

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Kbus 0.4 alpha documentation

Welcome to the KBus documentation

KBUS is a lightweight messaging system for Linux, particularly
aimed at embedded platforms. Message passing is managed by a kernel module, via
reading/writing /dev/kbus0 style devices. Python bindings are provided, as
is a C library.

Contents:

	A simple introduction to using KBUS

	KBUS – Lightweight kernel-mediated messaging
	Summary

	Intentions

	The basics

	Messages

	Types of message

	KBUS end points - Ksocks

	More information

	KBUS Python bindings for Messages
	Message

	Announcement

	Request and stateful_request

	Reply and reply_to

	MessageId

	Status

	OrigFrom

	split_replier_bind_event_data

	KBUS Python bindings for Ksocks
	Ksock

	Ksock/C datastructures

	Other functions

	KBUS C bindings
	kbus/linux/kbus_defns.h

	libkbus/kbus.h

	libkbus/limpet.h

	Utilities
	errno.py

	kmsg

	runlimpet and runlimpet.py

	KBUS Limpets - an introduction with goldfish
	A few more technical details

	KBUS Limpets - an introduction
	The problem, in brief

	Summary

	Restrictions and caveats

	With goldfish bowls

	Python and C implementations

	Network protocol

	KBUS Python bindings for Limpets
	Limpets

	The KBUS documentation and sphinx
	Pre-built documentation

	Building the documentation

	The Python bindings

	Mime type magic

	Mercurial gotchas

Indices and tables

	Index

	Module Index

	Search Page

Note

This documentation is kept as reStructuredText documents, managed
with Sphinx [http://sphinx.pocoo.org/]. The HTML files in the Google code repository are
provided for convenience, and may not always be absolutely
up-to-date with head-of-tree.

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kbus 0.4 alpha documentation

A simple introduction to using KBUS

This is intended as a very simple introduction to the basics of how to use
KBUS. The examples are not realistic, but should give some flavour of the
way that KBUS works.

We shall start with a single “actor” in our virtual playlet:

Terminal 1: Rosencrantz

$ python
Python 2.6.4 (r264:75706, Dec 7 2009, 18:45:15)
[GCC 4.4.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from kbus import *

I’m generally against doing an import of *, but it’s reasonably safe with
the KBUS python module, and it makes the tutorial shorter.

First our actor needs to connect to KBUS itself, by opening a Ksock:

Terminal 1: Rosencrantz

>>> rosencrantz = Ksock(0)

This specifies which KBUS device to connect to. If KBUS is installed, then
device 0 will always exist, so it is a safe choice. The default is to open
the device for read and write - this makes sense since we will want to write
messages to it.

Once we’ve done that, we can try sending a message:

Terminal 1: Rosencrantz

>>> ahem = Message('$.Actor.Speak', 'Ahem')
>>> rosencrantz.send_msg(ahem)
MessageId(0, 1)

The first line creates a new message named $.Actor.Speak, with the
message data "Ahem".

(All message names are composed of ``$`` followed by a series of
dot-separated parts.)

The second line sends it. For convenience, the send_msg method also
returns the message id assigned to the message by KBUS - this can be used
to identify a specific message.

This will succeed, but doesn’t do anything very useful, because no-one is
listening. So, we shall need a second process, which we shall start in a
new terminal.

Terminal 2: Audience

$ python
Python 2.6.4 (r264:75706, Dec 7 2009, 18:45:15)
[GCC 4.4.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from kbus import *
>>> audience = Ksock(0)
>>> audience.bind('$.Actor.Speak')

Here, the audience has opened the same KBUS device (messages cannot be sent
between different KBUS devices). We’ve still opened it for
write, since they might, for instance, want to be able to send $.Applause
messages later on. They’ve then ‘bound to’ the $.Actor.Speak message,
which means they will receive any messages that are sent with that name.

(In fact, all messages with that name sent by anyone, not just by
rosencrantz.)

Now, if rosencrantz speaks:

Terminal 1: Rosencrantz

>>> rosencrantz.send_msg(ahem)
MessageId(0, 2)

the audience can listen:

Terminal 2: Audience

>>> audience.read_next_msg()
Message('$.Actor.Speak', data='Ahem', from_=1L, id=MessageId(0,2))

A friendlier representation of the message is given if one prints it:

Terminal 2: Audience

 >>> print _
<Announcement '$.Actor.Speak', id=[0:2], from=1, data='Ahem'>

“Plain” messages are also termed “announcements”, since they are just being
broadcast to whoever might be listening.

Note that this shows that the message received has the same MessageId as
the message sent (which is good!).

Of course, if the audience tries to listen again, they’re not going to “hear”
anything new:

Terminal 2: Audience

>>> message = audience.read_next_msg()
>>> print message
None

and so they really need to set up a loop to wait for messages, something like:

Terminal 2: Audience

>>> import select
>>> while 1:
... (r,w,x) = select.select([audience], [], [])
... # At this point, r should contain audience
... message = audience.read_next_msg()
... print 'We heard', message.name, message.data
...

(although perhaps with more error checking, and maybe even a timeout, in a
real example).

So if rosencrantz speaks again:

Terminal 1: Rosencrantz

>>> rosencrantz.send_msg(Message('$.Actor.Speak', 'Hello there'))
MessageId(0, 3)
>>> rosencrantz.send_msg(Message('$.Actor.Speak', 'Can you hear me?'))
MessageId(0, 4)

the audience should be able to hear him:

Terminal 2: Audience

We heard $.Actor.Speak Hello there
We heard $.Actor.Speak Can you hear me?

So now we’ll introduce another participant:

Terminal 3: Guildenstern

$ python
Python 2.6.4 (r264:75706, Dec 7 2009, 18:45:15)
[GCC 4.4.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from kbus import *
>>> guildenstern = Ksock(0)
>>> guildenstern.bind('$.Actor.*')

Here, guildenstern is binding to any message whose name starts with
$.Actor.. In retrospect this, of course, makes sense for the audience, too
- let’s fix that:

Terminal 2: Audience

<CTRL-C>
Traceback (most recent call last):
 File "<stdin>", line 3, in <module>
KeyboardInterrupt
>>> audience.bind('$.Actor.*')
>>> while 1:
... msg = audience.wait_for_msg()
... print 'We heard', msg.name, msg.data
...

(as a convenience, the Ksock class provides the wait_for_msg() wrapper
around select.select, which is shorter to type...).

And maybe rosencrantz will want to hear his colleague:

Terminal 1: Rosencrantz

>>> rosencrantz.bind('$.Actor.*')

So let guildenstern speak:

Terminal 3: Guildenstern

>>> guildenstern.send_msg(Message('$.Actor.Speak', 'Pssst!'))
MessageId(0, 5)
>>> # Remember guildenstern is also listening to '$.Actor.*'
>>> print guildenstern.read_next_msg()
<Announcement '$.Actor.Speak', id=[0:5], from=3, data='Pssst!'>

and rosencrantz hears:

Terminal 1: Rosencrantz

>>> print rosencrantz.read_next_msg()
<Announcement '$.Actor.Speak', id=[0:5], from=3, data='Pssst!'>

However, when we look to the audience, we see:

Terminal 2: Audience

We heard $.Actor.Speak Pssst!
We heard $.Actor.Speak Pssst!

This is because the audience has bound to the message twice - it is hearing it
once because it asked to receive every $.Actor.Speak message, and again
because it asked to hear any message matching $.Actor.*.

The solution is simple - ask not to hear the more specific version:

Terminal 2: Audience

<CTRL-C>
Traceback (most recent call last):
 File "<stdin>", line 3, in <module>
KeyboardInterrupt
>>> audience.unbind('$.Actor.Speak')
>>> while 1:
... msg = audience.wait_for_msg()
... print 'We heard', msg.from_, 'say', msg.name, msg.data
...

Note that we’ve also amended the printout to say who the message was from.
Each Ksock connection has an id associated with it - for instance:

Terminal 1: Rosencrantz

>>> rosencrantz.ksock_id()
1L

and every message indicates who sent it, so:

Terminal 1: Rosencrantz

>>> print 'I heard', message.from_, 'say', message.name, message.data
I heard 3 say $.Actor.Speak Pssst!

We’ve shown that KBUS allows one to “announce” (or, less politely,
“shout”) messages, but KBUS also supports asking questions. Thus:

Terminal 3: Guildenstern

>>> guildenstern.bind('$.Actor.Guildenstern.query', True)

allows Guildenstern to bind to this new message name as a Replier.

(Only one person may be bound as Replier for a particular message
name at any one time, so that it is unambiguous who is expected to do
the replying.

Also, if a Sender tries to send a Request, but no-one has bound to that
message name as a Replier, then an error is raised (contrast that with
ordinary messages, where if no-one is listening, the message just gets
ignored).)

If Rosencrantz then sends a Request of that name:

Terminal 1: Rosencrantz

>>> req = Request('$.Actor.Guildenstern.query', 'Were you speaking to me?')
>>> rosencrantz.send_msg(req)
MessageId(0, 6)

Guildenstern can receive it:

Terminal 3: Guildenstern

>>> msg2 = guildenstern.read_next_msg()
>>> print 'I heard', msg2
I heard <Request '$.Actor.Guildenstern.query', id=[0:6], from=1, flags=0x3 (REQ,YOU), data='Were you speaking to me?'>
>>> msg3 = guildenstern.read_next_msg()
>>> print msg3
<Request '$.Actor.Guildenstern.query', id=[0:6], from=1, flags=0x1 (REQ), data='Were you speaking to me?'>

As we should expect, guildenstern is getting the message twice, once because
he has bound as a listener to ‘$.Actor.*’, and once because he is bound as a
Replier to this specific message.

(There is, in fact, a way to ask KBUS to only deliver one copy of
a given message, and if guildenstern had used that, he would only have
received the Request that was marked for him to answer. I’m still a little
undecided how often this mechanism should be used, though.)

Looking at the two messages, the first is the Request specifically to
guildenstern, which he is meant to answer:

Terminal 3: Guildenstern

>>> print msg2.wants_us_to_reply()
True

(and that is what the YOU in the flags means).

And rosencrantz himself will also have received a copy:

Terminal 1: Rosencrantz

>>> print rosencrantz.read_next_msg()
<Request '$.Actor.Guildenstern.query', id=[0:6], from=1, flags=0x1 (REQ), data='Were you speaking to me?'>

Guildenstern can then reply:

Terminal 3: Guildenstern

>>> reply = reply_to(msg2, 'Yes, I was')
>>> print reply
<Reply '$.Actor.Guildenstern.query', to=1, in_reply_to=[0:6], data='Yes, I was'>
>>> guildenstern.send_msg(reply)
MessageId(0, 7)

The reply_to convenience function crafts a new Reply message, with the
various message parts set in an appropriate manner. And thus:

Terminal 1: Rosencrantz

>>> rep = rosencrantz.read_next_msg()
>>> print 'I heard', rep.from_, 'say', rep.name, rep.data
I heard 3 say $.Actor.Guildenstern.query Yes, I was

Note that Rosencrantz didn’t need to bind to this message to receive it - he
will always get a Reply to any Request he sends (KBUS goes to some lengths to
guarantee this, so that even if Guildenstern closes his Ksock, it will
generate a “gone away” message for him).

And, of course:

Terminal 2: Audience

We heard 1 say $.Actor.Guildenstern.query Were you speaking to me?
We heard 3 say $.Actor.Guildenstern.query Yes, I was

So, in summary:

	To send or receive messages, a process opens a Ksock.

	A process can send messages (be a Sender).

	A process can bind to receive messages (be a Listener) by message name.

	When binding to a message name, wildcards can be used.

	When binding to a message name, a process can say it wants to receive
Requests with that name (be a Replier)

	It is not an error to send an ordinary message if no-one is listening.

	It is an error to send a Request if there is no Replier.

	There can only be one Replier for a given message name.

	There can be any number of Listeners for a given message name.

Note

Running the examples in this introduction requires having
the KBUS kernel module installed. If this is not already done, and you have
the KBUS sources, then cd to the kernel module directory (i.e.,
kbus in the sources) and do:

make
make rules
sudo insmod kbus.ko

When you’ve finished the examples, you can remove the kernel module again
with:

sudo rmmod kbus.ko

The message ids shown in the examples are correct if you’ve just installed
the kernel module - the second number in each message id will be different
(although always ascending) otherwise.

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kbus 0.4 alpha documentation

KBUS – Lightweight kernel-mediated messaging

Contents

	KBUS – Lightweight kernel-mediated messaging
	Summary

	Intentions

	The basics
	Python and C

	Messages
	Message names

	Message ids

	Message content
	Unset

	The message header

	Message implementation

	Limits

	Message flags
	Send flags

	Things KBUS changes in a message

	Types of message
	Announcements

	Request message

	Reply message

	Status message

	Requests and Replies

	KBUS end points - Ksocks
	The KBUS devices

	Ksocks

	Senders

	Listeners

	Repliers

	More information
	Stateful transactions

	Queues filling up

	Urgent messages

	Select, write/send and “next message”, blocking

	Receiving messages once only

	IOCTLS

	/proc/kbus/bindings

	/proc/kbus/stats

	Error numbers

Summary

KBUS provides lightweight kernel-mediated messaging for Linux.

	“lightweight” means that there is no intent to provide complex or
sophisticated mechanisms - if you need something more, consider DBUS or
other alternatives.

	“kernel-mediated” means that the actual business of message passing and
message synchronisation is handled by a kernel module.

	“for Linux” means what it says, since the Linux kernel is required.

Initial use is expected to be in embedded systems.

There is (at least initially) no intent to aim for a “fast” system - this is
not aimed at real-time systems.

Although the implementation is kernel-mediated, there is a mechanism
(“Limpets”) for commnicating KBUS messages between buses and/or systems.

Intentions

KBUS is intended:

	To be simple to use and simple to understand.

	To have a small codebase, written in C.

	To provide predictable message delivery.

	To give deterministic message ordering.

	To guarantee a reply to every request.

It needs to be simple to use and understand because the expected users are
typically busy with other matters, and do not have time to spend learning
a complex messaging system.

It needs to have a small codebase, written in C, because embedded systems
often lack resources, and may not have enough space for C++ libraries, or
messaging systems supporting more complex protocol stacks.

Our own experience on embedded systems of various sizes indicates that
the last three points are especially important.

Predictable message delivery means the user can know whether they can tell in
what circumstances messages will or will not be received.

Deterministic message ordering means that all recipients of a given set of
messages will receive them in the same order as all other recpients (and this
will be the order in which the messages were sent). This is important when
several part of (for instance) an audio/video stack are interoperating.

Guaranteeing that a request will always result in a reply means that the user
will be told if the intended replier has (for instance) crashed. This again
allows for simpler use of the system.

The basics

Python and C

Although the KBUS kernel module is written in C, the module tests are written
in Python, and there is a Python module providing useful interfaces, which is
expected to be the normal way of using KBUS from Python.

There is also a C library (libkbus) which provides a similar level of
abstraction, so that C programmers can use KBUS without having to handle the
low level details of sockets and message datastructures. Note that the C
programer using KBUS does need to have some awareness of how KBUS messages
work in order to get memory management right.

Messages

Message names

All messages have names - for instance “$.Sensors.Kitchen”.

All message names start with “$.”, followed by one or more alphanumeric words
separated by dots. There are two wildcard characters, “*” and “%”, which can
be the last word of a name.

Thus (in some notation or other):

name := '$.' [word '.']+ (word | '*' | '%')
word := alphanumerics

Case is significant. There is probably a limit on the maximum size of a
subname, and also on the maximum length of a message name.

Names form a name hierarchy or tree - so “$.Sensors” might have children
“$.Sensors.Kitchen” and “$.Sensors.Bedroom”.

If the last word of a name is “*”, then this is a wildcard name that also
includes all the child names at that level and below – i.e., all the names
that start with the name up to the “*”. So “$.Sensors.*” includes
“$.Sensors.Kitchen”, “$.Sensors.Bedroom”, “$.Sensors.Kitchen.FireAlarm”,
“$.Sensors.Kitchen.Toaster”, “$.Sensors.Bedroom.FireAlarm”, and so on.

If the last word of a name is “%”, then this is a wildcard name that also
includes all the child names at that level – i.e., all the names obtained by
replacing the “%” by another word. So “$.Sensors.%” includes
“$.Sensors.Kitchen” and “$.Sensors.Bedroom”, but not
“$.Sensors.Kitchen.Toaster”.

Message ids

Every message is expected to have a unique id.

A message id is made up of two parts, a network id and a serial number.

The network id is used to carry useful information when a message is
transferred from one KBUS system to another (for instance, over a bridge). By
default (for local messages) it is 0.

A serial number is used to identify the particular message within a network.

If a message is sent via KBUS with a network id of 0, then KBUS itself will
assign a new message id to the message, with the network id (still) 0, and
with the serial number one more than the last serial number assigned. Thus for
local messages, message ids ascend, and their order is deterministic.

If a message is sent via KBUS with a non-zero network id, then KBUS does not
touch its message id.

Network ids are represented textually as {n,s}, where n is the
network id and s is the serial number.

Message id {0,0} is reserved for use as an invalid message id. Both
network id and serial number are unsigned 32-bit integers. Note that this
means that local serial numbers will eventually wrap.

Message content

Messages are made of the following parts:

	start and end guards:

		These are unsigned 32-bit words. ‘start_guard’ is notionally “Kbus”,
and ‘end_guard’ (the 32 bit word after the rest of the message) is
notionally “subK”. Obviously that depends on how one looks at the 32-bit
word. Every message shall start with a start guard and end with an end
guard (but see Message implementation for details).

These provide some help in checking that a message is well formed, and in
particular the end guard helps to check for broken length fields.

If the message layout changes in an incompatible manner (this has happened
once, and is strongly discouraged), then the start and end guards change.

Unset

Unset values are 0, or have zero length (as appropriate).

It is not possible for a message name to be unset.

The message header

	message id:	identifies this particular message. This is made up of a network
id and a serial number, and is discussed in Message ids.

When replying to a message, copy this value into the ‘In reply to’ field.

	in_reply_to:	is the message id of the message that this is a reply to.

This shall be set to 0 unless this message is a reply to a previous
message. In other words, if this value is non-0, then the message is a
reply.

	to:	is the Ksock id identifying who the message is to be sent to.

When writing a new message, this should normally be set to 0, meaning
“anyone listening” (but see below if “state” is being maintained).

When replying to a message, it shall be set to the ‘from’ value of the
orginal message.

When constructing a request message (a message wanting a reply), then it can
be set to a specific replier’s Ksock id. When such a message is sent, if the
replier bound (at that time) does not have that specific Ksock id, then the
send will fail.

	from:	indicates the Ksock id of the message’s sender.

When writing a new message, set this to 0, since KBUS will set it.

When reading a message, this will have been set by KBUS.

	orig_from:	this indicates the original sender of a message, when being
transported via Limpet. This will be documented in more detail in the future.

	final_to:	this indicates the final target of a message, when being
transported via Limpet. This will be documented in more detail in the future.

	extra:	this is a zero field, for future expansion. KBUS will always set this
field to zero.

	flags:	indicates extra information about the message. See Message Flags
for detailed information.

When writing a message, typical uses include:

	the message is URGENT

	a reply is wanted

When reading a message, typical uses include:

	the message is URGENT

	a reply is wanted

	a reply is wanted from the specific reader

The top 16 bits of the flags field is reserved for use by the user - KBUS
will not touch it.

	name_length:	is the length of the message name in bytes. This will always be
non-zero, as a message name must always be given.

	data_length:	is the length of the message data in bytes. It may be zero
if there is no data associated with this message.

	name:	identifies the message. It must be terminated with a
zero byte (as is normal for C - in the Python binding a normal Python string
can be used, and the this will be done for you). Byte ordering is according
to that of the platform.

In an “entire” message (see Message implementation below) the name shall
be padded out to a multiple of 4 bytes. Neither the terminating zero byte
nor the padding are included in the name length. Padding should be with
zero bytes.

	data:	is optional. KBUS does not touch the content of the
data, but just copies it. Byte ordering is according to that of the
platform.

In an “entire” message (see Message implementation below) the data shall,
if present, be padded out to a multiple of 4 bytes. This padding is not
included in the data length, and the padding bytes may be whatever byte
values are convenient to the user. KBUS does not guarantee to copy the exact
given padding bytes (in fact, current implementations just ignore them).

Message implementation

There are two ways in which a message may be constructed, “pointy” and
“entire”.
See the kbus_defns.h header file for details.

Note

The Python binding hides most of the detail of the message
implementation from the user, so if you are using Python you may be able to
skip this section.

In a “pointy” message, the name and data fields in the message header
are C pointers to the actual name and data. If there is no data, then the
data field is NULL. This is probably the simplest form of message for a C
programmer to create. This might be represented as:

start_guard: 'Kbus'
id: (0,0)
in_reply_to: (0,0)
to: 0
from: 0
name_len: 6
data_len: 0
name: ---------------------------> "$.Fred"
data: NULL
end_guard: 'subK'

or (with data):

start_guard: 'Kbus'
id: (0,0)
in_reply_to: (0,0)
to: 0
from: 0
name_len: 6
data_len: 7
name: ---------------------------> "$.Fred"
data: ---------------------------> "abc1234"
end_guard: 'subK'

Warning

When writing a “pointy” message in C, be very careful not to
free the name and data between the write and the SEND, as it is
only when the message is sent that KBUS actually follows the name and
data pointers.

After the SEND, KBUS will have taken its own copies of the name and
(any) data.

In an “entire” message, both name and data fields are required to be
NULL. The message header is followed by the message name (padded as described
above), any message data (also padded), and another end guard. This might be
represented as:

start_guard: 'Kbus'
id: (0,0)
in_reply_to: (0,0)
to: 0
from: 0
name_len: 6
data_len: 0
name: NULL
data: NULL
end_guard: 'subK'
name_data: '$.Fred\x0\x0'
end_guard: 'subK'

or (again with data):

start_guard: 'Kbus'
id: (0,0)
in_reply_to: (0,0)
to: 0
from: 0
name_len: 6
data_len: 7
name: NULL
data: NULL
end_guard: 'subK'
name_data: '$.Fred\x0\x0'
data_data: 'abc1234\x0'
end_guard: 'subK'

Note that in these examples:

	The message name is padded out to 6 bytes of name, plus one of terminating
zero byte, plus another zero byte to make 8, but the message’s name_len
is still 6.

	When there is no data, there is no “data data” after the name data.

	When there is data, the data is presented after the name, and is padded out
to a multiple of 4 bytes (but without the necessity for a terminating zero
byte, so it is possible to have no pad bytes if the data length is already
a multiple of 4). Again, the data_len always reflects the “real” data
length.

	Although the data shown is presented as ASCII strings for these examples,
it really is just bytes, with no assumption of its content/meaning.

When writing/sending messages, either form may be used (again, the “pointy”
form may be simpler for C programmers).

When reading messages, however, the “entire” form is always returned - this
removes questions about needing to free multiple returned datastructures (for
instance, what to do if the user were to ask for the NEXTMSG, read a few
bytes, and then DISCARD the rest).

Limits

Message names may not be shorter than 3 characters (since they must be at
least “$.” plus another character). An arbitrary limit is also placed on the
maximum message length - this is currently 1000 characters, but may be
reviewed in the future.

Message data may, of course, be of zero length.

When reading a message, an “entire” message is always returned.

Note

When using C to work with KBUS messages, it is generally
ill-advised to reference the message name and data “directly”:

char *name = msg->name;
uint8_t *data = msg->data;

since this will work for “pointy” messages, but not for “entire”
messages (where the name field will be NULL). Instead, it
is always better to do:

char *name = kbus_msg_name_ptr(msg);
uint8_t *data = kbus_msg_data_ptr(msg);

regardless of the message type.

Message flags

KBUS reserves the bottom 16 bits of the flags word for predefined purposes
(although not all of those bits are yet used), and guarantees not to touch the
top 16 bits, which are available for use by the programmer as a particular
application may wish.

The WANT_A_REPLY bit is set by the sender to indicate that a
reply is wanted. This makes the message into a request.

Note that setting the WANT_A_REPLY bit (i.e., a request) and
setting ‘in_reply_to’ (i.e., a reply) is bound to lead to
confusion, and the results are undefined (i.e., don’t do it).

The WANT_YOU_TO_REPLY bit is set by KBUS on a particular message
to indicate that the particular recipient is responsible for replying
to (this instance of the) message. Otherwise, KBUS clears it.

The SYNTHETIC bit is set by KBUS when it generates a Status message, for
instance when a replier has gone away and will therefore not be sending a
reply to a request that has already been queued.

Note that KBUS does not check that a sender has not set this
flag on a message, but doing so may lead to confusion.

The URGENT bit is set by the sender if this message is to be
treated as urgent - i.e., it should be added to the front of the
recipient’s message queue, not the back.

Send flags

There are two “send” flags, ALL_OR_WAIT and ALL_OR_FAIL.
Either one may be set, or both may be unset.

If both are set, the message will be rejected as invalid.

Both flags are ignored in reply messages (i.e., messages with the
‘in_reply_to’ field set).

If a message has ALL_OR_FAIL set, then a SEND will only succeed if the message
could be added to all the (intended) recipient’s message queues. Otherwise,
SEND returns -EBUSY.

If a message has ALL_OR_WAIT set, then a SEND will only succeed if the message
could be added to all the (intended) recipient’s message queues. Otherwise
SEND returns -EAGAIN. In this case, the message is still being sent, and the
caller should either call DISCARD (to drop it), or else use poll/select to
wait for the send to finish. It will not be possible to call “write” until the
send has completed or been discarded.

These are primarily intended for use in debugging systems. In particular, note
that the mechanisms dealing with ALL_OR_WAIT internally are unlikely to be
very efficient.

Note

The send flags will be less effective when messages are being
mediated via Limpets, as remote systems are involved.

Things KBUS changes in a message

In general, KBUS leaves the content of a message alone - mostly so that an
individual KBUS module can “pass through” messages from another domain.
However, it does change:

	the message id’s serial number (but only if its network id is unset)

	the ‘from’ id (to indicate the Ksock this message was sent from)

	the WANT_YOU_TO_REPLY bit in the flags (set or cleared as appropriate)

	the SYNTHETIC bit, which will always be unset in a message sent by a
Sender

KBUS will always set the ‘extra’ field to zero.

Limpets will change:

	the network id in any field that has one.

	the ‘orig_from’ and ‘final_to’ fields (which in general should only be
manipulated by Limpets).

Types of message

There are four basic message types:

	Announcement – a message aimed at any listeners, expecting no reply

	Request – a message aimed at a replier, who is expected to reply

	Reply – a reply to a request

	Status – a message generated by KBUS

The Python interface provides a Message base class, and subclasses thereof for
each of the “user” message types (but not currently for Status).

Announcements

An announcement is the “plain” message type. It is a message that is being
sent for all bound listeners to “hear”.

When creating a new announcement message, it has:

	message id:	see Message ids

	in reply to:	unset (it’s not a reply)

	to:	unset (all announcements are broadcast to any listeners)

	from:	unset (KBUS will set it)

	flags:	typically unset, see Message flags

	message name:	as appropriate

	message data:	as appropriate

The Python interface provides an Announcement class to help in creating an
announcement message.

Request message

A request message is a message that wants a reply.

Since only one Ksock may bind as a replier for a given message name, a
request message wants a reply from a single Ksock. By default, this is
whichever Ksock has bound to the message name at the moment of sending, but
see Stateful transactions.

When creating a new request message, it has:

	message id:	see Message ids

	in reply to:	unset (it’s not a reply)

	to:	either unset, or a specific Ksock id if the request
should fail if that Ksock is (no longer) the replier
for this message name

	from:	unset (KBUS will set it)

	flags:	the “needs a reply” flag should be set.
KBUS will set the “you need to reply” flag in the
copy of the message delivered to its replier.

	message name:	as appropriate

	message data:	as appropriate

When receiving a request message, the WANT_YOU_TO_REPLY flag will be set if it
is this recipient’s responsibility to reply.

The Python interface provides a Request class to help in creating a
request message.

When a request message is sent, it is an error if there is no replier bound to
that message name.

The message will, as normal, be delivered to all listeners, and will have the
“needs a reply” flag set wherever it is received. However, only the copy of
the message received by the replier will be marked with the WANT_YOU_TO_REPLY
flag.

So, if a particular file descriptor is bound as listener and replier
for ‘$.Fred’, it will receive two copies of the original message (one
marked as needing reply from that file descriptor). However, when the
reply is sent, only the “plain” listener will receive a copy of the reply
message.

Reply message

A reply message is the expected response after reading a request message.

A reply message is distinguished by having a non-zero ‘in reply to’ value.

Each reply message is in response to a specific request, as indicated by the
‘in reply to’ field in the message.

The replier is helped to remember that it needs to reply to a request, because
the request has the WANT_YOU_TO_REPLY flag set.

When a reply is sent, all listeners for that message name will receive it.
However, the original replier will not.

When creating a new reply message, it has:

	message id:	see Message ids

	in reply to:	the request message’s ‘message id’

	to:	the request message’s ‘from’ id

	from:	unset (KBUS will set it)

	flags:	typically unset, see Message flags

	message name:	the request message’s ‘message name’

	message data:	as appropriate

The Python interface provides a Reply class to help in creating a reply
message, but more usefully there is also a reply_to function that creates
a Reply Message from the original Request.

Status message

KBUS generates Status messages (also sometimes referred to as “synthetic”
messages) when a request message has been successfully sent, but the replier
is unable to reply (for instance, because it has closed its Ksock). KBUS thus
uses a Status message to provide the “reply” that it guarantees the sender
will get.

As you might expect, a KBUS status message is thus (technically) a reply
message.

A status message looks like:

	message id:	as normal

	in reply to:	the ‘message id’ of the message whose sending or
processing caused this message.

	to:	the Ksock id of the recipient of the message

	from:	the Ksock id of the sender of the message - this will
be 0 if the sender is KBUS itself (which is assumed for
most exceptions)

	flags:	typically unset, see Message flags

	message name:	for KBUS exceptions, a message name in ‘$.KBUS.*’

	message data:	for KBUS exceptions, normally absent

KBUS status messages always have ‘$.KBUS.<something>’ names (this may be a
multi-level <something>), and are always in response to a previous message, so
always have an ‘in reply to’.

Requests and Replies

KBUS guarantees that each Request will (eventually) be matched by a consequent
Reply (or Status [1]) message, and only one such.

The “normal” case is when the replier reads the request, and sends its own
reply back.

If a Request message has been successfully SENT, there are the following other
cases to consider:

	The replier unbinds from that message name before reading the request
message from its queue. In this case, KBUS removes the message from the
repliers queue, and issues a “$.KBUS.Replier.Unbound” message.

	The replier closes itself (close the Ksock), but has not yet read the
message. In this case, KBUS issues a “$.KBUS.Replier.GoneAway” message.

	The replier closes itself (closes the Ksock), has read the message, but has
not yet (and now cannot) replied to it. In this case, KBUS issues a
“$.KBUS.Replier.Ignored” message.

	SEND did not complete, and the replier closes itself before the message can
be added to its message queue (by the POLL mechanism). In this case, KBUS
issues a “$.KBUS.Replier.Disappeared” message.

	SEND did not complete, and an error occurs when the POLL mechanims tries to
send the message. In this case, KBUS issues a “$.KBUS.ErrorSending”
message.

In all these cases, the ‘in_reply_to’ field is set to the original request’s
message id. In the first three cases, the ‘from’ field will be set to the
Ksock id of the (originally intended) replier. In the last two cases, that
information is not available, and a ‘from’ of 0 (indicating KBUS itself) is
used.

	[1]	Remember that a Status message is essentially a specialisation of a
Reply message.

Note

Limpets introduce some extra messages, which will be documented when
the proper Limpet documentation is written.

KBUS end points - Ksocks

The KBUS devices

Message interactions happen via the KBUS devices. Installing the KBUS kernel
module always creates /dev/kbus0, it may also create /dev/kbus1, and
so on.

The number of devices to create is indicated by an argument at module
installation, for instance:

insmod kbus.ko num_kbus_devices=10

Messages are sent by writing to a KBUS device, and received by reading from
the same device. A variety of useful ioctls are also provided. Each KBUS
device is independent - messages cannot be sent from /dev/kbus0 to
/dev/kbus1, since there is no shared information.

Ksocks

Specifically, messages are written to and read from KBUS device file
descriptors. Each such is termed a Ksock - this is a simpler term than “file
descriptor”, and has some resonance with “socket”.

Each Ksock may be any (one or more) of:

	a Sender (opening the device for read/write)

	a Listener (only needing to open the device for read)

	a Replier (opening the device for read/write)

Every Ksock has an id. This is a 32-bit unsigned number assigned by KBUS when
the device is opened. The value 0 is reserved for KBUS itself.

The terms “listener id”, “sender id”, “replier id”, etc., thus all refer
to a Ksock id, depending on what it is being used for.

Senders

Message senders are called “senders”. A sender should open a Ksock for read
and write, as it may need to read replies and error/status messages.

A message is sent by:

	Writing the message to the Ksock (using the standard write function)

	Calling the SEND ioctl on the Ksock, to actually send the message. This
returns (via its arguments) the message id of the message sent. It also
returns status information about the send

The status information is to be documented.

The DISCARD ioctl can be used to “throw away” a partially written message,
before SEND has been called on it.

If there are no listeners (of any type) bound to that message name, then the
message will be ignored.

If the message is flagged as needing a reply, and there are no repliers bound
to that message name, then an error message will be sent to the sender, by
KBUS.

It is not possible to send a message with a wildcard message name.

As a restriction this makes the life of the implementor and documentor
easier. I believe it would also be confusing if provided.

The sender does not need to bind to any message names in order to receive
error and status messages from KBUS.

When a sender sends a Request, an internal note is made that it expects a
corresponding Reply (or possible a Status message from KBUS if the Replier
goes away or unbinds from that message name, before replying). A place for
that Reply is reserved in the sender’s message queue. If the message queue
fills up (either with messages waiting to be read, or with reserved slots for
Replies), then the sender will not be able to send another Request until there
is room on the message queue again.

Hopefully, this can be resolved by the sender reading a message off its
queue. However, if there are no messages to be read, and the queue is all
reserved for replies, the only solution is for the sender to wait for a
replier to send it something that it can then read.

Note

What order do we describe things in? Don’t forget:

If the message being sent is a request, then the replier bound to that
message name will (presumably) write a reply to the request. Thus the normal
sequence for a request is likely to be:

	write the request message

	read the reply

The sender does not need to bind to anything in order to receive a reply to
a request it has sent.

Of course, if a sender binds to listen to the name it uses for its
request, then it will get a copy of the request as sent, and it will
also get (an extra) copy of the reply. But see Receiving messages once
only.

Listeners

Message recipients are called “listeners”.

Listeners indicate that they want to receive particular messages, by using the
BIND ioctl on a Ksock to specify the name of the message that is to be
listened for. If the binding is to a wildcarded message name, then the
listener will receive all messages with names that match the wildcard.

An ordinary listener will receive all messages with that name (sent to the
relevant Ksock). A listener may make more than one binding on the same Ksock
(indeed, it is allowed to bind to the same name more than once).

Messages are received by:

	Using the NEXTMSG ioctl to request the next message (this also returns the
messages length in bytes)

	Calling the standard read function to read the message data.

If NEXTMSG is called again, the next message will be readied for reading,
whether the previous message has been read (or partially read) or not.

If a listener no longer wants to receive a particular message name, then they
can unbind from it, using the UNBIND ioctl. The message name and flags used in
an UNBIND must match those in the corresponding BIND. Any messages in the
listener’s message queue which match that unbinding will be removed from the
queue (i.e., the listener will not actually receive them). This does not
affect the message currently being read.

Note that this has implication for binding and unbinding wildcards,
which must also match.

Closing the Ksock also unbinds all the message bindings made on it.
It does not affect message bindings made on other Ksocks.

Repliers

Repliers are a special sort of listener.

For each message name, there may be a single “replier”. A replier binds to a
message name in the same way as any other listener, but sets the “replier”
flag. If someone else has already bound to the same Ksock as a replier for
that message name, the request will fail.

Repliers only receive Requests (messages that are marked as wanting a reply).

A replier may (should? must?) reply to the request - this is done by sending
a Reply message through the Ksock from which the Request was read.

It is perfectly legitimate to bind to a message as both replier and listener,
in which case two copies of the message will be read, once as replier, and
once as (just) listener (but see Receiving messages once only).

When a request message is read by the appropriate replier, KBUS will mark
that particular message with the “you must reply” flag. This will not be set
on copies of that message read by any (non-replier) listeners.

So, in the case where a Ksock is bound as replier and listener for the
same message name, only one of the two copies of the message received will
be marked as “you must reply”.

If a replier binds to a wildcarded message name, then they are the default
replier for any message names satisfying that wildcard. If another replier
binds to a more specific message name (matching that wildcard),
then the specific message name binding “wins” - the wildcard replier will no
longer receive that message name.

In particular ‘$.Fred.Jim’ is more specific than ‘$.Fred.%’ which in turn
is more specific than ‘$.Fred.*’

This means that if a wildcard replier wants to guarantee to see all the
messages matching their wildcard, they also need to bind as a listener for the
same wildcarded name.

For example:

Assume message names are of the form ‘$.Sensors.<Room>’ or
‘$.Sensors.<Room>.<Measurement>’.

Replier 1 binds to ‘$.Sensors.*’. They will be the default replier for
all sensor requests.

Replier 2 binds to ‘$.Sensors.%’. They will take over as the default
replier for any room specific requests.

Replier 3 binds to ‘$.Sensors.Kitchen.Temperature’. They will take over as
the replier for the kitchen temperature.

So:

	A message named ‘$.Sensors.Kitchen.Temperature’ will go to replier 3.

	A message named ‘$.Sensors.Kitchen’ or ‘$.Sensors.LivingRoom’ will go to
replier 2.

	A message named ‘$.Sensors.LivingRoom.Temperature’ will go to replier 1.

When a Replier is closed (technically, when its release function is
called by the kernel) KBUS traverses its outstanding message queue, and for
each Request that has not been answered, generates a Status message saying
that the Replier has “GoneAway”.

Similarly, if a Replier unbinds from replying to a mesage, KBUS traverses its
outstanding message queue, and for each Request that has not been answered, it
generates a Status message saying that it has “Unbound” from being a replier
for that message name. It also forgets the message, which it is now not going
to reply to.

Lastly, when a Replier is closed, if it has read any Requests (technically,
called NEXTMSG to pop them from the message queue), but not actually replied
to them, then KBUS will send an “Ignored” Status message for each such
Request.

More information

Stateful transactions

It is possible to make stateful message transactions, by:

	sending a Request

	receiving the Reply, and noting the Ksock id of the replier

	sending another Request to that specific replier

	and so on

Sending a request to a particular Ksock will fail if that Ksock is no longer
bound as replier to the relevant message name. This allows a sender to
guarantee that it is communicating with a particular instance of the replier
for a message name.

Queues filling up

Messages are sent by a mechanism which:

	Checks the message is plausible (it has a plausible message name,
and the right sort of “shape”)

	If the message is a Request, checks that the sender has room on its message
queue for the (eventual) Reply.

	Finds the Ksock ids of all the listeners and repliers bound to that
messages name

	Adds the message to the queue for each such listener/replier

This can cause problems if one of the queues is already full (allowing
infinite expansion of queues would also cause problems, of couse).

If a sender attempts to send a Request, but does not have room on its
message queue for the (corresponding) Reply, then the message will not be
sent, and the send will fail. Note that the message id will not be set, and
the blocking behaviours defined below do not occur.

If a replier cannot receive a particular message, because its queue is full,
then the message will not be sent, and the send will fail with an error. This
does, however, set the message id (and thus the “last message id” on the
sender).

Moreover, a sender can indicate if it wants a message to be:

	Added to all the listener queues, regardless, in which case it will block
until that can be done (ALL_OR_WAIT, sender blocks)

	Added to all the listener queues, and fail if that can’t be done
(ALL_OR_FAIL)

	Added to all the listener queues that have room (the default)

See Message flags for more details.

Urgent messages

Messages may be flagged urgent. In this case they will be added to the front
of the destination message queue, rather than the end - in other words, they
will be the next message to be “popped” by NEXTMSG.

Note that this means that if two urgent messages are sent to the same target,
and then a NEXTMSG/read occurs, the second urgent message will be popped and
read first.

Select, write/send and “next message”, blocking

Warning

At the moment, read and write are always non-blocking.

read returns more of the currently selected message, or EOF if there is no
more of that message to read (and thus also if there is no currently selected
message). The NEXTMSG ioctl is used to select (“pop”) the next message.

write writes to the end of the currently-being-written message. The
DISCARD ioctl can be used to discard the data written so far, and the SEND
ioctl to send the (presumably completed message). Whilst the message is being
sent, it is not possible to use write.

Note that if SEND is used to send a Request, then KBUS ensures that there will
always be either a Reply or a Status message in response to that request.

Specifically, if:

	The Replier “goes away” (and its “release” function is called) before
reading the Request (specifically, before calling NEXTMSG to pop it from
the message queue)

	The Replier “goes away” (and its “release” function is called) before
replying to a Request that it has already read (i.e., used NEXTMSG to pop
from the message queue)

	The Replier unbinds from that Request message name before reading the
Request (with the same caveat on what that means)

	Select/poll attempts to send the Request, and discovers that the
Replier has disappeared since the initial SEND

	Select/poll attempts to send the Request, and some other error occurs

then KBUS will “reply” with an appropriate Status message.

KBUS support its own particular variation on blocking of message sending.

First of all, it supports use of “select” to determine if there are any
messages waiting to be read. So, for instance (in Python):

with Ksock(0,'rw') as sender:
 with Ksock(0,'r') as listener:
 (r,w,x) = select.select([listener],[],[],0)
 assert r == []

 listener.bind('$.Fred')
 msg = Announcement('$.Fred','data')
 sender.send_msg(msg)

 (r,w,x) = select.select([listener],[],[],0)
 assert r == [listener]

This simply checks if there is a message in the Ksock’s message list, waiting
to be “popped” with NEXTMSG.

Secondly, write, SEND and DISCARD interact in what is hoped to be a
sensible manner. Specifically:

	When SEND (i.e., the SEND ioctl) is called, KBUS can either:
	Succeed in sending the message. The Ksock is now ready for write to
be called on it again.

	Failed in sending the message (possibly, if the message was a Request,
with EADDRNOTAVAIL, indicating that there is no Replier for that
Request). The Ksock is now ready for write to be called on it again.

	If the message was marked ALL_OR_WAIT, then it may fail with EAGAIN.
In this case, the Ksock is still in sending state, and an attempt to
call write will fail (with EALREADY). The caller can either use
DISCARD to discard the message, or use select/poll to wait for the
message to finish sending.

Thus “select” for the write case checks whether it is allowed to call
“write” - for instance:

with Ksock(0,'rw') as sender:
 write_list = [sender]
 with Ksock(0,'r') as listener1:
 write_list= [sender,listener1]
 read_list = [listener1]

 (r,w,x) = select.select(read_list,write_list,[],0)
 assert r == []
 assert w == [sender]
 assert x == []

 with Ksock(0,'rw') as listener2:
 write_list.append(listener2)
 read_list.append(listener2)

 (r,w,x) = select.select(read_list,write_list,[],0)
 assert r == []
 assert len(w) == 2
 assert sender in w
 assert listener2 in w
 assert x == []

Receiving messages once only

In normal usage (and by default), if a Ksock binds to a message name multiple
times, it will receive multiple copies of a message. This can happen:

	explicitly (the Ksock deliberately and explicitly binds to the same name
more than once, seeking this effect).

	as a result of binding to a message name and a wildcard that includes the
same name, or two overlapping wildcards.

	as a result of binding as Replier to a name, and also as Listener to the
same name (possibly via a wildcard). In this case, multiple copies will
only be received when a Request with that name is made.

Several programmers have complained that the last case, in particular, is very
inconvenient, and thus the “receive a message once only” facility has been
added.

Using the MSGONCEONLY IOCTL, it is possible to tell a Ksock that only one copy
of a particular message should be received, even if multiple are “due”. In the
case of the Replier/Listener copies, it will always be the message to which
the Replier should reply (the one with WANT_YOU_TO_REPLY set) that will be
received.

Please use this facility with care, and only if you really need it.

IOCTLS

The KBUS ioctls are defined (with explanatory comments) in the kernel module
header file (kbus_defns.h). They are:

	RESET:	Currently has no effect

	BIND:	Bind to a particular message name (possibly as replier).

	UNBIND:	Unbind from a binding - must match exactly.

	KSOCKID:	Determine the Ksock id of the Ksock used

	REPLIER:	Determine who is bound as replier to a particular message
name. This returns 0 or the Ksock id of the replier.

	NEXTMSG:	Pop the next message from the Ksock’s message queue, ready
for reading (with read), and return its length (in bytes).
If there is no next message, return a length of 0.
The length is always the length of an “entire” message (see
Message implementation).

	LENLEFT:	Determine how many bytes of the message currently being read
are still to read.

	SEND:	Send the current outstanding message for this Ksock (i.e., the
bytes written to the Ksock since the last SEND or DISCARD).
Return the message id of the message, and maybe other status
information.

	DISCARD:	Discard (throw away) the current outstanding message for this
Ksock (i.e., any bytes written to the Ksock since the last
SEND or DISCARD).

	LASTSENT:	Determine the message id of the last message SENT on this
Ksock.

	MAXMSGS:	Set the maximum length of the (read) message queue for this
KSOCK, and return the actual length that is set. An attempt
to set the queue length to 0 will just return the current
queue length.

	NUMMSGS:	Determine how many messages are outstanding in this Ksock’s
read queue.

	UNREPLIEDTO:	Determines how many Requests (marked “WANT_YOU_TO_REPLY”)
this Ksock still needs to reply to. This is primarily a
development tool.

	MSGONLYONCE:	Determines whether only one copy of a message will be
received, even if the message name is bound to multiple times.
May also be used to query the current state.

	VERBOSE:	Determines whether verbose kernel messages should be output or
not. Affects the device (the entire Ksock).
May also be used to query the current state.

	NEWDEVICE:	Requests another KBUS device (/dev/kbus/<n>). The next
KBUS device number (up to a maximum of 255) will be allocated.
Returns the new device number.

	REPORTREPLIERBINDS:

		Request synthetic messages announcing Replier BIND/UNBIND
events. These are messages named “$.KBUS.ReplierBindEvent”,
and are the only predefined messages with data.
Both Python and C bindings provide a useful function to
extract the is_bind, binder and name values from
the data.

	MAXMSGSIZE:	Set the maximum size of a KBUS message for this KBUS device,
and return the value that is set. This is the size of the
largest message that may be written to a KBUS Ksock. Trying
to write a longer message will result in an -EMSGSIZE error.
An attempt to set this value of 0 will just return the current
maximum size. Otherwise, the size requested may not be less
than 100, or more than the kernel configuration value
KBUS_ABS_MAX_MESSAGE_SIZE. The default maximum size is set by
the kernel configuration value KBUS_DEF_MAX_MESSAGE_SIZE, and
is typically 1024. The size being tested is that returned by
the KBUS_ENTIRE_MESSAGE_LEN macro - i.e., the size of an
equivalent “entire” message.

/proc/kbus/bindings

/proc/kbus/bindings is a debugging aid for reporting the listener id,
exclusive flag and message name for each binding, for each kbus device.

An example might be:

$ cat /proc/kbus/bindings
<device> is bound to <Ksock-ID> in <process-PID> as <Replier|Listener> for <message-name>
 1: 1 22158 R $.Sensors.*
 1: 2 22158 R $.Sensors.Kitchen.Temperature
 1: 3 22158 L $.Sensors.*
 13: 4 22159 L $.Jim.*
 13: 1 22159 R $.Fred
 13: 1 22159 L $.Jim
 13: 14 23021 L $.Jim.*

This describes two KBUS devices (/dev/kbus1 and /dev/kbus13).

The first has bindings on Ksock ids 1, 2 and 3, for the given message names. The
“R” indicates a replier binding, the “L” indicates a listener (non-replier)
binding.

The second has bindings on Ksock ids 4, 1 and 14. The order of the bindings
reported is not particularly significant.

Note that there is no communication between the two devices, so Ksock id 1 on
device 1 is not related to (and has no commonality with) Ksock id 1 on device
13.

/proc/kbus/stats

/proc/kbus/stats is a debugging aid for reporting various statistics about
the KBUS devices and the Ksocks open on them.

An example might be:

$ cat /proc/kbus/stats
dev 0: next file 5 next msg 8 unsent unbindings 0
 ksock 4 last msg 0:7 queue 1 of 100
 read byte 0 of 0, wrote byte 52 (max 60), sending
 outstanding requests 0 (size 16, max 0), unsent replies 0 (max 0)
 ksock 3 last msg 0:5 queue 0 of 1
 read byte 0 of 0, wrote byte 0 (max 0), not sending
 outstanding requests 1 (size 16, max 0), unsent replies 0 (max 0)

or:

$ cat /proc/kbus/stats
dev 0: next file 4 next msg 101 unsent unbindings 0
 ksock 3 last msg 0:0 queue 100 of 100
 read byte 0 of 0, wrote byte 0 (max 0), not sending
 outstanding requests 0 (size 16, max 0), unsent replies 0 (max 0)
 ksock 2 last msg 0:100 queue 0 of 100
 read byte 0 of 0, wrote byte 0 (max 0), not sending
 outstanding requests 100 (size 102, max 92), unsent replies 0 (max 0)

Error numbers

The following error numbers get special use. In Python, they are all returned
as values inside the IOError exception.

Since we’re trying to fit into the normal Un*x convention that negative
values are error numbers, and since Un*x defines many of these for us,
it is natural to make use of the relevant definitions. However, this also
means that we are often using them in an unnatural sense. I’ve tried to
make the error numbers used bear at least a vague relationship to their
(mis)use in KBUS.

	EADDRINUSE:	On attempting to bind a message name as replier: There is
already a replier bound for this message

	EADDRNOTAVAIL:	On attempting to send a Request message: There is no replier
bound for this message’s name.

On attempting to send a Reply message: The sender of the
original request (i.e., the Ksock mentioned as the to
in the Reply) is no longer connected.

	EALREADY:	On attempting to write to a Ksock, when a previous send has
returned EAGAIN. Either DISCARD the message, or use
select/poll to wait for the send to complete, and write to be
allowed.

	EBADMSG:	On attempting to bind, unbind or send a message: The message
name is not valid. On sending, this can also be because the
message name is a wildcard.

	EBUSY:	On attempting to send, then:

	For a request, the replier’s message queue is full.

	For any message, with ALL_OR_FAIL set, one of the
targetted listener/replier queues was full.

	ECONNREFUSED:	On attempting to send a Reply, the intended recipient (the
notional original sender of the Request) is not expecting
a Reply with that message id in its ‘in_reply_to’. Or, in
other words, this appears to be an attempt to reply to the
wrong message id or the wrong Ksock.

	EINVAL:	Something went wrong (generic error).

	EMSGSIZE:	On attempting to write a message: Data was written after
the end of the message (i.e., after the final end guard
of the message), or an attempt was made to write a message
that is too long (see the MAXMSGSIZE ioctl).

	ENAMETOOLONG:	On attempting to bind, unbind or send a message: The message
name is too long.

	ENOENT:	On attempting to open a Ksock: There is no such device
(normally because one has tried to open, for instance,
‘/dev/kbus9’ when there are only 3 KBUS devices).

	ENOLCK:	On attempting to send a Request, when there is not enough room
in the sender’s message queue to guarantee that it can
receive a reply for every Request already sent, plus this
one. If there are oustanding messages in the sender’s message
queue, then the solution is to read some of them. Otherwise,
the sender will have to wait until one of the Repliers
replies to a previous Request (or goes away and KBUS replies
for it).

When this error is received, the send has failed (just as if
the message was invalid). The sender is not left in “sending”
state, nor has the message been assigned a message id.

Note that this is not EAGAIN, since we do not want to block
the sender (in the SEND) if it is up to the sender to perform
a read to sort things out.

	ENOMSG:	On attempting to send, when there is no message waiting to be
sent (either because there has been no write since the last
send, or because the message being written has been
discarded).

	EPIPE:	On attempting to send ‘to’ a specific replier, the replier
with that id is no longer bound to the given message’s name.

	EFAULT:	Memory allocation, copy from user space, or other such failed. This
is normally very bad, it should not happen, UNLESS it is the result
of calling an ioctl, when it indicates that the ioctl argument
cannot be accessed.

	ENOMEM:	Memory allocation failed (return NULL). This is normally very bad,
it should not happen.

	EAGAIN:	On attempting to send, the message being sent had ALL_OR_WAIT set,
and one of the targetted listener/replier queues was full.

On attempting to unbind when Replier Bind Events have been
requested, one or more of the KSocks bound to receive
“$.KBUS.ReplierBindEvent” messages has a full message queue,
and thus cannot receive the unbind event. The unbind has not been
done.

In the utils directory of the KBUS sources, there is a script called
errno.py which takes an errno integer or name and prints out both the
“normal” meaning of that error number, and also (if there is one) the KBUS use
of it. For instance:

$ errno.py 1
Error 1 (0x1) is EPERM: Operation not permitted
$
$ errno.py EPIPE
EPIPE is error 32 (0x20): Broken pipe

KBUS:
On attempting to send 'to' a specific replier, the replier with that id
is no longer bound to the given message's name.

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kbus 0.4 alpha documentation

KBUS Python bindings for Messages

KBUS lightweight message system.

[image: Inheritance diagram of Announcement, Request, Reply, Status]

Message

	
class kbus.Message(name, data=None, to=None, from_=None, orig_from=None, final_to=None, in_reply_to=None, flags=None, id=None)

	Bases: object [http://docs.python.org/library/functions.html#object]

A wrapper for a KBUS message

A Message can be created in a variety of ways. Perhaps most obviously:

>>> msg = Message('$.Fred')
>>> msg
Message('$.Fred')

>>> msg = Message('$.Fred', '1234')
>>> msg
Message('$.Fred', data='1234')

>>> msg = Message('$.Fred', '12345678')
>>> msg
Message('$.Fred', data='12345678')

>>> msg1 = Message('$.Fred', data='1234')
>>> msg1
Message('$.Fred', data='1234')

A Message can be constructed from another message directly:

>>> msg2 = Message.from_message(msg1)
>>> msg2 == msg1
True

or from the tuple returned by extract():

>>> msg3 = Message.from_sequence(msg1.extract())
>>> msg3 == msg1
True

or from an equivalent list:

>>> msg3 = Message.from_sequence(list(msg1.extract()))
>>> msg3 == msg1
True

or one can use a “string” – for instance, as returned by the
Ksock.read() method:

>>> msg_as_string = msg1.to_bytes()
>>> msg4 = Message.from_bytes(msg_as_string)
>>> msg4 == msg1
True

Some testing is made on the first argument - a printable string must start
with $. (KBUS itself will make a more stringent test when the message is
sent):

>>> Message('Fred')
Traceback (most recent call last):
...
ValueError: Message name "Fred" does not start "$."

and a data “string” must be plausible - that is, long enough for the
minimal message header:

>>> Message.from_bytes(msg_as_string[:8])
Traceback (most recent call last):
...
ValueError: Cannot form entire message from string "Kbus\x00\x00\x00\x00" of length 8

and starting with a message start guard:

>>> Message.from_bytes('1234'+msg_as_string)
Traceback (most recent call last):
...
ValueError: Cannot form entire message from string "1234Kbus..1234subK" which does not start with message start guard

When constructing a message from another message, one may override
particular values (but not the name):

>>> msg5 = Message.from_message(msg1, to=9, in_reply_to=MessageId(0, 3))
>>> msg5
Message('$.Fred', data='1234', to=9L, in_reply_to=MessageId(0, 3))

>>> msg5a = Message.from_message(msg1, to=9, in_reply_to=MessageId(0, 3))
>>> msg5a == msg5
True

However, whilst it is possible to set (for instance) to back to 0 by this method:

>>> msg6 = Message.from_message(msg5, to=0)
>>> msg6
Message('$.Fred', data='1234', in_reply_to=MessageId(0, 3))

(and the same for any of the integer fields), it is not possible to set any
of the message id fields to None:

>>> msg6 = Message.from_message(msg5, in_reply_to=None)
>>> msg6
Message('$.Fred', data='1234', to=9L, in_reply_to=MessageId(0, 3))

If you need to do that, go via the extract() method:

>>> (id, in_reply_to, to, from_, orig_from, final_to, flags, name, data) = msg5.extract()
>>> msg6 = Message(name, data, to, from_, None, None, flags, id)
>>> msg6
Message('$.Fred', data='1234', to=9L)

For convenience, the parts of a Message may be retrieved as properties:

>>> print msg1.id
None
>>> msg1.name
'$.Fred'
>>> msg1.to
0L
>>> msg1.from_
0L
>>> print msg1.in_reply_to
None
>>> msg1.flags
0L
>>> msg1.data
'1234'

Message ids are objects if set:

>>> msg1 = Message('$.Fred', data='1234', id=MessageId(0, 33))
>>> msg1
Message('$.Fred', data='1234', id=MessageId(0, 33))
>>> msg1.id
MessageId(0, 33)

The arguments to Message() are:

	arg – this is the initial argument, and is a message name (a string
that starts $.), a Message, or a string representing an “entire”
message.

If arg is a message name, or another Message then the keyword
arguments may be used (for another Message, they override the
values in that Message).
If arg is a message-as-a-string, any keyword arguments will be
ignored.

	data is data for the Message, either None or a Python string.

	to is the Ksock id for the destination, for use in replies or in
stateful messaging. Normally it should be left 0.

	from_ is the Ksock id of the sender. Normally this should be left
0, as it is assigned by KBUS.

	if in_reply_to is non-zero, then it is the Ksock id to which the
reply shall go (taken from the from_ field in the original message).
Setting in_reply_to non-zero indicates that the Message is a reply.
See also the Reply class, and especially the reply_to function, which
makes constructing replies simpler.

	flags can be used to set the flags for the message. If all that is
wanted is to set the Message.WANT_A_REPLY flag, it is
simpler to use the Request class to construct the message.

	id may be used to set the message id, although unless the network_id
field is
set, KBUS will ignore this and set the id internally (this can be useful
when constructing a message to compare received messages against).

Our internal values are:

	msg, which is the actual message datastructure.

Note

Message data is always held as the appropriate C datastructure
(via ctypes), mainly to try to minimise copying of data in and out of
that form. A “pointy” or “entire” form is used as appropriate.

The message fields (inside msg) are readable directly (as
properties of Message), but are not directly writable.
Setter methods (set_urgent() and set_want_reply())
are provided for those which are likely to be sensible
to alter in normal use.

If you need to alter the Message contents, beyond use of the setter
methods, then you will need to do so via the internal msg
datastructure, with a clear understanding of the KBUS datastructure.
If you need an example of doing this, see the Limpet codebase (which
changes the id, orig_from and final_to fields, not something
normal code should need or want to do).

	
ALL_OR_FAIL = 512L

	

	
ALL_OR_WAIT = 256L

	

	
END_GUARD = 1264743795

	

	
START_GUARD = 1937072715

	

	
SYNTHETIC = 4L

	

	
URGENT = 8L

	

	
WANT_A_REPLY = 1L

	

	
WANT_YOU_TO_REPLY = 2L

	

	
cast()

	Return (a copy of) ourselves as an appropriate subclass of
Message.

Reading from a Ksock returns a Message, whatever
the actual message type.
Normally, this is OK, but sometimes it would be nice to have
an actual message of the correct class.

	
data

	Returns the payload of this KBUS message as a Python string,
or None if it is not present.

	
equivalent(other)

	Returns true if the two messages are mostly the same.

For purposes of this comparison, we ignore
id, flags, in_reply_to and from_.

	
extract()

	Return our parts as a tuple.

The values are returned in something approximating the order
within the message itself:

(id, in_reply_to, to, from_, orig_from, final_to,
flags, name, data)

This is not the same order as the keyword arguments to Message().

	
final_to

	The final_to field of the message header. This is of type
OrigFrom.

	
flags

	The flags field of the message header.

	
from_

	The from field of the message header.

	
static from_bytes(arg)

	Construct a Message from bytes, as read by
Ksock.read_data().

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Message.from_bytes(msg1.to_bytes())
>>> msg2
Message('$.Fred', data='12345678')

	
static from_message(msg, data=None, to=None, from_=None, orig_from=None, final_to=None, in_reply_to=None, flags=None, id=None)

	Construct a Message from another message.

All the values in the old message, except the name, may be changed
by specifying new values in the argument list.

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Message.from_message(msg1, flags=1)
>>> msg2
Message('$.Fred', data='12345678', flags=0x00000001)

	
static from_sequence(seq, data=None, to=None, from_=None, orig_from=None, final_to=None, in_reply_to=None, flags=None, id=None)

	Construct a Message from a sequence, as returned by extract.

All the values in the old message, except the name, may be changed
by specifying new values in the argument list.

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Message.from_sequence(msg1.extract(), flags=1)
>>> msg2
Message('$.Fred', data='12345678', flags=0x00000001)

	
id

	The id field of the message header.

	
in_reply_to

	The in_reply_to field of the message header.

	
is_reply()

	A convenience method - are we a Reply?

	
is_request()

	A convenience method - are we a Request?

	
is_stateful_request()

	A convenience method - are we a Stateful Request?

	
is_synthetic()

	Return True if this is a synthetic message - one generated by KBUS.

	
is_urgent()

	Return True if this is an urgent message.

	
name

	The name field of the message header.
Any padding bytes are removed.

	
orig_from

	The orig_from field of the message header. This is of type
OrigFrom.

	
set_urgent(value=True)

	Set or unset the ‘urgent message’ flag.

	
set_want_reply(value=True)

	Set or unset the ‘we want a reply’ flag.

	
to

	The to field of the message header.

	
to_bytes()

	Return the message as a string.

This returns the entirety of the message as a Python string.

In order to do this, it first coerces the mesage to an “entire”
message (so that we don’t have any dangling “pointers” to the
name or data).

See the total_length() method for how to determine the “correct”
length of this string.

	
total_length()

	Return the total length of this message.

A Message may be held in one of two ways:

	“pointy” - this is a message header, with references to the
message name and data.

	“entire” - this is a message header with the message name
and data (and an extra end guard) appended to it.

Message construction may produce either of these (although
construction of a message from a string will always produce
an “entire” message). Reading a message from a Ksock returns
an “entire” message string.

The actual “pointy” or “entire” message data is held in the
msg value of the Message instance.

The to_bytes() method returns the data for an “entire” message.
In certain circumstances (typically, on a 64-byte system) the actual
length of data returned by to_bytes() may be slightly too long
(due to extra padding at the end).

This method calculates the correct length of the equivalent “entire”
message for this Message, without any such padding. If you want to
write the data returned by to_bytes() into a Ksock,
only use the number of bytes indicated by this method.

	
wants_us_to_reply()

	Return True if we (specifically us) are should reply to this message.

Announcement

	
class kbus.Announcement(name, data=None, to=None, from_=None, flags=None, id=None)

	Bases: kbus.messages.Message

A “plain” message, needing no reply

This is intended to be a convenient way of constructing a message that
is just aimed at any listeners.

It’s also a terminological convenience - all of the “message” things are
clearly messages, so we need a special name for “plain” messages...
There’s an argument for just factory functions to create these things,
but a class feels a little cleaner to me.

An Announcement can be created in a variety of ways. Perhaps most obviously:

>>> ann1 = Announcement('$.Fred', data='1234')
>>> ann1
Announcement('$.Fred', data='1234')

Since Announcement is a “plain” Message, we expect to be able to use the
normal ways of instantiating a Message for an Announcement.

So, an Announcement can be constructed from another message directly:

>>> ann2 = Announcement.from_message(ann1)
>>> ann2 == ann1
True

>>> msg = Announcement.from_message(ann1)
>>> ann2a = Announcement.from_message(msg)
>>> ann2 == ann2a
True

Since it’s an Announcement, there’s no in_reply_to argument

>>> fail = Announcement('$.Fred', in_reply_to=None)
Traceback (most recent call last):
...
TypeError: __init__() got an unexpected keyword argument 'in_reply_to'

and the in_reply_to value in Message objects is ignored:

>>> msg = Message('$.Fred', data='1234', in_reply_to=MessageId(1, 2))
>>> ann = Announcement.from_message(msg)
>>> ann
Announcement('$.Fred', data='1234')
>>> print ann.in_reply_to
None

or from the extract() tuple - again, reply_to will be ignored:

>>> ann3 = Announcement.from_sequence(ann1.extract())
>>> ann3 == ann1
True

or from an equivalent list (and as above for reply_to):

>>> ann3 = Announcement.from_sequence(list(ann1.extract()))
>>> ann3 == ann1
True

Or one can use the same thing represented as a string:

>>> ann_as_string = ann1.to_bytes()
>>> ann4 = Announcement.from_bytes(ann_as_string)
>>> ann4 == ann1
True

For convenience, the parts of an Announcement may be retrieved as properties:

>>> print ann1.id
None
>>> ann1.name
'$.Fred'
>>> ann1.to
0L
>>> ann1.from_
0L
>>> print ann1.in_reply_to # always expected to be None
None
>>> ann1.flags
0L
>>> ann1.data
'1234'

Note that:

	An Announcement message is such because it is not a message of another
type. There is nothing else special about it.

	
static from_bytes(arg)

	Construct an Announcement from bytes, as read by Ksock.read_data().

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Announcement.from_bytes(msg1.to_bytes())
>>> msg2
Announcement('$.Fred', data='12345678')

	
static from_message(msg, data=None, to=None, from_=None, flags=None, id=None)

	Construct an Announcement from another message.

The optional arguments allow changing the named fields in the new
Announcement.

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Announcement.from_message(msg1, flags=1)
>>> msg2
Announcement('$.Fred', data='12345678', flags=0x00000001)

	
static from_sequence(seq, data=None, to=None, from_=None, flags=None, id=None)

	Construct an Announcement from a sequence, as returned by
extract().

The optional arguments allow changing the named fields in the new
Announcement.

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Announcement.from_sequence(msg1.extract(), flags=1)
>>> msg2
Announcement('$.Fred', data='12345678', flags=0x00000001)

	
set_want_reply(value=True)

	Announcements are not Requests.

Request and stateful_request

	
class kbus.Request(name, data=None, to=None, from_=None, final_to=None, flags=None, id=None)

	Bases: kbus.messages.Message

A message that wants a reply.

This is intended to be a convenient way of constructing a message that
wants a reply.

It doesn’t take an in_reply_to initialisation argument:

>>> fail = Request('$.Fred', in_reply_to=None)
Traceback (most recent call last):
...
TypeError: __init__() got an unexpected keyword argument 'in_reply_to'

And it automatically sets the WANT_A_REPLY flag, but otherwise it
behaves just like a Message.

For instance, consider:

>>> msg = Message('$.Fred', data='1234', flags=Message.WANT_A_REPLY)
>>> msg
Message('$.Fred', data='1234', flags=0x00000001)
>>> req = Request('$.Fred', data='1234')
>>> req
Request('$.Fred', data='1234', flags=0x00000001)
>>> req == msg
True

If it is given a to argument, then it is a Stateful Request - it will be
an error if it cannot be delivered to that particular Replier (for
instance, if the Replier had unbound and someone else had bound as Replier
for this message name).

>>> req = Request('$.Fred', data='1234', to=1234)
>>> req
Request('$.Fred', data='1234', to=1234L, flags=0x00000001)

A Stateful Request may also need to supply a final_to argument, if the
original Replier is over a (Limpet) network. This should be taken from an
earlier Reply from that Replier – see the convenience function
stateful_request(). However, it can be done by hand:

>>> req = Request('$.Fred', data='1234', to=1234, final_to=OrigFrom(12, 23), flags=0x00000001)
>>> req
Request('$.Fred', data='1234', to=1234L, final_to=OrigFrom(12, 23), flags=0x00000001)

Note that:

	A request message is a request just because it has the
Message.WANT_A_REPLY flag set. There is nothing else special
about it.

	A stateful request message is then a request that has its to flag set.

	
static from_bytes(arg)

	Construct a Request from bytes, as read by Ksock.read_data().

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Request.from_bytes(msg1.to_bytes())
>>> msg2
Request('$.Fred', data='12345678', flags=0x00000001)

	
static from_message(msg, data=None, to=None, from_=None, final_to=None, flags=None, id=None)

	Construct a Request from another message.

The optional arguments allow changing the named fields in the new
Request.

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Request.from_message(msg1, flags=2)
>>> msg2
Request('$.Fred', data='12345678', flags=0x00000003)

	
static from_sequence(seq, data=None, to=None, from_=None, final_to=None, flags=None, id=None)

	Construct a Request from a sequence, as returned by
extract().

The optional arguments allow changing the named fields in the new
Request.

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Request.from_sequence(msg1.extract(), flags=2)
>>> msg2
Request('$.Fred', data='12345678', flags=0x00000003)

	
set_want_reply()

	Calling this method is an error in this subclass, as by
definition a Request always has the WANT_A_REPLY
flag set.

	
kbus.stateful_request(earlier_msg, name, data=None, from_=None, flags=None, id=None)

	Construct a stateful Request, based on an earlier Reply or
stateful Request.

This is intended to be the normal way of constructing a stateful request.

earlier_msg is either:

	an earlier Reply, whose from_ field will be used as the new Request’s
to field, and whose orig_from field will be used as the new Request’s
final_to field.

Remember, a Reply is a message whose in_reply_to field is set.

	an earlier Stateful Request, whose to and orig_from fields will be
copied to the new Request.

Remember, a Stateful Request is a message with the
Message.WANT_A_REPLY
flag set (a Request), and whose to field is set (which is to a
specific Replier).

The rest of the arguments are the same as for Request(), except that the
to and orig_from initialiser arguments are missing.

For instance, in the normal (single network) case:

>>> reply = Reply('$.Fred', to=27, from_=39, in_reply_to=MessageId(0, 132))
>>> reply
Reply('$.Fred', to=27L, from_=39L, in_reply_to=MessageId(0, 132))
>>> request = stateful_request(reply, '$.SomethingElse')
>>> request
Request('$.SomethingElse', to=39L, flags=0x00000001)

or, with a Reply that has come from far away:

>>> reply = Reply('$.Fred', to=27, from_=39, in_reply_to=MessageId(0, 132), orig_from=OrigFrom(19,23))
>>> reply
Reply('$.Fred', to=27L, from_=39L, orig_from=OrigFrom(19, 23), in_reply_to=MessageId(0, 132))
>>> request = stateful_request(reply, '$.SomethingElse')
>>> request
Request('$.SomethingElse', to=39L, final_to=OrigFrom(19, 23), flags=0x00000001)

or, reusing our stateful Request:

>>> request = stateful_request(request, '$.Again', data='Aha!')
>>> request
Request('$.Again', data='Aha!', to=39L, final_to=OrigFrom(19, 23), flags=0x00000001)

Reply and reply_to

	
class kbus.Reply(name, data=None, to=None, from_=None, orig_from=None, in_reply_to=None, flags=None, id=None)

	Bases: kbus.messages.Message

A reply message.

(Note that the constructor for this class does not flip fields (such
as id and in_reply_to, or from_ and to) when building the Reply
- if you want that behaviour (and you probably do), use the
reply_to() function.)

Thus Reply can be used as, for instance:

>>> direct = Reply('$.Fred', to=27, in_reply_to=MessageId(0, 132))
>>> direct
Reply('$.Fred', to=27L, in_reply_to=MessageId(0, 132))
>>> reply = Reply.from_message(direct)
>>> direct == reply
True

Since a Reply is a Message with its in_reply_to set, this must be provided:

>>> msg = Message('$.Fred', data='1234', from_=27, to=99, id=MessageId(0, 132), flags=Message.WANT_A_REPLY)
>>> msg
Message('$.Fred', data='1234', to=99L, from_=27L, flags=0x00000001, id=MessageId(0, 132))
>>> reply = Reply.from_message(msg)
Traceback (most recent call last):
...
ValueError: A Reply must specify in_reply_to

>>> reply = Reply.from_message(msg, in_reply_to=MessageId(0, 5))
>>> reply
Reply('$.Fred', data='1234', to=99L, from_=27L, in_reply_to=MessageId(0, 5), flags=0x00000001, id=MessageId(0, 132))

When Limpet networks are in use, it may be necessary to construct a Reply
with its orig_from field set (this should only really be done by a Limpet
itself, though):

>>> reply = Reply.from_message(msg, in_reply_to=MessageId(0, 5), orig_from=OrigFrom(23, 92))
>>> reply
Reply('$.Fred', data='1234', to=99L, from_=27L, orig_from=OrigFrom(23, 92), in_reply_to=MessageId(0, 5), flags=0x00000001, id=MessageId(0, 132))

It’s also possible to construct a Reply in most of the other ways a
Message can be constructed. For instance:

>>> rep2 = Reply.from_bytes(direct.to_bytes())
>>> rep2 == direct
True
>>> rep4 = Reply.from_sequence(direct.extract())
>>> rep4 == direct
True

	
static from_bytes(arg)

	Construct a Message from bytes, as read by
Ksock.read_data().

in_reply_to must be set in the message data.

For instance:

>>> msg1 = Message('$.Fred', '12345678', in_reply_to=MessageId(0,5))
>>> msg1
Message('$.Fred', data='12345678', in_reply_to=MessageId(0, 5))
>>> msg2 = Message.from_bytes(msg1.to_bytes())
>>> msg2
Message('$.Fred', data='12345678', in_reply_to=MessageId(0, 5))

	
static from_message(msg, data=None, to=None, from_=None, orig_from=None, in_reply_to=None, flags=None, id=None)

	Construct a Message from another message.

All the values in the old message, except the name, may be changed
by specifying new values in the argument list.

in_reply_to must be specified explicitly, if it is not present
in the old/template message.

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Reply.from_message(msg1, flags=2, in_reply_to=MessageId(0,5))
>>> msg2
Reply('$.Fred', data='12345678', in_reply_to=MessageId(0, 5), flags=0x00000002)

	
static from_sequence(seq, data=None, to=None, from_=None, orig_from=None, in_reply_to=None, flags=None, id=None)

	Construct a Message from a sequence, as returned by
extract().

All the values in the old message, except the name, may be changed
by specifying new values in the argument list.

in_reply_to must be specified explicitly, if it is not present
in the sequence.

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Reply.from_sequence(msg1.extract(), flags=2, in_reply_to=MessageId(0,5))
>>> msg2
Reply('$.Fred', data='12345678', in_reply_to=MessageId(0, 5), flags=0x00000002)

	
kbus.reply_to(original, data=None, flags=0)

	Return a Reply to the given Message.

This is intended to be the normal way of constructing a reply message.

For instance:

>>> msg = Message('$.Fred', data='1234', from_=27, to=99, id=MessageId(0, 132), flags=Message.WANT_A_REPLY|Message.WANT_YOU_TO_REPLY)
>>> msg
Message('$.Fred', data='1234', to=99L, from_=27L, flags=0x00000003, id=MessageId(0, 132))
>>> reply = reply_to(msg)
>>> reply
Reply('$.Fred', to=27L, in_reply_to=MessageId(0, 132))

Note that:

	The message we’re constructing a reply to must be a message that wants
a reply. Specifically, this means that it must have the
Message.WANT_A_REPLY flag set, and also the Message.WANT_YOU_TO_REPLY
flag. This last is because anyone listening to a Request will “see” the
Message.WANT_A_REPLY flag,
but only the (single) replier will receive the message with
Message.WANT_YOU_TO_REPLY set.

	A reply message is a reply because it has the in_reply_to field set.
This indicates the message id of the original message, the one we’re
replying to.

	As normal, the Reply’s own message id is unset - KBUS will set this, as
for any message.

	We give a specific to value, the id of the Ksock that sent
the original message, and thus the from value in the original message.

	We keep the same message name, but don’t copy the original message’s
data. If we want to send data in a reply message, it will be our own
data.

The other arguments available are flags (allowing the setting of flags
such as Message.ALL_OR_WAIT, for instance), and data,
allowing reply data to be added:

>>> rep4 = reply_to(msg, flags=Message.ALL_OR_WAIT, data='1234')
>>> rep4
Reply('$.Fred', data='1234', to=27L, in_reply_to=MessageId(0, 132), flags=0x00000100)

MessageId

	
class kbus.MessageId

	Bases: _ctypes.Structure

A wrapper around a message id.

>>> a = MessageId(1, 2)
>>> a
MessageId(1, 2)
>>> a < MessageId(2, 2) and a < MessageId(1, 3)
True
>>> a == MessageId(1, 2)
True
>>> a > MessageId(0, 2) and a > MessageId(1, 1)
True

We support addition in a limited manner:

>>> a + 3
MessageId(1, 5)

simply to make it convenient to generate unique message ids. This returns
a new MessageId - it doesn’t amend the existing one.

	
network_id

	Structure/Union member

	
serial_num

	Structure/Union member

Status

	
class kbus.Status(original)

	Bases: kbus.messages.Message

A status message, from KBUS.

This is provided as a sugar-coating around the messages KBUS sends us. As
such, it is not expected that a normal user would want to construct one,
and the initialisation mechanisms are correspondingly more restrictive.

For instance:

>>> msg = Message('$.KBUS.Dummy', from_=27, to=99, in_reply_to=MessageId(0, 132))
>>> msg
Message('$.KBUS.Dummy', to=99L, from_=27L, in_reply_to=MessageId(0, 132))
>>> status = Status.from_bytes(msg.to_bytes())
>>> status
Status('$.KBUS.Dummy', to=99L, from_=27L, in_reply_to=MessageId(0, 132))

At the moment it is not possible to construct a Status message in any other
way - it is assumed to be strictly for “wrapping” a message read (as bytes)
from KBUS. Thus:

>>> msg = Status('$.Fred')
Traceback (most recent call last):
...
NotImplementedError: Use the Status.from_bytes() method to construct a Status

Note that:

	A status message is such because it is a (sort of)
Reply, with the
message name starting with $.KBUS..

	
static from_bytes(arg)

	Construct a Status from bytes, as read by Ksock.read_data().

For instance:

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Status.from_bytes(msg1.to_bytes())
>>> msg2
Status('$.Fred', data='12345678')

	
static from_message(msg, data=None, to=None, from_=None, orig_from=None, final_to=None, in_reply_to=None, flags=None, id=None)

	It is not meaningful to create a Status from another Message.

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Status.from_message(msg1, in_reply_to=MessageId(0,5))
Traceback (most recent call last):
...
NotImplementedError: Status does not support the from_message() static method

	
static from_sequence(seq, data=None, to=None, from_=None, orig_from=None, final_to=None, in_reply_to=None, flags=None, id=None)

	It is not meaningful to create a Status from a sequence.

>>> msg1 = Message('$.Fred', '12345678')
>>> msg1
Message('$.Fred', data='12345678')
>>> msg2 = Status.from_sequence(msg1.extract())
Traceback (most recent call last):
...
NotImplementedError: Status does not support the from_sequence() static method

OrigFrom

	
class kbus.OrigFrom

	Bases: _ctypes.Structure

A wrapper to the underlying C struct kbus_orig_from type.
This is the type of Message.orig_from and Message.final_to.

>>> a = OrigFrom(1, 2)
>>> a
OrigFrom(1, 2)
>>> a < OrigFrom(2, 2) and a < OrigFrom(1, 3)
True
>>> a == OrigFrom(1, 2)
True
>>> a > OrigFrom(0, 2) and a > OrigFrom(1, 1)
True

	
local_id

	Structure/Union member

	
network_id

	Structure/Union member

split_replier_bind_event_data

	
kbus.split_replier_bind_event_data(data)

	Split the data from a $.KBUS.ReplierBindEvent message.

Returns a tuple of the form (is_bind, binder, name)

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kbus 0.4 alpha documentation

KBUS Python bindings for Ksocks

KBUS lightweight message system.

Ksock

	
class kbus.Ksock(which=0, mode='rw')

	Bases: object [http://docs.python.org/library/functions.html#object]

A wrapper around a KBUS device, for purposes of message sending.

which is which KBUS device to open – so if which is 3, we open
/dev/kbus3.

mode should be ‘r’ or ‘rw’ – i.e., whether to open the device for read or
write (opening for write also allows reading, of course).

Ksock can act like an iterable container; it implements
__iter__() and next() in the usual way. It also provides
__enter__() and __exit__() methods to support the use of
with [http://docs.python.org/reference/compound_stmts.html#with].

I’m not really very keen on the name Ksock, but it’s better than the
original “File”, which I think was actively misleading.

	
IOC_BIND = 1074293506

	

	
IOC_DISCARD = 27401

	

	
IOC_KSOCKID = 2148035332

	

	
IOC_LASTSENT = 2148035338

	

	
IOC_LENLEFT = 2148035335

	

	
IOC_MAGIC = 'k'

	

	
IOC_MAXMSGS = 3221777163

	

	
IOC_MAXMSGSIZE = 3221777170

	

	
IOC_MSGONLYONCE = 3221777166

	

	
IOC_NEWDEVICE = 2148035344

	

	
IOC_NEXTMSG = 2148035334

	

	
IOC_NUMMSGS = 2148035340

	

	
IOC_REPLIER = 3221777157

	

	
IOC_REPORTREPLIERBINDS = 3221777169

	

	
IOC_RESET = 27393

	

	
IOC_SEND = 2148035336

	

	
IOC_UNBIND = 1074293507

	

	
IOC_UNREPLIEDTO = 2148035341

	

	
IOC_VERBOSE = 3221777167

	

	
bind(name, replier=False)

	Bind the given name to the file descriptor.

If replier, then we are binding as the only fd that can reply to this
message name.

	
close()

	Shuts down the socket.
This implicitly unbinds the Ksock client object from every name it was
bound to. Any further attempt to use the object will cause errors.

	
discard()

	Discard the message being written.

Indicates that we have should throw away the message we’ve been
writing. Has no effect if there is no current message being
written (for instance, because send() has already been called).
be sent.

	
fileno()

	Return the integer file descriptor from our internal fd.

This allows a Ksock instance to be used in a call of
select.select()
- so, for instance, one should be able to do:

(r, w, x) = select.select([ksock1, ksock2, ksock3], None, None)

instead of the (less friendly, but also valid):

(r, w, x) = select.select([ksock1.fd, ksock2.fd, ksock3.fd], None, None)

	
find_replier(name)

	Find the id of the replier (if any) for this message.

Returns None if there was no replier, otherwise the replier’s id.

	
kernel_module_verbose(verbose=True, just_ask=False)

	Determine whether the kernel module should output verbose messages.

Determine whether the kernel module should output verbose messages for
this device (this Ksock). This will only have any effect if the kernel
module was built with CONFIG_KBUS_DEBUG defined.

The default is False, i.e., not to output verbose messages (as this
clutters up the kernel log).

	if verbose is true then we want verbose messages.

	if just_ask is true, then we just want to find out the current state
of the flag, and verbose will be ignored.

Returns the previous value of the flag (i.e., what it used to be set to).
Which, if just_ask is true, will also be the current state.

Beware that setting this flag affects the Ksock as a whole, so it is
possible for several programs to open a Ksock and “disagree” about how
this flag should be set.

	
ksock_id()

	Return the internal ‘Ksock id’ for this file descriptor.

	
last_msg_id()

	Return the id of the last message written on this file descriptor.

Returns 0 before any messages have been sent.

	
len_left()

	Return how many bytes of the current message are still to be read.

Returns 0 if there is no current message (i.e., next_msg() has
not been called), or if there are no bytes left.

	
max_message_size()

	Return the maximum message size that can be written to this KBUS device.

	
max_messages()

	Return the number of messages that can be queued on this Ksock.

	
new_device()

	Request that KBUS set up a new device (/dev/kbus<n>).

Note that it can take a little while for the hotplugging mechanisms
to set the new device up for user access.

Returns the new device number (<n>).

	
next()

	This provides iteration support. Each iteration gives a whole message
as returned by read_next_msg(). We stop when there is
no next message to read.

	
next_msg()

	Indicates that we want to start reading the next message.

Returns the length of the next message, or 0 if there is no next
message at the present time.

	
num_messages()

	Return the number of messages that are queued on this Ksock.

	
num_unreplied_to()

	Return the number of replies we still have outstanding.

That is, the number of Requests that we have read, which had the
Message.WANT_YOU_TO_REPLY flag set, but for which we have
not yet sent a Reply.

	
read_data(count)

	Read the next count bytes, and return them.

Returns ‘’ (the empty string) if there was nothing to be read,
which is consistent with now Python file reads normally behave
at end-of-file.

	
read_msg(length)

	Read a Message of length length bytes.

It is assumed that length was returned by a previous call
of next_msg(). It must be large enough to cause the entire
message to be read.

After the data has been read, it is passed to Message to
construct a message instance, which is returned.

Returns None if there was nothing to be read.

	
read_next_msg()

	Read the next Message.

Equivalent to a call of next_msg(), followed by reading the
appropriate number of bytes and passing that to Message to
construct a message instance, which is returned.

Returns None if there was nothing to be read.

	
report_replier_binds(report_events=True, just_ask=False)

	Determine whether the kernel module should report Replier bind/unbind events.

Determine whether the kernel module should output a “synthetic” message
to announce each Replier bind/unbind event.

When the flag is set, then each time a Replier binds or unbinds to a
message (i.e., when ksock.bind(name,True) or
ksock.unbind(name,True is called), a message will automatically
be generated and sent.

The message generated is called ‘$.KBUS.ReplierBindEvent’, and it has
data:

	a 32-bit value, 1 if this is a bind, 0 if it is an unbind

	a 32-bit value, the Ksock id of the binder

	the name of the message being bound to by a Replier (terminated
by a null byte, and then, if necessary, padded up to the next
four-byte boundary with null bytes

The default is False, i.e., not to output report such events.

	if report_events is true then we want bind/unbind messages.

	if just_ask is true, then we just want to find out the current state
of the flag, and report_events will be ignored.

Returns the previous value of the flag (i.e., what it used to be set to).
Which, if just_ask is true, will also be the current state.

Beware that setting this flag affects the Ksock as a whole, so it is
possible for several programs to open a Ksock and “disagree” about how
this flag should be set.

	
send()

	Indicates that we have finished writing a message, and it should
be sent.

Returns the MessageId of the send message.

Raises IOError with errno ENOMSG if no message
has been written, i.e. there is nothing to send.

	
send_msg(message)

	Write a Message, and then send it.

Entirely equivalent to calling write_msg() and then send(),
and returns the MessageId of the sent message, as
send() does.

	
set_max_message_size(count)

	Set the maximum message size that can be written to this KBUS device.

A count of 0 does not actually change the value - this may thus be
used to query the Ksock for the current value of the maximum.

A ‘count’ of 1 also does not change the value, instead, it returns
the absolute maximum size that the value may be set to.

The method max_message_size() method is provided as a possibly
simpler to use alternative for a call of ‘count’ 0.

Returns the maximum size of message that may be written to this KBUS
device, or a query result as described above.

	
set_max_messages(count)

	Set the number of messages that can be queued on this Ksock.

A count of 0 does not actually change the value - this may thus be
used to query the Ksock for the current value of the maximum.
However, the “more Pythonic” max_messages() method is provided for
use when such a query is wanted, which is just syntactic sugar around
such a call.

Returns the number of messages that are allowed to be queued on this
Ksock.

	
unbind(name, replier=False)

	Unbind the given name from the file descriptor.

The arguments need to match the binding that we want to unbind.

	
wait_for_msg(timeout=None)

	Wait for the next Message.

This is a simple wrapper around select.select(), waiting for the
next Message on this Ksock.

If timeout is given, it is a floating point number of seconds,
after which to timeout the select, otherwise this method will
wait forever.

Returns the new Message, or None if the timeout expired.

	
want_messages_once(only_once=False, just_ask=False)

	Determine whether multiply-bound messages are only received once.

Determine whether we should receive a particular message once, even if
we are both a Replier and Listener for the message, or if we are
registered more than once as a Listener for the message name.

Note that in the case of a Request that we should reply to,
we will
always get the Request, and it will be the Listener’s version of the
message that will be “dropped”.

The default is False, i.e., to receive each message as many times as we
are bound to its name.

	if only_once is true then we want to receive each message once only.

	if just_ask is true, then we just want to find out the current state
of the flag, and only_once will be ignored.

Returns the previous value of the flag (i.e., what it used to be set to).
Which, if just_ask is true, will also be the current state.

Beware that setting this flag affects how messages are added to the
Ksock’s message queue as soon as it is set - so changing it and then
changing it back “at once” is not (necessarily) a null operation.

	
write_data(data)

	Write out (and flush) some data.

This does not actually send the message and does not imply that
what has been written is all of a message
(although clearly it should form some of a message).

	
write_msg(message)

	Write a Message. Doesn’t send it.

Ksock/C datastructures

Bind/unbind argument

	
class kbus.BindStruct

	Bases: _ctypes.Structure

The datastucture we need to describe an IOC_BIND argument

	
is_replier

	Structure/Union member

	
len

	Structure/Union member

	
name

	Structure/Union member

Result of find_replier

	
class kbus.ReplierStruct

	Bases: _ctypes.Structure

The datastucture we need to describe an IOC_REPLIER argument

	
len

	Structure/Union member

	
name

	Structure/Union member

	
return_id

	Structure/Union member

Result of send

	
class kbus.SendResultStruct

	Bases: _ctypes.Structure

The datastucture we need to describe an IOC_SEND argument/return

	
msg_id

	Structure/Union member

	
retval

	Structure/Union member

Other functions

read_bindings

	
kbus.read_bindings(names)

	Read the bindings from /proc/kbus/bindings, and return a list

/proc/kbus/bindings gives us data like:

0: 10 16319 R $.Fred
0: 11 17420 L $.Fred.Bob
0: 12 17422 R $.William

(i.e., device, file descriptor id, PID of process, whether it is Replier
or Listener, and the message name concerned).

names is a dictionary of file descriptor binding id to string (name)
- for instance:

{ 10:’f1’, 11:’f2’ }

If there is no entry in the names dictionary for a given id, then the
id will be used (as an integer).

Thus with the above we would return a list of the form:

[('f1', True, '$.Fred'), ('f2', False, '$.Fred.Bob'),
 (12, True, '$.William']

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kbus 0.4 alpha documentation

KBUS C bindings

Proper documentation of the C bindings for KBUS (libkbus) will live here. For
the moment, here are some header files:

	kbus/linux/kbus_defns.h - the kernel header file, which defines the
various datastructures, the IOCTLs, and some useful macros and functions.
This header file is used by the kernel, and also by user space programs
(although in this latter case normally by including the libkbus header
file).

	libkbus/kbus.h - the main header file for libkbus. This include the
kernel header file for you.

	libkbux/limpet.h - the libkbus header file for Limpet code. Since
Limpets are more normally used via the runlimpet application, this may
or may not be of direct use.

kbus/linux/kbus_defns.h

Please be aware that the comments in this file are currently inaccurate, and
scheduled to be rewritten. The datastructures are, of course, correct...

/* Kbus kernel module external headers
 *
 * This file provides the definitions (datastructures and ioctls) needed to
 * communicate with the KBUS character device driver.
 */

/*
 * ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is the KBUS Lightweight Linux-kernel mediated
 * message system
 *
 * The Initial Developer of the Original Code is Kynesim, Cambridge UK.
 * Portions created by the Initial Developer are Copyright (C) 2009
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 * Kynesim, Cambridge UK
 * Tony Ibbs <tibs@tonyibbs.co.uk>
 *
 * Alternatively, the contents of this file may be used under the terms of the
 * GNU Public License version 2 (the "GPL"), in which case the provisions of
 * the GPL are applicable instead of the above. If you wish to allow the use
 * of your version of this file only under the terms of the GPL and not to
 * allow others to use your version of this file under the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL. If you do not delete the
 * provisions above, a recipient may use your version of this file under either
 * the MPL or the GPL.
 *
 * ***** END LICENSE BLOCK *****
 */

#ifndef _kbus_defns
#define _kbus_defns

#if !__KERNEL__ && defined(__cplusplus)
extern "C" {
#endif

#include <linux/types.h>
#if __KERNEL__
#include <linux/kernel.h>
#include <linux/ioctl.h>
#else
#include <stdint.h>
#include <sys/ioctl.h>
#endif

/*
 * A message id is made up of two fields.
 *
 * If the network id is 0, then it is up to us (KBUS) to assign the
 * serial number. In other words, this is a local message.
 *
 * If the network id is non-zero, then this message is presumed to
 * have originated from another "network", and we preserve both the
 * network id and the serial number.
 *
 * The message id {0,0} is special and reserved (for use by KBUS).
 */
struct kbus_msg_id {
 __u32 network_id;
 __u32 serial_num;
};

/*
 * kbus_orig_from is used for the "originally from" and "finally to" ids
 * in the message header. These in turn are used when messages are
 * being sent between KBUS systems (via KBUS "Limpets"). KBUS the kernel
 * module transmits them, unaltered, but does not use them (although
 * debug messages may report them).
 *
 * An "originally from" or "finally to" id is made up of two fields, the
 * network id (which indicates the Limpet, if any, that originally gated the
 * message), and a local id, which is the Ksock id of the original sender
 * of the message, on its local KBUS.
 *
 * If the network id is 0, then the "originally from" id is not being used.
 *
 * Limpets and these fields are discussed in more detail in the userspace
 * KBUS documentation - see http://kbus-messaging.org/ for pointers to
 * more information.
 */
struct kbus_orig_from {
 __u32 network_id;
 __u32 local_id;
};

/* When the user asks to bind a message name to an interface, they use: */
struct kbus_bind_request {
 __u32 is_replier; /* are we a replier? */
 __u32 name_len;
 char *name;
};

/* When the user requests the id of the replier to a message, they use: */
struct kbus_bind_query {
 __u32 return_id;
 __u32 name_len;
 char *name;
};

/* When the user writes/reads a message, they use: */
struct kbus_message_header {
 /*
 * The guards
 * ----------
 *
 * * 'start_guard' is notionally "Kbus", and 'end_guard' (the 32 bit
 * word after the rest of the message datastructure) is notionally
 * "subK". Obviously that depends on how one looks at the 32-bit
 * word. Every message datastructure shall start with a start guard
 * and end with an end guard.
 *
 * These provide some help in checking that a message is well formed,
 * and in particular the end guard helps to check for broken length
 * fields.
 *
 * - 'id' identifies this particular message.
 *
 * When a user writes a new message, they should set this to {0,0}.
 * KBUS will then set a new message id for the message.
 *
 * When a user reads a message, this will have been set by KBUS.
 *
 * When a user replies to a message, they should copy this value
 * into the 'in_reply_to' field, so that the recipient will know
 * what message this was a reply to.
 *
 * - 'in_reply_to' identifies the message this is a reply to.
 *
 * This shall be set to {0,0} unless this message *is* a reply to a
 * previous message. In other words, if this value is non-0, then
 * the message *is* a reply.
 *
 * - 'to' is who the message is to be sent to.
 *
 * When a user writes a new message, this should normally be set
 * to {0,0}, meaning "anyone listening" (but see below if "state"
 * is being maintained).
 *
 * When replying to a message, it shall be set to the 'from' value
 * of the orginal message.
 *
 * When constructing a request message (a message wanting a reply),
 * the user can set it to a specific replier id, to produce a stateful
 * request. This is normally done by copying the 'from' of a previous
 * Reply from the appropriate replier. When such a message is sent,
 * if the replier bound (at that time) does not have that specific
 * id, then the send will fail.
 *
 * Note that if 'to' is set, then 'orig_from' should also be set.
 *
 * - 'from' indicates who sent the message.
 *
 * When a user is writing a new message, they should set this
 * to {0,0}.
 *
 * When a user is reading a message, this will have been set
 * by KBUS.
 *
 * When a user replies to a message, the reply should have its
 * 'to' set to the original messages 'from', and its 'from' set
 * to {0,0} (see the "hmm" caveat under 'to' above, though).
 *
 * - 'orig_from' and 'final_to' are used when Limpets are mediating
 * KBUS messages between KBUS devices (possibly on different
 * machines). See the description by the datastructure definition
 * above. The KBUS kernel preserves and propagates their values,
 * but does not alter or use them.
 *
 * - 'extra' is currently unused, and KBUS will set it to zero.
 * Future versions of KBUS may treat it differently.
 *
 * - 'flags' indicates the type of message.
 *
 * When a user writes a message, this can be used to indicate
 * that:
 *
 * * the message is URGENT
 * * a reply is wanted
 *
 * When a user reads a message, this indicates if:
 *
 * * the message is URGENT
 * * a reply is wanted
 *
 * When a user writes a reply, this field should be set to 0.
 *
 * The top half of the 'flags' is not touched by KBUS, and may
 * be used for any purpose the user wishes.
 *
 * - 'name_len' is the length of the message name in bytes.
 *
 * This must be non-zero.
 *
 * - 'data_len' is the length of the message data in bytes. It may be
 * zero if there is no data.
 *
 * - 'name' is a pointer to the message name. This should be null
 * terminated, as is the normal case for C strings.
 *
 * NB: If this is zero, then the name will be present, but after
 * the end of this datastructure, and padded out to a multiple of
 * four bytes (see kbus_entire_message). When doing this padding,
 * remember to allow for the terminating null byte. If this field is
 * zero, then 'data' shall also be zero.
 *
 * - 'data' is a pointer to the data. If there is no data (if
 * 'data_len' is zero), then this shall also be zero. The data is
 * not touched by KBUS, and may include any values.
 *
 * NB: If this is zero, then the data will occur immediately
 * after the message name, padded out to a multiple of four bytes.
 * See the note for 'name' above.
 *
 */
 __u32 start_guard;
 struct kbus_msg_id id; /* Unique to this message */
 struct kbus_msg_id in_reply_to; /* Which message this is a reply to */
 __u32 to; /* 0 (empty) or a replier id */
 __u32 from; /* 0 (KBUS) or the sender's id */
 struct kbus_orig_from orig_from;/* Cross-network linkage */
 struct kbus_orig_from final_to; /* Cross-network linkage */
 __u32 extra; /* ignored field - future proofing */
 __u32 flags; /* Message type/flags */
 __u32 name_len; /* Message name's length, in bytes */
 __u32 data_len; /* Message length, also in bytes */
 char *name;
 void *data;
 __u32 end_guard;
};

#define KBUS_MSG_START_GUARD 0x7375624B
#define KBUS_MSG_END_GUARD 0x4B627573

/*
 * When a message is returned by 'read', it is actually returned using the
 * following datastructure, in which:
 *
 * - 'header.name' will point to 'rest[0]'
 * - 'header.data' will point to 'rest[(header.name_len+3)/4]'
 *
 * followed by the name (padded to 4 bytes, remembering to allow for the
 * terminating null byte), followed by the data (padded to 4 bytes) followed by
 * (another) end_guard.
 */
struct kbus_entire_message {
 struct kbus_message_header header;
 __u32 rest[];
};

/*
 * We limit a message name to at most 1000 characters (some limit seems
 * sensible, after all)
 */
#define KBUS_MAX_NAME_LEN 1000

/*
 * The length (in bytes) of the name after padding, allowing for a terminating
 * null byte.
 */
#define KBUS_PADDED_NAME_LEN(name_len) (4 * ((name_len + 1 + 3) / 4))

/*
 * The length (in bytes) of the data after padding
 */
#define KBUS_PADDED_DATA_LEN(data_len) (4 * ((data_len + 3) / 4))

/*
 * Given name_len (in bytes) and data_len (in bytes), return the
 * length of the appropriate kbus_entire_message_struct, in bytes
 *
 * Note that we're allowing for a zero byte after the end of the message name.
 *
 * Remember that "sizeof" doesn't count the 'rest' field in our message
 * structure.
 */
#define KBUS_ENTIRE_MSG_LEN(name_len, data_len) \
 (sizeof(struct kbus_entire_message) + \
 KBUS_PADDED_NAME_LEN(name_len) + \
 KBUS_PADDED_DATA_LEN(data_len) + 4)

/*
 * The message name starts at entire->rest[0].
 * The message data starts after the message name - given the message
 * name's length (in bytes), that is at index:
 */
#define KBUS_ENTIRE_MSG_DATA_INDEX(name_len) ((name_len+1+3)/4)
/*
 * Given the message name length (in bytes) and the message data length (also
 * in bytes), the index of the entire message end guard is thus:
 */
#define KBUS_ENTIRE_MSG_END_GUARD_INDEX(name_len, data_len) \
 ((name_len+1+3)/4 + (data_len+3)/4)

/*
 * Find a pointer to the message's name.
 *
 * It's either the given name pointer, or just after the header (if the pointer
 * is NULL)
 */
static inline char *kbus_msg_name_ptr(const struct kbus_message_header
 *hdr)
{
 if (hdr->name) {
 return hdr->name;
 } else {
 struct kbus_entire_message *entire;
 entire = (struct kbus_entire_message *)hdr;
 return (char *)&entire->rest[0];
 }
}

/*
 * Find a pointer to the message's data.
 *
 * It's either the given data pointer, or just after the name (if the pointer
 * is NULL)
 */
static inline void *kbus_msg_data_ptr(const struct kbus_message_header
 *hdr)
{
 if (hdr->data) {
 return hdr->data;
 } else {
 struct kbus_entire_message *entire;
 __u32 data_idx;

 entire = (struct kbus_entire_message *)hdr;
 data_idx = KBUS_ENTIRE_MSG_DATA_INDEX(hdr->name_len);
 return (void *)&entire->rest[data_idx];
 }
}

/*
 * Find a pointer to the message's (second/final) end guard.
 */
static inline __u32 *kbus_msg_end_ptr(struct kbus_entire_message
 *entire)
{
 __u32 end_guard_idx =
 KBUS_ENTIRE_MSG_END_GUARD_INDEX(entire->header.name_len,
 entire->header.data_len);
 return (__u32 *) &entire->rest[end_guard_idx];
}

/*
 * Things KBUS changes in a message
 * --------------------------------
 * In general, KBUS leaves the content of a message alone. However, it does
 * change:
 *
 * - the message id (if id.network_id is unset - it assigns a new serial
 * number unique to this message)
 * - the from id (if from.network_id is unset - it sets the local_id to
 * indicate the Ksock this message was sent from)
 * - the KBUS_BIT_WANT_YOU_TO_REPLY bit in the flags (set or cleared
 * as appropriate)
 * - the SYNTHETIC bit, which KBUS will always unset in a user message
 */

/*
 * Flags for the message 'flags' word
 * ----------------------------------
 * The KBUS_BIT_WANT_A_REPLY bit is set by the sender to indicate that a
 * reply is wanted. This makes the message into a request.
 *
 * Note that setting the WANT_A_REPLY bit (i.e., a request) and
 * setting 'in_reply_to' (i.e., a reply) is bound to lead to
 * confusion, and the results are undefined (i.e., don't do it).
 *
 * The KBUS_BIT_WANT_YOU_TO_REPLY bit is set by KBUS on a particular message
 * to indicate that the particular recipient is responsible for replying
 * to (this instance of the) message. Otherwise, KBUS clears it.
 *
 * The KBUS_BIT_SYNTHETIC bit is set by KBUS when it generates a synthetic
 * message (an exception, if you will), for instance when a replier has
 * gone away and therefore a reply will never be generated for a request
 * that has already been queued.
 *
 * Note that KBUS does not check that a sender has not set this
 * on a message, but doing so may lead to confusion.
 *
 * The KBUS_BIT_URGENT bit is set by the sender if this message is to be
 * treated as urgent - i.e., it should be added to the *front* of the
 * recipient's message queue, not the back.
 *
 * Send flags
 * ==========
 * There are two "send" flags, KBUS_BIT_ALL_OR_WAIT and KBUS_BIT_ALL_OR_FAIL.
 * Either one may be set, or both may be unset.
 *
 * If both bits are set, the message will be rejected as invalid.
 *
 * Both flags are ignored in reply messages (i.e., messages with the
 * 'in_reply_to' field set).
 *
 * If both are unset, then a send will behave in the default manner. That is,
 * the message will be added to a listener's queue if there is room but
 * otherwise the listener will (silently) not receive the message.
 *
 * (Obviously, if the listener is a replier, and the message is a request,
 * then a KBUS message will be synthesised in the normal manner when a
 * request is lost.)
 *
 * If the KBUS_BIT_ALL_OR_WAIT bit is set, then a send should block until
 * all recipients can be sent the message. Specifically, before the message is
 * sent, all recipients must have room on their message queues for this
 * message, and if they do not, the send will block until there is room for the
 * message on all the queues.
 *
 * If the KBUS_BIT_ALL_OR_FAIL bit is set, then a send should fail if all
 * recipients cannot be sent the message. Specifically, before the message is
 * sent, all recipients must have room on their message queues for this
 * message, and if they do not, the send will fail.
 */

/*
 * When a $.KBUS.ReplierBindEvent message is constructed, we use the
 * following to encapsulate its data.
 *
 * This indicates whether it is a bind or unbind event, who is doing the
 * bind or unbind, and for what message name. The message name is padded
 * out to a multiple of four bytes, allowing for a terminating null byte,
 * but the name length is the length without said padding (so, in C terms,
 * strlen(name)).
 *
 * As for the message header data structure, the actual data "goes off the end"
 * of the datastructure.
 */
struct kbus_replier_bind_event_data {
 __u32 is_bind; /* 1=bind, 0=unbind */
 __u32 binder; /* Ksock id of binder */
 __u32 name_len; /* Length of name */
 __u32 rest[]; /* Message name */
};

#if !__KERNEL__
#define BIT(num) (((unsigned)1) << (num))
#endif

#define KBUS_BIT_WANT_A_REPLY BIT(0)
#define KBUS_BIT_WANT_YOU_TO_REPLY BIT(1)
#define KBUS_BIT_SYNTHETIC BIT(2)
#define KBUS_BIT_URGENT BIT(3)

#define KBUS_BIT_ALL_OR_WAIT BIT(8)
#define KBUS_BIT_ALL_OR_FAIL BIT(9)

/*
 * Standard message names
 * ======================
 * KBUS itself has some predefined message names.
 *
 * Synthetic Replies with no data
 * ------------------------------
 * These are sent to the original Sender of a Request when KBUS knows that the
 * Replier is not going to Reply. In all cases, you can identify which message
 * they concern by looking at the "in_reply_to" field:
 *
 * * Replier.GoneAway - the Replier has gone away before reading the Request.
 * * Replier.Ignored - the Replier has gone away after reading a Request, but
 * before replying to it.
 * * Replier.Unbound - the Replier has unbound (as Replier) from the message
 * name, and is thus not going to reply to this Request in its unread message
 * queue.
 * * Replier.Disappeared - the Replier has disappeared when an attempt is made
 * to send a Request whilst polling (i.e., after EAGAIN was returned from an
 * earlier attempt to send a message). This typically means that the Ksock
 * bound as Replier closed.
 * * ErrorSending - an unexpected error occurred when trying to send a Request
 * to its Replier whilst polling.
 *
 * Synthetic Announcements with no data
 * ------------------------------------
 * * UnbindEventsLost - sent (instead of a Replier Bind Event) when the unbind
 * events "set aside" list has filled up, and thus unbind events have been
 * lost.
 */
#define KBUS_MSG_NAME_REPLIER_GONEAWAY "$.KBUS.Replier.GoneAway"
#define KBUS_MSG_NAME_REPLIER_IGNORED "$.KBUS.Replier.Ignored"
#define KBUS_MSG_NAME_REPLIER_UNBOUND "$.KBUS.Replier.Unbound"
#define KBUS_MSG_NAME_REPLIER_DISAPPEARED "$.KBUS.Replier.Disappeared"
#define KBUS_MSG_NAME_ERROR_SENDING "$.KBUS.ErrorSending"
#define KBUS_MSG_NAME_UNBIND_EVENTS_LOST "$.KBUS.UnbindEventsLost"

/*
 * Replier Bind Event
 * ------------------
 * This is the only message name for which KBUS generates data -- see
 * kbus_replier_bind_event_data. It is also the only message name which KBUS
 * does not allow binding to as a Replier.
 *
 * This is the message that is sent when a Replier binds or unbinds to another
 * message name, if the KBUS_IOC_REPORTREPLIERBINDS ioctl has been used to
 * request such notification.
 */
#define KBUS_MSG_NAME_REPLIER_BIND_EVENT "$.KBUS.ReplierBindEvent"

#define KBUS_IOC_MAGIC 'k' /* 0x6b - which seems fair enough for now */
/*
 * RESET: reserved for future use
 */
#define KBUS_IOC_RESET _IO(KBUS_IOC_MAGIC, 1)
/*
 * BIND - bind a Ksock to a message name
 * arg: struct kbus_bind_request, indicating what to bind to
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_BIND _IOW(KBUS_IOC_MAGIC, 2, char *)
/*
 * UNBIND - unbind a Ksock from a message id
 * arg: struct kbus_bind_request, indicating what to unbind from
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_UNBIND _IOW(KBUS_IOC_MAGIC, 3, char *)
/*
 * KSOCKID - determine a Ksock's Ksock id
 *
 * The network_id for the current Ksock is, by definition, 0, so we don't need
 * to return it.
 *
 * arg (out): __u32, indicating this Ksock's local_id
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_KSOCKID _IOR(KBUS_IOC_MAGIC, 4, char *)
/*
 * REPLIER - determine the Ksock id of the replier for a message name
 * arg: struct kbus_bind_query
 *
 * - on input, specify the message name to ask about.
 * - on output, KBUS fills in the relevant Ksock id in the return_value,
 * or 0 if there is no bound replier
 *
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_REPLIER _IOWR(KBUS_IOC_MAGIC, 5, char *)
/*
 * NEXTMSG - pop the next message from the read queue
 * arg (out): __u32, number of bytes in the next message, 0 if there is no
 * next message
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_NEXTMSG _IOR(KBUS_IOC_MAGIC, 6, char *)
/*
 * LENLEFT - determine how many bytes are left to read of the current message
 * arg (out): __u32, number of bytes left, 0 if there is no current read
 * message
 * retval: 1 if there was a message, 0 if there wasn't, negative for failure
 */
#define KBUS_IOC_LENLEFT _IOR(KBUS_IOC_MAGIC, 7, char *)
/*
 * SEND - send the current message
 * arg (out): struct kbus_msg_id, the message id of the sent message
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_SEND _IOR(KBUS_IOC_MAGIC, 8, char *)
/*
 * DISCARD - discard the message currently being written (if any)
 * arg: none
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_DISCARD _IO(KBUS_IOC_MAGIC, 9)
/*
 * LASTSENT - determine the message id of the last message SENT
 * arg (out): struct kbus_msg_id, {0,0} if there was no last message
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_LASTSENT _IOR(KBUS_IOC_MAGIC, 10, char *)
/*
 * MAXMSGS - set the maximum number of messages on a Ksock read queue
 * arg (in): __u32, the requested length of the read queue, or 0 to just
 * request how many there are
 * arg (out): __u32, the length of the read queue after this call has
 * succeeded
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_MAXMSGS _IOWR(KBUS_IOC_MAGIC, 11, char *)
/*
 * NUMMSGS - determine how many messages are in the read queue for this Ksock
 * arg (out): __u32, the number of messages in the read queue.
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_NUMMSGS _IOR(KBUS_IOC_MAGIC, 12, char *)
/*
 * UNREPLIEDTO - determine the number of requests (marked "WANT_YOU_TO_REPLY")
 * which we still need to reply to.
 * arg(out): __u32, said number
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_UNREPLIEDTO _IOR(KBUS_IOC_MAGIC, 13, char *)
/*
 * MSGONLYONCE - should we receive a message only once?
 *
 * This IOCTL tells a Ksock whether it should only receive a particular message
 * once, even if it is both a Replier and Listener for the message (in which
 * case it will always get the message as Replier, if appropriate), or if it is
 * registered as multiple Listeners for the message.
 *
 * arg(in): __u32, 1 to change to "only once", 0 to change to the default,
 * 0xFFFFFFFF to just return the current/previous state.
 * arg(out): __u32, the previous state.
 * retval: 0 for success, negative for failure (-EINVAL if arg in was not one
 * of the specified values)
 */
#define KBUS_IOC_MSGONLYONCE _IOWR(KBUS_IOC_MAGIC, 14, char *)
/*
 * VERBOSE - should KBUS output verbose "printk" messages (for this device)?
 *
 * This IOCTL tells a Ksock whether it should output debugging messages. It is
 * only effective if the kernel module has been built with the VERBOSE_DEBUGGING
 * flag set.
 *
 * arg(in): __u32, 1 to change to "verbose", 0 to change to "quiet",
 * 0xFFFFFFFF to just return the current/previous state.
 * arg(out): __u32, the previous state.
 * retval: 0 for success, negative for failure (-EINVAL if arg in was not one
 * of the specified values)
 */
#define KBUS_IOC_VERBOSE _IOWR(KBUS_IOC_MAGIC, 15, char *)

/*
 * NEWDEVICE - request another KBUS device (/dev/kbus<n>).
 *
 * The next device number (up to a maximum of 255) will be allocated.
 *
 * arg(out): __u32, the new device number (<n>)
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_NEWDEVICE _IOR(KBUS_IOC_MAGIC, 16, char *)

/*
 * REPORTREPLIERBINDS - request synthetic messages announcing Replier
 * bind/unbind events.
 *
 * If this flag is set, then when someone binds or unbinds to a message name as
 * a Replier, KBUS will send out a synthetic Announcement of this fact.
 *
 * arg(in): __u32, 1 to change to "report", 0 to change to "do not report",
 * 0xFFFFFFFF to just return the current/previous state.
 * arg(out): __u32, the previous state.
 * retval: 0 for success, negative for failure (-EINVAL if arg in was not one
 * of the specified values)
 */
#define KBUS_IOC_REPORTREPLIERBINDS _IOWR(KBUS_IOC_MAGIC, 17, char *)
/*
 * MAXMSGSIZE - set the maximum size of a KBUS message for this KBUS device.
 * This may not be set to less than 100, or more than
 * CONFIG_KBUS_ABS_MAX_MESSAGE_SIZE.
 * arg (in): __u32, the requested maximum message size, or 0 to just
 * request what the current limit is, 1 to request the absolute
 * maximum size.
 * arg (out): __u32, the maximum essage size after this call has
 * succeeded
 * retval: 0 for success, negative for failure
 */
#define KBUS_IOC_MAXMSGSIZE _IOWR(KBUS_IOC_MAGIC, 18, char *)

/* If adding another IOCTL, remember to increment the next number! */
#define KBUS_IOC_MAXNR 18

#if !__KERNEL__ && defined(__cplusplus)
}
#endif

#endif /* _kbus_defns */

libkbus/kbus.h

/*
 * ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is the KBUS Lightweight Linux-kernel mediated
 * message system
 *
 * The Initial Developer of the Original Code is Kynesim, Cambridge UK.
 * Portions created by the Initial Developer are Copyright (C) 2009
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 * Kynesim, Cambridge UK
 * Gareth Bailey <gb@kynesim.co.uk>
 * Tony Ibbs <tibs@tonyibbs.co.uk>
 *
 * ***** END LICENSE BLOCK *****
 */

#ifndef _LKBUS_H_INCLUDED_
#define _LKBUS_H_INCLUDED_

#ifdef __cplusplus
extern "C" {
#endif

#include "linux/kbus_defns.h"

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <stdint.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>

// NOTE that the middle portion of this file is autogenerated from libkbus.c
// so that the function header comments and function prototypes may be
// automatically kept in-step. This allows me to treat the C file as the main
// specification of the functions it defines, and also to keep C header
// comments in the C file, which I find easier when keeping the comments
// correct as the code is edited.
//
// The Python script extract_hdrs.py is used to perform this autogeneration.
// It should transfer any C function marked as 'extern' and with a header
// comment (of the '/*...*...*/' form).

/*
 * In kernel modules (and thus in the kbus_defns.h header, which is used by the
 * KBUS kernel module) ``typedef`` is strongly discouraged. Therefore the KBUS
 * kernel module header does not provide a typedef for, well, anything.
 * However, in the outside C programming world, typedefs are often a good thing,
 * allowing simpler programming, so we provide some here.
 */

typedef struct kbus_msg_id kbus_msg_id_t;
typedef struct kbus_orig_from kbus_orig_from_t;
typedef struct kbus_bind_request kbus_bind_request_t;
typedef struct kbus_bind_query kbus_bind_query_t;

typedef struct kbus_message_header kbus_message_t;

typedef struct kbus_entire_message kbus_entire_message_t;

typedef struct kbus_replier_bind_event_data kbus_replier_bind_event_data_t;

/** A Ksock is just a file descriptor, an integer, as returned by 'open'.
 */
typedef int kbus_ksock_t;

/*
 * Please, however, do consult the kbus_defns.h header file for many useful
 * definitions, and also some key functions, such as:
 *
 * * kbus_msg_name_ptr(msg)
 * * kbus_msg_data_ptr(msg)
 *
 * which are really what you want for extracting KBUS message name and data
 * from the message datastructures (regardless of whether they are pointy or
 * not).
 *
 * If you haven't read kbus_defns.h, you *are* missing important information.
 */

// The following are used in kbus_wait_for_message.
#define KBUS_KSOCK_READABLE 1
#define KBUS_KSOCK_WRITABLE 2

/* Ksock Functions */

/** @file
 *
 * Note that all of the functions here are non-blocking: there is no such
 * thing as a synchronous kbus socket (though there are wait() functions here
 * to emulate one).
 */

// -------- TEXT AFTER THIS AUTOGENERATED - DO NOT EDIT --------
// Autogenerated by extract_hdrs.py on 2013-01-16 (Wed 16 Jan 2013) at 11:47

/*
 * Open a Ksock.
 *
 * `device_number` indicates which KSock device to open, as
 * "/dev/kbus<device_number>".
 *
 * Which device numbers are available depends upon how many KBUS devices have
 * been initialised, either when the KBUS kernel module was installed, or by
 * use of `kbus_new_device()`.
 *
 * `flags` may be one of ``O_RDONLY``, ``O_WRONLY`` or ``O_RDWR``.
 *
 * Returns the file descriptor for the new Ksock, or a negative value on error.
 * The negative value will be ``-errno``.
 */
extern kbus_ksock_t kbus_ksock_open(uint32_t device_number,
 int flags);

/*
 * Open a Ksock by device name. Since KBUS currrently only supports devices
 * of the for ``/dev/kbus<device_number>``, this function has no advantage
 * over `kbus_ksock_open``.
 *
 * `device_name` indicates which KSock device to open, as "/dev/kbus<device_number>",
 * where ``<device_number>`` is zero or more, depending on how many KBUS
 * devices are initialised.
 *
 * `flags` may be one of ``O_RDONLY``, ``O_WRONLY`` or ``O_RDWR``.
 *
 * Returns the file descriptor for the new Ksock, or a negative value on error.
 * The negative value will be ``-errno``.
 */
extern kbus_ksock_t kbus_ksock_open_by_name(const char *device_name,
 int flags);

/*
 * Close a Ksock.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_close(kbus_ksock_t ksock);

/*
 * Bind the given message name to the specified Ksock.
 *
 * If `is_replier`, then bind as a Replier, otherwise as a Listener.
 *
 * Only one KSock at a time may be bound to a particular message as a Replier.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_bind(kbus_ksock_t ksock,
 const char *name,
 uint32_t is_replier);

/*
 * Unbind the given message name to the specified Ksock.
 *
 * If `is_replier`, then unbind as a Replier, otherwise as a Listener.
 *
 * The unbinding must exactly match a previous binding (i.e., both message name
 * and `is_replier` must match).
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_unbind(kbus_ksock_t ksock,
 const char *name,
 uint32_t is_replier);

/*
 * Return the internal (to KBUS) Ksock id for this Ksock.
 *
 * The Ksock id is a positive, non-zero number. It is used in message ``to``
 * and ``from`` fields.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_id(kbus_ksock_t ksock,
 uint32_t *ksock_id);

/*
 * Indicate that we wish to start reading the next message.
 *
 * Each Ksock has an (internal to KBUS) "next message" list. This function
 * pops the next message from that list, and makes it the "being read" message.
 * If there was still data for an earlier "being read" message, this will be
 * thrown away.
 *
 * `message_length` is set to the length of the message - that is, the value
 * to be passed to a subsequent call of ``kbus_ksock_next_msg()`` - or 0 if
 * there is no next message.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_next_msg(kbus_ksock_t ksock,
 uint32_t *message_length);

/*
 * Find out how many bytes of the "being read" message are still to be read.
 *
 * `len_left` is set to the remaining number of bytes, or 0 if there are no
 * more bytes in the "being read" message, or if there is no "being read"
 * message (i.e., ``kbus_ksock_next_msg()`` has not been called since the
 * last message was finished or discarded).
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_len_left(kbus_ksock_t ksock,
 uint32_t *len_left);

/*
 * Determine the message id of the last message written on this Ksock.
 *
 * This will be {0,0} if there was no previous message.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_last_msg_id(kbus_ksock_t ksock,
 kbus_msg_id_t *msg_id);

/*
 * Find the Ksock id of the Replier for the given message name.
 *
 * `replier_ksock_id` will either be the Replier's Ksock id, or 0 if there
 * is no Replier bound for this message name.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_find_replier(kbus_ksock_t ksock,
 const char *name,
 uint32_t *replier_ksock_id);

/*
 * Determine the number of (unread) messages that can be queued for this Ksock.
 *
 * If 'max_messages' is greater than 0, then KBUS will be asked to adjust the
 * read queue for this Ksock to length 'max_messages'.
 *
 * If 'max_messages' is 0, then it will be set to the current length of the
 * queue.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_max_messages(kbus_ksock_t ksock,
 uint32_t *max_messages);

/*
 * Find out how many (unread) messages are in the read queue for this Ksock.
 *
 * 'num_messages' will be set to the number of messages in the read queue.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_num_messages(kbus_ksock_t ksock,
 uint32_t *num_messages);

/*
 * Determine the number of (unread) messages queued for this Ksock.
 *
 * Returns the current (unread) message count for this Ksock, or a negative
 * number (``-errno``) for failure.
 */
extern int kbus_ksock_num_unreplied_to(kbus_ksock_t ksock,
 uint32_t *num_messages);

/*
 * Send the last written message.
 *
 * Used to send a message when all of it has been written.
 *
 * Once the messge has been sent, the message and any name/data pointed to may
 * be freed.
 *
 * `msg_id` returns the message id assigned to the message by KBUS.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_send(kbus_ksock_t ksock,
 kbus_msg_id_t *msg_id);

/*
 * Discard the message being written.
 *
 * Indicates that KBUS should throw away the (partial) message that has been
 * written. If there is no current message being written (for instance, because
 * ``kbus_ksock_send()`` has just been called), then this function has no
 * effect.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_discard(kbus_ksock_t ksock);

/*
 * Determine whether multiply-bound messages are only received once.
 *
 * Determine whether this Ksock should receive a particular message once, even
 * if it is both a Replier and Listener for the message, or if it is registered
 * more than once as a Listener for the message name.
 *
 * Note that in the case of a Request that the Ksock should reply to, it will
 * always get the Request, and it will be the Listener's version of the message
 * that will be "dropped".
 *
 * If `request` is 1, then only one copy of the message is wanted.
 *
 * If `request` is 0, then as many copies as implied by the bindings are wanted.
 *
 * If `request` is 0xFFFFFFFF, then the number of copies is not to be changed.
 * This may be used to query the current state of the "only once" flag for this
 * Ksock.
 *
 * Beware that setting this flag affects how messages are added to the Ksock's
 * message queue *as soon as it is set* - so changing it and then changing it
 * back "at once" is not (necessarily) a null operation.
 *
 * Returns 0 or 1, according to the state of the "only once" flag *before* this
 * function was called, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_only_once(kbus_ksock_t ksock,
 uint32_t request);

/*
 * Determine whether Replier bind/unbind events should be reported.
 *
 * If `request` is 1, then each time a Ksock binds or unbinds as a Replier,
 * a Replier bind/unbind event should be sent (a "$.KBUS.ReplierBindEvent"
 * message).
 *
 * If `request` is 0, then Replier bind/unbind events should not be sent.
 *
 * If `request` is 0xFFFFFFFF, then the current state should not be changed.
 * This may be used to query the current state of the "send Replier bind event"
 * flag.
 *
 * Note that although this call is made via an individual Ksock, it affects the
 * behaviour of the entire KBUS device to which this Ksock is attached.
 *
 * Returns 0 or 1, according to the state of the "send Replier bind event" flag
 * *before* this function was called, or a negative number (``-errno``) for
 * failure.
 */
extern int kbus_ksock_report_replier_binds(kbus_ksock_t ksock,
 uint32_t request);

/*
 * Request verbose kernel module messages.
 *
 * KBUS writes message via the normal kernel module mechanisms (which may be
 * inspected, for instance, via the ``dmesg`` command). Normal output is meant
 * to be reasonably minimal. Verbose messages can be useful for debugging the
 * kernel module.
 *
 * If `request` is 1, then verbose kernel messages are wanted.
 *
 * If `request` is 0, then verbose kernel messages are not wanted.
 *
 * If `request` is 0xFFFFFFFF, then the current state should not be changed.
 * This may be used to query the current state of the "verbose" flag.
 *
 * Note that although this call is made via an individual Ksock, it affects the
 * behaviour of the entire KBUS kernel module.
 *
 * Returns 0 or 1, according to the state of the "verbose" flag *before* this
 * function was called, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_kernel_module_verbose(kbus_ksock_t ksock,
 uint32_t request);

/*
 * Request the KBUS kernel module to create a new device (``/dev/kbus<n>``).
 *
 * `device_number` is the ``<n>`` for the new device.
 *
 * Note that it takes the kernel's hotplugging mechanisms a little while to
 * notice/activate the device, so do not expect it to be available immediately
 * on return.
 *
 * Note that although this call is made via an individual Ksock, it affects the
 * behaviour of the entire KBUS kernel module.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_new_device(kbus_ksock_t ksock,
 uint32_t *device_number);

/*
 * Wait until either the Ksock may be read from or written to.
 *
 * Returns when there is data to be read from the Ksock, or the Ksock
 * may be written to.
 *
 * `wait_for` indicates what to wait for. It should be set to
 * ``KBUS_SOCK_READABLE``, ``KBUS_SOCK_WRITABLE``, or the two "or"ed together,
 * as appropriate.
 *
 * This is a convenience routine for when polling indefinitely on a Ksock is
 * appropriate. It is not intended as a generic routine for any more
 * complicated situation, when specific "poll" (or "select") code should be
 * written.
 *
 * Returns ``KBUS_SOCK_READABLE``, ``KBUS_SOCK_WRITABLE``, or the two "or"ed
 * together to indicate which operation is ready, or a negative number
 * (``-errno``) for failure.
 */
extern int kbus_wait_for_message(kbus_ksock_t ksock,
 int wait_for);

/*
 * Read a message of length `msg_len` bytes from this Ksock.
 *
 * It is assumed that `msg_len` was returned by a previous call of
 * ``kbus_ksock_next_msg()``. It must be large enough to cause the entire
 * message to be read.
 *
 * `msg` is the message read. This will be an "entire" message, and should be
 * freed by the caller when no longer needed.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 * Specifically, -EBADMSG will be returned if the underlying ``read``
 * returned 0.
 */
extern int kbus_ksock_read_msg(kbus_ksock_t ksock,
 kbus_message_t **msg,
 size_t msg_len);

/*
 * Read the next message from this Ksock.
 *
 * This is equivalent to a call of ``kbus_ksock_next_msg()`` followed by a call
 * of ``kbus_ksock_read_msg()``.
 *
 * If there is no next message, ``msg`` will be NULL.
 *
 * If there is a next message, then ``msg`` will be the message read. This will
 * be an "entire" message, and should be freed by the caller when no longer
 * needed.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_read_next_msg(kbus_ksock_t ksock,
 kbus_message_t **msg);

/*
 * Write the given message to this Ksock. Does not send it.
 *
 * The `msg` may be an "entire" or "pointy" message.
 *
 * If the `msg` is a "pointy" message, then the name and any data must not be
 * freed until the message has been sent (as the pointers are only "followed"
 * when the message is sent).
 *
 * It is normally easier to use ``kbus_ksock_send_msg()``.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_write_msg(kbus_ksock_t ksock,
 const kbus_message_t *msg);

/*
 * Write data to the Ksock. Does not send.
 *
 * This may be used to write message data in parts. It is normally better to use
 * the "whole message" routines.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_write_data(kbus_ksock_t ksock,
 uint8_t *data,
 size_t data_len);

/*
 * Write and send a message on the given Ksock.
 *
 * This combines the "write" and "send" functions into one call, and is the
 * normal way to send a message.
 *
 * The `msg` may be an "entire" or "pointy" message.
 *
 * Once the message has been sent, the message and any name/data pointed to may
 * be freed.
 *
 * `msg_id` returns the message id assigned to the message by KBUS.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_ksock_send_msg(kbus_ksock_t ksock,
 const kbus_message_t *msg,
 kbus_msg_id_t *msg_id);

/*
 * Create a message (specifically, a "pointy" message).
 *
 * Note that the message name and data are not copied, and thus should not be
 * freed until the message has been sent (with ``kbus_ksock_send_msg()``).
 *
 * `msg` is the new message, as created by this function.
 *
 * `name` is the name for the message, and `name_len` the length of the name
 * (the number of characters in the name). A message name is required.
 *
 * 'data' is the data for this message, or NULL if there is no data. `data_len`
 * is then the length of the data, in bytes.
 *
 * `flags` may be any KBUS message flags required. Most messages with flags set
 * can more easily be created by one of the other message creation routines.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_msg_create(kbus_message_t **msg,
 const char *name,
 uint32_t name_len, /* bytes */
 const void *data,
 uint32_t data_len, /* bytes */
 uint32_t flags);

/*
 * Create an "entire" message.
 *
 * Copies are taken of both `name` and `data` (and placed at the end of the
 * message datastructure).
 *
 * Unless you need to be able to free the name and/or data before sending
 * the message, it is more usual to use ``kbus_msg_create()`` instead.
 *
 * `msg` is the new message, as created by this function.
 *
 * `name` is the name for the message, and `name_len` the length of the name
 * (the number of characters in the name). A message name is required. The
 * name will be copied when the message is created.
 *
 * 'data' is the data for this message, or NULL if there is no data. `data_len`
 * is then the length of the data, in bytes. The data will be copied when the
 * message is created.
 *
 * `flags` may be any KBUS message flags required. Most messages with flags set
 * can more easily be created by one of the other message creation routines.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_msg_create_entire(kbus_message_t **msg,
 const char *name,
 uint32_t name_len, /* bytes */
 const void *data,
 uint32_t data_len, /* bytes */
 uint32_t flags);

/*
 * Create a Request (specifically, a "pointy" Request message).
 *
 * Note that the message name and data are not copied, and thus should not be
 * freed until the message has been sent (with ``kbus_ksock_send_msg()``).
 *
 * `msg` is the new message, as created by this function.
 *
 * `name` is the name for the message, and `name_len` the length of the name
 * (the number of characters in the name). A message name is required.
 *
 * 'data' is the data for this message, or NULL if there is no data. `data_len`
 * is then the length of the data, in bytes.
 *
 * `flags` may be any KBUS message flags required. These will be set on the
 * message, and then (after that) the KBUS_BIT_WANT_A_REPLY flag will be set
 * to make the new message a Request.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_msg_create_request(kbus_message_t **msg,
 const char *name,
 uint32_t name_len, /* bytes */
 const void *data,
 uint32_t data_len, /* bytes */
 uint32_t flags);

/*
 * Create an "entire" Request message.
 *
 * This is identical in behaviour to ``kbus_msg_create_request()``, except
 * that an "entire" message is created, and thus both the message name and data
 * are copied. This means that the original `name` and `data` may be freed as
 * soon as the `msg` has been created.
 *
 * Unless you need to be able to free the name and/or data before sending
 * the message, it is more usual to use ``kbus_msg_create_request()`` instead.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_msg_create_entire_request(kbus_message_t **msg,
 const char *name,
 uint32_t name_len, /* bytes */
 const void *data,
 uint32_t data_len, /* bytes */
 uint32_t flags);

/*
 * Create a Reply message, based on a previous Request.
 *
 * This is a convenience mechanism for creating the Reply to a previous
 * Request.
 *
 * The Request must have been marked as wanting this particular recipient to
 * reply to it (i.e., ``kbus_msg_wants_us_to_reply()`` returns true). If this
 * is not so, -EBADMSG will be returned.
 *
 * `msg` is the new Reply message. `in_reply_to` is the Request message for
 * which a Reply is wanted.
 *
 * The message name for the new message will be taken from the old message.
 *
 * The 'to' field for the new message will be set to the 'from' field in the old.
 *
 * The 'in_reply_to' field for the new message will be set to the message id of the old.
 *
 * 'data' is the data for the new message, or NULL if there is none. 'data_len'
 * is the length of the data, in bytes.
 *
 * As normal, the message name and data should not be freed until `msg` has
 * been sent. In the normal case, where `in_reply_to` is an "entire" message
 * read from KBUS, this means that `in_reply_to` and `data` should not be
 * freed, since the message name "inside" `in_reply_to` is being referenced.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_msg_create_reply_to(kbus_message_t **msg,
 const kbus_message_t *in_reply_to,
 const void *data,
 uint32_t data_len, /* bytes */
 uint32_t flags);

/*
 * Create an "entire" Reply message, based on a previous Request.
 *
 * This is identical in behaviour to ``kbus_msg_create_reply_to()``, except
 * that an "entire" message is created, and thus both the message name and data
 * are copied. This means that the original (`in_reply_to`) message and the
 * `data` may be freed as soon as the `msg` has been created.
 *
 * Unless you need to be able to free the original message and/or data before
 * sending * the message, it is more usual to use
 * ``kbus_msg_create_reply_to()`` instead.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_msg_create_entire_reply_to(kbus_message_t **msg,
 const kbus_message_t *in_reply_to,
 const void *data,
 uint32_t data_len, /* bytes */
 uint32_t flags);

/*
 * Create a Stateful Request message, based on a previous Reply or Request.
 *
 * This is a convenience mechanism for creating a Stateful Request message
 * (a Request which must be delivered to a particular Ksock).
 *
 * `msg` is the new Stateful Request message.
 *
 * `earlier_msg` is either a Reply message from the desired Ksock, or a
 * previous Stateful Request to the same Ksock.
 *
 * If the earlier message is a Reply, then the 'to' and 'final_to' fields for
 * the new message will be set to the 'from' and 'orig_from' fields in the old.
 *
 * If the earlier message is a Stateful Request, then the 'to' and 'final_to'
 * fields for the new message will be copied from the old.
 *
 * If the earlier message is neither a Reply nor a Stateful Request, then
 * -EBADMSG will be returned.
 *
 * 'name' is the name for the new message, and 'name_len' is the length of that
 * name.
 *
 * 'data' is the data for the new message, or NULL if there is none. 'data_len'
 * is the length of the data, in bytes.
 *
 * 'flags' is any KBUS flags to set on the message (flags will not be copied
 * from the earlier message).
 *
 * As normal, the message name and data should not be freed until `msg` has
 * been sent. `earlier_msg` may be freed after this call has completed, as
 * any necessary data will have been copied from it.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_msg_create_stateful_request(kbus_message_t **msg,
 const kbus_message_t *earlier_msg,
 const char *name,
 uint32_t name_len,
 const void *data,
 uint32_t data_len, /* bytes */
 uint32_t flags);

/*
 * Create an "entire" Stateful Request message, based on a previous Reply or
 * Request.
 *
 * This is identical in behaviour to ``kbus_msg_create_stateful_request()``,
 * except that an "entire" message is created, and thus both the message name
 * and data are copied. This means that both the `name` and the `data` may be
 * freed as soon as the `msg` has been created.
 *
 * Unless you need to be able to free the name and/or data before sending
 * the message, it is more usual to use ``kbus_msg_create_statefule_request()``
 * instead.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_msg_create_entire_stateful_request(kbus_message_t **msg,
 const kbus_message_t *earlier_msg,
 const char *name,
 uint32_t name_len,
 const void *data,
 uint32_t data_len, /* bytes */
 uint32_t flags);

/*
 * Delete a message datastructure.
 *
 * Does nothing if `msg_p` is NULL, or `*msg_p` is NULL.
 *
 * Frees the message datastructure, but does not free any name or data that is
 * pointed to.
 */
extern void kbus_msg_delete(kbus_message_t **msg_p);

/*
 * Delete a message datastructure, and any name/data it points to.
 *
 * Does nothing if `msg_p` is NULL, or `*msg_p` is NULL.
 *
 * Frees the message datastructure. If the message is "pointy", also
 * frees the message name and any message data.
 *
 * Caveat: do not pass this an "entire" message which has had its "name"
 * and/or "data" pointers set to point "inside" itself, to the name and
 * data at the end of the "entire" message. Really, it will end very badly
 * (and you probably shouldn't have done that, anyway).
 */
extern void kbus_msg_delete_all(kbus_message_t **msg_p);

/*
 * Determine the size of a KBUS message.
 *
 * For a "pointy" message, returns the size of the message header.
 *
 * For an "entire" message, returns the size of the entire message.
 *
 * In either case, this is the length of data that would (for instance)
 * be written to a Ksock to actually write the message. In other words::
 *
 * int len, rv;
 * len = kbus_msg_sizeof(&msg);
 * rv = kbus_ksock_write_data(ksock, &msg, len);
 * if (rv < 0) return rv;
 *
 * is the "low level" equivalent of::
 *
 * int rv = kbus_ksock_write_msg(ksock, &msg);
 * if (rv < 0) return rv;
 *
 * Returns the length of 'msg', as described above.
 */
extern int kbus_msg_sizeof(const kbus_message_t *msg);

/*
 * A convenience routine to split the data of a Replier bind event.
 *
 * Replier bind events contain the following information:
 *
 * * `is_replier` is true if the event was a "bind", false it if was an
 * "unbind".
 * * `binder` is the Ksock id of the binder.
 * * `name` is the name of the message that was being (un)bound.
 *
 * Note that `name` is a copy of the name (from the original `msg`), so that
 * the user may free the original message immediately. Clearly this copy will
 * also need freeing when finished with.
 *
 * Returns 0 for success, or a negative number (``-errno``) for failure.
 */
extern int kbus_msg_split_bind_event(const kbus_message_t *msg,
 uint32_t *is_bind,
 uint32_t *binder,
 char **name);

/*
 * Print out a representation of a message.
 *
 * `stream` is the output stream to print to -- typically stdout.
 *
 * Does not print a newline.
 */
extern void kbus_msg_print(FILE *stream,
 const kbus_message_t *msg);

#define KBUS_MSG_PRINT_FLAGS_ABBREVIATE (1<<0)

/*
 * Print out a representation of a message.
 *
 * `stream` is the output stream to print to -- typically stdout.
 *
 * Does not print a newline.
 *
 * flags is an OR of KBUS_MSG_PRINT_FLAGS_XXX.
 */
extern void kbus_msg_print2(FILE *stream,
 const kbus_message_t *msg,
 unsigned int flags);

/*
 * Print out (on stdout) information about a message.
 *
 * If `dump_data` is true, also print out the message data (in several forms).
 */
extern void kbus_msg_dump(const kbus_message_t *msg,
 int dump_data);
// -------- TEXT BEFORE THIS AUTOGENERATED - DO NOT EDIT --------

/*
 * Check if a message is "entire".
 *
 * Returns true if the message is "entire", false if it is "pointy".
 * Strongly assumes the message is well-structured.
 */
static inline int kbus_msg_is_entire(const kbus_message_t *msg)
{
 return msg->name == NULL;
}

/*
 * Check if a message is a Reply.
 */
static inline int kbus_msg_is_reply(const kbus_message_t *msg)
{
 return msg->in_reply_to.network_id != 0 ||
 msg->in_reply_to.serial_num != 0;
}

/*
 * Check if a message is a Request.
 */
static inline int kbus_msg_is_request(const kbus_message_t *msg)
{
 return (msg->flags & KBUS_BIT_WANT_A_REPLY) != 0;
}

/*
 * Check if a message is a Stateful Request.
 */
static inline int kbus_msg_is_stateful_request(const kbus_message_t *msg)
{
 return (msg->flags & KBUS_BIT_WANT_A_REPLY) && (msg->to != 0);
}

/*
 * Check if a message is a Request to which we should reply.
 */
static inline int kbus_msg_wants_us_to_reply(const kbus_message_t *msg)
{
 return (msg->flags & KBUS_BIT_WANT_A_REPLY) &&
 (msg->flags & KBUS_BIT_WANT_YOU_TO_REPLY);
}

/*
 * Compare two message ids.
 *
 * Returns -1 if id1 < id2, 0 if id1 == id2, +1 if id1 > id2.
 */
static inline int kbus_msg_compare_ids(const kbus_msg_id_t *id1,
 const kbus_msg_id_t *id2)
{
 if (id1->network_id == id2->network_id) {
 if (id1->serial_num == id2->serial_num)
 return 0;
 else if (id1->serial_num < id2->serial_num)
 return -1;
 else
 return 1;
 } else if (id1->network_id < id2->network_id)
 return -1;
 else
 return 1;
}

#ifdef __cplusplus
}
#endif

#endif /* _LKBUS_H_INCLUDED_ */

 Utilities

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kbus 0.4 alpha documentation

Utilities

In the KBUS source tree, there is a utils directory, which contains a
variety of useful tools.

errno.py

errno.py takes an errno integer or name and prints out both the
“normal” meaning of that error number, and also (if there is one) the KBUS use
of it. For instance:

$ errno.py 1
Error 1 (0x1) is EPERM: Operation not permitted
$
$ errno.py EPIPE
EPIPE is error 32 (0x20): Broken pipe

KBUS:
On attempting to send 'to' a specific replier, the replier with that id
is no longer bound to the given message's name.

kmsg

This is a simple standalone tool for sending messages to KBUS, for testing
purposes. Run it with no arguments (or with -help) to get help.

It can send an announcement, send a message and wait for a reply, or bind as
listener/replier and report messages as they are received.

Example usage:

$./kmsg send $.Fred s Hellow
Msg data:
48 65 6c 6c 6f 77
> Sending $.Fred [want_reply? 0]
<Announcement '$.Fred' data=Hellow>
> Sent message 0:1 ..

runlimpet and runlimpet.py

These are C and Python versions of the same utility, to run a Limpet. Their
command lines are the same - run with no arguments, or with -help, to get
help.

Example usage - on one machine (the “server” - the host name is not actually
used on the server):

$./runlimpet -server -id 1 -kbus 2 ignored_host:1234
C Limpet: Server via TCP/IP, address 'ignored_host' port 1234 for KBUS 2, using network id 1, listening for '$.*'

and on the “client”, 10.29.27.95:

$./runlimpet.py -client -id 2 -kbus 1 10.29.27.95:1234
Python Limpet: Client via ('10.29.27.95', 1234) for KBUS 1, using network id 2
Connected to "localhost:1234" as client

(by design, it should not matter whether you use the C or Python Limpet, as
they should behave identically).

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

 KBUS Limpets - an introduction with goldfish

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kbus 0.4 alpha documentation

KBUS Limpets - an introduction with goldfish

Note

This is a placeholder for the final version of this section.

This is a metaphorical goldfish [image: fish] called A.

This is another metaphorical goldfish [image: fish] called B.

A and B live in a metaphorical goldfish bowl.

[image: _images/02_bowl.png]
Each metaphorical goldfish bowl has a KBUS device in it - this bowl has KBUS
device 0:

[image: _images/03_kbus_bowl.png]
Here are the two fish in their bowl.

[image: _images/04_fish_in_bowl.png]
Metaphorical goldfish are simple creatures. They can only communicate with
each other using KBUS messages.

[image: _images/04_fish_in_bowl2.png]
Here is another metaphorical goldfish bowl. This one contains metaphorical
goldfish called R and G. Their bowl has KBUS device 3.

[image: _images/05_fish_talk.png]
Unfortunately, A and B cannot communicate with R and G. Even if the two
metaphorical goldfish bowls are running on the same computer, KBUS does not
permit sending KBUS messages between different KBUS devices.

Luckily, KBUS provides Limpets.

A Limpet lives on the side of a metaphorical goldfish bowl, and communicates
with another Limpet on another metaphorical bowl.

Here we have Limpet 1 connected to a Ksock on KBUS device 0, and Limpet 2
connected to a Ksock on KBUS device 3:

[image: _images/06_limpet_pair.png]
Limpets always come in pairs. Each Limpet can proxy KBUS messages from the
KBUS device in its metaphorical goldfish bowl to and from the other Limpet in
its pair.

Think of them as using very low power line-of-sight lasers to send messages
between each other.

So a pair of Limpets hide the fact that the two KBUS devices are not the same.
This means that fish A and G can talk just as if they were in the same bowl:

[image: _images/07_A_talks_to_G.png]
To the metaphorical goldfish, it is as if the messages magically pass between
the two KBUS devices, and thus A and B can communicate with R and G.

This mechanism even allows such communication if there are intermediate bowls:

[image: _images/08_3_bowls.png]

A few more technical details

KBUS Limpets are currently experimental, and have not been extensively tested
yet. Limpet daemons are available in Python and C (which intercommunicate
happily).

In order to keep Limpets and their implementation as simple as possible, we’re
willing to put up with some limitations:

	We use TCP/IP or named sockets to communicate between Limpets, which means
one Limpet in each pair has to be a server, and thus started up first.

	All Limpets on a connected network must have unique ids.

	Limpets may not be used to form a network with loops in it. This greatly
simplifies message management.

	We assume a “safe” or trusted network - if it acts like a Limpet, it is a
Limpet.

	Finally, one cannot connect both ends of a Limpet pair to the same KBUS
device (the same KBUS device number on different computers is OK, of
course).

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

 KBUS Limpets - an introduction

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kbus 0.4 alpha documentation

KBUS Limpets - an introduction

The problem, in brief

By design, KBUS does not allow message sending between KBUS devices.

Also, KBUS the-kernel-module only provides message sending on a single
machine.

In the KBUS tradition of trying to provide simple, but just sufficient,
solutions, KBUS Limpets allow intercommunication between pairs of KBUS
devices, possibly on different machines.

Summary

A Limpet proxies KBUS message between a KBUS device and another Limpet.

Thus one has a connection something like:

KBUS<x> <----> L<x> : L<y> <----> KBUS<y>

The paired Limpets communicate via a socket.

To someone talking to KBUS<x>, it should appear as if messages to/from someone
using KBUS<y> are sent/received directly. In particular, Requests and Replies
(including Stateful Requests) are proxied transparently.

Restrictions and caveats

There are various restrictions on what Limpets can do and how they must be
used. These are mostly intrinsic in the approach taken, and avoiding them
would require doing something more sophisticated.

	The name is unintuitive. Sorry.

	All Limpets that can be reached by a message must have distinct network ids.

Limpet network ids are used to identify the Limpet’s pair, and also
for determining if a message has originated with this particular Limpet.
If the network ids are not unique, this will go horribly wrong.

	Limpets do not support closed loops. Thus the “network” formed by Limpets
and KBUS devices must be “open” - for instance, a tree structure or star.

If a loop is formed in the network, messages may go round and round
forever. And other bad stuff.

	When starting up a Limpet pair, one must be designated the server and the
other the client (in the traditional socket handling manner). This is a
nuisance, but doing otherwise would be more complex, and possibly
unreliable.

	Don’t connect both ends of a Limpet pair to the same KBUS device. Just
don’t.

	Limpets intrinsically assume a “safe” network, i.e., there is no way of
“proving” that the end of a message passing chain is a proper Limpet, rather
than someone spoofing one.

In particular, if we have a chain (e.g., x->K1->L1:L2->K2->L3:L4->K3->y) and
are passing through a Stateful Request, L2 has to trust that the Replier
for the message on K2 is actually a Limpet who is going to pass the
message on (ultimately to y). The message is only marked with who it was
originally from (x) and who it is aimed at (y), and if L3 is not
actually a Limpet (but someone who has taken its place), there is little
that we can do about it.

	KBUS itself is intended to give a very good guarantee that a Request will
always generate a Reply (of some sort). Whilst the Limpet system tries to
provide a reasonably reliable mechanism, there is no way that it can be as
robust in this matter as just talking to a KBUS device.

	Limpets default to proxying “$.*” (i.e., all messages). It is possible to
proxy something different, but this is untested, and actually of unproven
utility (I just had a feeling it might be useful). So if you try, cross your
fingers and let me know the results.

	It is possible to tell if a message is going through Limpets, by
inspection of the message id (the network id will be set when it is
intermediate networks), and the use of the “originally from” and “finally
to” fields. Thus the use of Limpets is not strictly transparent.

Also, there are some specialised messages returned only by Limpets.

I do not believe this to be a problem. It may possibly be an advantage.

	The most important problem with Limpets is that they are not (at the moment)
particularly well tested. Although I’ve done a fair amount of paper-and-pen
figuring of message/KBUS/Limpet interaction, and some testing, it is still
possible that I’ve missed a whole chunk of necessary functionality. So
please treat the whole thing as heavily ALPHA for the moment (as of February
2010).

With goldfish bowls

Consider a particular machine as a goldfish bowl. Inside is a KBUS kernel
module, and the contents of the bowl communicate with this (and thus each
other) in the normal KBUS manner.

[image: _images/05_fish_talk.png]
Now consider another goldfish bowl. We’d like to be able to make the two KBUS
kernel modles (one in each) communicate.

So, let’s place a limpet on the inside of each bowl’s glass. Each limpet can
communicate with the other using a simple laser communications link (so
they’re clever cyborg limpets), and each limpet can also communicate with its
KBUS kernel module.

[image: _images/06_limpet_pair.png]
So the Limpet needs to proxy things for KBUS users in its bowl to the other
bowl, and back again.

So if goldfish G in Bowl 3 wants to bind as a listener to message $.Gulp,
then we want the Limpet in Bowl 0 to forward all $.Gulp messages from its
KBUS kernel module, and the Limpet in Bowl 3 then needs to echo them to the
KBUS kernel module in its bowl. So when goldfish A sends a $.Gulp message,
goldfish G will hear it:

[image: _images/07_A_talks_to_G.png]
What if goldfish G wants to bind as a Replier for message $.Gulp? Limpets
handle that as well, by binding as a proxy-replier in the other goldfish
bowls.

So:

	Goldfish G binds as a replier for $.Gulp.

	KBUS device 3 sends out a Replier Bind Event message, saying that goldfish G
has bound as a replier for $.Gulp.

	Limpet 2 receives this message, and tells Limpet 1.

	Limpet 1 binds as a replier for $.Gulp, on KBUS device 0.

This allows goldfish A and G to interact with a Request/Reply sequence as
normal:

	Goldfish A send a request $.Gulp.

	Limpet 1 receives it, as the Replier for that message on KBUS device 0.

	Limpet 1 sends the message to Limpet 2.

	Limpet 2 sends the message, as a Request, to KBUS device 3.

	Goldfish G receives the message, marked as a Request to which it should
reply.

	Goldfish G replies to the request.

	Limpet 2 receives the reply (since it issued the request on this KBUS
device).

	Limpet 2 sends the message to Limpet 1.

	Limpet 1 uses the message to form its reply, which it then sends to
KBUS device 0, since in this bowl it is the replier.

	Goldfish A receives the reply.

Handling Stateful Requests (and Replies) needs a bit more infrastructure, but
is essentially handled by the same mechanism, although we need to show it in a
bit more detail this time.

(Stateful transactions use the message header orig_from and
final_to fields. When a message is sent through a Limpet, the
orig_from indicates both the original Ksock (goldfish G) and also
the first Limpet (Limpet 2). This can then be copied to the final_to
field of a Stateful Request to indicate that it really is goldfish G that
is wanted, even though goldfish A can’t “see” them.)

TODO: insert a detailed explanation of how Stateful Transactions work

These mechanisms will also work when there are intermediate bowls:

[image: _images/08_3_bowls.png]

Python and C implementations

Note

This section is out-of-date, as the example socket-based Limpet
implementations are no longer in the C library or the Python module.
This section will be updated later on...

(note to self: remember the Python kbus.limpet.LimpetExample class)

Limpets were originally developed in Python.

>>> from kbus import run_a_limpet
>>> import socket
>>> run_a_limpet(True, '/tmp/limpet-socket', socket.AF_UNIX, 0, 1)

There is a Limpet class, and a runlimpet.py utility in kbus/utils.

Subsequently, a C implementation has been added to libkbus:

err = run_limpet(kbus_device, message_name, is_server, address, port,
 network_id, termination_message, verbosity);
if (err) return 1;

and there is a runlimpet utility in kbus/utils, with an identical
command line to the Python equivalent.

At the moment, the logging messages output by these two are not identical, but
otherwise their behaviour should be, and in particular it should be possible
to run a C Limpet communicating with a Python Limpet.

The test_limpet.py utility, in kbus/python/sandbox, provides some
limited testing of limpets. It defaults to testing the Python version, but if
run as ./test_limpet.py C will test the C version. It is not a robust
test, as it doesn’t always give the same results (for reasons I’ve still to
figure out, but probably timing issues). It’s also an incredibly unrealistic
use of the limpet mechanism.

Network protocol

When a Limpet starts up, it contacts its pair to swap network ids.

Thus each Limpet sends:

HELO
<network_id> -- an unsigned 32 bit integer

when <network_id> is in network order.

Otherwise, Limpets swap “entire” messages, but omitting the <name> and <data>
pointers (which would by definition be NULL for an “entire” message). Thus:

start_guard
 id.network_id
 id.serial_num
 in_reply_to.network_id
 in_reply_to.serial_num
 to
 from_
 orig_from.network_id
 orig_from.local_id
 final_to.network_id
 final_to.local_id
 extra
 flags
 name_len
 data_len
end_guard

name, including 0 byte terminator, padded to 4-byte boundary

if data_len > 0:
 data, padded to 4-byte boundary

end_guard

The various integer fields in the header are in network order.

Name/data padding is done with zero bytes.

A Replier Bind Event message is treated specially, in that the <is_binder>,
<binder_id> and <name_len> fields in the data are automatically converted
to/from network order as the message is written/read.

All other message data is just treated as a byte stream.

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

 KBUS Python bindings for Limpets

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kbus 0.4 alpha documentation

KBUS Python bindings for Limpets

Limpet - a mechanism for proxying KBUS messages to/from another Limpet.

This allows messages to be communicated from one KBUS device to another,
either on the same machine or over a network.

Limpets

See also the LimpetExample class, which shows how a limpet
might be deployed in practise.

Limpet and run_a_limpet

	
class kbus.limpet.LimpetKsock(which, our_network_id, their_network_id, message_name='$.*', verbosity=1, termination_message=None)

	Bases: kbus.ksock.Ksock

A Limpet proxies KBUS messages to/from another Limpet.

This class wraps itself around a Ksock, transforming messages as they are
read from the Ksock, or written to it.

	
bind(*args)

	Not meaningful for this class.

	
could_not_send_to_kbus_msg(msg, exc)

	If a send to our Ksock failed, call this to generate a message.

‘msg’ is the message we tried to send.

‘exc’ is the IOError exception that was raised by the failed call of
‘send_msg()’

We return an appropriate message to send to the other Limpet, or None
if we could not determine one.

	
discard()

	Not meaningful for this class.

We only support reading an entire message in one go with
read_next_msg().

	
len_left()

	Not meaningful for this class.

We only support reading an entire message in one go with
read_next_msg().

	
read_data(count)

	Not meaningful for this class.

We only support reading an entire message in one go with
read_next_msg().

	
read_msg(length)

	Read a Message of length length bytes.

It is assumed that length was returned by a previous call
of next_msg(). It must be large enough to cause the
entire message to be read.

After the data has been read, it is passed to Message() to
construct a message instance, which is returned.

Returns None if there was nothing to be read, or if the message
read is one that this Limpet should ignore.

	
read_next_msg()

	Read the next Message completely.

Equivalent to a call of kbus.Ksock.next_msg(), followed by
reading the
appropriate number of bytes and passing that to Message() to
construct a message instance, which is returned.

Returns None if there was nothing to be read, or if the message
read is one that this Limpet should ignore.

	
report_replier_binds(report_events=True, just_ask=False)

	Not meaningful for this class.

Limpets require this option to be set in order to work properly,
and do not allow the user to change it.

	
send_msg(message)

	Write a Message (from the other Limpet) to our
Ksock, and send it.

Entirely equivalent to calling write_msg() and then
send(),
and returns the MessageId of the sent message, like
send() does.

If the message was one we need to ignore (i.e., we’re not interested
in sending it), raises NoMessage.

If we need to send a message back to the other Limpet, then that
exception will have the messsage as its argument.

	
unbind(*args)

	Not meaningful for this class.

	
want_messages_once(only_once=False, just_ask=False)

	Not meaningful for this class.

Limpets require this option to be set in order to work properly,
and do not allow the user to change it.

	
write_data(data)

	Not meaningful for this class.

We only support writing an entire message in one go with
send_msg().

	
write_msg(message)

	Not meaningful for this class.

We only support writing and sending an entire message in one go
with send_msg().

	
kbus.limpet.run_a_limpet(is_server, address, family, kbus_device, network_id, message_name='$.*', termination_message=None, verbosity=1)

	Run a Limpet.

A Limpet has two “ends”:

	kbus_device specifies which KBUS device it should communicate
with, via ksock = Ksock(kbus_device, 'rw').

	socket_address is the address for the socket used to
communicate with its paired Limpet. This should generally be a
path name (if communication is with another Limpet on the same
machine, via Unix domain sockets), or a (host, port) tuple (for
communication with a Limpet on another machine, via the internet).

Messages received from KBUS get sent to the other Limpet.

Messages sent from the other Limpet get sent to KBUS.

	is_server is true if we are the “server” of the Limpet pair, false
if we are the “client”

	address is the socket address we use to talk to the other Limpet

	family is AF_UNIX or AF_INET, determining what sort of address we
want – a pathname for the former, a <host>:<port> string for the
latter

	kbus_device is which KBUS device to open

	network_id is the network id to set in message ids when we are
forwarding a message to the other Limpet. It must be greater
than zero.

	message_name is the name of the message (presumably a wildcard)
we are forwarding

	if termination_message is not None, then we will stop when a message
with that name is read from KBUS

	if verbosity is 0, we don’t output any “useful” messages, if it is
1 we just announce ourselves, if it is 2 (or higher) we output
information about each message as it is processed.

Limpet exceptions

	
class kbus.limpet.GiveUp

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Signifies a fatal condition such as a failure to connect to the other
Limpet, or when the termination_message of a
LimpetKsock is read.

	
class kbus.limpet.OtherLimpetGoneAway

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

The other end has closed its end of the socket.

	
class kbus.limpet.NoMessage

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

There was no message.

	
class kbus.limpet.BadMessage

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

We have read a badly formatted KBUS message.

	
class kbus.limpet.ErrorMessage(error)

	Bases: exceptions.Exception [http://docs.python.org/library/exceptions.html#exceptions.Exception]

Something went wrong trying to send a message to KBUS.

There is an error message, for sending back to the other Limpet,
in our .error value.

Helper functions

	
kbus.limpet.parse_address(word)

	Work out what sort of address we have.

Returns (address, family).

	
kbus.limpet.connect_as_server(address, family, verbosity=1)

	Connect to a socket as a server.

We start listening, until we get someone connecting to us.

Returns a tuple (listener_socket, connection_socket).

	
kbus.limpet.connect_as_client(address, family, verbosity=1)

	Connect to a socket as a client.

Returns the socket.

	
kbus.limpet.remove_socket_file(name)

	Attempts to clean up a socket whose address is a file in the filesystem.
This currently only applies to sockets of the AF_UNIX family.

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

 The KBUS documentation and sphinx

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Kbus 0.4 alpha documentation

The KBUS documentation and sphinx

Pre-built documentation

For your comfort and convenience, a pre-built version of the KBus
documentation is available at:

http://html.kbus.googlecode.com/hg/docs/html/index.html

or within the Mercurial html repository at:

html/docs/html/index.html

Building the documentation

The KBus documentation is built using Sphinx [http://sphinx.pocoo.org/].

Note

The documentation needs (at least) version 0.6 of Sphinx.
Recent versions of
Ubuntu provide this in the python-sphinx package; on older
versions you should use easy_install as described on the
Sphinx website.

You also need graphviz (which provides dot).

With luck, the HTML in the web repository will be up-to-date, and
you won’t need to (re)build the documentation. However, if you should need to
(for instance, because you’ve updated it),
just use the Makefile:

make html

Note that the html repository includes default as a
subrepository; this means that if you’ve made changes to the doc source
anywhere else, you have to update the subrepository before you build in
html, probably with a line like this:

hg -R kbus pull <repo>
hg -R kbus update

KBUS developers can push rebuilt docs back to Mercurial in the usual way;
beware that the inheritance graphic is rebuilt every time and require
hg add (and, ideally, the old ones removed).

The Python bindings

Read the kbus-python-*.txt files to see how individual classes and
functions within kbus.py are documented. Obviously, if you add, remove or
rename such, you may need to alter these files – please do so appropriately.

Mime type magic

In order for the documentation in the Google Code Mercurial repository to be
useable as documentation, the HTML, CSS and JavaScript files in the docs/html
directory tree need to have the correct mime types. Mercurial is clever
enough to be able to cope with this, though Subversion needed extra help.

Mercurial gotchas

Sphinx believes that the contents of docs are transitory - i.e., that it
is free to delete them if it wishes. In particular, make clean will delete
all of the contents of docs.

Meanwhile, we’ve committed docs/html and its contents to Mercurial.

This used to be a problem under Subversion, but is no longer since moving
to Mercurial. If you accidentally make clean the docs away, you can
use hg checkout to retrieve them.
With luck the dependency tracking in the make process will cope.

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	Kbus 0.4 alpha documentation

 Python Module Index

 k

 			

 		
 k	

 	[image: -]
 	
 kbus	

 	
 	
 kbus.limpet	

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	
 modules |

 	Kbus 0.4 alpha documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	ALL_OR_FAIL (kbus.Message attribute)

 	ALL_OR_WAIT (kbus.Message attribute)

 	

 	Announcement (class in kbus)

B

 	

 	BadMessage (class in kbus.limpet)

 	bind() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

 	

 	BindStruct (class in kbus)

C

 	

 	cast() (kbus.Message method)

 	close() (kbus.Ksock method)

 	connect_as_client() (in module kbus.limpet)

 	

 	connect_as_server() (in module kbus.limpet)

 	could_not_send_to_kbus_msg() (kbus.limpet.LimpetKsock method)

D

 	

 	data (kbus.Message attribute)

 	

 	discard() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

E

 	

 	END_GUARD (kbus.Message attribute)

 	equivalent() (kbus.Message method)

 	

 	ErrorMessage (class in kbus.limpet)

 	extract() (kbus.Message method)

F

 	

 	fileno() (kbus.Ksock method)

 	final_to (kbus.Message attribute)

 	find_replier() (kbus.Ksock method)

 	flags (kbus.Message attribute)

 	

 	from_ (kbus.Message attribute)

 	from_bytes() (kbus.Announcement static method)

 	

 	(kbus.Message static method)

 	(kbus.Reply static method)

 	(kbus.Request static method)

 	(kbus.Status static method)

 	from_message() (kbus.Announcement static method)

 	

 	(kbus.Message static method)

 	(kbus.Reply static method)

 	(kbus.Request static method)

 	(kbus.Status static method)

 	from_sequence() (kbus.Announcement static method)

 	

 	(kbus.Message static method)

 	(kbus.Reply static method)

 	(kbus.Request static method)

 	(kbus.Status static method)

G

 	

 	GiveUp (class in kbus.limpet)

I

 	

 	id (kbus.Message attribute)

 	in_reply_to (kbus.Message attribute)

 	IOC_BIND (kbus.Ksock attribute)

 	IOC_DISCARD (kbus.Ksock attribute)

 	IOC_KSOCKID (kbus.Ksock attribute)

 	IOC_LASTSENT (kbus.Ksock attribute)

 	IOC_LENLEFT (kbus.Ksock attribute)

 	IOC_MAGIC (kbus.Ksock attribute)

 	IOC_MAXMSGS (kbus.Ksock attribute)

 	IOC_MAXMSGSIZE (kbus.Ksock attribute)

 	IOC_MSGONLYONCE (kbus.Ksock attribute)

 	IOC_NEWDEVICE (kbus.Ksock attribute)

 	IOC_NEXTMSG (kbus.Ksock attribute)

 	IOC_NUMMSGS (kbus.Ksock attribute)

 	

 	IOC_REPLIER (kbus.Ksock attribute)

 	IOC_REPORTREPLIERBINDS (kbus.Ksock attribute)

 	IOC_RESET (kbus.Ksock attribute)

 	IOC_SEND (kbus.Ksock attribute)

 	IOC_UNBIND (kbus.Ksock attribute)

 	IOC_UNREPLIEDTO (kbus.Ksock attribute)

 	IOC_VERBOSE (kbus.Ksock attribute)

 	is_replier (kbus.BindStruct attribute)

 	is_reply() (kbus.Message method)

 	is_request() (kbus.Message method)

 	is_stateful_request() (kbus.Message method)

 	is_synthetic() (kbus.Message method)

 	is_urgent() (kbus.Message method)

K

 	

 	kbus (module), [1]

 	kbus.limpet (module)

 	kernel_module_verbose() (kbus.Ksock method)

 	

 	Ksock (class in kbus)

 	ksock_id() (kbus.Ksock method)

L

 	

 	last_msg_id() (kbus.Ksock method)

 	len (kbus.BindStruct attribute)

 	

 	(kbus.ReplierStruct attribute)

 	len_left() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

 	

 	LimpetKsock (class in kbus.limpet)

 	local_id (kbus.OrigFrom attribute)

M

 	

 	max_message_size() (kbus.Ksock method)

 	max_messages() (kbus.Ksock method)

 	Message (class in kbus)

 	

 	MessageId (class in kbus)

 	msg_id (kbus.SendResultStruct attribute)

N

 	

 	name (kbus.BindStruct attribute)

 	

 	(kbus.Message attribute)

 	(kbus.ReplierStruct attribute)

 	network_id (kbus.MessageId attribute)

 	

 	(kbus.OrigFrom attribute)

 	new_device() (kbus.Ksock method)

 	next() (kbus.Ksock method)

 	

 	next_msg() (kbus.Ksock method)

 	NoMessage (class in kbus.limpet)

 	num_messages() (kbus.Ksock method)

 	num_unreplied_to() (kbus.Ksock method)

O

 	

 	orig_from (kbus.Message attribute)

 	OrigFrom (class in kbus)

 	

 	OtherLimpetGoneAway (class in kbus.limpet)

P

 	

 	parse_address() (in module kbus.limpet)

R

 	

 	read_bindings() (in module kbus)

 	read_data() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

 	read_msg() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

 	read_next_msg() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

 	remove_socket_file() (in module kbus.limpet)

 	ReplierStruct (class in kbus)

 	Reply (class in kbus)

 	

 	reply_to() (in module kbus)

 	report_replier_binds() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

 	Request (class in kbus)

 	return_id (kbus.ReplierStruct attribute)

 	retval (kbus.SendResultStruct attribute)

 	run_a_limpet() (in module kbus.limpet)

S

 	

 	send() (kbus.Ksock method)

 	send_msg() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

 	SendResultStruct (class in kbus)

 	serial_num (kbus.MessageId attribute)

 	set_max_message_size() (kbus.Ksock method)

 	set_max_messages() (kbus.Ksock method)

 	set_urgent() (kbus.Message method)

 	

 	set_want_reply() (kbus.Announcement method)

 	

 	(kbus.Message method)

 	(kbus.Request method)

 	split_replier_bind_event_data() (in module kbus)

 	START_GUARD (kbus.Message attribute)

 	stateful_request() (in module kbus)

 	Status (class in kbus)

 	SYNTHETIC (kbus.Message attribute)

T

 	

 	to (kbus.Message attribute)

 	to_bytes() (kbus.Message method)

 	

 	total_length() (kbus.Message method)

U

 	

 	unbind() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

 	

 	URGENT (kbus.Message attribute)

W

 	

 	wait_for_msg() (kbus.Ksock method)

 	WANT_A_REPLY (kbus.Message attribute)

 	want_messages_once() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

 	WANT_YOU_TO_REPLY (kbus.Message attribute)

 	

 	wants_us_to_reply() (kbus.Message method)

 	write_data() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

 	write_msg() (kbus.Ksock method)

 	

 	(kbus.limpet.LimpetKsock method)

 Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_images/04_fish_in_bowl.png

_static/up-pressed.png

_images/08_3_bowls.png

_static/down.png

_images/07_A_talks_to_G.png

_static/up.png

_images/02_bowl.png

_images/inheritance-edd2f33a37944fe8ecee0f95286e53fb05ca96b2.png
Kbus.messages.Announcement

—

| kbus.messages reply ‘

Kbus messages Request

Kbus.messages.Status

_images/06_limpet_pair.png

_images/01_goldfish.png

mpl_license.html

 Navigation

 		
 index

 		
 modules |

 		Kbus 0.4 alpha documentation »

 # * BEGIN LICENSE BLOCK *
Version: MPL 1.1
#
The contents of this file are subject to the Mozilla Public License Version
1.1 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/
#
Software distributed under the License is distributed on an “AS IS” basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
for the specific language governing rights and limitations under the
License.
#
The Original Code is the KBUS Lightweight Linux-kernel mediated
message system
#
The Initial Developer of the Original Code is Kynesim, Cambridge UK.
Portions created by the Initial Developer are Copyright (C) 2009
the Initial Developer. All Rights Reserved.
#
Contributor(s):
Kynesim, Cambridge UK
Tibs <tibs@tonyibbs.co.uk>
#
* END LICENSE BLOCK *

 © Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

_images/04_fish_in_bowl2.png

_images/05_fish_talk.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Kbus 0.4 alpha documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009, 2010, Kynesim, MPL 1.1 license.
 Last updated on 16 Nov 2016.
 Created using Sphinx 1.3.5.

_images/03_kbus_bowl.png

_static/commen