

 Navigation

 	
 index

 	
 next |

 	latimes-calculate 0.2 documentation

latimes-calculate

Some simple math we use to do journalism

Getting started

Install the latest package from pypi.

$ pip install latimes-calculate

Note

For most functions, there are no additional requirements. The exception is
the small number of geospatial functions, which require GeoDjango [http://geodjango.org/].

Documentation

	Basic functions
	Adjusted-monthly value

	Age

	At percentile

	Benford’s Law

	Competition rank

	Date range

	Decile

	Ethnolinguistic Fractionalization Index

	Equal-sized breakpoints

	Margin of victory

	Mean (Average)

	Median

	Mode

	Ordinal rank

	Pearson’s r

	Per capita

	Per square mile

	Percentage

	Percentage change

	Percentile

	Range

	Split at breakpoints

	Standard deviation

	Summary statistics

	Variation coefficient

	Geospatial functions
	Mean center

	Nudge points

	Random point

	Standard-deviation distance

Contributing

	Code repository: https://github.com/datadesk/latimes-calculate

	Issues: https://github.com/datadesk/latimes-calculate/issues

	Packaging: https://pypi.python.org/pypi/latimes-calculate

	Testing: https://travis-ci.org/datadesk/latimes-calculate

	Coverage: https://coveralls.io/r/datadesk/latimes-calculate

 Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	latimes-calculate 0.2 documentation

Basic functions

Adjusted-monthly value

	
adjusted_monthly_value(value, datetime)

	Accepts a value and a datetime object, and then prorates the value to a 30-day figure depending on how many days are in the month. This can be useful for month-to-month comparisons in circumstances where fluctuations in the number of days per month may skew the analysis. For instance, February typically has only 28 days, in comparison to March, which has 31.

>>> import calculate
>>> calculate.adjusted_monthly_value(10, datetime.datetime(2009, 4, 1))
10.0
>>> calculate.adjusted_monthly_value(10, datetime.datetime(2009, 2, 17))
10.714285714285714
>>> calculate.adjusted_monthly_value(10, datetime.datetime(2009, 12, 31))
9.67741935483871

Age

	
age(born, as_of=None)

	Returns the current age, in years, of a person born on the provided date.

First argument should be the birthdate and can be a datetime.date or
datetime.datetime object, although datetimes will be converted to a date object
and hours, minutes and seconds will not be part of the calculation.

The second argument is the as_of date that the person’s age will be calculate at.
By default, it is not provided and the age is returned as of the current date.
But if you wanted to calculate someone’s age at a past or future date, you could
do that by providing the as_of date as the second argument.

>>> import calculate
>>> from datetime import date
>>> dob = date(1982, 7, 22)
>>> calculate.age(dob)
29 # As of the writing of this README, of course.
>>> as_of = date(1982, 7, 23)
>>> calculate.age(dob, as_of)
0

At percentile

	
at_percentile(data_list, value, interpolation='fraction')

	Accepts a list of values and a percentile for which to return the value. A percentile of, for example, 80 means that 80 percent of the scores in the sequence are below the given score. If the requested percentile falls between two values, the result can be interpolated
using one of the following methods. The default is “fraction”.

	fraction: The value proportionally between the pair of bordering values.

	lower: The lower of the two bordering values.

	higher: The higher of the two bordering values.

>>> import calculate
>>> calculate.at_percentile([1, 2, 3, 4], 75)
3.25
>>> calculate.at_percentile([1, 2, 3, 4], 75, interpolation='lower')
3.0
>>> calculate.at_percentile([1, 2, 3, 4], 75, interpolation='higher')
4.0

Benford’s Law

	
benfords_law(number_list, method='first_digit', verbose=True)

	Accepts a list of numbers and applies a quick-and-dirty run against Benford’s Law. Benford’s Law makes statements about the occurance of leading digits in a dataset. It claims that a leading digit of 1 will occur about 30 percent of the time, and each number after it a little bit less, with the number 9 occuring the least. Datasets that greatly vary from the law are sometimes suspected of fraud.

The function returns the Pearson correlation coefficient, also known as Pearson’s r, which reports how closely the two datasets are related. This function also includes a variation on the classic Benford analysis popularized by blogger Nate Silver, who conducted an analysis of the final digits of polling data. To use Silver’s variation, provide the keyword argument method with the value ‘last_digit’. To prevent the function from printing, set the optional keyword argument verbose to False. This function is based upon code from a variety of sources around the web, but owes a particular debt to the work of Christian S. Perone.

>>> import calculate
>>> calculate.benfords_law([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
BENFORD'S LAW: FIRST_DIGIT

Pearson's R: 0.86412304649

| Number | Count | Expected Percentage | Actual Percentage |
--
1	2	30.1029995664	20.0
2	1	17.6091259056	10.0
3	1	12.4938736608	10.0
4	1	9.69100130081	10.0
5	1	7.91812460476	10.0
6	1	6.69467896306	10.0
7	1	5.79919469777	10.0
8	1	5.11525224474	10.0
9	1	4.57574905607	10.0

>>> calculate.benfords_law([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], verbose=False)
-0.863801937698704

Competition rank

	
competition_rank(data_list, obj, order_by, direction='desc')

	Accepts a list, an item plus the value and direction to order by. Then returns the supplied object’s competition rank as an integer. In competition ranking equal numbers receive the same ranking and a gap is left before the next value (i.e. “1224”). You can submit a Django queryset, objects, or just a list of dictionaries.

>>> import calculate
>>> qs = Player.objects.all().order_by("-career_home_runs")
>>> ernie = Player.objects.get(first_name__iexact='Ernie', last_name__iexact='Banks')
>>> eddie = Player.objects.get(first_name__iexact='Eddie', last_name__iexact='Matthews')
>>> mel = Player.objects.get(first_name__iexact='Mel', last_name__iexact='Ott')
>>> calculate.competition_rank(qs, ernie, career_home_runs', direction='desc')
21
>>> calculate.competition_rank(qs, eddie, 'career_home_runs', direction='desc')
21
>>> calculate.competition_rank(qs, mel, 'career_home_runs', direction='desc')
23

Date range

	
date_range(start_date, end_date)

	Returns a generator of all the days between two date objects. Results include the start and end dates. Arguments can be either datetime.datetime or date type objects.

>>> import datetime
>>> import calculate
>>> dr = calculate.date_range(datetime.date(2009,1,1), datetime.date(2009,1,3))
>>> dr
<generator object at 0x718e90>
>>> list(dr)
[datetime.date(2009, 1, 1), datetime.date(2009, 1, 2), datetime.date(2009, 1, 3)]

Decile

	
decile(data_list, score, kind='weak')

	Accepts a sample of values and a single number to add to it and determine the decile equivilent of its percentile rank.

By default, the method used to negotiate gaps and ties is “weak” because it returns the percentile of all values
at or below the provided value. For an explanation of alternative methods, refer to the percentile function.

>>> import calculate
>>> calculate.decile([1, 2, 3, 3, 4], 3)
9

Ethnolinguistic Fractionalization Index

	
elfi(data_list)

	The ELFI is a simplified method for calculating the Ethnolinguistic Fractionalization Index (ELFI). This is one form of what is commonly called a “diversity index.” Accepts a list of decimal percentages, which are used to calculate the index. Returns a decimal value as a floating point number.

>>> import calculate
>>> calculate.elfi([0.2, 0.5, 0.05, 0.25])
0.64500000000000002

Equal-sized breakpoints

	
equal_sized_breakpoints(data_list, classes)

	Returns break points for groups of equal size, known as quartiles, quintiles, etc. Provide a list of data values and the number of classes you’d like the list broken up into. No flashy math, just sorts them in order and makes the cuts.

>>> import calculate
>>> calculate.equal_sized_breakpoints(range(1,101), 5)
[1.0, 21.0, 41.0, 61.0, 81.0, 100]

Margin of victory

	
margin_of_victory(data_list)

	Accepts a list of numbers and returns the difference between the first place
and second place values.

This can be useful for covering elections as an easy to way to figure out
the margin of victory for a leading candidate.

>>> import calculate
>>> # 2008 Iowa caucus results for [Edwards, Clinton, Obama]
>>> calculate.margin_of_victory([3285, 2804, 7170])
3885

Mean (Average)

	
mean(data_list)

	Accepts a sample of values and returns their mean. The mean is the sum of all values in the sample divided by the number of members. It is also known as the average. Since the value is strongly influenced by outliers, median is generally a better indicator of central tendency.

>>> import calculate
>>> calculate.mean([1,2,3])
2.0
>>> calculate.mean([1, 99])
50.0

Median

	
median(data_list)

	Accepts a list of numbers and returns the median value. The median is the number in the middle of a sequence, with 50 percent of the values above, and 50 percent below. In cases where the sequence contains an even number of values – and therefore no exact middle – the two values nearest the middle are averaged and the mean returned.

>>> import calculate
>>> calculate.median([1,2,3])
2.0
>> calculate.median((1,4,3,2))
2.5

Mode

	
mode(data_list)

	Accepts a sample of numbers and returns the mode value. The mode is the most common value in a data set. If there is a tie for the highest count, no value is returned.

>>> import calculate
>>> calculate.mode([1,2,2,3])
2.0
>>> calculate.mode([1,2,3])
>>>

Ordinal rank

	
ordinal_rank(sequence, item, order_by=None, direction='desc')

	Accepts a list and an object. Returns the object’s ordinal rank as an integer. Does not negiotiate ties.

>>> import calculate
>>> qs = Player.objects.all().order_by("-career_home_runs")
>>> barry = Player.objects.get(first_name__iexact='Barry', last_name__iexact='Bonds')
>>> calculate.ordinal_rank(qs, barry)
1

Pearson’s r

	
pearson(list_one, list_two)

	Accepts paired lists and returns a number between -1 and 1, known as Pearson’s r [http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient], that indicates of how closely correlated the two datasets are. A score of close to one indicates a high positive correlation. That means that X tends to be big when Y is big. A score close to negative one indicates a high negative correlation. That means X tends to be small when Y is big. A score close to zero indicates little correlation between the two datasets.

A warning, though, correlation does not equal causation. Just because the two datasets are closely related doesn’t not mean that one causes the other to be the way it is.

>>> import calculate
>>> calculate.pearson([6,5,2], [2,5,6])
-0.8461538461538467

Per capita

	
per_capita(value, population, per=10000, fail_silently=True)

	Accepts two numbers, a value and population total, and returns the per capita rate. By default, the result is returned as a per 10,000 person figure. If you divide into zero – an illegal operation – a null value is returned by default. If you prefer for an error to be raised, set the kwarg ‘fail_silently’ to False.

>>> import calculate
>>> calculate.per_capita(12, 100000)
1.2

Per square mile

	
per_sqmi(value, square_miles, fail_silently=True)

	Accepts two numbers, a value and an area, and returns the per square mile rate. Not much more going on here than a simple bit of division. If you divide into zero – an illegal operation – a null value is returned by default. If you prefer for an error to be raised, set the kwarg ‘fail_silently’ to False.

>>> import calculate
>>> calculate.per_sqmi(20, 10)
2.0

Percentage

	
percentage(value, total, multiply=True, fail_silently=True)

	Accepts two integers, a value and a total. The value is divided into the total and then multiplied by 100, returning its percentage as a float. If you don’t want the number multiplied by 100, set the ‘multiply’ kwarg to False. If you divide into zero – an illegal operation – a null value is returned by default. If you prefer for an error to be raised, set the kwarg ‘fail_silently’ to False.

>>> import calculate
>>> calculate.percentage(2, 10)
20.0
>>> calculate.percentage(2,0, multiply=False)
0.20000000000000001
>>> calculate.percentage(2,0)

Percentage change

	
percentage_change(old_value, new_value, multiply=True, fail_silently=True)

	Accepts two integers, an old and a new number, and then measures the percent change between them. The change between the two numbers is determined and then divided into the original figure. By default, it is then multiplied by 100, and returning as a float. If you don’t want the number multiplied by 100, set the ‘multiply’ kwarg to False. If you divide into zero – an illegal operation – a null value is returned by default. If you prefer for an error to be raised, set the kwarg ‘fail_silently’ to False.

>>> import calculate
>>> calculate.percentage_change(2, 10)
400.0

Percentile

	
percentile(data_list, value, kind='weak')

	Accepts a sample of values and a single number to add to it and determine its percentile rank. A percentile of, for example, 80 percent means that 80 percent of the scores in the sequence are below the given score. In the case of gaps or ties, the exact definition depends on the type of the calculation stipulated by the “kind” keyword argument. There are three kinds of percentile calculations provided here. The default is “weak”.

	weak: Corresponds to the definition of a cumulative distribution function, with the result generated by returning the percentage of values at or equal to the the provided value.

	strict: Similar to “weak”, except that only values that are less than the given score are counted. This can often produce a result much lower than “weak” when the provided score is occurs many times in the sample.

	mean: The average of the “weak” and “strict” scores.

>>> import calculate
>>> calculate.percentile([1, 2, 3, 4], 3)
75.0
>>> calculate.percentile([1, 2, 3, 3, 4], 3, kind='strict')
40.0
>>> calculate.percentile([1, 2, 3, 3, 4], 3, kind='weak')
80.0
>>> calculate.percentile([1, 2, 3, 3, 4], 3, kind='mean')
60.0

Range

	
range(data_list)

	Accepts a sample of values and return the range. The range is the difference between the maximum and minimum values of a data set.

>>> import calculate
>>> calculate.range([1,2,3])
2
>>> calculate.range([2,2])
0

Split at breakpoints

	
split_at_breakpoints(data_list, breakpoint_list)

	Splits up a list at the provided breakpoints. First argument is a list of data values. Second is a list of the breakpoints you’d like it to be split up with. Returns a list of lists, in order by breakpoint.

Useful for splitting up a list after you’ve determined breakpoints using another method like calculate.equal_sized_breakpoints.

>>> import calculate
>>> l = range(1,101)
>>> bp = calculate.equal_sized_breakpoints(l, 5)
>>> print bp
[1.0, 21.0, 41.0, 61.0, 81.0, 100]
>>> print calculate.split_at_breakpoints(l, bp)
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21, 22, 23, 24, 25...

Standard deviation

	
standard_deviation(data_list)

	Accepts a sample of values and returns the standard deviation.
Standard deviation measures how widely dispersed the values are from the mean.
A lower value means the data tend to be bunched close to the average. A
higher value means they tend to be further away. This is a “population”
calculation that assumes that you are submitting all of the values, not a sample.

>>> import calculate
>>> calculate.standard_deviation([2,3,3,4])
0.70710678118654757
>>> calculate.standard_deviation([-2,3,3,40])
16.867127793432999

Summary statistics

	
summary_stats(data_list)

	Accepts a sample of numbers and returns a pretty print out of a variety of descriptive statistics.

>>> import calculate
>>> calculate.summary_stats(range(1,101))
| Statistic | Value |
--|
| n | 100 |
| mean | 50.5 |
| median | 50.5 |
| mode | None |
| maximum | 100 |
| minimum | 1 |
| range | 99.0 |
| standard deviation | 28.8660700477 |
| variation coefficient | 0.57160534748 |

Variation coefficient

	
variation_coefficient(data_list)

	Accepts a list of values and returns the variation coefficient,
which is a normalized measure of the distribution.

This is the sort of thing you can use to compare the standard deviation
of sets that are measured in different units.

Note that it uses our “population” standard deviation as part of the
calculation, not a “sample” standard deviation.

>>> import calculate
>>> calculate.variation_coefficient(range(1, 1000))
0.5767726299562651

 Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	latimes-calculate 0.2 documentation

Geospatial functions

Mean center

	
mean_center(obj_list, point_attribute_name='point')

	Accepts a geoqueryset, list of objects or list of dictionaries, expected to contain GeoDjango Point [https://docs.djangoproject.com/en/dev/ref/contrib/gis/geos/#point] objects as one of their attributes. Returns a Point object with the mean center of the provided points. The mean center is the average x and y of all those points. By default, the function expects the Point field on your model to be called ‘point’. If the point field is called something else, change the kwarg ‘point_attribute_name’ to whatever your field might be called.

>>> import calculate
>>> calculate.mean_center(qs)
<Point object at 0x77a1694>

Nudge points

	
nudge_points(geoqueryset, point_attribute_name='point', radius=0.0001)

	A utility that accepts a GeoDjango QuerySet and nudges slightly apart any identical points. Nothing is returned. By default, the distance of the move is 0.0001 decimal degrees. I’m not sure if this will go wrong if your data is in a different unit of measurement. This can be useful for running certain geospatial statistics, or even for presentation issues, like spacing out markers on a Google Map for instance.

>>> import calculate
>>> calculate.nudge_points(qs)
>>>

Random point

	
random_point(extent)

	A utility that accepts the extent of a polygon and returns a random point from within its boundaries. The extent is a four-point tuple with (xmin, ymin, xmax, ymax).

>>> polygon = Model.objects.get(pk=1).polygon
>>> import calculate
>>> calculate.random_point(polygon.extent)

Standard-deviation distance

	
standard_deviation_distance(obj_list, point_attribute_name='point')

	Accepts a geoqueryset, list of objects or list of dictionaries, expected to contain objects with Point properties, and returns a float with the standard deviation distance of the provided points. The standard deviation distance is the average variation in the distance of points from the mean center. By default, the function expects the Point field on your model to be called point. If the point field is called something else, change the kwarg point_attribute_name to whatever your field might be called.

>>> import calculate
>>> calculate.standard_deviation_distance(qs)
0.046301584704149731

 Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	latimes-calculate 0.2 documentation

Index

 A
 | B
 | C
 | D
 | E
 | M
 | N
 | O
 | P
 | R
 | S
 | V

A

 	

 	adjusted_monthly_value()

 	age()

 	

 	at_percentile()

B

 	

 	benfords_law()

C

 	

 	competition_rank()

D

 	

 	date_range()

 	

 	decile()

E

 	

 	elfi()

 	

 	equal_sized_breakpoints()

M

 	

 	margin_of_victory()

 	mean()

 	mean_center()

 	

 	median()

 	mode()

N

 	

 	nudge_points()

O

 	

 	ordinal_rank()

P

 	

 	pearson()

 	per_capita()

 	per_sqmi()

 	

 	percentage()

 	percentage_change()

 	percentile()

R

 	

 	random_point()

 	

 	range()

S

 	

 	split_at_breakpoints()

 	standard_deviation()

 	

 	standard_deviation_distance()

 	summary_stats()

V

 	

 	variation_coefficient()

 Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		latimes-calculate 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

