

FITSIO.jl

A Julia [http://julialang.org] package for reading and writing Flexible Image Transport
System (FITS) files, based on the cfitsio [http://heasarc.gsfc.nasa.gov/fitsio/] library.

The interface is inspired by Erin Sheldon’s fitsio [https://github.com/esheldon/fitsio] Python package.

Install

julia> Pkg.add("FITSIO")

On linux or OS X, if it isn’t already installed on your system,
the cfitsio library is automatically downloaded and compiled
(in your Julia packages directory). On Windows, a compiled dll will be
downloaded.

Usage

Open an existing file for reading:

julia> using FITSIO

julia> f = FITS("file.fits")
file: file.fits
mode: r
extnum exttype extname
1 image_hdu
2 binary_table

(At the REPL, information about the file contents is shown.)

A FITS file consists of one or more header-data units (HDUs), concatenated one
after the other. The FITS object therefore is represented as a collection
of these HDUs.

Get information about the first HDU:

julia> f[1] # get the first extension
file: file.fits
extension: 1
type: IMAGE
image info:
 bitpix: -64
 size: (800,800)

Iterate over HDUs in the file:

julia> for hdu in f; println(typeof(hdu)); end
ImageHDU
TableHDU

Each HDU can contain image data, or table data (either binary or
ASCII-formatted). For image extensions, get the size of the image
without reading it:

julia> ndims(f[1])
2

julia> size(f[1])
(800,800)

julia> size(f[1], 2)
800

Read an image from disk:

julia> data = read(f[1]); # read an image from disk

julia> data = read(f[1], :, 790:end); # read just a subset of image

Show info about a binary table:

julia> f[2]
file: file.fits
extension: 2
type: BINARY TABLE
rows: 20
columns:
 col2 (5A)
 col1 (1K)

Read a column from the table:

julia> data = read(f[2], "col1")

Read the entire header into memory and get values from it:

julia> header = read_header(f[1]); # read the entire header from disk

julia> length(header) # total number of records in header
17

julia> haskey(header, "NAXIS1") # check if a key exists
true

julia> header["NAXIS1"] # get value by keyword
800

julia> header[4] # get value by position
800

julia> get_comment(header, "NAXIS") # get comment for a given keyword
"length of data axis 1"

Read just a single header record without reading the entire header:

julia> read_key(f[1], 4) # by position
("NAXIS1",800,"length of data axis 1")

julia> read_key(f[1], "NAXIS1") # read by keyword
(800,"length of data axis 1")

Manipulate a header in memory:

julia> header["NEWKEY"] = 10 # change or add a keyword

julia> set_comment!(header, "NEWKEY", "this is a comment")

Close the file:

julia> close(f)

(FITS objects are also closed automatically when garbage collected.)

Open a new file for writing:

julia> f = FITS("newfile.fits", "w");

The second argument can be "r" (read-only; default), "r+"
(read-write) or "w" (write). In “write” mode, any existing file of
the same name is overwritten.

Write an image to the file:

julia> data = reshape([1:100], 5, 20);

julia> write(f, data) # Write a new image extension with the data

To write some header keywords in the new extension, pass a
FITSHeader instance as a keyword: write(f, data;
header=header)

Write a table to the file:

julia> data = ["col1"=>[1., 2., 3.], "col2"=>[1, 2, 3]];

julia> write(f, data) # write a new binary table to a new extension

Reference

	API reference

	Libcfitsio submodule

API reference

File operations

	
FITS(filename::String, mode::String="r")

	Open or create a FITS file. mode can be one of "r"
(read-only), "r+" (read-write) or "w" (write). In “write”
mode, any existing file of the same name is overwritten.

A FITS object is a collection of “Header-Data Units” (HDUs) and
supports the following operations:

	f[i] Return the i-th HDU.

	f[name] or f[name, ver] Return the HDU containing the
given the given EXTNAME (or HDUNAME) keyword (an ASCIIString), and
optionally the given EXTVER (or HDUVER) number (an Integer).

	Iteration:

for hdu in f
 ...
end

	
length(f::FITS)

	Number of HDUs in the file.

	
close(f::FITS)

	Close the file. Subsequent attempts to operate on f will result
in an error. FITS objects are also automatically closed when
they are garbage collected.

Header operations

	
read_header(hdu)

	Read the entire header from the given HDU and return a
FITSHeader object. The value of each header record is parsed as
Int, Float64, ASCIIString, Bool or nothing
according to the FITS standard. (If the value cannot be parsed
according to the FITS standard, the value is stored as the raw unparsed
ASCIIString.)

	
read_header(hdu, ASCIIString)

	Read the entire header from the given HDU as a single string.

	
FITSHeader(keys, values, comments)

	Create a FITSHeader from arrays of keywords, values and comments.
This type partially implements the Associative interface:

	length(hdr) Number of records.

	haskey(hdr) Header keyword exists.

	keys(hdr) Array of keywords (not a copy).

	values(hdr) Array of values (not a copy).

	hdr[key] Get value based on keyword or index.

	hdr[key] = value Set value based on keyword or index.

Additionally, there are functions to get and set comments:

	get_comment(hdr, key) Get the comment based on keyword or index.

	set_comment!(hdr, key, comment) Set the comment baed on keyword
or index.

	
read_key(hdu, key)

	Read just the specified key and return a tuple of (value,
comment). The key can be either the index of the header record
(Integer) or the header keyword (ASCIIString).

Image operations

	
write(f::FITS, data::Array; header=nothing, name=nothing, ver=nothing)

	Add a new ImageHDU to the file. The following array element types
are supported: UInt8, Int8, UInt16, Int16,
UInt32, Int32, Int64, Float32, Float64. If a
FITSHeader object is passed as the header keyword argument,
the header will be added to the new HDU.

	
read(hdu::ImageHDU)

	Read the entire image from disk.

	
read(hdu::ImageHDU, range...)

	Read a subsection of the image from disk. E.g., read(hdu, 1:20, 1:2:20).

	
ndims(hdu::ImageHDU)

	Get number of image dimensions, without reading the image into memory.

	
size(hdu::ImageHDU)

	Get image dimensions, without reading the image into memory.

	
size(hdu::ImageHDU, i::Integer)

	Get i-th dimension.

	
length(hdu::ImageHDU)

	Get total number of pixels in image (product of size(hdu)).

	
copy_section(hdu::ImageHDU, dest::FITS, r::Range...)

	Copy a rectangular section of an image and write it to a new FITS
primary image or image extension. The new image HDU is appended to
the end of the destination file; all the keywords in the input image
will be copied to the output image. The common WCS keywords will be
updated if necessary to correspond to the coordinates of the
section. Examples:

Copy the lower-left 200 x 200 pixel section of the image in hdu
to an open file, f:

copy_section(hdu, f, 1:200, 1:200)

Same as above but only copy odd columns in y:

copy_section(hdu, f, 1:200, 1:2:200)

Table Operations

	
write(f::FITS, data::Dict; hdutype=TableHDU, name=nothing, ver=nothing, header=nothing, units=nothing, varcols=nothing)

	Create a new table extension and write data to it. If the FITS file
is currently empty then a dummy primary array will be created
before appending the table extension to it. data should be a
dictionary with ASCIIString keys (giving the column names) and
Array values (giving data to write to each column). The following
types are supported in binary tables: Uint8, Int8,
Uint16, Int16, Uint32, Int32, Int64,
Float32, Float64, Complex64, Complex128,
ASCIIString, Bool.

Optional inputs:

	hdutype: Type of table extension to create. Can be either
TableHDU (binary table) or ASCIITableHDU (ASCII table).

	name: Name of extension.

	ver: Version of extension (Int).

	header: FITSHeader instance to write to new extension.

	units: Dictionary mapping column name to units (as a string).

	varcols: An array giving the column names or column indicies to
write as “variable-length columns”.

Note

Variable length columns

Variable length columns allow a column’s row entries to contain
arrays of different lengths. They can potentially save diskspace
when the rows of a column vary greatly in length, as the column
data is all written to a contiguous heap area at the end of the
table. Only column data of type Vector{ASCIIString} or types
such as Vector{Vector{UInt8}} can be written as variable
length columns. In the second case, ensure that the column data
type is a leaf type. That is, the type cannot be
Vector{Vector{T}}, which would be an array of arrays having
potentially non-uniform element types (which would not be
writable as a FITS table column).

	
write(f::FITS, colnames, coldata; hdutype=TableHDU, name=nothing, ver=nothing, header=nothing, units=nothing, varcols=nothing)

	Same as write(f::FITS, data::Dict; ...) but providing column
names and column data as a separate arrays. This is useful for
specifying the order of the columns. Column names must be
Array{ASCIIString} and column data must be an array of arrays.

	
read(hdu, colname)

	Read a column as an array from the given table HDU.

The column name may contain wild card characters (*, ?, or
#). The * wild card character matches any sequence of
characters (including zero characters) and the ? character
matches any single character. The # wildcard will match any
consecutive string of decimal digits (0-9). The string must match a
unique column.

Miscellaneous

	
FITSIO.libcfitsio_version() → VersionNumber

	Return the version of the underlying CFITSIO library. E.g., v"3.34.0".

Libcfitsio submodule

The Libcfitsio submodule provides an interface familiar to users of the
CFITSIO [http://heasarc.gsfc.nasa.gov/fitsio/] C library. It can be used with

using FITSIO.Libcfitsio

The functions exported by this module operate on FITSFile objects.
For the most part, they are thin wrappers around the CFITSIO [http://heasarc.gsfc.nasa.gov/fitsio/] routines
of the same names. Typically, they:

	Convert from Julia types to C types as necessary.

	Check the returned status value and raise an appropriate exception if
non-zero.

Warning

Note that these functions do not check if the file is still open before
trying to access it. A segmentation fault can result from trying to operate
on a closed file. (The main FITSIO interface always checks if the file is
open before any operation.)

File access

	
fits_create_file(filename::String)

	Create and open a new empty output FITSFile.

	
fits_clobber_file(filename::String)

	Like fits_create_file, but overwrites filename if it exists.

	
fits_open_file(filename::String)

	Open an existing data file.

	
fits_open_table(filename::String)

	Open an existing data file (like fits_open_file()) and move
to the first HDU containing either an ASCII or a binary table.

	
fits_open_image(filename::String)

	Open an existing data file (like fits_open_file()) and move
to the first HDU containing an image.

	
fits_open_data(filename::String)

	Open an existing data file (like fits_open_file()) and move
to the first HDU containing either an image or a table.

	
fits_close_file(f::FITSFile)

	Close a previously opened FITS file.

	
fits_delete_file(f::FITSFile)

	Close an opened FITS file (like fits_close_file()) and
removes it from the disk.

	
fits_file_name(f::FITSFile)

	Return the name of the file associated with object f.

HDU Routines

The functions described in this section allow to change the current
HDU and to find their number and type. The following is a short
example which shows how to use them:

num = fits_get_num_hdus(f)
println("Number of HDUs in the file: ", num)

for i = 1:num
 hdu_type = fits_movabs_hdu(f, i)
 println(i, ") hdu_type = ", hdu_type)
end

	
fits_get_num_hdus(f::FITSFile)

	Return the number of HDUs in the file.

	
fits_movabs_hdu(f::FITSFile, hduNum::Integer)

	Change the current HDU to the value specified by hduNum, and
return a symbol describing the type of the HDU. Possible symbols
are: :image_hdu, :ascii_table, or :binary_table.

The value of hduNum must range between 1 and
the value returned by fits_get_num_hdus().

	
fits_movrel_hdu(f::FITSFile, hduNum::Integer)

	Change the current HDU by moving forward or backward by hduNum
HDUs (positive means forward), and return the same as
fits_movabs_hdu().

	
fits_movnam_hdu(f::FITSFile, extname::String, extver::Integer=0, hdu_type_int::Integer=-1)

	Change the current HDU by moving to the (first) HDU which has the
specified extension type and EXTNAME and EXTVER keyword values (or
HDUNAME and HDUVER keywords). If extver is 0 (the default) then
the EXTVER keyword is ignored and the first HDU with a matching
EXTNAME (or HDUNAME) keyword will be found. If hdu_type_int
is -1 (the default) only the extname and extver values will be used
to locate the correct extension. If no matching HDU is found in the
file, the current HDU will remain unchanged.

Header Keyword Routines

	
fits_get_hdrspace(f::FITSFile) -> (keysexist, morekeys)

	Return the number of existing keywords (not counting the END keyword)
and the amount of space currently available for more keywords.

	
fits_read_keyword(f::FITSFile, keyname::String) -> (value, comment)

	Return the specified keyword.

	
fits_read_record(f::FITSFile, keynum::Int) → String

	Return the nth header record in the CHU. The first keyword in the header is at keynum = 1.

	
fits_read_keyn(f::FITSFile, keynum::Int) -> (name, value, comment)

	Return the nth header record in the CHU. The first keyword in the header is at keynum = 1.

	
fits_write_key(f::FITSFile, keyname::String, value, comment::String)

	Write a keyword of the appropriate data type into the CHU.

	
fits_write_record(f::FITSFile, card::String)

	Write a user specified keyword record into the CHU.

	
fits_delete_record(f::FITSFile, keynum::Int)

	Delete the keyword record at the specified index.

	
fits_delete_key(f::FITSFile, keyname::String)

	Delete the keyword named keyname.

	
fits_hdr2str(f::FITSFile, nocomments::Bool=false)

	Return the header of the CHDU as a string. If nocomments is true,
comment cards are stripped from the output.

Primary Array Routines

	
fits_get_img_size(f::FITSFile)

	Get the dimensions of the image.

	
fits_create_img(f::FITSFile, t::Type, naxes::Vector{Int})

	Create a new primary array or IMAGE extension with a specified data type and size.

	
fits_write_pix(f::FITSFile, fpixel::Vector{Int}, nelements::Int, data::Array)

	Write pixels from data into the FITS file.

	
fits_read_pix(f::FITSFile, fpixel::Vector{Int}, nelements::Int, data::Array)

	Read pixels from the FITS file into data.

Table Routines

To create ASCII/binary tables in a new HDU, the FITSIO.jl library
provides two functions: fits_create_ascii_table() and
fits_create_binary_table(). In general, one should pick the
second as binary tables require less space on the disk and are more
efficient to read and write. (Moreover, a few datatypes are not
supported in ASCII tables). In order to create a table, the programmer
must specify the characteristics of each column by passing an array of
tuples. See the documentation of fits_create_ascii_table() for
more details.

Here is an example:

f = fits_create_file("!new.fits")
coldefs = [("SPEED", "1D", "m/s"),
 ("MASS", "1E", "kg"),
 ("PARTICLE", "20A", "Name")]
fits_create_binary_tbl(f, 10, coldefs, "PARTICLE")

This example creates a table with room for 10 entries, each of them
describing the characteristics of a particle: its speed, its mass, and
its name (codified as a 20-character string).

	
fits_create_ascii_tbl(f::FITSFile, numrows::Integer, coldefs::Array{ColumnDef}, extname::String)

	Append a new HDU containing an ASCII table. The table will have
numrows rows (this parameter can be set to zero), each
initialized with the default value. The columns are specified by
the coldefs variable, which is an array of tuples. Each tuple
must have three string fields:

	The name of the column.

	The data type and the repetition count. It must be a string made
by a number (the repetition count) followed by a letter
specifying the type (in the example above, D stands for
Float64, E stands for Float32, A stands for Char).
Refer to the CFITSIO documentation for more information about
the syntax of this parameter.

	The measure unit of this field. This is used only as a comment.

The value of extname sets the “extended name” of the
table, i.e., a string that in some situations can be used to refer
to the HDU itself.

Note that, unlike for binary tables, CFITSIO puts some limitations
to the types that can be used in an ASCII table column. Refer to
the CFITSIO manual for further information.

See also fits_create_binary_tbl() for a similar function
which creates binary tables.

	
fits_create_binary_tbl(f::FITSFile, numrows::Integer, coldefs::Array{ColumnDef}, extname::String)

	Append a new HDU containing a binary table. The meaning of the
parameters is the same as in a call to
fits_create_ascii_tbl().

	
fits_get_coltype(f::FITSFile, colnum::Integer)

	Provided that the current HDU contains either an ASCII or binary
table, return information about the column at position colnum
(counting from 1). Return is a tuple containing

	typecode: the CFITSIO integer type code of the column

	repcount: the repetition count for the column

	width: the width of an individual element

	
fits_insert_rows(f::FITSFile, firstrow::Integer, nrows::Integer)

	Insert a number of rows equal to nrows after the row number
firstrow. The elements in each row are initialized to their
default value: you can modify them later using
fits_write_col().

Since the first row is at position 1, in order to insert rows
before the first one firstrow must be equal to zero.

See also fits_delete_rows().

	
fits_delete_rows(f::FITSFile, firstrow::integer, nrows::Integer)

	Delete nrows rows, starting from the one at position firstrow
(the first row has index 1).

See also fits_insert_rows().

	
fits_read_col(f::FITSFile, colnum::Integer, firstrow::Integer, firstelem::Integer, data::Array)

	Read data from one column of an ASCII/binary table and convert the
data into the specified type T. The column number is specified by
colnum (the first column has colnum=1). The elements to be
read start from the row number firstrow; in case each cell
contains more than one element (i.e., the “repetition count” of the
field is greater than one), firstelem allows to specify which is
the first element to be read. The overall number of elements is
specified by the length of the array data, which at the end of
the call will be filled with the elements read from the column.

	
fits_write_col(f::FITSFile, colnum::Integer, firstrow::Integer, firstelem::Integer, data::Array)

	Write some data in one column of a ASCII/binary table. The column
number is specified by colnum (the first column has
colnum=1). The first element is written at the position
firstelem within the row number firstrow (both the indexes
start from one).

If there is no room for the elements, new rows will be created. (It
is therefore useless to call fits_insert_rows() if you only
need to append elements to the end of a table.)

Index

 C
 | F
 | L
 | N
 | R
 | S
 | W

C

 	
 	close() (built-in function)

 	
 	copy_section() (built-in function)

F

 	
 	FITS() (built-in function)

 	fits_clobber_file() (built-in function)

 	fits_close_file() (built-in function)

 	fits_create_ascii_tbl() (built-in function)

 	fits_create_binary_tbl() (built-in function)

 	fits_create_file() (built-in function)

 	fits_create_img() (built-in function)

 	fits_delete_file() (built-in function)

 	fits_delete_key() (built-in function)

 	fits_delete_record() (built-in function)

 	fits_delete_rows() (built-in function)

 	fits_file_name() (built-in function)

 	fits_get_coltype() (built-in function)

 	fits_get_hdrspace() (built-in function)

 	fits_get_img_size() (built-in function)

 	fits_get_num_hdus() (built-in function)

 	fits_hdr2str() (built-in function)

 	fits_insert_rows() (built-in function)

 	
 	fits_movabs_hdu() (built-in function)

 	fits_movnam_hdu() (built-in function)

 	fits_movrel_hdu() (built-in function)

 	fits_open_data() (built-in function)

 	fits_open_file() (built-in function)

 	fits_open_image() (built-in function)

 	fits_open_table() (built-in function)

 	fits_read_col() (built-in function)

 	fits_read_keyn() (built-in function)

 	fits_read_keyword() (built-in function)

 	fits_read_pix() (built-in function)

 	fits_read_record() (built-in function)

 	fits_write_col() (built-in function)

 	fits_write_key() (built-in function)

 	fits_write_pix() (built-in function)

 	fits_write_record() (built-in function)

 	FITSHeader() (built-in function)

 	FITSIO.libcfitsio_version() (built-in function)

L

 	
 	length() (built-in function), [1]

N

 	
 	ndims() (built-in function)

R

 	
 	read() (built-in function), [1], [2]

 	
 	read_header() (built-in function), [1]

 	read_key() (built-in function)

S

 	
 	size() (built-in function), [1]

W

 	
 	write() (built-in function), [1], [2]

 nav.xhtml

 Table of Contents

 		FITSIO.jl

 		API reference

 		File operations

 		Header operations

 		Image operations

 		Table Operations

 		Miscellaneous

 		Libcfitsio submodule

 		File access

 		HDU Routines

 		Header Keyword Routines

 		Primary Array Routines

 		Table Routines

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

