below. Items like ansible_inventory, and user_data will also
appear in the database. These will be provided in future development.

"outputs": [
 {
 "resources": [
 {
 "changed": true,
 "dummy_file": "/tmp/dummy.hosts",
 "failed": false,
 "hosts": [
 "web-f9e5-0.example.net",
 "web-f9e5-1.example.net",
 "web-f9e5-2.example.net"
]
 },
 {
 "changed": true,
 "dummy_file": "/tmp/dummy.hosts",
 "failed": false,
 "hosts": [
 "test-f9e5-0.example.net"
]
 }
]
 }
],

The lone sub-section is resources. For the dummy-new target,
the data provided is simplistic. However, for providers like openstack or aws,
the resources become quite large and extensive. Here is a snippet of an
openstack resources sub-section.

"resources": [
 {
 "changed": true,
 "failed": false,
 "ids": [
 "fc96e134-4a68-4aaa-a053-7f53cae21369"
],
 "openstack": [
 {
 "OS-DCF:diskConfig": "MANUAL",
 "OS-EXT-AZ:availability_zone": "nova",
 "OS-EXT-STS:power_state": 1,
 "OS-EXT-STS:task_state": null,
 "OS-EXT-STS:vm_state": "active",
 "OS-SRV-USG:launched_at": "2017-11-27T19:43:54.000000",
 "OS-SRV-USG:terminated_at": null,
 "accessIPv4": "10.8.245.175",
 "accessIPv6": "",
 "addresses": {
 "atomic-e2e-jenkins-test": [
 {
 "OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:ba:0e:5e",
 "OS-EXT-IPS:type": "fixed",
 "addr": "172.16.171.15",
 "version": 4
 },
 {
 "OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:ba:0e:5e",
 "OS-EXT-IPS:type": "floating",
 "addr": "10.8.245.175",
 "version": 4
 }
]
 },
 "adminPass": "<REDACTED>",
 "az": "nova",
 "cloud": "",
 "config_drive": "",
 "created": "2017-11-27T19:43:47Z",
 "disk_config": "MANUAL",
 "flavor": {
 "id": "2",
 "name": "m1.small"
 },
 "has_config_drive": false,
 "hostId": "20a84eb5691c546defeac6b2a5b4586234aed69419641215e0870a64",
 "host_id": "20a84eb5691c546defeac6b2a5b4586234aed69419641215e0870a64",
 "id": "fc96e134-4a68-4aaa-a053-7f53cae21369",
 "image": {
 "id": "eae92800-4b49-4e81-b876-1cc61350bf73",
 "name": "CentOS-7-x86_64-GenericCloud-1612"
 },
 "interface_ip": "10.8.245.175",
 "key_name": "ci-factory",
 "launched_at": "2017-11-27T19:43:54.000000",
 "location": {
 "cloud": "",
 "project": {
 "domain_id": null,
 "domain_name": null,
 "id": "6e65fbc3161648e78fde849c7abbd30f",
 "name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"
 },
 "region_name": "",
 "zone": "nova"
 },
 "metadata": {},
 "name": "database-44ee-1",
 "networks": {},
 "os-extended-volumes:volumes_attached": [],
 "power_state": 1,
 "private_v4": "172.16.171.15",
 "progress": 0,
 "project_id": "6e65fbc3161648e78fde849c7abbd30f",
 "properties": {
 "OS-DCF:diskConfig": "MANUAL",
 "OS-EXT-AZ:availability_zone": "nova",
 "OS-EXT-STS:power_state": 1,
 "OS-EXT-STS:task_state": null,
 "OS-EXT-STS:vm_state": "active",
 "OS-SRV-USG:launched_at": "2017-11-27T19:43:54.000000",
 "OS-SRV-USG:terminated_at": null,
 "os-extended-volumes:volumes_attached": []
 },
 "public_v4": "10.8.245.175",
 "public_v6": "",
 "region": "",
 "security_groups": [
 {
 "description": "Default security group",
 "id": "1da85eb2-3c51-4729-afc4-240e187a30ce",
 "location": {
 "cloud": "",
 "project": {
 "domain_id": null,
 "domain_name": null,
 "id": "6e65fbc3161648e78fde849c7abbd30f",
 "name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"
 },
 .. snip ..

Note

The data above continues for several more pages, and would take up
too much space to document. A savvy user might cat the rundb file and pipe
it to the python ‘json.tool’ module.

Each provider returns a large structure like this as results of the
provisioning (up) process. For the teardown, the data can be large, but is
generally more succinct.

Context Distiller

New in version 1.5.2

The purpose of the Context Distiller is to take outputs from provisioned
resources and provide them to a user as a json file.

The distiller currently supports the following roles:

* os_server
* aws_ec2
* bkr_server
* dummy_node (for testing)

For each role, the distiller collects specific fields from the
resource data.

Note

Please be aware that this feature is planned to integrated with
other tooling to make extracting resource data more flexible in the future.

Enabling the Distiller

To enable the Context Distiller, the following must be set in the
linchpin.conf [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/linchpin.conf].

[lp]
distill_data = True

disable generating the resources file
[evars]
generate_resources = False

Note

Other settings may already be in these sections. If that is the case,
just add these settings to the proper section.

Hint

It may not be immediately obvious, as LinchPin uses the RunDB
data to return resource data from a run. In this way, the resource data can
be stored somewhere and retrieved at any time by future tooling. Because of
this, the resources file is disabled. In this way, the resource data is
stored solely in the RunDB for easy retrieval.

Fields to Retreive

Warning

Modifying the distilled fields can cause unexpected results.
MODIFY THIS DATA AT YOUR OWN RISK!

Within the linchpin.constants [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/linchpin/linchpin.constants] file,
the [distiller] section exists. Described within this section is how each
role gathers the applicable data to distill.

[distiller]
bkr_server = id,url,system
dummy_node: hosts
aws_ec2 = instances.id,instances.public_ip,instances.private_ip,instances.public_dns_name,instances.private_dns_name,instances.tags:name
os_server = servers.id,servers.interface_ip,servers.name,servers.private_v4,servers.public_v4

If the distiller is enabled, the bkr_server role will distill the id, url,
and system values for each instance provisioned during the transaction.

Output

The distiller creates one file, placed in
<workspace>/resources/linchpin.distilled. Each time an ‘up’ transaction
is performed, the distilled data is overwritten.

If no output is recorded, it’s likely that the provisioning didn’t complete
successfully, or an error occurred during data collection. The data is still
available in the RunDB.

This is the output for the aws_ec2 role, using the aws-ec2-new target,
which provisioned two instances.

{
 "aws-ec2-new": [
 {
 "id": "i-0d8616a3d08a67f38",
 "name": "demo-day",
 "private_dns_name": "ip-172-31-18-177.us-west-2.compute.internal",
 "private_ip": "172.31.18.177",
 "public_dns_name": "ec2-54-202-80-27.us-west-2.compute.amazonaws.com",
 "public_ip": "54.202.80.27"
 },
 {
 "id": "i-01112909e184530fc",
 "name": "demo-night",
 "private_dns_name": "ip-172-31-20-190.us-west-2.compute.internal",
 "private_ip": "172.31.20.190",
 "public_dns_name": "ec2-54-187-172-80.us-west-2.compute.amazonaws.com",
 "public_ip": "54.187.172.80"
 }
]
}

Developer Information

The following information may be useful for those wishing to extend LinchPin.

	Python API Reference

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]

	Subscribe and participate. A great place for Q&A

	LinchPin on Github [https://github.com/CentOS-PaaS-SIG/linchpin]

	Code Contributions and Latest Software

	webchat.freenode.net [http://webchat.freenode.net?channels=linchpin]

	#linchpin IRC chat channel

	LinchPin on PyPi [https://pypi.org/project/linchpin/]

	Latest Release of LinchPin

Python API Reference

This page contains the list of project’s modules

	Linchpin API and Context Modules

	LinchPin Command-Line API

	LinchPin Command Line Shell implementation

	LinchPin Hooks API

	LinchPin Extra Modules

Linchpin API and Context Modules

The linchpin module provides the base API for managing LinchPin, Ansible,
and other useful aspects for provisioning.

	
class linchpin.LinchpinAPI(ctx)

	
	
bind_to_hook_state(callback)

	Function used by LinchpinHooksclass to add callbacks

	Parameters

	callback – callback function

	
do_action(provision_data, action='up', run_id=None, tx_id=None)

	This function takes provision_data, and executes the given
action for each target within the provision_data disctionary.

	Parameters

	provision_data – PinFile data as a dictionary, with

target information

	Parameters

	
	action – Action taken (up, destroy, etc). (Default: up)

	run_id – Provided run_id to duplicate/destroy (Default: None)

	tx_id – Provided tx_id to duplicate/destroy (Default: None)

	
do_validation(provision_data, old_schema=False)

	This function takes provision_data, and attempts to validate the
topologies for that data

	Parameters

	provision_data – PinFile data as a dictionary, with

target information

	
generate_inventory(resource_data, layout, inv_format='cfg', topology_data={}, config_data={})

	

	
get_cfg(section=None, key=None, default=None)

	Get cfgs value(s) by section and/or key, or the whole cfgs object

	Parameters

	
	section – section from ini-style config file

	key – key to get from config file, within section

	default – default value to return if nothing is found.

	
get_evar(key=None, default=None)

	Get the current evars (extra_vars)

	Parameters

	
	key – key to use

	default – default value to return if nothing is found

(default: None)

	
get_pf_data_from_rundb(targets, run_id=None, tx_id=None)

	This function takes the action and provision_data, returns the
pinfile data

	Parameters

	
	targets – A list of targets for which to get the data

	targets – Tuple of target(s) for which to gather data.

	run_id – run_id associated with target (Default: None)

	tx_id – tx_id for which to gather data (Default: None)

	
get_run_data(tx_id, fields, targets=())

	Returns the RunDB for data from a specified field given a tx_id.
The fields consist of the major sections in the RunDB (target
view only). Those fields are action, start, end, inputs, outputs,
uhash, and rc.

	Parameters

	
	tx_id – tx_id to search

	fields – Tuple of fields to retrieve for each record requested.

	targets – Tuple of targets to search from within the tx_ids

	
hook_state

	getter function for hook_state property of the API object

	
lp_journal(view='target', targets=[], fields=None, count=1, tx_ids=None)

	

	
set_cfg(section, key, value)

	Set a value in cfgs. Does not persist into a file,
only during the current execution.

	Parameters

	
	section – section within ini-style config file

	key – key to use

	value – value to set into section within config file

	
set_evar(key, value)

	Set a value into evars (extra_vars). Does not persist into a file,
only during the current execution.

	Parameters

	
	key – key to use

	value – value to set into evars

	
setup_rundb()

	Configures the run database parameters, sets them into extra_vars

	
validate_layout(layout)

	Validate the provided layout against the schema

	Parameters

	layout – layout dictionary

	
validate_topology(topology)

	Validate the provided topology against the schema

;param topology: topology dictionary

	
class linchpin.context.LinchpinContext

	LinchpinContext object, which will be used to manage the cli,
and load the configuration file.

	
get_cfg(section=None, key=None, default=None)

	Get cfgs value(s) by section and/or key, or the whole cfgs object

	Parameters

	
	section – section from ini-style config file

	key – key to get from config file, within section

	default – default value to return if nothing is found.

Does not apply if section is not provided.

	
get_evar(key=None, default=None)

	Get the current evars (extra_vars)

	Parameters

	
	key – key to use

	default – default value to return if nothing is found

(default: None)

	
load_config(search_path=None)

	Update self.cfgs from the linchpin configuration file (linchpin.conf).

NOTE: Must be implemented by a subclass

	
load_global_evars()

	Instantiate the evars variable, then load the variables from the
‘evars’ section in linchpin.conf. This will then be passed to
invoke_linchpin, which passes them to the Ansible playbook as needed.

	
log(msg, **kwargs)

	Logs a message to a logfile

	Parameters

	
	msg – message to output to log

	level – keyword argument defining the log level

	
log_debug(msg)

	Logs a DEBUG message

	
log_info(msg)

	Logs an INFO message

	
log_state(msg)

	Logs nothing, just calls pass

Attention

state messages need to be implemented in a subclass

	
set_cfg(section, key, value)

	Set a value in cfgs. Does not persist into a file,
only during the current execution.

	Parameters

	
	section – section within ini-style config file

	key – key to use

	value – value to set into section within config file

	
set_evar(key, value)

	Set a value into evars (extra_vars). Does not persist into a file,
only during the current execution.

	Parameters

	
	key – key to use

	value – value to set into evars

	
setup_logging()

	Setup logging to the console only

Attention

Please implement this function in a subclass

	
linchpin.ansible_runner.ansible_runner(playbook_path, module_path, extra_vars, inventory_src='localhost', verbosity=1, console=True)

	Uses the Ansible API code to invoke the specified linchpin playbook
:param playbook: Which ansible playbook to run (default: ‘up’)
:param console: Whether to display the ansible console (default: True)

	
linchpin.ansible_runner.ansible_runner_24x(playbook_path, extra_vars, options=None, inventory_src='localhost', console=True)

	

	
linchpin.ansible_runner.ansible_runner_2x(playbook_path, extra_vars, options=None, inventory_src='localhost', console=True)

	

	
linchpin.ansible_runner.suppress_stdout(*args, **kwds)

	This context manager provides tooling to make Ansible’s Display class
not output anything when used

	
class linchpin.callbacks.PlaybookCallback(display=None, options=None, ansible_version=2.3)

	Playbook callback

	
v2_runner_on_failed(result, **kwargs)

	Save failed result

	
v2_runner_on_ok(result)

	Save ok result

LinchPin Command-Line API

The linchpin.cli module provides an API for writing a command-line interface,
the LinchPin Command Line Shell implementation being the reference implementation.

	
class linchpin.cli.LinchpinCli(ctx)

	
	
find_include(filename, ftype='topology')

	Find the included file to be acted upon.

	Parameters

	
	filename – name of file from to be loaded

	ftype – the file type to locate: topology, layout
(default: topology)

	
lp_destroy(targets=(), run_id=None, tx_id=None)

	This function takes a list of targets, and performs a destructive
teardown, including undefining nodes, according to the target(s).

See also

lp_down - currently unimplemented

	Parameters

	
	targets – A tuple of targets to destroy.

	run_id – An optional run_id to use

	tx_id – An optional tx_id to use

	
lp_down(pinfile, targets=(), run_id=None)

	This function takes a list of targets, and performs a shutdown on
nodes in the target’s topology. Only providers which support shutdown
from their API (Ansible) will support this option.

CURRENTLY UNIMPLEMENTED

See also

lp_destroy

	Parameters

	
	pinfile – Provided PinFile, with available targets,

	targets – A tuple of targets to provision.

	
lp_fetch(src, root='', fetch_type='workspace', fetch_protocol='FetchGit', fetch_ref=None, dest_ws=None, nocache=False)

	Fetch a workspace from git, http(s), or a local directory, and
generate a provided workspace

	Parameters

	
	src – The URL or URI of the remote directory

	root – Used to specify the location of the workspace
within the remote. If root is not set, the root
of the given remote will be used.

	fetch_type – Specifies which component(s) of a workspace the
user wants to fetch. Types include: topology,
layout, resources, hooks, workspace.
(default: workspace)

	fetch_protocol – The protocol to use to fetch the workspace.
(default: git)

	fetch_ref – Specify the git branch. Used only with git protocol
(eg. master). If not used, the default branch will
be used.

	dest_ws – Workspaces destination, the workspace will be relative
to this location.

If dest_ws is not provided and -r/–root is
provided, the basename will be the name of the
workspace within the destination. If no root is
provided, a random workspace name will be generated.
The destination can also be explicitly set by using
-w (see linchpin –help).

	nocache – If true, don’t copy from the cache dir, unless it’s
longer than the configured fetch.cache_days (1 day)
(default: False)

	
lp_init(providers=['libvirt'])

	Initializes a linchpin project. Creates the necessary directory
structure, includes PinFile, topologies and layouts for the given
provider. (Default: Dummy. Other providers not yet implemented.)

	Parameters

	providers – A list of providers for which templates

(and a target) will be provided into the workspace.
NOT YET IMPLEMENTED

	
lp_setup(providers='all')

	This function takes a list of providers, and setsup the dependencies
:param providers:

A tuple of providers to install dependencies

	
lp_up(targets=(), run_id=None, tx_id=None, inv_f='cfg')

	This function takes a list of targets, and provisions them according
to their topology.

	Parameters

	
	targets – A tuple of targets to provision

	run_id – An optional run_id if the task is idempotent

	tx_id – An optional tx_id if the task is idempotent

	
lp_validate(targets=(), old_schema=False)

	This function takes a list of targets, and validates their topology.

	Parameters

	targets – A tuple of targets to provision

	:param old_schema

	Denotes whether schema should be validated with the old schema
rather than the new one!/usr/bin/env python

	
pf_data

	getter for pinfile template data

	
pinfile

	getter function for pinfile name

	
workspace

	getter function for context workspace

	
class linchpin.cli.context.LinchpinCliContext

	Context object, which will be used to manage the cli,
and load the configuration file

	
load_config(lpconfig=None)

	Update self.cfgs from the linchpin configuration file (linchpin.conf).

The following paths are used to find the config file.
The search path defaults to the first-found order:

* /etc/linchpin.conf
* /linchpin/library/path/linchpin.conf
* <workspace>/linchpin.conf

An alternate search_path can be passed.

	Parameters

	search_path – A list of paths to search a linchpin config

(default: None)

	
log(msg, **kwargs)

	Logs a message to a logfile or the console

	Parameters

	
	msg – message to log

	lvl – keyword argument defining the log level

	msg_type – keyword argument giving more flexibility.

Note

Only msg_type STATE is currently implemented.

	
log_debug(msg)

	Logs a DEBUG message

	
log_info(msg)

	Logs an INFO message

	
log_state(msg)

	Logs a message to stdout

	
pinfile

	getter function for pinfile name

	
setup_logging()

	Setup logging to a file, console, or both. Modifying the linchpin.conf
appropriately will provide functionality.

	
workspace

	getter function for workspace

LinchPin Command Line Shell implementation

The linchpin.shell module contains calls to implement the Command Line
Interface within linchpin. It uses the Click [http://click.pocoo.org]
command line interface composer. All calls here interface with the
LinchPin Command-Line API API.

	
class linchpin.shell.click_default_group.DefaultGroup(*args, **kwargs)

	Invokes a subcommand marked with default=True if any subcommand not
chosen.

	Parameters

	default_if_no_args – resolves to the default command if no arguments
passed.

	
command(*args, **kwargs)

	A shortcut decorator for declaring and attaching a command to
the group. This takes the same arguments as command() but
immediately registers the created command with this instance by
calling into add_command().

	
format_commands(ctx, formatter)

	Extra format methods for multi methods that adds all the commands
after the options.

	
get_command(ctx, cmd_name)

	Given a context and a command name, this returns a
Command object if it exists or returns None.

	
list_commands(ctx)

	Provide a list of available commands. Anything deprecated should
not be listed

	
parse_args(ctx, args)

	Given a context and a list of arguments this creates the parser
and parses the arguments, then modifies the context as necessary.
This is automatically invoked by make_context().

	
resolve_command(ctx, args)

	

	
set_default_command(command)

	Sets a command function as the default command.

LinchPin Hooks API

The linchpin.hooks module manages the hooks functionality within
LinchPin.

	
class linchpin.hooks.ActionBlockRouter(name, *args, **kwargs)

	Proxy pattern implementation for fetching actionmanagers by name

	
class linchpin.hooks.LinchpinHooks(api)

	
	
prepare_ctx_params()

	prepares few context parameters based on the current target_data
that is being set. these parameters are based topology name.

	
prepare_inv_params()

	

	
run_actions(action_blocks, tgt_data, is_global=False)

	Runs actions inside each action block of each target

	Parameters

	
	action_blocks – list of action_blocks each block constitues
to a type of hook

	tgt_data – data specific to target, which can be dict of

topology , layout, outputs, inventory
:param is_global: scope of the hook

example: action_block:
- name: do_something

type: shell
actions:

	echo ‘ this is ‘postup’ operation Hello hai how r u ?’

	
run_hooks(state, is_global=False)

	Function to run hook all hooks from Pinfile based on the state
:param state: hook state (currently, preup, postup,
predestroy, postdestroy)
:param is_global: whether the hook is global (can be applied to
multiple targets)

	
run_inventory_gen(data)

	

	
rundb

	

LinchPin Extra Modules

These are modules not documented elsewhere in the LinchPin API, but may be
useful to a developer.

	
class linchpin.utils.dataparser.DataParser

	
	
load_pinfile(pinfile)

	

	
parse_json_yaml(data, ordered=True)

	parses yaml file into json object

	
process(file_w_path, data=None)

	Processes the PinFile and any data (if a template)
using Jinja2. Returns json of PinFile, topology, layout,
and hooks.

	Parameters

	
	file_w_path – Full path to the provided file to process

	data – A JSON representation of data mapped to a Jinja2 template in
file_w_path

	
render(template, context, ordered=True)

	Performs the rendering of template and context data using
Jinja2.

	Parameters

	
	template – Full path to the Jinja2 template

	context – A dictionary of variables to be rendered againt the template

	
run_script(script)

	

	
write_json(provision_data, pf_outfile)

	

	
exception linchpin.exceptions.ActionError(*args, **kwargs)

	

	
exception linchpin.exceptions.ActionManagerError(*args, **kwargs)

	

	
exception linchpin.exceptions.HookError(*args, **kwargs)

	

	
exception linchpin.exceptions.LinchpinError(*args, **kwargs)

	

	
exception linchpin.exceptions.SchemaError(*args, **kwargs)

	

	
exception linchpin.exceptions.StateError(*args, **kwargs)

	

	
exception linchpin.exceptions.TopologyError(*args, **kwargs)

	

	
exception linchpin.exceptions.ValidationError(*args, **kwargs)

	

	
class linchpin.exceptions.ValidationErrorHandler(tree=None)

	
	
messages = {0: '{0}', 1: 'document is missing', 2: "field '{field}' is required", 3: "field '{field}' could not be recognized within the schema provided", 4: "field '{0}' is required", 5: 'depends on these values: {constraint}', 6: "{0} must not be present with '{field}'", 33: "'{0}' is not a document, must be a dict", 34: 'empty values not allowed', 35: 'null value not allowed', 36: "value for field '{field}' must be of type '{constraint}'", 37: 'must be of dict type', 38: 'length of list should be {constraint}, it is {0}', 39: 'min length is {constraint}', 40: 'max length is {constraint}', 65: "value does not match regex '{constraint}'", 66: 'min value is {constraint}', 67: 'max value is {constraint}', 68: "unallowed value '{value}' for field '{field}'. Allowed values are: {constraint}", 69: 'unallowed values {0}', 70: 'unallowed value {value}', 71: 'unallowed values {0}', 97: "field '{field}' cannot be coerced: {0}", 98: "field '{field}' cannot be renamed: {0}", 99: 'field is read-only', 100: "default value for '{field}' cannot be set: {0}", 129: "mapping doesn't validate subschema: {0}", 130: "one or more sequence-items don't validate: {0}", 131: "one or more keys of a mapping don't validate: {0}", 132: "one or more values in a mapping don't validate: {0}", 133: "one or more sequence-items don't validate: {0}", 145: 'one or more definitions validate', 146: 'none or more than one rule validate', 147: 'no definitions validate', 148: "one or more definitions don't validate"}

	

	
class linchpin.fetch.FetchHttp(ctx, fetch_type, src, dest, cache_dir, root='', root_ws='', ref=None)

	
	
call_wget(fetch_dir=None)

	

	
fetch_files()

	

	
class linchpin.fetch.FetchGit(ctx, fetch_type, src, dest, cache_dir, root='', root_ws='', ref=None)

	
	
call_clone(fetch_dir=None)

	

	
fetch_files()

	

FAQs

Below is a list of Frequently Asked Questions (FAQs), with answers. Feel free to submit yours in a Github issue [https://github.com/CentOS-PaaS-SIG/linchpin].

Community

LinchPin has a small, but vibrant community. Come help us while you learn a skill.

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]

	Subscribe and participate. A great place for Q&A

	LinchPin on Github [https://github.com/CentOS-PaaS-SIG/linchpin]

	Code Contributions and Latest Software

	webchat.freenode.net [http://webchat.freenode.net?channels=linchpin]

	#linchpin IRC chat channel

	LinchPin on PyPi [https://pypi.org/project/linchpin/]

	Latest Release of LinchPin

Glossary

The following is a list of terms used throughout the LinchPin documentation.

	_async

	(boolean, default: False)

Used to enable asynchronous provisioning/teardown. Sets the Ansible async magic_var.

	async_timeout

	(int, default: 1000)

How long the resouce collection (formerly outputs_writer) process should wait

	_check_mode/check_mode

	(boolean, default: no)

This option does nothing at this time, though it may eventually be used for dry-run
functionality based upon the provider

	default_schemas_path

	(file_path, default: <lp_path>/defaults/<schemas_folder>)

default path to schemas, absolute path. Can be overridden by passing schema / schema_file.

	default_playbooks_path

	(file_path, default: <lp_path>/defaults/playbooks_folder>)

default path to playbooks location, only useful to the linchpin API and CLI

	default_layouts_path

	(file_path, default: <lp_path>/defaults/<layouts_folder>)

default path to inventory layout files

	default_topologies_path

	(file_path, default: <lp_path>/defaults/<topologies_folder>)

default path to topology files

	default_resources_path

	(file_path, default: <lp_path>/defaults/<resources_folder>, formerly: outputs)

default landing location for resources output data

	default_inventories_path

	(file_path, default: <lp_path>/defaults/<inventories_folder>)

default landing location for inventory outputs

	evars	extra_vars

	Variables that can be passed into Ansible playbooks from external
sources. Used in linchpin via the linchpin.conf [evars] section.

	hook

	Certain scripts can be called when a particular hook has been
referenced in the PinFile. The currently available hooks are
preup, postup, predestroy, and postdestroy.

	inventory	inventory_file

	If layout is provided, this will be the location of the resulting ansible
inventory

	inventories_folder

	A configuration entry in linchpin.conf [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/linchpin.conf]
which stores the relative location where inventories are stored.

	linchpin_config	lpconfig

	if passed on the command line with -c/--config, should be
an ini-style config file with linchpin default configurations (see
BUILT-INS below for more information)

	layout	layout_file	inventory_layout

	Definition for providing an Ansible (currently) static inventory file, based upon the provided
topology

	layouts_folder

	(file_path, default: layouts)

relative path to layouts

	lp_path

	base path for linchpin playbooks and python api

	output

	(boolean, default: True, previous: no_output)

Controls whether resources will be written to the resources_file

	PinFile	pinfile

	A YAML file consisting of a topology and an optional
layout, among other options. This file is used by the
linchpin command-line, or Python API to determine what resources
are needed for the current action.

	playbooks_folder

	(file_path, default: provision)

relative path to playbooks, only useful to the linchpin API and CLI

	provider

	A set of platform actions grouped together, which is provided by an
external Ansible module. openstack would be a provider.

	provision	up

	An action taken when resources are to be made available on a
particular provider platform. Usually corresponds with the
linchpin up command.

	resource_definitions

	In a topology, a resource_definition describes what the resources
look like when provisioned. This example shows two different
dummy_node resources, the resource named web will get 3 nodes, while
and the resource named test will get 1 resource.

resource_definitions:
 - name: "web"
 type: "dummy_node"
 count: 3
 - name: "test"
 type: "dummy_node"
 count: 1

	resource_group_type

	For each resource group, the type is defined by this value. It’s used by
the LinchPin API to determine which provider playbook to run.

	resources	resources_file

	File with the resource outputs in a JSON formatted file. Useful for
teardown (destroy,down) actions depending on the provider.

	run_id	run-id

	An integer identifier assigned to each task.

	The run_id can be passed to linchpin up for idempotent provisioning

	The run_id can be passed to linchpin destroy to destroy any
previously provisioned resources.

	rundb	RunDB

	A simple json database, used to store the uhash and other
useful data, including the run_id and output data.

	schema

	JSON description of the format for the topology.

	target

	Specified in the PinFile, the target references a
topology and optional layout to be acted upon from the
command-line utility, or Python API.

	teardown	destroy

	An action taken when resources are to be made unavailable on a
particular provider platform. Usually corresponds with the
linchpin destroy command.

	topologies_folder

	(file_path, default: topologies)

relative path to topologies

	topology	topology_file

	A set of rules, written in YAML, that define the way the provisioned
systems should look after executing linchpin.

Generally, the topology and topology_file values are
interchangeable, except after the file has been processed.

	topology_name

	Within a topology_file, the topology_name provides a way to
identify the set of resources being acted upon.

	uhash	uHash

	Unique-ish hash associated with resources on a provider basis. Provides
unique resource names and data if desired. The uhash must be enabled
in linchpin.conf if desired.

	workspace

	If provided, the above variables will be adjusted
and mapped according to this value. Each path will use the following
variables:

topology / topology_file = /<topologies_folder>
layout / layout_file = /<layouts_folder>
resources / resources_file = /resources_folder>
inventory / inventory_file = /<inventories_folder>

If the WORKSPACE environment variable is set, it will be used here. If it
is not, this variable can be set on the command line with -w/--workspace, and defaults
to the location of the PinFile bring provisioned.

Note

schema is not affected by this pathing

 Python Module Index

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 linchpin	

 	
 	
 linchpin.ansible_runner	

 	
 	
 linchpin.callbacks	

 	
 	
 linchpin.cli	

 	
 	
 linchpin.cli.context	

 	
 	
 linchpin.context	

 	
 	
 linchpin.exceptions	

 	
 	
 linchpin.fetch	

 	
 	
 linchpin.hooks	

 	
 	
 linchpin.hooks.action_managers	

 	
 	
 linchpin.shell	

 	
 	
 linchpin.shell.click_default_group	

 	
 	
 linchpin.utils.dataparser	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_async

 	
 	_check_mode/check_mode

A

 	
 	ActionBlockRouter (class in linchpin.hooks)

 	ActionError

 	ActionManagerError

 	
 	ansible_runner() (in module linchpin.ansible_runner)

 	ansible_runner_24x() (in module linchpin.ansible_runner)

 	ansible_runner_2x() (in module linchpin.ansible_runner)

 	async_timeout

B

 	
 	bind_to_hook_state() (linchpin.LinchpinAPI method)

C

 	
 	call_clone() (linchpin.fetch.FetchGit method)

 	
 	call_wget() (linchpin.fetch.FetchHttp method)

 	command() (linchpin.shell.click_default_group.DefaultGroup method)

D

 	
 	DataParser (class in linchpin.utils.dataparser)

 	default_inventories_path

 	default_layouts_path

 	default_playbooks_path

 	default_resources_path

 	
 	default_schemas_path

 	default_topologies_path

 	DefaultGroup (class in linchpin.shell.click_default_group)

 	destroy

 	do_action() (linchpin.LinchpinAPI method)

 	do_validation() (linchpin.LinchpinAPI method)

E

 	
 	evars

 	
 	extra_vars

F

 	
 	fetch_files() (linchpin.fetch.FetchGit method)

 	(linchpin.fetch.FetchHttp method)

 	FetchGit (class in linchpin.fetch)

 	
 	FetchHttp (class in linchpin.fetch)

 	find_include() (linchpin.cli.LinchpinCli method)

 	format_commands() (linchpin.shell.click_default_group.DefaultGroup method)

G

 	
 	generate_inventory() (linchpin.LinchpinAPI method)

 	get_cfg() (linchpin.context.LinchpinContext method)

 	(linchpin.LinchpinAPI method)

 	get_command() (linchpin.shell.click_default_group.DefaultGroup method)

 	
 	get_evar() (linchpin.context.LinchpinContext method)

 	(linchpin.LinchpinAPI method)

 	get_pf_data_from_rundb() (linchpin.LinchpinAPI method)

 	get_run_data() (linchpin.LinchpinAPI method)

H

 	
 	hook

 	
 	hook_state (linchpin.LinchpinAPI attribute)

 	HookError

I

 	
 	inventories_folder

 	inventory

 	
 	inventory_file

 	inventory_layout

L

 	
 	layout

 	layout_file

 	layouts_folder

 	linchpin (module)

 	linchpin.ansible_runner (module)

 	linchpin.callbacks (module)

 	linchpin.cli (module)

 	linchpin.cli.context (module)

 	linchpin.context (module)

 	linchpin.exceptions (module)

 	linchpin.fetch (module)

 	linchpin.hooks (module)

 	linchpin.hooks.action_managers (module)

 	linchpin.shell (module)

 	linchpin.shell.click_default_group (module)

 	linchpin.utils.dataparser (module)

 	linchpin_config

 	LinchpinAPI (class in linchpin)

 	LinchpinCli (class in linchpin.cli)

 	LinchpinCliContext (class in linchpin.cli.context)

 	LinchpinContext (class in linchpin.context)

 	LinchpinError

 	LinchpinHooks (class in linchpin.hooks)

 	
 	list_commands() (linchpin.shell.click_default_group.DefaultGroup method)

 	load_config() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	load_global_evars() (linchpin.context.LinchpinContext method)

 	load_pinfile() (linchpin.utils.dataparser.DataParser method)

 	log() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	log_debug() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	log_info() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	log_state() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	lp_destroy() (linchpin.cli.LinchpinCli method)

 	lp_down() (linchpin.cli.LinchpinCli method)

 	lp_fetch() (linchpin.cli.LinchpinCli method)

 	lp_init() (linchpin.cli.LinchpinCli method)

 	lp_journal() (linchpin.LinchpinAPI method)

 	lp_path

 	lp_setup() (linchpin.cli.LinchpinCli method)

 	lp_up() (linchpin.cli.LinchpinCli method)

 	lp_validate() (linchpin.cli.LinchpinCli method)

 	lpconfig

M

 	
 	messages (linchpin.exceptions.ValidationErrorHandler attribute)

O

 	
 	output

P

 	
 	parse_args() (linchpin.shell.click_default_group.DefaultGroup method)

 	parse_json_yaml() (linchpin.utils.dataparser.DataParser method)

 	pf_data (linchpin.cli.LinchpinCli attribute)

 	PinFile

 	pinfile

 	(linchpin.cli.LinchpinCli attribute)

 	(linchpin.cli.context.LinchpinCliContext attribute)

 	
 	PlaybookCallback (class in linchpin.callbacks)

 	playbooks_folder

 	prepare_ctx_params() (linchpin.hooks.LinchpinHooks method)

 	prepare_inv_params() (linchpin.hooks.LinchpinHooks method)

 	process() (linchpin.utils.dataparser.DataParser method)

 	provider

 	provision

R

 	
 	render() (linchpin.utils.dataparser.DataParser method)

 	resolve_command() (linchpin.shell.click_default_group.DefaultGroup method)

 	resource_definitions

 	resource_group_type

 	resources

 	resources_file

 	run-id

 	
 	run_actions() (linchpin.hooks.LinchpinHooks method)

 	run_hooks() (linchpin.hooks.LinchpinHooks method)

 	run_id

 	run_inventory_gen() (linchpin.hooks.LinchpinHooks method)

 	run_script() (linchpin.utils.dataparser.DataParser method)

 	RunDB

 	rundb

 	(linchpin.hooks.LinchpinHooks attribute)

S

 	
 	schema

 	SchemaError

 	set_cfg() (linchpin.context.LinchpinContext method)

 	(linchpin.LinchpinAPI method)

 	set_default_command() (linchpin.shell.click_default_group.DefaultGroup method)

 	set_evar() (linchpin.context.LinchpinContext method)

 	(linchpin.LinchpinAPI method)

 	
 	setup_logging() (linchpin.cli.context.LinchpinCliContext method)

 	(linchpin.context.LinchpinContext method)

 	setup_rundb() (linchpin.LinchpinAPI method)

 	StateError

 	suppress_stdout() (in module linchpin.ansible_runner)

T

 	
 	target

 	teardown

 	topologies_folder

 	
 	topology

 	topology_file

 	topology_name

 	TopologyError

U

 	
 	uHash

 	
 	uhash

 	up

V

 	
 	v2_runner_on_failed() (linchpin.callbacks.PlaybookCallback method)

 	v2_runner_on_ok() (linchpin.callbacks.PlaybookCallback method)

 	validate_layout() (linchpin.LinchpinAPI method)

 	
 	validate_topology() (linchpin.LinchpinAPI method)

 	ValidationError

 	ValidationErrorHandler (class in linchpin.exceptions)

W

 	
 	workspace

 	(linchpin.cli.LinchpinCli attribute)

 	(linchpin.cli.context.LinchpinCliContext attribute)

 	
 	write_json() (linchpin.utils.dataparser.DataParser method)

 Installing LinchPin on CentOS 6

Installing LinchPin on CentOS 6

Installing LinchPin on CentOS 6 is a bit of a special snowflake. Because
of the age of the distribution, and the newness of the libraries used by
LinchPin, system packages and python packages will conflict.

Note

It’s possible this document could be used to install RHEL6 packages
as well. Please consult the Red Hat documentation.

Follow this document very carefully, completing each section in order. It’s
imperative to a working LinchPin installation.

System Packages

Install the EPEL RPM.

$ sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm

Follow this up with the LinchPin dependencies. This shouldn’t differ from the
standard Installation.

$ sudo yum install python-pip python-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config libxml2-python libxslt-python

Next install some additional dependencies used for installing LinchPin via the
python pip package manager.

$ sudo yum install gcc python-devel libxslt-devel \
python-jinja2-26 libffi-devel

Pip Packages

Because pip and setuptools from RPM are too old, update them.

Note

Using --force is required because otherwise other tools depend
on a newer setuptools

$ pip install pip setuptools --force --upgrade

So far this has been rather simple. This next part is critical. To address
AttributeError: ‘module’ object has no attribute ‘HAVE_DECL_MPZ_POWM_SEC [https://github.com/ansible/ansible/issues/276#issuecomment-54228436],
perform the following tasks in order.

$ sudo pip uninstall pycrypto
$ sudo yum install python-crypto python-paramiko

This removes the python-crypto RPM and pycrypto pip package, then puts the
older python-crypto RPM back. In a minute, we’ll update that to a newer version.

When removing the above packages, it removed a few other dependencies. Add them
back here.

$ sudo yum remove python-six python-requests python-urllib3
$ sudo pip uninstall -y urllib3
$ sudo yum install cloud-init
$ sudo pip install six requests urllib3 PyOpenSSL --force --upgrade

Installing LinchPin

Now it is time to install LinchPin.

$ sudo pip install linchpin

Alternatively install from source.

$ sudo yum install git
$ git clone git://github.com/CentOS-PaaS-SIG/linchpin.git
$ cd linchpin
$ sudo pip install .

At this point, the linchpin command should work.

$ linchpin --version
linchpin version 1.5.0

Installation Script

To make this easier, a script has been written which implements the above
steps. In can be run from the scripts directory in a linchpin git checkout.

centos6_install.sh [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/scripts/centos6_install.sh]

See also

Providers

 Configuration Options

Configuration Options

Topics

	Configuration Options

	Getting the most current configuration

	Environmental Variables

	Command Line Options

	Values by Section

	General Defaults

	pkg

	default_config_path

	external_providers_path

	source

	pinfile

	module_folder

	rundb_type

	rundb_conn

	rundb_conn_type

	rundb_conn_schema

	rundb_hash

	dateformat

	default_pinfile

	Extra Vars

	_check_mode

	_async

	async_timeout

	enable_uhash

	generate_resources

	output

	layouts_folder

	topologies_folder

	roles_folder

	inventories_folder

	hooks_folder

	resources_folder

	schemas_folder

	playbooks_folder

	default_schemas_path

	default_topologies_path

	default_layouts_path

	default_inventories_path

	default_resources_path

	default_roles_path

	schema_v3

	schema_v4

	default_credentials_path

	inventory_path

	default_ssh_key_path

	libvirt_image_path

	libvirt_user

	libvirt_become

	Initialization Settings

	source

	pinfile

	Logger Settings

	enable

	file

	format

	dateformat

	level

	format

	level

	Hooks Settings

	preup

	predestroy

	postup

	postinv

	up

	destroy

	inv

	File Extensions

	resource

	inventory

	playbooks

	Playbook Settings

	up

	destroy

	down

	schema_check

	inv_gen

	test

Below is full coverage of each of the sections of the values available in linchpin.conf [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/linchpin.conf].

Getting the most current configuration

If you are installing LinchPin from a package manager (pip or RPM), the latest linchpin.conf is already included in the library.

An example linchpin.conf [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/linchpin.conf] is available on Github.

For in-depth details of all the options, see the Configuration Reference document.

Environmental Variables

LinchPin allows configuration adjustments via environment variables in some cases. If these environment variables are set, they will take precedence over any settings in the configuration file.

A full listing of available environment variables, see the Configuration Reference document.

Command Line Options

Some configuration options are also present in the command line. Settings passed via the command line will override those passed through the configuration file and the environment.

The full list of options is covered in the Commands (CLI) document.

Values by Section

The configuration file is broken into sections. Each section controls a specific functionality in LinchPin.

General Defaults

The following settings are in the [DEFAULT] section of the linchpin.conf

Warning

The configurations in this section should NOT be changed unless you know what you are doing.

pkg

This defines the package name. Many components base paths and other
information from this setting.

pkg = linchpin

default_config_path

New in version 1.2.0

Where configuration files might land, such as the workspaces.conf,
or credentials. Generally used in combination with other configurations.

default_config_path = ~/.config/linchpin

external_providers_path

New in version 1.5.0

Developers can provide additional provider playbooks and schemas.
This configuration is used to set the path(s) to look for additional providers.

external_providers_path = %(default_config_path)s/linchpin-x

The following settings are in the [init] section of the linchpin.conf

source

Source path of files provided for the linchpin init command.

source = templates/

pinfile

Formal name of the PinFile. Can be changed as desired.

pinfile = PinFile

The following settings are in the [lp] section of the linchpin.conf

module_folder

Load custom ansible modules from this directory

module_folder = library

rundb_type

New in version 1.2.0

RunDB supports additional drivers, currently the only driver is
TinyRunDB, based upon tinydb.

rundb_type = TinyRunDB

rundb_conn

New in version 1.2.0

The resource path to the RunDB connection. The TinyRunDB version (default)
is a file.

Default: {{ workspace }}/.rundb/rundb.json

The configuration file has this option commented out. Uncommenting it could
enable a system-central rundb, if desired.

#rundb_conn = %(default_config_path)s/rundb/rundb-::mac::.json

rundb_conn_type

New in version 1.2.0

Set this value if the RunDB resource is anything but a file. This setting
is linked to the rundb_conn configuration.

rundb_conn_type = file

rundb_conn_schema

New in version 1.2.0

The schema used to store records in the TinyRunDb. Many other databases
will likely not use this value, but must honor the configuration item.

rundb_schema = {"action": "",
 "inputs": [],
 "outputs": [],
 "start": "",
 "end": "",
 "rc": 0,
 "uhash": ""}

rundb_hash

New in version 1.2.0

Hashing algorithm used to create the uHash.

rundb_hash = sha256

dateformat

New in version 1.2.0

The dateformat to use when writing out start and end times to the RunDB.

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p

default_pinfile

New in version 1.2.0

The dateformat to use when writing out start and end times to the RunDB.

default_pinfile = PinFile

Extra Vars

The following settings are in the [evars] section of the linchpin.conf

LinchPin sets several extra_vars values, which are passed to the provisioning playbooks.

Note

Default paths in playbooks exist.
lp_path = <src_dir>/linchpin
determined in the load_config method of linchpin.cli.LinchpinCliContext
if either of these change, the value in linchpin/templates must also change

_check_mode

Enables the Ansible
check_mode [http://docs.ansible.com/ansible/latest/playbooks_checkmode.html],
or Dry Run functionality. Most provisioners currently DO NOT support this
option

_check_mode = False

_async

LinchPin supports the Ansible async mode [http://docs.ansible.com/ansible/latest/playbooks_async.html]
for certain Providers. Setting async = True here enables the feature.

_async = False

async_timeout

Works in conjunction with the async setting, defaulting
the async wait time to {{ async_timeout }} in provider playbooks

async_timeout = 1000

enable_uhash

In older versions of Linchpin, the uhash value was not used. If set to true,
the unique-ish hash (uhash) will be appended to instances (for providers who
support naming) and the inventory_path.

enable_uhash = False

generate_resources

In older versions of linchpin (<v1.0.4), a resources folder exists, which
dumped the data that is now stored in the RunDB.

generate_resources = True

output

Deprecated in version 1.2.0
Removed in version 1.5.0

Horribly named variable, no longer used

output = True

layouts_folder

Used in lookup for a specific layout within a workspace. The PinFile
specifies the layout without a path, this is the relative location.

Also used in combination with default_layouts_path <conf_def_layout_path>,
which isn’t generally used.

layouts_folder = layouts

topologies_folder

Used in lookup for a specific topology within a workspace. The PinFile
specifies the topology without a path, this is the relative location.

Also used in combination with default_topologies_path<conf_def_topo_path>,
which isn’t generally used.

topologies_folder = topologies

roles_folder

New in version 1.5.0

Used in combination with default_roles_path <conf_def_roles_path> for
external provider roles

roles_folder = roles

inventories_folder

Relative location where inventories will be written. Usually combined with the
default_inventories_path, but could be relative tothe workspace.

_check_mode = False

inventories_folder = inventories

hooks_folder

Relative location within the workspace where hooks data is stored

hooks_folder = hooks

resources_folder

Deprecated in version 1.5.0

Relative location of the resources destination path. Generally combined with
the default_resource_path

resources_folder = resources

schemas_folder

Deprecated in version 1.2.0

Relative location of the schemas within the LinchPin codebase

schemas_folder = schemas

playbooks_folder

Relative location of the Ansible playbooks and roles within the LinchPin codebase

playbooks_folder = provision

default_schemas_path

Deprecated in version 1.5.0

Used to locate default schemas, usually schema_v4 or
schema_v3

default_schemas_path = {{ lp_path }}/defaults/%(schemas_folder)s

default_topologies_path

Deprecated in version 1.2.0

Default location for topologies in cases where topology or
topology_file is not set.

default_topologies_path = {{ lp_path }}/defaults/%(topologies_folder)s

default_layouts_path

Deprecated in version 1.2.0

When inventories are processed, layouts are looked up here if layout_file is not set

default_layouts_path = {{ lp_path }}/defaults/%(layouts_folder)s

default_inventories_path

Deprecated in version 1.2.0

When writing out inventories, this path is used if inventory_file is not set

default_inventories_path = {{ lp_path }}/defaults/%(inventories_folder)s

default_resources_path

Deprecated in version 1.2.0

When writing out resources files, this path is used if inventory_file is not set

default_inventories_path = {{ lp_path }}/defaults/%(inventories_folder)s

default_roles_path

When using an external provider, this path points back to some of the core
roles needed in the provider’s playbook.

default_roles_path = {{ lp_path }}/%(playbooks_folder)s/%(roles_folder)s

default_roles_path = {{ lp_path }}/%(playbooks_folder)s/%(roles_folder)s

schema_v3

Deprecated in v1.5.0

Full path to the location of the schema_v3.json file, which is
used to perform validation of the topology.

_check_mode = False

schema_v3 = %(default_schemas_path)s/schema_v3.json

schema_v4

Deprecated in v1.5.0

Full path to the location of the schema_v4.json file, which is
used to perform validation of the topology.

schema_v4 = %(default_schemas_path)s/schema_v4.json

default_credentials_path

If the --creds-path option or $CREDS_PATH environment variable are not
set, use this location to look up credentials files defined in a topology.

default_credentials_path = %(default_config_path)s

inventory_path

New in version 1.5.0

The inventory_path is used to set the value of the resulting inventory
file which is generated by LinchPin. This value is dynamically generated by
default.

Note

This should not be confused with the inventory_file which is an
input to the LinchPin ansible playbooks.

#inventory_path = {{ workspace }}/{{inventories_folder}}/happy.inventory

default_ssh_key_path

New in version 1.2.0

Used solely in the libvirt provider <prov_libvirt>. Could be used to set a
default location for ssh keys that might be passed via a cloud-config setup.

default_ssh_key_path = ~/.ssh

libvirt_image_path

Where to store the libvirt images for copying/booting instances. This can be
adjusted to a user accessible location if permissions are an issue.

Note

Ensure the libvirt_user and libvirt_become options below are also
adjusted according to proper permissions.

libvirt_image_path = /var/lib/libvirt/images/

libvirt_user

What user to use to access the libvirt services.

Note

Specifying root means that linchpin will attempt to access the
libvirt service as the root user. If the linchpin user is not root, sudo
without password must be setup.

libvirt_user = root

libvirt_become

When using root or any privileged user, this must be set to yes.

Note

If the linchpin user is not root, sudo without password must also be setup.

libvirt_become = yes

Initialization Settings

The following settings are in the [init] section of the linchpin.conf.

These settings specifically pertain to linchpin init, which stores
templates in the source code to generate a simple example workspace.

source

Location of templates stored in the source code. The structure is built to
resemble the directory structure explained in linchpin init.

source = templates/

pinfile

Formal name of the PinFile. Can be changed as desired.

pinfile = PinFile

Logger Settings

The following settings are in the [logger] section of the linchpin.conf.

Note

These settings are ONLY used for the Command Line Interface. The API
configures a console output only logger and expects the functionality to be
overwritten in subclasses.

enable

Whether logging to a file is enabled

enable = True

file

Name of the file to write the log. A relative or full path is acceptable.

file = linchpin.log

format

The format in which logs are written.
See https://docs.python.org/2/library/logging.html#logrecord-attributes
for more detail and available options.

format = %%(levelname)s %%(asctime)s %%(message)s

dateformat

How to display the date in logs.
See https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
for more detail and available options.

Note

This action was never implemented.

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p

level

Default logging level

level = logging.DEBUG

The following settings are in the [console] section of the linchpin.conf.

Each of these settings is for logging output to the console, except for Ansible
output.

format

The format in which console output is written.
See https://docs.python.org/2/library/logging.html#logrecord-attributes
for more detail and available options.

format = %%(message)s

level

Default logging level

level = logging.INFO

Hooks Settings

The following settings are in the [states] section of the linchpin.conf.

These settings define the state names, which are useful in hooks.

preup

Define the name of the so called preup state. This state is set and
executed prior to the ‘up’ action being called, but after the PinFile
data is loaded.

preup = preup

predestroy

Define the name of the so called predestroy state. This state is set and
executed prior to the ‘destroy’ action being called, but after the PinFile
data is loaded.

predestroy = predestroy

postup

Define the name of the so called postup state. This state is set and
executed after to the ‘up’ action is completed, and after the postinv
state is executed.

postup = postup

postdestroy = postdestroy
~~

Define the name of the so called postdestroy state. This state is set and
executed after to the ‘destroy’ action is completed.

postdestroy = postdestroy

postinv

Define the name of the so called postinv state. This state is set and
executed after to the ‘up’ action is completed, and before the postup
state is executed. This is eventually going to be the inventory generation
hook.

postinv = inventory

The following settings are in the [hookstates] section of the linchpin.conf.

These settings define the ‘STATES’ each action uses in hooks.

up

For the ‘up’ action, types of hook states are available for execution

up = pre,post,inv

destroy

For the ‘destroy’ action, types of hook states are available for execution

destroy = pre,post

inv

New in version 1.2.0

For the inventory generation, which only happens on an ‘up’ state.

Note

The postinv state currently doesn’t do anything. In the future,
it will provide a way to generate inventories besides the standard Ansible
static inventory.

inv = post

File Extensions

The following settings are in the [extensions] section of the linchpin.conf.

These settings define the file extensions certain files have..

resource

Deprecated in version 1.2.0

Removed in version 1.5.0

When generating resource output files, append this extension

resource = .output

inventory

When generating Ansible static inventory files, append this extension

inventory = .inventory

playbooks

New in version 1.5.0

Since playbooks fundamentially changed between v1.2.0 and v1.5.0, this
option was added for looking up a provider playbook. It’s unlikely this
value will change.

playbooks = .yml

Playbook Settings

The following settings are in the [playbooks] section of the linchpin.conf.

Note

The entirety of this section is removed in version 1.5.0+.
The redesign of the LinchPin API now calls individual playbooks based
upon the resource_group_type value.

up

Removed in version 1.5.0

Name of the playbook associated with the ‘up’ (provision) action

up = site.yml

destroy

Removed in version 1.5.0

Name of the playbook associated with the ‘destroy’ (teardown) action

destroy = site.yml

down

Removed in version 1.5.0

Name of the playbook associated with the ‘down’ (halt) action

Note

This action has not been implemented.

down = site.yml

schema_check

Removed in version 1.5.0

Name of the playbook associated with the ‘schema_check’ action.

Note

This action was never implemented.

schema_check = schemacheck.yml

inv_gen

Removed in version 1.5.0

Name of the playbook associated with the ‘inv_gen’ action.

Note

This action was never implemented.

inv_gen = invgen.yml

test

Removed in version 1.5.0

Name of the playbook associated with the ‘test’ action.

Note

This action was never implemented.

test = test.yml

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]

	Subscribe and participate. A great place for Q&A

	LinchPin on Github [https://github.com/CentOS-PaaS-SIG/linchpin]

	Code Contributions and Latest Software

	webchat.freenode.net [http://webchat.freenode.net?channels=linchpin]

	#linchpin IRC chat channel

	LinchPin on PyPi [https://pypi.org/project/linchpin/]

	Latest Release of LinchPin

 Credentials

 Some Providers require authentication to acquire
managing_resources. LinchPin provides tools for these providers to
authenticate. The tools are called credentials.

Credentials

Credentials come in many forms. LinchPin wants to let the user control how the
credentials are formatted. In this way, LinchPin supports the standard
formatting and options for a provider. The only constraints that exist are how
to tell LinchPin which credentials to use, and where they credentials data
resides. In every case, LinchPin tries to use the data similarly to the way
the provider might.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also

Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
 - resource_group_name: "aws"
 resource_group_type: "aws"
 resource_definitions:
 - name: demo-day
 flavor: m1.small
 role: aws_ec2
 region: us-east-1
 image: ami-984189e2
 count: 1
 credentials:
 filename: aws.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
default_config_path [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/linchpin.conf#L22] value, and
can be overridden in the linchpin.conf [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/linchpin.conf].

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note

The aws.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

 Getting Help

 The linchpin CLI is used to perform tasks related to managing resources. For detail about a specific command, see Commands (CLI).

Getting Help

Getting help from the command line is very simple. Running either linchpin
or linchpin --help will yield the command line help page.

$ linchpin --help
Usage: linchpin [OPTIONS] COMMAND [ARGS]...

 linchpin: hybrid cloud orchestration

Options:
 -c, --config PATH Path to config file
 -p, --pinfile PINFILE Use a name for the PinFile different from
 the configuration.
 -d, --template-data TEMPLATE_DATA
 Template data passed to PinFile template
 -o, --output-pinfile OUTPUT_PINFILE
 Write out PinFile to provided location
 -w, --workspace PATH Use the specified workspace. Also works if
 the familiar Jenkins WORKSPACE environment
 variable is set
 -v, --verbose Enable verbose output
 --version Prints the version and exits
 --creds-path PATH Use the specified credentials path. Also
 works if CREDS_PATH environment variable is
 set
 -h, --help Show this message and exit.

Commands:
 init Initializes a linchpin project.
 up Provisions nodes from the given target(s) in...
 destroy Destroys nodes from the given target(s) in...
 fetch Fetches a specified linchpin workspace or...
 journal Display information stored in Run Database...

For subcommands, like linchpin up, passing the --help or -h option produces help related to the provided subcommand.

$ linchpin up -h
Usage: linchpin up [OPTIONS] TARGETS

 Provisions nodes from the given target(s) in the given PinFile.

 targets: Provision ONLY the listed target(s). If omitted, ALL targets
 in the appropriate PinFile will be provisioned.

 run-id: Use the data from the provided run_id value

Options:
 -r, --run-id run_id Idempotently provision using `run-id` data
 -h, --help Show this message and exit.

As can easily be seen, linchpin up has additional arguments and options.

Basic Usage

The most basic usage of linchpin might be to perform an up action. This simple command assumes a PinFile in the workspace (current directory by default), with one target dummy.

$ linchpin up
Action 'up' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 75 79b9 0

Upon completion, the systems defined in the dummy target will be provisioned. An equally basic usage of linchpin is the destroy action. This command is peformed using the same PinFile and target.

$ linchpin destroy
Action 'destroy' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 76 79b9 0

Upon completion, the systems which were provisioned, are destroyed (or torn down).

Options and Arguments

The most common argument available in linchpin is the TARGET. Generally, the PinFile will have many targets available, but only one or two will be requested.

$ linchpin up dummy-new libvirt-new
Action 'up' on Target 'dummy' is complete
Action 'up' on Target 'libvirt' is complete

Target Run ID uHash Exit Code

dummy 77 73b1 0
libvirt 39 dc2c 0

In some cases, you may wish to use a different PinFile.

$ linchpin -p PinFile.json up
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 29 c70a 0

As you can see, this PinFile had a target called dummy-new, and it was the only target listed.

Other common options include:

	--verbose (-v) to get more output

	--config (-c) to specify an alternate configuration file

	--workspace (-w) to specify an alternate workspace

Combining Options

The linchpin command also allows combinining of general options with subcommand options. A good example of these might be to use the verbose (-v) option. This is very helpful in both the up and destroy subcommands.

$ linchpin -v up dummy-new -r 72
using data from run_id: 72
rundb_id: 73
uhash: a48d
calling: preup
hook preup initiated

PLAY [schema check and Pre Provisioning Activities on topology_file] ********

TASK [Gathering Facts] **
ok: [localhost]

TASK [common : use linchpin_config if provided] *****************************

What can be immediately observed, is that the -v option provides more verbose output of a particular task. This can be useful for troubleshooiting or giving more detail about a specitic task. The -v option is placed before the subcommand. The -r option, since it applies directly to the up subcommand, it is placed afterward. Investigating the linchpin -help and linchpin up --help can help differentiate if there’s confusion.

Common Usage

Verbose Output

$ linchpin -v up dummy-new

Specify an Alternate PinFile

$ linchpin -vp Pinfile.alt up

Specify an Alternate Workspace

$ export WORKSPACE=/tmp/my_workspace
$ linchpin up libvirt

or

$ linchpin -vw /path/to/workspace destroy openshift

Provide Credentials

$ export CREDS_PATH=/tmp/my_workspace
$ linchpin -v up libvirt

or

$ linchpin -v --creds-path /credentials/path up openstack

Note

The value provided to the --creds-path option is a directory,
NOT a file. This is generally due to the topology containing the
filename where the credentials are stored.

 Topology

 With LinchPin, resources are king. Defining, managing, and generating outputs are all done using a declarative syntax. Resources are managed via the PinFile. The PinFile can hold two additional files, the topology, and layout. Linchpin also supports hooks.

Topology

The topology is declarative, written in YAML or JSON (v1.5+), and defines how the provisioned systems should look after executing the linchpin up command. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "web"
 role: "dummy_node"
 count: 1

This topology describes a single dummy system that will be provisioned when linchpin up is executed. Once provisioned, the resources outputs are stored for reference and later lookup. Additional topology examples can be found in the source code [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/topologies].

Inventory Layout

An inventory_layout (or layout) is written in YAML or JSON (v1.5+), and defines how the provisioned resources should look in an Ansible static inventory file. The inventory is generated from the resources provisioned by the topology and the layout data. A layout is shown here.

inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 1
 host_groups:
 - example

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory. A host group called example will be added to the Ansible static inventory. The all group always exists, and includes all provisioned hosts.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

Note

A keen observer might notice the filename and hostname are appended with -0446. This value is called the uhash or unique-ish hash. Most providers allow for unique identifiers to be assigned automatically to each hostname as well as the inventory name. This provides a flexible way to repeat the process, but manage multiple resource sets at the same time.

Advanced layout examples can be found by reading ra_inventory_layouts.

Note

Additional layout examples can be found in the source code [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/layouts].

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

dummy_cluster:
 topology: dummy-topology.yml
 layout: dummy-layout.yml

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

More detail about the PinFile can be found in the PinFiles document.

Additional PinFile examples can be found in the source code [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace]

 Topology Incompatibilities

Topology Incompatibilities

While writing the new API updates, some inconsistencies were discovered in
the beaker, and openshift topologies. These topologies did not contain the
resource_definitions section. This inconsistency affected the way
the LinchPin API processed the schema, and in turn, validated the data to
be acted upon.

The purpose of the rewrite was to enable Dynamic inputs, and topology templating.
Part of which meant having a consistent, standardized topology. The
resource_definitions section was being validated against the new schema.json
found in each provider’s roles/files.

The API was rewritten in such a way, that only dictionaries were passed to the
do_action method. The linchpin shell and cli packages converted input from
YAML, JSON, Templating, and Scripts into the provision_data dictionary. Once
converted, validation happened, and the API called the appropriate ansible
playbook for the particular provider.

This enabled the linchpin API to call a playbook named for the resource_group_type
(eg. openstack), which contained the necessary items to provision using Ansible.

Because the openshift and beaker topologies didn’t contain the needed section,
they were updated to the newer structure.

Updated Beaker Topology

topology_name: "bkr-new"
resource_groups:
 - resource_group_name: "bkr-new"
 resource_group_type: beaker
 resource_definitions:
 - role: bkr_server
 whiteboard: Provisioned with linchpin
 job_group: ci-ops-central
 recipesets:
 - distro: RHEL-6.5
 arch: x86_64
 hostrequires:
 - tag: processors
 op: ">="
 value: 4
 - tag: device
 op: "="
 type: "network"
 count: 1
 - role: bkr_server
 whiteboard: Provisioned with linchpin
 job_group: ci-ops-central
 recipesets:
 - distro: RHEL-6.5
 arch: x86_64
 hostrequires:
 - tag: processors
 op: ">="
 value: 1
 count: 1

Note

Due to the change, the beaker playbooks were improved. Previously, multiple
data sets could not be submitted at the same time. However, with the new
resource_definitions section in place, each set of resources was provisioned
at the same time. The fetching of data was also looking for multiple job data,
instead of one. This did not affect the recipesets functionality.

Updated Openshift Topology

topology_name: openshift
resource_groups:
 - resource_group_name: test1
 resource_group_type: openshift
 resource_definitions:
 - name: openshift
 role: openshift_inline
 data:
 - apiVersion: v1
 kind: ReplicationController
 metadata:
 name: jenkins-slave
 namespace: central-ci-test-ghelling
 spec:
 replicas: 7
 selector:
 name: jenkins-slave
 template:
 metadata:
 labels:
 name: jenkins-slave
 spec:
 containers:
 - image: redhatqecinch/jenkins_slave:latest
 name: jenkins-slave
 env:
 - name: JENKINS_MASTER_URL
 value: http://10.8.172.6/
 - name: JSLAVE_NAME
 value: mynode
 restartPolicy: Always
 securityPolicy:
 runAsUser: 1000090000
 credentials:
 api_endpoint: example.com:8443/
 api_token: mytokentextrighthere

 Common Workflows

Common Workflows

Having a basic understanding of LinchPin is crucial to this section. Knowing
the basic CLI operations leads nicely into using LinchPin in powerful
ways.

Topics

	Common Workflows

	Using linchpin fetch

	Fetching a Remote Workspace

	Additional Options

	Contents of a Workspace

Using linchpin fetch

The linchpin fetch command provides a simple way to access a resource from
a remote location. One could simply perform a git clone, or use wget to
download a workspace. However, linchpin fetch makes this process
simpler, and includes some tooling to make the workflow smooth.

$ linchpin fetch --help
Usage: linchpin fetch [OPTIONS] REMOTE

 Fetches a specified linchpin workspace or component from a remote location

Options:
 -t, --type TYPE Which component of a workspace to fetch.
 (Default: workspace)
 -r, --root ROOT Use this to specify the location of the
 workspace within the root url. If root is not
 set, the root of the given remote will be used.
 --dest DEST Workspaces destination, the fetched workspace
 will be relative to this location. (Overrides
 -w/--workspace)
 --branch REF Specify the git branch. Used only with git
 protocol (eg. master).
 --git Remote is a Git repository (default)
 --web Remote is a web directory
 --nocache Do not check the cached time, just copy the
 data to the destination
 -h, --help Show this message and exit.

Fetching a Remote Workspace

This document will cover how to use linchpin fetch to obtain a workspace
from both a git repository. An example for fetching an http workspace can be
found here.

First, determine the destination. By default, the destination location
is the current working directory. In this guide, we’ll use /tmp/workspaces.

$ mkdir /tmp/workspaces
$ cd /tmp/workspaces

Using the simplest possible linchpin fetch command will fetch the
workspaces from git://github.com/herlo/lp_test_workspace.

$ linchpin fetch git://github.com/herlo/lp_test_workspace
destination workspace: /tmp/workspaces/

$ pwd
/tmp/workspaces
$ ls -l
total 4
-rw-rw-r-- 1 herlo herlo 980 Sep 5 13:53 linchpin.log
drwxrwxr-x 5 herlo herlo 140 Sep 5 13:54 multi-target
drwxrwxr-x 2 herlo herlo 80 Sep 5 13:54 openstack
drwxrwxr-x 3 herlo herlo 120 Sep 5 13:54 os-server-addl-vols

The directory structure of https://github.com/herlo/lp_test_workspace
should match the local directory as shown above.

As can be easily seen, linchpin fetch performed a git clone. Then copied
all of the directories to the current directory. linchpin fetch assumes the
root of the repository is a workspace.

Additional Options

If pulling all workspaces was not the intended action, there are other useful
options. First, perform a little clean up.

$ cd && rm -rf /tmp/workspaces # remove the workspaces directory
$ ls -l /tmp/workspaces
ls: cannot access '/tmp/workspaces/': No such file or directory

Note

From here on in, this guide will use the LinchPin git repository.
There are several workspaces [https://github.com/herlo/linchpin/tree/fetch_by_branch/docs/source/examples/workspaces]
with useful use cases. Feel free to peruse them as desired. This guide
will use these workspaces going forward.

To clone from a repository with multiple workspaces (eg. the linchpin
repository), a root must be specified. It is also recommended to use the
--dest flag.

$ linchpin fetch git://github.com/CentOS-PaaS-SIG/linchpin \
> --root workspaces/simple --dest /tmp/workspaces
Created destination workspace: /tmp/workspaces/simple

In this example, there are additional options. Let’s cover them in
detail:

	--root ROOT

	This is the root of the repository. Normally, the root of the repository
is used. However, if the workspaces reside elsewhere (eg. workspaces),
use this option.

	--dest DESTINATION

	If the current working directory is not the desired location, use this
option.

Performing a listing will show how these options affected the fetch.

$ ls -R /tmp/workspaces/
/tmp/workspaces/:
simple

/tmp/workspaces/simple:
PinFile README.rst

As expected, the simple root was pulled down, and placed inside the
/tmp/workspaces directory on the local machine.

To have all workspaces copied into /tmp/workspaces, a change is needed.

$ linchpin fetch git://github.com/CentOS-PaaS-SIG/linchpin \
> --root workspaces --dest /tmp
destination workspace: /tmp/workspaces

Note

An observant user will notice that the same destination was used.
This is because linchpin fetch maps the ROOT to the destination
automatically. This behavior can be adjusted by removing the –dest
option and specifying –workspace instead.

Listing the files again reveals more workspaces.

$ ls /tmp/workspaces/
dummy-aws dummy-two os-server-addl-vols random simple

Take a moment and investigate each of these workspaces.

Contents of a Workspace

Whether a workspace watch created, or pulled using linchpin fetch, they
all have should some common components.

	README.rst

	A short description of the purpose for (or use case) the workspace

	PinFile

	A declarative file which indicates which resources should be provisioned,
any inventory layout to be generated, hooks, and other configurations

Note

The PinFile can be in YAML, JSON format. It can also be a script
that returns JSON to STDOUT

No other requirements are put on a workspace. However, there can be several
other files or directories. See Managing Resources for more information.

 Workspaces

Workspaces

What is generated is commonly referred to as the workspace. The workspace can live anywhere on the filesystem. The default is the current directory. The workspace can also be passed into the linchpin command line with the --workspace (--w) option, or it can be set with the $WORKSPACE environmental variable.

An functional workspace can be found in the source code [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace].

 PinFile Configs

PinFile Configs

You can use the cfgs section of the PinFile to define variables for use in inventories. These variables map to values in the json returned by the relevant provider, and are dot-separated. For example, the variable __IP__ in the cfgs below would map to the address 55.234.16.11 in the following json:

Information on the json returned by different providers can be found below:

 pkg

 The following settings are in the [DEFAULT] section of the linchpin.conf

Warning

The configurations in this section should NOT be changed unless you know what you are doing.

pkg

This defines the package name. Many components base paths and other
information from this setting.

pkg = linchpin

default_config_path

New in version 1.2.0

Where configuration files might land, such as the workspaces.conf,
or credentials. Generally used in combination with other configurations.

default_config_path = ~/.config/linchpin

external_providers_path

New in version 1.5.0

Developers can provide additional provider playbooks and schemas.
This configuration is used to set the path(s) to look for additional providers.

external_providers_path = %(default_config_path)s/linchpin-x

The following settings are in the [init] section of the linchpin.conf

source

Source path of files provided for the linchpin init command.

source = templates/

pinfile

Formal name of the PinFile. Can be changed as desired.

pinfile = PinFile

 _check_mode

 The following settings are in the [evars] section of the linchpin.conf

LinchPin sets several extra_vars values, which are passed to the provisioning playbooks.

Note

Default paths in playbooks exist.
lp_path = <src_dir>/linchpin
determined in the load_config method of linchpin.cli.LinchpinCliContext
if either of these change, the value in linchpin/templates must also change

_check_mode

Enables the Ansible
check_mode [http://docs.ansible.com/ansible/latest/playbooks_checkmode.html],
or Dry Run functionality. Most provisioners currently DO NOT support this
option

_check_mode = False

_async

LinchPin supports the Ansible async mode [http://docs.ansible.com/ansible/latest/playbooks_async.html]
for certain Providers. Setting async = True here enables the feature.

_async = False

async_timeout

Works in conjunction with the async setting, defaulting
the async wait time to {{ async_timeout }} in provider playbooks

async_timeout = 1000

enable_uhash

In older versions of Linchpin, the uhash value was not used. If set to true,
the unique-ish hash (uhash) will be appended to instances (for providers who
support naming) and the inventory_path.

enable_uhash = False

generate_resources

In older versions of linchpin (<v1.0.4), a resources folder exists, which
dumped the data that is now stored in the RunDB.

generate_resources = True

output

Deprecated in version 1.2.0
Removed in version 1.5.0

Horribly named variable, no longer used

output = True

layouts_folder

Used in lookup for a specific layout within a workspace. The PinFile
specifies the layout without a path, this is the relative location.

Also used in combination with default_layouts_path <conf_def_layout_path>,
which isn’t generally used.

layouts_folder = layouts

topologies_folder

Used in lookup for a specific topology within a workspace. The PinFile
specifies the topology without a path, this is the relative location.

Also used in combination with default_topologies_path<conf_def_topo_path>,
which isn’t generally used.

topologies_folder = topologies

roles_folder

New in version 1.5.0

Used in combination with default_roles_path <conf_def_roles_path> for
external provider roles

roles_folder = roles

inventories_folder

Relative location where inventories will be written. Usually combined with the
default_inventories_path, but could be relative tothe workspace.

_check_mode = False

inventories_folder = inventories

hooks_folder

Relative location within the workspace where hooks data is stored

hooks_folder = hooks

resources_folder

Deprecated in version 1.5.0

Relative location of the resources destination path. Generally combined with
the default_resource_path

resources_folder = resources

schemas_folder

Deprecated in version 1.2.0

Relative location of the schemas within the LinchPin codebase

schemas_folder = schemas

playbooks_folder

Relative location of the Ansible playbooks and roles within the LinchPin codebase

playbooks_folder = provision

default_schemas_path

Deprecated in version 1.5.0

Used to locate default schemas, usually schema_v4 or
schema_v3

default_schemas_path = {{ lp_path }}/defaults/%(schemas_folder)s

default_topologies_path

Deprecated in version 1.2.0

Default location for topologies in cases where topology or
topology_file is not set.

default_topologies_path = {{ lp_path }}/defaults/%(topologies_folder)s

default_layouts_path

Deprecated in version 1.2.0

When inventories are processed, layouts are looked up here if layout_file is not set

default_layouts_path = {{ lp_path }}/defaults/%(layouts_folder)s

default_inventories_path

Deprecated in version 1.2.0

When writing out inventories, this path is used if inventory_file is not set

default_inventories_path = {{ lp_path }}/defaults/%(inventories_folder)s

default_resources_path

Deprecated in version 1.2.0

When writing out resources files, this path is used if inventory_file is not set

default_inventories_path = {{ lp_path }}/defaults/%(inventories_folder)s

default_roles_path

When using an external provider, this path points back to some of the core
roles needed in the provider’s playbook.

default_roles_path = {{ lp_path }}/%(playbooks_folder)s/%(roles_folder)s

default_roles_path = {{ lp_path }}/%(playbooks_folder)s/%(roles_folder)s

schema_v3

Deprecated in v1.5.0

Full path to the location of the schema_v3.json file, which is
used to perform validation of the topology.

_check_mode = False

schema_v3 = %(default_schemas_path)s/schema_v3.json

schema_v4

Deprecated in v1.5.0

Full path to the location of the schema_v4.json file, which is
used to perform validation of the topology.

schema_v4 = %(default_schemas_path)s/schema_v4.json

default_credentials_path

If the --creds-path option or $CREDS_PATH environment variable are not
set, use this location to look up credentials files defined in a topology.

default_credentials_path = %(default_config_path)s

inventory_path

New in version 1.5.0

The inventory_path is used to set the value of the resulting inventory
file which is generated by LinchPin. This value is dynamically generated by
default.

Note

This should not be confused with the inventory_file which is an
input to the LinchPin ansible playbooks.

#inventory_path = {{ workspace }}/{{inventories_folder}}/happy.inventory

default_ssh_key_path

New in version 1.2.0

Used solely in the libvirt provider <prov_libvirt>. Could be used to set a
default location for ssh keys that might be passed via a cloud-config setup.

default_ssh_key_path = ~/.ssh

libvirt_image_path

Where to store the libvirt images for copying/booting instances. This can be
adjusted to a user accessible location if permissions are an issue.

Note

Ensure the libvirt_user and libvirt_become options below are also
adjusted according to proper permissions.

libvirt_image_path = /var/lib/libvirt/images/

libvirt_user

What user to use to access the libvirt services.

Note

Specifying root means that linchpin will attempt to access the
libvirt service as the root user. If the linchpin user is not root, sudo
without password must be setup.

libvirt_user = root

libvirt_become

When using root or any privileged user, this must be set to yes.

Note

If the linchpin user is not root, sudo without password must also be setup.

libvirt_become = yes

 resource

 The following settings are in the [extensions] section of the linchpin.conf.

These settings define the file extensions certain files have..

resource

Deprecated in version 1.2.0

Removed in version 1.5.0

When generating resource output files, append this extension

resource = .output

inventory

When generating Ansible static inventory files, append this extension

inventory = .inventory

playbooks

New in version 1.5.0

Since playbooks fundamentially changed between v1.2.0 and v1.5.0, this
option was added for looking up a provider playbook. It’s unlikely this
value will change.

playbooks = .yml

 preup

 The following settings are in the [states] section of the linchpin.conf.

These settings define the state names, which are useful in preup.

preup

Define the name of the so called preup state. This state is set and
executed prior to the ‘up’ action being called, but after the PinFile
data is loaded.

preup = preup

predestroy

Define the name of the so called predestroy state. This state is set and
executed prior to the ‘destroy’ action being called, but after the PinFile
data is loaded.

predestroy = predestroy

postup

Define the name of the so called postup state. This state is set and
executed after to the ‘up’ action is completed, and after the postinv
state is executed.

postup = postup

postdestroy = postdestroy
~~

Define the name of the so called postdestroy state. This state is set and
executed after to the ‘destroy’ action is completed.

postdestroy = postdestroy

postinv

Define the name of the so called postinv state. This state is set and
executed after to the ‘up’ action is completed, and before the postup
state is executed. This is eventually going to be the inventory generation
hook.

postinv = inventory

The following settings are in the [hookstates] section of the linchpin.conf.

These settings define the ‘STATES’ each action uses in preup.

up

For the ‘up’ action, types of hook states are available for execution

up = pre,post,inv

destroy

For the ‘destroy’ action, types of hook states are available for execution

destroy = pre,post

inv

New in version 1.2.0

For the inventory generation, which only happens on an ‘up’ state.

Note

The postinv state currently doesn’t do anything. In the future,
it will provide a way to generate inventories besides the standard Ansible
static inventory.

inv = post

 source

 The following settings are in the [init] section of the linchpin.conf.

These settings specifically pertain to linchpin init, which stores
templates in the source code to generate a simple example workspace.

source

Location of templates stored in the source code. The structure is built to
resemble the directory structure explained in linchpin init.

source = templates/

pinfile

Formal name of the PinFile. Can be changed as desired.

pinfile = PinFile

 enable

 The following settings are in the [logger] section of the linchpin.conf.

Note

These settings are ONLY used for the Command Line Interface. The API
configures a console output only logger and expects the functionality to be
overwritten in subclasses.

enable

Whether logging to a file is enabled

enable = True

file

Name of the file to write the log. A relative or full path is acceptable.

file = linchpin.log

format

The format in which logs are written.
See https://docs.python.org/2/library/logging.html#logrecord-attributes
for more detail and available options.

format = %%(levelname)s %%(asctime)s %%(message)s

dateformat

How to display the date in logs.
See https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
for more detail and available options.

Note

This action was never implemented.

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p

level

Default logging level

level = logging.DEBUG

The following settings are in the [console] section of the linchpin.conf.

Each of these settings is for logging output to the console, except for Ansible
output.

format

The format in which console output is written.
See https://docs.python.org/2/library/logging.html#logrecord-attributes
for more detail and available options.

format = %%(message)s

level

Default logging level

level = logging.INFO

 module_folder

 The following settings are in the [lp] section of the linchpin.conf

module_folder

Load custom ansible modules from this directory

module_folder = library

rundb_type

New in version 1.2.0

RunDB supports additional drivers, currently the only driver is
TinyRunDB, based upon tinydb.

rundb_type = TinyRunDB

rundb_conn

New in version 1.2.0

The resource path to the RunDB connection. The TinyRunDB version (default)
is a file.

Default: {{ workspace }}/.rundb/rundb.json

The configuration file has this option commented out. Uncommenting it could
enable a system-central rundb, if desired.

#rundb_conn = %(default_config_path)s/rundb/rundb-::mac::.json

rundb_conn_type

New in version 1.2.0

Set this value if the RunDB resource is anything but a file. This setting
is linked to the rundb_conn configuration.

rundb_conn_type = file

rundb_conn_schema

New in version 1.2.0

The schema used to store records in the TinyRunDb. Many other databases
will likely not use this value, but must honor the configuration item.

rundb_schema = {"action": "",
 "inputs": [],
 "outputs": [],
 "start": "",
 "end": "",
 "rc": 0,
 "uhash": ""}

rundb_hash

New in version 1.2.0

Hashing algorithm used to create the uHash.

rundb_hash = sha256

dateformat

New in version 1.2.0

The dateformat to use when writing out start and end times to the RunDB.

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p

default_pinfile

New in version 1.2.0

The dateformat to use when writing out start and end times to the RunDB.

default_pinfile = PinFile

 up

 The following settings are in the [playbooks] section of the linchpin.conf.

Note

The entirety of this section is removed in version 1.5.0+.
The redesign of the LinchPin API now calls individual playbooks based
upon the resource_group_type value.

up

Removed in version 1.5.0

Name of the playbook associated with the ‘up’ (provision) action

up = site.yml

destroy

Removed in version 1.5.0

Name of the playbook associated with the ‘destroy’ (teardown) action

destroy = site.yml

down

Removed in version 1.5.0

Name of the playbook associated with the ‘down’ (halt) action

Note

This action has not been implemented.

down = site.yml

schema_check

Removed in version 1.5.0

Name of the playbook associated with the ‘schema_check’ action.

Note

This action was never implemented.

schema_check = schemacheck.yml

inv_gen

Removed in version 1.5.0

Name of the playbook associated with the ‘inv_gen’ action.

Note

This action was never implemented.

inv_gen = invgen.yml

test

Removed in version 1.5.0

Name of the playbook associated with the ‘test’ action.

Note

This action was never implemented.

test = test.yml

 Credentials File

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also

providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first
is which credentials to use. The second is where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are
described by specifying the file, then the profile. As shown above, the
filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
 - resource_group_name: "aws"
 resource_group_type: "aws"
 resource_definitions:
 - name: demo-day
 flavor: m1.small
 role: aws_ec2
 region: us-east-1
 image: ami-984189e2
 count: 1
 credentials:
 filename: aws.key
 profile: default

The important part in the above topology is the credentials section. Adding
credentials like this will look up, and use the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is
~/.config/linchpin.

Hint

The default_credentials_path value uses the interpolated
default_config_path [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/linchpin.conf#L22] value, and
can be overridden in the linchpin.conf [https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/linchpin.conf].

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note

The aws.key file could be placed in the
default_credentials_path. In that case passing
--creds-path would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

 <no title>

 The most basic usage of linchpin might be to perform an up action. This simple command assumes a PinFile in the workspace (current directory by default), with one target dummy.

$ linchpin up
Action 'up' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 75 79b9 0

Upon completion, the systems defined in the dummy target will be provisioned. An equally basic usage of linchpin is the destroy action. This command is peformed using the same PinFile and target.

$ linchpin destroy
Action 'destroy' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 76 79b9 0

Upon completion, the systems which were provisioned, are destroyed (or torn down).

 <no title>

 The linchpin command also allows combinining of general options with subcommand options. A good example of these might be to use the verbose (-v) option. This is very helpful in both the up and destroy subcommands.

$ linchpin -v up dummy-new -r 72
using data from run_id: 72
rundb_id: 73
uhash: a48d
calling: preup
hook preup initiated

PLAY [schema check and Pre Provisioning Activities on topology_file] ********

TASK [Gathering Facts] **
ok: [localhost]

TASK [common : use linchpin_config if provided] *****************************

What can be immediately observed, is that the -v option provides more verbose output of a particular task. This can be useful for troubleshooiting or giving more detail about a specitic task. The -v option is placed before the subcommand. The -r option, since it applies directly to the up subcommand, it is placed afterward. Investigating the linchpin -help and linchpin up --help can help differentiate if there’s confusion.

 Verbose Output

Verbose Output

$ linchpin -v up dummy-new

Specify an Alternate PinFile

$ linchpin -vp Pinfile.alt up

Specify an Alternate Workspace

$ export WORKSPACE=/tmp/my_workspace
$ linchpin up libvirt

or

$ linchpin -vw /path/to/workspace destroy openshift

Provide Credentials

$ export CREDS_PATH=/tmp/my_workspace
$ linchpin -v up libvirt

or

$ linchpin -v --creds-path /credentials/path up openstack

Note

The value provided to the --creds-path option is a directory,
NOT a file. This is generally due to the topology containing the
filename where the credentials are stored.

 <no title>

 Getting help from the command line is very simple. Running either linchpin
or linchpin --help will yield the command line help page.

$ linchpin --help
Usage: linchpin [OPTIONS] COMMAND [ARGS]...

 linchpin: hybrid cloud orchestration

Options:
 -c, --config PATH Path to config file
 -p, --pinfile PINFILE Use a name for the PinFile different from
 the configuration.
 -d, --template-data TEMPLATE_DATA
 Template data passed to PinFile template
 -o, --output-pinfile OUTPUT_PINFILE
 Write out PinFile to provided location
 -w, --workspace PATH Use the specified workspace. Also works if
 the familiar Jenkins WORKSPACE environment
 variable is set
 -v, --verbose Enable verbose output
 --version Prints the version and exits
 --creds-path PATH Use the specified credentials path. Also
 works if CREDS_PATH environment variable is
 set
 -h, --help Show this message and exit.

Commands:
 init Initializes a linchpin project.
 up Provisions nodes from the given target(s) in...
 destroy Destroys nodes from the given target(s) in...
 fetch Fetches a specified linchpin workspace or...
 journal Display information stored in Run Database...

For subcommands, like linchpin up, passing the --help or -h option produces help related to the provided subcommand.

$ linchpin up -h
Usage: linchpin up [OPTIONS] TARGETS

 Provisions nodes from the given target(s) in the given PinFile.

 targets: Provision ONLY the listed target(s). If omitted, ALL targets
 in the appropriate PinFile will be provisioned.

 run-id: Use the data from the provided run_id value

Options:
 -r, --run-id run_id Idempotently provision using `run-id` data
 -h, --help Show this message and exit.

As can easily be seen, linchpin up has additional arguments and options.

 <no title>

 The most common argument available in linchpin is the TARGET. Generally, the PinFile will have many targets available, but only one or two will be requested.

$ linchpin up dummy-new libvirt-new
Action 'up' on Target 'dummy' is complete
Action 'up' on Target 'libvirt' is complete

Target Run ID uHash Exit Code

dummy 77 73b1 0
libvirt 39 dc2c 0

In some cases, you may wish to use a different PinFile.

$ linchpin -p PinFile.json up
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 29 c70a 0

As you can see, this PinFile had a target called dummy-new, and it was the only target listed.

Other common options include:

	--verbose (-v) to get more output

	--config (-c) to specify an alternate configuration file

	--workspace (-w) to specify an alternate workspace

 <no title>

 The linchpin fetch command provides a simple way to access a resource from
a remote location. One could simply perform a git clone, or use wget to
download a workspace. However, linchpin fetch makes this process
simpler, and includes some tooling to make the workflow smooth.

$ linchpin fetch --help
Usage: linchpin fetch [OPTIONS] REMOTE

 Fetches a specified linchpin workspace or component from a remote location

Options:
 -t, --type TYPE Which component of a workspace to fetch.
 (Default: workspace)
 -r, --root ROOT Use this to specify the location of the
 workspace within the root url. If root is not
 set, the root of the given remote will be used.
 --dest DEST Workspaces destination, the fetched workspace
 will be relative to this location. (Overrides
 -w/--workspace)
 --branch REF Specify the git branch. Used only with git
 protocol (eg. master).
 --git Remote is a Git repository (default)
 --web Remote is a web directory
 --nocache Do not check the cached time, just copy the
 data to the destination
 -h, --help Show this message and exit.

 <no title>

See also

	User Mailing List [https://www.redhat.com/mailman/listinfo/linchpin]

	Subscribe and participate. A great place for Q&A

	LinchPin on Github [https://github.com/CentOS-PaaS-SIG/linchpin]

	Code Contributions and Latest Software

	webchat.freenode.net [http://webchat.freenode.net?channels=linchpin]

	#linchpin IRC chat channel

	LinchPin on PyPi [https://pypi.org/project/linchpin/]

	Latest Release of LinchPin

 <no title>

 Running linchpin init will generate the workspace directory structure, along with an example PinFile, topology, and layout files. Performing the following tasks will generate a simple dummy PinFile, topology, and layout structure.

$ pwd
/tmp/workspace
$ linchpin init
PinFile and file structure created at /tmp/workspace
$ tree
.
├── credentials
├── hooks
├── inventories
├── layouts
│ └── dummy-layout.yml
├── PinFile
└── topologies
 └── dummy-topology.yml

 <no title>

 The default view, ‘target’, is displayed using the target. The data displayed to the screen shows the last three (3) tasks per target, along with some useful information.

$ linchpin journal --view=target dummy-new

Target: dummy-new
run_id action uhash rc
--
5 up 0658 0
4 destroy cf22 0
3 up cf22 0

Note

The ‘target’ view is the default, making the –view optional.

The target view can show more data as well. Fields (-f, --fields) and
count (-c, --count) are useful options.

$ linchpin journal dummy-new -f action,uhash,end -c 5

Target: dummy-new
run_id action uhash end
--
6 up cd00 12/15/2017 05:12:52 PM
5 up 0658 12/15/2017 05:10:52 PM
4 destroy cf22 12/15/2017 05:10:29 PM
3 up cf22 12/15/2017 05:10:17 PM
2 destroy 6d82 12/15/2017 05:10:06 PM
1 up 6d82 12/15/2017 05:09:52 PM

It is simple to see that the output now has five (5) records, each containing the run_id, action, uhash, and end date.

The data here can be used to perform idempotent (repetitive) tasks, like running the up action on run_id: 5 again.

$ linchpin up dummy-new -r 6
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 7 cd00 0

What might not be immediately obvious, is that the uhash on Run ID: 7 is identical to the run_id: 6 shown in the previous linchpin journal output. Essentially, the same task was run again.

Note

If LinchPin is configured with the unique-hash feature, and the provider supports naming, resources can have unique names. These features are turned off by default.

The destroy action will automatically look up the last task with an up action and destroy it. If other resources are needed to be destroyed, a run_id should be passed to the task.

$ linchpin destroy dummy-new -r 5
Action 'destroy' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 8 0658 0

 <no title>

 The transaction view, provides data based upon each transaction.

$ linchpin journal --view tx --count 1

ID: 130 Action: up

Target Run ID uHash Exit Code

dummy-new 279 920c 0
libvirt 121 ef96 0

===

In the future, the transaction view will also provide output for these items.

 <no title>

 An inventory_layout (or layout) is written in YAML or JSON (v1.5+), and defines how the provisioned resources should look in an Ansible static inventory file. The inventory is generated from the resources provisioned by the topology and the layout data. A layout is shown here.

inventory_layout:
 vars:
 hostname: __IP__
 hosts:
 example-node:
 count: 1
 host_groups:
 - example

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory. A host group called example will be added to the Ansible static inventory. The all group always exists, and includes all provisioned hosts.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

Note

A keen observer might notice the filename and hostname are appended with -0446. This value is called the uhash or unique-ish hash. Most providers allow for unique identifiers to be assigned automatically to each hostname as well as the inventory name. This provides a flexible way to repeat the process, but manage multiple resource sets at the same time.

Advanced layout examples can be found by reading ra_inventory_layouts.

Note

Additional layout examples can be found in the source code [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/layouts].

 <no title>

 LinchPin can provision or teardown any number of resources. If a PinFile has multiple targets, and is called without a target name, all targets will be executed. Given this PinFile.

example:
 topology: example-topology.yml
 layout: example-layout.yml

example2:
 topology: example2-topology.yml
 layout: example2-layout.yml

dummy1:
 topology: dummy-cluster.yml
 layout: dummy-layout.yml

A call to linchpin up would provision and generate an Ansible static inventory for each target.

$ linchpin up
target: dummy1, action: up

target: example2, action: up

target: example, action: up

 JSON PinFile

 A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a resource for provisioning. An example Pinfile is shown.

dummy_cluster:
 topology: dummy-topology.yml
 layout: dummy-layout.yml

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

JSON PinFile

New in version 1.5.0

The PinFile can also use JSON.

{
 "dummy": {
 "topology": "dummy-topology.yml",
 "layout:": "dummy-layout.yml"
 }
}

Additionally, both the topology, and layout can be included inline.

{
 "dummy": {
 "topology": {
 "resource_groups": [
 {
 "resource_definitions": [
 {
 "count": 3,
 "name": "web",
 "role": "dummy_node"
 }
],
 "resource_group_name": "dummy",
 "resource_group_type": "dummy"
 }
],
 "topology_name": "dummy_cluster"
 },
 "layout": {
 "inventory_layout": {
 "hosts": {
 "example-node": {
 "count": 3,
 "host_groups": [
 "example"
]
 }
 },
 "vars": {
 "hostname": "__IP__"
 }
 }
 }
 }
}

Generated PinFile

New in version 1.5.0

Jinja2 Templates

A PinFile can also be generated via Jinja2 [http://jinja.pocoo.org/docs/2.10/] templates. Consider this template named PinFile.libvirt-mi.template.

libvirt-mi:
 topology:
 topology_name: "libvirt-multi"
 resource_groups:
 - resource_group_name: "libvirt-mi"
 resource_group_type: "libvirt"
 res_defs:
 {% for instance in instances %}
 - role: libvirt_node
 name: {{ instance.name }}
 image_src: {{ instance.src }}
 memory: 1024
 vcpus: 1
 arch: {{ instance.arch | default('x86_64') }}
 networks:
 - name: default
 {% endfor %}

In the same workspace is this file, named Data.libvirt-my.yml.

instances:
 - name: centos71
 src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz
 - name: centos66
 src: http://cloud.centos.org/centos/6.6/images/CentOS-6-x86_64-GenericCloud-1711.qcow2.xz

Execute the linchpin command, passing these two files.

linchpin -vp PinFile.libvirt-mi.template --template-data Data.libvirt-my.yml up

Would yield output that would be provisionable.

{
 "libvirt-mi": {
 "topology": {
 "topology_name": "libvirt-multi",
 "resource_groups": [
 {
 "resource_group_name": "libvirt-mi",
 "resource_group_type": "libvirt",
 "res_defs": [
 {
 "name": "centos71",
 "networks": [
 {
 "name": "default"
 }
],
 "vcpus": 1,
 "role": "libvirt_node",
 "memory": 1024,
 "arch": "x86_64",
 "image_src": "http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz"
 },
 {
 "name": "centos66",
 "networks": [
 {
 "name": "default"
 }
],
 "vcpus": 1,
 "role": "libvirt_node",
 "memory": 1024,
 "arch": "x86_64",
 "image_src": "http://cloud.centos.org/centos/6.6/images/CentOS-6-x86_64-GenericCloud-1711.qcow2.xz"
 }
]
 }
]
 }
 }
}

Note

Output data can also be saved, if desired, by adding the --output-pinfile /path/to/PinFile.libvirt-mi.generated.

Additional PinFile examples can be found in the source code [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace].

 <no title>

 Once a PinFile, topology, and optional layout are in place, provisioning can happen. Performing the command linchpin up should provision the resources and inventory files based upon the topology_name value. In this case, is dummy_cluster.

$ linchpin up
target: dummy_cluster, action: up
Action 'up' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 70 0446 0

As you can see, the generated inventory file has the right data. This can be used in many ways, which will be covered elsewhere in the documentation.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0446-0.example.net
test-0446-0.example.net

 <no title>

 As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will look up the resources and/or topology files (depending on the provider) to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology during teardown.

$ linchpin destroy
target: dummy_cluster, action: destroy
Action 'destroy' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 71 0446 0

Verify the /tmp/dummy.hosts file to ensure the records have been removed.

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note

The teardown functionality is slightly more limited around ephemeral
resources, like networking, storage, etc. It is possible that a network
resource could be used with multiple cloud instances. In this way,
performing a linchpin destroy does not teardown certain resources. This
is dependent on each providers implementation.

See also

Providers

 <no title>

 The topology is declarative, written in YAML or JSON (v1.5+), and defines how the provisioned systems should look after executing the linchpin up command. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:
 - resource_group_name: "dummy"
 resource_group_type: "dummy"
 resource_definitions:
 - name: "web"
 role: "dummy_node"
 count: 1

This topology describes a single dummy system that will be provisioned when linchpin up is executed. Once provisioned, the resources outputs are stored for reference and later lookup. Additional topology examples can be found in the source code [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/topologies].

 Validate Command

Validate Command

The purpose of the validate command is to determine whether topologies and layouts are syntactically valid. If not, it will provide a list of errors that occured during validation

The command linchpin validate looks at the topology and layout files for each target in a given PinFile. If the topology is not valid under the current schema, it will attempt to convert the topology to an older schema and try again. If the topology is still invalid, the command will report the topology and a list of errors found.

Invalid Topologies

Here is a simple PinFile and topology file. The topology file has some errors and will not validate.

libvirt-new:
 topology: libvirt-new.yml
 layout: libvirt.yml

libvirt:
 topology: libvirt.yml
 layout: libvirt.yml

libvirt-network:
 topology: libvirt-network.yml

topology_name: libvirt-new
resource_groups:
 - resource_group_name: libvirt-new
 resource_group_type: libvirt
 resource_definitions:
 - role: libvirt_node
 uri: qemu:///system
 count: "1"
 image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz
 memory: 2048
 vcpus: 1
 arch: x86_64
 ssh_key: libvirt
 networks:
 - name: default
 additional_storage: 10G
 cloud_config:
 users:
 - name: herlo
 gecos: Clint Savage
 groups: wheel
 sudo: ALL=(ALL) NOPASSWD:ALL
 ssh-import-id: gh:herlo
 lock_passwd: true

$ linchpin validate
topology for target 'libvirt-network' is valid

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups', [OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type', 'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri', 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch', 'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), ('hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config', OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), ('groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:
 res_defs[0][count]: value for field 'count' must be of type 'integer'
 res_defs[0][networks][0][additional_storage]: field 'additional_storage' could not be recognized within the schema provided
 res_defs[0][name]: field 'name' is required

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

The linchpin validate command can also provide a list of errors against the old schema with the –old-schema flag

$ linchpin validate --old-schema

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups', [OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type', 'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri', 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch', 'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), ('hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config', OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), ('groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:
 res_defs[0][networks][0][additional_storage]: field 'additional_storage' could not be recognized within the schema provided
 res_defs[0][name]: field 'name' is required

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

As you can see, validation under both schemas result in an error stating that the field additional_storage could not be recognized. In this case, there is simply an indentation error. additional_storage is a recognized field within resource_definitions but not within the networks sub-schema. Other times this unrecognized field may be a spelling error. Both fields also flag the missing “name” field, which is required. Both of these errors must be fixed in order for the topology file to validate. Because making count a string only results in an error when validating against the old schema, this field does not have to be changed in order for the topology file to pass validation. However, it is best to change it anyway and keep your topology as up-to-date as possible.

Valid Topologies

The topology below has been fixed so that it will validate under the current schema.

topology_name: libvirt-new
resource_groups:
 - resource_group_name: libvirt-new
 resource_group_type: libvirt
 resource_definitions:
 - role: libvirt_node
 name: centos71
 uri: qemu:///system
 count: 1
 image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1608.qcow2.xz
 memory: 2048
 vcpus: 1
 arch: x86_64
 ssh_key: libvirt
 networks:
 - name: default
 additional_storage: 10G
 cloud_config:
 users:
 - name: herlo
 gecos: Clint Savage
 groups: wheel
 sudo: ALL=(ALL) NOPASSWD:ALL
 ssh-import-id: gh:herlo
 lock_passwd: true

If linchpin validate is run on a PinFile containing the topology above, this will be the output:

$ linchpin validate
topology for target 'libvirt-new' is valid
topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

 <no title>

 What is generated is commonly referred to as the workspace. The workspace can live anywhere on the filesystem. The default is the current directory. The workspace can also be passed into the linchpin command line with the --workspace (--w) option, or it can be set with the $WORKSPACE environmental variable.

An functional workspace can be found in the source code [https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace].

 <no title>

	{

	
“kernel”: null,
“root_device_type”: “ebs”,
“private_dns_name”: “”,
“public_ip”: “”,
“private_ip”: “”,
“id”: “i-01cc0455abe8465b8”,
“ebs_optimized”: false,
“state”: “running”,
“virtualization_type”: “hvm”,
“root_device_name”: “/dev/sda1”,
“ramdisk”: null,
“block_device_mapping”: {

	“/dev/sdb”: {

	“status”: “attached”,
“delete_on_termination”: true,
“volume_id”: “vol-0f3311851115c8241”

},
“/dev/sda1”: {

“status”: “attached”,
“delete_on_termination”: true,
“volume_id”: “vol-00f6f149c57ac152c”

}

},
“key_name”: null,
“image_id”: “ami-984189e2”,
“tenancy”: “default”,
“groups”: {

“sg-eae64983”: “default”,
“sg-8a1d78e3”: “public”

},
“public_dns_name”: “”,
“state_code”: 16,
“tags”: {

“color”: “blue”,
“resource_group_name”: “aws”,
“shape”: “oval”,
“name”: “demo-day”

},
“placement”: “us-east-1c”,
“ami_launch_index”: “0”,
“dns_name”: “”,
“region”: “us-east-1”,
“launch_time”: “2018-10-01T17:19:23.000Z”,
“instance_type”: “m1.small”,
“architecture”: “x86_64”,
“hypervisor”: “xen”

}

 <no title>

	{

	“ip”: “192.168.122.119”,
“name”: “centos71-872d6a_0”

}

 openstack sample output

openstack sample output

	{

	“OS-DCF:diskConfig”: “MANUAL”,
“OS-EXT-AZ:availability_zone”: “nova”,
“OS-EXT-STS:power_state”: 1,
“OS-EXT-STS:task_state”: null,
“OS-EXT-STS:vm_state”: “active”,
“OS-SRV-USG:launched_at”: “2018-09-19T14:53:12.000000”,
“OS-SRV-USG:terminated_at”: null,
“accessIPv4”: “”,
“accessIPv6”: “”,
“addresses”: {

	“e2e-openstack”: [

	
	{

	“OS-EXT-IPS-MAC:mac_addr”: “fa:16:3e:a1:c0:6b”,
“OS-EXT-IPS:type”: “fixed”,
“addr”: “”,
“version”: 4

}

]

},
“adminPass”: “”,
“az”: “nova”,
“cloud”: “defaults”,
“config_drive”: “”,
“created”: “2018-09-19T14:46:51Z”,
“created_at”: “2018-09-19T14:46:51Z”,
“disk_config”: “MANUAL”,
“flavor”: {

“id”: “2”,
“name”: “m1.small”

},
“has_config_drive”: false,
“hostId”: “190ddf5e439d5fa9a5e767485c44e8fdbfa206166eaf5aa6ed100fc0”,
“host_id”: “190ddf5e439d5fa9a5e767485c44e8fdbfa206166eaf5aa6ed100fc0”,
“id”: “83e2d9d3-7823-45f3-8a58-52452acddaa8”,
“image”: {

“id”: “11b72b11-59e8-4919-a918-265c1566bd45”,
“name”: “CentOS-7-x86_64-GenericCloud-1612”

},
“interface_ip”: “”,
“key_name”: “ci-factory”,
“launched_at”: “2018-09-19T14:53:12.000000”,
“location”: {

“cloud”: “defaults”,
“project”: {

“domain_id”: null,
“domain_name”: null,
“id”: “f53391f4d50643f283af5d59fc450e09”,
“name”: “VALUE_SPECIFIED_IN_NO_LOG_PARAMETER”

},
“region_name”: “”,
“zone”: “nova”

},
“metadata”: {},
“name”: “596-master-d7b60a-1”,
“networks”: {},
“os-extended-volumes:volumes_attached”: [],
“power_state”: 1,
“private_v4”: “”,
“progress”: 0,
“project_id”: “f53391f4d50643f283af5d59fc450e09”,
“properties”: {

“OS-DCF:diskConfig”: “MANUAL”,
“OS-EXT-AZ:availability_zone”: “nova”,
“OS-EXT-STS:power_state”: 1,
“OS-EXT-STS:task_state”: null,
“OS-EXT-STS:vm_state”: “active”,
“OS-SRV-USG:launched_at”: “2018-09-19T14:53:12.000000”,
“OS-SRV-USG:terminated_at”: null,
“os-extended-volumes:volumes_attached”: []

},
“public_v4”: “”,
“public_v6”: “”,
“region”: “”,
“security_groups”: [

	{

	“description”: “Default security group”,
“id”: “f48c6b12-497b-4301-97f5-0c8749815089”,
“location”: {

“cloud”: “defaults”,
“project”: {

“domain_id”: null,
“domain_name”: null,
“id”: “f53391f4d50643f283af5d59fc450e09”,
“name”: “VALUE_SPECIFIED_IN_NO_LOG_PARAMETER”

},
“region_name”: “”,
“zone”: null

},
“name”: “default”,
“project_id”: “f53391f4d50643f283af5d59fc450e09”,
“properties”: {},
“security_group_rules”: [

	{

	“direction”: “ingress”,
“ethertype”: “IPv4”,
“group”: {},
“id”: “1b315474-5730-483e-a9b7-712530c17b19”,
“location”: {

“cloud”: “defaults”,
“project”: {

“domain_id”: null,
“domain_name”: null,
“id”: “f53391f4d50643f283af5d59fc450e09”,
“name”: “VALUE_SPECIFIED_IN_NO_LOG_PARAMETER”

},
“region_name”: “”,
“zone”: null

},
“port_range_max”: 22,
“port_range_min”: 22,
“project_id”: “”,
“properties”: {

“group”: {}

},
“protocol”: “tcp”,
“remote_group_id”: null,
“remote_ip_prefix”: “0.0.0.0/0”,
“security_group_id”: “f48c6b12-497b-4301-97f5-0c8749815089”,
“tenant_id”: “”

},
{

“direction”: “ingress”,
“ethertype”: “IPv4”,
“group”: {

“name”: “default”,
“tenant_id”: “f53391f4d50643f283af5d59fc450e09”

},
“id”: “2e45cfff-370d-460f-a88f-f3042b4a25d8”,
“location”: {

“cloud”: “defaults”,
“project”: {

“domain_id”: null,
“domain_name”: null,
“id”: “f53391f4d50643f283af5d59fc450e09”,
“name”: “VALUE_SPECIFIED_IN_NO_LOG_PARAMETER”

},
“region_name”: “”,
“zone”: null

},
“port_range_max”: null,
“port_range_min”: null,
“project_id”: “”,
“properties”: {

	“group”: {

	“name”: “default”,
“tenant_id”: “f53391f4d50643f283af5d59fc450e09”

}

},
“protocol”: null,
“remote_group_id”: null,
“remote_ip_prefix”: null,
“security_group_id”: “f48c6b12-497b-4301-97f5-0c8749815089”,
“tenant_id”: “”

},
{

“direction”: “ingress”,
“ethertype”: “IPv4”,
“group”: {},
“id”: “33078914-a857-45c4-8ed2-d4ba9d7b41be”,
“location”: {

“cloud”: “defaults”,
“project”: {

“domain_id”: null,
“domain_name”: null,
“id”: “f53391f4d50643f283af5d59fc450e09”,
“name”: “VALUE_SPECIFIED_IN_NO_LOG_PARAMETER”

},
“region_name”: “”,
“zone”: null

},
“port_range_max”: null,
“port_range_min”: null,
“project_id”: “”,
“properties”: {

“group”: {}

},
“protocol”: “icmp”,
“remote_group_id”: null,
“remote_ip_prefix”: “0.0.0.0/0”,
“security_group_id”: “f48c6b12-497b-4301-97f5-0c8749815089”,
“tenant_id”: “”

},
{

“direction”: “ingress”,
“ethertype”: “IPv4”,
“group”: {

“name”: “default”,
“tenant_id”: “f53391f4d50643f283af5d59fc450e09”

},
“id”: “b801bf97-f470-476b-9d63-b692de45ec67”,
“location”: {

“cloud”: “defaults”,
“project”: {

“domain_id”: null,
“domain_name”: null,
“id”: “f53391f4d50643f283af5d59fc450e09”,
“name”: “VALUE_SPECIFIED_IN_NO_LOG_PARAMETER”

},
“region_name”: “”,
“zone”: null

},
“port_range_max”: null,
“port_range_min”: null,
“project_id”: “”,
“properties”: {

	“group”: {

	“name”: “default”,
“tenant_id”: “f53391f4d50643f283af5d59fc450e09”

}

},
“protocol”: null,
“remote_group_id”: null,
“remote_ip_prefix”: null,
“security_group_id”: “f48c6b12-497b-4301-97f5-0c8749815089”,
“tenant_id”: “”

}

],
“tenant_id”: “f53391f4d50643f283af5d59fc450e09”

}

],
“status”: “ACTIVE”,
“task_state”: null,
“tenant_id”: “f53391f4d50643f283af5d59fc450e09”,
“terminated_at”: null,
“updated”: “2018-09-19T14:53:12Z”,
“user_id”: “e32798f55da74cffa90d629e50939582”,
“vm_state”: “active”,
“volumes”: []

}

 LinchPin 1.0.0 RELEASE NOTES

LinchPin 1.0.0 RELEASE NOTES

Enhancements

	Better python package
- Reduce noise by containing the library under the linchpin namespace

	Beaker provisioner

	Convert from linchpin_config.yml to linchpin.conf
- Add tooling to load configurations from linchpin.conf

	LinchPin Context to manage environment

	Unit Tests
- Testing of python libraries, including API, Context, CLI, etc.
- Created dummy provisining provider to perform testing

	Hooks
- pre / post hooks for both up and destroy actions

	Direct credential management
- All core cloud providers (gce, ec2, openstack) can authenticate using their traditional method
- An override can be passed via the CLI/API using the variable creds_path

	Customizable workspace in the CLI/API
- LinchPin now provides a workspace option. The PinFile, topology, layout and hooks live here.

	Context provides logging to a centralized log file, console (stdout/stderr), or both

	OpenShift provisioning provider

	

Documentation Improvements

	Beaker topology

	Inline API documentation now on readthedocs

Bug Fixes

	#177 Missing dependency for python-krbV

While this bug indicated wontfix and was closed, the improvement was instead to add functionality to the setup.py. This created the ability to ship extra dependencies by simply performing a pip install linchpin[krbV].

	#202 linchpin-config.yml inconsistencies

This lead to the rework of the configuration into linchpin.conf, and the Context objects

	#225 Linchpin multiple targets no longer work

When running linchpin up/destroy actions, if no target(s) are passed, all targets are acted upon. This failed after reworking the linchpin.conf and adding the Context object.

	#226 Returned results from API calls (up and destroy) when console set to False does not contain failures

This bug prevented certain users of the LinchPin API from gathering results from the Ansible runs. To that end, the _invoke_playbook method was reworked to return the results in a list of TaskResult objects.

 LinchPin 1.0.1 RELEASE NOTES

LinchPin 1.0.1 RELEASE NOTES

LinchPin 1.0.1 is a bugfix release

Bug Fixes

	linchpin destroy duffy error after 1.0 upgrade [https://github.com/CentOS-PaaS-SIG/linchpin/issues/263]

	1.0 error with linchpin init/linchpin up [https://github.com/CentOS-PaaS-SIG/linchpin/issues/264]

	linchpin rise/up error since upgrade to 1.0.0 [https://github.com/CentOS-PaaS-SIG/linchpin/issues/267]

	libvirt provisioning does not work on centos/rhel machines [https://github.com/CentOS-PaaS-SIG/linchpin/issues/269]

	Unable to get topology file to pass schema validation [https://github.com/CentOS-PaaS-SIG/linchpin/issues/271]

	Authorization failing with linchpin 1.0.0 [https://github.com/CentOS-PaaS-SIG/linchpin/issues/274]

	Inventory generation fails as resource outputs are not generated [https://github.com/CentOS-PaaS-SIG/linchpin/issues/275]

Enhancements

	Make a default path for credentials [https://github.com/CentOS-PaaS-SIG/linchpin/issues/280]

 LinchPin 1.0.2 RELEASE NOTES

LinchPin 1.0.2 RELEASE NOTES

LinchPin 1.0.2 is a bugfix release

Bug Fixes

	Make a default path for credentials [https://github.com/CentOS-PaaS-SIG/linchpin/issues/279]

	Updates to beaker provisioner [https://github.com/CentOS-PaaS-SIG/linchpin/pull/288]

	Recommended fixes from landscape.io [https://github.com/CentOS-PaaS-SIG/linchpin/pull/290]

	Remove .yaml from output resources files [https://github.com/CentOS-PaaS-SIG/linchpin/pull/298]

	installing deps requires -y flag [https://github.com/CentOS-PaaS-SIG/linchpin/pull/308]

Enhancements

	More documentation updates [https://github.com/CentOS-PaaS-SIG/linchpin/pull/281]

 LinchPin 1.0.0 ROADMAP

LinchPin 1.0.0 ROADMAP

Enhancements

	Better python package
- Reduce noise by containing the library under the linchpin namespace

	Beaker provisioner

	Convert from lincnpin_config.yml to linchpin.conf
- Add tooling to load configurations from linchpin.conf

	LinchPin Context to manage environment

	Unit Tests
- Testing of python libraries, including API, Context, CLI, etc.
- Created dummy provisining provider to perform testing

	Hooks
- pre / post hooks for both up and destroy actions

	Direct credential management
- All core cloud providers (gce, ec2, openstack) can authenticate using their traditional method
- An override can be passed via the CLI/API using the variable creds_path

	Customizable workspace in the CLI/API
- LinchPin now provides a workspace option. The PinFile, topology, layout and hooks live here.

	Context provides logging to a centralized log file, console (stdout/stderr), or both

	OpenShift provisioning provider

	

Documentation Improvements

	Beaker topology

	Inline API documentation now on readthedocs

Bug Fixes

	#177 Missing dependency for python-krbV

While this bug indicated wontfix and was closed, the improvement was instead to add functionality to the setup.py. This created the ability to ship extra dependencies by simply performing a pip install linchpin[krbV].

	#202 linchpin-config.yml inconsistencies

This lead to the rework of the configuration into linchpin.conf, and the Context objects

	#225 Linchpin multiple targets no longer work

When running linchpin up/destroy actions, if no target(s) are passed, all targets are acted upon. This failed after reworking the linchpin.conf and adding the Context object.

	#226 Returned results from API calls (up and destroy) when console set to False does not contain failures

This bug prevented certain users of the LinchPin API from gathering results from the Ansible runs. To that end, the _invoke_playbook method was reworked to return the results in a list of TaskResult objects.

 LinchPin 1.1.x ROADMAP - July 31, 2017?

LinchPin 1.1.x ROADMAP - July 31, 2017?

More Unit Tests #257

	coverage

	flake8

	cli fail testing

	api fail testing

	linchpin-lib pass/fail testing

Integration Testing #247

	testing of each provider set in core (openstack, ec2, gce, libvirt)

Regression Testing

	More research needed

Bug Fixes from 1.0.0 release

It’s inevitable, there will be many bugs to fix. :)

Cloud-Init functionality #111 #148

	Libvirt

	openstack userdata tooling

	aws userdata??

	gce userdata??

State Logging

	Report transitioning between states
- (prehooks -> up -> posthooks -> resources -> postreshooks? -> inventory_generation -> postgenhooks)

Output / Exception Handling

	The basic exception handling is in place. CLI output works, but isn’t perfect.

	Refine the API to return messages, let the interface handle how to display them.

Investigate dependency pinning/Investigate reducing dependencies (separate packages??)

	There are a lot of packages that can probably be removed

	Break out drivers to a separate package (core pkgs may become linchpin-drivers-core or somesuch)

	Create packages for linchpin library and linchpin-cli
- Already have some of this, but it’s not clean)

Upgrade to Ansible 2.3

	Handle new magic_vars

	Verify/Adapt any API changes work in LinchPin

Python 3 conversion

Ansible is ready (pretty much), so should we be.

 LinchPin 1.2.x ROADMAP - October 1, 2017??

LinchPin 1.2.x ROADMAP - October 1, 2017??

Authentication Driver for Libvirt and others

	Libvirt – PolicyKit/SSH/tcp integration/sudo (become) methods

Reworking Schema

	Use cerberus on a driver by driver basis to validate schemas

Zuul Integration

Sean Myers is working on this

New providers

	Azure

	RHEV RHEL

	Foreman

Rework on Roles

	Small playbooks that do provision/teardown per provider

	Create a plugin model for ephemeral services

Split out Linchpin API/REST API from cli

	API becomes linchpin pkg (libraries and playbooks)

	CLI becomes linchpin-cli pkg (just cli tooling)

Hooks

	Built-in Hooks
- inventory generator
- resource outputter
- schema validation

	Global hooks functionality

	State tracking:
- on_success/on_failure flags for hooks and actions
- Implement retry in hooks on failure

REST Service

	simple rest service interface

 LinchPin 1.3.x ROADMAP - January 1, 2018???

LinchPin 1.3.x ROADMAP - January 1, 2018???

Network Provisioning

	Teardown options

Asynchronous Target Provisioning

	Using a distributed queue to provision targets and get their states/outputs ??? (more research needed)

Linchpin Status tracking

	Use a database to track status multiple targets.

	Give unique identifiers to target/topology/layout triples for naming

nav.xhtml

 Table of Contents

 		
 Introduction to LinchPin

 		
 Getting Started

 		
 Documentation

 		
 Installation

 		
 Minimal Software Requirements

 		
 Installing LinchPin

 		
 Installing on Fedora 26

 		
 Installing on RHEL 7.4

 		
 Source Installation

 		
 linchpin setup : Automatic Dependency installation:

 		
 Running LinchPin

 		
 Running the linchpin command

 		
 Workspaces

 		
 Resources

 		
 Provisioning (up)

 		
 Teardown (destroy)

 		
 Authentication

 		
 General Configuration

 		
 Adding/Overriding a Section

 		
 Overriding a configuration item

 		
 Useful Configuration Options

 		
 Commands (CLI)

 		
 linchpin init

 		
 linchpin up

 		
 linchpin destroy

 		
 linchpin journal

 		
 linchpin fetch

 		
 linchpin validate

 		
 Validate Command

 		
 Managing Resources

 		
 PinFiles

 		
 Topologies

 		
